JPH1089742A - Refrigerating system - Google Patents

Refrigerating system

Info

Publication number
JPH1089742A
JPH1089742A JP8263497A JP26349796A JPH1089742A JP H1089742 A JPH1089742 A JP H1089742A JP 8263497 A JP8263497 A JP 8263497A JP 26349796 A JP26349796 A JP 26349796A JP H1089742 A JPH1089742 A JP H1089742A
Authority
JP
Japan
Prior art keywords
temperature
operating
decrease amount
increase
secondary refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8263497A
Other languages
Japanese (ja)
Inventor
Haruhiko Konno
春彦 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8263497A priority Critical patent/JPH1089742A/en
Publication of JPH1089742A publication Critical patent/JPH1089742A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerating system, preventing the deterioration of control response or hunting by controlling the number of operating sets employing a control gain in accordance with the flow rate of secondary refrigerant from utilizing side. SOLUTION: A total control unit (TCU) 61 searches an imaginary temperature difference Tdv from a map based on the operating number of sets as well as the operating condition of a refrigerating machine 1, an outdoor air temperature Ta and the like, then, operates a (differential temperature difference) ΔTd between the imaginary temperature difference Tdv and an actual temperature difference Tdr (inlet port side temperature Tfi-outlet port side temperature Tfo) to search a control gain or a flow rate coefficient KF from the map based on the differential temperature difference ΔTd. Thereafter, the TCU 61 obtains a basic operating number of sets increasing and decreasing amount ΔNB based on an inlet port temperature gradient ΔTs (or the changing amount per unit time of the inlet port side temperature Tfi) and a difference (outlet port temperature difference) ΔTo between a set outlet port temperature Tfos and the outlet port side temperature Tfo. Finally, the TCU 61 operates a number of operating set increasing and decreasing amount ΔN by multiplying the basic number of operating set increasing and decreasing amount ΔNB by the flow rate coefficient KF to control the number of operating sets of the refrigerating machine 1 based on the number of operating set increasing and decreasing amount ΔN.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷温水式の空気調
和システムやコンピュータ冷却システム等に用いられる
冷凍システムに係り、詳しくは、利用側からの二次冷媒
流量に拘わらず適切な運転台数制御を行わせる技術に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system used for a cold / hot water type air conditioning system, a computer cooling system, and the like. Related to the technology to perform.

【0002】[0002]

【従来の技術】比較的大規模なビルや工場等では、複数
の冷凍機を備えた冷凍システムにより水等の二次冷媒を
冷却または加熱し、これを空気調和やコンピュータの冷
却等に用いることが多い。
2. Description of the Related Art In a relatively large-scale building or factory, a refrigeration system having a plurality of chillers is used to cool or heat a secondary refrigerant such as water and use it for air conditioning, computer cooling, and the like. There are many.

【0003】この種の冷温水式の空気調和システムやコ
ンピュータ冷却システムには、圧縮式の他、吸収式やヒ
ートポンプ式等、種々の冷凍機が熱源として用いられ、
利用側の総負荷(空気調和機の総数等)に応じて冷凍機
の台数が設定される。そして、外気温度や利用側装置
(空気調和機やコンピュータ冷却機等)の運転状態等に
対応するべく冷凍機の運転台数制御が行われ、その運転
台数制御にあたっては、利用側装置に供給する二次冷媒
の温度(出口側温度)を一定に維持させるものが一般的
であった。
[0003] In this type of chilled / hot water type air conditioning system and computer cooling system, various refrigerators such as an absorption type and a heat pump type are used as heat sources in addition to the compression type.
The number of refrigerators is set according to the total load on the user side (such as the total number of air conditioners). Then, the number of operating refrigeration units is controlled to correspond to the outside air temperature and the operating state of the use-side device (such as an air conditioner or a computer cooler). Generally, the temperature (outlet side temperature) of the secondary refrigerant is kept constant.

【0004】[0004]

【発明が解決しようとする課題】ところで、出口側温度
に基づく運転台数制御を行った場合、利用側装置の稼働
状況によっては、冷凍システム側でハンチングが発生す
る虞があった。
When the number of operating units is controlled based on the outlet-side temperature, hunting may occur on the refrigeration system side depending on the operating condition of the user-side device.

【0005】通常、この種の冷凍システムには多数の利
用側装置が接続されるため、運転台数制御時の制御ゲイ
ンも比較的大きく設定される。例えば、多数の利用側装
置の稼働時には、出口側温度と設定温度との間に偏差
(出口差温)が生じると、制御装置は比較的大きな制御
ゲインで冷凍機の運転台数を増大あるいは減少させ、こ
れにより出口差温を速やかに0にすることができる。と
ころが、利用側装置の一部しか稼働していない場合に
は、利用側装置からの二次冷媒流量が減少するため、同
一の制御ゲインで運転台数制御を行った場合、運転台数
の増減に伴う二次冷媒温度のオーバシュートが大きくな
ってハンチングが発生する。
Usually, since a large number of use-side devices are connected to this type of refrigeration system, the control gain at the time of controlling the number of operating units is set to be relatively large. For example, when a large number of utilization-side devices are operating, if a deviation (exit temperature difference) occurs between the outlet-side temperature and the set temperature, the controller increases or decreases the number of operating refrigerators with a relatively large control gain. Thus, the outlet temperature difference can be quickly reduced to zero. However, when only a part of the usage-side device is operating, the secondary refrigerant flow rate from the usage-side device decreases, so when the number of operating units is controlled with the same control gain, the number of operating units increases or decreases. Overshoot of the secondary refrigerant temperature becomes large and hunting occurs.

【0006】そして、この不具合を解消するべく制御ゲ
インを小さく設定すると、多数の利用側装置の稼働時に
おいては、出口差温が無くなるまでに時間が掛かり、制
御レスポンスが著しく悪化することになる。そこで、利
用側装置からの二次冷媒流量を計測する流量計測装置を
設け、その計測結果に基づいて制御ゲインを増減させる
ことも考えられた。しかし、流量計測装置は一般に高価
であるために装置コストが増大する他、機械的な故障も
多いために制御の信頼性を低下させる要因となる問題が
あった。
If the control gain is set to a small value in order to solve this problem, it takes a long time for the outlet differential temperature to disappear when a large number of use-side devices are operating, and the control response is significantly deteriorated. Therefore, it has been considered that a flow rate measuring device for measuring the flow rate of the secondary refrigerant from the use side device is provided, and the control gain is increased or decreased based on the measurement result. However, the flow rate measuring device is generally expensive, so that the cost of the device increases. In addition, there are many mechanical failures, so that there is a problem that the reliability of the control is reduced.

【0007】本発明は上記状況に鑑みなされたもので、
利用側からの二次冷媒流量に応じた制御ゲインを用いて
運転台数制御を行い、もって制御レスポンスの悪化やハ
ンチングを防止した冷凍システムを提供することを目的
とする。
The present invention has been made in view of the above situation,
An object of the present invention is to provide a refrigeration system in which the number of operating units is controlled by using a control gain according to a secondary refrigerant flow rate from a user side, thereby preventing control response deterioration and hunting.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、請求項1の発明では、複数台の冷凍機の熱交換器に
利用側装置からの二次冷媒を流通させ、当該二次冷媒の
冷却または加熱を行う冷凍システムであって、前記二次
冷媒の前記熱交換器における入口側温度を検出する入口
温度検出手段と、前記二次冷媒の前記熱交換器における
出口側温度を検出する出口温度検出手段と、前記出口温
度検出手段の検出結果と目標出口側温度との偏差に基づ
き、冷凍機運転台数の基本増減量を設定する基本増減量
設定手段と、前記出口温度検出手段の検出結果と前記入
口温度検出手段の検出結果との偏差に基づき、補正係数
を設定する補正係数設定手段と、前記基本増減量に前記
補正係数を乗じて冷凍機運転台数の増減量を決定する増
減量決定手段と、この増減量決定手段の決定結果に基づ
き、前記冷凍機の運転台数を制御する運転台数制御手段
とを備えたものを提案する。
In order to solve the above-mentioned problems, according to the present invention, the secondary refrigerant from the utilization side device is passed through the heat exchangers of a plurality of refrigerators, An inlet temperature detecting means for detecting an inlet-side temperature of the secondary refrigerant in the heat exchanger, and detecting an outlet-side temperature of the secondary refrigerant in the heat exchanger. Outlet temperature detecting means, basic increasing / decreasing amount setting means for setting a basic increasing / decreasing amount of the number of operating refrigerators based on a deviation between a detection result of the outlet temperature detecting means and a target outlet side temperature, and detection of the outlet temperature detecting means Correction coefficient setting means for setting a correction coefficient based on a difference between the result and the detection result of the inlet temperature detection means, and an increase / decrease amount for determining the increase / decrease amount of the number of refrigerators operated by multiplying the basic increase / decrease amount by the correction coefficient Determining means; Based on the determination result of the decrease amount determining means, proposes that a number of operating control means for controlling the number of operating the refrigerator.

【0009】この発明によれば、例えば、基本増減量設
定手段が出口側温度と設定温度との偏差に基づきテーブ
ル等から冷凍機運転台数の基本増減量を設定し、補正係
数設定手段が入口側温度と出口側温度との差温に基づき
マップ等から補正係数を設定する。しかる後、増減量決
定手段が基本増減量に補正係数を乗じることにより冷凍
機運転台数の増減量を決定し、その決定結果に基づき運
転台数制御手段が冷凍機の運転台数を制御する。
According to the present invention, for example, the basic increase / decrease amount setting means sets the basic increase / decrease amount of the number of refrigerators operated from a table or the like based on the deviation between the outlet side temperature and the set temperature, and the correction coefficient setting means A correction coefficient is set from a map or the like based on the difference between the temperature and the outlet-side temperature. Thereafter, the increase / decrease amount determining means multiplies the basic increase / decrease amount by the correction coefficient to determine the increase / decrease amount of the number of operating refrigerators, and the operating number control means controls the number of operating refrigerators based on the determination result.

【0010】また、請求項2の発明では、複数台の冷凍
機の熱交換器に利用側装置からの二次冷媒を流通させ、
当該二次冷媒の冷却または加熱を行う冷凍システムであ
って、前記二次冷媒の前記熱交換器における入口側温度
を検出する入口温度検出手段と、前記二次冷媒の前記熱
交換器における出口側温度を検出する出口温度検出手段
と、前記二次冷媒の前記熱交換器における入口側温度の
単位時間あたりの変化量を検出する入口温度勾配検出手
段と、前記出口温度検出手段の検出結果と目標出口側温
度との偏差および前記入口温度勾配検出手段の検出結果
に基づき、冷凍機運転台数の基本増減量を設定する基本
増減量設定手段と、前記出口温度検出手段の検出結果と
前記入口温度検出手段の検出結果との偏差に基づき、補
正係数を設定する補正係数設定手段と、前記基本増減量
に前記補正係数を乗じて冷凍機運転台数の増減量を決定
する増減量決定手段と、この増減量決定手段の決定結果
に基づき、前記冷凍機の運転台数を制御する運転台数制
御手段とを備えたものを提案する。
[0010] In the second aspect of the present invention, the secondary refrigerant from the use-side device is circulated through the heat exchangers of the plurality of refrigerators,
An refrigeration system that performs cooling or heating of the secondary refrigerant, an inlet temperature detection unit that detects an inlet-side temperature of the secondary refrigerant in the heat exchanger, and an outlet side of the secondary refrigerant in the heat exchanger. Outlet temperature detecting means for detecting a temperature, inlet temperature gradient detecting means for detecting a change amount of the secondary refrigerant in the heat exchanger on the inlet side per unit time, detection results of the outlet temperature detecting means and a target Basic increase / decrease amount setting means for setting a basic increase / decrease amount of the number of operating chillers based on a deviation from the outlet side temperature and a detection result of the inlet temperature gradient detection means, a detection result of the outlet temperature detection means, and the inlet temperature detection Correction coefficient setting means for setting a correction coefficient based on a deviation from the detection result of the means; and an increase / decrease amount determining means for determining the increase / decrease amount of the number of refrigerators operated by multiplying the basic increase / decrease amount by the correction coefficient. If, based on the determined result of the increase and decrease amount determination means is proposed that a number of operating control means for controlling the number of operating the refrigerator.

【0011】この発明によれば、例えば、基本増減量設
定手段が出口側温度と設定温度との偏差および入口温度
勾配に基づきテーブル等から冷凍機運転台数の基本増減
量を設定し、補正係数設定手段が入口側温度と出口側温
度との差温に基づきマップ等から補正係数を設定する。
しかる後、増減量決定手段が基本増減量に補正係数を乗
じることにより冷凍機運転台数の増減量を決定し、その
決定結果に基づき運転台数制御手段が冷凍機の運転台数
を制御する。
According to the present invention, for example, the basic increase / decrease amount setting means sets the basic increase / decrease amount of the number of operating refrigerators from a table or the like based on the deviation between the outlet side temperature and the set temperature and the inlet temperature gradient, and sets the correction coefficient. Means sets a correction coefficient from a map or the like based on the temperature difference between the inlet side temperature and the outlet side temperature.
Thereafter, the increase / decrease amount determining means multiplies the basic increase / decrease amount by the correction coefficient to determine the increase / decrease amount of the number of operating refrigerators, and the operating number control means controls the number of operating refrigerators based on the determination result.

【0012】[0012]

【発明の実施の形態】以下、本発明の一実施形態を図面
に基づき詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings.

【0013】図1はガスヒートポンプ型冷凍システムを
用いた空気調和システムの概略構成図であり、同図に
は、実線で冷媒回路を示し、一点鎖線で二次冷媒回路を
示してある。本実施形態の空気調和システムは、複数台
(例えば、3台)の冷凍機1と複数台(例えば、10
台)の室内ユニット3とから構成されている。
FIG. 1 is a schematic configuration diagram of an air conditioning system using a gas heat pump refrigeration system. In FIG. 1, a solid line indicates a refrigerant circuit, and a dashed line indicates a secondary refrigerant circuit. The air conditioning system of the present embodiment includes a plurality of (for example, three) refrigerators 1 and a plurality of (for example, 10
) Indoor unit 3.

【0014】各冷凍機1には、圧縮機5、電磁式の四方
弁7、熱源側熱交換器(空気熱交換器)9、電動ファン
11、レシーバタンク13、電動膨張弁15、利用側熱
交換器(水熱交換器)17、アキュムレータ19等が収
納されている。冷媒回路を構成する機器は、冷媒(HF
C系フロンの混合冷媒等)の流通に供される冷媒配管3
1〜38により接続されている。図中、21は、ガスエ
ンジンであり、フレキシブルカップリング23を介して
圧縮機5を駆動する。
Each refrigerator 1 includes a compressor 5, an electromagnetic four-way valve 7, a heat source side heat exchanger (air heat exchanger) 9, an electric fan 11, a receiver tank 13, an electric expansion valve 15, and a use side heat source. An exchanger (water heat exchanger) 17, an accumulator 19 and the like are housed therein. The equipment constituting the refrigerant circuit is a refrigerant (HF
Refrigerant piping 3 for distribution of C-type CFC mixed refrigerant)
They are connected by 1 to 38. In the figure, reference numeral 21 denotes a gas engine, which drives the compressor 5 via a flexible coupling 23.

【0015】各冷凍機1の利用側熱交換器17は、二次
冷媒配管41,43を介して、各室内ユニット3内の室
内熱交換器45に接続しており、両熱交換器17,45
内を室内ユニット3側に設けられたインバータ制御式の
水ポンプ47に吐出された二次冷媒(本実施形態では、
不凍液)が循環する。
The use-side heat exchanger 17 of each refrigerator 1 is connected to an indoor heat exchanger 45 in each indoor unit 3 via secondary refrigerant pipes 41 and 43. 45
The inside of the secondary refrigerant (in the present embodiment, the secondary refrigerant discharged to an inverter-controlled water pump 47 provided on the indoor unit 3 side)
(Antifreeze) circulates.

【0016】各冷凍機1内には、圧縮機5(ガスエンジ
ン21)や四方弁7を始め、電動ファン11や電動膨張
弁15等を駆動するコントロールユニット(以下、EC
Uと記す)51が設置されている。ECU51は、制御
中枢であるCPUの他、入出力インタフェースやRO
M,RAM,タイマカウンタ等から構成されており、そ
の入力インタフェースには、外気温Ta を検出する外気
温センサ53の他、熱源側熱交換器9の入口側および出
口側における二次冷媒温度Tfi,Tfoを検出する第1,
第2温度センサ55,57等、種々のセンサ類が接続し
ている。
In each refrigerator 1, a control unit (hereinafter referred to as EC) for driving the compressor 5 (gas engine 21), the four-way valve 7, the electric fan 11, the electric expansion valve 15, and the like.
U) 51 are provided. The ECU 51 includes an input / output interface and an RO in addition to the CPU that is the control center.
M, RAM, a timer counter, and the like. The input interface includes an outside air temperature sensor 53 for detecting an outside air temperature Ta, and a secondary refrigerant temperature Tfi on the inlet side and the outlet side of the heat source side heat exchanger 9. , Tfo detecting the first,
Various sensors such as the second temperature sensors 55 and 57 are connected.

【0017】また、本実施形態では、各冷凍機1を統括
制御するTCU(トータルコントロールユニット)61
が設けられており、このTCU61により冷凍機1の運
転台数制御や各冷凍機1の能力制御が行われる。TCU
61は、CPUの他、入出力インタフェースやROM,
RAM,タイマカウンタ等から構成されており、各冷凍
機1との間で制御信号の授受を行う。
Further, in this embodiment, a TCU (total control unit) 61 for integrally controlling each refrigerator 1
The TCU 61 controls the number of operating refrigerators 1 and the capacity of each refrigerator 1. TCU
61 is a CPU, an input / output interface, a ROM,
It is composed of a RAM, a timer counter and the like, and exchanges control signals with each refrigerator 1.

【0018】次に、冷房運転時における冷媒の流れを説
明する。
Next, the flow of the refrigerant during the cooling operation will be described.

【0019】冷媒配管38から圧縮機5に吸引されたガ
ス冷媒は、断熱圧縮により高温高圧となって圧縮機5か
ら吐出され、冷媒配管31、四方弁7、冷却水配管32
を経由して熱源側熱交換器9に流入する。高温高圧のガ
ス冷媒は、熱源側熱交換器9内を通過する間に外気によ
り冷却・凝縮されて液冷媒となった後、冷媒配管33、
レシーバタンク13、冷媒配管34を経由して電動膨張
弁15に流入する。
The gas refrigerant sucked into the compressor 5 from the refrigerant pipe 38 is heated to a high temperature and a high pressure by the adiabatic compression and discharged from the compressor 5, and the refrigerant pipe 31, the four-way valve 7, the cooling water pipe 32
And flows into the heat source side heat exchanger 9 via. The high-temperature and high-pressure gas refrigerant is cooled and condensed by outside air while passing through the heat source side heat exchanger 9 to become a liquid refrigerant.
It flows into the electric expansion valve 15 via the receiver tank 13 and the refrigerant pipe 34.

【0020】液冷媒は、電動膨張弁15で流量を調整さ
れた後、冷媒配管35を経由して利用側熱交換器17に
流入する。液冷媒は、利用側熱交換器17内を通過する
間に気化してガス冷媒となり、その際に気化潜熱を吸収
して室内ユニット3からの二次冷媒を冷却する。利用側
熱交換器17内で気化したガス冷媒は、冷媒配管36、
四方弁7、冷媒配管37を経由してアキュムレータ19
に流入し、冷媒配管38から再び圧縮機5に吸引され
る。
After the flow rate of the liquid refrigerant is adjusted by the electric expansion valve 15, the liquid refrigerant flows into the use side heat exchanger 17 via the refrigerant pipe 35. The liquid refrigerant is vaporized while passing through the use-side heat exchanger 17 and becomes a gas refrigerant. At that time, the liquid refrigerant absorbs the latent heat of vaporization and cools the secondary refrigerant from the indoor unit 3. The gas refrigerant vaporized in the use side heat exchanger 17 is supplied to a refrigerant pipe 36,
Accumulator 19 via four-way valve 7 and refrigerant pipe 37
To the compressor 5 from the refrigerant pipe 38 again.

【0021】以下、図2〜図6のフローチャートに基づ
き、本実施形態における運転台数制御を説明する。
Hereinafter, the operation number control according to the present embodiment will be described with reference to the flowcharts of FIGS.

【0022】空気調和システムが起動されると、TCU
61は、所定の制御インターバルに基づき、図2に示し
た手順で運転台数制御を繰り返し実行する。運転台数制
御を開始すると、TCU61は、先ず図2のステップS
1で各冷凍機1のセンサ53,55,57等からの検出
情報(外気温Ta 、入口側温度Tfi、出口側温度Tfo
等)を読み込んだ後、ステップS3で、現在の各冷凍機
1の運転台数および運転状態や外気温Ta (℃)等の変
動要素に基づき、想定差温Tdvを図示しないマップから
検索する。想定差温Tdvとは、利用側熱交換器17内を
所定流量の二次冷媒が流通した場合に、現在の運転状況
で生じると想定される入口側温度と出口側温度との温度
差である。
When the air conditioning system is started, the TCU
Reference numeral 61 repeatedly executes the number-of-operated-operation control according to the procedure shown in FIG. 2 based on a predetermined control interval. When the control of the number of operating units is started, the TCU 61 first executes step S in FIG.
At 1, detection information from the sensors 53, 55, 57 and the like of each refrigerator 1 (outside air temperature Ta, inlet side temperature Tfi, outlet side temperature Tfo
Etc.), in step S3, an estimated difference temperature Tdv is retrieved from a map (not shown) based on the present number of operating refrigerators 1 and operating conditions, and variable factors such as the outside air temperature Ta (° C.). The assumed difference temperature Tdv is a temperature difference between the inlet-side temperature and the outlet-side temperature, which is assumed to be generated in the current operating condition when a predetermined amount of the secondary refrigerant flows in the use-side heat exchanger 17. .

【0023】次に、TCU61は、ステップS5で稼働
中の冷凍機1で検出された実差温Tdr(入口側温度Tfi
−出口側温度Tfo)を算出し、ステップS7で想定差温
Tdvと実差温Tdrとの偏差(差温偏差)ΔTdを算出す
る。差温偏差ΔTdは、二次冷媒の流量が所定流量より
多ければ負の値となり、二次冷媒の流量が所定流量より
少なければ正の値となる。尚、二次冷媒の流量は、室内
ユニット3の稼働台数により変化する他、各室内ユニッ
ト3内の水ポンプ47の回転数(すなわち、吐出量)に
よっても変化する。
Next, the TCU 61 calculates the actual temperature difference Tdr (inlet temperature Tfi) detected by the refrigerator 1 operating in step S5.
-The outlet side temperature Tfo) is calculated, and in step S7, the deviation (difference in temperature) ΔTd between the assumed differential temperature Tdv and the actual differential temperature Tdr is calculated. The temperature difference ΔTd has a negative value when the flow rate of the secondary refrigerant is higher than a predetermined flow rate, and has a positive value when the flow rate of the secondary refrigerant is lower than the predetermined flow rate. The flow rate of the secondary refrigerant varies depending on the number of operating indoor units 3 and also varies depending on the number of revolutions (ie, the discharge amount) of the water pump 47 in each indoor unit 3.

【0024】次に、TCU61は、ステップS9で、差
温偏差ΔTd に基づき、図示しないマップから制御ゲイ
ンたる流量係数KF を検索する。本実施形態の場合、流
量係数KFの値は、例えば0.8〜1.2の範囲に設定
されており、差温偏差ΔTdの値が0のときに1.0、
差温偏差ΔTd の値が負のときに最大で1.2、差温偏
差ΔTdの値が正のときに最小で0.8となる。
Next, in step S9, the TCU 61 retrieves a flow coefficient KF as a control gain from a map (not shown) based on the temperature difference ΔTd. In the case of the present embodiment, the value of the flow coefficient KF is set, for example, in the range of 0.8 to 1.2, and 1.0 when the value of the temperature difference ΔTd is 0,
When the value of the temperature difference ΔTd is negative, the maximum value is 1.2, and when the value of the temperature difference ΔTd is positive, the value is 0.8 at the minimum.

【0025】次に、TCU61は、ステップS11で入
口温度勾配ΔTs (すなわち、入口側温度Tfiの単位時
間あたりの変化量)を算出する。入口温度勾配ΔTs
は、負荷の増減状態を示すもので、その値が0であれば
負可の増減はなく、正あるいは負であれば負荷が増減し
ていることになる。入口温度勾配ΔTs の算出を終える
と、TCU61は、ステップS13で設定出口温度Tfo
s と出口側温度Tfoとの偏差(出口差温)ΔToを算出
する。
Next, in step S11, the TCU 61 calculates an inlet temperature gradient ΔTs (that is, a change amount of the inlet side temperature Tfi per unit time). Inlet temperature gradient ΔTs
Indicates an increase or decrease state of the load. If the value is 0, there is no negative increase or decrease. If the value is positive or negative, the load has increased or decreased. After completing the calculation of the inlet temperature gradient ΔTs, the TCU 61 sets the set outlet temperature Tfo in step S13.
The deviation (outlet temperature difference) ΔTo between s and the outlet side temperature Tfo is calculated.

【0026】入口温度勾配ΔTsと出口差温ΔToとを算
出すると、TCU61は、ステップS15で入口温度勾
配ΔTsと出口差温ΔToとに基づき図示しない運転台数
増減テーブルから冷凍機1の基本運転台数増減量ΔPB
(例えば、−1.0〜+1.0)を検索する。尚、運転
台数増減テーブルにおいては、入口温度勾配ΔTs の絶
対値が大きいほど基本運転台数増減量ΔNB の絶対値も
大きくなり、出口差温ΔToの絶対値が大きいほど基本
運転台数増減量ΔNBの絶対値も大きくなる。
After calculating the inlet temperature gradient ΔTs and the outlet differential temperature ΔTo, the TCU 61 determines in step S15 the basic operating number of the refrigerator 1 from the operating number increase / decrease table (not shown) based on the inlet temperature gradient ΔTs and the outlet differential temperature ΔTo. Quantity ΔPB
(For example, -1.0 to +1.0). In the operating number increase / decrease table, the absolute value of the basic operating number increase / decrease amount ΔNB increases as the absolute value of the inlet temperature gradient ΔTs increases, and the absolute value of the basic operating number increase / decrease amount ΔNB increases as the absolute value of the outlet differential temperature ΔTo increases. The value also increases.

【0027】しかる後、TCU61は、ステップS17
で基本運転台数増減量ΔNB に流量係数KF を乗じて運
転台数増減量ΔNを算出し、ステップS19で運転台数
増減量ΔNに基づく運転台数制御を行う。例えば、TC
U61は、運転台数増減量ΔNの値を読み込んで、これ
が−0.5以下であれば冷凍機1の運転台数を1台減少
させ、+0.5以上であれば冷凍機1の運転台数を1台
増加させる。尚、TCU61は、空気調和システムとし
ての運転効率が最もよくなるように、運転台数制御と平
行して各冷凍機1の能力制御も行うが、詳細については
ここでは述べない。
Thereafter, the TCU 61 proceeds to step S17.
Is calculated by multiplying the flow rate coefficient KF by the basic operation number increase / decrease amount ΔNB, and the operation number control based on the operation number increase / decrease amount ΔN is performed in step S19. For example, TC
U61 reads the value of the increase / decrease amount ΔN of the number of operating units. If the value is −0.5 or less, the operating number of the refrigerator 1 is reduced by one. Increase the number of vehicles. The TCU 61 also controls the capacity of each refrigerator 1 in parallel with the number of operating units so that the operating efficiency of the air conditioning system becomes the best, but the details will not be described here.

【0028】このように、本実施形態では、二次冷媒の
流量に応じた制御ゲイン(流量係数KF )を用いて運転
台数制御を行うようにしたため、制御レスポンスを高め
ながらハンチングを防止できるようになった。
As described above, in the present embodiment, the number of operating units is controlled using the control gain (flow coefficient KF) according to the flow rate of the secondary refrigerant, so that hunting can be prevented while improving the control response. became.

【0029】以上で具体的実施形態の説明を終えるが、
本発明はこの実施形態に限定されるものではない。例え
ば、上記実施形態では、運転台数増減量ΔNを得るため
に、差温偏差ΔTdから流量係数KFを求め、これを入口
温度勾配ΔTs と出口差温ΔTとから求めた基本運転台
数増減量ΔNBに乗ずるようにしたが、差温偏差ΔTdと
入口温度勾配ΔTs と出口差温ΔTとに基づいてファジ
ー演算を行い、運転台数増減量ΔNを得るようにしても
よい。また、上記実施形態では、二次冷媒の流量に応じ
た制御ゲイン(流量係数KF )の値を0.8〜1.2の
範囲で設定するようにしたが、より広い範囲で設定する
ようにしてもよい。
The description of the specific embodiment has been completed.
The present invention is not limited to this embodiment. For example, in the above-described embodiment, in order to obtain the operating number increase / decrease amount ΔN, the flow coefficient KF is obtained from the temperature difference ΔTd, and the flow coefficient KF is calculated as the basic operating number increase / decrease amount ΔNB obtained from the inlet temperature gradient ΔTs and the outlet temperature difference ΔT. Although multiplication is performed, a fuzzy calculation may be performed based on the temperature difference ΔTd, the inlet temperature gradient ΔTs, and the outlet temperature difference ΔT to obtain the number of operating vehicles increase / decrease ΔN. Further, in the above embodiment, the value of the control gain (flow coefficient KF) according to the flow rate of the secondary refrigerant is set in the range of 0.8 to 1.2, but may be set in a wider range. You may.

【0030】また、上記実施形態では、冷凍機としてガ
スヒートポンプ型のものを用いたが、インバータ式圧縮
機や段階制御型可変容量圧縮機等を備えたものを用いて
もよい。また、本発明は、単一の室内ユニットが接続さ
れた空気調和システムに用いられる冷凍システムの他、
コンピュータ冷却システムや各種加工機の冷却システム
等、空気調和システム以外に用いられる冷凍システムに
も適用可能である。更に、機器類の具体的構成や制御の
具体的手順、等についても、本発明の趣旨を逸脱しない
範囲で適宜変更可能である。
Further, in the above embodiment, a gas heat pump type refrigerator is used as the refrigerator, but a refrigerator equipped with an inverter type compressor, a step control type variable displacement compressor or the like may be used. In addition, the present invention, in addition to the refrigeration system used in the air conditioning system connected to a single indoor unit,
The present invention is also applicable to refrigeration systems used other than air conditioning systems, such as computer cooling systems and cooling systems for various processing machines. Furthermore, the specific configuration of the devices and the specific procedure of control can be appropriately changed without departing from the spirit of the present invention.

【0031】[0031]

【発明の効果】以上述べたように、本発明の冷凍システ
ムによれば、二次冷媒の熱交換器における入口側温度と
出口側温度とに基づいて冷凍機の運転台数制御を行うよ
うにしたため、高価な流量センサ等を用いることなく、
利用側装置からの二次冷媒流量に応じた制御ゲインで運
転台数制御を行うことが可能となり、制御レスポンスを
維持しながらハンチングを防止できるようになる。
As described above, according to the refrigeration system of the present invention, the number of refrigerators operated is controlled based on the inlet side temperature and the outlet side temperature of the secondary refrigerant in the heat exchanger. Without using expensive flow sensors, etc.
The number of operating units can be controlled with a control gain corresponding to the flow rate of the secondary refrigerant from the use side device, and hunting can be prevented while maintaining a control response.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る空気調和システムの一実施形態を
示した概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of an air conditioning system according to the present invention.

【図2】実施形態に係る制御フローチャートである。FIG. 2 is a control flowchart according to the embodiment.

【符号の説明】[Explanation of symbols]

1 冷凍機 3 室内ユニット 5 圧縮機 9 熱源側熱交換器 17 利用側熱交換器 31〜38 冷媒配管 41,43 二次冷媒配管 45 室内熱交換器 51 ECU 55 第1温度センサ 57 第2温度センサ 61 TCU DESCRIPTION OF SYMBOLS 1 Refrigerator 3 Indoor unit 5 Compressor 9 Heat source side heat exchanger 17 User side heat exchanger 31-38 Refrigerant piping 41, 43 Secondary refrigerant piping 45 Indoor heat exchanger 51 ECU 55 1st temperature sensor 57 2nd temperature sensor 61 TCU

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数台の冷凍機の熱交換器に利用側装置
からの二次冷媒を流通させ、当該二次冷媒の冷却または
加熱を行う冷凍システムであって、 前記二次冷媒の前記熱交換器における入口側温度を検出
する入口温度検出手段と、 前記二次冷媒の前記熱交換器における出口側温度を検出
する出口温度検出手段と、 前記出口温度検出手段の検出結果と目標出口側温度との
偏差に基づき、冷凍機運転台数の基本増減量を設定する
基本増減量設定手段と、 前記出口温度検出手段の検出結果と前記入口温度検出手
段の検出結果との偏差に基づき、補正係数を設定する補
正係数設定手段と、 前記基本増減量に前記補正係数を乗じて冷凍機運転台数
の増減量を決定する増減量決定手段と、 この増減量決定手段の決定結果に基づき、前記冷凍機の
運転台数を制御する運転台数制御手段とを備えたことを
特徴とする冷凍システム。
1. A refrigeration system for circulating a secondary refrigerant from a use-side device to heat exchangers of a plurality of refrigerators to cool or heat the secondary refrigerant, wherein the heat of the secondary refrigerant is Inlet temperature detecting means for detecting an inlet-side temperature in an exchanger; outlet temperature detecting means for detecting an outlet-side temperature of the secondary refrigerant in the heat exchanger; detection results of the outlet temperature detecting means and a target outlet-side temperature Based on the deviation, the basic increase / decrease amount setting means for setting the basic increase / decrease amount of the number of operating refrigerators, and a correction coefficient based on the deviation between the detection result of the outlet temperature detection means and the detection result of the entrance temperature detection means. Correction coefficient setting means to be set; increase / decrease amount determination means for multiplying the basic increase / decrease amount by the correction coefficient to determine the increase / decrease amount of the number of operating refrigerators; based on the determination result of the increase / decrease amount determination means, Number of operation A refrigeration system comprising: a number-of-operations control means for controlling the number of operating units.
【請求項2】 複数台の冷凍機の熱交換器に利用側装置
からの二次冷媒を流通させ、当該二次冷媒の冷却または
加熱を行う冷凍システムであって、 前記二次冷媒の前記熱交換器における入口側温度を検出
する入口温度検出手段と、 前記二次冷媒の前記熱交換器における出口側温度を検出
する出口温度検出手段と、 前記二次冷媒の前記熱交換器における入口側温度の単位
時間あたりの変化量を検出する入口温度勾配検出手段
と、 前記出口温度検出手段の検出結果と目標出口側温度との
偏差および前記入口温度勾配検出手段の検出結果に基づ
き、冷凍機運転台数の基本増減量を設定する基本増減量
設定手段と、 前記出口温度検出手段の検出結果と前記入口温度検出手
段の検出結果との偏差に基づき、補正係数を設定する補
正係数設定手段と、 前記基本増減量に前記補正係数を乗じて冷凍機運転台数
の増減量を決定する増減量決定手段と、 この増減量決定手段の決定結果に基づき、前記冷凍機の
運転台数を制御する運転台数制御手段とを備えたことを
特徴とする冷凍システム。
2. A refrigeration system for circulating a secondary refrigerant from a use-side device to heat exchangers of a plurality of refrigerators to cool or heat the secondary refrigerant, wherein the heat of the secondary refrigerant is Inlet temperature detecting means for detecting an inlet-side temperature in an exchanger; outlet temperature detecting means for detecting an outlet-side temperature of the secondary refrigerant in the heat exchanger; and an inlet-side temperature of the secondary refrigerant in the heat exchanger. An inlet temperature gradient detecting means for detecting an amount of change per unit time of the refrigerator; and, based on a deviation between a detection result of the outlet temperature detecting means and a target outlet side temperature and a detection result of the inlet temperature gradient detecting means, A basic increase / decrease amount setting means for setting a basic increase / decrease amount of: a correction coefficient setting means for setting a correction coefficient based on a deviation between a detection result of the outlet temperature detection means and a detection result of the entrance temperature detection means; An increase / decrease amount determining means for determining an increase / decrease amount of the number of refrigerators operated by multiplying the basic increase / decrease amount by the correction coefficient; And a refrigerating system.
JP8263497A 1996-09-12 1996-09-12 Refrigerating system Pending JPH1089742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8263497A JPH1089742A (en) 1996-09-12 1996-09-12 Refrigerating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8263497A JPH1089742A (en) 1996-09-12 1996-09-12 Refrigerating system

Publications (1)

Publication Number Publication Date
JPH1089742A true JPH1089742A (en) 1998-04-10

Family

ID=17390353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8263497A Pending JPH1089742A (en) 1996-09-12 1996-09-12 Refrigerating system

Country Status (1)

Country Link
JP (1) JPH1089742A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192186A (en) * 2008-02-18 2009-08-27 Hitachi Appliances Inc Refrigeration system
JP5709838B2 (en) * 2010-03-16 2015-04-30 三菱電機株式会社 Air conditioner
JP2020190399A (en) * 2019-05-24 2020-11-26 東京瓦斯株式会社 Hybrid air conditioning system
WO2020246502A1 (en) 2019-06-03 2020-12-10 ダイキン工業株式会社 Apparatus management device, heat source system, management device, and apparatus management system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192186A (en) * 2008-02-18 2009-08-27 Hitachi Appliances Inc Refrigeration system
JP5709838B2 (en) * 2010-03-16 2015-04-30 三菱電機株式会社 Air conditioner
US9285128B2 (en) 2010-03-16 2016-03-15 Mitsubishi Electric Corporation Air-conditioning apparatus with multiple outdoor, indoor, and multiple relay units
JP2020190399A (en) * 2019-05-24 2020-11-26 東京瓦斯株式会社 Hybrid air conditioning system
WO2020246502A1 (en) 2019-06-03 2020-12-10 ダイキン工業株式会社 Apparatus management device, heat source system, management device, and apparatus management system
EP4230924A2 (en) 2019-06-03 2023-08-23 Daikin Industries, Ltd. Device management apparatus and heat source system
EP4242545A2 (en) 2019-06-03 2023-09-13 Daikin Industries, Ltd. Apparatus management device, heat source system, management device, and apparatus management system

Similar Documents

Publication Publication Date Title
EP2466220B1 (en) Air conditioning system and method of controlling air conditioning system
US9903601B2 (en) Air-conditioning apparatus
US20130312443A1 (en) Refrigeration cycle apparatus and refrigeration cycle control method
US20130145786A1 (en) Cooling and hot water supply system and cooling and hot water supply method
KR101917941B1 (en) Air conditioner and control method thereof
US9562701B2 (en) Temperature control system and air conditioning system
US9625187B2 (en) Combined air-conditioning and hot-water supply system
CN102077042A (en) Method for judging amount of refrigerant of air conditioner and air conditioner
JPWO2017009955A1 (en) Refrigeration system
US20210025627A1 (en) Air-conditioning apparatus
JP5774116B2 (en) Heat pump system, control device, temperature control method and program
JP5881339B2 (en) Air conditioner
US20240053077A1 (en) Systems and methods for humidity control in an air conditioning system
WO2019017370A1 (en) Freezer
JP2017075760A (en) Air conditioner
EP1956306A2 (en) Multi-system air-conditioner and method for controlling the same
US11940192B2 (en) Air conditioning device
WO2014103013A1 (en) Heat pump system
CN114440401B (en) Air source heat pump unit
JPH1089783A (en) Deep freezer
JPH1089742A (en) Refrigerating system
CN113883579B (en) Water system air conditioner
JP2007163107A (en) Air conditioner
US20220128285A1 (en) Water regulator
JP5245576B2 (en) Refrigerant amount determination method for air conditioner and air conditioner