JP3588144B2 - Operating number control of absorption chillers installed in parallel - Google Patents

Operating number control of absorption chillers installed in parallel Download PDF

Info

Publication number
JP3588144B2
JP3588144B2 JP16865294A JP16865294A JP3588144B2 JP 3588144 B2 JP3588144 B2 JP 3588144B2 JP 16865294 A JP16865294 A JP 16865294A JP 16865294 A JP16865294 A JP 16865294A JP 3588144 B2 JP3588144 B2 JP 3588144B2
Authority
JP
Japan
Prior art keywords
absorption
chillers
absorption chillers
temperature
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16865294A
Other languages
Japanese (ja)
Other versions
JPH0814689A (en
Inventor
伸浩 出射
秀明 小穴
覚 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16865294A priority Critical patent/JP3588144B2/en
Publication of JPH0814689A publication Critical patent/JPH0814689A/en
Application granted granted Critical
Publication of JP3588144B2 publication Critical patent/JP3588144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、トータルの冷凍能力を高めるために吸収冷凍機を並列に復数台設置する、いわゆる並列設置型吸収冷凍機における運転台数の制御技術に関する。
【0002】
【従来の技術】
この種の技術としては、例えば図5に例示した従来技術が周知である。図中1A・1Bは並列に設置された吸収冷凍機であり、それぞれがそれ自体は従来周知の吸収器・蒸発器・凝縮器・発生器・熱交換器(何れも図示せず)などから構成されている。そして、吸収冷凍機1A・1Bは、往ヘッダ2、復ヘッダ3、ポンプ4・5を介して、室内ユニット6に冷水または温水を循環供給して冷房または暖房運転可能に配管接続され、集合配管に設置した温度検出手段7が計測する冷温水の出口側温度に基づいて、制御装置8が吸収冷凍機1A・1Bの運転と停止とを制御する構成となっている。
【0003】
すなわち、吸収冷凍機1A・1Bを所定の出力に抑えて運転しているにも拘らず、室内ユニット6の空調負荷の減少によって室内ユニット6から復ヘッダ3を介して吸収冷凍機1A・1Bに還流して来る冷温水が、冷房運転においては規定の温度より低く、暖房運転では規定の温度より高くなり、これにより吸収冷凍機1A・1Bで再び冷却または加熱されて室内ユニット6に循環供給される冷温水の温度、すなわち温度検出手段7が計測する冷温水出口側温度が所定の温度、例えば冷房運転時に7℃より低下したり、暖房運転時に55℃より高くなると吸収冷凍機1A・1Bの何れか一方を停止し、吸収冷凍機1A・1B何れか1台を最大の出力で運転しても室内ユニット6の空調負荷が増大して、温度検出手段7が計測する冷温水の温度が前記したのとは逆に冷房運転時に7℃を越えたり、暖房運転時に55℃を下回ると、これまで停止していた吸収冷凍機の運転を再開する吸収冷凍機の運転台数制御が周知である。
【0004】
上記のような制御を採用することにより、空調負荷に対して常に最適な台数の吸収冷凍機を運転することが可能になり、装置全体の熱効率が改善される。
【0005】
【発明が解決しようとする課題】
しかし、上記した吸収冷凍機の運転台数制御の場合は、温度検出手段を現場作業で集合配管に設置する必要があり、装置の取り付け作業が煩雑であるだけでなく、配線ミスを起こす懸念が強いと云った問題点があり、この点の解決が課題となっていた。
【0006】
【課題を解決するための手段】
本発明は上記した従来技術の課題を解決するためになされたもので、並列に設置した復数台の吸収冷凍機と空調負荷とを、冷温水配管、往ヘッダ、復ヘッダなどにより配管接続して構成する吸収冷凍機の運転台数制御において、適宜の1台の吸収冷凍機から取り出す冷温水の出口側温度に基づいて、全ての吸収冷凍機の運転/停止を制御すると共に、運転中の吸収冷凍機の出力を制御する並列設置型吸収冷凍機の運転台数制御を提供する。
【0007】
【作用】
ベース機と定めた適宜の1台の吸収冷凍機から取り出す冷温水の出口側温度に基づいて、全ての吸収冷凍機の運転/停止および運転中の吸収冷凍機の出力を制御する方法であるため、ベース機とする吸収冷凍機に内蔵した温度検出手段によって上記制御が行われる。
【0008】
このため、従来技術において往ヘッダの先の集合配管に設置され、管内を空調負荷に向かって流れる冷温水の出口側温度を計測していた、温度検出手段を現地で設置する必要がなくなり、並列設置型吸収冷凍機の現場設置が容易に行える。
【0009】
【実施例】
以下、本発明の一実施例を図1〜図3に基づいて説明する。なお、図1において前記図4の符号と同一符号で示した部分は、図4によって説明したものと同様の機能を持つ部分であり、本発明の理解を妨げない範囲で説明は省略した。
【0010】
吸収冷凍機1A・1Bそれぞれの図示しない制御部と通信回線を介して接続している制御装置8は、記憶・計時・演算処理などが可能にマイコンなどを備えて、制御のベース機となる適宜の吸収冷凍機、例えば吸収冷凍機1Aに内蔵している温度検出手段7aが計測する、吸収冷凍機1Aから流れ出る冷温水の出口側温度に基づいて吸収冷凍機1A・1Bの運転/停止と、運転中の吸収冷凍機の出力とを制御する機能を備えている。
【0011】
この制御装置8により、吸収冷凍機1A・1Bから室内ユニット6に冷水を循環供給し、室内ユニット6において冷房を行う時の本発明の一制御例を、図2に示したフローチャートに基づいて説明する。
【0012】
なお、図2のフローチャートは、冷房運転の開始や停止など、全体の制御を行うメイン制御のサブルーチンとして構成したものであり、吸収冷凍機1A・1Bの運転中、ステップS1では制御のベース機である吸収冷凍機1Aから取り出す冷水の出口側温度T1を、所定時間毎に温度検出手段7aによって計測する。
【0013】
ステップS2においては、前記計測した冷水出口側温度T1が所定の温度、例えば7℃より低くなっているか否かを判定し、ノー、すなわち冷水出口側温度T1が7℃以上あると判定された時には、吸収冷凍機1A・1Bによる冷凍能力が不足しているのでメイン制御に戻り、ここで室内ユニット6の冷房負荷の大きさに対応した吸収冷凍機1A・1Bの出力制御が行われる。一方、イエス、すなわち冷水出口側温度T1が7℃より低下していると判定された時には、ステップS3に移行して吸収冷凍機1A・1Bそれぞれの燃料弁Va・Vbの開度がそれぞれに検出される。
【0014】
ステップS4においては、吸収冷凍機1A・1Bの燃料弁Va・Vbの開度が所定の開度、例えば吸収冷凍機1A・1Bが共に最大開度の50%あるいは2/3、若しくは最少開度などに絞られているか否かを判定する。
【0015】
そして、ステップS4における判定でノー、すなわち燃料弁Va・Vbが前記所定の開度にまで絞られていないと判定された時には、ステップS6に移行して燃料弁Va・Vbを所定の開度だけ絞って吸収冷凍機1A・1Bの出力を下げ、その後メイン制御に戻る。一方、イエス、すなわち燃料弁Va・Vbが前記所定の開度まで絞られていると判定された時には、ステップS5に移行して吸収冷凍機1Bの運転とポンプ5の運転とを停止する。
【0016】
ステップS7においては、吸収冷凍機1Aのみによる冷房運転時における冷水出口側温度T1を温度検出手段7aによって計測し、ステップS8に移行してこの冷水出口側温度T1の判定を行う。
【0017】
ステップS8における判定で、冷水出口側温度T1が目標の7℃であると判定された時には吸収冷凍機1Aの燃料弁Vaの開度を変更することなく、冷水出口側温度T1が7℃より低いと判定された時にはステップS10で吸収冷凍機1Aの燃料弁Vaの開度を絞ってステップS7に戻り、共に温度検出手段7aによる冷水出口側温度T1の計測と判定とを繰り返し行い、冷水出口側温度T1が7℃より高いと判定された時にはステップS9に移行して吸収冷凍機1Aの燃料弁Vaの開度を検出し、その後ステップS11に移行する。
【0018】
ステップS11においては、吸収冷凍機1Aの燃料弁Vaの開度が最大になっているか否かを判定し、イエス、すなわち燃料弁Vaの開度が最大で吸収冷凍機1Aが既に最大出力で運転されていると判定された時には、ステップS12に移行して停止中の吸収冷凍機1Bの運転とポンプ5の運転とを再開し、冷凍能力の増大を図った後メイン制御に戻る。一方、ノー、すなわち燃料弁Vaの開度が最大でなく、吸吸収冷凍機1Aが最大出力でまだ運転されていないと判定された時には、ステップS13に移行して吸収冷凍機1Aの燃料弁Vaを所定の開度だけ開いて吸収冷凍機1Aの出力を上げ、その後ステップS7に戻る。
【0019】
上記したように本発明によれば、並列に設置した吸収冷凍機1A・1Bが共に運転されていて、室内ユニット6の冷房負荷の減少に伴って冷水の戻り温度が低下し、燃料弁Va・Vbの開度を絞っても温度検出手段7aが計測する冷水出口側温度T1が所定の温度より低くなった時には、吸収冷凍機1Bの運転が止まって吸収冷凍機1Aの1台の運転で冷房負荷に対応し、吸収冷凍機1Aの運転中に室内ユニット6の冷房負荷が逆に増加して冷水の戻り温度が上昇し、吸収冷凍機1Aの燃料弁Vaを最大開度にして最高出力で運転しても温度検出手段7aが計測する冷水出口側温度T1が所定温度まで低下しなくなると、これまで停止していた収冷凍機1Bの運転が再開されると云った、冷房負荷の変動に対応した吸収冷凍機の運転台数制御が行われるので、装置全体の熱効率が改善される。
【0020】
なお、吸収冷凍機1A・1Bから室内ユニット6に温水を循環供給して暖房運転を行う場合には、吸収冷凍機1A・1Bが制御装置8により例えば図3に例示したように制御される。
【0021】
図3に示した吸収冷凍機1A・1Bの運転台数制御と、図2に示した吸収冷凍機1A・1Bの運転台数制御とは、冷温水の設定温度などに若干の相違があるが、制御の構成自体は同じであるので説明は省略する。
【0022】
ところで、本発明は上記実施例に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0023】
例えば、3台以上の吸収冷凍機を並列に設置しても良いし、これらの並列に設置する吸収冷凍機は冷凍能力が同じであっても良いし、異なっていても良い。
【0024】
また、図4に示したように、吸収冷凍機から取り出す冷温水の温度と時間に基づいて吸収冷凍機の運転台数を制御する構成とすることも可能である。
【0025】
また、吸収冷凍機1Bの運転を停止することになるステップS4における燃料弁開度の判定は、室内ユニット6の空調負荷が減少すると、例えば吸収冷凍機1A・1B共に燃料弁を最大開度の50%まで絞り、さらに空調負荷が減少した時には吸収冷凍機1Bの燃料弁の開度のみを絞るようにメイン制御を構成しておき、吸収冷凍機1Bの燃料弁の開度が最少になった時に吸収冷凍機1Bの運転を停止するように設けることなども可能である。
【0026】
【発明の効果】
以上説明したように本発明は、並列に設置した復数台の吸収冷凍機と空調負荷とを、冷温水配管、往ヘッダ、復ヘッダなどにより配管接続して構成する吸収冷凍機の運転台数制御において、適宜の1台の吸収冷凍機から取り出す冷温水の出口側温度に基づいて、全ての吸収冷凍機の運転/停止を制御すると共に、運転中の吸収冷凍機の出力を制御する並列設置型吸収冷凍機の運転台数制御であるので、ベース機の吸収冷凍機に内蔵した温度検出手段によって吸収冷凍機の運転台数制御などが可能であり、往ヘッダの先の集合配管内を空調負荷に向かって流れる冷温水の出口側温度を計測するための温度検出手段を設置する必要がない。
【0027】
このため、並列設置型吸収冷凍機の設置作業が容易になっただけでなく、配線ミスを起こす懸念がなくなるなど、顕著な効果を奏するものである。
【図面の簡単な説明】
【図1】一実施例を示す装置構成の説明図である。
【図2】冷房運転時の制御の説明図である。
【図3】暖房運転時の制御の説明図である。
【図4】他の制御例の説明図である。
【図5】従来技術の説明図である。
【符号の説明】
1A・1B 吸収冷凍機
2 往ヘッダ
3 復ヘッダ
4・5 ポンプ
6 室内ユニット
7・7a 温度検出手段
8 制御装置
Va・Vb 燃料弁
[0001]
[Industrial applications]
The present invention relates to a technique for controlling the number of operating units in a so-called parallel installation type absorption refrigerator in which a plurality of absorption refrigerators are installed in parallel to increase the total refrigeration capacity.
[0002]
[Prior art]
As this type of technology, for example, a conventional technology illustrated in FIG. 5 is well known. In the figure, reference numerals 1A and 1B denote absorption refrigerators installed in parallel, each of which comprises a conventionally known absorber, evaporator, condenser, generator, heat exchanger (all not shown), and the like. Have been. The absorption chillers 1A and 1B are circulated and supplied with cold water or hot water to the indoor unit 6 via the outgoing header 2, the return header 3, and the pumps 4 and 5 so as to be operable for cooling or heating operation. The control device 8 controls the operation and stop of the absorption chillers 1A and 1B based on the outlet temperature of the cold / hot water measured by the temperature detection means 7 installed in the chiller.
[0003]
That is, despite the operation of the absorption chillers 1A and 1B at a predetermined output, the absorption chillers 1A and 1B are connected to the absorption chillers 1A and 1B from the indoor unit 6 via the return header 3 due to a decrease in the air conditioning load of the indoor unit 6. The returning hot / cold water is lower than the specified temperature in the cooling operation and higher than the specified temperature in the heating operation, and is thereby cooled or heated again by the absorption chillers 1A and 1B and circulated and supplied to the indoor unit 6. When the temperature of the cold and hot water, that is, the temperature of the cold and hot water outlet side measured by the temperature detecting means 7 drops below a predetermined temperature, for example, 7 ° C. during the cooling operation or 55 ° C. during the heating operation, the absorption chillers 1A and 1B Even if one of them is stopped and one of the absorption chillers 1A and 1B is operated at the maximum output, the air conditioning load of the indoor unit 6 increases and the temperature of the cold / hot water measured by the temperature detecting means 7 is increased. Conversely, when the temperature exceeds 7 ° C. during the cooling operation or falls below 55 ° C. during the heating operation, the number of operating absorption chillers that restarts the operation of the absorption chiller that has been stopped is well known. .
[0004]
By employing the above control, it is possible to always operate the optimal number of absorption chillers for the air conditioning load, and the thermal efficiency of the entire apparatus is improved.
[0005]
[Problems to be solved by the invention]
However, in the case of controlling the number of operating absorption chillers described above, it is necessary to install the temperature detecting means in the collective piping in the field work, which not only complicates the installation work of the device, but also has a strong possibility of causing a wiring error. There was a problem, and the solution of this point was an issue.
[0006]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-described problems of the related art, and a number of absorption chillers and an air conditioning load installed in parallel are connected by chilled / hot water piping, an outgoing header, a return header, and the like. In the control of the number of operating absorption chillers, the operation / stop of all the absorption chillers is controlled based on the outlet side temperature of the cold and hot water taken out from one appropriate absorption chiller, and the absorption during operation is controlled. Provided is control of the number of operating parallel installed absorption chillers for controlling the output of the chillers.
[0007]
[Action]
This is a method for controlling the operation / stop of all absorption chillers and the output of the absorption chillers during operation based on the outlet-side temperature of cold / hot water taken out from one appropriate absorption chiller defined as a base machine. The above control is performed by temperature detecting means built in the absorption refrigerator serving as the base machine.
[0008]
For this reason, in the prior art, it is installed in the collecting pipe ahead of the outgoing header and measures the outlet side temperature of the cold / hot water flowing toward the air conditioning load in the pipe. On-site installation of a stationary absorption refrigerator can be easily performed.
[0009]
【Example】
An embodiment of the present invention will be described below with reference to FIGS. Note that, in FIG. 1, portions denoted by the same reference numerals as those in FIG. 4 are portions having the same functions as those described with reference to FIG. 4, and a description thereof will be omitted to the extent that the understanding of the present invention is not hindered.
[0010]
The control device 8, which is connected to a control unit (not shown) of each of the absorption chillers 1A and 1B via a communication line, includes a microcomputer or the like capable of performing storage, timekeeping, arithmetic processing, and the like. Operation of the absorption chillers 1A and 1B based on the outlet side temperature of the cold / hot water flowing out of the absorption chiller 1A, which is measured by the temperature detecting means 7a built in the absorption chiller 1A, It has a function of controlling the output of the absorption refrigerator during operation.
[0011]
A control example of the present invention when the control device 8 circulates and supplies chilled water from the absorption chillers 1A and 1B to the indoor unit 6 and performs cooling in the indoor unit 6 will be described based on the flowchart shown in FIG. I do.
[0012]
Note that the flowchart of FIG. 2 is configured as a main control subroutine for performing overall control such as starting and stopping of the cooling operation. During the operation of the absorption chillers 1A and 1B, in step S1, the control base machine is used. The outlet temperature T1 of the cold water taken out of a certain absorption refrigerator 1A is measured by the temperature detecting means 7a at predetermined intervals.
[0013]
In step S2, it is determined whether or not the measured chilled water outlet side temperature T1 is lower than a predetermined temperature, for example, 7 ° C. If no, that is, if it is determined that the chilled water outlet side temperature T1 is 7 ° C or higher, Since the refrigerating capacity of the absorption chillers 1A and 1B is insufficient, the process returns to the main control, where the output control of the absorption chillers 1A and 1B corresponding to the cooling load of the indoor unit 6 is performed. On the other hand, when it is determined as YES, that is, when the cold water outlet side temperature T1 is determined to be lower than 7 ° C., the process proceeds to step S3, and the opening degrees of the fuel valves Va and Vb of the absorption refrigerators 1A and 1B are respectively detected. Is done.
[0014]
In step S4, the opening of the fuel valves Va and Vb of the absorption refrigerators 1A and 1B is a predetermined opening, for example, the absorption refrigerators 1A and 1B are both 50% or 2/3 of the maximum opening, or the minimum opening. It is determined whether or not it is narrowed down.
[0015]
When the determination in step S4 is NO, that is, when it is determined that the fuel valves Va and Vb have not been throttled to the predetermined opening, the process proceeds to step S6 and the fuel valves Va and Vb are set to the predetermined opening only. The output of the absorption refrigerators 1A and 1B is reduced by squeezing, and then the process returns to the main control. On the other hand, when it is determined as YES, that is, when it is determined that the fuel valves Va and Vb have been throttled to the predetermined opening degrees, the process proceeds to step S5, and the operation of the absorption refrigerator 1B and the operation of the pump 5 are stopped.
[0016]
In step S7, the chilled water outlet side temperature T1 during the cooling operation using only the absorption refrigerator 1A is measured by the temperature detecting means 7a, and the process proceeds to step S8 to determine the chilled water outlet side temperature T1.
[0017]
When it is determined in step S8 that the chilled water outlet side temperature T1 is the target 7 ° C., the chilled water outlet side temperature T1 is lower than 7 ° C. without changing the opening of the fuel valve Va of the absorption refrigerator 1A. In step S10, the opening degree of the fuel valve Va of the absorption refrigerator 1A is reduced, and the process returns to step S7. In both cases, the measurement and determination of the chilled water outlet side temperature T1 by the temperature detecting means 7a are repeated, and the chilled water outlet side is determined. When it is determined that the temperature T1 is higher than 7 ° C., the process shifts to step S9 to detect the opening of the fuel valve Va of the absorption refrigerator 1A, and then shifts to step S11.
[0018]
In step S11, it is determined whether or not the opening of the fuel valve Va of the absorption refrigerator 1A is at a maximum, and yes, that is, the opening of the fuel valve Va is maximum and the absorption refrigerator 1A is already operated at the maximum output. When it is determined that the operation has been performed, the process proceeds to step S12 to restart the stopped operation of the absorption chiller 1B and the operation of the pump 5, and to return to the main control after increasing the refrigerating capacity. On the other hand, if NO, that is, if it is determined that the opening degree of the fuel valve Va is not the maximum and the absorption chiller 1A is not yet operated at the maximum output, the process proceeds to step S13, and the fuel valve Va of the absorption chiller 1A is moved to step S13. Is opened by a predetermined opening to increase the output of the absorption refrigerator 1A, and then returns to step S7.
[0019]
As described above, according to the present invention, the absorption chillers 1A and 1B installed in parallel are operated together, and the return temperature of the chilled water decreases with a decrease in the cooling load of the indoor unit 6, and the fuel valves Va. When the chilled water outlet side temperature T1 measured by the temperature detecting means 7a becomes lower than a predetermined temperature even when the opening degree of Vb is reduced, the operation of the absorption refrigerator 1B is stopped, and the cooling operation is performed by one operation of the absorption refrigerator 1A. Corresponding to the load, while the absorption chiller 1A is operating, the cooling load of the indoor unit 6 is increased inversely, the return temperature of the chilled water is increased, and the fuel valve Va of the absorption chiller 1A is set to the maximum opening to achieve the maximum output. If the chilled water outlet side temperature T1 measured by the temperature detecting means 7a does not drop to the predetermined temperature even after the operation, the operation of the cooling and refrigerating machine 1B which has been stopped is restarted. Control the number of operating absorption chillers Since performed, it is improved thermal efficiency of the entire device.
[0020]
When the heating operation is performed by circulating and supplying hot water from the absorption chillers 1A and 1B to the indoor unit 6, the absorption chillers 1A and 1B are controlled by the control device 8 as illustrated in, for example, FIG.
[0021]
The control of the number of operating chillers 1A and 1B shown in FIG. 3 and the control of the number of chillers 1A and 1B shown in FIG. The configuration itself is the same, and the description is omitted.
[0022]
By the way, since the present invention is not limited to the above embodiments, various modifications can be made without departing from the spirit of the appended claims.
[0023]
For example, three or more absorption refrigerators may be installed in parallel, and the absorption refrigerators installed in parallel may have the same or different refrigeration capacity.
[0024]
Further, as shown in FIG. 4, it is also possible to adopt a configuration in which the number of operating absorption chillers is controlled based on the temperature and time of cold and hot water taken out of the absorption chiller.
[0025]
In addition, the determination of the fuel valve opening in step S4 at which the operation of the absorption refrigerator 1B is stopped is performed when the air conditioning load of the indoor unit 6 is reduced, for example, the fuel valves of both the absorption refrigerators 1A and 1B are set to the maximum opening. The main control is configured to reduce the opening of the fuel valve of the absorption chiller 1B only when the air conditioning load is reduced to 50%, and the opening of the fuel valve of the absorption chiller 1B is minimized. At times, it is also possible to provide such that the operation of the absorption refrigerator 1B is stopped.
[0026]
【The invention's effect】
As described above, the present invention relates to control of the number of operating absorption chillers configured by connecting a plurality of absorption chillers installed in parallel and an air conditioning load by pipe connection with chilled / hot water pipes, outgoing headers, return headers, and the like. , A parallel installation type that controls the operation / stop of all absorption chillers and controls the output of the operating absorption chillers based on the outlet-side temperature of cold / hot water taken out from one appropriate absorption chiller. Since the number of operating absorption chillers is controlled, the number of operating absorption chillers can be controlled by the temperature detecting means built into the absorption chiller of the base unit, and the inside of the collecting pipe at the end of the forward header is directed toward the air conditioning load. There is no need to install a temperature detecting means for measuring the outlet side temperature of the cold and hot water flowing.
[0027]
For this reason, not only the installation work of the parallel installation type absorption refrigerator is facilitated, but also there is a remarkable effect that there is no fear of causing a wiring error.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a device configuration showing one embodiment.
FIG. 2 is an explanatory diagram of control during a cooling operation.
FIG. 3 is an explanatory diagram of control during a heating operation.
FIG. 4 is an explanatory diagram of another control example.
FIG. 5 is an explanatory diagram of a conventional technique.
[Explanation of symbols]
1A / 1B Absorption chiller 2 Outgoing header 3 Return header 4.5 Pump 6 Indoor unit 7.7a Temperature detecting means 8 Controller Va / Vb Fuel valve

Claims (1)

並列に設置した復数台の吸収冷凍機と空調負荷とを、冷温水配管、往ヘッダ、復ヘッダなどにより配管接続して構成する吸収冷凍機の運転台数制御において、適宜の1台の吸収冷凍機から取り出す冷温水の出口側温度に基づいて、全ての吸収冷凍機の運転/停止を制御すると共に、運転中の吸収冷凍機の出力を制御することを特徴とする並列設置型吸収冷凍機の運転台数制御。In the control of the number of operating absorption chillers configured by connecting a plurality of absorption chillers installed in parallel and an air conditioning load by piping such as a chilled / hot water pipe, an outgoing header, and a return header, one appropriate absorption refrigeration machine is used. A parallel installation type absorption chiller characterized by controlling the operation / stop of all absorption chillers based on the outlet temperature of cold and hot water taken out of the machine and controlling the output of the absorption chillers during operation. Operating number control.
JP16865294A 1994-06-29 1994-06-29 Operating number control of absorption chillers installed in parallel Expired - Lifetime JP3588144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16865294A JP3588144B2 (en) 1994-06-29 1994-06-29 Operating number control of absorption chillers installed in parallel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16865294A JP3588144B2 (en) 1994-06-29 1994-06-29 Operating number control of absorption chillers installed in parallel

Publications (2)

Publication Number Publication Date
JPH0814689A JPH0814689A (en) 1996-01-19
JP3588144B2 true JP3588144B2 (en) 2004-11-10

Family

ID=15872000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16865294A Expired - Lifetime JP3588144B2 (en) 1994-06-29 1994-06-29 Operating number control of absorption chillers installed in parallel

Country Status (1)

Country Link
JP (1) JP3588144B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255880A (en) * 2009-04-22 2010-11-11 Sanyo Electric Co Ltd Absorption type system
JP7154707B2 (en) * 2018-12-19 2022-10-18 矢崎エナジーシステム株式会社 Absorption chiller-heater

Also Published As

Publication number Publication date
JPH0814689A (en) 1996-01-19

Similar Documents

Publication Publication Date Title
US9562701B2 (en) Temperature control system and air conditioning system
US5058389A (en) Fluid temperature control system and computer system using same
JP2013119954A (en) Heat pump hot water heater
JP2002031376A (en) Air-conditioning system
US20210025627A1 (en) Air-conditioning apparatus
JP2012141098A (en) Heat source system and its control method
US5749244A (en) Absorption type refrigerator
JP4287113B2 (en) Refrigerator control method and refrigeration apparatus
JP2000304375A (en) Latent heat recovery type absorption water cooler heater
US5275010A (en) Control method and apparatus of absorption chiller heater
JP3588144B2 (en) Operating number control of absorption chillers installed in parallel
JP2004278813A (en) Air-conditioner and its controlling method
JPH10103834A (en) Refrigerator
JP3320631B2 (en) Cooling and heating equipment
JP2003254635A (en) Multi-chamber type air conditioner
JPH1089783A (en) Deep freezer
CN111947379A (en) Air conditioning unit capable of effectively utilizing energy and control method and device thereof
JPH1089742A (en) Refrigerating system
JPH06317360A (en) Multi-chamber type air conditioner
JP3172315B2 (en) Number of operation units for absorption chillers
JP2001227780A (en) Air conditioning system
JP3874262B2 (en) Refrigeration system combining absorption and compression
JPH02169966A (en) Number-of-operating refrigerator controller for air-cooled refrigerator
JP2719456B2 (en) Air conditioner
JPS62299660A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

EXPY Cancellation because of completion of term