JP2003307363A - Refrigerating equipment combined with absorption type and compression type and its driving method - Google Patents

Refrigerating equipment combined with absorption type and compression type and its driving method

Info

Publication number
JP2003307363A
JP2003307363A JP2002111628A JP2002111628A JP2003307363A JP 2003307363 A JP2003307363 A JP 2003307363A JP 2002111628 A JP2002111628 A JP 2002111628A JP 2002111628 A JP2002111628 A JP 2002111628A JP 2003307363 A JP2003307363 A JP 2003307363A
Authority
JP
Japan
Prior art keywords
evaporator
absorption
condenser
refrigerating
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002111628A
Other languages
Japanese (ja)
Inventor
Osayuki Inoue
修行 井上
Izumi Hashimoto
泉 橋本
Kiichi Irie
毅一 入江
Tetsuya Endo
哲也 遠藤
Atsushi Aoyama
淳 青山
Tomoyuki Uchimura
知行 内村
Yukihiro Fukuzumi
幸大 福住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002111628A priority Critical patent/JP2003307363A/en
Publication of JP2003307363A publication Critical patent/JP2003307363A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide refrigerating equipment combined with an absorption type and a compression type and efficiently driving by adjusting the driving state of a compression refrigerating machine according to the state of cooling loads and absorption refrigerating effects. <P>SOLUTION: This refrigerating equipment is formed by combining the absorption refrigerating machine having an evaporator E, with a compression refrigerating machine having one or more compressors Mc, a condenser Cc connected to the evaporator E of the absorption refrigerating machine in a heat exchange relation or a second condenser Ccx cooling using outside air or cooling water along with the condenser Cc, and an evaporator Ec exhibiting a refrigerating effect. The compression refrigerating machine is provided with a control valve feeding refrigerant liquid to the evaporator Ec, a sensor detecting a superheat degree of refrigerating steam of the outlet of the evaporator Ec, a means setting the target value of the superheat degree, and a control means controlling the capacity of the evaporator Ec by changing the target value of the superheat degree of the refrigerant steam of the outlet of the evaporator Ec. The plurality of compression refrigerating machines can be connected to the single absorption refrigerating machine. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和装置に用
いることができる冷凍装置に係り、特に、エンジン、タ
ービン、各種プラント等からの排熱を熱源とする吸収冷
凍機又は吸収冷温水機からの冷凍効果を、圧縮冷凍機と
組合せて有効利用する冷凍装置とその運転方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus that can be used in an air conditioner, and more particularly, to an absorption refrigerating machine or an absorption cold / hot water machine that uses exhaust heat from an engine, a turbine, various plants, etc. as a heat source. The present invention relates to a refrigerating apparatus that effectively uses the refrigerating effect of 1. in combination with a compression refrigerator and an operating method thereof.

【0002】[0002]

【従来の技術】コージェネレーションシステムでは、電
気と共に、比較的温度の低い温水が供給される。この温
水は、温度があまり高くなく、低ポテンシャルエネルギ
に分類され、給湯又は暖房に利用されることが多く、ま
た最近は、吸収冷凍機の熱源として冷房に利用されるこ
とも多くなってきている。コージェネレーションシステ
ムの中で、この温水は、エンジンの冷却(ジャケット温
水)あるいはエンジン排ガスからの熱回収、あるいはガ
スタービンの排ガスからの熱回収で得られる。なお、排
ガスを温水に変換せず、直接吸収冷凍機の熱源とするこ
ともある。低ポテンシャルエネルギ単独で、吸収冷凍機
を運転する場合もあるが、複合冷房装置として、高ポテ
ンシャルエネルギと共に用い、必要とする高ポテンシャ
ルエネルギの量を減らそうという使い方も提案され採用
され出している。
2. Description of the Related Art In a cogeneration system, hot water having a relatively low temperature is supplied together with electricity. This hot water is not so high in temperature, is classified into low potential energy, and is often used for hot water supply or heating. Recently, it has also been often used for cooling as a heat source of an absorption refrigerator. . In a cogeneration system, this hot water is obtained by cooling the engine (jacket hot water), recovering heat from the engine exhaust gas, or recovering heat from the exhaust gas of the gas turbine. The exhaust gas may be directly used as a heat source for the absorption refrigerator without being converted into hot water. In some cases, the absorption refrigerator is operated with low potential energy alone, but as a combined air conditioner, a method of using it together with high potential energy to reduce the required amount of high potential energy has also been proposed and adopted.

【0003】低ポテンシャルエネルギ単独で吸収冷温水
機を運転する場合、冷暖負荷に対応した負荷能力を取出
すことは、排熱の供給量が少なかったり、不安定であっ
たりして困難であり、また、これを解決するために、吸
収冷凍機の冷熱を圧縮冷凍機の放熱源として用いて循環
冷媒を冷却する冷凍装置が知られている。(特開平11
−223412号公報)。しかし、この冷凍装置におい
ては、圧縮冷凍機の熱源側熱交換器が空気による冷却と
吸収冷凍機による冷却を直列に設けており、圧縮冷凍機
の圧縮機を運転しない限り、吸収冷凍機の冷凍効果を利
用することができなかった。また、冷媒液を冷却してい
るだけであるので、吸収冷凍機の熱源熱量(温水熱量な
ど)が多くなっても、利用できる吸収冷凍効果の量を多
くすることができず、排熱供給や冷房負荷の増減に対し
ての対応が不充分であった。
When operating the absorption chiller-heater with low potential energy alone, it is difficult to extract the load capacity corresponding to the cooling and heating load because the amount of exhaust heat supplied is small or unstable. In order to solve this, there is known a refrigerating apparatus that cools a circulating refrigerant by using cold heat of an absorption refrigerator as a heat radiation source of a compression refrigerator. (JP-A-11
No. 223412). However, in this refrigeration system, the heat source side heat exchanger of the compression refrigerator is provided with cooling by air and cooling by the absorption refrigerator in series, and unless the compressor of the compression refrigerator is operated, refrigeration of the absorption refrigerator is performed. The effect could not be used. In addition, since the refrigerant liquid is only cooled, even if the heat source heat quantity of the absorption chiller (hot water heat quantity, etc.) increases, it is not possible to increase the amount of the absorption refrigeration effect that can be used, and the exhaust heat supply and The response to the increase or decrease in the cooling load was insufficient.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解消し、冷房負荷及び吸収冷凍効果の状態
に応じて圧縮冷凍機の運転状態を調節でき、経済的で効
率のよい運転ができる空気調和装置に用いることができ
る冷凍装置とその運転方法を提供することを課題とす
る。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and can adjust the operating state of the compression refrigerator according to the cooling load and the state of the absorption refrigeration effect, which is economical and efficient. An object of the present invention is to provide a refrigerating apparatus that can be used for an air conditioner that can be operated and an operating method thereof.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、蒸発器Eを有する吸収冷凍機と、1台
以上の圧縮機、前記吸収冷凍機の蒸発器Eと熱交換関係
に接続した凝縮器Cc、又は、該凝縮器Ccと外気又は
冷却水で冷却する第二凝縮器Ccx及び冷凍効果を発揮
する蒸発器Ecを有する圧縮冷凍機とを組合せた冷凍装
置であって、前記圧縮冷凍機は、蒸発器Ecに冷媒液を
供給する調節弁と、蒸発器Ecの出口冷媒蒸気の過熱度
を検出するセンサー及び該過熱度の目標値を設定する手
段を具備すると共に、該蒸発器Ecの出口冷媒蒸気の過
熱度の目標値を変えることで蒸発器Ecの容量を制御す
る制御手段を有することを特徴とする吸収式と圧縮式と
を組合せた冷凍装置としたものである。前記冷凍装置に
おいて、圧縮冷凍機は、吸収冷凍機1台に対し、複数台
接続することができる。また、本発明では、前記冷凍装
置の運転方法において、蒸発器Ecを容量制御する制御
手段は、圧縮機が全て停止し、蒸発器Ecからの冷媒蒸
気を凝縮器Ccで凝縮させる運転をしているときに稼動
することができる。
In order to solve the above problems, in the present invention, an absorption refrigerator having an evaporator E, one or more compressors, and a heat exchange relationship with the evaporator E of the absorption refrigerator. A condenser Cc connected to, or a refrigerating apparatus in which the condenser Cc is combined with a compression refrigerator having a second condenser Ccx cooled with outside air or cooling water and an evaporator Ec exhibiting a refrigerating effect, The compression refrigerator comprises a control valve for supplying a refrigerant liquid to the evaporator Ec, a sensor for detecting the superheat degree of the outlet refrigerant vapor of the evaporator Ec, and means for setting a target value of the superheat degree. A refrigerating apparatus combining an absorption type and a compression type, which has a control means for controlling the capacity of the evaporator Ec by changing a target value of the superheat degree of the outlet refrigerant vapor of the evaporator Ec. . In the refrigeration system, a plurality of compression refrigerators can be connected to one absorption refrigerator. Further, in the present invention, in the operating method of the refrigerating apparatus, the control means for controlling the capacity of the evaporator Ec performs an operation in which all the compressors are stopped and the refrigerant vapor from the evaporator Ec is condensed by the condenser Cc. You can work when you are.

【0006】[0006]

【発明の実施の形態】本発明は、圧縮冷凍機の圧縮機を
運転せず、吸収冷凍効果単独でも圧縮冷凍機の冷凍能力
を出すことができ、また、圧縮機を運転している時で
も、吸収冷凍効果を充分に発揮でき、吸収冷凍効果を優
先的に用いることができるようにしている。次に、本発
明を図面を用いて詳細に説明する。図1〜図4は、本発
明の冷凍装置の圧縮冷凍機側の構成機器の接続例を示す
フロー構成図である。図において、Mcは圧縮機、Ec
は蒸発器、Ccは凝縮器、Ccxは第二凝縮器、Ta、
TR、Tsは温度センサー、Scは過冷却器を示す。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention makes it possible to obtain the refrigerating capacity of a compression refrigerating machine by the absorption refrigerating effect alone without operating the compressor of the compression refrigerating machine, and even when the compressor is in operation. In addition, the absorption refrigeration effect can be sufficiently exerted, and the absorption refrigeration effect can be preferentially used. Next, the present invention will be described in detail with reference to the drawings. 1 to 4 are flow configuration diagrams showing an example of connection of component devices on the compression refrigerator side of the refrigerating apparatus of the present invention. In the figure, Mc is a compressor, Ec
Is an evaporator, Cc is a condenser, Ccx is a second condenser, Ta,
TR and Ts are temperature sensors, and Sc is a supercooler.

【0007】図1において、(a)は全体構成図、
(b)はEc部詳細図であり、蒸発器Ecからの冷媒蒸
気は、圧縮機Mc停止中は、凝縮器Ccに吸引され、圧
縮機Mc運転中は、圧縮機Mc又は圧縮機Mcと凝縮器
Ccに吸引される。吸収式からの熱搬送媒体の温度が低
く、凝縮器Ccで冷媒蒸気が凝縮可能であれば、凝縮器
Ccに吸引され、凝縮器Ccにて凝縮する。吸収式から
の熱搬送媒体の温度が高く、凝縮器Ccで冷媒蒸気が凝
縮不能であれば、冷媒蒸気の形で凝縮器Ccに存在し、
伝熱は殆ど生じない。図中、過冷却器Scは、なくても
差支えない。
In FIG. 1, (a) is an overall configuration diagram,
(B) is a detailed view of the Ec portion, in which the refrigerant vapor from the evaporator Ec is sucked into the condenser Cc while the compressor Mc is stopped, and is condensed with the compressor Mc or the compressor Mc during operation of the compressor Mc. It is sucked into the container Cc. If the temperature of the heat transfer medium from the absorption type is low and the refrigerant vapor can be condensed in the condenser Cc, it is sucked into the condenser Cc and condensed in the condenser Cc. If the temperature of the heat transfer medium from the absorption type is high and the refrigerant vapor cannot be condensed in the condenser Cc, it exists in the condenser Cc in the form of refrigerant vapor,
Almost no heat transfer occurs. In the figure, the subcooler Sc may be omitted.

【0008】図1(b)は、蒸発器Ecの1例として、
室内機(空気冷却器)を示す。図1(b)に示すよう
に、各室内機毎に制御器を設け、温度計測、膨張弁調節
などを行う。即ち、目標室温Toをリモコンで設定ある
いは制御器で直接設定し、室温センサーTaと比較し、
差温△T=Ta−Toで要求能力として、圧縮機の制御
器に送る。また、蒸発器出口の温度センサーTRで、冷
媒過熱蒸気温度を測定すると共に、冷媒液をキャピラリ
で流量制限をして供給し、飽和温度を室温センサーTs
で測定し、過熱度△Tsh=TR−Tsを求め、目標過
熱度になるように、膨張弁V1(冷媒供給弁)を調節す
る。
FIG. 1B shows an example of the evaporator Ec.
An indoor unit (air cooler) is shown. As shown in FIG. 1B, a controller is provided for each indoor unit to measure the temperature and adjust the expansion valve. That is, the target room temperature To is set by the remote controller or directly set by the controller and compared with the room temperature sensor Ta,
The difference temperature ΔT = Ta−To is sent to the controller of the compressor as the required capacity. Further, the temperature sensor TR at the outlet of the evaporator measures the temperature of the refrigerant superheated vapor, and the refrigerant liquid is supplied with the flow rate limited by the capillary, and the saturation temperature is measured by the room temperature sensor Ts.
Then, the degree of superheat ΔTsh = TR−Ts is obtained, and the expansion valve V1 (refrigerant supply valve) is adjusted so that the target degree of superheat is obtained.

【0009】図2(a)は、圧縮機Mcを、複数台、こ
こでは3台で構成しており、また、図2(b)は、複数
台の場合で、1台をインバータによる制御したものであ
り、他を台数制御(発停)による制御としてもよい。図
3は、圧縮機Mcと第二凝縮器Ccxの系統と、圧縮機
Mc2と凝縮器Ccの系統とを持つた構成を示す。図3
では、凝縮器Ccの系統の圧縮機Mc2を停止している
状態での制御に、本発明を適用するのが好ましい。図4
は、圧縮機Mcの吐出側と凝縮器Ccとが直列に接続さ
れている場合で圧縮機Mcにバイパス路が設けられてお
り、圧縮機Mcを停止すると、バイパスして、冷媒蒸気
を直接冷却凝縮させる運転ができる。圧縮機運転中は、
凝縮器Ccを過冷却器として作用させても差支えない。
FIG. 2A shows a plurality of compressors Mc, here three compressors Mc, and FIG. 2B shows a case where a plurality of compressors Mc are used, one of which is controlled by an inverter. However, other control may be performed by controlling the number of vehicles (start / stop). FIG. 3 shows a configuration having a system of the compressor Mc and the second condenser Ccx, and a system of the compressor Mc2 and the condenser Cc. Figure 3
Then, it is preferable to apply the present invention to the control in the state where the compressor Mc2 of the system of the condenser Cc is stopped. Figure 4
Is provided with a bypass passage in the compressor Mc when the discharge side of the compressor Mc and the condenser Cc are connected in series. When the compressor Mc is stopped, the bypass is bypassed and the refrigerant vapor is directly cooled. You can drive to condense. While the compressor is operating,
It does not matter if the condenser Cc acts as a supercooler.

【0010】次に、本発明の冷凍装置の制御について説
明する。まず、圧縮冷凍機側の制御について、容量制御
関係では、各蒸発器Ecの膨張弁V1は、蒸発器Ec出
口の過熱度が目標値になるように調整するか、あるい
は、蒸発器Ec出口冷媒蒸気の過熱度が所定の値となる
ように調整する。圧縮冷凍機の蒸発器Ecの要求能力
は、蒸発器Ecで冷却される媒体の温度を測る温度セン
サーと被冷却媒体の目標温度との差とする。蒸発器Ec
が複数器の場合、各蒸発器Ecの容量を加味した合算値
あるいは荷重平均値を用いる。要求能力にて、例えば、
表1のような周波数で圧縮機Mcを運転する。温度差が
低下しているときは、下り勾配(X側)、増加している
ときは、上り勾配(Y側)の周波数とする。室温が、下
り勾配のときと上り勾配のときで、同じ領域で0.4℃
の差を持たせているので、これがヒステリシスの役目を
し、周波数の頻繁な変化を抑えることができる。
Next, the control of the refrigerating apparatus of the present invention will be described. First, regarding the control on the compression refrigerator side, in terms of capacity control, the expansion valve V1 of each evaporator Ec is adjusted so that the superheat degree at the outlet of the evaporator Ec becomes a target value, or the refrigerant at the outlet of the evaporator Ec is adjusted. Adjust the steam superheat to a specified value. The required capacity of the evaporator Ec of the compression refrigerator is the difference between the temperature sensor measuring the temperature of the medium cooled by the evaporator Ec and the target temperature of the medium to be cooled. Evaporator Ec
When there are a plurality of units, the total value or weighted average value in which the capacities of the respective evaporators Ec are added is used. In the required capacity, for example,
The compressor Mc is operated at the frequency shown in Table 1. When the temperature difference is decreasing, the frequency is a downward gradient (X side), and when the temperature difference is increasing, it is an upward gradient (Y side) frequency. 0.4 ° C in the same region when the room temperature is downhill and uphill
Since it has a difference of, this acts as a hysteresis, and it is possible to suppress frequent changes in frequency.

【0011】[0011]

【表1】 [Table 1]

【0012】圧縮機Mc停止後の容量制御は、吸収冷凍
効果を圧縮機側に伝える量を調節することで制御可能と
なり、例えば、吸収冷凍効果を搬送する媒体の量を調節
するのが簡易な方法であるが、しかし、流量調節弁が必
要となる。本発明は、新たに、搬送媒体の流量調節弁を
用いないでも容量制御可能とするものである。具体的に
は、圧縮機停止後は、蒸発器Ec出口蒸気の過熱度目標
値を増大させて、凝縮器Ccの凝縮能力を制限する。例
えば、表2のように、目標過熱度を設定する。 △T=−0.8℃で、過熱度SH=4.0℃、 △T=−1.6℃で、過熱度SH=8.0℃とし、 △T=−0.8℃以下で、過熱度をSH=−5×△Tと
している。
The capacity control after the compressor Mc is stopped can be controlled by adjusting the amount of the absorption refrigeration effect transmitted to the compressor side. For example, it is easy to adjust the amount of the medium carrying the absorption refrigeration effect. Method, but requires a flow control valve. The present invention newly makes it possible to control the capacity without using a flow rate control valve for the carrier medium. Specifically, after the compressor is stopped, the superheat target value of the evaporator Ec outlet steam is increased to limit the condensing capacity of the condenser Cc. For example, as shown in Table 2, the target superheat degree is set. ΔT = −0.8 ° C., superheat degree SH = 4.0 ° C., ΔT = −1.6 ° C., superheat degree SH = 8.0 ° C., and ΔT = −0.8 ° C. or less, The degree of superheat is SH = −5 × ΔT.

【0013】このように、過熱度増大により、凝縮器C
cの凝縮能力が制限される理由は、過熱度を大きくする
ため、蒸発器を流れる冷媒流量が絞られ、その結果出口
圧力が低下し、凝縮器Ccの凝縮能力が低下するためで
ある。過熱度目標値は、圧縮機を運転している時は、過
熱度は変動に対して追従して制御できる範囲でなるべく
小さくすることが、必要動力の低下、効率の上昇の点か
ら望ましい(通常4℃程度)。しかし、圧縮機停止後
は、動力が関係しないので、蒸発器Ec出口圧力を低下
させて差支えなく、過熱度を大きく設定する。
In this way, the condenser C increases due to the increase in superheat.
The reason why the condensing capacity of c is limited is that the flow rate of the refrigerant flowing through the evaporator is throttled in order to increase the degree of superheat, and as a result, the outlet pressure decreases, and the condensing capacity of the condenser Cc decreases. When operating the compressor, it is desirable to set the superheat target value as small as possible within the range where it can be controlled by following fluctuations, in order to reduce required power and increase efficiency (usually 4 ° C). However, since power is not involved after the compressor is stopped, the outlet pressure of the evaporator Ec can be reduced to set the superheat degree to a large value.

【表2】 [Table 2]

【0014】図1の圧縮機1台をインバータ制御する場
合は、圧縮機運転中は、表1のような、差温に対応する
周波数で圧縮機を運転する。圧縮機停止中は、容量制御
のために、凝縮器Ccの能力を調節するため、表2のよ
うな方法を用いる。図2の圧縮機複数台の台数制御の場
合は、温度差により周波数を決めるのではなく、運転台
数を決めるような方法を用いる。圧縮機複数台の台数制
御だけであると、圧力が段階的に変化するので、図2
(b)のように、少なくとも1台をインバータ制御とし
て圧力変化を小さくする。インバータ周波数は表1と同
様である。インバータ最大回転数で運転中に、差温上昇
で、圧縮機1台追加運転し、インバータ最小回転数で運
転中に、差温降下で、圧縮機1台を停止(インバータ以
外を優先停止)する。圧縮機全停止後、凝縮器Ccの能
力を調節する。
When one compressor of FIG. 1 is controlled by an inverter, the compressor is operated at a frequency corresponding to the differential temperature as shown in Table 1 during the operation of the compressor. While the compressor is stopped, the method shown in Table 2 is used to adjust the capacity of the condenser Cc for capacity control. In the case of controlling the number of a plurality of compressors in FIG. 2, a method of determining the number of operating machines is used instead of determining the frequency by the temperature difference. If only controlling the number of multiple compressors, the pressure changes stepwise.
As in (b), at least one unit is controlled by an inverter to reduce the pressure change. The inverter frequency is the same as in Table 1. While operating at the maximum inverter speed, one compressor is additionally operated if the differential temperature rises, and if the differential temperature drops while operating at the minimum inverter speed, one compressor is stopped (other than the inverter is preferentially stopped). . After stopping the compressor completely, the capacity of the condenser Cc is adjusted.

【0015】図4の圧縮機Mcと第二凝縮器Ccxと凝
縮器Ccとを直列に接続する場合、圧縮機運転中は、表
1のような、差温に対応する周波数で圧縮機を運転す
る。このとき、凝縮器Ccは、過冷却器として作用させ
る。第二凝縮器Ccxからの冷媒液を冷却する。圧縮機
停止中は、容量制御のために、凝縮器Ccの能力を調節
するため、表2のような方法を用いる。吸収冷凍機側の
制御は、排熱を総て生かしきるように運転し、蒸発器冷
媒凍結回避及び吸収溶液結晶回避のときは、熱源からの
入熱量を制限する。この制御は、圧縮式とは無関係に、
吸収式側だけで制御をしてもよい。
When the compressor Mc, the second condenser Ccx, and the condenser Cc of FIG. 4 are connected in series, the compressor is operated at a frequency corresponding to the differential temperature as shown in Table 1 during the operation of the compressor. To do. At this time, the condenser Cc acts as a supercooler. The refrigerant liquid from the second condenser Ccx is cooled. While the compressor is stopped, the method shown in Table 2 is used to adjust the capacity of the condenser Cc for capacity control. The control on the absorption refrigerating machine side is operated so as to make full use of the exhaust heat, and the amount of heat input from the heat source is limited when avoiding freezing of the evaporator refrigerant and avoiding absorption solution crystallization. This control is independent of the compression type,
The control may be performed only on the absorption side.

【0016】吸収冷凍機への負荷が多すぎて、あるいは
吸収式への熱源熱量による能力よりも多すぎて、吸収式
の蒸発温度あるいは冷凍出力温度が高くなり過ぎる場
合、過冷却器への熱媒流量等を減少、あるいは凝縮器C
cへの熱媒流量等を減少させる。これらの制御は、吸収
式側から一方的に行っても差支えない。複数台の圧縮冷
凍機と1台の吸収冷凍機を組合せる場合、熱媒体循環量
を全体として制御してもよいし、個別に制御してもよ
い。
When the load on the absorption refrigerator is too great or the capacity of the absorption type is too high due to the heat source heat quantity, the evaporation temperature or the refrigeration output temperature of the absorption type becomes too high. Reduce the medium flow rate, etc., or use the condenser C
The heat medium flow rate to c is reduced. These controls may be performed unilaterally from the absorption side. When a plurality of compression refrigerators and one absorption refrigerator are combined, the heat medium circulation amount may be controlled as a whole or individually.

【0017】圧縮冷凍機側は、利用できる吸収冷凍機出
力を用い、その範囲内で制御している。なお、圧縮式側
と吸収式側とを関連付けて制御しても差支えないが、制
御系が複雑になり過ぎる欠点がでる。吸収冷凍機は、単
効用、二重効用、一二重効用等、特に限定はなく、また
吸収冷凍機の作動媒体による限定もない。熱源の形態
も、温水、水蒸気、燃料あるいは排ガスなど特に限定は
なく、排熱に限定せず、安価な燃料などを熱源とする吸
収冷凍機であってもよい。また、1台の圧縮冷凍機を構
成する各機器は、複数器であっても差支えない。圧縮冷
凍機として説明しているが、配管切替でヒートポンプに
よる暖房運転とする形態をとってもよい。そのとき、吸
収冷凍機を冷温水機として温熱をヒートポンプに与え、
あるいは、排熱源を直接ヒートポンプに与えても良い。
The compression refrigerator uses the available absorption refrigerator output and controls within that range. It should be noted that the control can be performed by associating the compression type side and the absorption type side, but there is a drawback that the control system becomes too complicated. The absorption refrigerator is not particularly limited such as single effect, double effect, and single effect, and is not limited by the working medium of the absorption refrigerator. The form of the heat source is not particularly limited, such as hot water, steam, fuel, or exhaust gas, and is not limited to exhaust heat, and may be an absorption refrigerator that uses an inexpensive fuel as a heat source. Further, each device constituting one compression refrigerator may be a plurality of devices. Although it is described as a compression refrigerator, a mode in which heating operation is performed by a heat pump by switching pipes may be adopted. At that time, heat is applied to the heat pump by using the absorption refrigerator as a cold / hot water machine,
Alternatively, the exhaust heat source may be directly applied to the heat pump.

【0018】[0018]

【発明の効果】本発明は、圧縮冷凍機の圧縮機を運転せ
ず、吸収冷凍効果単独でも冷媒回路の冷凍能力(圧縮冷
凍機の冷凍能力)を出すことができ、また、圧縮機を運
転している時でも、吸収冷凍効果を充分に発揮できるよ
うにしている。また、吸収冷凍効果を優先的に用い、吸
収冷凍効果単独での運転を可能とし、冷房負荷及び吸収
冷凍効果の状態に応じて、圧縮冷凍機の運転状態を調節
でき、経済的で効率のよい運転ができる空気調和装置と
して用いることとができる冷凍装置である。
INDUSTRIAL APPLICABILITY According to the present invention, the refrigerating capacity of the refrigerant circuit (refrigerating capacity of the compression refrigerator) can be obtained by the absorption refrigeration effect alone without operating the compressor of the compression refrigerator, and the compressor is operated. It is designed so that the absorption and refrigeration effect can be fully exerted even when it is being used. In addition, the absorption refrigeration effect is preferentially used to enable the operation of the absorption refrigeration effect alone, and the operation state of the compression refrigerator can be adjusted according to the cooling load and the state of the absorption refrigeration effect, which is economical and efficient. The refrigeration apparatus can be used as an air conditioner that can be operated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷凍装置の圧縮冷凍機の一例を示すフ
ロー構成図で、(a)は全体図、(b)はEc部詳細
図。
FIG. 1 is a flow configuration diagram showing an example of a compression refrigerator of a refrigeration apparatus of the present invention, (a) is an overall view, and (b) is a detailed view of an Ec portion.

【図2】(a)、(b)は、本発明の冷凍装置の圧縮冷
凍機の他の例を示すフロー構成図。
2A and 2B are flow configuration diagrams showing another example of the compression refrigerator of the refrigeration apparatus of the present invention.

【図3】本発明の冷凍装置の圧縮冷凍機の他の例を示す
フロー構成図。
FIG. 3 is a flow configuration diagram showing another example of the compression refrigerator of the refrigeration apparatus of the present invention.

【図4】本発明の冷凍装置の圧縮冷凍機の他の例を示す
フロー構成図。
FIG. 4 is a flow configuration diagram showing another example of the compression refrigerator of the refrigerator of the present invention.

【符号の説明】[Explanation of symbols]

Mc、Mc1、Mc2:圧縮機、Ec:蒸発器、Cc:
凝縮器、Ccx:第二凝縮器、Sc:過冷却器、Ta、
TR、Ts:温度センサー、V1:膨張弁
Mc, Mc1, Mc2: compressor, Ec: evaporator, Cc:
Condenser, Ccx: second condenser, Sc: subcooler, Ta,
TR, Ts: temperature sensor, V1: expansion valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 入江 毅一 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 遠藤 哲也 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 青山 淳 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 内村 知行 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 福住 幸大 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor, Koichi Irie             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION (72) Inventor Tetsuya Endo             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION (72) Inventor Jun Aoyama             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION (72) Inventor Tomoyuki Uchimura             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION (72) Inventor Kodai Fukuzumi             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器Eを有する吸収冷凍機と、1台以
上の圧縮機、前記吸収冷凍機の蒸発器Eと熱交換関係に
接続した凝縮器Cc、又は、該凝縮器Ccと外気又は冷
却水で冷却する第二凝縮器Ccx及び冷凍効果を発揮す
る蒸発器Ecを有する圧縮冷凍機とを組合せた冷凍装置
であって、前記圧縮冷凍機は、蒸発器Ecに冷媒液を供
給する調節弁と、蒸発器Ecの出口冷媒蒸気の過熱度を
検出するセンサー及び該過熱度の目標値を設定する手段
とを具備すると共に、該蒸発器Ecの出口冷媒蒸気の過
熱度の目標値を変えることで蒸発器Ecの容量を制御す
る制御手段を有することを特徴とする吸収式と圧縮式と
を組合せた冷凍装置。
1. An absorption refrigerator having an evaporator E, one or more compressors, a condenser Cc connected in a heat exchange relationship with the evaporator E of the absorption refrigerator, or the condenser Cc and outside air or A refrigeration apparatus in which a second condenser Ccx cooled with cooling water and a compression refrigerator having an evaporator Ec exhibiting a refrigerating effect are combined, wherein the compression refrigerator supplies a refrigerant liquid to the evaporator Ec. A valve, a sensor for detecting the superheat degree of the outlet refrigerant vapor of the evaporator Ec, and means for setting a target value of the superheat degree are provided, and the target value of the superheat degree of the outlet refrigerant vapor of the evaporator Ec is changed. Therefore, the refrigerating apparatus combined with the absorption type and the compression type is provided with a control means for controlling the capacity of the evaporator Ec.
【請求項2】 前記圧縮冷凍機は、吸収冷凍機1台に対
し、複数台接続することを特徴とする請求項1記載の冷
凍装置。
2. The refrigerating apparatus according to claim 1, wherein a plurality of the compression refrigerators are connected to one absorption refrigerator.
【請求項3】 請求項1又は2記載の冷凍装置の運転方
法において、蒸発器Ecを容量制御する制御手段は、圧
縮機が全て停止し、蒸発器Ecからの冷媒蒸気を凝縮器
Ccで凝縮させる運転をしているときに稼動することを
特徴とする冷凍装置の運転方法。
3. The operating method of the refrigerating apparatus according to claim 1, wherein the control means for controlling the capacity of the evaporator Ec stops all the compressors and condenses the refrigerant vapor from the evaporator Ec in the condenser Cc. A method for operating a refrigerating apparatus, which is activated when the operation is performed.
JP2002111628A 2002-04-15 2002-04-15 Refrigerating equipment combined with absorption type and compression type and its driving method Pending JP2003307363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111628A JP2003307363A (en) 2002-04-15 2002-04-15 Refrigerating equipment combined with absorption type and compression type and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111628A JP2003307363A (en) 2002-04-15 2002-04-15 Refrigerating equipment combined with absorption type and compression type and its driving method

Publications (1)

Publication Number Publication Date
JP2003307363A true JP2003307363A (en) 2003-10-31

Family

ID=29394367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111628A Pending JP2003307363A (en) 2002-04-15 2002-04-15 Refrigerating equipment combined with absorption type and compression type and its driving method

Country Status (1)

Country Link
JP (1) JP2003307363A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037203A (en) * 2010-08-11 2012-02-23 Fuji Electric Co Ltd System for cooling and recovering exhaust heat of electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037203A (en) * 2010-08-11 2012-02-23 Fuji Electric Co Ltd System for cooling and recovering exhaust heat of electronic apparatus

Similar Documents

Publication Publication Date Title
KR920000452B1 (en) Refrigerating cycle utilizing cold accumulation material
US4471630A (en) Cooling system having combination of compression and absorption type units
US6843066B2 (en) Air conditioning system and method for controlling the same
US6807817B2 (en) Method for operating compressors of air conditioner
KR950003791B1 (en) Automatic chiller plant balancing
JP2007303806A (en) Refrigerating cycle device and its operation method
JP2000304374A (en) Engine heat pump
CN107388644A (en) Variable-frequency water cooling unit and control method thereof
KR200281266Y1 (en) Heat pump system
KR200281265Y1 (en) Multi Heat pump system
JP5056026B2 (en) vending machine
JP2003307363A (en) Refrigerating equipment combined with absorption type and compression type and its driving method
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP3888814B2 (en) Ice making cooling system
JP2003207223A (en) Exhaust heat recovery-type refrigerating device
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP3874263B2 (en) Refrigeration system combining absorption and compression
JP3874262B2 (en) Refrigeration system combining absorption and compression
JP2003336929A (en) Absorbing and compression type refrigerator and method of operating the refrigerator
JP2003307362A (en) Refrigerating equipment combined with absorption type and compression type
JP2003004330A (en) Exhaust heat recovery air conditioner
CN109631421B (en) Air conditioning unit and control method thereof
JP3588144B2 (en) Operating number control of absorption chillers installed in parallel
JPS6383556A (en) Refrigeration cycle
JPH11257778A (en) Absorption type cold heat generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061012