JP2004144351A - Control method of multi-room type air conditioner - Google Patents

Control method of multi-room type air conditioner Download PDF

Info

Publication number
JP2004144351A
JP2004144351A JP2002308008A JP2002308008A JP2004144351A JP 2004144351 A JP2004144351 A JP 2004144351A JP 2002308008 A JP2002308008 A JP 2002308008A JP 2002308008 A JP2002308008 A JP 2002308008A JP 2004144351 A JP2004144351 A JP 2004144351A
Authority
JP
Japan
Prior art keywords
pressure
compressors
temperature
suction
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002308008A
Other languages
Japanese (ja)
Other versions
JP4063041B2 (en
Inventor
Takahiro Matsunaga
松永 隆廣
Shuntaro Ito
伊藤 俊太郎
Hin Sai
蔡 品
Takao Aichi
愛知 隆夫
Tetsuya Ito
伊藤 哲也
Teiyuya Aun
アウン ティユヤ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2002308008A priority Critical patent/JP4063041B2/en
Publication of JP2004144351A publication Critical patent/JP2004144351A/en
Application granted granted Critical
Publication of JP4063041B2 publication Critical patent/JP4063041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of a multi-room type air conditioner for shifting up a suction temperature by a predetermined value in accordance with high pressure of a compressor, reducing the circulation of a refrigerant controlled on the basis of the combination of the compressors, and reducing the stop operation of a protecting circuit by the rise of high pressure. <P>SOLUTION: This multi-room type air conditioner having a refrigerant circuit configurated by connecting the plurality of compressors 3a, 3b, 3c connected in parallel, an outdoor unit comprising a four-way valve, an outdoor heat exchanger and an expansion valve, and a plurality of indoor units comprising indoor heat exchangers, is provided with a discharge pressure sensor 10 for detecting the pressure of a discharge-side confluence of the compressors 3a, 3b, 3c, and a suction temperature sensor 11 or a suction pressure sensor 11' for detecting a temperature or a pressure of a suction-side junction of the compressors 3a, 3b, 3c. The suction-side temperature or pressure of the compressors 3a, 3b, 3c is shifted up by the predetermined value with respect to the target temperature or pressure in normal operation, in accordance with the high pressure detected by the discharge pressure sensor 10, and the operation/stop of the compressors 3a, 3b, 3c are controlled on the basis of the temperature or pressure after the shifting. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、室外ユニットと複数台の室内ユニットからなる多室形空気調和機の制御方法に係わり、より詳しくは、圧縮機の高圧圧力に応じて、吸入温度又は圧力を所定値高くシフトさせ、高圧保護回路の動作を少なくなるよう制御する制御方法に関する。
【0002】
【従来の技術】
従来より部屋数の多いビルディング等では、複数の室内ユニットを有する多室型(マルチタイプ)の空気調和機が用いられ、多室形空気調和機の室内ユニットの運転状況(台数、負荷変動)に応じて、冷媒循環量が変化する。冷房運転時の冷媒循環量を制御する方法として、低圧圧力、蒸発温度、過熱度などを検知して膨脹弁の開度を調整する方法がある(例えば、特許文献1参照。)。
これは、冷房能力を十分出せる低圧圧力、蒸発温度、過熱度などを目標として圧縮機の冷媒循環量を制御しているが、室内外の負荷(空気温度等)が高い場合、低圧圧力、蒸発温度、過熱度は上昇するため、冷房能力を維持(目標の低圧、蒸発温度、過熱度を維持)するには、冷媒循環量を増加する必要があった。
【0003】
しかしながら、高負荷条件での冷房運転は冷媒回路内の冷媒圧力が上昇するため冷媒循環量を増加させると、高圧圧力が設計圧力を超えてしまうこともあり、保護回路(高圧スイッチ等)による圧縮機の停止が頻繁に発生してしまい、信頼性に問題があった。
【0004】
【特許文献1】
特開平7−120091号公報(第6−8頁、第1−2図)。
【0005】
【発明が解決しようとする課題】
本発明においては、上記の問題点に鑑み、圧縮機の高圧圧力に応じて、吸入温度又は圧力を所定値高くシフトさせ、圧縮機の組合せから制御される冷媒循環量を減少させることにより、高圧上昇による保護回路の停止動作を少なくなるよう制御する多室形空気調和機の制御方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するため、並列に接続された容量が夫々異なる複数台の圧縮機と、四方弁と、室外熱交換器と、膨脹弁を備えた室外ユニットと、室内熱交換器と絞り機構を備えた複数の室内ユニットとを接続して冷媒回路を構成し、前記室内ユニットの運転状況に応じて、前記各圧縮機の運転/停止を夫々組合せて制御してなる多室形空気調和機において、
前記各圧縮機の吐出側合流点の圧力を検出する吐出圧力センサと、前記各圧縮機の吸入側合流点の温度を検出する吸入温度センサ、または圧力を検出する吸入圧力センサを夫々設け、冷房運転時に、前記吐出圧力センサが検出した高圧圧力に応じて、前記各圧縮機の吸入側合流点の温度または圧力を、通常運転時の目標温度または圧力より所定値高くシフトさせ、このシフト後の温度または圧力応じて、前記各圧縮機の運転/停止を制御してなる構成となっている。
【0007】
また、前記吐出圧力センサが検出した高圧圧力が所定値以上に達した時、前記複数台の圧縮機の総合運転容量を下げてなる構成となっている。
【0008】
また、前記各圧縮機が一定速型圧縮機からなる構成となっている。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に基づいた実施例として説明する。
図1は本発明による多室形空気調和機の冷媒回路の構成図である。図において、1は室外に設置された室外ユニット、2a,2b,2cは夫々並列に接続された3台の室内ユニットである。
【0010】
前記室外ユニット1は、並列に接続された夫々容量(能力)の異なる一定速形の3台の圧縮機、例えば小容量の圧縮機3a、中容量の圧縮機3b、大容量の圧縮機3cと、四方弁4と、室外熱交換器5と、膨張弁6とを夫々接続して構成され、また前記室内ユニット2a,2b,2cは、夫々電子膨張弁7a,7b,7cと、室内熱交換器8a,8b,8cとを夫々接続して構成されている。
【0011】
これら前記室外ユニット1と前記室内ユニット2a,2b,2cとが第一接続部A1と第二接続部A2を介して冷媒配管により接続され冷媒回路が構成され、前記室内ユニット2a,2b,2cの運転台数などの負荷変動に応じて、前記各圧縮機3a,3b,3cの運転/停止を夫々組合せて切換るように、制御部9により制御するようなされている。
【0012】
前記各圧縮機3a,3b,3cの吐出側合流点aには吐出冷媒の圧力(高圧)を検出する吐出圧力センサ10が設けられている。また、前記各圧縮機の3a,3b,3c吸入側合流点bには吸入冷媒の温度を検出する吸入温度センサ11、又は吸入冷媒の圧力(低圧)を検出する吸入圧力センサ11’ が設けられている。
【0013】
上記において、冷房運転時には、図1中実線矢印で示すように、圧縮機3a,3b,3cで高温高圧となったガス冷媒が、室外熱交換器5に送られ、室外空気との間の熱交換によりガス冷媒が冷却され凝縮し、高温高圧の液冷媒となる。この高温高圧の液冷媒は、膨張弁6において減圧されて低温低圧の液冷媒となる。この低温低圧の液冷媒は、室内熱交換ユニット2a,2b,2cに送られ、室内空気との間の熱交換により室内空気を冷却するとともに、自身は加温され蒸発して低温低圧のガス冷媒となる。この際、室内熱交換器8a,8b,8cは液冷媒を蒸発させる蒸発器として機能する。この低温低圧のガス冷媒は、四方弁4を経て圧縮機3a,3b,3cに戻されて高温高圧のガス冷媒となり、以後この過程が繰り返される。
【0014】
また暖房運転時においては、破線矢印で示すように、圧縮機3a,3b,3cを経た冷媒が室内熱交換ユニット2a,2b,2cに流れるように四方弁4を設定され、室内熱交換ユニット2a,2b,2cが凝縮器として機能し、室外熱交換器5が蒸発器として機能する以外は冷房運転時と同じである。
【0015】
図2に示すように、前記3台の圧縮機3a,3b,3cを組合せた場合、運転状況(負荷変動)に応じて運転/停止の組合せステップは0(全て停止)〜7(全て運転)までの8通りの組合せが作りだせる。
ここで、前記3台の圧縮機3a,3b,3cの冷媒循環量を、圧縮機3a<圧縮機3b<圧縮機3cとしてある。また、前記各ステップの冷媒循環量を、ステップ1<ステップ2<・・・・・<ステップ7としてある。
【0016】
上記構成において、冷房運転時に、前記吐出圧力センサ10が検出した高圧圧力に応じて、吸入側の目標温度又は目標圧力を以下のように設定する(図3)。
高圧<PH1の時、
目標温度(圧力)のシフト量 0( 0)、シフト後T0(P0)
PH1≦高圧<PH2の時、
目標温度(圧力)のシフト量ΔT1(ΔP1)、シフト後T0+ΔT1(P0 +ΔP1)
PH2<高圧<PH3の時、
目標温度(圧力)のシフト量ΔT2(ΔP2)、シフト後T0+ΔT2(P0 +ΔP2)
但し、
PH1<PH2<PH3、ΔT1<ΔT2、ΔP1<ΔP2とする。
【0017】
前記シフト後の目標温度又は、目標圧力に応じて前記圧縮機3a,3b,3cの運転/停止を制御する。吸入側の温度又は圧力が上昇すると冷媒循環量が低下し、高圧も低下する。
尚、前記吐出圧力センサ10が検出した高圧圧力がPH3以上に達した場合は、前記圧縮機3a,3b,3cの運転/停止ステップを、図4に示すように、強制的にステップダウンさせる。これにより、冷媒循環量を低下させ高圧圧力を下げる。
【0018】
次に上記構成において、本発明の制御動作について、図5の制御ブロック図及び図6のフローチャート図に基づいて説明する。
図5において、前記制御部9は、前記圧縮機3a,3b,3cの吐出側の吐出圧力センサ10が検出したを検知する吐出圧力検出部9aと、吸入側の吸入温度センサ11、又は吸入圧力センサ11’ が検出した温度又は圧力を検知する吸入温度・吸入圧力検出部9bと、前記吐出圧力センサ10が検出した高圧圧力に応じて、吸入側の目標温度又は、目標圧力のシフト量を予め記憶設定する目標温度又は圧力設定部9cと、前記吐出圧力検出部9aの高圧圧力に応じて、前記吸入温度・吸入圧力検出部9bの温度又は圧力と、前記目標温度又は圧力設定部9cのシフト量とを比較演算し、シフト後の吸入側の目標温度又は圧力を算出する比較演算部9dと、冷房運転時に、前記比較演算部9dの制御信号により、前記圧縮機3a,3b,3cを駆動制御する駆動部9eとから構成することにより、前記吸入温度又は圧力が上昇すると、冷媒循環量を低下させように、前記圧縮機3a,3b,3cの運転/停止の組合せステップを制御し、高圧圧力を低下させ、高圧上昇による高圧保護回路の停止を回避するよう制御する。
【0019】
図6のフローチャート図において、多室形空気調和機の運転がスタートすると、まず、ステップST1で冷房運転かどうか判定される。もし冷房運転であれば、ステップST2で高圧(吐出圧力)PがPH1 以下かどうか判断され、以下であれば、ステップ3でシフト量に応じて、目標吸入温度T0又は圧力P0に設定・比較演算され、ステップ4で圧縮機の組合せを目標ステップに制御し終了する(ST5) 。
【0020】
次に、前記ステップST2で高圧PがPH1 以下でなければ、ステップST6で高圧Pが、PH1 ≦P <PH2 の範囲内かどうか判定される。もし、範囲内であれば、ステップST7でシフト量に応じて、目標吸入温度T0+ΔT1又は圧力(P0 +ΔP1) に設定・比較演算され、上記と同様ステップ4で圧縮機の組合せを目標ステップに制御し終了する(ST5) 。
【0021】
また、前記ステップST6で高圧PがPH1 ≦P <PH2 の範囲内でなければ、ステップST8で高圧Pが、PH2 ≦P <PH3 の範囲内かどうか判定される。もし、範囲内であれば、ステップST9でシフト量に応じて、目標吸入温度T0+ΔT2又は圧力(P0 +ΔP2) に設定・比較演算され、上記と同様ステップ4で圧縮機の組合せを目標ステップに制御し終了する(ST5) 。
【0022】
更に、前記ステップST8で高圧PがPH2 ≦P <PH3 の範囲内でなければ、ステップST10で高圧Pが、PH3 以上かどうか判定される。もし、以上であれば、ステップST10で図4に示すように、圧縮機ステップを強制的にステップダウンさせた制御がなされ終了する(ST5) 。もし、以上でなければ、ステップST2に戻り動作が繰り替えされる。
【0023】
以上に説明したように、前記各圧縮機3a,3b,3cの吐出側合流点aの圧力を検出する吐出圧力センサ10と、前記各圧縮機3a,3b,3cの吸入側合流点bの温度または圧力を検出する吸入温度センサ11または吸入圧力センサ11’ を夫々設け、冷房運転時に、前記吐出圧力センサ10が検出した高圧圧力Pに応じて、前記各圧縮機3a,3b,3cの吸入側合流点bの温度または圧力を、通常運転時の目標温度または圧力より所定値高くシフトさせ、このシフト後の温度または圧力応じて、前記各圧縮機3a,3b,3cの運転/停止を制御してなる構成とすることにより、圧縮機の組合せから制御される冷媒循環量を減少させることにより、高圧上昇による保護回路の停止動作を少なくなるよう制御する多室形空気調和機の制御方法となる。
【0024】
【発明の効果】
以上説明したように、本発明によれば、圧縮機の高圧圧力に応じて、吸入温度又は圧力を所定値高くシフトさせ、圧縮機の組合せから制御される冷媒循環量を減少させることにより、高圧上昇による保護回路の停止動作を少なくなるよう制御する多室形空気調和機の制御方法となる。
【図面の簡単な説明】
【図1】本発明における多室形空気調和機の制御方法の実施例を示す冷媒回路図である。
【図2】本発明における各圧縮機の運転・停止ステップの組合せ表である。
【図3】本発明における高圧圧力と圧縮機吸入側の目標温度又は圧力の関係を示す表である。
【図4】本発明における圧縮機の運転・停止ステップを強制的にダウンさせるための表である。
【図5】本発明における制御ブロック図である。
【図6】
【符号の説明】
1 室外ユニット
2a、2b、2c 室内ユニット
3a、3b、3c 圧縮機
4 四方弁
5 室外熱交換器
6 膨張弁
7a、7b、7c 電子膨張弁
8a、8b、8c 室内熱交換器
9 制御部
9a 吐出圧力検出部
9b 吸入温度・吸入圧力検出部
9c 目標温度又は圧力設定部
9d 比較演算部
9e 駆動部
10 吐出圧力センサ
11 吸入温度センサ
11’吸入圧力センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control method of a multi-room air conditioner including an outdoor unit and a plurality of indoor units, and more specifically, shifts a suction temperature or a pressure higher by a predetermined value according to a high pressure of a compressor, The present invention relates to a control method for controlling the operation of a high-voltage protection circuit to be reduced.
[0002]
[Prior art]
In a building or the like having a larger number of rooms than before, a multi-room type (multi-type) air conditioner having a plurality of indoor units is used, and the operation status (number, load fluctuation) of the indoor units of the multi-room air conditioner is determined. Accordingly, the refrigerant circulation amount changes. As a method of controlling the refrigerant circulation amount during the cooling operation, there is a method of detecting the low pressure, the evaporation temperature, the degree of superheat, and the like, and adjusting the opening of the expansion valve (for example, see Patent Document 1).
In this method, the amount of refrigerant circulating in the compressor is controlled with the target of low pressure, evaporation temperature, and degree of superheat that can provide sufficient cooling capacity. However, when indoor and outdoor loads (air temperature, etc.) are high, low pressure pressure, evaporation Since the temperature and the degree of superheat increase, it is necessary to increase the amount of circulating refrigerant to maintain the cooling capacity (maintain the target low pressure, the evaporation temperature, and the degree of superheat).
[0003]
However, in the cooling operation under a high load condition, the refrigerant pressure in the refrigerant circuit increases, so if the refrigerant circulation amount is increased, the high pressure may exceed the design pressure, and the compression by the protection circuit (high pressure switch, etc.) may be performed. Frequent stoppage of the machine caused reliability problems.
[0004]
[Patent Document 1]
JP-A-7-120091 (page 6-8, FIG. 1-2).
[0005]
[Problems to be solved by the invention]
In the present invention, in view of the above problems, the suction temperature or the pressure is shifted to a predetermined value higher according to the high pressure of the compressor, and the refrigerant circulation amount controlled from the combination of the compressors is reduced to increase the high pressure. It is an object of the present invention to provide a control method of a multi-room air conditioner that controls so that a stop operation of a protection circuit due to a rise is reduced.
[0006]
[Means for Solving the Problems]
The present invention, in order to solve the above problems, a plurality of compressors each having a different capacity connected in parallel, a four-way valve, an outdoor heat exchanger, an outdoor unit equipped with an expansion valve, and an indoor heat exchanger. A multi-chamber air system comprising a plurality of indoor units each having a throttle mechanism connected to form a refrigerant circuit, and the operation / stop of each of the compressors is controlled in combination according to the operation state of the indoor units. In the harmonic machine,
A discharge pressure sensor for detecting a pressure at a discharge-side junction of each of the compressors; a suction temperature sensor for detecting a temperature at a suction-side junction of each of the compressors; or a suction pressure sensor for detecting the pressure. During operation, the temperature or pressure at the merging point on the suction side of each of the compressors is shifted by a predetermined value higher than the target temperature or pressure during normal operation according to the high pressure detected by the discharge pressure sensor. The operation / stop of each of the compressors is controlled according to the temperature or the pressure.
[0007]
Further, when the high pressure detected by the discharge pressure sensor reaches a predetermined value or more, the total operating capacity of the plurality of compressors is reduced.
[0008]
Each of the compressors is constituted by a constant speed compressor.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described as examples based on the accompanying drawings.
FIG. 1 is a configuration diagram of a refrigerant circuit of a multi-room air conditioner according to the present invention. In the figure, 1 is an outdoor unit installed outdoors, and 2a, 2b, and 2c are three indoor units connected in parallel, respectively.
[0010]
The outdoor unit 1 includes three compressors connected in parallel and having different capacities (capacities) of a constant speed type, for example, a small capacity compressor 3a, a medium capacity compressor 3b, and a large capacity compressor 3c. , The four-way valve 4, the outdoor heat exchanger 5, and the expansion valve 6 are connected to each other, and the indoor units 2a, 2b, 2c are connected to the electronic expansion valves 7a, 7b, 7c, respectively. The devices 8a, 8b and 8c are connected to each other.
[0011]
The outdoor unit 1 and the indoor units 2a, 2b, 2c are connected by a refrigerant pipe via a first connection part A1 and a second connection part A2 to form a refrigerant circuit, and the indoor units 2a, 2b, 2c The control unit 9 controls the compressors 3a, 3b, and 3c to switch the operation / stop according to load fluctuations such as the number of operating units.
[0012]
A discharge pressure sensor 10 for detecting the pressure (high pressure) of the discharged refrigerant is provided at the discharge-side junction a of each of the compressors 3a, 3b, 3c. A suction temperature sensor 11 for detecting the temperature of the suction refrigerant or a suction pressure sensor 11 'for detecting the pressure (low pressure) of the suction refrigerant is provided at the junction 3a, 3b, 3c on the suction side of each compressor. ing.
[0013]
In the above, during the cooling operation, as shown by solid arrows in FIG. 1, the gas refrigerant which has become high temperature and high pressure in the compressors 3a, 3b, 3c is sent to the outdoor heat exchanger 5, and the heat exchange with the outdoor air is performed. The gas refrigerant is cooled and condensed by the exchange, and becomes a high-temperature and high-pressure liquid refrigerant. The high-temperature and high-pressure liquid refrigerant is reduced in pressure in the expansion valve 6 to become a low-temperature and low-pressure liquid refrigerant. The low-temperature and low-pressure liquid refrigerant is sent to the indoor heat exchange units 2a, 2b and 2c, and cools the indoor air by exchanging heat with the indoor air. It becomes. At this time, the indoor heat exchangers 8a, 8b, 8c function as evaporators for evaporating the liquid refrigerant. The low-temperature and low-pressure gas refrigerant is returned to the compressors 3a, 3b and 3c via the four-way valve 4 to become a high-temperature and high-pressure gas refrigerant, and this process is repeated thereafter.
[0014]
During the heating operation, the four-way valve 4 is set so that the refrigerant passing through the compressors 3a, 3b, 3c flows to the indoor heat exchange units 2a, 2b, 2c, as indicated by the dashed arrows, and the indoor heat exchange unit 2a , 2b, and 2c function as condensers, and are the same as in the cooling operation except that the outdoor heat exchanger 5 functions as an evaporator.
[0015]
As shown in FIG. 2, when the three compressors 3a, 3b, 3c are combined, the operation / stop combination step is 0 (all stop) to 7 (all operation) according to the operation condition (load fluctuation). Up to eight combinations can be created.
Here, the refrigerant circulation amounts of the three compressors 3a, 3b, 3c are set as compressor 3a <compressor 3b <compressor 3c. Further, the refrigerant circulation amount in each step is defined as Step 1 <Step 2 <... <Step 7.
[0016]
In the above configuration, during the cooling operation, the target temperature or the target pressure on the suction side is set as follows according to the high pressure detected by the discharge pressure sensor 10 (FIG. 3).
When high pressure <PH1,
Shift amount of target temperature (pressure) 0 (0), T0 (P0) after shift
When PH1 ≦ high pressure <PH2,
Shift amount ΔT1 (ΔP1) of target temperature (pressure), T0 + ΔT1 after shift (P0 + ΔP1)
When PH2 <high pressure <PH3,
Shift amount ΔT2 (ΔP2) of target temperature (pressure), T0 + ΔT2 after shift (P0 + ΔP2)
However,
It is assumed that PH1 <PH2 <PH3, ΔT1 <ΔT2, and ΔP1 <ΔP2.
[0017]
The operation / stop of the compressors 3a, 3b, 3c is controlled according to the target temperature or the target pressure after the shift. When the temperature or pressure on the suction side increases, the amount of circulating refrigerant decreases, and the high pressure also decreases.
When the high pressure detected by the discharge pressure sensor 10 reaches PH3 or more, the operation / stopping steps of the compressors 3a, 3b, 3c are forcibly stepped down as shown in FIG. Thereby, the refrigerant circulation amount is reduced, and the high pressure is reduced.
[0018]
Next, in the above configuration, the control operation of the present invention will be described based on the control block diagram of FIG. 5 and the flowchart of FIG.
In FIG. 5, the control unit 9 includes a discharge pressure detection unit 9a for detecting the detection by the discharge pressure sensor 10 on the discharge side of the compressors 3a, 3b, 3c, a suction temperature sensor 11 on the suction side, or a suction pressure. A suction temperature / suction pressure detection unit 9b for detecting a temperature or pressure detected by the sensor 11 ', and a target temperature or a shift amount of the target pressure on the suction side in advance according to the high pressure detected by the discharge pressure sensor 10. The target temperature or pressure setting unit 9c to be stored and set, and the temperature or pressure of the suction temperature / suction pressure detection unit 9b and the shift of the target temperature or pressure setting unit 9c according to the high pressure of the discharge pressure detection unit 9a. And a compressor 3a, 3b, 3c based on a control signal of the comparison operation unit 9d during a cooling operation. With the drive unit 9e for controlling the drive, when the suction temperature or the pressure increases, the combination step of the operation / stop of the compressors 3a, 3b, 3c is controlled so as to decrease the refrigerant circulation amount, The high pressure is reduced so that the high pressure protection circuit is prevented from being stopped due to the high pressure rise.
[0019]
In the flowchart of FIG. 6, when the operation of the multi-room air conditioner is started, first, in step ST1, it is determined whether the operation is the cooling operation. If it is a cooling operation, it is determined in step ST2 whether the high pressure (discharge pressure) P is equal to or less than PH1, and if not, in step 3, the target suction temperature T0 or the pressure P0 is set and compared according to the shift amount. Then, in step 4, the combination of the compressors is controlled to the target step, and the process ends (ST5).
[0020]
Next, if the high pressure P is not equal to or less than PH1 in step ST2, it is determined in step ST6 whether the high pressure P is in the range of PH1 ≦ P <PH2. If it is within the range, the target suction temperature T0 + ΔT1 or the pressure (P0 + ΔP1) is set and compared in step ST7 according to the shift amount, and the combination of the compressors is controlled to the target step in step 4 in the same manner as described above. The process ends (ST5).
[0021]
If the high pressure P is not in the range of PH1 ≦ P <PH2 in step ST6, it is determined in step ST8 whether the high pressure P is in the range of PH2 ≦ P <PH3. If it is within the range, the target suction temperature T0 + ΔT2 or the pressure (P0 + ΔP2) is set and compared in step ST9 according to the shift amount, and the combination of the compressors is controlled to the target step in step 4 in the same manner as described above. The process ends (ST5).
[0022]
Further, if the high pressure P is not in the range of PH2 ≦ P <PH3 in step ST8, it is determined in step ST10 whether the high pressure P is equal to or higher than PH3. If this is the case, as shown in FIG. 4, control for forcibly stepping down the compressor step is performed in step ST10, and the process ends (ST5). If not, the process returns to step ST2 and the operation is repeated.
[0023]
As described above, the discharge pressure sensor 10 for detecting the pressure at the discharge side junction point a of each of the compressors 3a, 3b, 3c, and the temperature at the suction side junction point b of each of the compressors 3a, 3b, 3c. Alternatively, a suction temperature sensor 11 or a suction pressure sensor 11 'for detecting pressure is provided, respectively, and during a cooling operation, the suction side of each of the compressors 3a, 3b, 3c according to the high pressure P detected by the discharge pressure sensor 10. The temperature or pressure at the junction b is shifted by a predetermined value higher than the target temperature or pressure during normal operation, and the operation / stop of each of the compressors 3a, 3b, 3c is controlled in accordance with the shifted temperature or pressure. The configuration of the multi-chamber air conditioner, which reduces the amount of refrigerant circulation controlled by the combination of the compressors and thereby controls the stop operation of the protection circuit due to the high pressure rise, is reduced. The way.
[0024]
【The invention's effect】
As described above, according to the present invention, the suction temperature or the pressure is shifted to a predetermined value higher according to the high pressure of the compressor, and the refrigerant circulating amount controlled from the combination of the compressors is reduced to thereby increase the high pressure. A control method of a multi-room air conditioner that controls so as to reduce a stop operation of a protection circuit due to a rise is provided.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram showing an embodiment of a control method of a multi-room air conditioner according to the present invention.
FIG. 2 is a combination table of operation / stop steps of each compressor in the present invention.
FIG. 3 is a table showing a relationship between a high pressure and a target temperature or pressure on a compressor suction side in the present invention.
FIG. 4 is a table for forcibly reducing the operation / stop step of the compressor in the present invention.
FIG. 5 is a control block diagram according to the present invention.
FIG. 6
[Explanation of symbols]
1 outdoor units 2a, 2b, 2c indoor units 3a, 3b, 3c compressor 4 four-way valve 5 outdoor heat exchanger 6 expansion valves 7a, 7b, 7c electronic expansion valves 8a, 8b, 8c indoor heat exchanger 9 control unit 9a discharge Pressure detection unit 9b Suction temperature / suction pressure detection unit 9c Target temperature or pressure setting unit 9d Comparison calculation unit 9e Drive unit 10 Discharge pressure sensor 11 Suction temperature sensor 11 'Suction pressure sensor

Claims (3)

並列に接続された容量が夫々異なる複数台の圧縮機と、四方弁と、室外熱交換器と、膨脹弁を備えた室外ユニットと、室内熱交換器と絞り機構を備えた複数の室内ユニットとを接続して冷媒回路を構成し、前記室内ユニットの運転状況に応じて、前記各圧縮機の運転/停止を夫々組合せて制御してなる多室形空気調和機において、
前記各圧縮機の吐出側合流点の圧力を検出する吐出圧力センサと、前記各圧縮機の吸入側合流点の温度を検出する吸入温度センサ、または圧力を検出する吸入圧力センサを夫々設け、冷房運転時に、前記吐出圧力センサが検出した高圧圧力に応じて、前記各圧縮機の吸入側合流点の温度または圧力を、通常運転時の目標温度または圧力より所定値高くシフトさせ、このシフト後の温度または圧力応じて、前記各圧縮機の運転/停止を制御してなることを特徴とする多室形空気調和機の制御方法。
A plurality of compressors each having a different capacity connected in parallel, a four-way valve, an outdoor heat exchanger, an outdoor unit having an expansion valve, and an indoor unit having an indoor heat exchanger and a throttle mechanism; To form a refrigerant circuit, and in accordance with the operation status of the indoor unit, in a multi-room air conditioner configured to control the operation / stop of each of the compressors in combination.
A discharge pressure sensor for detecting a pressure at a discharge-side junction of each of the compressors; a suction temperature sensor for detecting a temperature at a suction-side junction of each of the compressors; or a suction pressure sensor for detecting the pressure. During operation, the temperature or pressure at the merging point on the suction side of each of the compressors is shifted by a predetermined value higher than the target temperature or pressure during normal operation according to the high pressure detected by the discharge pressure sensor. A method for controlling a multi-room air conditioner, comprising controlling the operation / stop of each of the compressors according to temperature or pressure.
前記吐出圧力センサが検出した高圧圧力が所定値以上に達した時、前記複数台の圧縮機の総合運転容量を下げてなることを特徴とする請求項1記載の多室形空気調和機の制御方法。The control of the multi-room air conditioner according to claim 1, wherein when the high pressure detected by the discharge pressure sensor reaches a predetermined value or more, the total operating capacity of the plurality of compressors is reduced. Method. 前記各圧縮機が一定速型圧縮機からなることを特徴とする請求項1記載の多室形空気調和機の制御方法。2. The control method for a multi-room air conditioner according to claim 1, wherein each of the compressors is a constant speed compressor.
JP2002308008A 2002-10-23 2002-10-23 Control method of multi-room air conditioner Expired - Fee Related JP4063041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308008A JP4063041B2 (en) 2002-10-23 2002-10-23 Control method of multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308008A JP4063041B2 (en) 2002-10-23 2002-10-23 Control method of multi-room air conditioner

Publications (2)

Publication Number Publication Date
JP2004144351A true JP2004144351A (en) 2004-05-20
JP4063041B2 JP4063041B2 (en) 2008-03-19

Family

ID=32454266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308008A Expired - Fee Related JP4063041B2 (en) 2002-10-23 2002-10-23 Control method of multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP4063041B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011197A1 (en) * 2007-07-18 2009-01-22 Mitsubishi Electric Corporation Refrigerating cycle device and method for controlling operation of the same
CN105333563A (en) * 2014-07-29 2016-02-17 海信(山东)空调有限公司 Refrigeration control method and device and air conditioner
WO2016136979A1 (en) * 2015-02-27 2016-09-01 東芝キヤリア株式会社 Refrigeration cycle device
WO2016174750A1 (en) * 2015-04-28 2016-11-03 三菱電機株式会社 Air-conditioning device
CN111121245A (en) * 2019-12-25 2020-05-08 宁波奥克斯电气股份有限公司 Air conditioner control method
US11105529B2 (en) 2014-05-15 2021-08-31 Carrier Corporation Multi-zone indoor climate control and a method of using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120091A (en) * 1993-10-26 1995-05-12 Toshiba Ave Corp Air conditioner
JPH10170085A (en) * 1996-12-04 1998-06-26 Toshiba Ave Corp Air conditioner
JP2001099529A (en) * 1999-09-30 2001-04-13 Hitachi Ltd Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120091A (en) * 1993-10-26 1995-05-12 Toshiba Ave Corp Air conditioner
JPH10170085A (en) * 1996-12-04 1998-06-26 Toshiba Ave Corp Air conditioner
JP2001099529A (en) * 1999-09-30 2001-04-13 Hitachi Ltd Air conditioner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011197A1 (en) * 2007-07-18 2009-01-22 Mitsubishi Electric Corporation Refrigerating cycle device and method for controlling operation of the same
JPWO2009011197A1 (en) * 2007-07-18 2010-09-16 三菱電機株式会社 Operation control method of refrigeration cycle apparatus
JP4959800B2 (en) * 2007-07-18 2012-06-27 三菱電機株式会社 Operation control method of refrigeration cycle apparatus
US8353173B2 (en) 2007-07-18 2013-01-15 Mitsubishi Electric Corporation Refrigerating cycle apparatus and operation control method therefor
US11105529B2 (en) 2014-05-15 2021-08-31 Carrier Corporation Multi-zone indoor climate control and a method of using the same
CN105333563A (en) * 2014-07-29 2016-02-17 海信(山东)空调有限公司 Refrigeration control method and device and air conditioner
CN105333563B (en) * 2014-07-29 2018-02-16 海信(山东)空调有限公司 A kind of refrigeration control method, device and air conditioner
WO2016136979A1 (en) * 2015-02-27 2016-09-01 東芝キヤリア株式会社 Refrigeration cycle device
WO2016174750A1 (en) * 2015-04-28 2016-11-03 三菱電機株式会社 Air-conditioning device
JPWO2016174750A1 (en) * 2015-04-28 2017-11-24 三菱電機株式会社 Air conditioner
CN111121245A (en) * 2019-12-25 2020-05-08 宁波奥克斯电气股份有限公司 Air conditioner control method
CN111121245B (en) * 2019-12-25 2021-01-15 宁波奥克斯电气股份有限公司 Air conditioner control method

Also Published As

Publication number Publication date
JP4063041B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
US8505321B2 (en) Refrigeration apparatus with reduced constraints on placement of utilization unit relative to heat source unit
US6843066B2 (en) Air conditioning system and method for controlling the same
US6807817B2 (en) Method for operating compressors of air conditioner
JP4779791B2 (en) Air conditioner
KR100717444B1 (en) The mothod for control airconditioner and multy-airconditioner
CN111442510B (en) Multi-split air conditioning system, control method and control device thereof, and storage medium
CN111486574B (en) Air conditioning system, anti-condensation control method and device thereof, and storage medium
US7380411B2 (en) Heat source unit with switching means between heating and cooling
US6843425B2 (en) Air conditioner and method for controlling the same
JP2010164270A (en) Multiple chamber type air conditioner
JP2008025901A (en) Air conditioner
JP4063041B2 (en) Control method of multi-room air conditioner
US11162723B2 (en) Methods and systems for controlling working fluid in HVACR systems
JP7438342B2 (en) air conditioner
US20220412622A1 (en) Refrigeration cycle apparatus
JP3042506B2 (en) Refrigeration equipment
JP2004116978A (en) Controller for multi-room air conditioner
KR20050043089A (en) Heat pump
KR100941470B1 (en) A heat pump system and an operating control method for the same
JP2002228284A (en) Refrigerating machine
JP2003302111A (en) Air conditioner
JP7295318B1 (en) air conditioner
JP2003294292A (en) Air conditioner
KR200326239Y1 (en) Cooling system
CN116105393A (en) Cascade evaporation semi-cascade refrigeration system and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees