WO2016174750A1 - Air-conditioning device - Google Patents

Air-conditioning device Download PDF

Info

Publication number
WO2016174750A1
WO2016174750A1 PCT/JP2015/062888 JP2015062888W WO2016174750A1 WO 2016174750 A1 WO2016174750 A1 WO 2016174750A1 JP 2015062888 W JP2015062888 W JP 2015062888W WO 2016174750 A1 WO2016174750 A1 WO 2016174750A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
outdoor
temperature
compressor
outdoor unit
Prior art date
Application number
PCT/JP2015/062888
Other languages
French (fr)
Japanese (ja)
Inventor
和久 岩▲崎▼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017515333A priority Critical patent/JP6448775B2/en
Priority to PCT/JP2015/062888 priority patent/WO2016174750A1/en
Publication of WO2016174750A1 publication Critical patent/WO2016174750A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to an air conditioner that corrects an excessive increase in high pressure.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to provide an air conditioner that corrects an excessive increase in high-pressure pressure and is capable of continuous operation without causing an abnormal stop. .
  • An air conditioner includes at least one outdoor unit and at least one indoor unit connected in parallel to the outdoor unit, wherein the outdoor unit is a variable capacity compressor.
  • the outdoor unit has an expansion valve and an indoor heat exchanger, the compressor, the outdoor heat exchanger, the high and low pressure heat exchanger, the expansion
  • a first pressure sensor for detecting a pressure on the discharge side of the compressor, wherein the valve and the indoor heat exchanger are sequentially connected to each other by pipes to constitute a refrigeration cycle in which the refrigerant circulates;
  • a second pressure sensor for detecting the pressure on the suction side of the compressor, a first temperature sensor for detecting an outside air temperature, and a second temperature sensor for detecting a temperature on the outlet side of the outdoor heat exchanger during cooling operation;
  • the outlet of the high-low pressure heat exchanger during cooling operation A third temperature sensor that detects the temperature of the compressor and a control device that controls the frequency of the compressor.
  • the control device is calculated based on the pressure detected by the first pressure sensor.
  • Evaporating temperature a preset target evaporating temperature, a first increase / decrease value calculated based on the outside temperature detected by the first temperature sensor, the evaporating temperature, the target evaporating temperature, A first temperature calculated based on the condensation temperature calculated based on the pressure detected by the second pressure sensor and the degree of supercooling on the outlet side of the outdoor heat exchanger determined by the temperature detected by the second temperature sensor. 2 based on the increase / decrease value, the evaporation temperature, the target evaporation temperature, the degree of supercooling on the outlet side of the high / low pressure heat exchanger calculated by the condensation temperature and the temperature detected by the third temperature sensor.
  • Calculated A third variation value, the change amount of the frequency of the compressor from the determined which is intended to update the frequency of the compressor based on the bulking decrease value.
  • the frequency of the compressor is increased or decreased in consideration of the ambient load temperature (outside air temperature) and the refrigerant distribution state (supercooling degree) in addition to the evaporation temperature and the target evaporation temperature. Determine the value.
  • the air conditioner can be continuously operated without abnormally stopping.
  • FIG. 1 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • This air conditioner performs a cooling operation or a heating operation using a refrigeration cycle (heat pump cycle) for circulating a refrigerant.
  • a refrigeration cycle heat pump cycle
  • the air conditioner according to Embodiment 1 includes a heat source unit (outdoor unit 10) and two usage-side units (indoor unit 50a and indoor unit 50b) connected by refrigerant piping.
  • the two usage-side units are connected in parallel to one heat source machine to communicate with each other.
  • the air conditioner connects each device (component) mounted on one heat source unit and each device (component) mounted on two usage-side units by refrigerant piping.
  • the refrigerant piping of the air conditioner includes gas branch pipes connected to each indoor unit (a gas branch pipe 206a connected to the indoor unit 50a and a gas branch pipe 206b connected to the indoor unit 50b), and an outdoor unit. 10 and the gas branch pipe 206 connecting the gas branch pipe 206 and the liquid branch pipe connected to each indoor unit (the liquid branch pipe 207a connected to the indoor unit 50a and the liquid branch connected to the indoor unit 50b). A pipe 207b) and a liquid pipe 205 connecting the outdoor unit 10 and the liquid branch pipe 207.
  • the outdoor unit 10 and the indoor unit 50a are connected via a gas pipe 204, a gas branch pipe 206a, a liquid branch pipe 207a, and a liquid pipe 205.
  • the outdoor unit 10 and the indoor unit 50b are connected to the gas pipe 204.
  • the gas branch pipe 206b, the liquid branch pipe 207b, and the liquid pipe 205 are connected to each other.
  • the outdoor unit 10 includes a compressor 1, an oil separator 2, a check valve 3, four-way valves 4-1 and 4-2 (hereinafter also collectively referred to as a four-way valve 4), an outdoor heat exchanger 5, , High / low pressure heat exchanger 6, flow rate adjustment valve 8, liquid side on / off valve 9, gas side on / off valve 11, accumulator 12, oil return bypass capillary 13, oil return bypass solenoid valve 14, bypass A flow rate adjusting valve 7 is mounted.
  • Compressor 1, oil separator 2, check valve 3, four-way valve 4, outdoor heat exchanger 5, high / low pressure heat exchanger 6, flow control valve 8, liquid side on / off valve 9, gas side on / off valve 11, and accumulator 12 are provided so as to be connected in series by a refrigerant pipe.
  • the high / low pressure heat exchanger 6 is provided in the liquid pipe 26 between the outdoor heat exchanger 5 and the flow rate adjusting valve 8.
  • the high / low pressure heat exchanger 6 includes a liquid pipe 26 and a liquid pipe 26 between the high / low pressure heat exchanger 6 and the flow rate adjusting valve 8, that is, a liquid pipe 26 on the upstream side of the high / low pressure heat exchanger 6.
  • a bypass pipe 23 connected to the upstream side of the accumulator 12 is connected.
  • the bypass flow rate adjusting valve 7 is provided in the bypass pipe 23 between the high / low pressure heat exchanger 6 and the flow rate adjusting valve 8.
  • the oil return bypass capillary 13 and the oil return bypass solenoid valve 14 are provided in the oil return bypass circuit 30 connecting the oil separator 2 and the suction pipe 31 connecting the accumulator 12 and the compressor 1. It has been.
  • the oil return bypass capillary 13 is provided to connect the upstream side and the downstream side of the oil return bypass electromagnetic valve 14 so as to bypass the oil return bypass electromagnetic valve 14.
  • a point where the liquid pipe 26 and the bypass pipe 23 are connected is a connection point 25, a pipe on the upstream side of the bypass pipe 23 and the accumulator 12 (a refrigerant pipe between the four-way valve 4 and the accumulator 12). ) Is connected to a connection point 24.
  • the outdoor unit 10 is equipped with a control device 27 that controls driving of each actuator (for example, the compressor 1, the four-way valve 4, an outdoor blower not shown) mounted on the outdoor unit 10.
  • the outdoor unit 10 includes a first pressure sensor 15 (hereinafter, the pressure detected by the first pressure sensor 15 is referred to as 63 hs), a second pressure sensor 16 (hereinafter, the pressure detected by the second pressure sensor 16 is 63 ls).
  • a first temperature sensor 17 (hereinafter, the temperature detected by the first temperature sensor 17 is referred to as th4), a second temperature sensor 18 (hereinafter, the temperature detected by the second temperature sensor 18 is referred to as th7), Third temperature sensor 19 (hereinafter, temperature detected by third temperature sensor 19 is referred to as th3), fourth temperature sensor 20 (hereinafter, temperature detected by fourth temperature sensor 20 is referred to as th2), fifth temperature sensor 21 (hereinafter, the temperature detected by the fifth temperature sensor 21 is referred to as th6), the sixth temperature sensor 22 (hereinafter, the temperature detected by the sixth temperature sensor 22 is referred to as th5), and the seventh temperature Sensor 28 (hereinafter, the temperature detected by the seventh temperature sensor 28 is referred to as th9) is provided.
  • the compressor 1 has an inverter circuit (not shown), and the compressor rotational speed is controlled by power frequency conversion by the inverter circuit, and the capacity is controlled, that is, the capacity is variable. Is compressed to a high temperature and high pressure state.
  • the oil separator 2 is provided on the discharge side of the compressor 1 and has a function of separating the refrigerating machine oil component from the refrigerant gas discharged from the compressor 1 and containing refrigerating machine oil.
  • the check valve 3 is provided in a refrigerant pipe between the oil separator 2 and the four-way valve 4, and prevents reverse flow of the refrigerant to the discharge side of the compressor 1 when the compressor 1 is stopped. .
  • the four-way valve 4 functions as a flow path switching device, and switches the refrigerant flow between the cooling operation and the heating operation.
  • the outdoor heat exchanger 5 functions as a condenser (or a radiator) during cooling operation and as an evaporator during heating operation, and performs heat exchange between air and refrigerant supplied from an outdoor blower (not shown). .
  • the high / low pressure heat exchanger 6 exchanges heat between the refrigerant flowing through the liquid pipe 26 and the refrigerant flowing through the bypass pipe 23.
  • the flow rate adjusting valve 8 is installed on the downstream side of the connection point 25 in the cooling circuit, functions as a pressure reducing valve and an expansion valve, expands the refrigerant by decompressing it, and also flows into the indoor unit 50. The amount is adjusted.
  • the flow rate adjusting valve 8 may be configured by a valve whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the liquid side on / off valve 9 is opened / closed manually by the control device 27 or may not conduct the refrigerant.
  • the gas side on / off valve 11 is also opened / closed manually by the control device 27 or manually, and may or may not conduct the refrigerant.
  • the liquid side on / off valve 9 and the gas side on / off valve 11b are installed to adjust the pressure fluctuation in the refrigeration cycle by being opened and closed.
  • the accumulator 12 is provided on the suction side of the compressor 1 and stores excess refrigerant circulating in the refrigerant circuit.
  • the bypass flow rate adjusting valve 7 is installed in the bypass pipe 23 between the connection point 25 and the high / low pressure heat exchanger 6, functions as a pressure reducing valve and an expansion valve, and decompresses the refrigerant to expand it. Further, the amount of refrigerant flowing through the bypass pipe 23 is adjusted.
  • the bypass flow rate adjusting valve 7 may be configured by a valve whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the oil return bypass circuit 30 is configured to return the refrigeration oil separated by the oil separator 2 to the suction side of the compressor 1.
  • the oil return bypass capillary 13 is for adjusting the flow rate of the refrigerating machine oil passing through the oil return bypass circuit 30.
  • the oil return bypass solenoid valve 14 is controlled to open and close to adjust the flow rate of the refrigerating machine oil together with the oil return bypass capillary 13.
  • the first pressure sensor 15 is provided between the oil separator 2 and the four-way valve 4 and detects the pressure (high pressure) of the refrigerant discharged from the compressor 1.
  • the second pressure sensor 16 is provided on the upstream side of the accumulator 12 and detects the pressure (low pressure) of the refrigerant sucked into the compressor 1.
  • the first temperature sensor 17 is provided between the compressor 1 and the oil separator 2 and detects the temperature of the refrigerant discharged from the compressor 1.
  • the second temperature sensor 18 detects the ambient temperature (outside air temperature) of the outdoor unit 10.
  • the third temperature sensor 19 is provided between the outdoor heat exchanger 5 and the high / low pressure heat exchanger 6 and detects the temperature of the refrigerant passing between the outdoor heat exchanger 5 and the high / low pressure heat exchanger 6. It is.
  • the fourth temperature sensor 20 is provided in the bypass pipe 23 after passing through the high / low pressure heat exchanger 6 and detects the temperature of the refrigerant passing through the bypass pipe 23 after passing through the high / low pressure heat exchanger 6.
  • the fifth temperature sensor 21 is provided between the connection point 25 and the flow rate adjustment valve 8, and detects the temperature of the refrigerant passing through the liquid pipe 26 between the connection point 25 and the flow rate adjustment valve 8.
  • the sixth temperature sensor 22 is provided between the connection point 24 and the accumulator 12 and detects the temperature of the refrigerant passing between the connection point 24 and the accumulator 12.
  • the seventh temperature sensor 28 is provided between the accumulator 12 and the compressor 1 and detects the temperature of the refrigerant sucked into the compressor 1.
  • the pressure information detected by each pressure sensor and the temperature information detected by each temperature sensor are sent to the control device 27 as signals.
  • the control device 27 controls each actuator based on signals transmitted from each pressure sensor and each temperature sensor.
  • the type of the control device 27 is not particularly limited.
  • the control device 27 may be composed of a microcomputer that can control each actuator mounted on the outdoor unit 10.
  • an indoor heat exchanger 100a and an expansion valve 101a are mounted in series by a gas branch pipe 206a and a liquid branch pipe 207a.
  • the indoor unit 50a is equipped with a control device 102a that controls driving of each actuator (for example, the expansion valve 101a and an indoor fan not shown) mounted on the indoor unit 50a.
  • the indoor unit 50a is provided with an eighth temperature sensor 103a and a ninth temperature sensor 104a.
  • the indoor heat exchanger 100a functions as an evaporator during the cooling operation and as a condenser (or a radiator) during the heating operation, and performs heat exchange between the refrigerant and the air.
  • the expansion valve 101a functions as a pressure reducing valve and an expansion valve, expands the refrigerant by decompressing it, and adjusts the amount of refrigerant flowing into the indoor heat exchanger 100a.
  • the expansion valve 101a may be constituted by a valve whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the eighth temperature sensor 103a is provided in the gas branch pipe 206a connected to the indoor heat exchanger 100a, and detects the temperature of the refrigerant at the gas side outlet of the indoor heat exchanger 100a.
  • the ninth temperature sensor 104a is provided in the liquid branch pipe 207a connected to the indoor heat exchanger 100a, and detects the temperature of the refrigerant at the liquid side outlet of the indoor heat exchanger 100a.
  • the temperature information detected by each temperature sensor is sent as a signal to the control device 102a.
  • the control device 102a controls each actuator based on a signal transmitted from each temperature sensor.
  • the type of the control device 102a is not particularly limited.
  • the control device 102a may be composed of a microcomputer that can control each actuator mounted on the indoor unit 50a.
  • the indoor unit 50b has the same configuration as the indoor unit 50a. That is, if the subscript “a” of the component part of the indoor unit 50a is changed to “b”, the component part of the indoor unit 50b is obtained.
  • FIG. 1 shows an example in which a control device is mounted on both the indoor unit 50a and the indoor unit 50b.
  • the single control device controls both the indoor unit 50a and the indoor unit 50b. It may be.
  • the control devices can communicate with each other by wire or wirelessly.
  • the control device mounted on the indoor unit can communicate with the control device mounted on the outdoor unit by wire or wirelessly.
  • the compressor 1 In the cooling circuit of the air conditioner, as indicated by the arrows shown in FIG. 1, the compressor 1, the oil separator 2, the check valve 3, the four-way valve 4, the outdoor heat exchanger 5, the high and low pressure heat exchanger 6, and the flow rate adjusting valve. 8, liquid side opening / closing valve 9, expansion valve (expansion valve 101a and expansion valve 101b), indoor heat exchanger (indoor heat exchanger 100a and indoor heat exchanger 100b), gas side opening / closing valve 11, four-way valve 4, and It is connected so that the refrigerant flows in the order of the accumulator 12.
  • FIG. 2 is a diagram showing a refrigerant distribution in the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the total refrigerant amount in the air conditioner is: refrigerant amount ACC in the accumulator 12 + refrigerant amount in the outdoor heat exchanger 5 + refrigerant amount in the liquid pipe 26 + refrigerant amount in the liquid pipe 205 + It can be determined from the amount of refrigerant in the liquid branch pipe 207 (hereinafter, the liquid pipe 26, the liquid pipe 205, and the liquid branch pipe 207 are collectively referred to as a liquid pipe A).
  • the amount of refrigerant in the outdoor heat exchanger 5 is obtained from the degree of supercooling SCO on the outlet side of the outdoor heat exchanger 5 obtained from the pressure 63 hs detected by the first pressure sensor 15 and th3 detected by the third temperature sensor 19. be able to.
  • the amount of refrigerant in the liquid pipe A is the degree of supercooling SCC on the outlet side of the high / low pressure heat exchanger 6 determined by the pressure 63 hs detected by the first pressure sensor 15 and the temperature th6 detected by the fifth temperature sensor 21. Can be obtained from Therefore, the total amount of refrigerant can be obtained from ACC, SCO, and SCC.
  • the SCO is obtained by the difference between the saturation temperature (condensation temperature) Tc converted from the pressure 63 hs detected by the first pressure sensor 15 and the temperature th3 detected by the third temperature sensor 19, that is, Tc ⁇ th3. It is done. Further, the SCC is obtained by the difference between the saturation temperature (condensation temperature) Tc converted from the pressure 63 hs detected by the first pressure sensor 15 and the temperature th6 detected by the fifth temperature sensor 21, that is, Tc ⁇ th6. It is done.
  • the four-way valve 4 is switched so that the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 5. That is, in the four-way valve 4, piping is connected in the direction of the solid line shown in FIG. Further, the operation is started with the flow rate adjusting valve 8 being fully opened or nearly fully opened, the bypass flow rate adjusting valve 7 being set to an appropriate opening degree, and the expansion valve 101 being set to an appropriate opening degree.
  • the refrigerant flow in this case is as follows.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 first passes through the oil separator 2. At this time, most of the refrigerating machine oil mixed in the refrigerant is separated from the refrigerant, accumulated in the bottom of the inside, passes through the oil return bypass capillary 13 (if the oil return bypass solenoid valve 14 is opened, there is also Pass through) and returned to the suction pipe 31 of the compressor 1. Thereby, the refrigerating machine oil which flows out of the outdoor unit 10 can be reduced, and the reliability of the compressor 1 can be improved.
  • the high-temperature and high-pressure refrigerant in which the ratio of the refrigerating machine oil is reduced passes through the four-way valve 4, is condensed and liquefied by the outdoor heat exchanger 5, and passes through the high-low pressure heat exchanger 6.
  • the refrigerant that has flowed out of the high / low pressure heat exchanger 6 is branched into a refrigerant that flows into the bypass pipe 23 and a refrigerant that flows into the liquid pipe 26.
  • the refrigerant flowing through the bypass pipe 23 is appropriately adjusted in flow rate by the bypass flow rate adjusting valve 7 to become a low-pressure / low-temperature refrigerant, and exchanges heat with the refrigerant exiting the outdoor heat exchanger 5 in the high-low pressure heat exchanger 6. Therefore, the enthalpy is lower in the refrigerant state on the outlet side of the high / low pressure heat exchanger 6 than the refrigerant state on the outlet side of the outdoor heat exchanger 5, that is, the degree of supercooling is increased.
  • the low-pressure refrigerant that has passed through the bypass flow rate adjusting valve 7 and has flowed out of the high-low pressure heat exchanger 6 flows through the bypass pipe 23, and is connected to the connection point 24 where the bypass pipe 23 and the upstream pipe of the accumulator 12 are connected. It reaches. Thereby, since the enthalpy difference increases, the required refrigerant flow rate in the case of the same capacity can be reduced, and there is an effect of performance improvement by reducing pressure loss.
  • the high-pressure refrigerant flowing out of the high-low pressure heat exchanger 6 passes through the flow rate adjustment valve 8, but the flow rate adjustment valve 8 is fully opened, so that it is supplied to the liquid pipe 205 as a high-pressure liquid refrigerant without reducing the pressure.
  • the indoor units 50a and 50b is decompressed by the expansion valves 101a and 101b, becomes a low-pressure two-phase refrigerant, and is evaporated and gasified by the indoor heat exchangers 100a and 100b.
  • the cooling air is supplied to the air-conditioning target space such as a room, and the cooling operation of the air-conditioning target space is realized.
  • the refrigerant that has flowed out of the indoor heat exchangers 100a and 100b passes through the gas pipe 204, the four-way valve 4, and the accumulator 12, and is sucked into the compressor 1 again.
  • the accumulator 12 is provided with a U-shaped tube as shown in FIG. 1, when a gas-liquid two-phase refrigerant flows into the accumulator 12, the liquid refrigerant accumulates in the lower part of the container, and the U-shaped tube. The gas-rich refrigerant that has flowed in through the upper opening flows out of the accumulator 12.
  • a gas-rich refrigerant is sucked into the compressor 1. Therefore, the liquid back of the compressor 1 can be temporarily prevented until the transient liquid and the gas-liquid two-phase refrigerant are accumulated in the accumulator 12 and overflow, and the effect of maintaining the reliability of the compressor 1 is obtained. It is done.
  • FIG. 3 is a flowchart showing a flow of control processing of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the flow of the control processing until the frequency increase / decrease value Fp of the compressor 1 of the air-conditioning apparatus according to Embodiment 1 is determined will be described in detail.
  • the control device 27 The driving of the compressor 1 is started and the operation of the air conditioner is started (step S101).
  • the control device 27 determines whether or not the cooling operation is being performed (step S102). When it is determined that the cooling operation is being performed (Yes in step S102), the control device 27 calculates a first increase / decrease value Fp_th7 of the frequency of the compressor 1 according to the outside air temperature th7.
  • Fp_th7 is the outside air temperature th7, the (current) suction side evaporation temperature (hereinafter referred to as evaporation temperature) Te of the compressor 1, and the suction side target evaporation temperature of the compressor 1 (hereinafter referred to as target evaporation temperature).
  • Table 1 shows Tem as a parameter.
  • the target evaporation temperature Tem is set from a remote controller (not shown) or the like, and a room temperature detected by a room temperature sensor (not shown) set in a room (where the indoor unit 50 is installed). It is determined based on the difference temperature.
  • control device 27 calculates a second increase / decrease value Fp_SCO of the frequency of the compressor 1 according to the SCO.
  • the control device 27 calculates a third increase / decrease value (hereinafter referred to as Fp_SCC) of the frequency of the compressor 1 according to the SCC.
  • Fp is determined by the sum (Fp_th7 + Fp_SCO + Fp_SCC) of Fp_th7, Fp_SCO, and Fp_SCC calculated in steps S103 to S105 (step S106). Then, Fp is added to the current frequency of the compressor 1 to update the frequency of the compressor 1 (step S107). Thereafter, the processes of steps S103 to S107 are performed at predetermined timings, and the frequency of the compressor 1 is updated as needed.
  • the increase / decrease value Fp of the frequency of the compressor 1 is determined only by the evaporation temperature Te and the target evaporation temperature Tem.
  • the ambient load temperature outside air temperature th7
  • the increase / decrease value Fp of the frequency of the compressor 1 is determined by the steps S103 to S106, and the compression is performed based on the values.
  • the frequency of the machine 1 is updated.
  • FIG. 4 is a flowchart showing a flow of control processing of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the Fi of the compressor 1 at the start-up is appropriately set from the outside air temperature just before the start-up when the compressor 1 is started and the refrigerant distribution state before the stop.
  • the control device 27 causes the supercooling degree SCO0 on the outlet side of the outdoor heat exchanger 5 when operating before stopping, and the outlet of the high and low pressure heat exchanger 6 when operating before stopping.
  • the subcooling degree SCC0 on the side is calculated to check the refrigerant distribution state in the system (step S201).
  • the control device 27 stops the compressor 1 (step S202). After that (in the case of a configuration with a plurality of outdoor units, after stopping all the units), in order to perform cooling operation by changing the room temperature load or starting the operation of the indoor unit from a remote controller, etc.
  • control device 27 detects the outside air temperature th70 before the compressor 1 is started (immediately) (step S205), and the initial frequency of the compressor 1 with respect to Fit according to the outside air temperature th70. 1 Increase / decrease value Fpi_th7 is determined. Fpi_th7 is expressed as shown in Table 2 using th70 as a parameter. It is set so that Fpi_th7 becomes smaller (decelerates) as th70 is higher (step S206).
  • control device 27 determines an initial second increase / decrease value Fpi_SCO of the frequency of the compressor 1 with respect to Fit according to SCO0.
  • Fpi_SCO is expressed as shown in Table 2 with SCO0 as a parameter.
  • the initial second increase / decrease value Fpi_SCO is set to be smaller (decelerate) as th70 is higher (step S207).
  • control device 27 determines an initial third increase / decrease value Fpi_SCC of the frequency of the compressor 1 with respect to Fit according to SCC0.
  • Fpi_SCC is expressed as shown in Table 2 with SCC0 as a parameter. It is set so that Fpi_SCC becomes smaller (decelerates) as th70 is higher (step S208).
  • the ambient load temperature (outside air temperature th70) and the refrigerant distribution state (the degree of supercooling SCO0 and the degree of supercooling SCC0) are also considered.
  • the initial frequency of the compressor 1 is determined by the steps S206 to S209. Therefore, it becomes possible to correct the excessive increase in pressure due to excessive frequency acceleration when starting up the compressor 1 in a state where the liquid refrigerant is distributed in a large amount in the outdoor heat exchanger. It is possible to correct the pressure overshoot that deviates from the allowable value of the high pressure. As a result, the air conditioner can be continuously operated without abnormally stopping.
  • FIG. 5 is a refrigerant circuit diagram showing a refrigerant circuit configuration of the air-conditioning apparatus according to Embodiment 3 of the present invention.
  • This air conditioner performs a cooling operation or a heating operation using a refrigeration cycle (heat pump cycle) for circulating a refrigerant.
  • a refrigeration cycle heat pump cycle
  • the air conditioner according to the third embodiment has a circuit configuration that does not include the high-low pressure heat exchanger 6 as compared with the air conditioner according to the first embodiment.
  • the total amount of refrigerant in the air conditioner according to Embodiment 3 is: refrigerant amount ACC in accumulator 12 + refrigerant amount in outdoor heat exchanger 5 + liquid pipe A (liquid pipe 26, liquid pipe 205, and liquid branch pipe) 207).
  • the refrigerant amount in the outdoor heat exchanger 5 and the refrigerant amount in the liquid pipe A are determined by the pressure 63 hs detected by the first pressure sensor 15 and the th3 detected by the third temperature sensor 19, and the outlet of the outdoor heat exchanger 5. It can be determined from the degree of supercooling SCO on the side. Therefore, the total refrigerant amount can be obtained from ACC and SCO.
  • the SCO is obtained by the difference between the saturation temperature (condensation temperature) Tc converted from the pressure 63 hs detected by the first pressure sensor 15 and the temperature th3 detected by the third temperature sensor 19, that is, Tc ⁇ th3. It is done.
  • FIG. 6 is a flowchart showing a flow of control processing of the air-conditioning apparatus according to Embodiment 3 of the present invention.
  • the flow of the control processing until the frequency increase / decrease value Fp of the compressor 1 of the air-conditioning apparatus according to Embodiment 3 is determined will be described in detail.
  • the control device 27 The driving of the compressor 1 is started and the operation of the air conditioner is started (step S301).
  • the control device 27 determines whether or not the cooling operation is being performed (step S102). When determining that the cooling operation is being performed (Yes in step S302), the control device 27 calculates a first increase / decrease value Fp_th7 of the frequency of the compressor 1 according to the outside air temperature th7.
  • Fp_th7 is the outside air temperature th7, the (current) suction side evaporation temperature (hereinafter referred to as evaporation temperature) Te of the compressor 1, and the suction side target evaporation temperature of the compressor 1 (hereinafter referred to as target evaporation temperature).
  • Table 1 shows Tem as a parameter.
  • the target evaporation temperature Tem is set from a remote controller (not shown) or the like, and a room temperature detected by a room temperature sensor (not shown) set in a room (where the indoor unit 50 is installed). It is determined based on the difference temperature.
  • the control device 27 calculates a second increase / decrease value Fp_SCO of the frequency of the compressor 1 according to the SCO.
  • Fp is determined by Fp_th7 calculated in steps S303 to S304 and the sum of Fp_SCO (Fp_th7 + Fp_SCO) (step S305). Then, Fp is added to the current frequency of the compressor 1 to update the frequency of the compressor 1 (step S306). Thereafter, the processes in steps S303 to S306 are performed at predetermined timings, and the frequency of the compressor 1 is updated as needed.
  • FIG. 7 is a flowchart showing a flow of control processing of the air-conditioning apparatus according to Embodiment 4 of the present invention.
  • the air-conditioning apparatus according to Embodiment 4 has the same refrigerant circuit configuration as that of Embodiment 3.
  • the flow of the control process until the initial frequency Fi of the compressor 1 of the air-conditioning apparatus according to Embodiment 4 is determined will be described in detail.
  • the Fi of the compressor 1 at the start-up is appropriately set from the outside air temperature just before the start-up when the compressor 1 is started and the refrigerant distribution state before the stop.
  • the control device 27 causes the supercooling degree SCO0 on the outlet side of the outdoor heat exchanger 5 when operating before stopping, and the outlet of the high and low pressure heat exchanger 6 when operating before stopping.
  • the subcooling degree SCC0 on the side is calculated to check the refrigerant distribution state in the system (step S401).
  • the control device 27 stops the compressor 1 (step S402). After that (in the case of a configuration with a plurality of outdoor units, after stopping all the units), in order to perform cooling operation by changing the room temperature load or starting the operation of the indoor unit from a remote controller, etc.
  • control device 27 detects the outside air temperature th70 before the compressor 1 is started (immediately) (step S405), and the initial frequency of the compressor 1 with respect to the Fit according to the outside air temperature th70. 1 Increase / decrease value Fpi_th7 is determined. Fpi_th7 is expressed as shown in Table 2 using th70 as a parameter. It is set so that Fpi_th7 becomes smaller (decelerates) as th70 is higher (step S406).
  • control device 27 determines an initial second increase / decrease value Fpi_SCO of the frequency of the compressor 1 with respect to Fit according to SCO0.
  • Fpi_SCO is expressed as shown in Table 2 with SCO0 as a parameter.
  • the initial second increase / decrease value Fpi_SCO is set to be smaller (decelerate) as th70 is higher (step S407).
  • FIG. 8 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of an air-conditioning apparatus according to Embodiment 5 of the present invention.
  • This air conditioner performs a cooling operation or a heating operation using a refrigeration cycle (heat pump cycle) for circulating a refrigerant.
  • a refrigeration cycle heat pump cycle
  • the air-conditioning apparatus includes two heat source units (outdoor unit 10a and outdoor unit 10b) and two use side units (indoor unit 50a and indoor unit 50b). And are connected by refrigerant piping.
  • the two usage-side units are connected in parallel to the two heat source units so as to communicate with each other. That is, the air conditioner connects each device (component) mounted on the two heat source units and each device (component) mounted on the two usage-side units through refrigerant piping.
  • a refrigerant circuit reffrigeration cycle
  • the configuration includes two indoor units.
  • the configuration is not limited to this, and may be one or three or more.
  • the refrigerant piping of the air conditioner includes a gas branch pipe connected to each outdoor unit (a gas branch pipe 202a connected to the outdoor unit 10a and a gas branch pipe 202b connected to the outdoor unit 10b), and each indoor unit.
  • Gas branch pipes connected to the machine gas branch pipe 206a connected to indoor unit 50a and gas branch pipe 206b connected to indoor unit 50b
  • gas branch pipe 202 and gas branch pipe 206 are connected.
  • Common gas piping 204 liquid branch pipes connected to each outdoor unit (liquid branch pipe 203a connected to outdoor unit 10a and liquid branch pipe 203b connected to outdoor unit 10b), The liquid branch pipe (liquid branch pipe 207a connected to the indoor unit 50a and the liquid branch pipe 207b connected to the indoor unit 50b), the liquid branch pipe 203, and the liquid branch pipe 207 are connected to each other.
  • a common liquid piping 205 consisting of.
  • FIG. 8 shows an example in which the gas distributor 200a and the liquid distributor 200b are mounted on the air conditioner, but the present invention is not limited to mounting the gas distributor 200a and the liquid distributor 200b.
  • the gas branch pipe 202a, the gas branch pipe 202b, and the gas pipe 204 constitute a gas pipe
  • the liquid branch pipe 203a, the liquid branch pipe 203b, and the liquid pipe 205 constitute a liquid pipe.
  • the outdoor unit 10a and the indoor unit 50a are connected via a gas branch pipe 202a, a gas pipe 204, a gas branch pipe 206a, a liquid branch pipe 207a, a liquid pipe 205, and a liquid branch pipe 203a.
  • the indoor unit 50b is connected to the gas branch pipe 202a, the gas pipe 204, the gas branch pipe 206b, the liquid branch pipe 207b, the liquid pipe 205, and the liquid branch pipe 203a.
  • the outdoor unit 10b and the indoor unit 50a are connected via a gas branch pipe 202b, a gas pipe 204, a gas branch pipe 206a, a liquid branch pipe 207a, a liquid pipe 205, and a liquid branch pipe 203b.
  • the outdoor unit 10b and the indoor unit 50b are connected via a gas branch pipe 202b, a gas pipe 204, a gas branch pipe 206b, a liquid branch pipe 207b, a liquid pipe 205, and a liquid branch pipe 203b.
  • the outdoor unit 10a includes a compressor 1a, an oil separator 2a, a check valve 3a, four-way valves 4-1a and 4-2a (hereinafter also collectively referred to as a four-way valve 4a), an outdoor heat exchanger 5a, , High / low pressure heat exchanger 6a, flow rate adjusting valve 8a, liquid side on / off valve 9a, gas side on / off valve 11a, accumulator 12a, oil return bypass capillary 13a, oil return bypass solenoid valve 14a, bypass And a flow rate adjusting valve 7a.
  • Compressor 1a oil separator 2a, check valve 3a, four-way valve 4a, outdoor heat exchanger 5a, high / low pressure heat exchanger 6a, flow rate adjusting valve 8a, liquid side on / off valve 9a, gas side on / off valve 11a, and accumulator 12a is provided so that it may be connected in series by refrigerant piping.
  • the high / low pressure heat exchanger 6a is provided in the liquid pipe 26a between the outdoor heat exchanger 5a and the flow rate adjusting valve 8a.
  • the high / low pressure heat exchanger 6a includes a liquid pipe 26a and a liquid pipe 26a between the high / low pressure heat exchanger 6a and the flow rate adjusting valve 8a, that is, a liquid pipe 26a upstream of the high / low pressure heat exchanger 6a.
  • a bypass pipe 23a connected to the upstream side of the accumulator 12a is connected.
  • the bypass flow rate adjusting valve 7a is provided in the bypass pipe 23a between the high / low pressure heat exchanger 6a and the flow rate adjusting valve 8a.
  • the oil return bypass capillary 13a and the oil return bypass solenoid valve 14a are provided in the oil return bypass circuit 30a connecting the oil separator 2a and the suction pipe 31a connecting the accumulator 12a and the compressor 1a. It has been.
  • the oil return bypass capillary 13a is provided to connect the upstream side and the downstream side of the oil return bypass solenoid valve 14a so as to bypass the oil return bypass solenoid valve 14a.
  • a point where the liquid pipe 26a and the bypass pipe 23a are connected is a connection point 25a, a pipe on the upstream side of the bypass pipe 23a and the accumulator 12a (a refrigerant pipe between the four-way valve 4a and the accumulator 12a). ) Is connected to a connection point 24a.
  • the outdoor unit 10a is equipped with a control device 27a for controlling the driving of each actuator (for example, the compressor 1a, the four-way valve 4a, an outdoor fan not shown) mounted on the outdoor unit 10a.
  • the outdoor unit 10a includes a first pressure sensor 15a (hereinafter, pressure detected by the first pressure sensor 15a is referred to as 63hsa), a second pressure sensor 16a (hereinafter, pressure detected by the second pressure sensor 16a is 63 lsa).
  • a first temperature sensor 17a (hereinafter, the temperature detected by the first temperature sensor 17a is referred to as th4a), a second temperature sensor 18a (hereinafter, the temperature detected by the second temperature sensor 18a is referred to as th7a), Third temperature sensor 19a (hereinafter, temperature detected by third temperature sensor 19a is referred to as th3a), fourth temperature sensor 20a (hereinafter, temperature detected by fourth temperature sensor 20a is referred to as th2a), fifth temperature sensor 21a (hereinafter, the temperature detected by the fifth temperature sensor 21a is referred to as th6a), a sixth temperature sensor 22a (hereinafter, the sixth temperature sensor 22a) It refers to the detected temperature Th5a), and, the seventh temperature sensor 28a (hereinafter, the temperature detected by the seventh temperature sensor 28a is referred to as Th9a) is provided.
  • Th9a the seventh temperature sensor 28a
  • the outdoor unit 10b has the same configuration as the outdoor unit 10a. That is, if the subscript “a” of the component part of the outdoor unit 10a is changed to “b”, the component part of the outdoor unit 10b is obtained.
  • FIG. 8 shows an example in which a control device is mounted on both the outdoor unit 10a and the outdoor unit 10b, but it is assumed that a single control device controls both the outdoor unit 10a and the outdoor unit 10b. It may be. Further, in a state where the control device is mounted on both the outdoor unit 10a and the outdoor unit 10b, the control devices can communicate with each other by wire or wirelessly.
  • an indoor heat exchanger 100a and an expansion valve 101a are mounted in series by a gas branch pipe 206a and a liquid branch pipe 207a.
  • the indoor unit 50a is equipped with a control device 102a that controls driving of each actuator (for example, the expansion valve 101a and an indoor fan not shown) mounted on the indoor unit 50a.
  • the indoor unit 50a is provided with an eighth temperature sensor 103a and a ninth temperature sensor 104a.
  • the indoor unit 50b has the same configuration as the indoor unit 50a. That is, if the subscript “a” of the component part of the indoor unit 50a is changed to “b”, the component part of the indoor unit 50b is obtained.
  • FIG. 8 shows an example in which a control device is mounted on both the indoor unit 50a and the indoor unit 50b.
  • the single control device controls both the indoor unit 50a and the indoor unit 50b. It may be.
  • the control devices can communicate with each other by wire or wirelessly.
  • the control device mounted on the indoor unit can communicate with the control device mounted on the outdoor unit by wire or wirelessly.
  • a compressor compressor 1a and compressor 1b
  • an oil separator oil separator 2a and oil separator 2b
  • a check valve check valve 3a and Check valve 3b
  • four-way valve four-way valve
  • outdoor heat exchanger outdoor heat exchanger 5a and outdoor heat exchanger 5b
  • high-low pressure heat exchanger high-low pressure heat exchanger 6a and high Low pressure heat exchanger 6b
  • flow rate regulating valves flow rate regulating valve 8a and flow rate regulating valve 8b
  • liquid side on / off valve liquid side on / off valve 9a and liquid side on / off valve 9b
  • expansion valve expansion valve (expansion valve 101a and expansion valve 101b).
  • Indoor heat exchanger indoor heat exchanger 100a and indoor heat exchanger 100b
  • gas side on / off valve gas side on / off valve 11a and gas side on / off valve 11b
  • four-way valve 4 accumulator (accumulator) It is connected so that the refrigerant flows in the order of over motor 12a and the accumulator 12b).
  • the four-way valves 4a and 4b are switched so that the refrigerant discharged from the compressors 1a and 1b flows into the outdoor heat exchangers 5a and 5b. That is, in the four-way valve 4a and the four-way valve 4b, piping is connected in the direction of the solid line shown in FIG. Further, the operation is started with the flow rate adjusting valves 8a and 8b being fully opened or close to being fully opened, the bypass flow rate adjusting valves 7a and 7b being set to appropriate openings, and the expansion valves 101a and 101b being set to appropriate openings.
  • the refrigerant flow in this case is as follows.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressors 1a and 1b first passes through the oil separators 2a and 2b. At this time, most of the refrigerating machine oil mixed in the refrigerant is separated from the refrigerant and stored in the inner bottom portion, and passes through the oil return bypass capillaries 13a and 13b (the oil return bypass solenoid valves 14a and 14b are opened). In this case, it passes there) and is returned to the suction pipe of the compressor 1a. Thereby, the refrigeration oil which flows out of the outdoor units 10a and 10b can be reduced, and the reliability of the compressors 1a and 1b can be improved.
  • the refrigerant distribution state can be calculated from the degree of supercooling SCCa and SCCb on the outlet side of the high and low pressure heat exchangers 6a and 6b determined by the five temperature sensors 21a and 21b.
  • SCOa and SCOb are saturation temperatures (condensation temperatures) Tca and Tcb converted from the pressures 63hsa and 63hsb detected by the first pressure sensors 15a and 15b, and temperatures th3a and th3b detected by the third temperature sensors 19a and 19b. Temperature difference, that is, Tca ⁇ th3a and Tcb ⁇ th3b.
  • SCCa and SCCb are saturation temperatures (condensation temperatures) Tca and Tcb converted from pressures 63hsa and 63hsb detected by the first pressure sensors 15a and 15b, and temperatures th6a and th6b detected by the fifth temperature sensors 21a and 21b. Temperature difference, i.e., Tca-th6a and Tcb-th6b.
  • the refrigerant flowing out of the high and low pressure heat exchangers 6a and 6b is branched into a refrigerant flowing through the bypass pipes 23a and 23b and a refrigerant flowing through the liquid pipes 26a and 26b.
  • the refrigerant flowing through the bypass pipes 23a, 23b is moderately adjusted in flow rate by the bypass flow rate adjusting valves 7a, 7b to become low-pressure / low-temperature refrigerant, and the refrigerant that has exited the outdoor heat exchangers 5a, 5b and the high-low pressure heat exchanger 6a, Heat exchange is performed in 6b.
  • the enthalpy is lower in the refrigerant state on the outlet side of the high and low pressure heat exchangers 6a and 6b than the refrigerant state on the outlet side of the outdoor heat exchangers 5a and 5b, that is, the degree of supercooling is increased.
  • the high pressure and the low pressure represent the relative relationship of the pressure in the refrigerant circuit (the same applies to the temperature).
  • the high-pressure refrigerant flowing out of the high-low pressure heat exchangers 6a and 6b passes through the flow rate adjusting valves 8a and 8b.
  • the high-pressure liquid refrigerant is not reduced. Supplied to the liquid pipe 205. Then, it enters into the indoor units 50a and 50b, is decompressed by the expansion valves 101a and 101b, becomes a low-pressure two-phase refrigerant, and is evaporated and gasified by the indoor heat exchangers 100a and 100b.
  • the cooling air is supplied to the air-conditioning target space such as a room, and the cooling operation of the air-conditioning target space is realized.
  • the refrigerant that has flowed out of the indoor heat exchanger 100 passes through the gas pipe 204, the four-way valve 4, and the accumulators 12a and 12b, and is again sucked into the compressors 1a and 1b.
  • the accumulators 12a and 12b are provided with U-shaped tubes as shown in FIG. 8, when the gas-liquid two-phase refrigerant flows into the accumulators 12a and 12b, the liquid refrigerant is accumulated in the lower part of the container.
  • the gas-rich refrigerant flowing in from the upper opening of the U-shaped tube flows out of the accumulators 12a and 12b.
  • gas-rich refrigerant is sucked into the compressors 1a and 1b.
  • the liquid back of the compressors 1a and 1b can be temporarily prevented until the transient liquid and the gas-liquid two-phase refrigerant are accumulated in the accumulators 12a and 12b and overflow, and the reliability of the compressors 1a and 1b can be prevented.
  • the effect of maintaining sex is obtained.
  • FIG. 9 is a refrigerant circuit diagram showing the flow of the refrigerant in the air-conditioning apparatus according to Embodiment 5 of the present invention
  • FIG. 10 shows the flow of control processing of the air-conditioning apparatus according to Embodiment 5 of the present invention. It is a flowchart to show.
  • the flow of the control processing for adjusting the refrigerant amount between the outdoor units 10 of the air-conditioning apparatus according to Embodiment 5 will be described in detail.
  • the controller 27a, 27b when the controller 27a, 27b is operating before stopping, the degree of supercooling SCO0 (SCO0a, SCO0b) on the outlet side of the outdoor heat exchanger 5a, 5b when operating before stopping, and when operating before stopping
  • the subcooling degree SCC0 (SCC0a, SCC0b) on the outlet side of the high and low pressure heat exchangers 6a, 6b is calculated to check the refrigerant distribution state in the system (step S501).
  • the control device stops the compressor (step S502).
  • one of the two outdoor units is outdoors.
  • the control device the control device 27a or the control device 27b
  • the two outdoor units were operating simultaneously (both cooling operations) immediately before stopping, or one of the outdoor units (the outdoor unit 10a (the compressor 1a) or the outdoor unit 10b (the compressor 1b)) ) Determines whether the single lung operation (cooling operation) was performed (step S504).
  • step S504 When one outdoor unit is operated in one lung (No in step S504), the operation is the same as that in step S204 and subsequent steps in FIG. 4, and the description is omitted (step S511).
  • step S5 When the two outdoor units are operating simultaneously (both are in cooling operation) (Yes in step S504), SCO0a and SCO0b are compared (step S505).
  • thermo-ON permission signal is transmitted to the outdoor unit 10a by the control device 27a so that the outdoor unit 10a is started at the time of startup (step S506a).
  • control device 27 opens the bypass flow rate adjustment valve 7b of the outdoor unit 10b that is stopped. Then, excess liquid refrigerant existing between the check valve 3c and the flow rate adjustment valve 8c in the refrigerant circuit of the outdoor unit 10c is transferred to the operating outdoor unit 10a according to the arrow in FIG.
  • step S508a When the degree of supercooling SCOa on the outlet side of the outdoor heat exchanger 5a of the outdoor unit 10a currently in operation (current state) exceeds SCO0b (Yes in step S508a), the bypass flow rate adjustment valve 7b is closed. This is assumed to be performed (step S509a). Therefore, it is determined by the above-described operation that the transfer of the refrigerant has been completed and the refrigerant has been properly distributed, and the operation proceeds to the operation after step S204 in FIG. 4 (step S510a).
  • Step S506b to S510b have the same contents if the subscript “a” is changed to “b” in the above-described Steps S506a to S510a, and thus description thereof is omitted.
  • the high pressure is excessive due to the influence of the liquid refrigerant excessively distributed in the outdoor unit 10b (or the outdoor unit 10a). It can correct rising.
  • the refrigerant distribution state is determined from th7, SCO, and SCC as in the first embodiment shown in FIG. 3, and the excessive increase in the high pressure is corrected.
  • FIG. 11 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of an air-conditioning apparatus according to Embodiment 6 of the present invention.
  • the air-conditioning apparatus includes three heat source units (outdoor unit 10a, outdoor unit 10b, and outdoor unit 10c), and two usage-side units (indoor unit 50a). And the indoor unit 50b) are connected by a refrigerant pipe.
  • the two usage-side units are connected in parallel to the three heat source machines and communicate with each other. That is, the air conditioner connects each device (component) mounted on the three heat source units and each device (component) mounted on the two usage-side units by means of refrigerant piping.
  • the configuration includes three outdoor units and two indoor units.
  • the present invention is not limited to this, and the number of outdoor units may be four or more. The number may be three or more, and the same applies to the seventh embodiment described later.
  • FIG. 12 is a refrigerant circuit diagram illustrating the flow of the refrigerant in the air-conditioning apparatus according to Embodiment 6 of the present invention
  • FIG. 13 illustrates the flow of control processing of the air-conditioning apparatus according to Embodiment 6 of the present invention. It is a flowchart to show. Hereinafter, based on FIG. 13, the flow of the control processing for adjusting the refrigerant amount between the outdoor units of the air-conditioning apparatus according to Embodiment 6 will be described in detail.
  • the control device was operating before the stop, and the degree of supercooling SCO0 (SCO0a, SCO0b, SCO0c) on the outlet side of the outdoor heat exchangers 5a, 5b, 5c when operating before the stop.
  • the supercooling degree SCC0 (SCC0a, SCC0b, SCC0c) on the outlet side of the high and low pressure heat exchangers 6a, 6b, 6c is calculated to check the refrigerant distribution state in the system (step S601).
  • the control device stops the compressor (step S602). Thereafter, in order to perform cooling operation from a state in which all the outdoor units are stopped, by a room temperature load change or an operation start operation of the indoor unit from a remote controller, etc., one of the three outdoor units is When receiving an instruction to activate the outdoor unit (the outdoor unit 10a, the outdoor unit 10b, or the outdoor unit 10c) (when a thermo-ON signal is transmitted to the outdoor unit 10a, the outdoor unit 10b, or the outdoor unit 10c) (step S603), Whether all three outdoor units were operating simultaneously (all cooling operations) immediately before stopping by the control device (control device 27a, control device 27b, or control device 27c) (step S604), one or two It is determined whether the outdoor unit is operating (cooling operation) (step S605).
  • step S605 When one outdoor unit is operating (No in step S604, Yes in step S605), the operation is the same as that in step S204 and subsequent steps in FIG. 4, and thus description thereof is omitted (step S611). Further, when two outdoor units are operating (both are in cooling operation) (No in step S604, No in step S605), the operation is the same as that after step S505 in FIG. (Step S612).
  • thermo-ON permission signal is transmitted to the outdoor unit 10a by the control device 27a so that the outdoor unit 10a (compressor 1a) having the smallest SCO0 is started at the time of startup (step S606).
  • control device 27c opens the bypass flow rate adjustment valve 7c of the stopped outdoor unit 10c having the largest SCO0. Excess liquid refrigerant existing between the check valve 3c and the flow rate adjusting valve 8c in the refrigerant circuit of the outdoor unit 10c is transferred to the operating outdoor unit 10a according to the arrow in FIG.
  • Embodiment 7 FIG.
  • Embodiment 7 of the present invention will be described. However, the description of (the part of) overlapping with Embodiments 1 to 6 is omitted, and the same or corresponding parts as Embodiments 1 to 6 are omitted. Are given the same symbols.
  • FIG. 14 is a refrigerant circuit diagram showing the flow of refrigerant in the air-conditioning apparatus according to Embodiment 7 of the present invention
  • FIG. 15 shows the flow of control processing of the air-conditioning apparatus according to Embodiment 7 of the present invention. It is a flowchart to show.
  • the flow of the control processing for adjusting the refrigerant amount between the outdoor units 10 of the air-conditioning apparatus according to Embodiment 7 will be described in detail.
  • the control device was operating before the stop, and the degree of supercooling SCO0 (SCO0a, SCO0b, SCO0c) on the outlet side of the outdoor heat exchangers 5a, 5b, 5c when operating before the stop.
  • the subcooling degree SCC0 (SCC0a, SCC0b, SCC0c) on the outlet side of the high and low pressure heat exchangers 6a, 6b, 6c is calculated to check the refrigerant distribution state in the system.
  • step S702 When receiving a command to stop the outdoor unit due to a change in room temperature load or an operation of stopping the indoor unit from a remote controller or the like, the control device stops the compressor (step S702). Thereafter, in order to perform the cooling operation from the state in which all the outdoor units are stopped, by the room temperature load change or the operation start operation of the indoor unit from a remote controller or the like, among the three outdoor units, SCO0 is SCOavg0.
  • step S703 When a command for starting less than the number of outdoor units is received (when a thermo-ON signal is transmitted to the number of outdoor units whose number is less than SCOavg0) (step S703), all three outdoor units are immediately stopped by the control device. Are simultaneously operating (all cooling operations) (step S704), and it is determined whether the two outdoor units are operating (cooling operation) (step S705).
  • step S712 When one outdoor unit is operating (No in step S704, Yes in step S705), the operation is the same as that in step S204 and subsequent steps in FIG. 4, and thus the description thereof is omitted (step S711). Further, when the two outdoor units are in operation (both are in cooling operation) (No in step S704, No in step S705), the operation is the same as that after step S505 in FIG. (Step S712).
  • step S704 When all three outdoor units are operating simultaneously (all cooling operations) (Yes in step S704), the controller turns on the outdoor unit so that the outdoor unit (compressor) whose SCO0 is less than SCOavg0 is activated.
  • a permission signal is transmitted (step S706).
  • an outdoor unit whose SCO0 is less than SCOavg0 is an outdoor unit 10a
  • an outdoor unit whose SCO0 is SCOavg0 or more is an outdoor unit 10b or 10c.
  • the thermo-ON permission signal is transmitted to the outdoor unit 10a by the control device 27a so that the outdoor unit 10a whose SCO0 is less than SCOavg0 is activated at the time of activation.
  • control devices 27b and 27c open the bypass flow rate adjusting valves 7b and 7c of the stopped outdoor units 10b and 10c whose SCO0 is SCOavg0 or more. Between the excess liquid refrigerant existing between the check valve 3b and the flow rate adjustment valve 8b in the refrigerant circuit of the outdoor unit 10b, and between the check valve 3c and the flow rate adjustment valve 8c in the refrigerant circuit of the outdoor unit 10c. Excess liquid refrigerant present is transferred to the outdoor unit 10a in operation according to the arrow in FIG.
  • the high and low pressure heat exchanger 6b is connected to the bypass pipe 23b, the four-way valve 4-1b, the gas side on / off valve 11b, the gas branch pipe 202d, the gas branch pipe 202c, the gas side on / off valve. 11a and the four-way valve 4-1a, and is transferred to the accumulator 12a.
  • the bypass flow rate adjusting valve 7c the bypass pipe 23c, the four-way valve 4-1c, the gas side on-off valve 11c, the gas branch pipe 202e, the gas branch pipe 202f, and the gas branch pipe 202c are connected from the high / low pressure heat exchanger 6c. Then, the gas passes through the gas-side on-off valve 11a and the four-way valve 4-1a, and is transferred to the accumulator 12a (step S707).
  • Step S709 the degree of supercooling SCOa on the outlet side of the outdoor heat exchanger 5a of the outdoor unit 10a currently operating (current state) (in FIG. 15, the current outdoor heat exchange in the outdoor unit where SCO0 is less than SCOavg0)
  • the bypass flow rate adjusting valves 7b and 7c are closed (Step S709). Therefore, it is determined by the above-described operation that the transfer of the refrigerant has been completed and the refrigerant has been properly distributed, and the operation proceeds to step S204 and subsequent steps in FIG. 4 (step S710).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

In this air-conditioning device, during cooling operations, a control device 27 determines the increased/decreased value of the frequency of a compressor 1 from first to third increased/decreased values, and updates the frequency of the compressor 1 on the basis of said increased/decreased value. The first increased/decreased value is calculated on the basis of the evaporation temperature calculated on the basis of the pressure detected by a first pressure sensor 15, a preset target evaporation temperature, and the outside air temperature detected by a first temperature sensor 17. The second increased/decreased value is calculated on the basis of the evaporation temperature, the target evaporation temperature, and the outlet-side supercooling degree of an outdoor heat exchanger 5, which is determined by the condensation temperature calculated on the basis of the pressure detected by a second pressure sensor 16, and the temperature detected by a second temperature sensor 18. The third increased/decreased value is calculated on the basis of the evaporation temperature, the target evaporation temperature, and the outlet-side supercooling degree of a high-low pressure heat exchanger 6 which is calculated by the condensation temperature and the temperature detected by a third temperature sensor 19.

Description

空気調和装置Air conditioner
 本発明は、高圧圧力の過昇を是正した空気調和装置に関するものである。 The present invention relates to an air conditioner that corrects an excessive increase in high pressure.
 従来の空気調和装置において、圧縮機の高圧圧力に応じて、吸入温度または圧力を所定値高くシフトさせ、圧縮機の組合せから制御される冷媒循環量を減少させることにより、高圧上昇による保護回路の停止動作が少なくなるように制御するものが開示されている(例えば、特許文献1参照)。 In a conventional air conditioner, the intake temperature or pressure is shifted higher by a predetermined value in accordance with the high pressure of the compressor, and the amount of refrigerant circulation controlled by the combination of the compressors is reduced. An apparatus that controls the stop operation to be reduced is disclosed (for example, see Patent Document 1).
 また、吐出圧力検出センサで吐出側の圧力を検出し、吐出圧力が所定値を超えた場合、バイパス回路の電子膨張弁と電磁弁とを開き、吐出側の冷媒を吸入側にバイパスすることにより吐出圧力を下げ、圧縮機および空気調和機の連続運転が可能となるように制御するものが開示されている(例えば、特許文献2参照)。 When the discharge pressure is detected by the discharge pressure sensor, and the discharge pressure exceeds a predetermined value, the electronic expansion valve and solenoid valve of the bypass circuit are opened, and the refrigerant on the discharge side is bypassed to the suction side. An apparatus is disclosed in which the discharge pressure is lowered and control is performed so that the compressor and the air conditioner can be continuously operated (see, for example, Patent Document 2).
特開2004-144351号公報JP 2004-144351 A 特開2008-261532号公報JP 2008-261532 A
 特許文献1のように、高圧圧力に応じてのみ圧縮機の周波数の増減値を変更する場合は、凝縮器に分布する冷媒量によっては、外気温度が低い場合でも圧力が過昇して空気調和装置の許容圧力を超えてしまう場合があった。
 また、特許文献2のように、高圧側と低圧側とをバイパスするバイパス回路を設けた場合では圧力の変動が大きく、あらかじめ高圧圧力の上昇を予測しているものでもないため、能力が安定せず、高圧圧力がオーバーシュートして空気調和装置の許容圧力を超えてしまう場合があった。
 そして、空気調和装置の許容能力を超えると、異常停止してしまうという課題があった。
When the increase / decrease value of the frequency of the compressor is changed only according to the high pressure as in Patent Document 1, depending on the amount of refrigerant distributed in the condenser, the pressure increases excessively even when the outside air temperature is low, and the air conditioning In some cases, the allowable pressure of the device was exceeded.
Further, as in Patent Document 2, when a bypass circuit that bypasses the high-pressure side and the low-pressure side is provided, the pressure fluctuates greatly, and the increase in the high-pressure pressure is not predicted in advance. In some cases, the high pressure overshoots and exceeds the allowable pressure of the air conditioner.
And if it exceeded the allowable capacity of the air conditioner, there was a problem that it stopped abnormally.
 本発明は、以上のような課題を解決するためになされたもので、高圧圧力の過昇を是正し、異常停止することなく、連続運転が可能な空気調和装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide an air conditioner that corrects an excessive increase in high-pressure pressure and is capable of continuous operation without causing an abnormal stop. .
 本発明に係る空気調和装置は、少なくとも1台の室外機と、前記室外機に対して並列に接続される少なくとも1台の室内機と、を備え、前記室外機は、容量可変型の圧縮機、室外熱交換器、高低圧熱交換器を有し、前記室内機は、膨張弁および室内熱交換器を有し、前記圧縮機、前記室外熱交換器、前記高低圧熱交換器、前記膨張弁、および、前記室内熱交換器、が順次配管で接続され、冷媒が循環する冷凍サイクルを構成する空気調和装置であって、前記圧縮機の吐出側の圧力を検知する第1圧力センサと、前記圧縮機の吸入側の圧力を検知する第2圧力センサと、外気温度を検知する第1温度センサと、冷房運転時における前記室外熱交換器の出口側の温度を検知する第2温度センサと、冷房運転時における前記高低圧熱交換器の出口側の温度を検知する第3温度センサと、前記圧縮機の周波数を制御する制御装置と、を備え、冷房運転時において、前記制御装置は、前記第1圧力センサで検知した圧力に基づいて算出される蒸発温度と、予め設定された目標蒸発温度と、前記第1温度センサで検知した外気温度と、に基づいて算出される第1増減値と、前記蒸発温度と、前記目標蒸発温度と、前記第2圧力センサで検知した圧力に基づいて算出される凝縮温度および前記第2温度センサで検知した温度により求められる前記室外熱交換器の出口側の過冷却度と、に基づいて算出される第2増減値と、前記蒸発温度と、前記目標蒸発温度と、前記凝縮温度および前記第3温度センサで検知した温度により算出される前記高低圧熱交換器の出口側の過冷却度と、に基づいて算出される第3増減値と、から前記圧縮機の周波数の増減値を決定し、該増減値に基づいて前記圧縮機の周波数を更新するものである。 An air conditioner according to the present invention includes at least one outdoor unit and at least one indoor unit connected in parallel to the outdoor unit, wherein the outdoor unit is a variable capacity compressor. The outdoor unit has an expansion valve and an indoor heat exchanger, the compressor, the outdoor heat exchanger, the high and low pressure heat exchanger, the expansion A first pressure sensor for detecting a pressure on the discharge side of the compressor, wherein the valve and the indoor heat exchanger are sequentially connected to each other by pipes to constitute a refrigeration cycle in which the refrigerant circulates; A second pressure sensor for detecting the pressure on the suction side of the compressor, a first temperature sensor for detecting an outside air temperature, and a second temperature sensor for detecting a temperature on the outlet side of the outdoor heat exchanger during cooling operation; The outlet of the high-low pressure heat exchanger during cooling operation A third temperature sensor that detects the temperature of the compressor and a control device that controls the frequency of the compressor. During cooling operation, the control device is calculated based on the pressure detected by the first pressure sensor. Evaporating temperature, a preset target evaporating temperature, a first increase / decrease value calculated based on the outside temperature detected by the first temperature sensor, the evaporating temperature, the target evaporating temperature, A first temperature calculated based on the condensation temperature calculated based on the pressure detected by the second pressure sensor and the degree of supercooling on the outlet side of the outdoor heat exchanger determined by the temperature detected by the second temperature sensor. 2 based on the increase / decrease value, the evaporation temperature, the target evaporation temperature, the degree of supercooling on the outlet side of the high / low pressure heat exchanger calculated by the condensation temperature and the temperature detected by the third temperature sensor. Calculated A third variation value, the change amount of the frequency of the compressor from the determined which is intended to update the frequency of the compressor based on the bulking decrease value.
 本発明に係る空気調和装置によれば、蒸発温度と目標蒸発温度とに加えて、周囲負荷温度(外気温度)および冷媒の分布状態(過冷却度)も考慮して、圧縮機の周波数の増減値を決定する。そうすることにより、高外気温または、室外熱交換器に液冷媒が多量に分布している状態で、圧縮機が過度に増速をすることによる圧力の過昇を是正することが可能となり、高圧圧力の許容値を逸脱するような圧力のオーバーシュートを是正することが可能となる。その結果、空気調和装置が異常停止することなく、連続運転をすることが可能となる。 According to the air conditioner of the present invention, the frequency of the compressor is increased or decreased in consideration of the ambient load temperature (outside air temperature) and the refrigerant distribution state (supercooling degree) in addition to the evaporation temperature and the target evaporation temperature. Determine the value. By doing so, it becomes possible to correct the excessive increase in pressure due to excessive acceleration of the compressor in a state where the liquid refrigerant is distributed in a large amount in the outdoor heat exchanger or the high outdoor temperature, It is possible to correct the pressure overshoot that deviates from the allowable value of the high pressure. As a result, the air conditioner can be continuously operated without abnormally stopping.
本発明の実施の形態1に係る空気調和装置の冷媒回路構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the refrigerant circuit structure of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置における冷媒分布を示す図である。It is a figure which shows the refrigerant | coolant distribution in the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和装置の制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing of the air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る空気調和装置の冷媒回路構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the refrigerant circuit structure of the air conditioning apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る空気調和装置の制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing of the air conditioning apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る空気調和装置の制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing of the air conditioning apparatus which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る空気調和装置の冷媒回路構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the refrigerant circuit structure of the air conditioning apparatus which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る空気調和装置における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant in the air conditioning apparatus which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る空気調和装置の制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing of the air conditioning apparatus which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る空気調和装置の冷媒回路構成を示す冷媒回路図である。It is a refrigerant circuit figure which shows the refrigerant circuit structure of the air conditioning apparatus which concerns on Embodiment 6 of this invention. 本発明の実施の形態6に係る空気調和装置における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant in the air conditioning apparatus which concerns on Embodiment 6 of this invention. 本発明の実施の形態6に係る空気調和装置の制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing of the air conditioning apparatus which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係る空気調和装置における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant in the air conditioning apparatus which concerns on Embodiment 7 of this invention. 本発明の実施の形態7に係る空気調和装置の制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing of the air conditioning apparatus which concerns on Embodiment 7 of this invention.
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings, the relationship of the size of each component may be different from the actual one.
 実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置の冷媒回路構成を示す冷媒回路図である。
 以下、図1に基づいて、本実施の形態1に係る空気調和装置の回路構成および動作について説明する。この空気調和装置は、冷媒を循環させる冷凍サイクル(ヒートポンプサイクル)を利用して、冷房運転または暖房運転を行なうものである。
 なお、以下に出てくる「上流側」、「下流側」、「入口側」、「出口側」とは、空気調和装置が冷房運転時における冷媒の流れに対してであるものとし、後述する実施の形態2~5についても同様とする。
Embodiment 1 FIG.
1 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of an air-conditioning apparatus according to Embodiment 1 of the present invention.
Hereinafter, the circuit configuration and operation of the air-conditioning apparatus according to Embodiment 1 will be described with reference to FIG. This air conditioner performs a cooling operation or a heating operation using a refrigeration cycle (heat pump cycle) for circulating a refrigerant.
Note that “upstream side”, “downstream side”, “inlet side”, and “outlet side” appearing below are assumed to be for the refrigerant flow during the cooling operation of the air conditioner, and will be described later. The same applies to the second to fifth embodiments.
 図1に示すように、本実施の形態1に係る空気調和装置は、熱源機(室外機10)と、2台の利用側ユニット(室内機50aおよび室内機50b)と、が冷媒配管で接続されて構成されている。2台の利用側ユニットは、1台の熱源機に並列接続されて連絡するようになっている。つまり、空気調和装置は、1台の熱源機に搭載される各機器(構成部品)と、2台の利用側ユニットに搭載される各機器(構成部品)と、を冷媒配管で接続することで冷媒回路(冷凍サイクル)を形成し、この冷媒回路に冷媒を循環させることによって、冷房運転または暖房運転することができるようになっているのである。 As shown in FIG. 1, the air conditioner according to Embodiment 1 includes a heat source unit (outdoor unit 10) and two usage-side units (indoor unit 50a and indoor unit 50b) connected by refrigerant piping. Has been configured. The two usage-side units are connected in parallel to one heat source machine to communicate with each other. In other words, the air conditioner connects each device (component) mounted on one heat source unit and each device (component) mounted on two usage-side units by refrigerant piping. By forming a refrigerant circuit (refrigeration cycle) and circulating the refrigerant in the refrigerant circuit, a cooling operation or a heating operation can be performed.
 なお、室内機50a、50bの各構成部品について、それらを搭載している室内機と同じ添え字(「a」または「b」)を付すものとする。そして、室内機、およびその構成部品において、添え字が付されていない符号のみの場合は、総称であるものとし、後述する実施の形態2についても同様である。 It should be noted that the same subscript (“a” or “b”) as that of the indoor unit in which each component of the indoor units 50a and 50b is mounted is attached. And in an indoor unit and its component parts, when only the code | symbol which is not attached | subjected is attached, it shall be a generic name and it is the same also about Embodiment 2 mentioned later.
 また、本実施の形態1では、1台の室外機と2台の室内機とを備えた構成となっているが、それに限定されず、室外機は2台以上でもよいし、室内機は1台でもよいし、3台以上でもよく、後述する実施の形態2についても同様である。 Moreover, in this Embodiment 1, although it became the structure provided with one outdoor unit and two indoor units, it is not limited to it, Two or more outdoor units may be sufficient and the indoor unit is 1 The number may be three or more, and the same applies to the second embodiment described later.
 空気調和装置の冷媒配管は、各室内機に接続されているガス枝管(室内機50aに接続されているガス枝管206aおよび室内機50bに接続されているガス枝管206b)と、室外機10とガス枝管206とを接続するガス配管204と、各室内機に接続されている液枝管(室内機50aに接続されている液枝管207aおよび室内機50bに接続されている液枝管207b)と、室外機10と液枝管207とを接続する液配管205と、からなる。 The refrigerant piping of the air conditioner includes gas branch pipes connected to each indoor unit (a gas branch pipe 206a connected to the indoor unit 50a and a gas branch pipe 206b connected to the indoor unit 50b), and an outdoor unit. 10 and the gas branch pipe 206 connecting the gas branch pipe 206 and the liquid branch pipe connected to each indoor unit (the liquid branch pipe 207a connected to the indoor unit 50a and the liquid branch connected to the indoor unit 50b). A pipe 207b) and a liquid pipe 205 connecting the outdoor unit 10 and the liquid branch pipe 207.
 室外機10と室内機50aとは、ガス配管204、ガス枝管206a、液枝管207a、および、液配管205を介して接続されており、室外機10と室内機50bとは、ガス配管204、ガス枝管206b、液枝管207b、および、液配管205を介して接続されている。 The outdoor unit 10 and the indoor unit 50a are connected via a gas pipe 204, a gas branch pipe 206a, a liquid branch pipe 207a, and a liquid pipe 205. The outdoor unit 10 and the indoor unit 50b are connected to the gas pipe 204. The gas branch pipe 206b, the liquid branch pipe 207b, and the liquid pipe 205 are connected to each other.
 室外機10には、圧縮機1と、オイルセパレータ2と、逆止弁3と、四方弁4-1、4-2(以下、まとめて四方弁4とも称する)と、室外熱交換器5と、高低圧熱交換器6と、流量調整弁8と、液側開閉弁9と、ガス側開閉弁11と、アキュムレータ12と、返油バイパスキャピラリ13と、返油バイパス用電磁弁14と、バイパス流量調整弁7と、が搭載されている。圧縮機1、オイルセパレータ2、逆止弁3、四方弁4、室外熱交換器5、高低圧熱交換器6、流量調整弁8、液側開閉弁9、ガス側開閉弁11、および、アキュムレータ12は、冷媒配管で直列に接続されるように設けられている。 The outdoor unit 10 includes a compressor 1, an oil separator 2, a check valve 3, four-way valves 4-1 and 4-2 (hereinafter also collectively referred to as a four-way valve 4), an outdoor heat exchanger 5, , High / low pressure heat exchanger 6, flow rate adjustment valve 8, liquid side on / off valve 9, gas side on / off valve 11, accumulator 12, oil return bypass capillary 13, oil return bypass solenoid valve 14, bypass A flow rate adjusting valve 7 is mounted. Compressor 1, oil separator 2, check valve 3, four-way valve 4, outdoor heat exchanger 5, high / low pressure heat exchanger 6, flow control valve 8, liquid side on / off valve 9, gas side on / off valve 11, and accumulator 12 are provided so as to be connected in series by a refrigerant pipe.
 高低圧熱交換器6は、室外熱交換器5と流量調整弁8との間における液配管26に設けられている。この高低圧熱交換器6には、液配管26と、この高低圧熱交換器6と流量調整弁8との間における液配管26、つまり、高低圧熱交換器6の上流側の液配管26を分岐し、アキュムレータ12の上流側に接続させたバイパス配管23と、が接続されている。また、バイパス流量調整弁7は、高低圧熱交換器6と流量調整弁8との間におけるバイパス配管23に設けられている。 The high / low pressure heat exchanger 6 is provided in the liquid pipe 26 between the outdoor heat exchanger 5 and the flow rate adjusting valve 8. The high / low pressure heat exchanger 6 includes a liquid pipe 26 and a liquid pipe 26 between the high / low pressure heat exchanger 6 and the flow rate adjusting valve 8, that is, a liquid pipe 26 on the upstream side of the high / low pressure heat exchanger 6. And a bypass pipe 23 connected to the upstream side of the accumulator 12 is connected. The bypass flow rate adjusting valve 7 is provided in the bypass pipe 23 between the high / low pressure heat exchanger 6 and the flow rate adjusting valve 8.
 さらに、返油バイパスキャピラリ13および返油バイパス用電磁弁14は、オイルセパレータ2と、アキュムレータ12および圧縮機1を接続している吸入配管31と、を接続している返油バイパス回路30に設けられている。返油バイパスキャピラリ13は、返油バイパス用電磁弁14の上流側および下流側を接続し、返油バイパス用電磁弁14を迂回するように設けられている。なお、以下の説明において、液配管26とバイパス配管23とが接続しているポイントを接続点25、バイパス配管23とアキュムレータ12の上流側の配管(四方弁4とアキュムレータ12との間における冷媒配管)とが接続しているポイントを接続点24と称する。 Furthermore, the oil return bypass capillary 13 and the oil return bypass solenoid valve 14 are provided in the oil return bypass circuit 30 connecting the oil separator 2 and the suction pipe 31 connecting the accumulator 12 and the compressor 1. It has been. The oil return bypass capillary 13 is provided to connect the upstream side and the downstream side of the oil return bypass electromagnetic valve 14 so as to bypass the oil return bypass electromagnetic valve 14. In the following description, a point where the liquid pipe 26 and the bypass pipe 23 are connected is a connection point 25, a pipe on the upstream side of the bypass pipe 23 and the accumulator 12 (a refrigerant pipe between the four-way valve 4 and the accumulator 12). ) Is connected to a connection point 24.
 また、室外機10には、室外機10に搭載されている各アクチュエータ(例えば、圧縮機1、四方弁4、図示省略の室外送風機など)の駆動を制御する制御装置27が搭載されている。さらに、室外機10には、第1圧力センサ15(以下、第1圧力センサ15で検知した圧力を63hsと称する)、第2圧力センサ16(以下、第2圧力センサ16で検知した圧力を63lsと称する)、第1温度センサ17(以下、第1温度センサ17で検知した温度をth4と称する)、第2温度センサ18(以下、第2温度センサ18で検知した温度をth7と称する)、第3温度センサ19(以下、第3温度センサ19で検知した温度をth3と称する)、第4温度センサ20(以下、第4温度センサ20で検知した温度をth2と称する)、第5温度センサ21(以下、第5温度センサ21で検知した温度をth6と称する)、第6温度センサ22(以下、第6温度センサ22で検知した温度をth5と称する)、および、第7温度センサ28(以下、第7温度センサ28で検知した温度をth9と称する)が設けられている。 In addition, the outdoor unit 10 is equipped with a control device 27 that controls driving of each actuator (for example, the compressor 1, the four-way valve 4, an outdoor blower not shown) mounted on the outdoor unit 10. Further, the outdoor unit 10 includes a first pressure sensor 15 (hereinafter, the pressure detected by the first pressure sensor 15 is referred to as 63 hs), a second pressure sensor 16 (hereinafter, the pressure detected by the second pressure sensor 16 is 63 ls). A first temperature sensor 17 (hereinafter, the temperature detected by the first temperature sensor 17 is referred to as th4), a second temperature sensor 18 (hereinafter, the temperature detected by the second temperature sensor 18 is referred to as th7), Third temperature sensor 19 (hereinafter, temperature detected by third temperature sensor 19 is referred to as th3), fourth temperature sensor 20 (hereinafter, temperature detected by fourth temperature sensor 20 is referred to as th2), fifth temperature sensor 21 (hereinafter, the temperature detected by the fifth temperature sensor 21 is referred to as th6), the sixth temperature sensor 22 (hereinafter, the temperature detected by the sixth temperature sensor 22 is referred to as th5), and the seventh temperature Sensor 28 (hereinafter, the temperature detected by the seventh temperature sensor 28 is referred to as th9) is provided.
 圧縮機1は、インバータ回路(図示せず)を有しており、インバータ回路による電源周波数変換により圧縮機回転数が制御され、容量制御されるタイプ、つまり、容量可変型であり、吸入した冷媒を圧縮して高温・高圧の状態にするものである。 The compressor 1 has an inverter circuit (not shown), and the compressor rotational speed is controlled by power frequency conversion by the inverter circuit, and the capacity is controlled, that is, the capacity is variable. Is compressed to a high temperature and high pressure state.
 オイルセパレータ2は、圧縮機1の吐出側に設けられており、圧縮機1から吐出され、冷凍機油が混在している冷媒ガスから冷凍機油成分を分離する機能を有している。逆止弁3は、オイルセパレータ2と四方弁4との間における冷媒配管に設けられており、圧縮機1の停止時に圧縮機1の吐出側への冷媒の逆流を防止するためのものである。 The oil separator 2 is provided on the discharge side of the compressor 1 and has a function of separating the refrigerating machine oil component from the refrigerant gas discharged from the compressor 1 and containing refrigerating machine oil. The check valve 3 is provided in a refrigerant pipe between the oil separator 2 and the four-way valve 4, and prevents reverse flow of the refrigerant to the discharge side of the compressor 1 when the compressor 1 is stopped. .
 四方弁4は、流路切替装置として機能し、冷房運転時と暖房運転時とで冷媒の流れを切り替えるものである。室外熱交換器5は、冷房運転時には凝縮器(または放熱器)、暖房運転時には蒸発器として機能し、図示省略の室外送風機から供給される空気と冷媒との間で熱交換を行なうものである。 The four-way valve 4 functions as a flow path switching device, and switches the refrigerant flow between the cooling operation and the heating operation. The outdoor heat exchanger 5 functions as a condenser (or a radiator) during cooling operation and as an evaporator during heating operation, and performs heat exchange between air and refrigerant supplied from an outdoor blower (not shown). .
 高低圧熱交換器6は、液配管26を流れる冷媒と、バイパス配管23を流れる冷媒との間で熱交換を行なうものである。流量調整弁8は、冷房回路における接続点25の下流側に設置されており、減圧弁および膨張弁として機能し、冷媒を減圧して膨張させるものであり、また、室内機50に流入する冷媒量を調整するものである。この流量調整弁8は、開度が可変に制御可能なもの、例えば電子式膨張弁などで構成するとよい。 The high / low pressure heat exchanger 6 exchanges heat between the refrigerant flowing through the liquid pipe 26 and the refrigerant flowing through the bypass pipe 23. The flow rate adjusting valve 8 is installed on the downstream side of the connection point 25 in the cooling circuit, functions as a pressure reducing valve and an expansion valve, expands the refrigerant by decompressing it, and also flows into the indoor unit 50. The amount is adjusted. The flow rate adjusting valve 8 may be configured by a valve whose opening degree can be variably controlled, for example, an electronic expansion valve.
 液側開閉弁9は、制御装置27または手動で開閉されることで冷媒を導通したりしなかったりするものである。ガス側開閉弁11も、制御装置27または手動で開閉されることで冷媒を導通したりしなかったりするものである。液側開閉弁9およびガス側開閉弁11bは、開閉されることによって、冷凍サイクル内の圧力変動を調整するために設置されている。アキュムレータ12は、圧縮機1の吸入側に設けられており、冷媒回路を循環する過剰な冷媒を貯留するものである。 The liquid side on / off valve 9 is opened / closed manually by the control device 27 or may not conduct the refrigerant. The gas side on / off valve 11 is also opened / closed manually by the control device 27 or manually, and may or may not conduct the refrigerant. The liquid side on / off valve 9 and the gas side on / off valve 11b are installed to adjust the pressure fluctuation in the refrigeration cycle by being opened and closed. The accumulator 12 is provided on the suction side of the compressor 1 and stores excess refrigerant circulating in the refrigerant circuit.
 バイパス流量調整弁7は、接続点25と高低圧熱交換器6との間におけるバイパス配管23に設置されており、減圧弁および膨張弁として機能し、冷媒を減圧して膨張させるものであり、また、バイパス配管23に流れる冷媒量を調整するものである。このバイパス流量調整弁7は、開度が可変に制御可能なもの、例えば電子式膨張弁などで構成するとよい。 The bypass flow rate adjusting valve 7 is installed in the bypass pipe 23 between the connection point 25 and the high / low pressure heat exchanger 6, functions as a pressure reducing valve and an expansion valve, and decompresses the refrigerant to expand it. Further, the amount of refrigerant flowing through the bypass pipe 23 is adjusted. The bypass flow rate adjusting valve 7 may be configured by a valve whose opening degree can be variably controlled, for example, an electronic expansion valve.
 返油バイパス回路30は、オイルセパレータ2で分離した冷凍機油を圧縮機1の吸入側に戻すようになっている。返油バイパスキャピラリ13は、返油バイパス回路30を通る冷凍機油の流量を調整するものである。返油バイパス用電磁弁14は、開閉制御されることで、返油バイパスキャピラリ13とともに冷凍機油の流量を調整するものである。 The oil return bypass circuit 30 is configured to return the refrigeration oil separated by the oil separator 2 to the suction side of the compressor 1. The oil return bypass capillary 13 is for adjusting the flow rate of the refrigerating machine oil passing through the oil return bypass circuit 30. The oil return bypass solenoid valve 14 is controlled to open and close to adjust the flow rate of the refrigerating machine oil together with the oil return bypass capillary 13.
 第1圧力センサ15は、オイルセパレータ2と四方弁4との間に設けられ、圧縮機1から吐出された冷媒の圧力(高圧)を検知するものである。第2圧力センサ16は、アキュムレータ12の上流側に設けられ、圧縮機1に吸入される冷媒の圧力(低圧)を検知するものである。第1温度センサ17は、圧縮機1とオイルセパレータ2との間に設けられ、圧縮機1から吐出された冷媒の温度を検知するものである。第2温度センサ18は、室外機10の周囲の温度(外気温度)を検知するものである。第3温度センサ19は、室外熱交換器5と高低圧熱交換器6との間に設けられ、室外熱交換器5と高低圧熱交換器6との間を通る冷媒の温度を検知するものである。 The first pressure sensor 15 is provided between the oil separator 2 and the four-way valve 4 and detects the pressure (high pressure) of the refrigerant discharged from the compressor 1. The second pressure sensor 16 is provided on the upstream side of the accumulator 12 and detects the pressure (low pressure) of the refrigerant sucked into the compressor 1. The first temperature sensor 17 is provided between the compressor 1 and the oil separator 2 and detects the temperature of the refrigerant discharged from the compressor 1. The second temperature sensor 18 detects the ambient temperature (outside air temperature) of the outdoor unit 10. The third temperature sensor 19 is provided between the outdoor heat exchanger 5 and the high / low pressure heat exchanger 6 and detects the temperature of the refrigerant passing between the outdoor heat exchanger 5 and the high / low pressure heat exchanger 6. It is.
 第4温度センサ20は、高低圧熱交換器6を通過後のバイパス配管23に設けられ、高低圧熱交換器6を通過後のバイパス配管23を通る冷媒の温度を検知するものである。第5温度センサ21は、接続点25と流量調整弁8との間に設けられ、接続点25と流量調整弁8との間における液配管26を通る冷媒の温度を検知するものである。第6温度センサ22は、接続点24とアキュムレータ12との間に設けられ、接続点24とアキュムレータ12との間を通る冷媒の温度を検知するものである。第7温度センサ28は、アキュムレータ12と圧縮機1との間に設けられ、圧縮機1に吸入する冷媒の温度を検知するものである。 The fourth temperature sensor 20 is provided in the bypass pipe 23 after passing through the high / low pressure heat exchanger 6 and detects the temperature of the refrigerant passing through the bypass pipe 23 after passing through the high / low pressure heat exchanger 6. The fifth temperature sensor 21 is provided between the connection point 25 and the flow rate adjustment valve 8, and detects the temperature of the refrigerant passing through the liquid pipe 26 between the connection point 25 and the flow rate adjustment valve 8. The sixth temperature sensor 22 is provided between the connection point 24 and the accumulator 12 and detects the temperature of the refrigerant passing between the connection point 24 and the accumulator 12. The seventh temperature sensor 28 is provided between the accumulator 12 and the compressor 1 and detects the temperature of the refrigerant sucked into the compressor 1.
 そして、各圧力センサで検知された圧力情報、および、各温度センサで検知された温度情報は、信号として制御装置27に送られるようになっている。制御装置27は、後に詳述するが、各圧力センサおよび各温度センサから送信される信号に基づいて、各アクチュエータを制御するようになっている。この制御装置27は、特に種類を限定するものではないが、例えば室外機10に搭載される各アクチュエータを制御できるようなマイクロコンピュータなどで構成するとよい。 The pressure information detected by each pressure sensor and the temperature information detected by each temperature sensor are sent to the control device 27 as signals. As will be described later in detail, the control device 27 controls each actuator based on signals transmitted from each pressure sensor and each temperature sensor. The type of the control device 27 is not particularly limited. For example, the control device 27 may be composed of a microcomputer that can control each actuator mounted on the outdoor unit 10.
 室内機50aには、室内熱交換器100aおよび膨張弁101aがガス枝管206aおよび液枝管207aで直列に接続されて搭載されている。また、室内機50aには、室内機50aに搭載されている各アクチュエータ(例えば、膨張弁101aおよび図示省略の室内送風機など)の駆動を制御する制御装置102aが搭載されている。さらに、室内機50aには、第8温度センサ103aおよび第9温度センサ104aが設けられている。 In the indoor unit 50a, an indoor heat exchanger 100a and an expansion valve 101a are mounted in series by a gas branch pipe 206a and a liquid branch pipe 207a. In addition, the indoor unit 50a is equipped with a control device 102a that controls driving of each actuator (for example, the expansion valve 101a and an indoor fan not shown) mounted on the indoor unit 50a. Further, the indoor unit 50a is provided with an eighth temperature sensor 103a and a ninth temperature sensor 104a.
 室内熱交換器100aは、冷房運転時には蒸発器、暖房運転時には凝縮器(または放熱器)として機能し、冷媒と空気との間で熱交換を行なうものである。膨張弁101aは、減圧弁および膨張弁として機能し、冷媒を減圧して膨張させるものであり、また、室内熱交換器100aに流入する冷媒量を調整するものである。この膨張弁101aは、開度が可変に制御可能なもの、例えば電子式膨張弁などで構成するとよい。 The indoor heat exchanger 100a functions as an evaporator during the cooling operation and as a condenser (or a radiator) during the heating operation, and performs heat exchange between the refrigerant and the air. The expansion valve 101a functions as a pressure reducing valve and an expansion valve, expands the refrigerant by decompressing it, and adjusts the amount of refrigerant flowing into the indoor heat exchanger 100a. The expansion valve 101a may be constituted by a valve whose opening degree can be variably controlled, for example, an electronic expansion valve.
 第8温度センサ103aは、室内熱交換器100aに接続されているガス枝管206aに設けられ、室内熱交換器100aのガス側出口における冷媒の温度を検知するものである。第9温度センサ104aは、室内熱交換器100aに接続されている液枝管207aに設けられ、室内熱交換器100aの液側出口における冷媒の温度を検知するものである。 The eighth temperature sensor 103a is provided in the gas branch pipe 206a connected to the indoor heat exchanger 100a, and detects the temperature of the refrigerant at the gas side outlet of the indoor heat exchanger 100a. The ninth temperature sensor 104a is provided in the liquid branch pipe 207a connected to the indoor heat exchanger 100a, and detects the temperature of the refrigerant at the liquid side outlet of the indoor heat exchanger 100a.
 そして、各温度センサで検知された温度情報は、信号として制御装置102aに送られるようになっている。制御装置102aは、後に詳述するが、各温度センサから送信される信号に基づいて、各アクチュエータを制御するようになっている。この制御装置102aは、特に種類を限定するものではないが、例えば室内機50aに搭載される各アクチュエータを制御できるようなマイクロコンピュータなどで構成するとよい。 The temperature information detected by each temperature sensor is sent as a signal to the control device 102a. As will be described in detail later, the control device 102a controls each actuator based on a signal transmitted from each temperature sensor. The type of the control device 102a is not particularly limited. For example, the control device 102a may be composed of a microcomputer that can control each actuator mounted on the indoor unit 50a.
 ところで、室内機50bは、室内機50aと同様の構成となっている。つまり、室内機50aの構成部品の添え字「a」を「b」に変更すれば室内機50bの構成部品となる。なお、図1では、室内機50aおよび室内機50bの双方に制御装置が搭載されている状態を例に示しているが、1つの制御装置で室内機50aおよび室内機50bの双方を制御するようにしてもよい。また、室内機50aおよび室内機50bの双方に制御装置が搭載されている状態では、互いの制御装置が有線または無線で通信可能になっている。さらに、室内機に搭載されている制御装置は、室外機に搭載されている制御装置と有線または無線で通信可能になっている。 Incidentally, the indoor unit 50b has the same configuration as the indoor unit 50a. That is, if the subscript “a” of the component part of the indoor unit 50a is changed to “b”, the component part of the indoor unit 50b is obtained. FIG. 1 shows an example in which a control device is mounted on both the indoor unit 50a and the indoor unit 50b. However, the single control device controls both the indoor unit 50a and the indoor unit 50b. It may be. Further, in a state where the control device is mounted on both the indoor unit 50a and the indoor unit 50b, the control devices can communicate with each other by wire or wirelessly. Furthermore, the control device mounted on the indoor unit can communicate with the control device mounted on the outdoor unit by wire or wirelessly.
 空気調和装置の冷房回路では、図1に示す矢印にように、圧縮機1、オイルセパレータ2、逆止弁3、四方弁4、室外熱交換器5、高低圧熱交換器6、流量調整弁8、液側開閉弁9、膨張弁(膨張弁101aおよび膨張弁101b)、室内熱交換器(室内熱交換器100aおよび室内熱交換器100b)、ガス側開閉弁11、四方弁4、および、アキュムレータ12の順で冷媒が流れるように接続されている。 In the cooling circuit of the air conditioner, as indicated by the arrows shown in FIG. 1, the compressor 1, the oil separator 2, the check valve 3, the four-way valve 4, the outdoor heat exchanger 5, the high and low pressure heat exchanger 6, and the flow rate adjusting valve. 8, liquid side opening / closing valve 9, expansion valve (expansion valve 101a and expansion valve 101b), indoor heat exchanger (indoor heat exchanger 100a and indoor heat exchanger 100b), gas side opening / closing valve 11, four-way valve 4, and It is connected so that the refrigerant flows in the order of the accumulator 12.
 図2は、本発明の実施の形態1に係る空気調和装置における冷媒分布を示す図である。
 図2に示すように、空気調和装置内の全冷媒量は、アキュムレータ12内の冷媒量ACC+室外熱交換器5内の冷媒量+液配管26内の冷媒量+液配管205内の冷媒量+液枝管207内の冷媒量(以下、液配管26、液配管205、および液枝管207の総称として液配管Aとする)により求めることができる。
FIG. 2 is a diagram showing a refrigerant distribution in the air-conditioning apparatus according to Embodiment 1 of the present invention.
As shown in FIG. 2, the total refrigerant amount in the air conditioner is: refrigerant amount ACC in the accumulator 12 + refrigerant amount in the outdoor heat exchanger 5 + refrigerant amount in the liquid pipe 26 + refrigerant amount in the liquid pipe 205 + It can be determined from the amount of refrigerant in the liquid branch pipe 207 (hereinafter, the liquid pipe 26, the liquid pipe 205, and the liquid branch pipe 207 are collectively referred to as a liquid pipe A).
 室外熱交換器5内の冷媒量は、第1圧力センサ15で検知した圧力63hsと第3温度センサ19で検知したth3とにより求められる室外熱交換器5の出口側の過冷却度SCOから求めることができる。また、液配管A内の冷媒量は、第1圧力センサ15で検知した圧力63hsと第5温度センサ21で検知した温度th6とにより求められる高低圧熱交換器6の出口側の過冷却度SCCから求めることができる。
 したがって、全冷媒量は、ACC、SCO、および、SCCから求めることができる。
The amount of refrigerant in the outdoor heat exchanger 5 is obtained from the degree of supercooling SCO on the outlet side of the outdoor heat exchanger 5 obtained from the pressure 63 hs detected by the first pressure sensor 15 and th3 detected by the third temperature sensor 19. be able to. The amount of refrigerant in the liquid pipe A is the degree of supercooling SCC on the outlet side of the high / low pressure heat exchanger 6 determined by the pressure 63 hs detected by the first pressure sensor 15 and the temperature th6 detected by the fifth temperature sensor 21. Can be obtained from
Therefore, the total amount of refrigerant can be obtained from ACC, SCO, and SCC.
 なお、SCOは、第1圧力センサ15で検知した圧力63hsから換算された飽和温度(凝縮温度)Tcと、第3温度センサ19で検知した温度th3との差温、つまり、Tc-th3により求められる。また、SCCは、第1圧力センサ15で検知した圧力63hsから換算された飽和温度(凝縮温度)Tcと、第5温度センサ21で検知した温度th6との差温、つまり、Tc-th6により求められる。 Note that the SCO is obtained by the difference between the saturation temperature (condensation temperature) Tc converted from the pressure 63 hs detected by the first pressure sensor 15 and the temperature th3 detected by the third temperature sensor 19, that is, Tc−th3. It is done. Further, the SCC is obtained by the difference between the saturation temperature (condensation temperature) Tc converted from the pressure 63 hs detected by the first pressure sensor 15 and the temperature th6 detected by the fifth temperature sensor 21, that is, Tc−th6. It is done.
 次に、空気調和装置の冷房運転時の動作について説明する。
 この場合、圧縮機1からの吐出冷媒を室外熱交換器5に流入させるように四方弁4が切り替えられる。つまり、四方弁4では、図1で示す実線方向に配管が接続される。また、流量調整弁8が全開または全開に近い状態、バイパス流量調整弁7が適度な開度、膨張弁101が適度な開度に設定されて運転が開始される。この場合の冷媒の流れは、以下のようになる。
Next, the operation | movement at the time of the cooling operation of an air conditioning apparatus is demonstrated.
In this case, the four-way valve 4 is switched so that the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 5. That is, in the four-way valve 4, piping is connected in the direction of the solid line shown in FIG. Further, the operation is started with the flow rate adjusting valve 8 being fully opened or nearly fully opened, the bypass flow rate adjusting valve 7 being set to an appropriate opening degree, and the expansion valve 101 being set to an appropriate opening degree. The refrigerant flow in this case is as follows.
 圧縮機1から吐出された高温・高圧のガスの冷媒は、まずオイルセパレータ2を通過する。この時に冷媒に混在する冷凍機油のおよそ大部分は、冷媒と分離され、内側底部に溜められて、返油バイパスキャピラリ13を通り(返油バイパス用電磁弁14が開口されている場合はそこも通過)、圧縮機1の吸入配管31に戻される。これにより、室外機10の外部へ流出する冷凍機油を低減でき、圧縮機1の信頼性を改善することができる。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 first passes through the oil separator 2. At this time, most of the refrigerating machine oil mixed in the refrigerant is separated from the refrigerant, accumulated in the bottom of the inside, passes through the oil return bypass capillary 13 (if the oil return bypass solenoid valve 14 is opened, there is also Pass through) and returned to the suction pipe 31 of the compressor 1. Thereby, the refrigerating machine oil which flows out of the outdoor unit 10 can be reduced, and the reliability of the compressor 1 can be improved.
 冷凍機油が占める割合が低下した高温高圧の冷媒は、四方弁4を通り、室外熱交換器5で凝縮、液化され、高低圧熱交換器6を通過する。 The high-temperature and high-pressure refrigerant in which the ratio of the refrigerating machine oil is reduced passes through the four-way valve 4, is condensed and liquefied by the outdoor heat exchanger 5, and passes through the high-low pressure heat exchanger 6.
 また、高低圧熱交換器6から流出した冷媒は、バイパス配管23に流れる冷媒と、液配管26とに流れる冷媒と、に分岐される。バイパス配管23を流れる冷媒は、バイパス流量調整弁7で適度に流量調整されて低圧・低温の冷媒となり、室外熱交換器5を出た冷媒と高低圧熱交換器6内で熱交換する。そのため、室外熱交換器5の出口側の冷媒状態よりも、高低圧熱交換器6の出口側での冷媒状態の方が、エンタルピーが低くなる、つまり過冷却度が大きくなる。 Further, the refrigerant that has flowed out of the high / low pressure heat exchanger 6 is branched into a refrigerant that flows into the bypass pipe 23 and a refrigerant that flows into the liquid pipe 26. The refrigerant flowing through the bypass pipe 23 is appropriately adjusted in flow rate by the bypass flow rate adjusting valve 7 to become a low-pressure / low-temperature refrigerant, and exchanges heat with the refrigerant exiting the outdoor heat exchanger 5 in the high-low pressure heat exchanger 6. Therefore, the enthalpy is lower in the refrigerant state on the outlet side of the high / low pressure heat exchanger 6 than the refrigerant state on the outlet side of the outdoor heat exchanger 5, that is, the degree of supercooling is increased.
 バイパス流量調整弁7を通り、高低圧熱交換器6から流出した低圧の冷媒は、バイパス配管23を流れて、バイパス配管23とアキュムレータ12の上流側の配管とが接続している接続点24に至る。これにより、エンタルピー差が増大するため、同一能力にする場合の必要冷媒流量を低減でき、圧損低減による性能改善の効果がある。 The low-pressure refrigerant that has passed through the bypass flow rate adjusting valve 7 and has flowed out of the high-low pressure heat exchanger 6 flows through the bypass pipe 23, and is connected to the connection point 24 where the bypass pipe 23 and the upstream pipe of the accumulator 12 are connected. It reaches. Thereby, since the enthalpy difference increases, the required refrigerant flow rate in the case of the same capacity can be reduced, and there is an effect of performance improvement by reducing pressure loss.
 なお、ここでいう高圧、低圧は、冷媒回路内における圧力の相対的な関係を表すものとする(温度についても同様である)。 Note that the high pressure and low pressure referred to here represent the relative relationship of pressure in the refrigerant circuit (the same applies to temperature).
 一方、高低圧熱交換器6から流出した高圧側の冷媒は、流量調整弁8を通るが、流量調整弁8が全開のため、さして減圧することなく高圧の液冷媒として液配管205に供給される。その後、室内機50a、50bに入り、膨張弁101a、101bで減圧されて低圧二相冷媒となり、室内熱交換器100a、100bで蒸発、ガス化する。このとき、室内などの空調対象空間に冷房空気が供給され、空調対象空間の冷房運転が実現される。室内熱交換器100a、100bから流出した冷媒は、ガス配管204、四方弁4、および、アキュムレータ12を通り、圧縮機1に再度吸入される。 On the other hand, the high-pressure refrigerant flowing out of the high-low pressure heat exchanger 6 passes through the flow rate adjustment valve 8, but the flow rate adjustment valve 8 is fully opened, so that it is supplied to the liquid pipe 205 as a high-pressure liquid refrigerant without reducing the pressure. The Then, it enters into the indoor units 50a and 50b, is decompressed by the expansion valves 101a and 101b, becomes a low-pressure two-phase refrigerant, and is evaporated and gasified by the indoor heat exchangers 100a and 100b. At this time, the cooling air is supplied to the air-conditioning target space such as a room, and the cooling operation of the air-conditioning target space is realized. The refrigerant that has flowed out of the indoor heat exchangers 100a and 100b passes through the gas pipe 204, the four-way valve 4, and the accumulator 12, and is sucked into the compressor 1 again.
 ここで、アキュムレータ12には、図1に示すようなU字管が設けられているので、アキュムレータ12内に気液二相状態の冷媒が流入すると、液冷媒が容器下部に溜まり、U字管の上方開口部より流入されたガスリッチな冷媒が、アキュムレータ12から流出することになる。このようなアキュムレータ12を設けることによって、ガスリッチな冷媒が圧縮機1へ吸入される。したがって、過渡的な液および気液二相冷媒をアキュムレータ12に溜めきり、オーバーフローするまで、圧縮機1の液バックを一時的に防止することができ、圧縮機1の信頼性維持の効果が得られる。 Here, since the accumulator 12 is provided with a U-shaped tube as shown in FIG. 1, when a gas-liquid two-phase refrigerant flows into the accumulator 12, the liquid refrigerant accumulates in the lower part of the container, and the U-shaped tube. The gas-rich refrigerant that has flowed in through the upper opening flows out of the accumulator 12. By providing such an accumulator 12, a gas-rich refrigerant is sucked into the compressor 1. Therefore, the liquid back of the compressor 1 can be temporarily prevented until the transient liquid and the gas-liquid two-phase refrigerant are accumulated in the accumulator 12 and overflow, and the effect of maintaining the reliability of the compressor 1 is obtained. It is done.
 図3は、本発明の実施の形態1に係る空気調和装置の制御処理の流れを示すフローチャートである。
 以下、図3に基づいて、本実施の形態1に係る空気調和装置の圧縮機1の周波数の増減値Fpが決定されるまでの制御処理の流れについて詳細に説明する。
 まず、ユーザによりリモコン(図示せず)などから室内機の運転開始操作が行われ、室外機10を起動させる指令を受けたら(室外機10にサーモON信号が送信されたら)、制御装置27は、圧縮機1の駆動を開始し、空気調和装置の運転を開始する(ステップS101)。
FIG. 3 is a flowchart showing a flow of control processing of the air-conditioning apparatus according to Embodiment 1 of the present invention.
Hereinafter, based on FIG. 3, the flow of the control processing until the frequency increase / decrease value Fp of the compressor 1 of the air-conditioning apparatus according to Embodiment 1 is determined will be described in detail.
First, when the user performs an operation start operation of the indoor unit from a remote controller (not shown) or the like and receives an instruction to start the outdoor unit 10 (when a thermo-ON signal is transmitted to the outdoor unit 10), the control device 27 The driving of the compressor 1 is started and the operation of the air conditioner is started (step S101).
 制御装置27は、空気調和装置の運転が開始されたら、冷房運転中であるかどうかを判定する(ステップS102)。制御装置27は、冷房運転中であると判定したら(ステップS102のYes)、外気温度th7に応じて、圧縮機1の周波数の第1増減値Fp_th7を算出する。Fp_th7は、外気温度th7、(現状の)圧縮機1の吸入側の蒸発温度(以下、蒸発温度と称する)Te、および圧縮機1の吸入側の目標蒸発温度(以下、目標蒸発温度と称する)Temをパラメータとして、表1のように表される。外気温度th7が高いほど、Fp_th7が小さくなるように設定されている(ステップS103)。ここで、目標蒸発温度Temは、リモコン(図示せず)などから設定される(室内機50が設置されている)室内の設定温度と、室内温度センサ(図示せず)により検知される室内温度との差温に基づいて決定される。 When the operation of the air conditioner is started, the control device 27 determines whether or not the cooling operation is being performed (step S102). When it is determined that the cooling operation is being performed (Yes in step S102), the control device 27 calculates a first increase / decrease value Fp_th7 of the frequency of the compressor 1 according to the outside air temperature th7. Fp_th7 is the outside air temperature th7, the (current) suction side evaporation temperature (hereinafter referred to as evaporation temperature) Te of the compressor 1, and the suction side target evaporation temperature of the compressor 1 (hereinafter referred to as target evaporation temperature). Table 1 shows Tem as a parameter. Fp_th7 is set to be smaller as the outside air temperature th7 is higher (step S103). Here, the target evaporation temperature Tem is set from a remote controller (not shown) or the like, and a room temperature detected by a room temperature sensor (not shown) set in a room (where the indoor unit 50 is installed). It is determined based on the difference temperature.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、制御装置27は、SCOに応じて、圧縮機1の周波数の第2増減値Fp_SCOが算出される。Fp_SCOは、SCO(=Tc-th3)、蒸発温度Te、および目標蒸発温度Temをパラメータとして、表1のように表される。SCOが高いほど、Fp_SCOが小さくなるように設定されている(ステップS104)。 Next, the control device 27 calculates a second increase / decrease value Fp_SCO of the frequency of the compressor 1 according to the SCO. Fp_SCO is expressed as shown in Table 1 using SCO (= Tc−th3), evaporation temperature Te, and target evaporation temperature Tem as parameters. It is set so that Fp_SCO decreases as SCO increases (step S104).
 次に、制御装置27は、SCCに応じて、圧縮機1の周波数の第3増減値(以下、Fp_SCCと称する)が算出される。Fp_SCCは、SCC(=Tc-th6)、蒸発温度Teおよび目標蒸発温度Temをパラメータとして、表1のように表される。SCCが高いほど、Fp_SCCが小さくなるように設定されている(ステップS105)。 Next, the control device 27 calculates a third increase / decrease value (hereinafter referred to as Fp_SCC) of the frequency of the compressor 1 according to the SCC. Fp_SCC is expressed as shown in Table 1 using SCC (= Tc−th6), evaporation temperature Te, and target evaporation temperature Tem as parameters. It is set so that Fp_SCC decreases as SCC increases (step S105).
 Fpは、ステップS103~S105で算出されたFp_th7、Fp_SCO、およびFp_SCCの和(Fp_th7+Fp_SCO+Fp_SCC)により決定される(ステップS106)。そして、現在の圧縮機1の周波数にFpを加え、圧縮機1の周波数を更新する(ステップS107)。
 その後、ステップS103~S107の処理を、所定のタイミング毎に行い、圧縮機1の周波数を随時更新する。
Fp is determined by the sum (Fp_th7 + Fp_SCO + Fp_SCC) of Fp_th7, Fp_SCO, and Fp_SCC calculated in steps S103 to S105 (step S106). Then, Fp is added to the current frequency of the compressor 1 to update the frequency of the compressor 1 (step S107).
Thereafter, the processes of steps S103 to S107 are performed at predetermined timings, and the frequency of the compressor 1 is updated as needed.
 従来、圧縮機1の周波数の増減値Fpを、蒸発温度Teと目標蒸発温度Temのみで決定していたのに対し、本実施の形態1では、それらに加えて、周囲負荷温度(外気温度th7)および冷媒の分布状態(過冷却度SCOおよび過冷却度SCC)も考慮して、ステップS103~ステップS106の工程により、圧縮機1の周波数の増減値Fpを決定し、その値に基づいて圧縮機1の周波数を更新する。そうすることにより、高外気温または、室外熱交換器5に液冷媒が多量に分布している状態で、圧縮機1が過度に増速をすることによる圧力の過昇を是正することが可能となり、高圧圧力の許容値を逸脱するような圧力のオーバーシュートを是正することが可能となる。その結果、空気調和装置が異常停止することなく、連続運転をすることが可能となる。 Conventionally, the increase / decrease value Fp of the frequency of the compressor 1 is determined only by the evaporation temperature Te and the target evaporation temperature Tem. In the first embodiment, in addition to these, the ambient load temperature (outside air temperature th7) is determined. ) And refrigerant distribution state (supercooling degree SCO and supercooling degree SCC), the increase / decrease value Fp of the frequency of the compressor 1 is determined by the steps S103 to S106, and the compression is performed based on the values. The frequency of the machine 1 is updated. By doing so, it is possible to correct an excessive increase in pressure due to excessive acceleration of the compressor 1 in a state where the liquid refrigerant is distributed in a large amount in the outdoor heat exchanger 5 or at a high outdoor temperature. Thus, it becomes possible to correct the pressure overshoot that deviates from the allowable value of the high pressure. As a result, the air conditioner can be continuously operated without abnormally stopping.
 実施の形態2.
 以下、本発明の実施の形態2について説明するが、実施の形態1と重複するものについては(一部の)説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図4は、本発明の実施の形態2に係る空気調和装置の制御処理の流れを示すフローチャートである。
Embodiment 2. FIG.
Hereinafter, the second embodiment of the present invention will be described. However, the description of (a part of) the same as that of the first embodiment is omitted, and the same reference numerals are given to the same or corresponding parts as those of the first embodiment. Attached.
FIG. 4 is a flowchart showing a flow of control processing of the air-conditioning apparatus according to Embodiment 2 of the present invention.
 以下、図4に基づいて、本実施の形態2に係る空気調和装置の圧縮機1の周波数の初期周波数Fiが決定されるまでの制御処理の流れについて詳細に説明する。 Hereinafter, based on FIG. 4, the flow of the control process until the initial frequency Fi of the compressor 1 of the air-conditioning apparatus according to Embodiment 2 is determined will be described in detail.
 本実施の形態2は、圧縮機1の起動時に起動直前の外気温度および、停止前の冷媒分布状態から、起動時の圧縮機1のFiを適切に設定するものである。 In the second embodiment, the Fi of the compressor 1 at the start-up is appropriately set from the outside air temperature just before the start-up when the compressor 1 is started and the refrigerant distribution state before the stop.
 まず初めに、制御装置27により、停止前に運転していた際の室外熱交換器5の出口側の過冷却度SCO0、および停止前に運転していた際の高低圧熱交換器6の出口側の過冷却度SCC0を演算して、系内の冷媒分布状態を確認する(ステップS201)。
 室温負荷変動、またはリモコンなどからの室内機50の運転停止操作などにより、室外機10を停止させる指令を受けたら、制御装置27は、圧縮機1を停止させる(ステップS202)。その後(なお、室外機を複数台備えた構成である場合は、全台停止した後)、室温負荷変動、またはリモコンなどからの室内機の運転開始操作などにより、冷房運転を行うために、室外機10を起動させる指令(なお、室外機を複数台備えた構成である場合は、1台以上起動させる指令)を受けたら(室外機10にサーモON信号が送信されたら)(ステップS203)、制御装置27は、圧縮機1のFiを仮設定する(ステップS204)。つまり、Fiに、仮初期周波数Fitを設定する(例えば、Fit=20Hz)。なお、Fitは、予め設定された値であり、圧縮機の種類毎に定められる固定値である。
First, the control device 27 causes the supercooling degree SCO0 on the outlet side of the outdoor heat exchanger 5 when operating before stopping, and the outlet of the high and low pressure heat exchanger 6 when operating before stopping. The subcooling degree SCC0 on the side is calculated to check the refrigerant distribution state in the system (step S201).
When receiving a command to stop the outdoor unit 10 due to a change in room temperature load or an operation stop operation of the indoor unit 50 from a remote controller or the like, the control device 27 stops the compressor 1 (step S202). After that (in the case of a configuration with a plurality of outdoor units, after stopping all the units), in order to perform cooling operation by changing the room temperature load or starting the operation of the indoor unit from a remote controller, etc. When receiving a command for starting the unit 10 (in the case of a configuration including a plurality of outdoor units, a command for starting one or more units) (when a thermo-ON signal is transmitted to the outdoor unit 10) (step S203), The control device 27 temporarily sets Fi of the compressor 1 (step S204). That is, the temporary initial frequency Fit is set to Fi (for example, Fit = 20 Hz). Note that Fit is a preset value and is a fixed value determined for each type of compressor.
 ここで、制御装置27は、圧縮機1が起動する(直)前の外気温度th70を検知し(ステップS205)、その外気温度th70に応じてFitに対して、圧縮機1の周波数の初期第1増減値Fpi_th7を決定する。Fpi_th7は、th70をパラメータとして、表2のように表される。th70が高いほど、Fpi_th7が小さくなるよう(減速するよう)に設定されている(ステップS206)。 Here, the control device 27 detects the outside air temperature th70 before the compressor 1 is started (immediately) (step S205), and the initial frequency of the compressor 1 with respect to Fit according to the outside air temperature th70. 1 Increase / decrease value Fpi_th7 is determined. Fpi_th7 is expressed as shown in Table 2 using th70 as a parameter. It is set so that Fpi_th7 becomes smaller (decelerates) as th70 is higher (step S206).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 次に、制御装置27は、SCO0に応じてFitに対して、圧縮機1の周波数の初期第2増減値Fpi_SCOを決定する。Fpi_SCOは、SCO0をパラメータとして、表2のように表される。th70が高いほど、初期第2増減値Fpi_SCOが小さくなるよう(減速するよう)に設定されている(ステップS207)。 Next, the control device 27 determines an initial second increase / decrease value Fpi_SCO of the frequency of the compressor 1 with respect to Fit according to SCO0. Fpi_SCO is expressed as shown in Table 2 with SCO0 as a parameter. The initial second increase / decrease value Fpi_SCO is set to be smaller (decelerate) as th70 is higher (step S207).
 次に、制御装置27は、SCC0に応じてFitに対して、圧縮機1の周波数の初期第3増減値Fpi_SCCを決定する。Fpi_SCCは、SCC0をパラメータとして、表2のように表される。th70が高いほど、Fpi_SCCが小さくなるよう(減速するよう)に設定されている(ステップS208)。 Next, the control device 27 determines an initial third increase / decrease value Fpi_SCC of the frequency of the compressor 1 with respect to Fit according to SCC0. Fpi_SCC is expressed as shown in Table 2 with SCC0 as a parameter. It is set so that Fpi_SCC becomes smaller (decelerates) as th70 is higher (step S208).
 初期増減値Fpiは、ステップS206~S208で算出されたFpi_th7、Fpi_SCO、およびFpi_SCCの和(Fpi_th7+Fpi_SCO+Fpi_SCC)により決定される(ステップS209)。そして、仮設定したFi(=Fip)にFpiを加え、圧縮機1の初期周波数を決定し(ステップS210)、圧縮機1を起動させる(ステップS211)。 The initial increase / decrease value Fpi is determined by the sum of Fpi_th7, Fpi_SCO, and Fpi_SCC (Fpi_th7 + Fpi_SCO + Fpi_SCC) calculated in steps S206 to S208 (step S209). Then, Fpi is added to the temporarily set Fi (= Fip), the initial frequency of the compressor 1 is determined (step S210), and the compressor 1 is started (step S211).
 以上、本実施の形態2によれば、蒸発温度Teと目標蒸発温度Temに加えて、周囲負荷温度(外気温度th70)および冷媒の分布状態(過冷却度SCO0および過冷却度SCC0)も考慮して、ステップS206~ステップS209の工程により、圧縮機1の初期周波数を決定する。そのため、高外気温または、室外熱交換器に液冷媒が多量に分布している状態で、圧縮機1の起動時に過度に周波数増速をすることによる圧力の過昇を是正することが可能となり、高圧圧力の許容値を逸脱するような圧力のオーバーシュートを是正することが可能となる。その結果、空気調和装置が異常停止することなく、連続運転をすることが可能となる。 As described above, according to the second embodiment, in addition to the evaporation temperature Te and the target evaporation temperature Tem, the ambient load temperature (outside air temperature th70) and the refrigerant distribution state (the degree of supercooling SCO0 and the degree of supercooling SCC0) are also considered. Thus, the initial frequency of the compressor 1 is determined by the steps S206 to S209. Therefore, it becomes possible to correct the excessive increase in pressure due to excessive frequency acceleration when starting up the compressor 1 in a state where the liquid refrigerant is distributed in a large amount in the outdoor heat exchanger. It is possible to correct the pressure overshoot that deviates from the allowable value of the high pressure. As a result, the air conditioner can be continuously operated without abnormally stopping.
 実施の形態3.
 以下、本発明の実施の形態3について説明するが、実施の形態1および2と重複するものについては(一部の)説明を省略し、実施の形態1および2と同じ部分または相当する部分には同じ符号を付す。
 図5は、本発明の実施の形態3に係る空気調和装置の冷媒回路構成を示す冷媒回路図である。
Embodiment 3 FIG.
Hereinafter, the third embodiment of the present invention will be described, but the description of (part of) the same parts as those of the first and second embodiments will be omitted, and the same or corresponding parts as those of the first and second embodiments will be omitted. Are given the same symbols.
FIG. 5 is a refrigerant circuit diagram showing a refrigerant circuit configuration of the air-conditioning apparatus according to Embodiment 3 of the present invention.
 以下、図5に基づいて、本実施の形態3に係る空気調和装置の回路構成および動作について説明する。この空気調和装置は、冷媒を循環させる冷凍サイクル(ヒートポンプサイクル)を利用して、冷房運転または暖房運転を行なうものである。ここでは、本発明の構成上、冷房運転について説明する。 Hereinafter, the circuit configuration and operation of the air-conditioning apparatus according to Embodiment 3 will be described with reference to FIG. This air conditioner performs a cooling operation or a heating operation using a refrigeration cycle (heat pump cycle) for circulating a refrigerant. Here, the cooling operation will be described because of the configuration of the present invention.
 図5に示すように、本実施の形態3に係る空気調和装置は、実施の形態1に係る空気調和装置と比較して、高低圧熱交換器6がない回路構成となっている。
 本実施の形態3に係る空気調和装置内の全冷媒量は、アキュムレータ12内の冷媒量ACC+室外熱交換器5内の冷媒量+液配管A(液配管26、液配管205、および液枝管207)内の冷媒量により求めることができる。
As shown in FIG. 5, the air conditioner according to the third embodiment has a circuit configuration that does not include the high-low pressure heat exchanger 6 as compared with the air conditioner according to the first embodiment.
The total amount of refrigerant in the air conditioner according to Embodiment 3 is: refrigerant amount ACC in accumulator 12 + refrigerant amount in outdoor heat exchanger 5 + liquid pipe A (liquid pipe 26, liquid pipe 205, and liquid branch pipe) 207).
 室外熱交換器5内の冷媒量および液配管A内の冷媒量は、第1圧力センサ15で検知した圧力63hsと第3温度センサ19で検知したth3とにより求められる室外熱交換器5の出口側の過冷却度SCOから求めることができる。
 したがって、全冷媒量は、ACC、および、SCOから求めることができる。
The refrigerant amount in the outdoor heat exchanger 5 and the refrigerant amount in the liquid pipe A are determined by the pressure 63 hs detected by the first pressure sensor 15 and the th3 detected by the third temperature sensor 19, and the outlet of the outdoor heat exchanger 5. It can be determined from the degree of supercooling SCO on the side.
Therefore, the total refrigerant amount can be obtained from ACC and SCO.
 なお、SCOは、第1圧力センサ15で検知した圧力63hsから換算された飽和温度(凝縮温度)Tcと、第3温度センサ19で検知した温度th3との差温、つまり、Tc-th3により求められる。 Note that the SCO is obtained by the difference between the saturation temperature (condensation temperature) Tc converted from the pressure 63 hs detected by the first pressure sensor 15 and the temperature th3 detected by the third temperature sensor 19, that is, Tc−th3. It is done.
 図6は、本発明の実施の形態3に係る空気調和装置の制御処理の流れを示すフローチャートである。
 以下、図6に基づいて、本実施の形態3に係る空気調和装置の圧縮機1の周波数の増減値Fpが決定されるまでの制御処理の流れについて詳細に説明する。
 まず、ユーザによりリモコン(図示せず)などから室内機の運転開始操作が行われ、室外機10を起動させる指令を受けたら(室外機10にサーモON信号が送信されたら)、制御装置27は、圧縮機1の駆動を開始し、空気調和装置の運転を開始する(ステップS301)。
FIG. 6 is a flowchart showing a flow of control processing of the air-conditioning apparatus according to Embodiment 3 of the present invention.
Hereinafter, based on FIG. 6, the flow of the control processing until the frequency increase / decrease value Fp of the compressor 1 of the air-conditioning apparatus according to Embodiment 3 is determined will be described in detail.
First, when the user performs an operation start operation of the indoor unit from a remote controller (not shown) or the like and receives an instruction to start the outdoor unit 10 (when a thermo-ON signal is transmitted to the outdoor unit 10), the control device 27 The driving of the compressor 1 is started and the operation of the air conditioner is started (step S301).
 制御装置27は、空気調和装置の運転が開始されたら、冷房運転中であるかどうかを判定する(ステップS102)。制御装置27は、冷房運転中であると判定したら(ステップS302のYes)、外気温度th7に応じて、圧縮機1の周波数の第1増減値Fp_th7を算出する。Fp_th7は、外気温度th7、(現状の)圧縮機1の吸入側の蒸発温度(以下、蒸発温度と称する)Te、および圧縮機1の吸入側の目標蒸発温度(以下、目標蒸発温度と称する)Temをパラメータとして、表1のように表される。外気温度th7が高いほど、Fp_th7が小さくなるように設定されている(ステップS303)。ここで、目標蒸発温度Temは、リモコン(図示せず)などから設定される(室内機50が設置されている)室内の設定温度と、室内温度センサ(図示せず)により検知される室内温度との差温に基づいて決定される。 When the operation of the air conditioner is started, the control device 27 determines whether or not the cooling operation is being performed (step S102). When determining that the cooling operation is being performed (Yes in step S302), the control device 27 calculates a first increase / decrease value Fp_th7 of the frequency of the compressor 1 according to the outside air temperature th7. Fp_th7 is the outside air temperature th7, the (current) suction side evaporation temperature (hereinafter referred to as evaporation temperature) Te of the compressor 1, and the suction side target evaporation temperature of the compressor 1 (hereinafter referred to as target evaporation temperature). Table 1 shows Tem as a parameter. Fp_th7 is set to be smaller as the outside air temperature th7 is higher (step S303). Here, the target evaporation temperature Tem is set from a remote controller (not shown) or the like, and a room temperature detected by a room temperature sensor (not shown) set in a room (where the indoor unit 50 is installed). It is determined based on the difference temperature.
 次に、制御装置27は、SCOに応じて、圧縮機1の周波数の第2増減値Fp_SCOが算出される。Fp_SCOは、SCO(=Tc-th3)、蒸発温度Te、および目標蒸発温度Temをパラメータとして、表1のように表される。SCOが高いほど、Fp_SCOが小さくなるように設定されている(ステップS304)。 Next, the control device 27 calculates a second increase / decrease value Fp_SCO of the frequency of the compressor 1 according to the SCO. Fp_SCO is expressed as shown in Table 1 using SCO (= Tc−th3), evaporation temperature Te, and target evaporation temperature Tem as parameters. It is set so that Fp_SCO is smaller as SCO is higher (step S304).
 Fpは、ステップS303~S304で算出されたFp_th7、および、Fp_SCOの和(Fp_th7+Fp_SCO)により決定される(ステップS305)。そして、現在の圧縮機1の周波数にFpを加え、圧縮機1の周波数を更新する(ステップS306)。
 その後、ステップS303~S306の処理を、所定のタイミング毎に行い、圧縮機1の周波数を随時更新する。
Fp is determined by Fp_th7 calculated in steps S303 to S304 and the sum of Fp_SCO (Fp_th7 + Fp_SCO) (step S305). Then, Fp is added to the current frequency of the compressor 1 to update the frequency of the compressor 1 (step S306).
Thereafter, the processes in steps S303 to S306 are performed at predetermined timings, and the frequency of the compressor 1 is updated as needed.
 以上、本実施の形態3によれば、実施の形態1と同様の効果が得られる。 As described above, according to the third embodiment, the same effect as in the first embodiment can be obtained.
 実施の形態4.
 以下、本発明の実施の形態4について説明するが、実施の形態1~3と重複するものについては(一部の)説明を省略し、実施の形態1~3と同じ部分または相当する部分には同じ符号を付す。
 図7は、本発明の実施の形態4に係る空気調和装置の制御処理の流れを示すフローチャートである。
Embodiment 4 FIG.
Hereinafter, the fourth embodiment of the present invention will be described. However, the description of the same parts as those of the first to third embodiments will be omitted, and the same or corresponding parts as those of the first to third embodiments will be omitted. Are given the same symbols.
FIG. 7 is a flowchart showing a flow of control processing of the air-conditioning apparatus according to Embodiment 4 of the present invention.
 本実施の形態4に係る空気調和装置は、実施の形態3と同様の冷媒回路構成となっている。
 以下、図7に基づいて、本実施の形態4に係る空気調和装置の圧縮機1の周波数の初期周波数Fiが決定されるまでの制御処理の流れについて詳細に説明する。
The air-conditioning apparatus according to Embodiment 4 has the same refrigerant circuit configuration as that of Embodiment 3.
Hereinafter, based on FIG. 7, the flow of the control process until the initial frequency Fi of the compressor 1 of the air-conditioning apparatus according to Embodiment 4 is determined will be described in detail.
 本実施の形態4は、圧縮機1の起動時に起動直前の外気温度および、停止前の冷媒分布状態から、起動時の圧縮機1のFiを適切に設定するものである。 In the fourth embodiment, the Fi of the compressor 1 at the start-up is appropriately set from the outside air temperature just before the start-up when the compressor 1 is started and the refrigerant distribution state before the stop.
 まず初めに、制御装置27により、停止前に運転していた際の室外熱交換器5の出口側の過冷却度SCO0、および停止前に運転していた際の高低圧熱交換器6の出口側の過冷却度SCC0を演算して、系内の冷媒分布状態を確認する(ステップS401)。
 室温負荷変動、またはリモコンなどからの室内機50の運転停止操作などにより、室外機10を停止させる指令を受けたら、制御装置27は、圧縮機1を停止させる(ステップS402)。その後(なお、室外機を複数台備えた構成である場合は、全台停止した後)、室温負荷変動、またはリモコンなどからの室内機の運転開始操作などにより、冷房運転を行うために、室外機10を起動させる指令(なお、室外機を複数台備えた構成である場合は、1台以上起動させる指令)を受けたら(室外機10にサーモON信号が送信されたら)(ステップS403)、制御装置27は、圧縮機1のFiを仮設定する(ステップS404)。つまり、Fiに、仮初期周波数Fitを設定する(例えば、Fit=20Hz)。なお、Fitは、予め設定された値であり、圧縮機の種類毎に定められる固定値である。
First, the control device 27 causes the supercooling degree SCO0 on the outlet side of the outdoor heat exchanger 5 when operating before stopping, and the outlet of the high and low pressure heat exchanger 6 when operating before stopping. The subcooling degree SCC0 on the side is calculated to check the refrigerant distribution state in the system (step S401).
When receiving a command to stop the outdoor unit 10 due to a change in room temperature load or an operation stop operation of the indoor unit 50 from a remote controller or the like, the control device 27 stops the compressor 1 (step S402). After that (in the case of a configuration with a plurality of outdoor units, after stopping all the units), in order to perform cooling operation by changing the room temperature load or starting the operation of the indoor unit from a remote controller, etc. When receiving a command for starting the unit 10 (in the case of a configuration including a plurality of outdoor units, a command for starting one or more units) (when a thermo-ON signal is transmitted to the outdoor unit 10) (step S403), The control device 27 temporarily sets Fi of the compressor 1 (step S404). That is, the temporary initial frequency Fit is set to Fi (for example, Fit = 20 Hz). Note that Fit is a preset value and is a fixed value determined for each type of compressor.
 ここで、制御装置27は、圧縮機1が起動する(直)前の外気温度th70を検知し(ステップS405)、その外気温度th70に応じてFitに対して、圧縮機1の周波数の初期第1増減値Fpi_th7を決定する。Fpi_th7は、th70をパラメータとして、表2のように表される。th70が高いほど、Fpi_th7が小さくなるよう(減速するよう)に設定されている(ステップS406)。 Here, the control device 27 detects the outside air temperature th70 before the compressor 1 is started (immediately) (step S405), and the initial frequency of the compressor 1 with respect to the Fit according to the outside air temperature th70. 1 Increase / decrease value Fpi_th7 is determined. Fpi_th7 is expressed as shown in Table 2 using th70 as a parameter. It is set so that Fpi_th7 becomes smaller (decelerates) as th70 is higher (step S406).
 次に、制御装置27は、SCO0に応じてFitに対して、圧縮機1の周波数の初期第2増減値Fpi_SCOを決定する。Fpi_SCOは、SCO0をパラメータとして、表2のように表される。th70が高いほど、初期第2増減値Fpi_SCOが小さくなるよう(減速するよう)に設定されている(ステップS407)。 Next, the control device 27 determines an initial second increase / decrease value Fpi_SCO of the frequency of the compressor 1 with respect to Fit according to SCO0. Fpi_SCO is expressed as shown in Table 2 with SCO0 as a parameter. The initial second increase / decrease value Fpi_SCO is set to be smaller (decelerate) as th70 is higher (step S407).
 初期増減値Fpiは、ステップS406~S407で算出されたFpi_th7、および、Fpi_SCOの和(Fpi_th7+Fpi_SCO)により決定される(ステップS408)。そして、仮設定したFi(=Fip)にFpiを加え、圧縮機1の初期周波数を決定し(ステップS409)、圧縮機1を起動させる(ステップS410)。 The initial increase / decrease value Fpi is determined by Fpi_th7 calculated in steps S406 to S407 and the sum of Fpi_SCO (Fpi_th7 + Fpi_SCO) (step S408). Then, Fpi is added to the temporarily set Fi (= Fip), the initial frequency of the compressor 1 is determined (step S409), and the compressor 1 is started (step S410).
 以上、本実施の形態4によれば、実施の形態2と同様の効果が得られる。 As described above, according to the fourth embodiment, the same effect as in the second embodiment can be obtained.
 実施の形態5.
 以下、本発明の実施の形態5について説明するが、実施の形態1~4と重複するものについては(一部の)説明を省略し、実施の形態1~4と同じ部分または相当する部分には同じ符号を付す。
 図8は、本発明の実施の形態5に係る空気調和装置の冷媒回路構成を示す冷媒回路図である。
Embodiment 5 FIG.
Hereinafter, the fifth embodiment of the present invention will be described. However, the description of the same parts as those of the first to fourth embodiments will be omitted, and the same or corresponding parts as those of the first to fourth embodiments will be omitted. Are given the same symbols.
FIG. 8 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of an air-conditioning apparatus according to Embodiment 5 of the present invention.
 以下、図8に基づいて、本実施の形態5に係る空気調和装置の回路構成および動作について説明する。この空気調和装置は、冷媒を循環させる冷凍サイクル(ヒートポンプサイクル)を利用して、冷房運転または暖房運転を行なうものである。ここでは、本発明の構成上、冷房運転について説明する。 Hereinafter, the circuit configuration and operation of the air-conditioning apparatus according to Embodiment 5 will be described with reference to FIG. This air conditioner performs a cooling operation or a heating operation using a refrigeration cycle (heat pump cycle) for circulating a refrigerant. Here, the cooling operation will be described because of the configuration of the present invention.
 図8に示すように、本実施の形態5に係る空気調和装置は、2台の熱源機(室外機10aおよび室外機10b)と、2台の利用側ユニット(室内機50aおよび室内機50b)と、が冷媒配管で接続されて構成されている。2台の利用側ユニットは、2台の熱源機に並列接続されて連絡するようになっている。つまり、空気調和装置は、2台の熱源機に搭載される各機器(構成部品)と、2台の利用側ユニットに搭載される各機器(構成部品)と、を冷媒配管で接続することで冷媒回路(冷凍サイクル)を形成し、この冷媒回路に冷媒を循環させることによって、冷房運転または暖房運転することができるようになっているのである。 As shown in FIG. 8, the air-conditioning apparatus according to Embodiment 5 includes two heat source units (outdoor unit 10a and outdoor unit 10b) and two use side units (indoor unit 50a and indoor unit 50b). And are connected by refrigerant piping. The two usage-side units are connected in parallel to the two heat source units so as to communicate with each other. That is, the air conditioner connects each device (component) mounted on the two heat source units and each device (component) mounted on the two usage-side units through refrigerant piping. By forming a refrigerant circuit (refrigeration cycle) and circulating the refrigerant in the refrigerant circuit, a cooling operation or a heating operation can be performed.
 なお、室外機10a、室外機10b、および、室内機50a、50bの各構成部品について、それらを搭載している室外機または室内機と同じ添え字(「a」または「b」)を付すものとする。そして、室外機、室内機、およびそれらの構成部品において、添え字が付されていない符号のみの場合は、総称であるものとする。 In addition, about each component of outdoor unit 10a, outdoor unit 10b, and indoor unit 50a, 50b, the same subscript ("a" or "b") is attached to the outdoor unit or indoor unit in which they are mounted. And And in an outdoor unit, an indoor unit, and those components, only the code | symbol which is not attached | subjected shall be a generic name.
 また、本実施の形態5では、2台の室内機を備えた構成となっているが、それに限定されず、1台でもよいし、3台以上でもよい。 In the fifth embodiment, the configuration includes two indoor units. However, the configuration is not limited to this, and may be one or three or more.
 空気調和装置の冷媒配管は、各室外機と接続されているガス分岐管(室外機10aに接続されているガス分岐管202aおよび室外機10bに接続されているガス分岐管202b)と、各室内機に接続されているガス枝管(室内機50aに接続されているガス枝管206aおよび室内機50bに接続されているガス枝管206b)と、ガス分岐管202とガス枝管206とを接続する共通のガス配管204と、各室外機と接続されている液分岐管(室外機10aに接続されている液分岐管203aおよび室外機10bに接続されている液分岐管203b)と、各室内機に接続されている液枝管(室内機50aに接続されている液枝管207aおよび室内機50bに接続されている液枝管207b)と、液分岐管203と液枝管207とを接続する共通の液配管205と、からなる。 The refrigerant piping of the air conditioner includes a gas branch pipe connected to each outdoor unit (a gas branch pipe 202a connected to the outdoor unit 10a and a gas branch pipe 202b connected to the outdoor unit 10b), and each indoor unit. Gas branch pipes connected to the machine (gas branch pipe 206a connected to indoor unit 50a and gas branch pipe 206b connected to indoor unit 50b), gas branch pipe 202 and gas branch pipe 206 are connected. Common gas piping 204, liquid branch pipes connected to each outdoor unit (liquid branch pipe 203a connected to outdoor unit 10a and liquid branch pipe 203b connected to outdoor unit 10b), The liquid branch pipe (liquid branch pipe 207a connected to the indoor unit 50a and the liquid branch pipe 207b connected to the indoor unit 50b), the liquid branch pipe 203, and the liquid branch pipe 207 are connected to each other. A common liquid piping 205, consisting of.
 ガス分岐管202aおよびガス分岐管202bと、ガス配管204と、の間には、これらの冷媒配管を接続するガス分配器200aが設けられている。また、液分岐管203aおよび液分岐管203bと、液配管205と、の間には、これらの冷媒配管を接続する液分配器200bが設けられている。なお、図8では、空気調和装置にガス分配器200aおよび液分配器200bを搭載した状態を例に示しているが、ガス分配器200aおよび液分配器200bを搭載することに限定するものではない。また、ガス分岐管202a、ガス分岐管202b、および、ガス配管204がガス管を構成し、液分岐管203a、液分岐管203b、および、液配管205が液管を構成している。 Between the gas branch pipe 202a and the gas branch pipe 202b, and the gas pipe 204, a gas distributor 200a for connecting these refrigerant pipes is provided. Further, a liquid distributor 200b for connecting these refrigerant pipes is provided between the liquid branch pipe 203a and the liquid branch pipe 203b and the liquid pipe 205. FIG. 8 shows an example in which the gas distributor 200a and the liquid distributor 200b are mounted on the air conditioner, but the present invention is not limited to mounting the gas distributor 200a and the liquid distributor 200b. . The gas branch pipe 202a, the gas branch pipe 202b, and the gas pipe 204 constitute a gas pipe, and the liquid branch pipe 203a, the liquid branch pipe 203b, and the liquid pipe 205 constitute a liquid pipe.
 室外機10aと室内機50aとは、ガス分岐管202a、ガス配管204、ガス枝管206a、液枝管207a、液配管205、および、液分岐管203aを介して接続されており、室外機10aと室内機50bとは、ガス分岐管202a、ガス配管204、ガス枝管206b、液枝管207b、液配管205、および、液分岐管203aを介して接続されている。同様に、室外機10bと室内機50aとは、ガス分岐管202b、ガス配管204、ガス枝管206a、液枝管207a、液配管205、および、液分岐管203bを介して接続されており、室外機10bと室内機50bとは、ガス分岐管202b、ガス配管204、ガス枝管206b、液枝管207b、液配管205、および、液分岐管203bを介して接続されている。 The outdoor unit 10a and the indoor unit 50a are connected via a gas branch pipe 202a, a gas pipe 204, a gas branch pipe 206a, a liquid branch pipe 207a, a liquid pipe 205, and a liquid branch pipe 203a. The indoor unit 50b is connected to the gas branch pipe 202a, the gas pipe 204, the gas branch pipe 206b, the liquid branch pipe 207b, the liquid pipe 205, and the liquid branch pipe 203a. Similarly, the outdoor unit 10b and the indoor unit 50a are connected via a gas branch pipe 202b, a gas pipe 204, a gas branch pipe 206a, a liquid branch pipe 207a, a liquid pipe 205, and a liquid branch pipe 203b. The outdoor unit 10b and the indoor unit 50b are connected via a gas branch pipe 202b, a gas pipe 204, a gas branch pipe 206b, a liquid branch pipe 207b, a liquid pipe 205, and a liquid branch pipe 203b.
 室外機10aには、圧縮機1aと、オイルセパレータ2aと、逆止弁3aと、四方弁4-1a、4-2a(以下、まとめて四方弁4aとも称する)と、室外熱交換器5aと、高低圧熱交換器6aと、流量調整弁8aと、液側開閉弁9aと、ガス側開閉弁11aと、アキュムレータ12aと、返油バイパスキャピラリ13aと、返油バイパス用電磁弁14aと、バイパス流量調整弁7aと、が搭載されている。圧縮機1a、オイルセパレータ2a、逆止弁3a、四方弁4a、室外熱交換器5a、高低圧熱交換器6a、流量調整弁8a、液側開閉弁9a、ガス側開閉弁11a、および、アキュムレータ12aは、冷媒配管で直列に接続されるように設けられている。 The outdoor unit 10a includes a compressor 1a, an oil separator 2a, a check valve 3a, four-way valves 4-1a and 4-2a (hereinafter also collectively referred to as a four-way valve 4a), an outdoor heat exchanger 5a, , High / low pressure heat exchanger 6a, flow rate adjusting valve 8a, liquid side on / off valve 9a, gas side on / off valve 11a, accumulator 12a, oil return bypass capillary 13a, oil return bypass solenoid valve 14a, bypass And a flow rate adjusting valve 7a. Compressor 1a, oil separator 2a, check valve 3a, four-way valve 4a, outdoor heat exchanger 5a, high / low pressure heat exchanger 6a, flow rate adjusting valve 8a, liquid side on / off valve 9a, gas side on / off valve 11a, and accumulator 12a is provided so that it may be connected in series by refrigerant piping.
 高低圧熱交換器6aは、室外熱交換器5aと流量調整弁8aとの間における液配管26aに設けられている。この高低圧熱交換器6aには、液配管26aと、この高低圧熱交換器6aと流量調整弁8aとの間における液配管26a、つまり、高低圧熱交換器6aの上流側の液配管26aを分岐し、アキュムレータ12aの上流側に接続させたバイパス配管23aと、が接続されている。また、バイパス流量調整弁7aは、高低圧熱交換器6aと流量調整弁8aとの間におけるバイパス配管23aに設けられている。 The high / low pressure heat exchanger 6a is provided in the liquid pipe 26a between the outdoor heat exchanger 5a and the flow rate adjusting valve 8a. The high / low pressure heat exchanger 6a includes a liquid pipe 26a and a liquid pipe 26a between the high / low pressure heat exchanger 6a and the flow rate adjusting valve 8a, that is, a liquid pipe 26a upstream of the high / low pressure heat exchanger 6a. And a bypass pipe 23a connected to the upstream side of the accumulator 12a is connected. The bypass flow rate adjusting valve 7a is provided in the bypass pipe 23a between the high / low pressure heat exchanger 6a and the flow rate adjusting valve 8a.
 さらに、返油バイパスキャピラリ13aおよび返油バイパス用電磁弁14aは、オイルセパレータ2aと、アキュムレータ12aおよび圧縮機1aを接続している吸入配管31aと、を接続している返油バイパス回路30aに設けられている。返油バイパスキャピラリ13aは、返油バイパス用電磁弁14aの上流側および下流側を接続し、返油バイパス用電磁弁14aを迂回するように設けられている。なお、以下の説明において、液配管26aとバイパス配管23aとが接続しているポイントを接続点25a、バイパス配管23aとアキュムレータ12aの上流側の配管(四方弁4aとアキュムレータ12aとの間における冷媒配管)とが接続しているポイントを接続点24aと称する。 Further, the oil return bypass capillary 13a and the oil return bypass solenoid valve 14a are provided in the oil return bypass circuit 30a connecting the oil separator 2a and the suction pipe 31a connecting the accumulator 12a and the compressor 1a. It has been. The oil return bypass capillary 13a is provided to connect the upstream side and the downstream side of the oil return bypass solenoid valve 14a so as to bypass the oil return bypass solenoid valve 14a. In the following description, a point where the liquid pipe 26a and the bypass pipe 23a are connected is a connection point 25a, a pipe on the upstream side of the bypass pipe 23a and the accumulator 12a (a refrigerant pipe between the four-way valve 4a and the accumulator 12a). ) Is connected to a connection point 24a.
 また、室外機10aには、室外機10aに搭載されている各アクチュエータ(例えば、圧縮機1a、四方弁4a、図示省略の室外送風機など)の駆動を制御する制御装置27aが搭載されている。さらに、室外機10aには、第1圧力センサ15a(以下、第1圧力センサ15aで検知した圧力を63hsaと称する)、第2圧力センサ16a(以下、第2圧力センサ16aで検知した圧力を63lsaと称する)、第1温度センサ17a(以下、第1温度センサ17aで検知した温度をth4aと称する)、第2温度センサ18a(以下、第2温度センサ18aで検知した温度をth7aと称する)、第3温度センサ19a(以下、第3温度センサ19aで検知した温度をth3aと称する)、第4温度センサ20a(以下、第4温度センサ20aで検知した温度をth2aと称する)、第5温度センサ21a(以下、第5温度センサ21aで検知した温度をth6aと称する)、第6温度センサ22a(以下、第6温度センサ22aで検知した温度をth5aと称する)、および、第7温度センサ28a(以下、第7温度センサ28aで検知した温度をth9aと称する)が設けられている。 Further, the outdoor unit 10a is equipped with a control device 27a for controlling the driving of each actuator (for example, the compressor 1a, the four-way valve 4a, an outdoor fan not shown) mounted on the outdoor unit 10a. Further, the outdoor unit 10a includes a first pressure sensor 15a (hereinafter, pressure detected by the first pressure sensor 15a is referred to as 63hsa), a second pressure sensor 16a (hereinafter, pressure detected by the second pressure sensor 16a is 63 lsa). A first temperature sensor 17a (hereinafter, the temperature detected by the first temperature sensor 17a is referred to as th4a), a second temperature sensor 18a (hereinafter, the temperature detected by the second temperature sensor 18a is referred to as th7a), Third temperature sensor 19a (hereinafter, temperature detected by third temperature sensor 19a is referred to as th3a), fourth temperature sensor 20a (hereinafter, temperature detected by fourth temperature sensor 20a is referred to as th2a), fifth temperature sensor 21a (hereinafter, the temperature detected by the fifth temperature sensor 21a is referred to as th6a), a sixth temperature sensor 22a (hereinafter, the sixth temperature sensor 22a) It refers to the detected temperature Th5a), and, the seventh temperature sensor 28a (hereinafter, the temperature detected by the seventh temperature sensor 28a is referred to as Th9a) is provided.
 ところで、室外機10bは、室外機10aと同様の構成となっている。つまり、室外機10aの構成部品の添え字「a」を「b」に変更すれば室外機10bの構成部品となる。なお、図8では、室外機10aおよび室外機10bの双方に制御装置が搭載されている状態を例に示しているが、1つの制御装置で室外機10aおよび室外機10bの双方を制御するようにしてもよい。また、室外機10aおよび室外機10bの双方に制御装置が搭載されている状態では、互いの制御装置が有線または無線で通信可能になっている。 Incidentally, the outdoor unit 10b has the same configuration as the outdoor unit 10a. That is, if the subscript “a” of the component part of the outdoor unit 10a is changed to “b”, the component part of the outdoor unit 10b is obtained. Note that FIG. 8 shows an example in which a control device is mounted on both the outdoor unit 10a and the outdoor unit 10b, but it is assumed that a single control device controls both the outdoor unit 10a and the outdoor unit 10b. It may be. Further, in a state where the control device is mounted on both the outdoor unit 10a and the outdoor unit 10b, the control devices can communicate with each other by wire or wirelessly.
 室内機50aには、室内熱交換器100aおよび膨張弁101aがガス枝管206aおよび液枝管207aで直列に接続されて搭載されている。また、室内機50aには、室内機50aに搭載されている各アクチュエータ(例えば、膨張弁101aおよび図示省略の室内送風機など)の駆動を制御する制御装置102aが搭載されている。さらに、室内機50aには、第8温度センサ103aおよび第9温度センサ104aが設けられている。 In the indoor unit 50a, an indoor heat exchanger 100a and an expansion valve 101a are mounted in series by a gas branch pipe 206a and a liquid branch pipe 207a. In addition, the indoor unit 50a is equipped with a control device 102a that controls driving of each actuator (for example, the expansion valve 101a and an indoor fan not shown) mounted on the indoor unit 50a. Further, the indoor unit 50a is provided with an eighth temperature sensor 103a and a ninth temperature sensor 104a.
 ところで、室内機50bは、室内機50aと同様の構成となっている。つまり、室内機50aの構成部品の添え字「a」を「b」に変更すれば室内機50bの構成部品となる。なお、図8では、室内機50aおよび室内機50bの双方に制御装置が搭載されている状態を例に示しているが、1つの制御装置で室内機50aおよび室内機50bの双方を制御するようにしてもよい。また、室内機50aおよび室内機50bの双方に制御装置が搭載されている状態では、互いの制御装置が有線または無線で通信可能になっている。さらに、室内機に搭載されている制御装置は、室外機に搭載されている制御装置と有線または無線で通信可能になっている。 Incidentally, the indoor unit 50b has the same configuration as the indoor unit 50a. That is, if the subscript “a” of the component part of the indoor unit 50a is changed to “b”, the component part of the indoor unit 50b is obtained. Note that FIG. 8 shows an example in which a control device is mounted on both the indoor unit 50a and the indoor unit 50b. However, the single control device controls both the indoor unit 50a and the indoor unit 50b. It may be. Further, in a state where the control device is mounted on both the indoor unit 50a and the indoor unit 50b, the control devices can communicate with each other by wire or wirelessly. Furthermore, the control device mounted on the indoor unit can communicate with the control device mounted on the outdoor unit by wire or wirelessly.
 空気調和装置の冷房回路では、図8に示す矢印にように、圧縮機(圧縮機1aおよび圧縮機1b)、オイルセパレータ(オイルセパレータ2aおよびオイルセパレータ2b)、逆止弁(逆止弁3aおよび逆止弁3b)、四方弁(四方弁4aおよび四方弁4b)、室外熱交換器(室外熱交換器5aおよび室外熱交換器5b)、高低圧熱交換器(高低圧熱交換器6aおよび高低圧熱交換器6b)、流量調整弁(流量調整弁8aおよび流量調整弁8b)、液側開閉弁(液側開閉弁9aおよび液側開閉弁9b)、膨張弁(膨張弁101aおよび膨張弁101b)、室内熱交換器(室内熱交換器100aおよび室内熱交換器100b)、ガス側開閉弁(ガス側開閉弁11aおよびガス側開閉弁11b)、四方弁4、および、アキュムレータ(アキュムレータ12aおよびアキュムレータ12b)の順で冷媒が流れるように接続されている。 In the cooling circuit of the air conditioner, as shown by arrows in FIG. 8, a compressor (compressor 1a and compressor 1b), an oil separator (oil separator 2a and oil separator 2b), a check valve (check valve 3a and Check valve 3b), four-way valve (four-way valve 4a and four-way valve 4b), outdoor heat exchanger (outdoor heat exchanger 5a and outdoor heat exchanger 5b), high-low pressure heat exchanger (high-low pressure heat exchanger 6a and high Low pressure heat exchanger 6b), flow rate regulating valves (flow rate regulating valve 8a and flow rate regulating valve 8b), liquid side on / off valve (liquid side on / off valve 9a and liquid side on / off valve 9b), expansion valve (expansion valve 101a and expansion valve 101b). ), Indoor heat exchanger (indoor heat exchanger 100a and indoor heat exchanger 100b), gas side on / off valve (gas side on / off valve 11a and gas side on / off valve 11b), four-way valve 4, and accumulator (accumulator) It is connected so that the refrigerant flows in the order of over motor 12a and the accumulator 12b).
 次に、空気調和装置の冷房運転時の動作について説明する。
 この場合、圧縮機1a、1bからの吐出冷媒を室外熱交換器5a、5bに流入させるように四方弁4a、4bが切り替えられる。つまり、四方弁4aおよび四方弁4bでは、図8で示す実線方向に配管が接続される。また、流量調整弁8a、8bが全開または全開に近い状態、バイパス流量調整弁7a、7bが適度な開度、膨張弁101a、101bが適度な開度に設定されて運転が開始される。この場合の冷媒の流れは、以下のようになる。
Next, the operation | movement at the time of the cooling operation of an air conditioning apparatus is demonstrated.
In this case, the four-way valves 4a and 4b are switched so that the refrigerant discharged from the compressors 1a and 1b flows into the outdoor heat exchangers 5a and 5b. That is, in the four-way valve 4a and the four-way valve 4b, piping is connected in the direction of the solid line shown in FIG. Further, the operation is started with the flow rate adjusting valves 8a and 8b being fully opened or close to being fully opened, the bypass flow rate adjusting valves 7a and 7b being set to appropriate openings, and the expansion valves 101a and 101b being set to appropriate openings. The refrigerant flow in this case is as follows.
 圧縮機1a、1bから吐出された高温・高圧のガスの冷媒は、まずオイルセパレータ2a、2bを通過する。この時に冷媒に混在する冷凍機油のおよそ大部分は、冷媒と分離され、内側底部に溜められて、返油バイパスキャピラリ13a、13bを通り(返油バイパス用電磁弁14a、14bが開口されている場合はそこも通過)、圧縮機1aの吸入配管に戻される。これにより、室外機10a、10bの外部へ流出する冷凍機油を低減でき、圧縮機1a、1bの信頼性を改善することができる。 The high-temperature and high-pressure gas refrigerant discharged from the compressors 1a and 1b first passes through the oil separators 2a and 2b. At this time, most of the refrigerating machine oil mixed in the refrigerant is separated from the refrigerant and stored in the inner bottom portion, and passes through the oil return bypass capillaries 13a and 13b (the oil return bypass solenoid valves 14a and 14b are opened). In this case, it passes there) and is returned to the suction pipe of the compressor 1a. Thereby, the refrigeration oil which flows out of the outdoor units 10a and 10b can be reduced, and the reliability of the compressors 1a and 1b can be improved.
 冷凍機油が占める割合が低下した高温高圧の冷媒は、四方弁4a、4bを通り、室外熱交換器5a、5bで凝縮、液化され、高低圧熱交換器6を通過する。ここで、第1圧力センサ15a、15bと第3温度センサ19a、19bとにより求められる室外熱交換器5a、5bの出口側の過冷却度SCOa、SCOb、および第1圧力センサ15a、15bと第5温度センサ21a、21bとにより求められる高低圧熱交換器6a、6bの出口側の過冷却度SCCa、SCCbから、冷媒の分布状態が算出可能である。 The high-temperature and high-pressure refrigerant in which the ratio occupied by the refrigerating machine oil passes through the four-way valves 4 a and 4 b, is condensed and liquefied by the outdoor heat exchangers 5 a and 5 b, and passes through the high and low pressure heat exchanger 6. Here, the degree of supercooling SCOa, SCOb on the outlet side of the outdoor heat exchangers 5a, 5b determined by the first pressure sensors 15a, 15b and the third temperature sensors 19a, 19b, and the first pressure sensors 15a, 15b and the first The refrigerant distribution state can be calculated from the degree of supercooling SCCa and SCCb on the outlet side of the high and low pressure heat exchangers 6a and 6b determined by the five temperature sensors 21a and 21b.
 なお、SCOa、SCObは、第1圧力センサ15a、15bで検知した圧力63hsa、63hsbから換算された飽和温度(凝縮温度)Tca、Tcbと、第3温度センサ19a、19bで検知した温度th3a、th3bとの差温、つまり、Tca-th3a、Tcb-th3bにより求められる。また、SCCa、SCCbは、第1圧力センサ15a、15bで検知した圧力63hsa、63hsbから換算された飽和温度(凝縮温度)Tca、Tcbと、第5温度センサ21a、21bで検知した温度th6a、th6bとの差温、つまり、Tca-th6a、Tcb-th6bにより求められる。 SCOa and SCOb are saturation temperatures (condensation temperatures) Tca and Tcb converted from the pressures 63hsa and 63hsb detected by the first pressure sensors 15a and 15b, and temperatures th3a and th3b detected by the third temperature sensors 19a and 19b. Temperature difference, that is, Tca−th3a and Tcb−th3b. SCCa and SCCb are saturation temperatures (condensation temperatures) Tca and Tcb converted from pressures 63hsa and 63hsb detected by the first pressure sensors 15a and 15b, and temperatures th6a and th6b detected by the fifth temperature sensors 21a and 21b. Temperature difference, i.e., Tca-th6a and Tcb-th6b.
 また、高低圧熱交換器6a、6bから流出した冷媒は、バイパス配管23a、23bに流れる冷媒と、液配管26a、26bとに流れる冷媒と、に分岐される。バイパス配管23a、23bを流れる冷媒は、バイパス流量調整弁7a、7bで適度に流量調整されて低圧・低温の冷媒となり、室外熱交換器5a、5bを出た冷媒と高低圧熱交換器6a、6b内で熱交換する。そのため、室外熱交換器5a、5bの出口側の冷媒状態よりも、高低圧熱交換器6a、6bの出口側での冷媒状態の方が、エンタルピーが低くなる、つまり過冷却度が大きくなる。 Further, the refrigerant flowing out of the high and low pressure heat exchangers 6a and 6b is branched into a refrigerant flowing through the bypass pipes 23a and 23b and a refrigerant flowing through the liquid pipes 26a and 26b. The refrigerant flowing through the bypass pipes 23a, 23b is moderately adjusted in flow rate by the bypass flow rate adjusting valves 7a, 7b to become low-pressure / low-temperature refrigerant, and the refrigerant that has exited the outdoor heat exchangers 5a, 5b and the high-low pressure heat exchanger 6a, Heat exchange is performed in 6b. Therefore, the enthalpy is lower in the refrigerant state on the outlet side of the high and low pressure heat exchangers 6a and 6b than the refrigerant state on the outlet side of the outdoor heat exchangers 5a and 5b, that is, the degree of supercooling is increased.
 バイパス流量調整弁7a、7bを通り、高低圧熱交換器6a、6bから流出した低圧の冷媒は、バイパス配管23a、23bを流れて、バイパス配管23a、23bとアキュムレータ12a、12bの上流側の配管とが接続している接続点24a、24bに至る。これにより、エンタルピー差が増大するため、同一能力にする場合の必要冷媒流量を低減でき、圧損低減による性能改善の効果がある。なお、ここでいう高圧、低圧は、冷媒回路内における圧力の相対的な関係を表すものとする(温度についても同様である)。 The low-pressure refrigerant that has passed through the bypass flow rate adjusting valves 7a and 7b and has flowed out of the high- and low- pressure heat exchangers 6a and 6b flows through the bypass pipes 23a and 23b. To the connection points 24a and 24b to which are connected. Thereby, since the enthalpy difference increases, the required refrigerant flow rate in the case of the same capacity can be reduced, and there is an effect of performance improvement by reducing pressure loss. Here, the high pressure and the low pressure represent the relative relationship of the pressure in the refrigerant circuit (the same applies to the temperature).
 一方、高低圧熱交換器6a、6bから流出し高圧側の冷媒は、流量調整弁8a、8bを通るが、流量調整弁8a、8bが全開のため、さして減圧することなく高圧の液冷媒として液配管205に供給される。その後、室内機50a、50bに入り、膨張弁101a、101bで減圧されて低圧二相冷媒となり、室内熱交換器100a、100bで蒸発、ガス化する。このとき、室内などの空調対象空間に冷房空気が供給され、空調対象空間の冷房運転が実現される。室内熱交換器100から流出した冷媒は、ガス配管204、四方弁4、および、アキュムレータ12a、12bを通り、圧縮機1a、1bに再度吸入される。 On the other hand, the high-pressure refrigerant flowing out of the high-low pressure heat exchangers 6a and 6b passes through the flow rate adjusting valves 8a and 8b. However, since the flow rate adjusting valves 8a and 8b are fully opened, the high-pressure liquid refrigerant is not reduced. Supplied to the liquid pipe 205. Then, it enters into the indoor units 50a and 50b, is decompressed by the expansion valves 101a and 101b, becomes a low-pressure two-phase refrigerant, and is evaporated and gasified by the indoor heat exchangers 100a and 100b. At this time, the cooling air is supplied to the air-conditioning target space such as a room, and the cooling operation of the air-conditioning target space is realized. The refrigerant that has flowed out of the indoor heat exchanger 100 passes through the gas pipe 204, the four-way valve 4, and the accumulators 12a and 12b, and is again sucked into the compressors 1a and 1b.
 ここで、アキュムレータ12a、12bには、図8に示すようなU字管が設けられているので、アキュムレータ12a、12b内に気液二相状態の冷媒が流入すると、液冷媒が容器下部に溜まり、U字管の上方開口部より流入されたガスリッチな冷媒が、アキュムレータ12a、12bから流出することになる。このようなアキュムレータ12a、12bを設けることによって、ガスリッチな冷媒が圧縮機1a、1bへ吸入される。したがって、過渡的な液および気液二相冷媒をアキュムレータ12a、12bに溜めきり、オーバーフローするまで、圧縮機1a、1bの液バックを一時的に防止することができ、圧縮機1a、1bの信頼性維持の効果が得られる。 Here, since the accumulators 12a and 12b are provided with U-shaped tubes as shown in FIG. 8, when the gas-liquid two-phase refrigerant flows into the accumulators 12a and 12b, the liquid refrigerant is accumulated in the lower part of the container. The gas-rich refrigerant flowing in from the upper opening of the U-shaped tube flows out of the accumulators 12a and 12b. By providing such accumulators 12a and 12b, gas-rich refrigerant is sucked into the compressors 1a and 1b. Therefore, the liquid back of the compressors 1a and 1b can be temporarily prevented until the transient liquid and the gas-liquid two-phase refrigerant are accumulated in the accumulators 12a and 12b and overflow, and the reliability of the compressors 1a and 1b can be prevented. The effect of maintaining sex is obtained.
 図9は、本発明の実施の形態5に係る空気調和装置における冷媒の流れを示す冷媒回路図であり、図10は、本発明の実施の形態5に係る空気調和装置の制御処理の流れを示すフローチャートである。
 以下、図10に基づいて、本実施の形態5に係る空気調和装置の室外機10間における冷媒量を調整する制御処理の流れについて詳細に説明する。
FIG. 9 is a refrigerant circuit diagram showing the flow of the refrigerant in the air-conditioning apparatus according to Embodiment 5 of the present invention, and FIG. 10 shows the flow of control processing of the air-conditioning apparatus according to Embodiment 5 of the present invention. It is a flowchart to show.
Hereinafter, based on FIG. 10, the flow of the control processing for adjusting the refrigerant amount between the outdoor units 10 of the air-conditioning apparatus according to Embodiment 5 will be described in detail.
 まず初めに、制御装置27a、27bにより、停止前に運転していた際の室外熱交換器5a、5bの出口側の過冷却度SCO0(SCO0a、SCO0b)、および停止前に運転していた際の高低圧熱交換器6a、6bの出口側の過冷却度SCC0(SCC0a、SCC0b)を演算して、系内の冷媒分布状態を確認する(ステップS501)。
 室温負荷変動、またはリモコンなどからの室内機の運転停止操作などにより、室外機を停止させる指令を受けたら、制御装置は、圧縮機を停止させる(ステップS502)。その後、室外機が全台停止している状態から、室温負荷変動、またはリモコンなどからの室内機の運転開始操作などにより、冷房運転を行うために、2台の室外機のうち、一方の室外機(室外機10aまたは室外機10b)を起動させる指令を受けたら(室外機10aまたは室外機10bにサーモON信号が送信されたら)(ステップS503)、制御装置(制御装置27aまたは制御装置27b)により、停止直前に2台の室外機が同時運転(両方とも冷房運転)をしていたか、または、一方の室外機(室外機10a(の圧縮機1a)または室外機10b(の圧縮機1b))が片肺運転(冷房運転)をしていたかを判定する(ステップS504)。
First, when the controller 27a, 27b is operating before stopping, the degree of supercooling SCO0 (SCO0a, SCO0b) on the outlet side of the outdoor heat exchanger 5a, 5b when operating before stopping, and when operating before stopping The subcooling degree SCC0 (SCC0a, SCC0b) on the outlet side of the high and low pressure heat exchangers 6a, 6b is calculated to check the refrigerant distribution state in the system (step S501).
When receiving a command to stop the outdoor unit due to a change in room temperature load or an operation to stop the operation of the indoor unit from a remote controller or the like, the control device stops the compressor (step S502). After that, in order to perform the cooling operation by changing the room temperature load or starting the operation of the indoor unit from a remote controller or the like from a state where all the outdoor units are stopped, one of the two outdoor units is outdoors. When a command to activate the machine (the outdoor unit 10a or the outdoor unit 10b) is received (when a thermo-ON signal is transmitted to the outdoor unit 10a or the outdoor unit 10b) (step S503), the control device (the control device 27a or the control device 27b) Thus, the two outdoor units were operating simultaneously (both cooling operations) immediately before stopping, or one of the outdoor units (the outdoor unit 10a (the compressor 1a) or the outdoor unit 10b (the compressor 1b)) ) Determines whether the single lung operation (cooling operation) was performed (step S504).
 一方の室外機が片肺運転していた場合は(ステップS504のNo)、図4のステップS204以降と同一の動作であるため、説明は省略する(ステップS511)。2台の室外機が同時運転(両方とも冷房運転)していた場合(ステップS504のYes)、SCO0aとSCO0bとを比較する(ステップS505)。 When one outdoor unit is operated in one lung (No in step S504), the operation is the same as that in step S204 and subsequent steps in FIG. 4, and the description is omitted (step S511). When the two outdoor units are operating simultaneously (both are in cooling operation) (Yes in step S504), SCO0a and SCO0b are compared (step S505).
 SCO0a<SCO0bとなっていた場合(ステップS505のYes)、室外機10bに冷媒が多く分布していると判定されるため、起動時に高圧圧力の上昇が大きくなる可能性が高い。そこで、起動時に室外機10aが起動するように、制御装置27aにより、室外機10aにサーモON許可信号を送信する(ステップS506a)。 When SCO0a <SCO0b (Yes in step S505), it is determined that a large amount of refrigerant is distributed in the outdoor unit 10b, and therefore, there is a high possibility that the increase in the high-pressure pressure will be large at the time of startup. Therefore, a thermo-ON permission signal is transmitted to the outdoor unit 10a by the control device 27a so that the outdoor unit 10a is started at the time of startup (step S506a).
 次に、制御装置27は、停止中の室外機10bのバイパス流量調整弁7bを開口する。そして、室外機10cの冷媒回路内の逆止弁3cと流量調整弁8cとの間に存在する過剰な液冷媒を図12の矢印に従い、運転中の室外機10aに移行させる。 Next, the control device 27 opens the bypass flow rate adjustment valve 7b of the outdoor unit 10b that is stopped. Then, excess liquid refrigerant existing between the check valve 3c and the flow rate adjustment valve 8c in the refrigerant circuit of the outdoor unit 10c is transferred to the operating outdoor unit 10a according to the arrow in FIG.
 まず、バイパス流量調整弁7bを開口することにより、高低圧熱交換器6bからバイパス配管23b、四方弁4-1b、ガス側開閉弁11b、ガス分岐管202b、液分岐管203b、ガス側開閉弁11a、四方弁4-1a、を通り、アキュムレータ12aに移行される(ステップS507a)。 First, by opening the bypass flow rate adjustment valve 7b, the bypass pipe 23b, the four-way valve 4-1b, the gas side on / off valve 11b, the gas branch pipe 202b, the liquid branch pipe 203b, the gas side on / off valve are switched from the high / low pressure heat exchanger 6b. 11a and the four-way valve 4-1a, and the process proceeds to the accumulator 12a (step S507a).
 そして、SCO0bに対して、現在運転中(現状)の室外機10aの室外熱交換器5aの出口側の過冷却度SCOaが上回った時点で(ステップS508aのYes)、バイパス流量調整弁7bを閉口するものとする(ステップS509a)。そこで上述の動作により、冷媒の移行が完了し、適切に冷媒が分配されたものと判定し、図4のステップS204以降の動作に移る(ステップS510a)。 When the degree of supercooling SCOa on the outlet side of the outdoor heat exchanger 5a of the outdoor unit 10a currently in operation (current state) exceeds SCO0b (Yes in step S508a), the bypass flow rate adjustment valve 7b is closed. This is assumed to be performed (step S509a). Therefore, it is determined by the above-described operation that the transfer of the refrigerant has been completed and the refrigerant has been properly distributed, and the operation proceeds to the operation after step S204 in FIG. 4 (step S510a).
 なお、ステップS505において、SCO0a<SCO0bとなっていない場合は(ステップS505のNo)、ステップS506b~ステップS510bを行う。ステップS506b~ステップS510bは、上述のステップS506a~ステップS510aにおいて、添え字「a」を「b」に変更すれば同じ内容となるため、説明を省略する。 If it is determined in step S505 that SCO0a <SCO0b is not satisfied (No in step S505), steps S506b to S510b are performed. Steps S506b to S510b have the same contents if the subscript “a” is changed to “b” in the above-described Steps S506a to S510a, and thus description thereof is omitted.
 以上、本実施の形態5によれば、次回の室外機10b(または室外機10a)の起動時に、室外機10b(または室外機10a)に過剰に分布された液冷媒の影響により高圧圧力が過昇することを是正できる。 As described above, according to the fifth embodiment, when the outdoor unit 10b (or the outdoor unit 10a) is started next time, the high pressure is excessive due to the influence of the liquid refrigerant excessively distributed in the outdoor unit 10b (or the outdoor unit 10a). It can correct rising.
 なお、通常運転に移行後は、図3で示した実施の形態1と同様に、th7、SCO、およびSCCから冷媒分布状態を判定して、高圧圧力の過昇を是正する。 Note that after the transition to the normal operation, the refrigerant distribution state is determined from th7, SCO, and SCC as in the first embodiment shown in FIG. 3, and the excessive increase in the high pressure is corrected.
 実施の形態6.
 以下、本発明の実施の形態6について説明するが、実施の形態1~5と重複するものについては(一部の)説明を省略し、実施の形態1~5と同じ部分または相当する部分には同じ符号を付す。
 図11は、本発明の実施の形態6に係る空気調和装置の冷媒回路構成を示す冷媒回路図である。
Embodiment 6 FIG.
Hereinafter, the sixth embodiment of the present invention will be described. However, the description of the same parts as those of the first to fifth embodiments will be omitted, and the same or corresponding parts as those of the first to fifth embodiments will be omitted. Are given the same symbols.
FIG. 11 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of an air-conditioning apparatus according to Embodiment 6 of the present invention.
 図11に示すように、本実施の形態6に係る空気調和装置は、3台の熱源機(室外機10a、室外機10b、および室外機10c)と、2台の利用側ユニット(室内機50aおよび室内機50b)と、が冷媒配管で接続されて構成されている。2台の利用側ユニットは、3台の熱源機に並列接続されて連絡するようになっている。つまり、空気調和装置は、3台の熱源機に搭載される各機器(構成部品)と、2台の利用側ユニットに搭載される各機器(構成部品)と、を冷媒配管で接続することで冷媒回路を形成し、この冷媒回路に冷媒を循環させることによって、冷房運転または暖房運転することができるようになっているのである。 As shown in FIG. 11, the air-conditioning apparatus according to Embodiment 6 includes three heat source units (outdoor unit 10a, outdoor unit 10b, and outdoor unit 10c), and two usage-side units (indoor unit 50a). And the indoor unit 50b) are connected by a refrigerant pipe. The two usage-side units are connected in parallel to the three heat source machines and communicate with each other. That is, the air conditioner connects each device (component) mounted on the three heat source units and each device (component) mounted on the two usage-side units by means of refrigerant piping. By forming a refrigerant circuit and circulating the refrigerant in the refrigerant circuit, a cooling operation or a heating operation can be performed.
 なお、室外機10a、室外機10b、室外機10c、および、室内機50a、50bの各構成部品について、それらを搭載している室外機または室内機と同じ添え字(「a」、「b」、または「c」)を付すものとする。そして、室外機、室内機、およびそれらの構成部品において、添え字が付されていない符号のみの場合は、総称であるものとし、後述する実施の形態7についても同様である。 For each component of the outdoor unit 10a, the outdoor unit 10b, the outdoor unit 10c, and the indoor units 50a and 50b, the same subscripts (“a” and “b” as those of the outdoor unit or the indoor unit in which they are mounted) Or “c”). And in an outdoor unit, an indoor unit, and those components, only the code | symbol which is not attached | subjected shall be a generic name, and it is the same also about Embodiment 7 mentioned later.
 また、本実施の形態6では、3台の室外機と2台の室内機とを備えた構成となっているが、それに限定されず、室外機は4台以上でもよいし、室内機は1台でもよいし、3台以上でもよく、後述する実施の形態7についても同様である。 In the sixth embodiment, the configuration includes three outdoor units and two indoor units. However, the present invention is not limited to this, and the number of outdoor units may be four or more. The number may be three or more, and the same applies to the seventh embodiment described later.
 図12は、本発明の実施の形態6に係る空気調和装置における冷媒の流れを示す冷媒回路図であり、図13は、本発明の実施の形態6に係る空気調和装置の制御処理の流れを示すフローチャートである。
 以下、図13に基づいて、本実施の形態6に係る空気調和装置の室外機間における冷媒量を調整する制御処理の流れについて詳細に説明する。
FIG. 12 is a refrigerant circuit diagram illustrating the flow of the refrigerant in the air-conditioning apparatus according to Embodiment 6 of the present invention, and FIG. 13 illustrates the flow of control processing of the air-conditioning apparatus according to Embodiment 6 of the present invention. It is a flowchart to show.
Hereinafter, based on FIG. 13, the flow of the control processing for adjusting the refrigerant amount between the outdoor units of the air-conditioning apparatus according to Embodiment 6 will be described in detail.
 まず初めに、制御装置により、停止前に運転していた際の室外熱交換器5a、5b、5cの出口側の過冷却度SCO0(SCO0a、SCO0b、SCO0c)、および停止前に運転していた際の高低圧熱交換器6a、6b、6cの出口側の過冷却度SCC0(SCC0a、SCC0b、SCC0c)を演算して、系内の冷媒分布状態を確認する(ステップS601)。 First, the control device was operating before the stop, and the degree of supercooling SCO0 (SCO0a, SCO0b, SCO0c) on the outlet side of the outdoor heat exchangers 5a, 5b, 5c when operating before the stop. The supercooling degree SCC0 (SCC0a, SCC0b, SCC0c) on the outlet side of the high and low pressure heat exchangers 6a, 6b, 6c is calculated to check the refrigerant distribution state in the system (step S601).
 室温負荷変動、またはリモコンなどからの室内機の運転停止操作などにより、室外機を停止させる指令を受けたら、制御装置は、圧縮機を停止させる(ステップS602)。その後、室外機が全台停止している状態から、室温負荷変動、またはリモコンなどからの室内機の運転開始操作などにより、冷房運転を行うために、3台の室外機のうち、1台の室外機(室外機10a、室外機10b、または室外機10c)を起動させる指令を受けたら(室外機10a、室外機10b、または室外機10cにサーモON信号が送信されたら)(ステップS603)、制御装置(制御装置27a、制御装置27b、または制御装置27c)により、停止直前に3台全ての室外機が同時運転(全て冷房運転)をしていたか(ステップS604)、1台または2台の室外機が運転(冷房運転)をしていたかを判定する(ステップS605)。 When receiving a command to stop the outdoor unit due to a change in room temperature load or a stop operation of the indoor unit from a remote controller or the like, the control device stops the compressor (step S602). Thereafter, in order to perform cooling operation from a state in which all the outdoor units are stopped, by a room temperature load change or an operation start operation of the indoor unit from a remote controller, etc., one of the three outdoor units is When receiving an instruction to activate the outdoor unit (the outdoor unit 10a, the outdoor unit 10b, or the outdoor unit 10c) (when a thermo-ON signal is transmitted to the outdoor unit 10a, the outdoor unit 10b, or the outdoor unit 10c) (step S603), Whether all three outdoor units were operating simultaneously (all cooling operations) immediately before stopping by the control device (control device 27a, control device 27b, or control device 27c) (step S604), one or two It is determined whether the outdoor unit is operating (cooling operation) (step S605).
 1台の室外機が運転していた場合は(ステップS604のNo、ステップS605のYes)、図4のステップS204以降と同一の動作であるため、説明は省略する(ステップS611)。また、2台の室外機が運転(両方とも冷房運転)していた場合は(ステップS604のNo、ステップS605のNo)、図10のステップS505以降と同一の動作であるため、説明は省略する(ステップS612)。 When one outdoor unit is operating (No in step S604, Yes in step S605), the operation is the same as that in step S204 and subsequent steps in FIG. 4, and thus description thereof is omitted (step S611). Further, when two outdoor units are operating (both are in cooling operation) (No in step S604, No in step S605), the operation is the same as that after step S505 in FIG. (Step S612).
 3台全ての室外機が同時運転(全て冷房運転)していた場合(ステップS604のYes)、SCO0a、SCO0b、およびSCO0cを比較する。なお、本実施の形態6では、SCO0が最も小さい室外機を室外機10a、SCO0が最も大きい室外機を室外機10cとする。
 そして、起動時にSCO0が最も小さい室外機10a(圧縮機1a)が起動するように、制御装置27aにより、室外機10aにサーモON許可信号を送信する(ステップS606)。
When all three outdoor units are operating simultaneously (all cooling operation) (Yes in step S604), SCO0a, SCO0b, and SCO0c are compared. In the sixth embodiment, the outdoor unit with the smallest SCO0 is the outdoor unit 10a, and the outdoor unit with the largest SCO0 is the outdoor unit 10c.
Then, a thermo-ON permission signal is transmitted to the outdoor unit 10a by the control device 27a so that the outdoor unit 10a (compressor 1a) having the smallest SCO0 is started at the time of startup (step S606).
 次に、制御装置27cは、SCO0が最も大きい、停止中の室外機10cのバイパス流量調整弁7cを開口する。室外機10cの冷媒回路内の逆止弁3cと流量調整弁8cとの間に存在する過剰な液冷媒を図12の矢印に従い、運転中の室外機10aに移行させる。 Next, the control device 27c opens the bypass flow rate adjustment valve 7c of the stopped outdoor unit 10c having the largest SCO0. Excess liquid refrigerant existing between the check valve 3c and the flow rate adjusting valve 8c in the refrigerant circuit of the outdoor unit 10c is transferred to the operating outdoor unit 10a according to the arrow in FIG.
 まず、バイパス流量調整弁7cを開口することにより、高低圧熱交換器6cからバイパス配管23c、四方弁4-1c、ガス側開閉弁11c、ガス分岐管202e、ガス分岐管202f、ガス分岐管202c、ガス側開閉弁11a、四方弁4-1a、を通り、アキュムレータ12aに移行される(ステップS607)。 First, by opening the bypass flow rate adjusting valve 7c, the bypass pipe 23c, the four-way valve 4-1c, the gas side on-off valve 11c, the gas branch pipe 202e, the gas branch pipe 202f, and the gas branch pipe 202c are connected from the high / low pressure heat exchanger 6c. Then, the gas passes through the gas-side on-off valve 11a and the four-way valve 4-1a, and is transferred to the accumulator 12a (step S607).
 そして、SCO0c(図13中では、最も大きいSCO0としてSCO0lと記載する)に対して、現在運転中(現状)の室外機10aの室外熱交換器5aの出口側の過冷却度SCOa(図13中では、SCO0が最も小さい室外機のSCOとしてSCOs1と記載する)が上回った時点で(ステップS608のYes)、バイパス流量調整弁7cを閉口するものとする(ステップS609)。そこで上述の動作により、冷媒の移行が完了し、適切に冷媒が分配されたものと判定し、図4のステップS204以降の動作に移る(ステップS610)。 Then, the supercooling degree SCOa (in FIG. 13) on the outlet side of the outdoor heat exchanger 5a of the outdoor unit 10a that is currently in operation (current state) with respect to SCO0c (described as SCO0l as the largest SCO0 in FIG. 13). Then, when the SCO0 of the outdoor unit having the smallest SCO0 exceeds SCOs1 (Yes in Step S608), the bypass flow rate adjusting valve 7c is closed (Step S609). Therefore, it is determined by the above-described operation that the transfer of the refrigerant has been completed and the refrigerant has been properly distributed, and the operation proceeds to step S204 and subsequent steps in FIG. 4 (step S610).
 以上、本実施の形態6によれば、実施の形態5と同様の効果を得ることができる。 As described above, according to the sixth embodiment, the same effect as in the fifth embodiment can be obtained.
 実施の形態7.
 以下、本発明の実施の形態7について説明するが、実施の形態1~6と重複するものについては(一部の)説明を省略し、実施の形態1~6と同じ部分または相当する部分には同じ符号を付す。
Embodiment 7 FIG.
Hereinafter, Embodiment 7 of the present invention will be described. However, the description of (the part of) overlapping with Embodiments 1 to 6 is omitted, and the same or corresponding parts as Embodiments 1 to 6 are omitted. Are given the same symbols.
 図14は、本発明の実施の形態7に係る空気調和装置における冷媒の流れを示す冷媒回路図であり、図15は、本発明の実施の形態7に係る空気調和装置の制御処理の流れを示すフローチャートである。
 以下、図15に基づいて、本実施の形態7に係る空気調和装置の室外機10間における冷媒量を調整する制御処理の流れについて詳細に説明する。
FIG. 14 is a refrigerant circuit diagram showing the flow of refrigerant in the air-conditioning apparatus according to Embodiment 7 of the present invention, and FIG. 15 shows the flow of control processing of the air-conditioning apparatus according to Embodiment 7 of the present invention. It is a flowchart to show.
Hereinafter, based on FIG. 15, the flow of the control processing for adjusting the refrigerant amount between the outdoor units 10 of the air-conditioning apparatus according to Embodiment 7 will be described in detail.
 まず初めに、制御装置により、停止前に運転していた際の室外熱交換器5a、5b、5cの出口側の過冷却度SCO0(SCO0a、SCO0b、SCO0c)、および停止前に運転していた際の高低圧熱交換器6a、6b、6cの出口側の過冷却度SCC0(SCC0a、SCC0b、SCC0c)を演算して、系内の冷媒分布状態を確認する。このとき、SCO0a、SCO0b、およびSCO0cの平均値SCOavg0(=(SCO0a+SCO0b+SCO0c)/3)を求める(ステップS701)。 First, the control device was operating before the stop, and the degree of supercooling SCO0 (SCO0a, SCO0b, SCO0c) on the outlet side of the outdoor heat exchangers 5a, 5b, 5c when operating before the stop. The subcooling degree SCC0 (SCC0a, SCC0b, SCC0c) on the outlet side of the high and low pressure heat exchangers 6a, 6b, 6c is calculated to check the refrigerant distribution state in the system. At this time, an average value SCOavg0 (= (SCO0a + SCO0b + SCO0c) / 3) of SCO0a, SCO0b, and SCO0c is obtained (step S701).
 室温負荷変動、またはリモコンなどからの室内機の運転停止操作などにより、室外機を停止させる指令を受けたら、制御装置は、圧縮機を停止させる(ステップS702)。その後、室外機が全台停止している状態から、室温負荷変動、またはリモコンなどからの室内機の運転開始操作などにより、冷房運転を行うために、3台の室外機のうち、SCO0がSCOavg0未満の台数の室外機を起動させる指令を受けたら(SCO0がSCOavg0未満の台数の室外機にサーモON信号が送信されたら)(ステップS703)、制御装置により、停止直前に3台全ての室外機が同時運転(全て冷房運転)をしていたか(ステップS704)、2台の室外機が運転(冷房運転)をしていたかを判定する(ステップS705)。 When receiving a command to stop the outdoor unit due to a change in room temperature load or an operation of stopping the indoor unit from a remote controller or the like, the control device stops the compressor (step S702). Thereafter, in order to perform the cooling operation from the state in which all the outdoor units are stopped, by the room temperature load change or the operation start operation of the indoor unit from a remote controller or the like, among the three outdoor units, SCO0 is SCOavg0. When a command for starting less than the number of outdoor units is received (when a thermo-ON signal is transmitted to the number of outdoor units whose number is less than SCOavg0) (step S703), all three outdoor units are immediately stopped by the control device. Are simultaneously operating (all cooling operations) (step S704), and it is determined whether the two outdoor units are operating (cooling operation) (step S705).
 1台の室外機が運転していた場合は(ステップS704のNo、ステップS705のYes)、図4のステップS204以降と同一の動作であるため、説明は省略する(ステップS711)。また、2台の室外機が運転(両方とも冷房運転)していた場合は(ステップS704のNo、ステップS705のNo)、図10のステップS505以降と同一の動作であるため、説明は省略する(ステップS712)。 When one outdoor unit is operating (No in step S704, Yes in step S705), the operation is the same as that in step S204 and subsequent steps in FIG. 4, and thus the description thereof is omitted (step S711). Further, when the two outdoor units are in operation (both are in cooling operation) (No in step S704, No in step S705), the operation is the same as that after step S505 in FIG. (Step S712).
 3台全ての室外機が同時運転(全て冷房運転)していた場合(ステップS704のYes)、SCO0がSCOavg0未満の室外機(圧縮機)が起動するように、制御装置により室外機にサーモON許可信号を送信する(ステップS706)。本実施の形態7では、SCO0がSCOavg0未満の室外機を室外機10a、SCO0がSCOavg0以上の室外機を室外機10b、10cとする。そして、起動時にSCO0がSCOavg0未満の室外機10aが起動するように、制御装置27aにより、室外機10aにサーモON許可信号を送信する。 When all three outdoor units are operating simultaneously (all cooling operations) (Yes in step S704), the controller turns on the outdoor unit so that the outdoor unit (compressor) whose SCO0 is less than SCOavg0 is activated. A permission signal is transmitted (step S706). In the seventh embodiment, an outdoor unit whose SCO0 is less than SCOavg0 is an outdoor unit 10a, and an outdoor unit whose SCO0 is SCOavg0 or more is an outdoor unit 10b or 10c. And the thermo-ON permission signal is transmitted to the outdoor unit 10a by the control device 27a so that the outdoor unit 10a whose SCO0 is less than SCOavg0 is activated at the time of activation.
 次に、制御装置27b、27cは、SCO0がSCOavg0以上の、停止中の室外機10b、10cのバイパス流量調整弁7b、7cを開口する。室外機10bの冷媒回路内の逆止弁3bと流量調整弁8bとの間に存在する過剰な液冷媒と、室外機10cの冷媒回路内の逆止弁3cと流量調整弁8cとの間に存在する過剰な液冷媒とを図14の矢印に従い、運転中の室外機10aに移行させる。 Next, the control devices 27b and 27c open the bypass flow rate adjusting valves 7b and 7c of the stopped outdoor units 10b and 10c whose SCO0 is SCOavg0 or more. Between the excess liquid refrigerant existing between the check valve 3b and the flow rate adjustment valve 8b in the refrigerant circuit of the outdoor unit 10b, and between the check valve 3c and the flow rate adjustment valve 8c in the refrigerant circuit of the outdoor unit 10c. Excess liquid refrigerant present is transferred to the outdoor unit 10a in operation according to the arrow in FIG.
 まず、バイパス流量調整弁7bを開口することにより、高低圧熱交換器6bからバイパス配管23b、四方弁4-1b、ガス側開閉弁11b、ガス分岐管202d、ガス分岐管202c、ガス側開閉弁11a、四方弁4-1a、を通り、アキュムレータ12aに移行される。さらに、バイパス流量調整弁7cを開口することにより、高低圧熱交換器6cからバイパス配管23c、四方弁4-1c、ガス側開閉弁11c、ガス分岐管202e、ガス分岐管202f、ガス分岐管202c、ガス側開閉弁11a、四方弁4-1a、を通り、アキュムレータ12aに移行される(ステップS707)。 First, by opening the bypass flow rate adjusting valve 7b, the high and low pressure heat exchanger 6b is connected to the bypass pipe 23b, the four-way valve 4-1b, the gas side on / off valve 11b, the gas branch pipe 202d, the gas branch pipe 202c, the gas side on / off valve. 11a and the four-way valve 4-1a, and is transferred to the accumulator 12a. Further, by opening the bypass flow rate adjusting valve 7c, the bypass pipe 23c, the four-way valve 4-1c, the gas side on-off valve 11c, the gas branch pipe 202e, the gas branch pipe 202f, and the gas branch pipe 202c are connected from the high / low pressure heat exchanger 6c. Then, the gas passes through the gas-side on-off valve 11a and the four-way valve 4-1a, and is transferred to the accumulator 12a (step S707).
 そして、SCOavg0に対して、現在運転中(現状)の室外機10aの室外熱交換器5aの出口側の過冷却度SCOa(図15中では、SCO0がSCOavg0未満の室外機における現状の室外熱交換器の出口側の過冷却度としてSCOs2と記載する)が上回った時点で(ステップS708のYes)、バイパス流量調整弁7b、7cを閉口するものとする(ステップS709)。そこで上述の動作により、冷媒の移行が完了し、適切に冷媒が分配されたものと判定し、図4のステップS204以降の動作に移る(ステップS710)。 Then, with respect to SCOavg0, the degree of supercooling SCOa on the outlet side of the outdoor heat exchanger 5a of the outdoor unit 10a currently operating (current state) (in FIG. 15, the current outdoor heat exchange in the outdoor unit where SCO0 is less than SCOavg0) When the supercooling degree on the outlet side of the vessel exceeds SCOs2 (Yes in Step S708), the bypass flow rate adjusting valves 7b and 7c are closed (Step S709). Therefore, it is determined by the above-described operation that the transfer of the refrigerant has been completed and the refrigerant has been properly distributed, and the operation proceeds to step S204 and subsequent steps in FIG. 4 (step S710).
 以上、本実施の形態7によれば、実施の形態6と同様の効果を得ることができる。 As described above, according to the seventh embodiment, the same effect as in the sixth embodiment can be obtained.
 1 圧縮機、1a~1c 圧縮機、2 オイルセパレータ、2a~2c オイルセパレータ、3 逆止弁、3a~3c 逆止弁、4 四方弁、4a~4c 四方弁、4-1 四方弁、4-1a~4-1c 四方弁、4-2 四方弁、4-2a~4-2c 四方弁、5 室外熱交換器、5a~5c 室外熱交換器、6 高低圧熱交換器、6a~6c 高低圧熱交換器、7 バイパス流量調整弁、7a~7c バイパス流量調整弁、8 流量調整弁、8a~8c 流量調整弁、9 液側開閉弁、9a~9c 液側開閉弁、10 室外機、10a~10c 室外機、11 ガス側開閉弁、11a~11c ガス側開閉弁、12 アキュムレータ、12a~12c アキュムレータ、13 返油バイパスキャピラリ、13a~13c 返油バイパスキャピラリ、14 返油バイパス用電磁弁、14a~14c 返油バイパス用電磁弁、15 第1圧力センサ、15a~15c 第1圧力センサ、16 第2圧力センサ、16a~16c 第2圧力センサ、17 第1温度センサ、17a~17c 第1温度センサ、18 第2温度センサ、18a~18c 第2温度センサ、19 第3温度センサ、19a~19c 第3温度センサ、20 第4温度センサ、20a~20c 第4温度センサ、21 第5温度センサ、21a~21c 第5温度センサ、22 第6温度センサ、22a~22c 第6温度センサ、23 バイパス配管、23a~23c バイパス配管、24 接続点、24a~24c、25 接続点、25a~25c 接続点、26 液配管、26a~26c 液配管、27 制御装置、27a~27c 制御装置、28 第7温度センサ、28a~28c 第7温度センサ、30 返油バイパス回路、30a~30c 返油バイパス回路、31 吸入配管、31a~31c 吸入配管、50 室内機、50a~50b 室内機、100 室内熱交換器、100a~100b 室内熱交換器、101 膨張弁、101a~101b 膨張弁、102 制御装置、102a~102b 制御装置、103 第8温度センサ、103a~103b 第8温度センサ、104 第9温度センサ、104a~104b 第9温度センサ、200a ガス分配器、200b 液分配器、200c ガス分配器、200d 液分配器、200e 液分配器、200f ガス分配器、202 ガス分岐管、202a~202f ガス分岐管、203 液分岐管、203a~203f 液分岐管、204 ガス配管、205 液配管、206 ガス枝管、206a~206b ガス枝管、207 液枝管、207a~207b 液枝管。 1 compressor, 1a to 1c compressor, 2 oil separator, 2a to 2c oil separator, 3 check valve, 3a to 3c check valve, 4 four-way valve, 4a to 4c four-way valve, 4-1 four-way valve, 4- 1a to 4-1c four-way valve, 4-2 four-way valve, 4-2a to 4-2c four-way valve, 5 outdoor heat exchanger, 5a to 5c outdoor heat exchanger, 6 high and low pressure heat exchanger, 6a to 6c high and low pressure Heat exchanger, 7 Bypass flow control valve, 7a-7c Bypass flow control valve, 8 Flow control valve, 8a-8c Flow control valve, 9 Liquid side on / off valve, 9a-9c Liquid side on / off valve, 10 Outdoor unit, 10a ~ 10c outdoor unit, 11 gas side on / off valve, 11a to 11c gas side on / off valve, 12 accumulator, 12a to 12c accumulator, 13 oil return bypass capillary, 13a to 13c oil return bypass Capillary, 14 Oil return bypass solenoid valve, 14a-14c Oil return bypass solenoid valve, 15 1st pressure sensor, 15a-15c 1st pressure sensor, 16 2nd pressure sensor, 16a-16c 2nd pressure sensor, 17th 1 temperature sensor, 17a to 17c 1st temperature sensor, 18 2nd temperature sensor, 18a to 18c 2nd temperature sensor, 19 3rd temperature sensor, 19a to 19c 3rd temperature sensor, 20 4th temperature sensor, 20a to 20c 2nd 4 temperature sensor, 21 5th temperature sensor, 21a-21c 5th temperature sensor, 22 6th temperature sensor, 22a-22c 6th temperature sensor, 23 bypass piping, 23a-23c bypass piping, 24 connection points, 24a-24c, 25 connection points, 25a-25c connection points, 26 liquid piping, 26a-26c liquid piping, 7 control device, 27a-27c control device, 28 seventh temperature sensor, 28a-28c seventh temperature sensor, 30 oil return bypass circuit, 30a-30c oil return bypass circuit, 31 intake pipe, 31a-31c intake pipe, 50 indoors Machine, 50a-50b indoor unit, 100 indoor heat exchanger, 100a-100b indoor heat exchanger, 101 expansion valve, 101a-101b expansion valve, 102 control device, 102a-102b control device, 103 eighth temperature sensor, 103a- 103b 8th temperature sensor, 104 9th temperature sensor, 104a-104b 9th temperature sensor, 200a gas distributor, 200b liquid distributor, 200c gas distributor, 200d liquid distributor, 200e liquid distributor, 200f gas distributor, 202 Gas branch pipe, 202a to 202f Gas branch pipe, 203 liquid branch pipe, 203a-203f liquid branch pipe, 204 gas pipe, 205 liquid pipe, 206 gas branch pipe, 206a-206b gas branch pipe, 207 liquid branch pipe, 207a-207b liquid branch pipe.

Claims (8)

  1.  少なくとも1台の室外機と、
     前記室外機に対して並列に接続される少なくとも1台の室内機と、を備え、
     前記室外機は、容量可変型の圧縮機、室外熱交換器、高低圧熱交換器を有し、
     前記室内機は、膨張弁および室内熱交換器を有し、
     前記圧縮機、前記室外熱交換器、前記高低圧熱交換器、前記膨張弁、および、前記室内熱交換器、が順次配管で接続され、冷媒が循環する冷凍サイクルを構成する空気調和装置であって、
     前記圧縮機の吐出側の圧力を検知する第1圧力センサと、
     前記圧縮機の吸入側の圧力を検知する第2圧力センサと、
     外気温度を検知する第1温度センサと、
     冷房運転時における前記室外熱交換器の出口側の温度を検知する第2温度センサと、
     冷房運転時における前記高低圧熱交換器の出口側の温度を検知する第3温度センサと、
     前記圧縮機の周波数を制御する制御装置と、を備え、
     冷房運転時において、
     前記制御装置は、
     前記第1圧力センサで検知した圧力に基づいて算出される蒸発温度と、予め設定された目標蒸発温度と、前記第1温度センサで検知した外気温度と、に基づいて算出される第1増減値と、
     前記蒸発温度と、前記目標蒸発温度と、前記第2圧力センサで検知した圧力に基づいて算出される凝縮温度および前記第2温度センサで検知した温度により求められる前記室外熱交換器の出口側の過冷却度と、に基づいて算出される第2増減値と、
     前記蒸発温度と、前記目標蒸発温度と、前記凝縮温度および前記第3温度センサで検知した温度により算出される前記高低圧熱交換器の出口側の過冷却度と、に基づいて算出される第3増減値と、
     から前記圧縮機の周波数の増減値を決定し、該増減値に基づいて前記圧縮機の周波数を更新するものである
     空気調和装置。
    At least one outdoor unit;
    And at least one indoor unit connected in parallel to the outdoor unit,
    The outdoor unit has a variable capacity compressor, an outdoor heat exchanger, a high-low pressure heat exchanger,
    The indoor unit has an expansion valve and an indoor heat exchanger,
    The compressor, the outdoor heat exchanger, the high / low pressure heat exchanger, the expansion valve, and the indoor heat exchanger are sequentially connected by piping, and are an air conditioner constituting a refrigeration cycle in which refrigerant circulates. And
    A first pressure sensor for detecting the pressure on the discharge side of the compressor;
    A second pressure sensor for detecting the pressure on the suction side of the compressor;
    A first temperature sensor for detecting an outside air temperature;
    A second temperature sensor for detecting the temperature of the outlet side of the outdoor heat exchanger during cooling operation;
    A third temperature sensor for detecting the temperature on the outlet side of the high-low pressure heat exchanger during cooling operation;
    A control device for controlling the frequency of the compressor,
    During cooling operation,
    The controller is
    A first increase / decrease value calculated based on the evaporation temperature calculated based on the pressure detected by the first pressure sensor, a preset target evaporation temperature, and the outside air temperature detected by the first temperature sensor. When,
    On the outlet side of the outdoor heat exchanger determined by the evaporation temperature, the target evaporation temperature, the condensation temperature calculated based on the pressure detected by the second pressure sensor, and the temperature detected by the second temperature sensor. A second increase / decrease value calculated based on the degree of supercooling,
    First calculated based on the evaporating temperature, the target evaporating temperature, the degree of supercooling on the outlet side of the high / low pressure heat exchanger calculated by the condensation temperature and the temperature detected by the third temperature sensor. 3 increase and decrease values,
    An air conditioner that determines an increase / decrease value of the frequency of the compressor from the above and updates the frequency of the compressor based on the increase / decrease value.
  2.  前記制御装置は、
     前記室外機が停止している状態から冷房運転を行うために、起動させる指令を受けたら、
     前記圧縮機を起動させる直前の前記外気温度に基づいて算出される初期第1増減値と、
     前記室外機が停止前の冷房運転時における前記室外熱交換器の出口側の過冷却度に基づいて算出される初期第2増減値と、
     前記室外機が停止前の冷房運転時における前記高低圧熱交換器の出口側の過冷却度に基づいて算出される初期第3増減値と、
     から前記圧縮機の起動時の初期周波数を決定するものである
     請求項1に記載の空気調和装置。
    The controller is
    In order to perform a cooling operation from a state where the outdoor unit is stopped, when receiving a command to start,
    An initial first increase / decrease value calculated based on the outside air temperature immediately before starting the compressor;
    An initial second increase / decrease value calculated based on the degree of supercooling on the outlet side of the outdoor heat exchanger during the cooling operation before the outdoor unit is stopped;
    An initial third increase / decrease value calculated based on the degree of supercooling on the outlet side of the high / low pressure heat exchanger during cooling operation before the outdoor unit is stopped;
    The air conditioner according to claim 1, wherein an initial frequency at the time of starting the compressor is determined.
  3.  前記室外機は流量調整弁およびアキュムレータを有し、
     前記アキュムレータは、
     前記室内熱交換器と前記圧縮機の吸入側との間に設けられ、
     前記流量調整弁は、
     冷房運転時における前記高低圧熱交換器の下流側と前記アキュムレータの上流側とを接続するバイパス配管に設けられた
     請求項1または2に記載の空気調和装置。
    The outdoor unit has a flow control valve and an accumulator,
    The accumulator is
    Provided between the indoor heat exchanger and the suction side of the compressor;
    The flow regulating valve is
    The air conditioning apparatus according to claim 1 or 2, wherein the air conditioner is provided in a bypass pipe that connects a downstream side of the high-low pressure heat exchanger and an upstream side of the accumulator during a cooling operation.
  4.  前記室外機を2台備えた場合において、
     前記制御装置は、
     前記室外機が全て停止している状態から冷房運転を行うために、一方を起動させる指令を受けたら、
     前記室外機が全て停止している状態となる前において、前記室外機が全て冷房運転していた場合は、それぞれの前記室外機における停止前の冷房運転時における前記室外熱交換器の出口側の過冷却度を比較して、前記室外熱交換器の出口側の過冷却度が小さい方の前記室外機を起動し、
     起動していない方の前記室外機の前記流量調整弁を開口し、起動した前記室外機の現状の前記室外熱交換器の出口側の過冷却度が、前記流量調整弁を開口した前記室外機における停止前の冷房運転時における前記室外熱交換器の出口側の過冷却度を上回るまで、起動した前記室外機の前記アキュムレータに冷媒を移行させる
     請求項3に記載の空気調和装置。
    When the two outdoor units are provided,
    The controller is
    In order to perform a cooling operation from a state where all the outdoor units are stopped, when receiving a command to start one,
    Before all the outdoor units are in a stopped state, when all the outdoor units are in the cooling operation, the outlet side of the outdoor heat exchanger at the time of the cooling operation before the stop in each of the outdoor units. Compare the degree of supercooling, start the outdoor unit with the smaller degree of supercooling on the outlet side of the outdoor heat exchanger,
    The outdoor unit that opens the flow rate adjustment valve of the outdoor unit that has not been started, and the degree of supercooling on the outlet side of the outdoor heat exchanger that is the current state of the outdoor unit that has been started has opened the flow rate adjustment valve The air conditioner according to claim 3, wherein the refrigerant is transferred to the accumulator of the activated outdoor unit until the degree of supercooling on the outlet side of the outdoor heat exchanger at the time of cooling operation before stopping in is exceeded.
  5.  前記室外機を3台以上備えた場合において、
     前記制御装置は、
     前記室外機が全て停止している状態から冷房運転を行うために、1台の前記室外機を起動させる指令を受けたら、
     前記室外機が全て停止している状態となる前において、前記室外機が全て冷房運転していた場合は、それぞれの前記室外機における停止前の冷房運転時における前記室外熱交換器の出口側の過冷却度を比較して、前記室外熱交換器の出口側の過冷却度が最も小さい前記室外機を起動し、
     前記室外熱交換器の出口側の過冷却度が最も大きい前記室外機の前記流量調整弁を開口し、起動した前記室外機の現状の前記室外熱交換器の出口側の過冷却度が、前記流量調整弁を開口した前記室外機における停止前の冷房運転時における前記室外熱交換器の出口側の過冷却度を上回るまで、起動した前記室外機の前記アキュムレータに冷媒を移行させる
     請求項3に記載の空気調和装置。
    When three or more outdoor units are provided,
    The controller is
    In order to perform a cooling operation from a state where all the outdoor units are stopped, when receiving a command to start one of the outdoor units,
    Before all the outdoor units are in a stopped state, when all the outdoor units are in the cooling operation, the outlet side of the outdoor heat exchanger at the time of the cooling operation before the stop in each of the outdoor units. Compare the degree of supercooling, start the outdoor unit with the smallest degree of supercooling on the outlet side of the outdoor heat exchanger,
    The flow control valve of the outdoor unit having the largest degree of supercooling on the outlet side of the outdoor heat exchanger is opened, and the degree of supercooling on the outlet side of the outdoor heat exchanger in the current outdoor unit that has been activated is The refrigerant is transferred to the accumulator of the activated outdoor unit until the degree of supercooling on the outlet side of the outdoor heat exchanger during cooling operation before stopping in the outdoor unit with the flow rate adjustment valve opened is exceeded. The air conditioning apparatus described.
  6.  前記室外機を3台以上備えた場合において、
     前記制御装置は、
     各前記室外機における停止前の前記室外熱交換器の出口側の過冷却度の平均値を算出し、
     前記室外機が全て停止している状態から冷房運転を行うために、前記平均値を下回った台数と同じ台数の前記室外機を起動させる指令を受けたら、
     前記室外機が全て停止している状態となる前において、前記室外機が全て冷房運転していた場合は、停止前の冷房運転時における前記室外熱交換器の出口側の過冷却度が前記平均値未満の前記室外機を起動し、
     停止前の冷房運転時における前記室外熱交換器の出口側の過冷却度が前記平均値以上の前記室外機の前記流量調整弁を開口し、起動した前記室外機の現状の前記室外熱交換器の出口側の過冷却度が、前記平均値を上回るまで、起動した前記室外機の前記アキュムレータに冷媒を移行させる
     請求項3に記載の空気調和装置。
    When three or more outdoor units are provided,
    The controller is
    Calculate the average value of the degree of supercooling on the outlet side of the outdoor heat exchanger before stopping in each outdoor unit,
    In order to perform cooling operation from a state in which all the outdoor units are stopped, when receiving a command to start the same number of outdoor units as the number of units below the average value,
    When all the outdoor units are in cooling operation before all the outdoor units are stopped, the degree of supercooling on the outlet side of the outdoor heat exchanger during the cooling operation before stopping is the average. Start the outdoor unit below the value,
    The current outdoor heat exchanger of the activated outdoor unit is opened by opening the flow rate adjustment valve of the outdoor unit whose subcooling degree on the outlet side of the outdoor heat exchanger during the cooling operation before the stop is equal to or higher than the average value. The air conditioner according to claim 3, wherein the refrigerant is transferred to the accumulator of the activated outdoor unit until the degree of supercooling on the outlet side of the outdoor unit exceeds the average value.
  7.  少なくとも1台の室外機と、
     前記室外機に対して並列に接続される少なくとも1台の室内機と、を備え、
     前記室外機は、容量可変型の圧縮機、室外熱交換器を有し、
     前記室内機は、膨張弁および室内熱交換器を有し、
     前記圧縮機、前記室外熱交換器、前記膨張弁、および、前記室内熱交換器、が順次配管で接続され、冷媒が循環する冷凍サイクルを構成する空気調和装置であって、
     前記圧縮機の吐出側の圧力を検知する第1圧力センサと、
     前記圧縮機の吸入側の圧力を検知する第2圧力センサと、
     外気温度を検知する第1温度センサと、
     冷房運転時における前記室外熱交換器の出口側の温度を検知する第2温度センサと、
     前記圧縮機の周波数を制御する制御装置と、を備え、
     冷房運転時において、
     前記制御装置は、
     前記第1圧力センサで検知した圧力に基づいて算出される蒸発温度と、予め設定された目標蒸発温度と、前記第1温度センサで検知した外気温度と、に基づいて算出される第1増減値と、
     前記蒸発温度と、前記目標蒸発温度と、前記第2圧力センサで検知した圧力に基づいて算出される凝縮温度および前記第2温度センサで検知した温度により求められる前記室外熱交換器の出口側の過冷却度と、に基づいて算出される第2増減値と、
     から前記圧縮機の周波数の増減値を決定し、該増減値に基づいて前記圧縮機の周波数を更新するものである
     空気調和装置。
    At least one outdoor unit;
    And at least one indoor unit connected in parallel to the outdoor unit,
    The outdoor unit has a variable capacity compressor, an outdoor heat exchanger,
    The indoor unit has an expansion valve and an indoor heat exchanger,
    The compressor, the outdoor heat exchanger, the expansion valve, and the indoor heat exchanger are sequentially connected by piping, and constitute an air conditioner that constitutes a refrigeration cycle in which refrigerant circulates,
    A first pressure sensor for detecting the pressure on the discharge side of the compressor;
    A second pressure sensor for detecting the pressure on the suction side of the compressor;
    A first temperature sensor for detecting an outside air temperature;
    A second temperature sensor for detecting the temperature of the outlet side of the outdoor heat exchanger during cooling operation;
    A control device for controlling the frequency of the compressor,
    During cooling operation,
    The controller is
    A first increase / decrease value calculated based on the evaporation temperature calculated based on the pressure detected by the first pressure sensor, a preset target evaporation temperature, and the outside air temperature detected by the first temperature sensor. When,
    On the outlet side of the outdoor heat exchanger determined by the evaporation temperature, the target evaporation temperature, the condensation temperature calculated based on the pressure detected by the second pressure sensor, and the temperature detected by the second temperature sensor. A second increase / decrease value calculated based on the degree of supercooling,
    An air conditioner which determines an increase / decrease value of the frequency of the compressor from the above and updates the frequency of the compressor based on the increase / decrease value.
  8.  前記制御装置は、
     前記室外機が停止している状態から冷房運転を行うために、起動させる指令を受けたら、
     前記圧縮機を起動させる直前の前記外気温度に基づいて算出される初期第1増減値と、
     前記室外機が停止前の冷房運転時における前記室外熱交換器の出口側の過冷却度に基づいて算出される初期第2増減値と、
     から前記圧縮機の起動時の初期周波数を決定するものである
     請求項7に記載の空気調和装置。
    The controller is
    In order to perform a cooling operation from a state where the outdoor unit is stopped, when receiving a command to start,
    An initial first increase / decrease value calculated based on the outside air temperature immediately before starting the compressor;
    An initial second increase / decrease value calculated based on the degree of supercooling on the outlet side of the outdoor heat exchanger during the cooling operation before the outdoor unit is stopped;
    The air conditioning apparatus according to claim 7, wherein an initial frequency when the compressor is started is determined.
PCT/JP2015/062888 2015-04-28 2015-04-28 Air-conditioning device WO2016174750A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017515333A JP6448775B2 (en) 2015-04-28 2015-04-28 Air conditioner
PCT/JP2015/062888 WO2016174750A1 (en) 2015-04-28 2015-04-28 Air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062888 WO2016174750A1 (en) 2015-04-28 2015-04-28 Air-conditioning device

Publications (1)

Publication Number Publication Date
WO2016174750A1 true WO2016174750A1 (en) 2016-11-03

Family

ID=57199724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062888 WO2016174750A1 (en) 2015-04-28 2015-04-28 Air-conditioning device

Country Status (2)

Country Link
JP (1) JP6448775B2 (en)
WO (1) WO2016174750A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111397080A (en) * 2020-03-27 2020-07-10 广东美的制冷设备有限公司 Oil return control method under high-temperature sterilization, air conditioner and computer storage medium
CN111536677A (en) * 2020-05-13 2020-08-14 广东美的制冷设备有限公司 Air conditioner oil return control method, air conditioner and readable storage medium
CN112032975A (en) * 2019-06-04 2020-12-04 青岛海尔空调器有限总公司 Control method of air conditioner
CN113654223A (en) * 2021-07-19 2021-11-16 青岛海尔空调器有限总公司 Method for determining target exhaust gas temperature
CN113932399A (en) * 2020-07-13 2022-01-14 广东美的暖通设备有限公司 Anti-freezing control method and device, cold and hot water machine and computer storage medium
CN114484830A (en) * 2022-01-14 2022-05-13 青岛海尔空调器有限总公司 Control method and control system of air conditioner, electronic equipment and storage medium
CN114608263A (en) * 2022-03-11 2022-06-10 长虹美菱股份有限公司 Quick-freezing control method of refrigerator refrigerating system based on electronic expansion valve
WO2022215889A1 (en) * 2021-04-07 2022-10-13 삼성전자주식회사 Air conditioner and controlling method thereof
WO2023246531A1 (en) * 2022-06-20 2023-12-28 青岛海尔空调器有限总公司 Method and apparatus for controlling refrigeration of air conditioner, and air conditioner and storage medium

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283361A (en) * 1991-03-13 1992-10-08 Matsushita Electric Ind Co Ltd Multichamber type air conditioner
JPH06265232A (en) * 1993-03-11 1994-09-20 Mitsubishi Electric Corp Device for air conditioning
JPH06100395B2 (en) * 1987-11-26 1994-12-12 ダイキン工業株式会社 Refrigeration system operation controller
JPH0968356A (en) * 1995-06-23 1997-03-11 Mitsubishi Electric Corp Refrigerant circulating system
JPH1062020A (en) * 1996-08-22 1998-03-06 Matsushita Refrig Co Ltd Heat-storage type air-conditioner
JP2000161830A (en) * 1998-11-25 2000-06-16 Saginomiya Seisakusho Inc Refrigerator and its controlling method
JP2004144351A (en) * 2002-10-23 2004-05-20 Fujitsu General Ltd Control method of multi-room type air conditioner
JP2008261532A (en) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd Air conditioner
JP2011208928A (en) * 2010-03-31 2011-10-20 Hitachi Appliances Inc Air conditioner
JP2013181711A (en) * 2012-03-02 2013-09-12 Mitsubishi Electric Corp Refrigeration device
JP2014085078A (en) * 2012-10-25 2014-05-12 Fujitsu General Ltd Air conditioner

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100395B2 (en) * 1987-11-26 1994-12-12 ダイキン工業株式会社 Refrigeration system operation controller
JPH04283361A (en) * 1991-03-13 1992-10-08 Matsushita Electric Ind Co Ltd Multichamber type air conditioner
JPH06265232A (en) * 1993-03-11 1994-09-20 Mitsubishi Electric Corp Device for air conditioning
JPH0968356A (en) * 1995-06-23 1997-03-11 Mitsubishi Electric Corp Refrigerant circulating system
JPH1062020A (en) * 1996-08-22 1998-03-06 Matsushita Refrig Co Ltd Heat-storage type air-conditioner
JP2000161830A (en) * 1998-11-25 2000-06-16 Saginomiya Seisakusho Inc Refrigerator and its controlling method
JP2004144351A (en) * 2002-10-23 2004-05-20 Fujitsu General Ltd Control method of multi-room type air conditioner
JP2008261532A (en) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd Air conditioner
JP2011208928A (en) * 2010-03-31 2011-10-20 Hitachi Appliances Inc Air conditioner
JP2013181711A (en) * 2012-03-02 2013-09-12 Mitsubishi Electric Corp Refrigeration device
JP2014085078A (en) * 2012-10-25 2014-05-12 Fujitsu General Ltd Air conditioner

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112032975A (en) * 2019-06-04 2020-12-04 青岛海尔空调器有限总公司 Control method of air conditioner
CN111397080B (en) * 2020-03-27 2021-07-16 广东美的制冷设备有限公司 Oil return control method under high-temperature sterilization, air conditioner and computer storage medium
CN111397080A (en) * 2020-03-27 2020-07-10 广东美的制冷设备有限公司 Oil return control method under high-temperature sterilization, air conditioner and computer storage medium
CN111536677B (en) * 2020-05-13 2021-11-23 广东美的制冷设备有限公司 Air conditioner oil return control method, air conditioner and readable storage medium
CN111536677A (en) * 2020-05-13 2020-08-14 广东美的制冷设备有限公司 Air conditioner oil return control method, air conditioner and readable storage medium
CN113932399A (en) * 2020-07-13 2022-01-14 广东美的暖通设备有限公司 Anti-freezing control method and device, cold and hot water machine and computer storage medium
CN113932399B (en) * 2020-07-13 2023-07-07 广东美的暖通设备有限公司 Antifreezing control method and device, cold and hot water machine and computer storage medium
WO2022215889A1 (en) * 2021-04-07 2022-10-13 삼성전자주식회사 Air conditioner and controlling method thereof
CN113654223A (en) * 2021-07-19 2021-11-16 青岛海尔空调器有限总公司 Method for determining target exhaust gas temperature
WO2023000551A1 (en) * 2021-07-19 2023-01-26 青岛海尔空调器有限总公司 Target exhaust temperature determination method
CN114484830A (en) * 2022-01-14 2022-05-13 青岛海尔空调器有限总公司 Control method and control system of air conditioner, electronic equipment and storage medium
CN114484830B (en) * 2022-01-14 2024-06-18 青岛海尔空调器有限总公司 Control method and control system of air conditioner, electronic equipment and storage medium
CN114608263A (en) * 2022-03-11 2022-06-10 长虹美菱股份有限公司 Quick-freezing control method of refrigerator refrigerating system based on electronic expansion valve
WO2023246531A1 (en) * 2022-06-20 2023-12-28 青岛海尔空调器有限总公司 Method and apparatus for controlling refrigeration of air conditioner, and air conditioner and storage medium

Also Published As

Publication number Publication date
JP6448775B2 (en) 2019-01-09
JPWO2016174750A1 (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6448775B2 (en) Air conditioner
JP6038357B2 (en) Air conditioner
EP2940395B1 (en) Air conditioner
CN108027179B (en) Air conditioner
US9239175B2 (en) Air conditioner and heat source unit with other unit start up control
US9683768B2 (en) Air-conditioning apparatus
EP3587948B1 (en) Air conditioner
EP2375188B1 (en) Air conditioner
EP2196746B1 (en) Refrigeration apparatus
EP2863152B1 (en) Air conditioning device
US10539343B2 (en) Heat source side unit and air-conditioning apparatus
JP5173857B2 (en) Air conditioner
KR20200134809A (en) An air conditioning apparatus and control method thereof
JP2009243847A (en) Multiple air conditioner
JP5056794B2 (en) Air conditioner
JP2925715B2 (en) Refrigeration equipment
KR20190081837A (en) air-conditioning system
CN116075673A (en) Air conditioner
JP6824259B2 (en) Air conditioner
JP2014126289A (en) Air conditioning system
WO2023139701A1 (en) Air conditioner
EP4212798A1 (en) Air conditioning apparatus
JP2017062082A (en) Multi-air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890733

Country of ref document: EP

Kind code of ref document: A1