JP2003307362A - Refrigerating equipment combined with absorption type and compression type - Google Patents

Refrigerating equipment combined with absorption type and compression type

Info

Publication number
JP2003307362A
JP2003307362A JP2002111627A JP2002111627A JP2003307362A JP 2003307362 A JP2003307362 A JP 2003307362A JP 2002111627 A JP2002111627 A JP 2002111627A JP 2002111627 A JP2002111627 A JP 2002111627A JP 2003307362 A JP2003307362 A JP 2003307362A
Authority
JP
Japan
Prior art keywords
condenser
compression
absorption
temperature
refrigerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002111627A
Other languages
Japanese (ja)
Inventor
Osayuki Inoue
修行 井上
Izumi Hashimoto
泉 橋本
Kiichi Irie
毅一 入江
Tetsuya Endo
哲也 遠藤
Atsushi Aoyama
淳 青山
Tomoyuki Uchimura
知行 内村
Yukihiro Fukuzumi
幸大 福住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002111627A priority Critical patent/JP2003307362A/en
Publication of JP2003307362A publication Critical patent/JP2003307362A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

<P>PROBLEM TO BE SOLVED: To provide refrigerating equipment combined with an absorption type and a compression type and adjusting the driving state of a compression refrigerating machine according to the state of cooling loads and absorption refrigerating effects. <P>SOLUTION: This refrigerating equipment is formed by combining the absorption refrigerating machine having an evaporator E, with a compression refrigerating machine having one or more compressors Mc, a first condenser Cc1 cooling using outside air or cooling water, a second condenser Cc2 connected to the evaporator E of the absorption refrigerating machine in a heat exchange relation, and evaporators Ec exhibiting refrigerating effects. The compression refrigerating machine is provided with a temperature set sensor setting a target temperature of medium cooled by the evaporators Ec, a temperature sensor detecting the temperature of medium, a means for adjusting a compression function force based on a difference between the set temperature and the detected temperature, and a means restricting the capacity of the second condenser Cc2. The compression refrigerating machine can adjust the compression capacity by the plurality of compressors Mc or inverters provided in the compressors Mc. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和装置に用
いることができる冷凍装置に係り、特に、エンジン、タ
ービン、各種プラント等からの排熱を熱源とする吸収冷
凍機又は吸収冷温水機からの冷凍効果を、圧縮冷凍機と
組合せて有効利用する冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus that can be used in an air conditioner, and more particularly, to an absorption refrigerating machine or an absorption cold / hot water machine that uses exhaust heat from an engine, a turbine, various plants, etc. The present invention relates to a refrigerating apparatus that effectively uses the refrigerating effect of (1) in combination with a compression refrigerator.

【0002】[0002]

【従来の技術】コージェネレーションシステムでは、電
気と共に、比較的温度の低い温水が供給される。この温
水は、温度があまり高くなく、低ポテンシャルエネルギ
に分類され、給湯又は暖房に利用されることが多く、ま
た最近は、吸収冷凍機の熱源として冷房に利用されるこ
とも多くなってきている。コージェネレーションシステ
ムの中で、この温水は、エンジンの冷却(ジャケット温
水)あるいはエンジン排ガスからの熱回収、あるいはガ
スタービンの排ガスからの熱回収で得られる。なお、排
ガスを温水に変換せず、直接吸収冷凍機の熱源とするこ
ともある。低ポテンシャルエネルギ単独で、吸収冷凍機
を運転する場合もあるが、複合冷房装置として、高ポテ
ンシャルエネルギと共に用い、必要とする高ポテンシャ
ルエネルギの量を減らそうという使い方も提案され採用
され出している。
2. Description of the Related Art In a cogeneration system, hot water having a relatively low temperature is supplied together with electricity. This hot water is not so high in temperature, is classified into low potential energy, and is often used for hot water supply or heating. Recently, it has also been often used for cooling as a heat source of an absorption refrigerator. . In a cogeneration system, this hot water is obtained by cooling the engine (jacket hot water), recovering heat from the engine exhaust gas, or recovering heat from the exhaust gas of the gas turbine. The exhaust gas may be directly used as a heat source for the absorption refrigerator without being converted into hot water. In some cases, the absorption refrigerator is operated with low potential energy alone, but as a combined air conditioner, a method of using it together with high potential energy to reduce the required amount of high potential energy has also been proposed and adopted.

【0003】低ポテンシャルエネルギ単独で吸収冷温水
機を運転する場合、冷暖負荷に対応した負荷能力を取出
すことは、排熱の供給量が少なかったり、不安定であっ
たりして困難であり、また、これを解決するために、吸
収冷凍機の冷熱を圧縮冷凍機の放熱源として用いて循環
冷媒を冷却する冷凍装置が知られている(特開平11−
223412号公報)。しかし、この冷凍装置において
は、圧縮冷凍機の熱源側熱交換器が空気による冷却と吸
収冷凍機による冷却を直列に設けており、圧縮冷凍機の
圧縮機を運転しない限り、吸収冷凍機の冷凍効果を利用
することができなかった。また、冷媒液を冷却している
だけであるので、吸収冷凍機の熱源熱量(温水熱量な
ど)が多くなっても、利用できる吸収冷凍効果の量を多
くすることができず、排熱供給や冷房負荷の増減に対し
ての対応が不充分であった。
When operating the absorption chiller-heater with low potential energy alone, it is difficult to extract the load capacity corresponding to the cooling and heating load because the amount of exhaust heat supplied is small or unstable, and In order to solve this, there is known a refrigerating apparatus that cools a circulating refrigerant by using cold heat of an absorption refrigerator as a heat radiation source of a compression refrigerator (JP-A-11-
No. 223412). However, in this refrigeration system, the heat source side heat exchanger of the compression refrigerator is provided with cooling by air and cooling by the absorption refrigerator in series, and unless the compressor of the compression refrigerator is operated, refrigeration of the absorption refrigerator is performed. The effect could not be used. In addition, since the refrigerant liquid is only cooled, even if the heat source heat quantity of the absorption chiller (hot water heat quantity, etc.) increases, it is not possible to increase the amount of the absorption refrigeration effect that can be used, and the exhaust heat supply and The response to the increase or decrease in the cooling load was insufficient.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解消し、冷房負荷及び吸収冷凍効果の状態
に応じて圧縮冷凍機の運転状態を調節でき、経済的で効
率のよい運転ができる空気調和装置に用いることができ
る冷凍装置を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and can adjust the operating state of the compression refrigerator according to the cooling load and the state of the absorption refrigeration effect, which is economical and efficient. An object of the present invention is to provide a refrigeration system that can be used in an air conditioner that can be operated.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、蒸発器Eを有する吸収冷凍機と、1台
以上の圧縮機、外気又は冷却水で冷却する第一凝縮器、
前記吸収冷凍機の蒸発器Eと熱交換関係に接続した第二
凝縮器及び冷凍効果を発揮する蒸発器Ecを有する圧縮
冷凍機とを組合せた冷凍装置であって、前記圧縮冷凍機
は、蒸発器Ecで冷却される媒体(空気、冷水、ブライ
ンなど)の目標温度を設定する温度設定手段と、該媒体
の温度を検出する温度センサーとを具備すると共に、該
設定温度と検出温度との差を基に、圧縮機能力を調節す
る手段と、第二凝縮器の能力を制限する手段とを具備し
ていることを特徴とする吸収式と圧縮式とを組合せた冷
凍装置としたものである。
In order to solve the above-mentioned problems, in the present invention, an absorption refrigerator having an evaporator E, one or more compressors, a first condenser cooled by outside air or cooling water,
A refrigeration apparatus comprising a combination of an evaporator E of the absorption refrigerator and a second condenser connected in a heat exchange relationship and a compression refrigerator having an evaporator Ec exhibiting a refrigerating effect, wherein the compression refrigerator is an evaporator. A temperature setting means for setting a target temperature of a medium (air, cold water, brine, etc.) cooled by the vessel Ec, and a temperature sensor for detecting the temperature of the medium are provided, and a difference between the set temperature and the detected temperature is provided. Based on the above, a refrigeration apparatus combining an absorption type and a compression type is provided, which is provided with means for adjusting the compression function force and means for limiting the capacity of the second condenser. .

【0006】前記冷凍装置において、圧縮冷凍機は、第
一凝縮器を圧縮機の吐出側に接続し、第二凝縮器を圧縮
機の吸込側に接続すると共に、複数台の圧縮機を備え、
圧縮機能力調節手段の一つが、前記複数台の圧縮機の台
数制御であるか、又は、圧縮機の少なくとも1台に周波
数可変で駆動するインバータを設け、圧縮機能力調節手
段の1つが、該インバータとすることができ、また、前
記第二凝縮器の能力を制限する手段が、吸収冷凍機の冷
凍効果を搬送する媒体を、第二凝縮器へ移送する流路に
設けた流量を制限する弁であるか、又は、前記蒸発器E
cに設けた出口冷媒の過熱度を調節する弁の過熱度の目
標値(設定値)を大きく設定する手段とすることができ
る。また、前記圧縮冷凍機は、吸収冷凍機1台に対し、
複数台接続することができる。
In the refrigeration system, the compression refrigerator has a first condenser connected to the discharge side of the compressor, a second condenser connected to the suction side of the compressor, and a plurality of compressors.
One of the compression function force adjusting means is a control of the number of the plurality of compressors, or at least one of the compressors is provided with an inverter driven by variable frequency, and one of the compression function force adjusting means is It may be an inverter, and the means for limiting the capacity of the second condenser limits the flow rate provided in the flow path for transferring the medium carrying the refrigerating effect of the absorption refrigerator to the second condenser. Valve or said evaporator E
It can be a means for setting a large target value (set value) of the superheat degree of the valve for adjusting the superheat degree of the outlet refrigerant provided in c. In addition, the compression refrigerator has one absorption refrigerator,
Multiple units can be connected.

【0007】[0007]

【発明の実施の形態】本発明は、圧縮冷凍機の圧縮機を
運転せず、吸収冷凍効果単独でも圧縮冷凍機の冷凍能力
を出すことができ、また、圧縮機を運転している時で
も、吸収冷凍効果を充分に発揮でき、吸収冷凍効果を優
先的に用いることができるようにしている。次に、本発
明を図面を用いて詳細に説明する。図1〜図3は、本発
明の冷凍装置の圧縮冷凍機側の構成機器の接続例を示す
フロー構成図である。図において、Mcは圧縮機、Ec
は蒸発器、Cc1は第一凝縮器、Cc2は第二凝縮器、
Ta、TR、Tsは温度センサー、Scは過冷却器を示
す。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention makes it possible to obtain the refrigerating capacity of a compression refrigerating machine by the absorption refrigerating effect alone without operating the compressor of the compression refrigerating machine, and even when the compressor is in operation. In addition, the absorption refrigeration effect can be sufficiently exerted, and the absorption refrigeration effect can be preferentially used. Next, the present invention will be described in detail with reference to the drawings. 1 to 3 are flow configuration diagrams showing an example of connection of component devices on the compression refrigerator side of the refrigerating apparatus of the present invention. In the figure, Mc is a compressor, Ec
Is an evaporator, Cc1 is a first condenser, Cc2 is a second condenser,
Ta, TR, and Ts are temperature sensors, and Sc is a supercooler.

【0008】図1において、(a)は全体構成図、
(b)はEc部詳細図であり、蒸発器Ecからの冷媒蒸
気は、圧縮機Mc停止中は、第二凝縮器Cc2に吸引さ
れ、圧縮機Mc運転中は、圧縮機Mc又は圧縮機Mcと
第二凝縮器Cc2に吸引される。吸収式からの熱搬送媒
体の温度が低く、第二凝縮器Cc2で冷媒蒸気が凝縮可
能であれば、第二凝縮器Cc2に吸引され、第二凝縮器
Cc2にて凝縮する。吸収式からの熱搬送媒体の温度が
高く、第二凝縮器Cc2で冷媒蒸気が凝縮不能であれ
ば、冷媒蒸気の形で第二凝縮器Cc2に存在し、伝熱は
殆ど生じない。図中、過冷却器Scは、なくても差支え
ない。
In FIG. 1, (a) is an overall configuration diagram,
(B) is a detailed view of the Ec part, in which the refrigerant vapor from the evaporator Ec is sucked into the second condenser Cc2 while the compressor Mc is stopped, and the compressor Mc or the compressor Mc during operation of the compressor Mc. And is sucked into the second condenser Cc2. If the temperature of the heat transfer medium from the absorption type is low and the refrigerant vapor can be condensed in the second condenser Cc2, it is sucked into the second condenser Cc2 and condensed in the second condenser Cc2. If the temperature of the heat transfer medium from the absorption type is high and the refrigerant vapor cannot be condensed in the second condenser Cc2, it exists in the second condenser Cc2 in the form of refrigerant vapor, and heat transfer hardly occurs. In the figure, the subcooler Sc may be omitted.

【0009】図1(b)は、蒸発器Ecの1例として、
室内機(空気冷却器)を示す。図1(b)に示すよう
に、各室内機毎に制御器を設け、温度計測、膨張弁調節
などを行う。即ち、目標室温Toをリモコンで設定ある
いは制御器で直接設定し、室温センサーTaと比較し、
差温△T=Ta−Toで要求能力として、圧縮機の制御
器に送る。また、蒸発器出口の温度センサーTRで、冷
媒過熱蒸気温度を測定すると共に、冷媒液をキャピラリ
で流量制限をして供給し、飽和温度を室温センサーTs
で測定し、過熱度△Tsh=TR−Tsを求め、目標過
熱度になるように、膨張弁V1(冷媒供給弁)を調節す
る。
FIG. 1B shows, as an example of the evaporator Ec,
An indoor unit (air cooler) is shown. As shown in FIG. 1B, a controller is provided for each indoor unit to measure the temperature and adjust the expansion valve. That is, the target room temperature To is set by the remote controller or directly set by the controller and compared with the room temperature sensor Ta,
The difference temperature ΔT = Ta−To is sent to the controller of the compressor as the required capacity. Further, the temperature sensor TR at the outlet of the evaporator measures the temperature of the refrigerant superheated vapor, and the refrigerant liquid is supplied with the flow rate limited by the capillary, and the saturation temperature is measured by the room temperature sensor Ts.
Then, the degree of superheat ΔTsh = TR−Ts is obtained, and the expansion valve V1 (refrigerant supply valve) is adjusted so that the target degree of superheat is obtained.

【0010】図2(a)は、圧縮機Mcを複数台、ここ
では3台で構成しており、また、図2(b)は、複数台
の場合で、1台をインバータによる制御したものであ
り、他を台数制御(発停)による制御としてもよい。図
3は、圧縮機Mc1と第一凝縮器Cc1の系統と、圧縮
機Mc2と第二凝縮器Cc2の系統とを持った構成を示
す。図3では、第二凝縮器Cc2の圧縮機Mc2停止し
ている状態での制御に、本発明を適用する。圧力調整を
第一凝縮器Cc1系統の圧縮機Mc1で行う。運転モー
ドにより、第二の系統も運転する。例えば、吸収冷凍機
側から運転許可信号があり、さらに、吸収冷凍効果の搬
送媒体温度が所定温度以上の時、圧縮機を運転する。
FIG. 2 (a) is composed of a plurality of compressors Mc, here three, and FIG. 2 (b) is a case of a plurality of compressors, one of which is controlled by an inverter. However, other control may be performed by controlling the number of vehicles (start / stop). FIG. 3 shows a configuration having a system of the compressor Mc1 and the first condenser Cc1, and a system of the compressor Mc2 and the second condenser Cc2. In FIG. 3, the present invention is applied to the control of the second condenser Cc2 when the compressor Mc2 is stopped. The pressure is adjusted by the compressor Mc1 of the first condenser Cc1 system. The second system also operates depending on the operation mode. For example, when there is an operation permission signal from the absorption refrigerating machine side and the temperature of the carrier medium for the absorption refrigerating effect is equal to or higher than a predetermined temperature, the compressor is operated.

【0011】次に、本発明の冷凍装置の制御について説
明する。まず、圧縮冷凍機側の制御において、容量制御
関係では、各蒸発器Ecの膨張弁V1は、蒸発器Ec出
口の過熱度が目標値になるように調整するか、あるい
は、蒸発器Ec出口冷媒蒸気の過熱度が所定の値となる
ように調整する。圧縮冷凍機の蒸発器Ecの要求能力
は、蒸発器Ecで冷却される媒体の温度を測る温度セン
サーと被冷却媒体の目標温度との差とする。蒸発器Ec
が複数器の場合、各蒸発器の容量を加味した合算値ある
いは荷重平均値を用いる。要求能力にて、例えば、表1
のような周波数で圧縮機Mcを運転する。温度差が低下
しているときは、下り勾配(X側)、増加しているとき
は、上り勾配(Y側)の周波数とする。室温が下り勾配
のときと上り勾配のときで、同じ領域で0.4℃の差を
持たせているので、これがヒステリシスの役目をし、周
波数の頻繁な変化を抑えることができる。
Next, the control of the refrigerating apparatus of the present invention will be described. First, in the control on the compression refrigerator side, in relation to the capacity control, the expansion valve V1 of each evaporator Ec is adjusted so that the superheat degree at the outlet of the evaporator Ec reaches a target value, or the refrigerant at the outlet of the evaporator Ec is adjusted. Adjust the steam superheat to a specified value. The required capacity of the evaporator Ec of the compression refrigerator is the difference between the temperature sensor measuring the temperature of the medium cooled by the evaporator Ec and the target temperature of the medium to be cooled. Evaporator Ec
If there are multiple units, use the total value or weighted average value that takes into consideration the capacity of each evaporator. In the required capacity, for example, Table 1
The compressor Mc is operated at a frequency such as. When the temperature difference is decreasing, the frequency is a downward gradient (X side), and when the temperature difference is increasing, it is an upward gradient (Y side) frequency. Since a difference of 0.4 ° C. is provided in the same region between when the room temperature has a downward slope and when the room temperature has an upward slope, this serves as a hysteresis, and frequent changes in frequency can be suppressed.

【0012】[0012]

【表1】 [Table 1]

【0013】圧縮機Mc停止後は、第二凝縮器Cc2の
凝縮能力を制限する。第二凝縮器Cc2の凝縮能力の制
限手段が、第二凝縮器Cc2への吸収冷凍効果を搬送す
る流路に設けた媒体量調節弁V3であるとき、弁開度を
例えば、表2のように開度調節する。△T=−0.8℃
で、弁全開、△T=−1.8℃で、弁全閉とし、間は比
例開度としている。
After the compressor Mc is stopped, the condensing capacity of the second condenser Cc2 is limited. When the means for limiting the condensing capacity of the second condenser Cc2 is the medium amount control valve V3 provided in the flow path that conveys the absorption refrigeration effect to the second condenser Cc2, the valve opening degree is, for example, as shown in Table 2. Adjust the opening. ΔT = −0.8 ° C.
Then, the valve is fully opened, ΔT = -1.8 ° C., the valve is fully closed, and the proportional opening is provided.

【表2】 [Table 2]

【0014】第二凝縮器の凝縮能力の制限手段が、蒸発
器Ec出口の過熱度目標値増大であるとき、例えば表3
のように、目標過熱度を設定する。 △T=−0.8℃で、過熱度SH=4.0℃、 △T=−1.6℃で、過熱度SH=8.0℃とし、 △T=−0.8℃以下で、過熱度をSH=−5×△Tと
している。 このように、過熱度増大により、第二凝縮器の凝縮能力
が制限される理由は、過熱度を大きくするため、蒸発器
を流れる冷媒流量が絞られ、その結果出口圧力が低下
し、第二凝縮器の凝縮能力が低下するためである。過熱
度目標値は、圧縮機を運転している時は、過熱度は変動
に対して追従して制御できる範囲でなるべく小さくする
ことが、必要動力の低下、効率の上昇の点から望ましい
(通常4℃程度)。しかし、圧縮機停止後は、動力が関
係しないので、蒸発器Ec出口圧力を低下させて差支え
なく、過熱度を大きく設定する。
When the means for limiting the condensing capacity of the second condenser is the increase of the superheat target value at the outlet of the evaporator Ec, for example, Table 3
Set the target superheat as shown in. ΔT = −0.8 ° C., superheat degree SH = 4.0 ° C., ΔT = −1.6 ° C., superheat degree SH = 8.0 ° C., and ΔT = −0.8 ° C. or less, The degree of superheat is SH = −5 × ΔT. As described above, the reason why the condensing capacity of the second condenser is limited by the increase in the degree of superheat is to increase the degree of superheat, so that the flow rate of the refrigerant flowing through the evaporator is throttled, and as a result, the outlet pressure decreases, This is because the condensation capacity of the condenser is reduced. When operating the compressor, it is desirable to set the superheat target value as small as possible within the range where it can be controlled by following fluctuations, in order to reduce required power and increase efficiency (usually 4 ° C). However, since power is not involved after the compressor is stopped, the outlet pressure of the evaporator Ec can be reduced to set the superheat degree to a large value.

【0015】[0015]

【表3】 図1の圧縮機1台をインバータ制御する場合は、圧縮機
運転中は、表1のような、差温に対応する周波数で圧縮
機を運転する。圧縮機停止中は、容量制御のために第二
凝縮器Cc2の能力を調節するため、表2又は表3のよ
うな方法を用いる。図2の圧縮機複数台の台数制御の場
合は、温度差により周波数をきめるのではなく、運転台
数を決めるような方法を用いる。圧縮機複数台の台数制
御だけであると、圧力が段階的に変化するので、図2
(b)のように、少なくとも1台をインバータ制御とし
て圧力変化を小さくする。インバータ周波数は表1と同
様である。
[Table 3] When one compressor in FIG. 1 is controlled by an inverter, the compressor is operated at a frequency corresponding to the temperature difference as shown in Table 1 during the operation of the compressor. While the compressor is stopped, the method shown in Table 2 or Table 3 is used to adjust the capacity of the second condenser Cc2 for capacity control. In the case of controlling the number of a plurality of compressors in FIG. 2, a method of determining the number of operating machines is used instead of determining the frequency by the temperature difference. If only controlling the number of multiple compressors, the pressure changes stepwise.
As in (b), at least one unit is controlled by an inverter to reduce the pressure change. The inverter frequency is the same as in Table 1.

【0016】インバータ最大回転数で運転中に、差温上
昇で、圧縮機1台追加運転し、インバータ最小回転数で
運転中に、差温降下で、圧縮機1台を停止(インバータ
以外を優先停止)する。圧縮機全停止後、第二凝縮器C
c2の能力を調節する。また、第一凝縮器Cc1は、第
一凝縮器出口の過冷却度が目標値になるよう出口の膨張
弁V2を調整あるいは液面制御で膨張弁V2を調節して
ガスバイパス防止する。第二凝縮器Cc2は、第二凝縮
器出口の過冷却度が目標値になるよう冷媒ポンプRPの
回転数を調整するか、冷媒ポンプ後に弁を設けて弁開度
を調節、あるいは液面制御で冷媒ポンプ回転数又は弁開
度調節してガスバイパス防止する。
While the inverter is operating at the maximum rotation speed, one compressor is additionally operated when the differential temperature rises, and the compressor is stopped when the differential temperature drops while operating at the inverter minimum rotation speed (other than the inverter takes precedence. Stop. After the compressor is completely stopped, the second condenser C
Modulates the capacity of c2. Further, the first condenser Cc1 adjusts the expansion valve V2 at the outlet so that the degree of supercooling at the outlet of the first condenser reaches a target value, or adjusts the expansion valve V2 by liquid level control to prevent gas bypass. The second condenser Cc2 adjusts the number of rotations of the refrigerant pump RP so that the degree of supercooling at the outlet of the second condenser reaches a target value, or installs a valve after the refrigerant pump to adjust the valve opening degree, or controls the liquid level. Adjust the refrigerant pump speed or valve opening to prevent gas bypass.

【0017】次に、吸収冷凍機側の制御は、排熱を総て
生かしきるように運転し、蒸発器冷媒凍結回避、及び吸
収溶液結晶回避のときは、熱源からの入熱量を制限す
る。この制御は、圧縮式とは無関係に、吸収式側だけで
制御をしてもよい。吸収冷凍機への負荷が多すぎて、あ
るいは吸収式への熱源熱量による能力よりも多すぎて、
吸収式の蒸発温度あるいは冷凍出力温度が高くなり過ぎ
る場合、過冷却器への熱媒流量等を減少、あるいは第二
凝縮器Cc2への熱媒流量等を減少させる。これらの制
御は、吸収式側から一方的に行っても差支えない。複数
台の圧縮冷凍機と1台の吸収冷凍機を組合せる場合、熱
媒体循環量を全体として制御してもよいし、個別に制御
してもよい。
Next, the control on the absorption refrigerating machine side is operated so as to make full use of the exhaust heat, and at the time of avoiding freezing of the evaporator refrigerant and avoiding the absorption solution crystal, the heat input amount from the heat source is limited. This control may be performed only on the absorption type side, regardless of the compression type. There is too much load on the absorption refrigerator, or there is more than the capacity of the heat source for the absorption type.
When the evaporation temperature or the refrigeration output temperature of the absorption type becomes too high, the flow rate of the heat medium to the subcooler is reduced, or the flow rate of the heat medium to the second condenser Cc2 is reduced. These controls may be performed unilaterally from the absorption side. When a plurality of compression refrigerators and one absorption refrigerator are combined, the heat medium circulation amount may be controlled as a whole or individually.

【0018】圧縮冷凍機側は、利用できる吸収冷凍機出
力を用い、その範囲内で制御している。なお、圧縮式側
と吸収式側とを関連付けて制御しても差支えないが、制
御系が複雑になり過ぎる欠点がでる。吸収冷凍機は、単
効用、二重効用、一二重効用等、特に限定はなく、また
吸収冷凍機の作動媒体による限定もない。熱源の形態
も、温水、水蒸気、燃料あるいは排ガスなど特に限定は
なく、排熱に限定せず、安価な燃料などを熱源とする吸
収冷凍機であってもよい。また、1台の圧縮冷凍機を構
成する各機器は複数器であっても差支えない。圧縮冷凍
機として説明しているが、配管切替でヒートポンプによ
る暖房運転とする形態をとってもよい。そのとき、吸収
冷凍機を冷温水機として温熱をヒートポンプに与え、あ
るいは、排熱源を直接ヒートポンプに与えても良い。
The compression refrigerator uses the available absorption refrigerator output and controls within that range. It should be noted that the control can be performed by associating the compression type side and the absorption type side, but there is a drawback that the control system becomes too complicated. The absorption refrigerator is not particularly limited such as single effect, double effect, and single effect, and is not limited by the working medium of the absorption refrigerator. The form of the heat source is not particularly limited, such as hot water, steam, fuel, or exhaust gas, and is not limited to exhaust heat, and may be an absorption refrigerator that uses an inexpensive fuel as a heat source. Further, each device constituting one compression refrigerator may be a plurality of devices. Although it is described as a compression refrigerator, a mode in which heating operation is performed by a heat pump by switching pipes may be adopted. At that time, the absorption refrigerator may be used as a cold / hot water machine to supply heat to the heat pump, or the exhaust heat source may be directly supplied to the heat pump.

【0019】[0019]

【発明の効果】本発明は、圧縮冷凍機の圧縮機を運転せ
ず、吸収冷凍効果単独でも冷媒回路の冷凍能力(圧縮冷
凍機の冷凍能力)を出すことができ、また、圧縮機を運
転している時でも、吸収冷凍効果を充分に発揮できるよ
うにしている。また、吸収冷凍効果を優先的に用い、吸
収冷凍効果単独での運転を可能とし、冷房負荷及び吸収
冷凍効果の状態に応じて圧縮冷凍機の運転状態を調節で
き、経済的で効率のよい運転ができる空気調和装置とし
て用いることができる冷凍装置である。
INDUSTRIAL APPLICABILITY According to the present invention, the refrigerating capacity of the refrigerant circuit (refrigerating capacity of the compression refrigerator) can be obtained by the absorption refrigeration effect alone without operating the compressor of the compression refrigerator, and the compressor is operated. It is designed so that the absorption and refrigeration effect can be fully exerted even when it is being used. In addition, the absorption refrigeration effect is preferentially used to enable the operation of the absorption refrigeration effect alone, and the operation state of the compression refrigerator can be adjusted according to the cooling load and the state of the absorption refrigeration effect, resulting in economical and efficient operation. It is a refrigeration system that can be used as an air conditioner.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷凍装置の圧縮冷凍機の一例を示すフ
ロー構成図で、(a)は全体図、(b)はEc部詳細
図。
FIG. 1 is a flow configuration diagram showing an example of a compression refrigerator of a refrigeration apparatus of the present invention, (a) is an overall view, and (b) is a detailed view of an Ec portion.

【図2】(a)、(b)は、本発明の冷凍装置の圧縮冷
凍機の他の例を示すフロー構成図。
2A and 2B are flow configuration diagrams showing another example of the compression refrigerator of the refrigeration apparatus of the present invention.

【図3】本発明の冷凍装置の圧縮冷凍機の他の例を示す
フロー構成図。
FIG. 3 is a flow configuration diagram showing another example of the compression refrigerator of the refrigeration apparatus of the present invention.

【符号の説明】[Explanation of symbols]

Mc、Mc1、Mc2:圧縮機、Ec:蒸発器、Cc
1:第一凝縮器、Cc2:第二凝縮器、Sc:過冷却
器、Ta、TR、Ts:温度センサー、RP:冷媒ポン
プ、V1、V2、V3:調節弁
Mc, Mc1, Mc2: Compressor, Ec: Evaporator, Cc
1: First condenser, Cc2: Second condenser, Sc: Supercooler, Ta, TR, Ts: Temperature sensor, RP: Refrigerant pump, V1, V2, V3: Control valve

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 1/00 371 F25B 1/00 371B 371F 27/02 27/02 K (72)発明者 入江 毅一 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 遠藤 哲也 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 青山 淳 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 内村 知行 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 福住 幸大 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) F25B 1/00 371 F25B 1/00 371B 371F 27/02 27/02 K (72) Inventor Takeichi Irie Ota-ku, Tokyo 11-1 Haneda Asahi-machi, EBARA CORPORATION (72) Inventor Tetsuya Endo 11-11 Haneda-Asahi-cho, Ota-ku, Tokyo (72) Inventor Atsushi Aoyama 11 Asahi-machi, Ota-ku, Tokyo No. 1 In the EBARA CORPORATION (72) Inventor Tomoyuki Uchimura 11-11 Haneda Asahi-cho, Ota-ku, Tokyo Inside the EBARA CORPORATION (72) Inventor Yukaku Fukuzumi 11-1 Haneda-Asahi-cho, Ota-ku, Tokyo Inside EBARA CORPORATION

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器Eを有する吸収冷凍機と、1台以
上の圧縮機、外気又は冷却水で冷却する第一凝縮器、前
記吸収冷凍機の蒸発器Eと熱交換関係に接続した第二凝
縮器及び冷凍効果を発揮する蒸発器Ecを有する圧縮冷
凍機とを組合せた冷凍装置であって、前記圧縮冷凍機
は、蒸発器Ecで冷却される媒体の目標温度を設定する
温度設定手段と、該媒体の温度を検出する温度センサー
とを具備すると共に、該設定温度と検出温度との差を基
に、圧縮機能力を調節する手段と、第二凝縮器の能力を
制限する手段とを具備していることを特徴とする吸収式
と圧縮式とを組合せた冷凍装置。
1. An absorption refrigerator having an evaporator E, one or more compressors, a first condenser cooled by outside air or cooling water, and a first condenser connected in a heat exchange relationship with the evaporator E of the absorption refrigerator. A refrigerating apparatus in which a second condenser and a compression refrigerator having an evaporator Ec exhibiting a refrigerating effect are combined, wherein the compression refrigerator sets a target temperature of a medium cooled by the evaporator Ec. And a temperature sensor for detecting the temperature of the medium, and means for adjusting the compression function force based on the difference between the set temperature and the detected temperature, and means for limiting the capacity of the second condenser. A refrigerating apparatus which is a combination of an absorption type and a compression type.
【請求項2】 前記圧縮冷凍機は、第一凝縮器を圧縮機
の吐出側に接続し、第二凝縮器を圧縮機の吸込側に接続
すると共に、複数台の圧縮機を備え、圧縮機能力調節手
段の一つが、前記複数台の圧縮機の台数制御であること
を特徴とする請求項1に記載の冷凍装置。
2. The compression refrigerating machine has a first condenser connected to a discharge side of the compressor, a second condenser connected to a suction side of the compressor, and a plurality of compressors. The refrigerating apparatus according to claim 1, wherein one of the force adjusting means is a control of the number of the plurality of compressors.
【請求項3】 前記圧縮冷凍機は、第一凝縮器を圧縮機
の吐出側に接続し、第二凝縮器を圧縮機の吸込側に接続
すると共に、圧縮機の内少なくとも1台に周波数可変で
駆動するインバータを設け、圧縮機能力調節手段の一つ
が、前記インバータであることを特徴とする請求項1又
は2に記載の冷凍装置。
3. The compression refrigerator has a first condenser connected to a discharge side of the compressor, a second condenser connected to a suction side of the compressor, and at least one of the compressors has a variable frequency. 3. The refrigerating apparatus according to claim 1 or 2, wherein an inverter driven by is provided, and one of the compression function force adjusting means is the inverter.
【請求項4】 前記第二凝縮器の能力を制限する手段
が、吸収冷凍機の冷凍効果を搬送する媒体を、第二凝縮
器へ移送する流路に設けた流量を制限する弁であること
を特徴とする請求項1、2又は3に記載の冷凍装置。
4. The means for limiting the capacity of the second condenser is a valve for limiting the flow rate provided in the flow path for transferring the medium for carrying the refrigerating effect of the absorption refrigerator to the second condenser. The refrigerating apparatus according to claim 1, 2, or 3.
【請求項5】 前記第二凝縮器の能力を制限する手段
が、前記蒸発器Ecに設けた出口冷媒の過熱度を調節す
る弁の過熱度の目標値を大きく設定する手段であること
を特徴とする請求項1、2又は3に記載の冷凍装置。
5. The means for limiting the capacity of the second condenser is means for setting a large target value of the superheat degree of a valve for adjusting the superheat degree of the outlet refrigerant provided in the evaporator Ec. The refrigerating apparatus according to claim 1, 2 or 3.
JP2002111627A 2002-04-15 2002-04-15 Refrigerating equipment combined with absorption type and compression type Pending JP2003307362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111627A JP2003307362A (en) 2002-04-15 2002-04-15 Refrigerating equipment combined with absorption type and compression type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111627A JP2003307362A (en) 2002-04-15 2002-04-15 Refrigerating equipment combined with absorption type and compression type

Publications (1)

Publication Number Publication Date
JP2003307362A true JP2003307362A (en) 2003-10-31

Family

ID=29394366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111627A Pending JP2003307362A (en) 2002-04-15 2002-04-15 Refrigerating equipment combined with absorption type and compression type

Country Status (1)

Country Link
JP (1) JP2003307362A (en)

Similar Documents

Publication Publication Date Title
US4471630A (en) Cooling system having combination of compression and absorption type units
JP2004340470A (en) Refrigeration unit
US6807817B2 (en) Method for operating compressors of air conditioner
CN109579356B (en) Temperature control multi-online heat pump system with heat recovery function and control method
KR950003791B1 (en) Automatic chiller plant balancing
WO2012090579A1 (en) Heat source system and control method therefor
JP4167190B2 (en) Refrigeration system and operation method thereof
JP2000304374A (en) Engine heat pump
KR200281266Y1 (en) Heat pump system
JP4063041B2 (en) Control method of multi-room air conditioner
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JP3871207B2 (en) Refrigeration system combining absorption and compression
EP2889560B1 (en) Refrigerating device
JP3888814B2 (en) Ice making cooling system
JP2003307362A (en) Refrigerating equipment combined with absorption type and compression type
JP3874262B2 (en) Refrigeration system combining absorption and compression
JP2003207223A (en) Exhaust heat recovery-type refrigerating device
JP2003336929A (en) Absorbing and compression type refrigerator and method of operating the refrigerator
JP2003307363A (en) Refrigerating equipment combined with absorption type and compression type and its driving method
JP3874263B2 (en) Refrigeration system combining absorption and compression
KR100403017B1 (en) An inverter cooling device and process of heat pump
JPS6383556A (en) Refrigeration cycle
KR100421618B1 (en) Method for operating load match of refrigerator
JPS62261862A (en) Heat pump system
JP2023079334A (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061012