JP5881339B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5881339B2
JP5881339B2 JP2011191053A JP2011191053A JP5881339B2 JP 5881339 B2 JP5881339 B2 JP 5881339B2 JP 2011191053 A JP2011191053 A JP 2011191053A JP 2011191053 A JP2011191053 A JP 2011191053A JP 5881339 B2 JP5881339 B2 JP 5881339B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
indoor
temperature
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011191053A
Other languages
Japanese (ja)
Other versions
JP2013053780A (en
Inventor
要平 馬場
要平 馬場
直道 田村
直道 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011191053A priority Critical patent/JP5881339B2/en
Publication of JP2013053780A publication Critical patent/JP2013053780A/en
Application granted granted Critical
Publication of JP5881339B2 publication Critical patent/JP5881339B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、冷媒を循環させる冷媒回路を有する空気調和機に関するものである。   The present invention relates to an air conditioner having a refrigerant circuit for circulating a refrigerant.

従来の空気調和機においては、例えば、「冷房運転時おいて、前記室内側熱交換器温度検出器の検知温度が所定温度1以下であり、かつ前記圧縮機タイマーが所定時間を積算していれば、前記圧縮機を停止すると共に、前記圧縮機タイマーが所定時間を積算する以前に、前記室内側熱交換器温度検出器の検出温度が前記所定温度1よりも低い所定温度2以下になれば、前記圧縮機を停止し、かつ前記室内側送風機の回転数を所定周波数に設定する」ものが提案されている(例えば、特許文献1参照)。   In a conventional air conditioner, for example, “during cooling operation, the temperature detected by the indoor heat exchanger temperature detector is not more than a predetermined temperature 1 and the compressor timer has accumulated a predetermined time. For example, if the detected temperature of the indoor heat exchanger temperature detector becomes equal to or lower than the predetermined temperature 2 lower than the predetermined temperature 1 before the compressor is stopped and the compressor timer accumulates the predetermined time. The compressor is stopped, and the rotation speed of the indoor fan is set to a predetermined frequency ”(for example, see Patent Document 1).

特開平3−39853号公報(請求項1)JP-A-3-39853 (Claim 1)

従来の空気調和機では、室内温度を目標温度とする冷房運転または暖房運転を行う場合、室内温度が目標温度に到達するまで圧縮機を運転し続け、室内温度が目標温度に到達すると、圧縮機の運転を停止し、これと同時に絞り装置を閉め、冷媒の流れを止めていた。
しかしながら、このような制御では室内温度が目標温度に到達するまで、圧縮機が継続して運転し続けるため、その間、圧縮機により電力が継続して消費される、という問題点があった。
また、圧縮機停止と同時に絞り装置を閉めるため、冷媒回路の冷媒の流れが止まり、配管内にある高圧の冷媒を空調に利用できない、という問題点があった。
In a conventional air conditioner, when performing a cooling operation or a heating operation in which the indoor temperature is a target temperature, the compressor is continuously operated until the indoor temperature reaches the target temperature, and when the indoor temperature reaches the target temperature, At the same time, the throttle device was closed to stop the refrigerant flow.
However, in such control, since the compressor continues to operate until the room temperature reaches the target temperature, there is a problem that electric power is continuously consumed by the compressor.
Further, since the expansion device is closed simultaneously with the compressor stop, the refrigerant flow in the refrigerant circuit stops, and there is a problem that the high-pressure refrigerant in the pipe cannot be used for air conditioning.

本発明は、上記のような課題を解決するためになされたもので、第一の目的は、圧縮機の運転時間を短くすることができ、消費電力を削減することができる空気調和機を得るものである。
第二の目的は、圧縮機停止時において配管内の冷媒を空調運転に利用することができる空気調和機を得るものである。
The present invention has been made to solve the above-described problems, and a first object is to obtain an air conditioner that can shorten the operation time of the compressor and reduce power consumption. Is.
The second object is to obtain an air conditioner that can use the refrigerant in the pipe for air conditioning operation when the compressor is stopped.

本発明に係る空気調和機は、圧縮機と室外熱交換器とを有する室外ユニットと、絞り装置と室内熱交換器とを有する室内ユニットとが、2本の冷媒配管を介して接続されることにより構成され、冷媒を循環させる冷媒回路と、前記室内熱交換器が前記冷媒と熱交換する室内空気の温度を検出する室内温度センサと、前記室内空気の温度が目標温度となるように、前記圧縮機の動作および前記絞り装置の開度を制御する制御装置と、を備え、前記制御装置は、前記2本の冷媒配管のうち高圧側の冷媒配管内の冷媒量と、前記絞り装置に設定する開度とに基づき、高圧側の冷媒配管内の冷媒が前記室内熱交換器に流通する時間である停止可能時間を求め、前記室内空気の温度が目標温度となる前に、前記停止可能時間の間、前記圧縮機の運転を停止し、前記絞り装置の開度を全閉より大きい開度に設定し、前記2本の冷媒配管のうち高圧側の冷媒配管内の冷媒を前記室内熱交換器に流通させて、該冷媒と室内空気とを熱交換させて空調運転を行うものである。 Air conditioner according to the present invention, an outdoor unit having a compressor and a chamber external heat exchanger, and an indoor unit having an expansion device and an indoor heat exchanger are connected via two refrigerant pipes It is constituted by a refrigerant circuit for circulating a refrigerant, and the indoor temperature sensor the indoor heat exchanger detects the temperature of the indoor air the exchanges heat with the refrigerant, so that the temperature of the previous SL indoor air becomes the target temperature And a control device for controlling the operation of the compressor and the opening of the throttle device, wherein the control device includes a refrigerant amount in a high-pressure side refrigerant pipe among the two refrigerant pipes, and the throttle device. The stoppable time, which is the time during which the refrigerant in the refrigerant pipe on the high-pressure side circulates through the indoor heat exchanger, is obtained based on the opening degree set to, and before the temperature of the indoor air reaches the target temperature, the stop during the available time, stop the operation of said compressor The opening of the expansion device is set to an opening larger than the fully closed position, and the refrigerant in the refrigerant pipe on the high-pressure side of the two refrigerant pipes is circulated through the indoor heat exchanger, and the refrigerant and the room Air conditioning is performed by exchanging heat with air.

本発明は、圧縮機の運転時間を短くすることができ、消費電力を削減することができる。また、圧縮機停止時において配管内の冷媒を空調運転に利用することができる。   The present invention can shorten the operation time of the compressor and reduce power consumption. Further, the refrigerant in the pipe can be used for air conditioning operation when the compressor is stopped.

本発明の実施の形態1に係る空気調和機の冷媒回路図である。It is a refrigerant circuit diagram of the air conditioner according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る空気調和機の制御ブロック図である。It is a control block diagram of the air conditioner according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷房運転時における圧縮機および室内絞り装置の動作を示す図である。It is a figure which shows operation | movement of the compressor and indoor expansion apparatus at the time of the air_conditionaing | cooling operation which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る暖房運転時における圧縮機および室内絞り装置の動作を示す図である。It is a figure which shows operation | movement of the compressor and the indoor expansion device at the time of the heating operation which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control apparatus which concerns on Embodiment 1 of this invention.

実施の形態1.
(全体構成)
図1は本発明の実施の形態1に係る空気調和機の冷媒回路図である。
図1に示すように、本実施の形態における空気調和機は、室外ユニット10と、室内ユニット20と、この室外ユニット10と室内ユニット20とを接続する液冷媒配管30およびガス冷媒配管40とを備えている。
Embodiment 1 FIG.
(overall structure)
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to Embodiment 1 of the present invention.
As shown in FIG. 1, the air conditioner in the present embodiment includes an outdoor unit 10, an indoor unit 20, a liquid refrigerant pipe 30 and a gas refrigerant pipe 40 that connect the outdoor unit 10 and the indoor unit 20. I have.

室外ユニット10は、圧縮機1を備えている。圧縮機1の吐出側には、流路切替手段である四方弁2、室外熱交換器3、過冷却用熱交換器13が順次配管で接続され、冷媒回路の一部を構成している。過冷却用熱交換器13は液冷媒配管30と接続される。圧縮機1吸入側には、アキュムレータ4、および、四方弁2が順次配管で接続されている。四方弁2はガス冷媒配管40と接続されている。室外熱交換器3の近傍には室外送風機5が設けられている。過冷却用熱交換器13は冷媒同士の熱交換を行う。例えば、冷房運転時に、室外熱交換器3から液冷媒配管30へ流れる冷媒を、過冷却バイパス経路16(後述)を通る冷媒と熱交換させ、液冷媒配管30へ流す。   The outdoor unit 10 includes a compressor 1. On the discharge side of the compressor 1, a four-way valve 2, which is a flow path switching means, an outdoor heat exchanger 3, and a supercooling heat exchanger 13 are sequentially connected by a pipe to constitute a part of the refrigerant circuit. The supercooling heat exchanger 13 is connected to the liquid refrigerant pipe 30. An accumulator 4 and a four-way valve 2 are sequentially connected to the compressor 1 suction side by piping. The four-way valve 2 is connected to the gas refrigerant pipe 40. An outdoor blower 5 is provided in the vicinity of the outdoor heat exchanger 3. The supercooling heat exchanger 13 performs heat exchange between the refrigerants. For example, during the cooling operation, the refrigerant flowing from the outdoor heat exchanger 3 to the liquid refrigerant pipe 30 is heat-exchanged with the refrigerant passing through the supercooling bypass path 16 (described later) and flows to the liquid refrigerant pipe 30.

16は過冷却バイパス経路である。過冷却バイパス経路16は、過冷却用熱交換器13と液冷媒配管30との間より分岐し、アキュムレータ4と四方弁2とを繋ぐ配管へ合流する。12は過冷却絞り装置である。過冷却バイパス経路16は、過冷却絞り装置12および過冷却用熱交換器13が順に接続される。   Reference numeral 16 denotes a supercooling bypass path. The supercooling bypass path 16 branches from between the supercooling heat exchanger 13 and the liquid refrigerant pipe 30 and joins to a pipe connecting the accumulator 4 and the four-way valve 2. Reference numeral 12 denotes a supercooling throttle device. The supercooling bypass path 16 is connected to the supercooling expansion device 12 and the supercooling heat exchanger 13 in this order.

室外ユニット10には、高圧圧力センサ14、低圧圧力センサ19、液配管温度センサ15が設けられている。高圧圧力センサ14は圧縮機1の吐出側に設けられ、冷媒圧力を計測する。低圧圧力センサ19は圧縮機1の吸入側に設けられ、冷媒圧力を計測する。液配管温度センサ15は過冷却用熱交換器13と液冷媒配管30との間に設けられ、液冷媒配管30内の冷媒温度を計測する。なお、液配管温度センサ15の設置位置はこれに限るものではなく、液冷媒配管30内の冷媒温度を計測できる位置であればよい。例えば室内絞り装置6と液冷媒配管30との間に設けても良い。   The outdoor unit 10 is provided with a high pressure sensor 14, a low pressure sensor 19, and a liquid pipe temperature sensor 15. The high pressure sensor 14 is provided on the discharge side of the compressor 1 and measures the refrigerant pressure. The low pressure sensor 19 is provided on the suction side of the compressor 1 and measures the refrigerant pressure. The liquid pipe temperature sensor 15 is provided between the supercooling heat exchanger 13 and the liquid refrigerant pipe 30 and measures the refrigerant temperature in the liquid refrigerant pipe 30. In addition, the installation position of the liquid piping temperature sensor 15 is not limited to this, and may be a position where the refrigerant temperature in the liquid refrigerant piping 30 can be measured. For example, it may be provided between the indoor expansion device 6 and the liquid refrigerant pipe 30.

圧縮機1は、運転容量を可変することが可能な圧縮機であり、例えば、インバータにより制御されるモータによって駆動される容積式圧縮機から構成されている。
室外熱交換器3は、例えば伝熱管と多数のフィンにより構成されたフィン&チューブ型熱交換器により構成され、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。
室外送風機5は、ファンモータ等により駆動され、モータ回転数を変化させることにより風量を調整し、送風量を調整することが可能になっている。
The compressor 1 is a compressor whose operating capacity can be varied. For example, the compressor 1 includes a positive displacement compressor driven by a motor controlled by an inverter.
The outdoor heat exchanger 3 is composed of, for example, a fin and tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a condenser during cooling operation and as an evaporator during heating operation.
The outdoor blower 5 is driven by a fan motor or the like, and can adjust the air volume by changing the motor rotation speed, thereby adjusting the air volume.

室内ユニット20は、室内熱交換器7、室内絞り装置6を備えている。室内ユニット20に接続される液冷媒配管30からガス冷媒配管40へと順に、室内絞り装置6と室内熱交換器7とが直列に接続され、冷媒回路の一部を構成している。室内熱交換器7の近傍には室内送風機8が設けられている。
なお、室内絞り装置6は、本発明における「絞り装置」に相当する。
The indoor unit 20 includes an indoor heat exchanger 7 and an indoor expansion device 6. In order from the liquid refrigerant pipe 30 connected to the indoor unit 20 to the gas refrigerant pipe 40, the indoor expansion device 6 and the indoor heat exchanger 7 are connected in series to constitute a part of the refrigerant circuit. An indoor blower 8 is provided in the vicinity of the indoor heat exchanger 7.
The indoor expansion device 6 corresponds to the “expansion device” in the present invention.

室内ユニット20には、室内ガス管温度センサ17、室内液管温度センサ18、室内温度センサ11が設けられている。室内ガス管温度センサ17は室内熱交換器7とガス冷媒配管40との間に設けられ、ガス冷媒配管40内の冷媒温度を計測する。室内液管温度センサ18は室内絞り装置6と室内熱交換器7との間に設けられ、冷媒温度を計測する。室内温度センサ11は室内ユニット20内に設けられ、室内熱交換器7が冷媒と熱交換する室内空気の温度(以下、室内温度という)を計測する。なお、室内ガス管温度センサ17の設置位置はこれに限るものではなく、ガス冷媒配管40内の冷媒温度を計測できる位置であればよい。例えば四方弁2とガス冷媒配管40との間に設けても良い。   The indoor unit 20 is provided with an indoor gas pipe temperature sensor 17, an indoor liquid pipe temperature sensor 18, and an indoor temperature sensor 11. The indoor gas pipe temperature sensor 17 is provided between the indoor heat exchanger 7 and the gas refrigerant pipe 40 and measures the refrigerant temperature in the gas refrigerant pipe 40. The indoor liquid pipe temperature sensor 18 is provided between the indoor expansion device 6 and the indoor heat exchanger 7, and measures the refrigerant temperature. The indoor temperature sensor 11 is provided in the indoor unit 20 and measures the temperature of indoor air (hereinafter referred to as indoor temperature) that the indoor heat exchanger 7 exchanges heat with the refrigerant. The installation position of the indoor gas pipe temperature sensor 17 is not limited to this, and may be any position where the refrigerant temperature in the gas refrigerant pipe 40 can be measured. For example, it may be provided between the four-way valve 2 and the gas refrigerant pipe 40.

室内絞り装置6は、例えば電子膨張弁により構成され、開度が設定されることで冷媒流量を調整し、減圧弁や膨張弁として機能して冷媒を減圧して膨張させるものである。
室内熱交換器7は、例えば伝熱管と多数のフィンにより構成されたフィン&チューブ型熱交換器により構成され、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。
室内送風機8は、ファンモータ等により駆動され、モータ回転数を変化させることにより風量を調整し、送風量を調整することが可能になっている。
The indoor expansion device 6 is constituted by, for example, an electronic expansion valve, and adjusts the flow rate of the refrigerant by setting the opening, and functions as a pressure reducing valve or an expansion valve to decompress and expand the refrigerant.
The indoor heat exchanger 7 is composed of, for example, a fin and tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as an evaporator during cooling operation and as a condenser during heating operation.
The indoor blower 8 is driven by a fan motor or the like, and can adjust the air flow by changing the motor rotation speed, thereby adjusting the air flow.

(制御系)
図2は本発明の実施の形態1に係る空気調和機の制御ブロック図である。
図2において、制御装置100は、室外制御器101と室内制御器102とを備えている。
室外制御器101は室外ユニット10内に配置され、室内制御器102は室内ユニット20内に配置されている。室外制御器101および室内制御器102は、例えばマイクロコンピュータで構成され、相互に通信することで各種データ等を送受信する。
(Control system)
FIG. 2 is a control block diagram of the air conditioner according to Embodiment 1 of the present invention.
In FIG. 2, the control device 100 includes an outdoor controller 101 and an indoor controller 102.
The outdoor controller 101 is disposed in the outdoor unit 10, and the indoor controller 102 is disposed in the indoor unit 20. The outdoor controller 101 and the indoor controller 102 are composed of, for example, a microcomputer, and transmit and receive various data by communicating with each other.

室外制御器101は、高圧圧力センサ14、低圧圧力センサ19、液配管温度センサ15による計測情報が入力される。室外制御器101は、各センサから入力された計測情報や室内制御器102から受信した各種データ、図示しない操作装置から使用者により指示された運転内容(運転モード、設定温度等)などに基づいて、圧縮機1の運転周波数、四方弁2の流路切替、室外送風機5の回転数(室外熱交換器3の熱交換容量)、過冷却絞り装置12の開度、などを制御する。また、室外制御器101には、タイマ101aが設けられ、後述する動作により、圧縮機運転時間、停止時間等を計時する。   The outdoor controller 101 receives measurement information from the high pressure sensor 14, the low pressure sensor 19, and the liquid piping temperature sensor 15. The outdoor controller 101 is based on measurement information input from each sensor, various data received from the indoor controller 102, operation details (operation mode, set temperature, etc.) instructed by a user from an operation device (not shown). The operation frequency of the compressor 1, the flow path switching of the four-way valve 2, the rotation speed of the outdoor fan 5 (heat exchange capacity of the outdoor heat exchanger 3), the opening degree of the supercooling throttle device 12, and the like are controlled. In addition, the outdoor controller 101 is provided with a timer 101a, which measures the compressor operation time, the stop time, and the like by operations described later.

室内制御器102は、室内ガス管温度センサ17、室内液管温度センサ18、室内温度センサ11による計測情報が入力される。室内制御器102は、各センサから入力された計測情報や室外制御器101から受信した各種データ、図示しない操作装置から使用者により指示された運転内容(運転モード、設定温度等)などに基づいて、室内絞り装置6の開度、室内送風機8の回転数(室内熱交換器7の熱交換容量)、などを制御する。   The indoor controller 102 receives measurement information from the indoor gas pipe temperature sensor 17, the indoor liquid pipe temperature sensor 18, and the indoor temperature sensor 11. The indoor controller 102 is based on measurement information input from each sensor, various data received from the outdoor controller 101, operation details (operation mode, set temperature, etc.) instructed by a user from an operation device (not shown). The opening degree of the indoor expansion device 6 and the rotational speed of the indoor blower 8 (heat exchange capacity of the indoor heat exchanger 7) are controlled.

また、制御装置100は、室内温度が目標温度となる前に、圧縮機1の運転を停止し、室内絞り装置6の開度を全閉より大きい開度に設定する。そして、液冷媒配管30およびガス冷媒配管40のうち、高圧側の冷媒配管内の冷媒を室内熱交換器7に流通させて、該冷媒と室内空気とを熱交換させて空調運転を行う。詳細は後述する。   Further, before the room temperature reaches the target temperature, the control device 100 stops the operation of the compressor 1 and sets the opening of the indoor expansion device 6 to a larger opening than the fully closed state. Of the liquid refrigerant pipe 30 and the gas refrigerant pipe 40, the refrigerant in the high-pressure side refrigerant pipe is circulated to the indoor heat exchanger 7 to exchange heat between the refrigerant and the room air to perform the air conditioning operation. Details will be described later.

なお、本実施の形態では、室外制御器101および室内制御器102を設け、相互に通信する構成について説明したが、本発明はこれに限るものではなく、1台の制御装置100により構成しても良い。   In the present embodiment, the configuration in which the outdoor controller 101 and the indoor controller 102 are provided and communicate with each other has been described. However, the present invention is not limited to this, and is configured by a single control device 100. Also good.

(運転動作)
次に、空気調和機の運転動作について説明する。
(冷房運転)
まず、冷房運転の動作について説明する。
四方弁2は、図1の実線方向に接続される。この場合、冷媒の流れは以下のようになる。
圧縮機1を駆動すると、高温、高圧のガス冷媒が圧縮機1から吐出され、四方弁2を介し室外熱交換器3へ流入し、室外熱交換器3で周囲室外空気と熱交換し、凝縮・液化し、高圧低温の冷媒となる。
室外熱交換器3を流出した液冷媒は、過冷却用熱交換器13に入る。過冷却用熱交換器13を出て過冷却バイパス経路16に分岐した冷媒は、過冷却絞り装置12で適度に流量調整され低圧の冷媒となり、室外熱交換器3を流出した冷媒と過冷却用熱交換器13内で熱交換する。これにより、室外熱交換器3を流出した冷媒は、過冷却用熱交換器13を出ると高圧で温度がさらに低い冷媒(過冷却冷媒)となる。過冷却用熱交換器13を流出した一方の低圧冷媒は、アキュムレータ4と四方弁2とを結ぶ配管に至る。
(Driving operation)
Next, the operation of the air conditioner will be described.
(Cooling operation)
First, the operation of the cooling operation will be described.
The four-way valve 2 is connected in the direction of the solid line in FIG. In this case, the flow of the refrigerant is as follows.
When the compressor 1 is driven, high-temperature and high-pressure gas refrigerant is discharged from the compressor 1, flows into the outdoor heat exchanger 3 through the four-way valve 2, exchanges heat with the outdoor air in the outdoor heat exchanger 3, and condenses.・ Liquefied and becomes high-pressure and low-temperature refrigerant.
The liquid refrigerant that has flowed out of the outdoor heat exchanger 3 enters the supercooling heat exchanger 13. The refrigerant that has exited the supercooling heat exchanger 13 and branched into the supercooling bypass passage 16 is appropriately adjusted in flow rate by the supercooling throttle device 12 to become a low-pressure refrigerant, and the refrigerant that has flowed out of the outdoor heat exchanger 3 and the supercooling refrigerant. Heat is exchanged in the heat exchanger 13. Thus, the refrigerant that has flowed out of the outdoor heat exchanger 3 becomes a refrigerant (supercooled refrigerant) having a high pressure and a lower temperature when it exits the supercooling heat exchanger 13. One low-pressure refrigerant that has flowed out of the supercooling heat exchanger 13 reaches a pipe connecting the accumulator 4 and the four-way valve 2.

過冷却用熱交換器13を流出した高圧低温の液冷媒は、液冷媒配管30に供給される。液冷媒配管30を通った液冷媒は、室内ユニット20内に入り、室内絞り装置6で低圧に絞られ低圧低乾き度の気液二相冷媒となり、室内熱交換器7で周囲室内空気と熱交換し、蒸発・気化して冷房を行う。室内熱交換器7を流出したガス冷媒は、ガス冷媒配管40を導通し、四方弁2、アキュムレータ4を通り圧縮機1に吸入される。
このような冷房運転により、室内温度は徐々に低下して目標温度に近づくこととなる。
The high-pressure and low-temperature liquid refrigerant that has flowed out of the supercooling heat exchanger 13 is supplied to the liquid refrigerant pipe 30. The liquid refrigerant that has passed through the liquid refrigerant pipe 30 enters the indoor unit 20, is reduced to a low pressure by the indoor expansion device 6, becomes a low-pressure low-dryness gas-liquid two-phase refrigerant, and the indoor heat exchanger 7 heats the surrounding indoor air and heat. Replace and evaporate and vaporize to cool. The gas refrigerant that has flowed out of the indoor heat exchanger 7 is conducted through the gas refrigerant pipe 40, passes through the four-way valve 2 and the accumulator 4, and is sucked into the compressor 1.
By such cooling operation, the room temperature gradually decreases and approaches the target temperature.

ここで、圧縮機1が停止した状態で、高圧側の配管内の冷媒を室内熱交換器7に流通させる冷房運転について説明する。
上記のような冷房運転においては、圧縮機1から液冷媒配管30まで(高圧側)の配管内には高圧の冷媒が存在している。また、室内絞り装置6から圧縮機1まで(低圧側)の配管内は低圧の冷媒が存在している。
この状態で圧縮機1の運転を停止させた場合、室内絞り装置6の開度を開けることで、高圧側から低圧側へ冷媒が流れる。これにより、圧縮機1を停止した後も、高圧低温の冷媒を室内熱交換器7に流通させて室内空気と熱交換することで、冷媒が蒸発し冷房運転を継続することができる。
このような圧縮機1の停止後における冷房運転の動作について、図3を用いて次に説明する。
Here, the cooling operation in which the refrigerant in the high-pressure side piping is circulated to the indoor heat exchanger 7 in a state where the compressor 1 is stopped will be described.
In the cooling operation as described above, high-pressure refrigerant exists in the pipe from the compressor 1 to the liquid refrigerant pipe 30 (high-pressure side). In addition, low-pressure refrigerant exists in the piping from the indoor expansion device 6 to the compressor 1 (low-pressure side).
When the operation of the compressor 1 is stopped in this state, the refrigerant flows from the high pressure side to the low pressure side by opening the opening of the indoor expansion device 6. Thereby, even after the compressor 1 is stopped, the refrigerant is evaporated and the cooling operation can be continued by circulating the high-pressure and low-temperature refrigerant through the indoor heat exchanger 7 and exchanging heat with the indoor air.
Next, the cooling operation after the compressor 1 is stopped will be described with reference to FIG.

図3は本発明の実施の形態1に係る冷房運転時における圧縮機および室内絞り装置の動作を示す図である。
図3においては、上段は室内温度と時間との関係を示し、中段は圧縮機1の動作状態と時間との関係を示し、下段は室内絞り装置6の開度と時間との関係を示している。
FIG. 3 is a diagram illustrating operations of the compressor and the indoor expansion device during the cooling operation according to Embodiment 1 of the present invention.
In FIG. 3, the upper part shows the relationship between the room temperature and time, the middle part shows the relationship between the operating state of the compressor 1 and time, and the lower part shows the relationship between the opening degree of the indoor expansion device 6 and time. Yes.

図3に示すように、本実施の形態における制御装置100は、室内温度が目標温度に近づいて圧縮機1を停止する際、圧縮機1の停止と室内絞り装置6を閉めるタイミングに時間差を設ける。つまり、室内温度が目標温度となる前に圧縮機1の運転を停止し、室内絞り装置6の開度を、所定の開度S2に設定する。そして、高圧側の冷媒配管内の冷媒量と、室内絞り装置6に設定する開度とにより定まる圧縮機停止時間Tの間、高圧側の冷媒配管内の冷媒を室内熱交換器7に流通させて、この冷媒と室内空気とを熱交換させて冷房運転を行う。なお、圧縮機1の停止タイミング、圧縮機停止時間Tと室内絞り装置6の開度との関係等の詳細は後述する。
圧縮機停止時間Tを経過した後、室内絞り装置6の開度を全閉に、空気調和機の冷房運転を停止する。
As shown in FIG. 3, when the indoor temperature approaches the target temperature and the compressor 1 is stopped, the control device 100 in the present embodiment provides a time difference between the stop of the compressor 1 and the timing of closing the indoor expansion device 6. . That is, the operation of the compressor 1 is stopped before the room temperature reaches the target temperature, and the opening degree of the indoor expansion device 6 is set to a predetermined opening degree S2. Then, the refrigerant in the high-pressure side refrigerant pipe is circulated to the indoor heat exchanger 7 during the compressor stop time T determined by the refrigerant amount in the high-pressure side refrigerant pipe and the opening set in the indoor expansion device 6. Then, the refrigerant and room air are subjected to heat exchange to perform a cooling operation. Details of the stop timing of the compressor 1, the relationship between the compressor stop time T and the opening of the indoor expansion device 6, etc. will be described later.
After the compressor stop time T has elapsed, the opening of the indoor expansion device 6 is fully closed, and the cooling operation of the air conditioner is stopped.

なお、図3の例では、圧縮機停止時間Tにおいて、室内絞り装置6を開度S2に設定し、この開度S2を圧縮機動作時の開度S1より大きい値としたが、本発明はこれに限るものではない。例えば、圧縮機停止時間Tにおいて室内絞り装置6の開度を変更するようにしても良い。このように、圧縮機停止時間Tにおいて室内絞り装置6の開度を変更することで、室内熱交換器7を流れる冷媒流量が変化するため、圧縮機停止時間Tを変化させることができる。   In the example of FIG. 3, during the compressor stop time T, the indoor expansion device 6 is set to the opening S2, and the opening S2 is set to a value larger than the opening S1 during the compressor operation. This is not a limitation. For example, the opening degree of the indoor expansion device 6 may be changed during the compressor stop time T. Thus, since the flow rate of the refrigerant flowing through the indoor heat exchanger 7 changes by changing the opening of the indoor expansion device 6 during the compressor stop time T, the compressor stop time T can be changed.

(暖房運転)
次に、暖房運転の動作について説明する。
四方弁2は、図1の点線方向に接続される。また、過冷却絞り装置12は全閉である。この場合、冷媒の流れは以下のようになる。
圧縮機1を駆動すると、高温、高圧のガス冷媒が圧縮機1から吐出され、四方弁2を介してガス冷媒配管40を導通し、室内熱交換器7へ流入する。室内熱交換器7へ流入した高温の冷媒は、室内熱交換器7で周囲室内温度と熱交換し、凝縮・液化して暖房を行う。室内熱交換器7を流出した冷媒は室内絞り装置6で低圧に絞られ、低圧二相状態または液相状態となり、液冷媒配管30を導通し、過冷却用熱交換器13を通り室外熱交換器3へ流入する。室外熱交換器3に流入した冷媒は、室外熱交換器3で周囲室外空気と熱交換して蒸発・気化する。室外熱交換器3を流出した冷媒は、四方弁2、アキュムレータ4を介し圧縮機1に吸入される。なお、過冷却絞り装置12は全閉であり流れがなく、過冷却用熱交換器13で熱交換はない。
このような暖房運転により、室内温度は徐々に上昇して目標温度に近づくこととなる。
(Heating operation)
Next, the heating operation will be described.
The four-way valve 2 is connected in the direction of the dotted line in FIG. The supercooling expansion device 12 is fully closed. In this case, the flow of the refrigerant is as follows.
When the compressor 1 is driven, high-temperature and high-pressure gas refrigerant is discharged from the compressor 1, is conducted through the gas refrigerant pipe 40 through the four-way valve 2, and flows into the indoor heat exchanger 7. The high-temperature refrigerant that has flowed into the indoor heat exchanger 7 exchanges heat with the ambient room temperature in the indoor heat exchanger 7, condenses and liquefies, and performs heating. The refrigerant that has flowed out of the indoor heat exchanger 7 is reduced to a low pressure by the indoor expansion device 6, becomes a low-pressure two-phase state or a liquid-phase state, conducts the liquid refrigerant pipe 30, passes through the supercooling heat exchanger 13, and performs outdoor heat exchange. Flows into the vessel 3. The refrigerant flowing into the outdoor heat exchanger 3 is evaporated and vaporized by exchanging heat with the ambient outdoor air in the outdoor heat exchanger 3. The refrigerant flowing out of the outdoor heat exchanger 3 is sucked into the compressor 1 through the four-way valve 2 and the accumulator 4. In addition, the supercooling expansion device 12 is fully closed and does not flow, and the supercooling heat exchanger 13 does not exchange heat.
By such heating operation, the room temperature gradually increases and approaches the target temperature.

ここで、圧縮機1が停止した状態で、高圧側の配管内の冷媒を室内熱交換器7に流通させる暖房運転について説明する。
上記のような暖房運転においては、圧縮機1から室内絞り装置6まで(高圧側)の配管内は高圧の冷媒が存在している。また、室内絞り装置6から圧縮機1の吸入側まで(低圧側)の配管内には低圧の冷媒が存在している。
この状態で圧縮機1の運転を停止させた場合、室内絞り装置6の開度を開けることで、高圧側から低圧側へ冷媒が流れる。これにより、圧縮機1を停止した後も、高圧高温の冷媒を、室内熱交換器7に流通させて室内空気と熱交換することで、冷媒が凝縮し暖房運転を継続することができる。
このような圧縮機1の停止後における暖房運転の動作について、図4を用いて次に説明する。
Here, a heating operation in which the refrigerant in the high-pressure side piping is circulated to the indoor heat exchanger 7 in a state where the compressor 1 is stopped will be described.
In the heating operation as described above, high-pressure refrigerant exists in the piping from the compressor 1 to the indoor expansion device 6 (high-pressure side). Further, low-pressure refrigerant exists in the piping from the indoor expansion device 6 to the suction side of the compressor 1 (low-pressure side).
When the operation of the compressor 1 is stopped in this state, the refrigerant flows from the high pressure side to the low pressure side by opening the opening of the indoor expansion device 6. Thereby, even after the compressor 1 is stopped, the refrigerant is condensed and the heating operation can be continued by circulating the high-pressure and high-temperature refrigerant through the indoor heat exchanger 7 and exchanging heat with the indoor air.
Next, the heating operation after the compressor 1 is stopped will be described with reference to FIG.

図4は本発明の実施の形態1に係る暖房運転時における圧縮機および室内絞り装置の動作を示す図である。
図4においては、上段は室内温度と時間との関係を示し、中段は圧縮機1の動作状態と時間との関係を示し、下段は室内絞り装置6の開度と時間との関係を示している。
FIG. 4 is a diagram showing operations of the compressor and the indoor expansion device during the heating operation according to Embodiment 1 of the present invention.
In FIG. 4, the upper stage shows the relationship between the room temperature and time, the middle stage shows the relation between the operating state of the compressor 1 and time, and the lower stage shows the relationship between the opening degree of the indoor throttle device 6 and time. Yes.

図4に示すように、本実施の形態における制御装置100は、室内温度が目標温度に近づいて圧縮機1を停止する際、圧縮機1の停止と室内絞り装置6を閉めるタイミングに時間差を設ける。つまり、室内温度が目標温度となる前に圧縮機1の運転を停止し、室内絞り装置6の開度を、所定の開度S2に設定する。そして、高圧側の冷媒配管内の冷媒量と、室内絞り装置6に設定する開度とにより定まる圧縮機停止時間Tの間、高圧側の冷媒配管内の冷媒を室内熱交換器7に流通させて、この冷媒と室内空気とを熱交換させて暖房運転を行う。なお、圧縮機1の停止タイミング、圧縮機停止時間Tと室内絞り装置6の開度との関係等の詳細は後述する。
圧縮機停止時間Tを経過した後、室内絞り装置6の開度を全閉に、空気調和機の暖房運転を停止する。
As shown in FIG. 4, the control device 100 according to the present embodiment provides a time difference between the stop of the compressor 1 and the timing of closing the indoor expansion device 6 when the indoor temperature approaches the target temperature and the compressor 1 is stopped. . That is, the operation of the compressor 1 is stopped before the room temperature reaches the target temperature, and the opening degree of the indoor expansion device 6 is set to a predetermined opening degree S2. Then, the refrigerant in the high-pressure side refrigerant pipe is circulated to the indoor heat exchanger 7 during the compressor stop time T determined by the refrigerant amount in the high-pressure side refrigerant pipe and the opening set in the indoor expansion device 6. Thus, the refrigerant is exchanged with the room air for heating operation. Details of the stop timing of the compressor 1, the relationship between the compressor stop time T and the opening of the indoor expansion device 6, etc. will be described later.
After the compressor stop time T has elapsed, the opening of the indoor expansion device 6 is fully closed, and the heating operation of the air conditioner is stopped.

なお、図4の例では、圧縮機停止時間Tにおいて、室内絞り装置6を開度S2に設定し、この開度S2を圧縮機動作時の開度S1より大きい値としたが、本発明はこれに限るものではない。例えば、圧縮機停止時間Tにおいて室内絞り装置6の開度を変更するようにしても良い。このように、圧縮機停止時間Tにおいて室内絞り装置6の開度を変更することで、室内熱交換器7を流れる冷媒流量が変化するため、圧縮機停止時間Tを変化させることができる。   In the example of FIG. 4, during the compressor stop time T, the indoor expansion device 6 is set to the opening S2, and this opening S2 is set to a value larger than the opening S1 when the compressor is operated. This is not a limitation. For example, the opening degree of the indoor expansion device 6 may be changed during the compressor stop time T. Thus, since the flow rate of the refrigerant flowing through the indoor heat exchanger 7 changes by changing the opening of the indoor expansion device 6 during the compressor stop time T, the compressor stop time T can be changed.

(圧縮機1の停止動作)
図5は本発明の実施の形態1に係る制御装置の動作を示すフローチャートである。
以下、図5の各ステップに基づき、説明する。
(Stopping operation of compressor 1)
FIG. 5 is a flowchart showing the operation of the control apparatus according to Embodiment 1 of the present invention.
Hereinafter, description will be given based on each step of FIG.

STEP1では、当該空気調和機の運転時間tが、所定の時間tmを経過しているか判断する。
所定時間経過していればSTEP2へ進み、時間tを0に戻す。
STEP3では、冷媒回路の高圧側の冷媒配管内の冷媒量を算出する。この冷媒量M[kg]は、以下により求める。
In STEP1, it is determined whether the operation time t of the air conditioner has passed a predetermined time tm.
If the predetermined time has elapsed, the process proceeds to STEP 2 and the time t is returned to zero.
In STEP 3, the amount of refrigerant in the refrigerant pipe on the high pressure side of the refrigerant circuit is calculated. The refrigerant amount M [kg] is obtained as follows.

M=ρ・V
ρ=f(Ph,Th)
ここで、Vは高圧側冷媒配管の容積である。
ρは冷媒密度[kg/m3]であり、高圧側冷媒圧力Ph[Pa]と、高圧側冷媒温度Th[℃]とから、冷媒種類に応じた関数により算出できる。
つまり、冷房運転時においては、高圧側冷媒配管の容積Vは液冷媒配管30の容積となり、高圧側冷媒温度Thは液配管温度センサ15の計測値となる。
また、暖房運転時においては、高圧側冷媒配管の容積Vはガス冷媒配管40の容積となり、高圧側冷媒温度Thは室内ガス管温度センサ17の計測値となる。
また、冷房・暖房運転の何れも、高圧側冷媒圧力Phは高圧圧力センサ14の計測値となる。
M = ρ · V
ρ = f (Ph, Th)
Here, V is the volume of the high-pressure side refrigerant pipe.
ρ is the refrigerant density [kg / m 3 ], and can be calculated from the high-pressure side refrigerant pressure Ph [Pa] and the high-pressure side refrigerant temperature Th [° C.] by a function corresponding to the refrigerant type.
That is, during the cooling operation, the volume V of the high-pressure side refrigerant pipe is the volume of the liquid refrigerant pipe 30, and the high-pressure side refrigerant temperature Th is a measured value of the liquid pipe temperature sensor 15.
Further, during the heating operation, the volume V of the high-pressure side refrigerant pipe is the volume of the gas refrigerant pipe 40, and the high-pressure side refrigerant temperature Th is a measured value of the indoor gas pipe temperature sensor 17.
In both the cooling and heating operations, the high-pressure side refrigerant pressure Ph is a value measured by the high-pressure sensor 14.

なお、各冷媒配管の容積は、配管長と内径とから求めることができる。なお、制御装置100に、当該容積の情報を予め記憶させるようにしても良い。
なお、ここでは、液冷媒配管30またはガス冷媒配管40の容積により冷媒量Mを求めるが、室外ユニット10内および室内ユニット20内の冷媒配管や熱交換器内に溜まる冷媒等を加味して、冷媒量Mを求めても良い。
In addition, the volume of each refrigerant | coolant piping can be calculated | required from piping length and an internal diameter. Note that the volume information may be stored in the control device 100 in advance.
Here, the amount of refrigerant M is obtained from the volume of the liquid refrigerant pipe 30 or the gas refrigerant pipe 40, but taking into account the refrigerant accumulated in the refrigerant pipes and heat exchangers in the outdoor unit 10 and the indoor unit 20, The refrigerant amount M may be obtained.

STEP4では、高圧側の冷媒配管内の冷媒が室内熱交換器7に流通する時間である圧縮機停止時間Tを求める。この圧縮機停止時間T[s]は、以下により求める。
なお、圧縮機停止時間Tは、本発明における「停止可能時間」に相当する。
In STEP 4, the compressor stop time T, which is the time during which the refrigerant in the high-pressure side refrigerant pipe flows through the indoor heat exchanger 7, is obtained. The compressor stop time T [s] is obtained as follows.
The compressor stop time T corresponds to the “stoppable time” in the present invention.

T=(M/G)・3600
G=f(cv,ρ,ΔP)
ここで、Gは室内熱交換器7を流通する冷媒流量[kg/h]である。
cv値は、室内絞り装置6の開度(パルス数)の関数(cv=f(パルス数))で算出される。
ΔPは、室内絞り装置6の上流側と下流側との圧力差[Pa]であり、高圧圧力センサ14の計測値と低圧圧力センサ19の計測値との差分により求まる。
T = (M / G) · 3600
G = f (cv, ρ, ΔP)
Here, G is a refrigerant flow rate [kg / h] flowing through the indoor heat exchanger 7.
The cv value is calculated by a function (cv = f (number of pulses)) of the opening degree (number of pulses) of the indoor expansion device 6.
ΔP is a pressure difference [Pa] between the upstream side and the downstream side of the indoor expansion device 6, and is obtained from the difference between the measured value of the high pressure sensor 14 and the measured value of the low pressure sensor 19.

なお、室内絞り装置6の開度(パルス数)は予め設定した値とする。例えば、圧縮機1の運転状態における開度S1より大きい開度S2に設定する。
なお、室内絞り装置6の開度を変更するようにしても良い。このように、圧縮機停止時間Tにおいて室内絞り装置6の開度を変更することで、室内熱交換器7を流れる冷媒流量Gが変化するため、圧縮機停止時間Tを変化させることができる。
The opening degree (number of pulses) of the indoor expansion device 6 is a preset value. For example, the opening S2 is set to be larger than the opening S1 in the operating state of the compressor 1.
Note that the opening degree of the indoor expansion device 6 may be changed. Thus, since the refrigerant | coolant flow volume G which flows through the indoor heat exchanger 7 changes by changing the opening degree of the indoor expansion device 6 in the compressor stop time T, the compressor stop time T can be changed.

例えば10馬力の室外ユニット10で、液冷媒配管30の配管長が7.5mの場合、冷房運転時には液冷媒配管30内の冷媒量Mは、約2.7kgとなる。
室内絞り装置6の開度S2を1400パルス(固定)にすると、冷媒流量Gは例えば460kg/hとなる。
この冷媒流量G(460kg/h)で、室外熱交換器3から液冷媒配管30までの冷媒量M(約2.7kg)が流れる時間(圧縮機停止時間T)は、上記算出式から約21秒となる。つまり、圧縮機1の運転が停止状態でも約21秒間は空調運転が継続することが可能である。
For example, when the outdoor unit 10 has 10 horsepower and the pipe length of the liquid refrigerant pipe 30 is 7.5 m, the refrigerant amount M in the liquid refrigerant pipe 30 is about 2.7 kg during the cooling operation.
When the opening degree S2 of the indoor expansion device 6 is 1400 pulses (fixed), the refrigerant flow rate G becomes, for example, 460 kg / h.
At this refrigerant flow rate G (460 kg / h), the time during which the refrigerant amount M (about 2.7 kg) flows from the outdoor heat exchanger 3 to the liquid refrigerant pipe 30 (compressor stop time T) is about 21 from the above calculation formula. Second. That is, the air-conditioning operation can be continued for about 21 seconds even when the operation of the compressor 1 is stopped.

STEP5では、室内温度センサ11の計測値と目標温度との温度差に基づき、圧縮機1が運転状態において室内温度が目標温度に達するまでの時間である通常運転時間を算出する。
つまり、通常運転時間は、室内温度が目標温度となるまで圧縮機1の運転を継続したと仮定した場合の、現時点からの運転時間である。この通常運転時間は、例えば、現在の運転能力の空調を継続した場合に、室内温度が目標温度に達するまでの時間を推定することで求めることができる。なお、運転能力は圧縮機1の回転数、室内絞り装置6の開度、室内送風機8の送風量などから算出できる。
なお、通常運転時間の算出方法はこれに限るものではない。例えば、室内温度の変化率から温度下降(上昇)の傾斜を求め、目標温度に達するまでの時間を推定しても良い。
In STEP 5, based on the temperature difference between the measured value of the indoor temperature sensor 11 and the target temperature, the normal operation time, which is the time until the room temperature reaches the target temperature when the compressor 1 is operating, is calculated.
That is, the normal operation time is an operation time from the current time when it is assumed that the operation of the compressor 1 is continued until the room temperature reaches the target temperature. This normal operation time can be obtained, for example, by estimating the time until the room temperature reaches the target temperature when air conditioning of the current operation capacity is continued. The operating capacity can be calculated from the number of rotations of the compressor 1, the opening of the indoor expansion device 6, the amount of air blown from the indoor blower 8, and the like.
In addition, the calculation method of normal operation time is not restricted to this. For example, the slope of temperature decrease (rise) may be obtained from the rate of change in room temperature, and the time required to reach the target temperature may be estimated.

STEP6では、STEP5で算出した通常運転時間より、STEP4で算出した圧縮機停止時間Tを差し引いて、圧縮機運転時間を算出する。
STEP7では、STEP6で求めた圧縮機運転時間の経過を判断する。圧縮機運転時間を経過したとき、STEP8へ進み、圧縮機1の運転を停止させる。
In STEP 6, the compressor operation time is calculated by subtracting the compressor stop time T calculated in STEP 4 from the normal operation time calculated in STEP 5.
In STEP7, it is determined whether the compressor operation time obtained in STEP6 has elapsed. When the compressor operation time has elapsed, the process proceeds to STEP 8 and the operation of the compressor 1 is stopped.

STEP9では、室内絞り装置6の開度を設定する。この開度は上記STEP4で圧縮機停止時間Tの算出に用いた開度である。
STEP10では、圧縮機1の停止からの経過時間が、圧縮機停止時間Tを経過していいるか判断する。
圧縮機停止時間Tを経過したとき、STEP11へ進み、室内絞り装置6を全閉に設定し、空調運転を停止する。
In STEP 9, the opening degree of the indoor expansion device 6 is set. This opening is the opening used for calculating the compressor stop time T in STEP4.
In STEP 10, it is determined whether the elapsed time from the stop of the compressor 1 has passed the compressor stop time T.
When the compressor stop time T has elapsed, the process proceeds to STEP 11, the indoor expansion device 6 is set to fully closed, and the air conditioning operation is stopped.

なお、上記説明では、STEP6で圧縮機運転時間を求めてこの時間の経過を判断したが、本発明はこれに限るものではない。例えば、室内温度と目標温度との温度差とに基づき、圧縮機1が運転状態において室内空気が目標温度に達する時刻を求め、この時刻から圧縮機停止時間Tを減算した時刻となったとき、圧縮機1の運転を停止させるようにしても良い。   In the above description, the compressor operating time is determined in STEP 6 to determine the passage of this time, but the present invention is not limited to this. For example, based on the temperature difference between the room temperature and the target temperature, when the compressor 1 is operating, the time when the room air reaches the target temperature is obtained, and the time when the compressor stop time T is subtracted from this time is reached. The operation of the compressor 1 may be stopped.

なお、上記説明では、STEP4において冷媒量M、冷媒流量Gから圧縮機停止時間Tを求めたが、圧縮機停止時間Tをあらかじめ設定した値としておき、設定したTとなるような冷媒流量Gとなる室内絞り装置6の開度を求め、STEP9においてSTEP4にて算出した室内絞り装置開度6の開度を設定しても良い。   In the above description, the compressor stop time T is obtained from the refrigerant amount M and the refrigerant flow rate G in STEP 4, but the compressor stop time T is set as a preset value, and the refrigerant flow rate G and the set T are set. The opening of the indoor expansion device 6 may be obtained, and the opening of the indoor expansion device opening 6 calculated in STEP 4 in STEP 9 may be set.

以上のように本実施の形態においては、室内温度が目標温度となる前に、圧縮機1の運転を停止し、室内絞り装置6の開度を全閉より大きい開度に設定する。そして、液冷媒配管30およびガス冷媒配管40のうち高圧側の冷媒配管内の冷媒を室内熱交換器7に流通させて、該冷媒と室内空気とを熱交換させて空調運転を行う。
このため、圧縮機1の運転時間を短くすることができ、消費電力を削減することができる。また、圧縮機1の停止時において高圧側の冷媒配管内の冷媒を空調運転に利用することができる。
また、圧縮機1の停止時に室内絞り装置6を開けることで、液封の恐れがなくなる。
As described above, in the present embodiment, before the room temperature reaches the target temperature, the operation of the compressor 1 is stopped and the opening of the indoor expansion device 6 is set to an opening larger than the fully closed position. Then, the refrigerant in the high-pressure side refrigerant pipe among the liquid refrigerant pipe 30 and the gas refrigerant pipe 40 is circulated to the indoor heat exchanger 7 to exchange heat between the refrigerant and room air, thereby performing an air conditioning operation.
For this reason, the operation time of the compressor 1 can be shortened and power consumption can be reduced. In addition, when the compressor 1 is stopped, the refrigerant in the refrigerant pipe on the high pressure side can be used for the air conditioning operation.
Further, by opening the indoor expansion device 6 when the compressor 1 is stopped, there is no risk of liquid sealing.

また本実施の形態においては、液冷媒配管30およびガス冷媒配管40のうち高圧側の冷媒配管内の冷媒量Mと、室内絞り装置6に設定する開度とに基づき、圧縮機停止時間Tを求め、この圧縮機停止時間Tの間、圧縮機1の運転を停止させる。
このため、室内温度が目標温度に到達する前に圧縮機1を停止させても、圧縮機停止時間Tの間、冷房、暖房運転を継続させ、空調運転を行うことができる。よって、圧縮機1の運転時間を短くすることができ、消費電力を削減することができる。
In the present embodiment, the compressor stop time T is set based on the refrigerant amount M in the high-pressure side refrigerant pipe of the liquid refrigerant pipe 30 and the gas refrigerant pipe 40 and the opening set in the indoor expansion device 6. The operation of the compressor 1 is stopped during this compressor stop time T.
For this reason, even if the compressor 1 is stopped before the room temperature reaches the target temperature, the cooling and heating operation can be continued during the compressor stop time T to perform the air conditioning operation. Therefore, the operation time of the compressor 1 can be shortened and power consumption can be reduced.

なお、本実施の形態では、室外ユニット10および室内ユニット20がそれぞれ1台の場合を説明したが、本発明はこれに限るものではなく、室外ユニット10を複数台設けても良いし、室外ユニット10と並列に複数台の室内ユニット20を接続するようにしても良い。このような構成においても、同様の効果を奏することができる。   In the present embodiment, the case where there is one outdoor unit 10 and one indoor unit 20 has been described. However, the present invention is not limited to this, and a plurality of outdoor units 10 may be provided. A plurality of indoor units 20 may be connected in parallel with 10. Even in such a configuration, the same effect can be obtained.

1 圧縮機、2 四方弁、3 室外熱交換器、4 アキュムレータ、5 室外送風機、6 室内絞り装置、7 室内熱交換器、8 室内送風機、10 室外ユニット、11 室内温度センサ、12 過冷却絞り装置、13 過冷却用熱交換器、14 高圧圧力センサ、15 液配管温度センサ、16 過冷却バイパス経路、17 室内ガス管温度センサ、18 室内液管温度センサ、19 低圧圧力センサ、20 室内ユニット、30 液冷媒配管、40 ガス冷媒配管、100 制御装置、101 室外制御器、101a タイマ、102 室内制御器。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four way valve, 3 Outdoor heat exchanger, 4 Accumulator, 5 Outdoor blower, 6 Indoor throttling device, 7 Indoor heat exchanger, 8 Indoor blower, 10 Outdoor unit, 11 Indoor temperature sensor, 12 Supercooling throttling device , 13 Supercooling heat exchanger, 14 High pressure sensor, 15 Liquid piping temperature sensor, 16 Supercooling bypass path, 17 Indoor gas pipe temperature sensor, 18 Indoor liquid pipe temperature sensor, 19 Low pressure sensor, 20 Indoor unit, 30 Liquid refrigerant piping, 40 gas refrigerant piping, 100 controller, 101 outdoor controller, 101a timer, 102 indoor controller.

Claims (5)

圧縮機と室外熱交換器とを有する室外ユニットと、絞り装置と室内熱交換器とを有する室内ユニットとが、2本の冷媒配管を介して接続されることにより構成され、冷媒を循環させる冷媒回路と、
前記室内熱交換器が前記冷媒と熱交換する室内空気の温度を検出する室内温度センサと、
前記室内空気の温度が目標温度となるように、前記圧縮機の動作および前記絞り装置の開度を制御する制御装置と、
を備え、
前記制御装置は、
前記2本の冷媒配管のうち高圧側の冷媒配管内の冷媒量と、前記絞り装置に設定する開度とに基づき、高圧側の冷媒配管内の冷媒が前記室内熱交換器に流通する時間である停止可能時間を求め、
前記室内空気の温度が目標温度となる前に、前記停止可能時間の間、前記圧縮機の運転を停止し、前記絞り装置の開度を全閉より大きい開度に設定し、
前記2本の冷媒配管のうち高圧側の冷媒配管内の冷媒を前記室内熱交換器に流通させて、該冷媒と室内空気とを熱交換させて空調運転を行う
ことを特徴とする空気調和機。
A refrigerant that circulates a refrigerant, comprising an outdoor unit having a compressor and an outdoor heat exchanger, and an indoor unit having an expansion device and an indoor heat exchanger connected via two refrigerant pipes Circuit,
An indoor temperature sensor for detecting a temperature of indoor air in which the indoor heat exchanger exchanges heat with the refrigerant;
A control device for controlling the operation of the compressor and the opening of the expansion device so that the temperature of the room air becomes a target temperature;
With
The controller is
Based on the amount of refrigerant in the high-pressure side refrigerant pipe of the two refrigerant pipes and the opening set in the expansion device, the time required for the refrigerant in the high-pressure side refrigerant pipe to flow to the indoor heat exchanger Find a certain stoppage time,
Before the temperature of the indoor air reaches the target temperature, during the stoppable time, the operation of the compressor is stopped, and the opening of the expansion device is set to an opening larger than the fully closed,
An air conditioner that performs air-conditioning operation by circulating a refrigerant in a refrigerant pipe on a high-pressure side of the two refrigerant pipes to the indoor heat exchanger and exchanging heat between the refrigerant and room air. .
前記制御装置は、
前記室内空気の温度と前記目標温度との温度差とに基づき、前記圧縮機が運転状態において前記室内空気の温度が前記目標温度に達するまでの時間である通常運転時間を求め、
前記圧縮機の運転時間が、前記通常運転時間から前記停止可能時間を減算した時間を経過したとき、前記圧縮機の運転を停止させる
ことを特徴とする請求項記載の空気調和機。
The controller is
Based on the temperature difference between the indoor air temperature and the target temperature, a normal operation time, which is a time until the temperature of the indoor air reaches the target temperature in the operating state of the compressor,
The operation time of the compressor, when the elapsed time obtained by subtracting the stoppable time from the normal operation time, the air conditioner according to claim 1, characterized in that stops the operation of the compressor.
前記制御装置は、
前記室内空気の温度と前記目標温度との温度差とに基づき、前記圧縮機が運転状態において前記室内空気の温度が前記目標温度に達する時刻を求め、
前記時刻から前記停止可能時間を減算した時刻となったとき、前記圧縮機の運転を停止させる
ことを特徴とする請求項記載の空気調和機。
The controller is
Based on the temperature difference between the temperature of the room air and the target temperature, the time when the temperature of the room air reaches the target temperature in the operating state of the compressor,
When this time by subtracting the stop enabling time from the time, the air conditioner according to claim 1, characterized in that stops the operation of the compressor.
前記制御装置は、
前記圧縮機の運転時における高圧側の冷媒圧力および冷媒温度と、前記冷媒配管の容積とに基づき、前記2本の冷媒配管のうち高圧側の冷媒配管内の冷媒量を求め、
前記絞り装置に設定する開度に基づき、該絞り装置を流通する冷媒流量を求め、
前記冷媒量と前記冷媒流量とに基づき、前記停止可能時間を求める
ことを特徴とする請求項の何れか一項に記載の空気調和機。
The controller is
Based on the refrigerant pressure and refrigerant temperature on the high pressure side during operation of the compressor and the volume of the refrigerant pipe, the amount of refrigerant in the refrigerant pipe on the high pressure side of the two refrigerant pipes is obtained,
Based on the opening set in the expansion device, obtain the flow rate of refrigerant flowing through the expansion device,
The air conditioner according to any one of claims 1 to 3 , wherein the stoppable time is obtained based on the refrigerant amount and the refrigerant flow rate.
前記制御装置は、
前記室内空気の温度が目標温度となる前に前記圧縮機の運転を停止したとき、
前記絞り装置の開度を、前記圧縮機の運転状態における開度より大きい開度に設定する
ことを特徴とする請求項1〜の何れか一項に記載の空気調和機。
The controller is
When the operation of the compressor is stopped before the temperature of the indoor air reaches the target temperature,
The air conditioner according to any one of claims 1 to 4 , wherein an opening degree of the expansion device is set to an opening degree larger than an opening degree in an operating state of the compressor.
JP2011191053A 2011-09-01 2011-09-01 Air conditioner Expired - Fee Related JP5881339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011191053A JP5881339B2 (en) 2011-09-01 2011-09-01 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011191053A JP5881339B2 (en) 2011-09-01 2011-09-01 Air conditioner

Publications (2)

Publication Number Publication Date
JP2013053780A JP2013053780A (en) 2013-03-21
JP5881339B2 true JP5881339B2 (en) 2016-03-09

Family

ID=48130933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011191053A Expired - Fee Related JP5881339B2 (en) 2011-09-01 2011-09-01 Air conditioner

Country Status (1)

Country Link
JP (1) JP5881339B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107110550B (en) * 2015-04-07 2019-09-06 三菱电机株式会社 Refrigerating air conditioning device
CN107421056B (en) * 2017-05-04 2020-08-14 广东美的制冷设备有限公司 Variable frequency air conditioner, shutdown control method and computer readable storage medium
CN107084493B (en) * 2017-05-04 2020-08-14 广东美的制冷设备有限公司 Variable frequency air conditioner, shutdown control method and computer readable storage medium
CN107421055B (en) * 2017-05-04 2020-08-04 广东美的制冷设备有限公司 Variable frequency air conditioner, shutdown control method and computer readable storage medium
CN112524780B (en) * 2020-12-09 2022-09-06 青岛海尔空调器有限总公司 Control method and control device for air conditioner and air conditioner indoor unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921461U (en) * 1982-07-30 1984-02-09 株式会社東芝 Refrigeration cycle equipment
JP3334601B2 (en) * 1998-04-03 2002-10-15 三菱電機株式会社 Air conditioner with natural circulation
JP3327215B2 (en) * 1998-07-22 2002-09-24 三菱電機株式会社 Method for determining refrigerant charge of air conditioner
JP2000356366A (en) * 1999-06-11 2000-12-26 Hitachi Air Conditioning System Co Ltd Operation control of air conditioner combined with natural circulation of refrigerant

Also Published As

Publication number Publication date
JP2013053780A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5642207B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
JP6081033B1 (en) Air conditioner
JP5121908B2 (en) Air conditioner
US10082324B2 (en) Refrigeration apparatus having leakage or charge deficiency determining feature
JP6479162B2 (en) Air conditioner
KR101479458B1 (en) Refrigeration device
JP2008089292A (en) Air conditioner
JP2008232508A (en) Water heater
JP4839861B2 (en) Air conditioner
JP2014169802A (en) Air conditioning device
JP2019086251A (en) Control device of multi-type air conditioning device, multi-type air conditioning device, control method of multi-type air conditioning device, and control program of multi-type air conditioning device
JP5881339B2 (en) Air conditioner
WO2016098645A1 (en) Air-conditioning device
JP2008232588A (en) Air conditioner
WO2014103013A1 (en) Heat pump system
JP5517891B2 (en) Air conditioner
JP2011058749A (en) Air conditioner
JP5245575B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP3661014B2 (en) Refrigeration equipment
JP6092606B2 (en) Air conditioner
KR20090107310A (en) Air conditioner
JP6188932B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the refrigeration cycle apparatus
JP7098513B2 (en) Environment forming device and cooling device
JP2008111584A (en) Air conditioner
JP2016102635A (en) Air conditioner system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160202

R150 Certificate of patent or registration of utility model

Ref document number: 5881339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees