JP4063041B2 - Control method of multi-room air conditioner - Google Patents

Control method of multi-room air conditioner Download PDF

Info

Publication number
JP4063041B2
JP4063041B2 JP2002308008A JP2002308008A JP4063041B2 JP 4063041 B2 JP4063041 B2 JP 4063041B2 JP 2002308008 A JP2002308008 A JP 2002308008A JP 2002308008 A JP2002308008 A JP 2002308008A JP 4063041 B2 JP4063041 B2 JP 4063041B2
Authority
JP
Japan
Prior art keywords
pressure
temperature
compressor
compressors
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002308008A
Other languages
Japanese (ja)
Other versions
JP2004144351A (en
Inventor
隆廣 松永
俊太郎 伊藤
品 蔡
隆夫 愛知
哲也 伊藤
ティユヤ アウン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2002308008A priority Critical patent/JP4063041B2/en
Publication of JP2004144351A publication Critical patent/JP2004144351A/en
Application granted granted Critical
Publication of JP4063041B2 publication Critical patent/JP4063041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、室外ユニットと複数台の室内ユニットからなる多室形空気調和機の制御方法に係わり、より詳しくは、圧縮機の高圧圧力に応じて、吸入温度又は圧力を所定値高くシフトさせ、高圧保護回路の動作を少なくなるよう制御する制御方法に関する。
【0002】
【従来の技術】
従来より部屋数の多いビルディング等では、複数の室内ユニットを有する多室型(マルチタイプ)の空気調和機が用いられ、多室形空気調和機の室内ユニットの運転状況(台数、負荷変動)に応じて、冷媒循環量が変化する。冷房運転時の冷媒循環量を制御する方法として、低圧圧力、蒸発温度、過熱度などを検知して膨脹弁の開度を調整する方法がある(例えば、特許文献1参照。)。
これは、冷房能力を十分出せる低圧圧力、蒸発温度、過熱度などを目標として圧縮機の冷媒循環量を制御しているが、室内外の負荷(空気温度等)が高い場合、低圧圧力、蒸発温度、過熱度は上昇するため、冷房能力を維持(目標の低圧、蒸発温度、過熱度を維持)するには、冷媒循環量を増加する必要があった。
【0003】
しかしながら、高負荷条件での冷房運転は冷媒回路内の冷媒圧力が上昇するため冷媒循環量を増加させると、高圧圧力が設計圧力を超えてしまうこともあり、保護回路(高圧スイッチ等)による圧縮機の停止が頻繁に発生してしまい、信頼性に問題があった。
【0004】
【特許文献1】
特開平7−120091号公報(第6−8頁、第1−2図)。
【0005】
【発明が解決しようとする課題】
本発明においては、上記の問題点に鑑み、圧縮機の高圧圧力に応じて、吸入温度又は圧力を所定値高くシフトさせ、圧縮機の組合せから制御される冷媒循環量を減少させることにより、高圧上昇による保護回路の停止動作を少なくなるよう制御する多室形空気調和機の制御方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するため、並列に接続された容量が夫々異なる複数台の圧縮機と、四方弁と、室外熱交換器と、膨脹弁を備えた室外ユニットと、室内熱交換器と絞り機構を備えた複数の室内ユニットとを接続して冷媒回路を構成し、前記室内ユニットの運転状況に応じて、前記各圧縮機の運転/停止を夫々組合せて制御してなる多室形空気調和機において、
前記各圧縮機の吐出側合流点の圧力を検出する吐出圧力センサと、前記各圧縮機の吸入側合流点の温度を検出する吸入温度センサ、または圧力を検出する吸入圧力センサを夫々設け、冷房運転時に、前記吐出圧力センサが検出した高圧圧力に応じて、前記各圧縮機の吸入側合流点の温度または圧力を、通常運転時の目標温度または圧力より所定値高くシフトさせ、このシフト後の温度または圧力応じて、前記各圧縮機の運転/停止を制御してなる構成となっている。
【0007】
また、前記吐出圧力センサが検出した高圧圧力が所定値以上に達した時、前記複数台の圧縮機の総合運転容量を下げてなる構成となっている。
【0008】
また、前記各圧縮機が一定速型圧縮機からなる構成となっている。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に基づいた実施例として説明する。
図1は本発明による多室形空気調和機の冷媒回路の構成図である。図において、1は室外に設置された室外ユニット、2a,2b,2cは夫々並列に接続された3台の室内ユニットである。
【0010】
前記室外ユニット1は、並列に接続された夫々容量(能力)の異なる一定速形の3台の圧縮機、例えば小容量の圧縮機3a、中容量の圧縮機3b、大容量の圧縮機3cと、四方弁4と、室外熱交換器5と、膨張弁6とを夫々接続して構成され、また前記室内ユニット2a,2b,2cは、夫々電子膨張弁7a,7b,7cと、室内熱交換器8a,8b,8cとを夫々接続して構成されている。
【0011】
これら前記室外ユニット1と前記室内ユニット2a,2b,2cとが第一接続部A1と第二接続部A2を介して冷媒配管により接続され冷媒回路が構成され、前記室内ユニット2a,2b,2cの運転台数などの負荷変動に応じて、前記各圧縮機3a,3b,3cの運転/停止を夫々組合せて切換るように、制御部9により制御するようなされている。
【0012】
前記各圧縮機3a,3b,3cの吐出側合流点aには吐出冷媒の圧力(高圧)を検出する吐出圧力センサ10が設けられている。また、前記各圧縮機の3a,3b,3c吸入側合流点bには吸入冷媒の温度を検出する吸入温度センサ11、又は吸入冷媒の圧力(低圧)を検出する吸入圧力センサ11' が設けられている。
【0013】
上記において、冷房運転時には、図1中実線矢印で示すように、圧縮機3a,3b,3cで高温高圧となったガス冷媒が、室外熱交換器5に送られ、室外空気との間の熱交換によりガス冷媒が冷却され凝縮し、高温高圧の液冷媒となる。この高温高圧の液冷媒は、膨張弁6において減圧されて低温低圧の液冷媒となる。この低温低圧の液冷媒は、室内熱交換ユニット2a,2b,2cに送られ、室内空気との間の熱交換により室内空気を冷却するとともに、自身は加温され蒸発して低温低圧のガス冷媒となる。この際、室内熱交換器8a,8b,8cは液冷媒を蒸発させる蒸発器として機能する。この低温低圧のガス冷媒は、四方弁4を経て圧縮機3a,3b,3cに戻されて高温高圧のガス冷媒となり、以後この過程が繰り返される。
【0014】
また暖房運転時においては、破線矢印で示すように、圧縮機3a,3b,3cを経た冷媒が室内熱交換ユニット2a,2b,2cに流れるように四方弁4を設定され、室内熱交換ユニット2a,2b,2cが凝縮器として機能し、室外熱交換器5が蒸発器として機能する以外は冷房運転時と同じである。
【0015】
図2に示すように、前記3台の圧縮機3a,3b,3cを組合せた場合、運転状況(負荷変動)に応じて運転/停止の組合せステップは0(全て停止)〜7(全て運転)までの8通りの組合せが作りだせる。
ここで、前記3台の圧縮機3a,3b,3cの冷媒循環量を、圧縮機3a<圧縮機3b<圧縮機3cとしてある。また、前記各ステップの冷媒循環量を、ステップ1<ステップ2<・・・・・<ステップ7としてある。
【0016】
上記構成において、冷房運転時に、前記吐出圧力センサ10が検出した高圧圧力に応じて、吸入側の目標温度又は目標圧力を以下のように設定する(図3)。
高圧<PH1の時、
目標温度(圧力)のシフト量 0( 0)、シフト後T0(P0)
PH1≦高圧<PH2の時、
目標温度(圧力)のシフト量ΔT1(ΔP1)、シフト後T0+ΔT1(P0 +ΔP1)
PH2<高圧<PH3の時、
目標温度(圧力)のシフト量ΔT2(ΔP2)、シフト後T0+ΔT2(P0 +ΔP2)
但し、
PH1<PH2<PH3、ΔT1<ΔT2、ΔP1<ΔP2とする。
【0017】
前記シフト後の目標温度又は、目標圧力に応じて前記圧縮機3a,3b,3cの運転/停止を制御する。吸入側の温度又は圧力が上昇すると冷媒循環量が低下し、高圧も低下する。
尚、前記吐出圧力センサ10が検出した高圧圧力がPH3以上に達した場合は、前記圧縮機3a,3b,3cの運転/停止ステップを、図4に示すように、強制的にステップダウンさせる。これにより、冷媒循環量を低下させ高圧圧力を下げる。
【0018】
次に上記構成において、本発明の制御動作について、図5の制御ブロック図及び図6のフローチャート図に基づいて説明する。
図5において、前記制御部9は、前記圧縮機3a,3b,3cの吐出側の吐出圧力センサ10が検出したを検知する吐出圧力検出部9aと、吸入側の吸入温度センサ11、又は吸入圧力センサ11' が検出した温度又は圧力を検知する吸入温度・吸入圧力検出部9bと、前記吐出圧力センサ10が検出した高圧圧力に応じて、吸入側の目標温度又は、目標圧力のシフト量を予め記憶設定する目標温度又は圧力設定部9cと、前記吐出圧力検出部9aの高圧圧力に応じて、前記吸入温度・吸入圧力検出部9bの温度又は圧力と、前記目標温度又は圧力設定部9cのシフト量とを比較演算し、シフト後の吸入側の目標温度又は圧力を算出する比較演算部9dと、冷房運転時に、前記比較演算部9dの制御信号により、前記圧縮機3a,3b,3cを駆動制御する駆動部9eとから構成することにより、前記吸入温度又は圧力が上昇すると、冷媒循環量を低下させように、前記圧縮機3a,3b,3cの運転/停止の組合せステップを制御し、高圧圧力を低下させ、高圧上昇による高圧保護回路の停止を回避するよう制御する。
【0019】
図6のフローチャート図において、多室形空気調和機の運転がスタートすると、まず、ステップST1で冷房運転かどうか判定される。もし冷房運転であれば、ステップST2で高圧(吐出圧力)PがPH1 以下かどうか判断され、以下であれば、ステップ3でシフト量に応じて、目標吸入温度T0又は圧力P0に設定・比較演算され、ステップ4で圧縮機の組合せを目標ステップに制御し終了する(ST5) 。
【0020】
次に、前記ステップST2で高圧PがPH1 以下でなければ、ステップST6で高圧Pが、PH1 ≦P <PH2 の範囲内かどうか判定される。もし、範囲内であれば、ステップST7でシフト量に応じて、目標吸入温度T0+ΔT1又は圧力(P0 +ΔP1) に設定・比較演算され、上記と同様ステップ4で圧縮機の組合せを目標ステップに制御し終了する(ST5) 。
【0021】
また、前記ステップST6で高圧PがPH1 ≦P <PH2 の範囲内でなければ、ステップST8で高圧Pが、PH2 ≦P <PH3 の範囲内かどうか判定される。もし、範囲内であれば、ステップST9でシフト量に応じて、目標吸入温度T0+ΔT2又は圧力(P0 +ΔP2) に設定・比較演算され、上記と同様ステップ4で圧縮機の組合せを目標ステップに制御し終了する(ST5) 。
【0022】
更に、前記ステップST8で高圧PがPH2 ≦P <PH3 の範囲内でなければ、ステップST10で高圧Pが、PH3 以上かどうか判定される。もし、以上であれば、ステップST10で図4に示すように、圧縮機ステップを強制的にステップダウンさせた制御がなされ終了する(ST5) 。もし、以上でなければ、ステップST2に戻り動作が繰り替えされる。
【0023】
以上に説明したように、前記各圧縮機3a,3b,3cの吐出側合流点aの圧力を検出する吐出圧力センサ10と、前記各圧縮機3a,3b,3cの吸入側合流点bの温度または圧力を検出する吸入温度センサ11または吸入圧力センサ11' を夫々設け、冷房運転時に、前記吐出圧力センサ10が検出した高圧圧力Pに応じて、前記各圧縮機3a,3b,3cの吸入側合流点bの温度または圧力を、通常運転時の目標温度または圧力より所定値高くシフトさせ、このシフト後の温度または圧力応じて、前記各圧縮機3a,3b,3cの運転/停止を制御してなる構成とすることにより、圧縮機の組合せから制御される冷媒循環量を減少させることにより、高圧上昇による保護回路の停止動作を少なくなるよう制御する多室形空気調和機の制御方法となる。
【0024】
【発明の効果】
以上説明したように、本発明によれば、圧縮機の高圧圧力に応じて、吸入温度又は圧力を所定値高くシフトさせ、圧縮機の組合せから制御される冷媒循環量を減少させることにより、高圧上昇による保護回路の停止動作を少なくなるよう制御する多室形空気調和機の制御方法となる。
【図面の簡単な説明】
【図1】本発明における多室形空気調和機の制御方法の実施例を示す冷媒回路図である。
【図2】本発明における各圧縮機の運転・停止ステップの組合せ表である。
【図3】本発明における高圧圧力と圧縮機吸入側の目標温度又は圧力の関係を示す表である。
【図4】本発明における圧縮機の運転・停止ステップを強制的にダウンさせるための表である。
【図5】本発明における制御ブロック図である。
【図6】
【符号の説明】
1 室外ユニット
2a、2b、2c 室内ユニット
3a、3b、3c 圧縮機
4 四方弁
5 室外熱交換器
6 膨張弁
7a、7b、7c 電子膨張弁
8a、8b、8c 室内熱交換器
9 制御部
9a 吐出圧力検出部
9b 吸入温度・吸入圧力検出部
9c 目標温度又は圧力設定部
9d 比較演算部
9e 駆動部
10 吐出圧力センサ
11 吸入温度センサ
11’吸入圧力センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control method for a multi-room air conditioner composed of an outdoor unit and a plurality of indoor units. More specifically, according to the high pressure of the compressor, the intake temperature or pressure is shifted higher by a predetermined value, The present invention relates to a control method for controlling the operation of a high voltage protection circuit to be reduced.
[0002]
[Prior art]
In buildings that have a larger number of rooms than before, multi-room type air conditioners with multiple indoor units are used, and the operating status (number of units, load fluctuations) of indoor units of multi-room air conditioners is used. Accordingly, the refrigerant circulation amount changes. As a method of controlling the refrigerant circulation amount during the cooling operation, there is a method of detecting the low-pressure pressure, the evaporation temperature, the degree of superheat, etc., and adjusting the opening of the expansion valve (for example, refer to Patent Document 1).
This controls the amount of refrigerant circulating in the compressor with the goal of low pressure, evaporating temperature, superheat, etc. that can provide sufficient cooling capacity. However, when the indoor and outdoor loads (air temperature, etc.) are high, the low pressure, evaporating Since the temperature and the degree of superheat rise, it was necessary to increase the amount of refrigerant circulation in order to maintain the cooling capacity (maintain the target low pressure, evaporation temperature, and degree of superheat).
[0003]
However, in cooling operation under high load conditions, the refrigerant pressure in the refrigerant circuit rises, so if the refrigerant circulation rate is increased, the high pressure may exceed the design pressure, and compression by a protection circuit (such as a high pressure switch) The machine stopped frequently and there was a problem in reliability.
[0004]
[Patent Document 1]
JP-A-7-120091 (page 6-8, Fig. 1-2).
[0005]
[Problems to be solved by the invention]
In the present invention, in view of the above-described problems, the intake temperature or pressure is shifted higher by a predetermined value in accordance with the high pressure of the compressor, and the refrigerant circulation amount controlled from the combination of the compressors is reduced. It is an object of the present invention to provide a control method for a multi-room air conditioner that controls a stop operation of a protection circuit due to ascent to be reduced.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a plurality of compressors connected in parallel and having different capacities, a four-way valve, an outdoor heat exchanger, an outdoor unit including an expansion valve, and an indoor heat exchanger. A multi-chamber air formed by connecting a plurality of indoor units having a throttle mechanism to form a refrigerant circuit, and controlling the operation / stop of each compressor in combination according to the operation status of the indoor units. In the harmony machine,
A discharge pressure sensor for detecting the pressure at the discharge side merging point of each compressor, a suction temperature sensor for detecting the temperature of the suction side merging point of each compressor, or a suction pressure sensor for detecting pressure are provided, respectively. During operation, the temperature or pressure at the suction side confluence of each compressor is shifted higher by a predetermined value than the target temperature or pressure during normal operation according to the high pressure detected by the discharge pressure sensor, and after this shift The operation / stop of each compressor is controlled according to the temperature or pressure.
[0007]
Further, when the high pressure detected by the discharge pressure sensor reaches a predetermined value or more, the total operating capacity of the plurality of compressors is reduced.
[0008]
Further, each of the compressors is constituted by a constant speed type compressor.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described as examples based on the accompanying drawings.
FIG. 1 is a configuration diagram of a refrigerant circuit of a multi-room air conditioner according to the present invention. In the figure, 1 is an outdoor unit installed outdoors, and 2a, 2b, 2c are three indoor units connected in parallel.
[0010]
The outdoor unit 1 includes three constant speed compressors connected in parallel, each having a different capacity (capacity), such as a small capacity compressor 3a, a medium capacity compressor 3b, and a large capacity compressor 3c. The four-way valve 4, the outdoor heat exchanger 5, and the expansion valve 6 are connected to each other, and the indoor units 2a, 2b, and 2c are exchanged with the electronic expansion valves 7a, 7b, and 7c, respectively, for indoor heat exchange. Units 8a, 8b, and 8c are connected to each other.
[0011]
The outdoor unit 1 and the indoor units 2a, 2b, 2c are connected by a refrigerant pipe via a first connection part A1 and a second connection part A2 to form a refrigerant circuit, and the indoor units 2a, 2b, 2c The controller 9 controls the compressors 3a, 3b, and 3c to be switched in combination with each other in accordance with load fluctuations such as the number of operating units.
[0012]
A discharge pressure sensor 10 for detecting the pressure (high pressure) of the discharged refrigerant is provided at the discharge side confluence point a of each of the compressors 3a, 3b, 3c. Further, a suction temperature sensor 11 for detecting the temperature of the suction refrigerant or a suction pressure sensor 11 ′ for detecting the pressure (low pressure) of the suction refrigerant is provided at the suction side confluence point 3a, 3b, 3c of each compressor. ing.
[0013]
In the above operation, during the cooling operation, as indicated by solid arrows in FIG. 1, the high-temperature and high-pressure gas refrigerant in the compressors 3a, 3b, and 3c is sent to the outdoor heat exchanger 5 to generate heat between the outdoor air and the outdoor air. The gas refrigerant is cooled and condensed by the exchange, and becomes a high-temperature and high-pressure liquid refrigerant. This high-temperature and high-pressure liquid refrigerant is decompressed by the expansion valve 6 to become a low-temperature and low-pressure liquid refrigerant. This low-temperature and low-pressure liquid refrigerant is sent to the indoor heat exchange units 2a, 2b and 2c, and cools the indoor air by heat exchange with the indoor air, and also heats and evaporates itself to cool and cool the low-temperature and low-pressure gas refrigerant. It becomes. At this time, the indoor heat exchangers 8a, 8b, 8c function as an evaporator for evaporating the liquid refrigerant. This low-temperature and low-pressure gas refrigerant is returned to the compressors 3a, 3b and 3c via the four-way valve 4 to become a high-temperature and high-pressure gas refrigerant, and this process is repeated thereafter.
[0014]
Further, during the heating operation, as indicated by broken line arrows, the four-way valve 4 is set so that the refrigerant having passed through the compressors 3a, 3b, 3c flows into the indoor heat exchange units 2a, 2b, 2c, and the indoor heat exchange unit 2a , 2b, 2c function as a condenser, and the outdoor heat exchanger 5 functions as an evaporator.
[0015]
As shown in FIG. 2, when the three compressors 3a, 3b, and 3c are combined, the operation / stop combination step is 0 (all stopped) to 7 (all operated) depending on the operation status (load fluctuation). Up to 8 combinations can be created.
Here, the refrigerant circulation amount of the three compressors 3a, 3b, 3c is set such that compressor 3a <compressor 3b <compressor 3c. Further, the refrigerant circulation amount in each step is set as step 1 <step 2 <.
[0016]
In the above-described configuration, the target temperature or target pressure on the suction side is set as follows according to the high pressure detected by the discharge pressure sensor 10 during the cooling operation (FIG. 3).
When high pressure <PH1,
Target temperature (pressure) shift amount 0 (0), after shift T0 (P0)
When PH1≤high pressure <PH2,
Target temperature (pressure) shift amount ΔT1 (ΔP1), after shift T0 + ΔT1 (P0 + ΔP1)
When PH2 <high pressure <PH3,
Target temperature (pressure) shift amount ΔT2 (ΔP2), after shift T0 + ΔT2 (P0 + ΔP2)
However,
It is assumed that PH1 <PH2 <PH3, ΔT1 <ΔT2, and ΔP1 <ΔP2.
[0017]
The operation / stop of the compressors 3a, 3b, 3c is controlled according to the target temperature or the target pressure after the shift. When the temperature or pressure on the suction side increases, the refrigerant circulation rate decreases and the high pressure also decreases.
When the high pressure detected by the discharge pressure sensor 10 reaches PH3 or more, the operation / stop step of the compressors 3a, 3b, 3c is forcibly stepped down as shown in FIG. Thereby, the refrigerant circulation amount is reduced and the high pressure is lowered.
[0018]
Next, in the above configuration, the control operation of the present invention will be described based on the control block diagram of FIG. 5 and the flowchart of FIG.
In FIG. 5, the control unit 9 includes a discharge pressure detection unit 9a that detects the detection by the discharge pressure sensor 10 on the discharge side of the compressors 3a, 3b, and 3c, a suction temperature sensor 11 on the suction side, or a suction pressure. According to the suction temperature / suction pressure detection unit 9b that detects the temperature or pressure detected by the sensor 11 ′ and the high pressure detected by the discharge pressure sensor 10, the target temperature on the suction side or the shift amount of the target pressure is determined in advance. The target temperature or pressure setting unit 9c to store and the temperature or pressure of the suction temperature / suction pressure detection unit 9b and the shift of the target temperature or pressure setting unit 9c according to the high pressure of the discharge pressure detection unit 9a A comparison operation unit 9d for calculating the target temperature or pressure on the suction side after the shift, and driving the compressors 3a, 3b, 3c by the control signal of the comparison operation unit 9d during cooling operation And the drive unit 9e to be controlled. When the temperature or pressure rises, the combination step of operation / stop of the compressors 3a, 3b, 3c is controlled so as to reduce the refrigerant circulation rate, the high pressure is lowered, and the high pressure protection circuit is stopped due to the high pressure rise. Control to avoid.
[0019]
In the flowchart of FIG. 6, when the operation of the multi-room air conditioner starts, first, it is determined whether or not the cooling operation is performed in step ST1. If it is a cooling operation, it is determined in step ST2 whether the high pressure (discharge pressure) P is less than PH1, and if so, in step 3, the target suction temperature T0 or pressure P0 is set and compared according to the shift amount. In step 4, the compressor combination is controlled to the target step, and the process ends (ST5).
[0020]
Next, if the high pressure P is not less than PH1 in step ST2, it is determined in step ST6 whether the high pressure P is within the range of PH1 ≦ P <PH2. If it is within the range, the target intake temperature T0 + ΔT1 or the pressure (P0 + ΔP1) is set and compared according to the shift amount in step ST7, and the compressor combination is controlled to the target step in step 4 as described above. End (ST5).
[0021]
If the high pressure P is not in the range of PH1 ≦ P <PH2 in step ST6, it is determined in step ST8 whether the high pressure P is in the range of PH2 ≦ P <PH3. If it is within the range, the target intake temperature T0 + ΔT2 or the pressure (P0 + ΔP2) is set and compared in step ST9 according to the shift amount, and the compressor combination is controlled to the target step in step 4 as described above. End (ST5).
[0022]
Furthermore, if the high pressure P is not in the range of PH2 ≦ P <PH3 in step ST8, it is determined in step ST10 whether the high pressure P is greater than PH3. If this is the case, as shown in FIG. 4 in step ST10, the compressor step is forcibly stepped down and the process ends (ST5). If not, the operation returns to step ST2 and is repeated.
[0023]
As described above, the discharge pressure sensor 10 for detecting the pressure at the discharge side confluence point a of the compressors 3a, 3b, 3c and the temperature of the suction side confluence point b of the compressors 3a, 3b, 3c. Alternatively, a suction temperature sensor 11 or a suction pressure sensor 11 ′ for detecting pressure is provided, respectively, and the suction side of each of the compressors 3a, 3b, 3c according to the high pressure P detected by the discharge pressure sensor 10 during cooling operation. The temperature or pressure at the junction b is shifted higher by a predetermined value than the target temperature or pressure during normal operation, and the operation / stop of each of the compressors 3a, 3b, 3c is controlled according to the temperature or pressure after this shift. With this configuration, the control method of the multi-chamber air conditioner that controls the stop operation of the protection circuit due to the high pressure rise to be reduced by reducing the refrigerant circulation amount controlled from the combination of the compressors. .
[0024]
【The invention's effect】
As described above, according to the present invention, the suction temperature or pressure is shifted higher by a predetermined value in accordance with the high pressure of the compressor, and the amount of refrigerant circulation controlled by the combination of the compressors is reduced. This is a control method for a multi-room air conditioner that controls to reduce the stop operation of the protection circuit due to ascent.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram showing an embodiment of a control method for a multi-room air conditioner according to the present invention.
FIG. 2 is a combination table of operation / stop steps of each compressor in the present invention.
FIG. 3 is a table showing the relationship between the high pressure and the target temperature or pressure on the compressor suction side in the present invention.
FIG. 4 is a table for forcibly reducing compressor operation / stop steps according to the present invention.
FIG. 5 is a control block diagram in the present invention.
[Fig. 6]
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2a, 2b, 2c Indoor unit 3a, 3b, 3c Compressor 4 Four way valve 5 Outdoor heat exchanger 6 Expansion valve 7a, 7b, 7c Electronic expansion valve 8a, 8b, 8c Indoor heat exchanger 9 Control part 9a Discharge Pressure detecting unit 9b Suction temperature / suction pressure detecting unit 9c Target temperature or pressure setting unit 9d Comparison calculating unit 9e Drive unit 10 Discharge pressure sensor 11 Suction temperature sensor 11 'Suction pressure sensor

Claims (3)

並列に接続された容量が夫々異なる複数台の圧縮機と、四方弁と、室外熱交換器と、膨脹弁を備えた室外ユニットと、室内熱交換器と絞り機構を備えた複数の室内ユニットとを接続して冷媒回路を構成し、前記室内ユニットの運転状況に応じて、前記各圧縮機の運転/停止を夫々組合せて制御してなる多室形空気調和機において、
前記各圧縮機の吐出側合流点の圧力を検出する吐出圧力センサと、前記各圧縮機の吸入側合流点の温度を検出する吸入温度センサ、または圧力を検出する吸入圧力センサを夫々設け、冷房運転時に、前記吐出圧力センサが検出した高圧圧力に応じて、前記各圧縮機の吸入側合流点の温度または圧力を、通常運転時の目標温度または圧力より所定値高くシフトさせ、このシフト後の温度または圧力応じて、前記各圧縮機の運転/停止を制御してなることを特徴とする多室形空気調和機の制御方法。
A plurality of compressors having different capacities connected in parallel, a four-way valve, an outdoor heat exchanger, an outdoor unit having an expansion valve, and a plurality of indoor units having an indoor heat exchanger and a throttle mechanism; In a multi-room air conditioner that is configured by connecting a refrigerant circuit to control the operation / stop of each compressor in combination according to the operation status of the indoor unit,
A discharge pressure sensor for detecting the pressure at the discharge side merging point of each compressor, a suction temperature sensor for detecting the temperature of the suction side merging point of each compressor, or a suction pressure sensor for detecting pressure are provided, respectively. During operation, the temperature or pressure at the suction side confluence of each compressor is shifted higher by a predetermined value than the target temperature or pressure during normal operation according to the high pressure detected by the discharge pressure sensor, and after this shift A control method for a multi-chamber air conditioner, wherein operation / stop of each compressor is controlled according to temperature or pressure.
前記吐出圧力センサが検出した高圧圧力が所定値以上に達した時、前記複数台の圧縮機の総合運転容量を下げてなることを特徴とする請求項1記載の多室形空気調和機の制御方法。2. The control of a multi-room air conditioner according to claim 1, wherein when the high pressure detected by the discharge pressure sensor reaches a predetermined value or more, the total operating capacity of the plurality of compressors is lowered. Method. 前記各圧縮機が一定速型圧縮機からなることを特徴とする請求項1記載の多室形空気調和機の制御方法。2. The method of controlling a multi-room air conditioner according to claim 1, wherein each of the compressors is a constant speed type compressor.
JP2002308008A 2002-10-23 2002-10-23 Control method of multi-room air conditioner Expired - Fee Related JP4063041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308008A JP4063041B2 (en) 2002-10-23 2002-10-23 Control method of multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308008A JP4063041B2 (en) 2002-10-23 2002-10-23 Control method of multi-room air conditioner

Publications (2)

Publication Number Publication Date
JP2004144351A JP2004144351A (en) 2004-05-20
JP4063041B2 true JP4063041B2 (en) 2008-03-19

Family

ID=32454266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308008A Expired - Fee Related JP4063041B2 (en) 2002-10-23 2002-10-23 Control method of multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP4063041B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4959800B2 (en) * 2007-07-18 2012-06-27 三菱電機株式会社 Operation control method of refrigeration cycle apparatus
US11105529B2 (en) 2014-05-15 2021-08-31 Carrier Corporation Multi-zone indoor climate control and a method of using the same
CN105333563B (en) * 2014-07-29 2018-02-16 海信(山东)空调有限公司 A kind of refrigeration control method, device and air conditioner
JP2018063056A (en) * 2015-02-27 2018-04-19 東芝キヤリア株式会社 Refrigeration cycle device
JP6448775B2 (en) * 2015-04-28 2019-01-09 三菱電機株式会社 Air conditioner
CN111121245B (en) * 2019-12-25 2021-01-15 宁波奥克斯电气股份有限公司 Air conditioner control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120091A (en) * 1993-10-26 1995-05-12 Toshiba Ave Corp Air conditioner
JPH10170085A (en) * 1996-12-04 1998-06-26 Toshiba Ave Corp Air conditioner
JP3593592B2 (en) * 1999-09-30 2004-11-24 株式会社日立製作所 Air conditioner

Also Published As

Publication number Publication date
JP2004144351A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
US20080209928A1 (en) System and method for controlling air conditioner
KR100465723B1 (en) A cooling drive method of air-conditioner
US6843066B2 (en) Air conditioning system and method for controlling the same
CN111780362B (en) Air conditioner and control method thereof
US6807817B2 (en) Method for operating compressors of air conditioner
JP2004340470A (en) Refrigeration unit
US6807816B2 (en) Air conditioning system with two compressors and method for operating the same
CN109237844B (en) Air conditioning system, and refrigeration control method and device of air conditioning system
CN111442510B (en) Multi-split air conditioning system, control method and control device thereof, and storage medium
US6843425B2 (en) Air conditioner and method for controlling the same
KR20060066837A (en) Method for controlling indoor unit of multi-air conditioner
KR100640856B1 (en) Control method for multi-airconditioner
US9958188B2 (en) Air conditioner and method of operating an air conditioner
JP4063041B2 (en) Control method of multi-room air conditioner
JP3334601B2 (en) Air conditioner with natural circulation
US6808119B2 (en) Heat pump air conditioning system comprising additional heater and method for operating the same
KR101964946B1 (en) temperature compensated cooling system high efficiency
US11162723B2 (en) Methods and systems for controlling working fluid in HVACR systems
KR100528292B1 (en) Heat-pump type air conditioner
JP7438342B2 (en) air conditioner
US20220412622A1 (en) Refrigeration cycle apparatus
US6669102B1 (en) Method for operating air conditioner in warming mode
JP2004116978A (en) Controller for multi-room air conditioner
KR100505234B1 (en) Heating control method of heat pump system
JP2003302111A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees