JPH06100395B2 - Refrigeration system operation controller - Google Patents

Refrigeration system operation controller

Info

Publication number
JPH06100395B2
JPH06100395B2 JP29819787A JP29819787A JPH06100395B2 JP H06100395 B2 JPH06100395 B2 JP H06100395B2 JP 29819787 A JP29819787 A JP 29819787A JP 29819787 A JP29819787 A JP 29819787A JP H06100395 B2 JPH06100395 B2 JP H06100395B2
Authority
JP
Japan
Prior art keywords
capacity
evaporation temperature
compressor
refrigerant
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29819787A
Other languages
Japanese (ja)
Other versions
JPH01139965A (en
Inventor
修 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP29819787A priority Critical patent/JPH06100395B2/en
Publication of JPH01139965A publication Critical patent/JPH01139965A/en
Publication of JPH06100395B2 publication Critical patent/JPH06100395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷凍装置の運転制御装置に関し、特に、過負
荷運転時での高圧保護装置の作動を未然に防止して、装
置の連続運転を可能にしたものの改良に関する。
Description: TECHNICAL FIELD The present invention relates to an operation control device for a refrigeration system, and more particularly to preventing continuous operation of a high-voltage protection device during overload operation to allow continuous operation of the device. Related to improvements that made possible.

(従来の技術) 従来、一台の室外ユニットに対して複数台の室内ユニッ
トを並列に接続した,いわゆるマルチ形式の冷凍装置に
おいては、多くの室内ユニットが運転する過大容量時
(過負荷運転時)に、圧縮機が高容量で運転するときに
は、冷媒循環系統における高圧が異常に上昇して高圧保
護装置が作動し、冷凍装置の運転が強制的に停止してし
まうことがある。そのため、高圧の異常上昇時には、予
め圧縮機の容量を低減して、その高圧の上昇を抑制ない
し解消して高圧保護装置の作動を未然に防止し、装置の
運転を連続的に行うこととするのが好ましい。
(Prior Art) Conventionally, in a so-called multi-type refrigeration system in which a plurality of indoor units are connected in parallel to one outdoor unit, when many indoor units operate, when the capacity is excessive (during overload operation) In addition, when the compressor operates at a high capacity, the high pressure in the refrigerant circulation system may abnormally rise, the high pressure protection device may operate, and the operation of the refrigeration system may be forcibly stopped. Therefore, when the high pressure rises abnormally, the capacity of the compressor is reduced in advance to suppress or eliminate the rise in the high pressure to prevent the operation of the high pressure protection device and to continuously operate the device. Is preferred.

そこで、従来、例えば圧縮機にアンロード機構を備え、
このアンロード機構の作動する時点の高圧の値を、上記
高圧保護装置の作動する時点の高圧の値よりも低く設定
して、高圧の上昇時には、高圧保護装置の作動前にアン
ロード機構を作動させて圧縮機の容量を低減し、装置の
連続運転を可能としたものがある。
Therefore, conventionally, for example, a compressor is provided with an unload mechanism,
The high voltage value at the time of operation of the unload mechanism is set lower than the high voltage value at the time of operation of the high voltage protection device, and when the high voltage rises, the unload mechanism is operated before the high voltage protection device operates. In some cases, the capacity of the compressor is reduced to enable continuous operation of the device.

また、例えば特開昭62-196542号公報に開示されるもの
では、圧縮機の容量を調整するインバータを設け、圧縮
機の容量を室内ユニットの運転台数に応じて複数ステッ
プに増減制御すると共に、室外ユニットの能力が外気温
度に応じて変化する点を考慮して、多くの室内ユニット
が運転する冷房運転時に、外気温度が高くなって室外ユ
ニットの能力が増大した時(つまり高圧の上昇時)に
は、圧縮機の容量をインバータで一段低減して、高圧保
護装置の作動を未然に防止し、装置の連続運転を可能に
している。
Further, for example, in the one disclosed in JP-A-62-196542, an inverter for adjusting the capacity of the compressor is provided, and the capacity of the compressor is increased / decreased in a plurality of steps according to the number of operating indoor units, Considering that the capacity of the outdoor unit changes according to the outside air temperature, when the outdoor air temperature rises and the capacity of the outdoor unit increases during cooling operation in which many indoor units operate (that is, when the high pressure rises). In addition, the capacity of the compressor is reduced by an inverter to prevent the operation of the high-voltage protection device in advance, thus enabling continuous operation of the device.

(発明が解決しようとする問題点) しかしながら、前者にあっては、アンロード機構の作動
でもって容量を低減する構成であるため、容量が半減し
て、その低減幅が大きく、冷凍性が大きく低下する欠点
がある。
(Problems to be Solved by the Invention) However, in the former case, since the capacity is reduced by the operation of the unload mechanism, the capacity is halved, the reduction range is large, and the freezing property is large. There is a drawback to decrease.

また、後者にあっては、第10図に示す如く、室内湿球温
度NWB(X軸)と、室外乾球温度GDB(Y軸)とで定まる
運転領域に対し、高圧保護装置の作動する領域は、実線
で示す等高圧線以上の領域となるが、圧縮機の容量を一
段下げる領域は、図中破線で示す等温度線以上の領域で
あって、両者の線の傾きが異なるため、高圧保護装置の
作動する領域でないにも拘らず圧縮機の容量を一段下げ
る制御となる領域が生じて、その領域では負荷に応じた
容量制御が行なわれず、上記と同様に冷凍性が低下する
欠点がある。
In the latter case, as shown in FIG. 10, the operating range of the high-pressure protection device is the operating range defined by the indoor wet-bulb temperature NWB (X axis) and the outdoor dry-bulb temperature GDB (Y axis). Is a region above the iso-high pressure line indicated by the solid line, but the region where the capacity of the compressor is reduced by one step is the region above the iso-temperature line indicated by the broken line in the figure, and since the slopes of the two lines are different, Although there is a region in which the capacity of the compressor is controlled to be further reduced by one step even though it is not the region where the protection device operates, the capacity control according to the load is not performed in that region, and there is a drawback that the refrigerating property is reduced as in the above. is there.

本発明は斯かる点に鑑みてなされたものであり、特に、
冷媒の蒸発温度を目標値に保持するよう圧縮機の容量を
複数ステップに増減制御するものでは、蒸発温度が目標
値を越えて高くなると、圧縮機の容量も増大制御される
が、この圧縮機の高容量状態では、第4図及び第5図に
示す如く、高圧保護装置の作動する冷媒の凝縮温度TcO
に対応する蒸発温度Te1が、一定外気温度下では、その
ときの圧縮機の容量ステップとほぼ比例関係にあって、
圧縮機の容量が増大するほど上記蒸発温度Te1は低くな
る点に着目し、その目的は、マルチ形式の冷凍装置にお
いて、圧縮機にインバータを備えてその容量を複数ステ
ップに制御可能とし、該圧縮機の容量を、上記の如く冷
媒の蒸発温度を目標値に保持するよう増減制御すると共
に、その各容量ステップ毎に上記高圧保護装置の作動す
る冷媒の蒸発温度Te1をそれぞれ設定することにより、
高圧の上昇時には、高圧保護装置の作動しない前の段階
で圧縮機の容量を低減し、その容量を可及的高い容量に
確保した状態で装置の連続運転を可能にすると共に、こ
の圧縮機の容量を低減する領域を上記第10図の実線で示
す等高圧線を越える領域とほぼ同領域にして、無駄に圧
縮機の容量を低減することとなる領域を縮小させて、可
及的に負荷に応じた容量運転を行い、よって冷凍性の向
上を図ることにある。
The present invention has been made in view of such points, and in particular,
When the capacity of the compressor is controlled to increase or decrease in multiple steps so as to keep the evaporation temperature of the refrigerant at the target value, when the evaporation temperature rises above the target value, the capacity of the compressor is also controlled to increase. In the high capacity state, as shown in FIG. 4 and FIG. 5, the condensation temperature Tc O
At a constant outside air temperature, the evaporation temperature Te1 corresponding to is almost proportional to the capacity step of the compressor at that time,
Focusing on the fact that the evaporation temperature Te1 becomes lower as the capacity of the compressor increases, the purpose thereof is to provide an inverter in the compressor in a multi-type refrigeration system, and to make it possible to control the capacity in a plurality of steps. The capacity of the machine is controlled to increase or decrease so as to keep the evaporation temperature of the refrigerant at the target value as described above, and by setting the evaporation temperature Te1 of the refrigerant operating the high pressure protection device for each capacity step,
When the high pressure rises, the capacity of the compressor is reduced at the stage before the high pressure protection device does not operate, and it is possible to operate the equipment continuously while keeping the capacity as high as possible. The area where the capacity is reduced is made almost the same as the area that exceeds the iso-high voltage line shown by the solid line in Fig. 10 above, and the area where the capacity of the compressor is unnecessarily reduced is reduced to reduce the load as much as possible. It is intended to improve the refrigerating property by performing the capacity operation according to the above.

(問題点を解決するための手段) 上記の目的を達成するため、本発明の解決手段は、第1
図に示すように、インバータ(2a)により複数段の容量
ステップに調整される圧縮機(1)を内蔵する室外ユニ
ット(A)に対して、室内熱交換器(12)を内蔵する複
数台の室内ユニット(B)〜(F)を並列に接続してな
る冷媒循環系統(Z)を備え、上記冷媒循環系統(Z)
における冷媒の蒸発温度を目標値に保持するよう圧縮機
(1)を容量制御するようにしたマルチ形式の冷凍装置
を前提とする。そして、上記冷媒循環系統(Z)におけ
る冷媒の蒸発温度を検出する蒸発温度検出手段(50)を
設けると共に、高圧保護装置の作動する直前の冷媒の凝
縮温度に対応する冷媒の蒸発温度を、高圧保護に対する
上限蒸発温度として、上記圧縮機(1)の各容量ステッ
プ毎に設定する上限蒸発温度設定手段(51)と、上記蒸
発温度検出手段(50)の出力を受け、冷媒の蒸発温度が
その時の圧縮機(1)の容量ステップに対応する上記上
限蒸発温度設定手段(51)の上限蒸発温度を越えると
き、上記圧縮機(1)の容量ステップを強制的に下げる
ようインバータ(2a)を制御する容量低減手段(52)と
を設ける構成したものである。
(Means for Solving Problems) In order to achieve the above object, the solving means of the present invention is
As shown in the figure, for an outdoor unit (A) containing a compressor (1) that is adjusted to a plurality of capacity steps by an inverter (2a), a plurality of indoor heat exchangers (12) are installed. A refrigerant circulation system (Z) formed by connecting indoor units (B) to (F) in parallel is provided, and the refrigerant circulation system (Z) is provided.
It is premised on a multi-type refrigeration system in which the capacity of the compressor (1) is controlled so as to keep the evaporation temperature of the refrigerant at the target value. Then, an evaporation temperature detecting means (50) for detecting the evaporation temperature of the refrigerant in the refrigerant circulation system (Z) is provided, and the evaporation temperature of the refrigerant corresponding to the condensation temperature of the refrigerant immediately before the high pressure protection device operates is set to a high pressure. As the upper limit evaporation temperature for protection, the upper limit evaporation temperature setting means (51) set for each capacity step of the compressor (1) and the output of the evaporation temperature detection means (50) are received, and the evaporation temperature of the refrigerant at that time is received. When the upper limit evaporation temperature of the upper limit evaporation temperature setting means (51) corresponding to the capacity step of the compressor (1) is exceeded, the inverter (2a) is controlled to forcibly decrease the capacity step of the compressor (1). And a capacity reducing means (52) for controlling the capacity.

(作用) 以上の構成により、本発明では、冷凍運転時には、冷媒
循環系統(Z)における冷媒の蒸発温度が目標値を越え
るときには、圧縮機(1)の容量がインバータ(2a)で
調整されて高く制御されることにより、蒸発温度は目標
値に向かって低下する一方、冷媒の蒸発温度が目標値未
満のときには、圧縮機(1)の容量が逆に低く制御され
て、蒸発温度が目標値に向かって上昇するので、この蒸
発温度は目標値に収束する。
(Operation) According to the present invention, according to the present invention, the capacity of the compressor (1) is adjusted by the inverter (2a) when the evaporation temperature of the refrigerant in the refrigerant circulation system (Z) exceeds the target value during the refrigerating operation. When the evaporation temperature of the refrigerant is lower than the target value due to the high control, the evaporation temperature of the refrigerant is conversely controlled to be low, and the evaporation temperature is reduced to the target value. As it elevates toward, the evaporation temperature converges to the target value.

而して、上記の如く、冷媒の蒸発温度が目標値を越える
とき、特に、多くの室内ユニット(B)〜(F)が運転
して室内熱交換器(12)の容量が最大容量近傍になる
と、冷媒循環系統(Z)の高圧が大きく上昇して、高圧
保護装置の作動する圧力値に近づくが、このときには、
冷媒の蒸発温度がその時の圧縮機(1)の容量ステップ
に対応する上限蒸発温度設定手段(51)の上限蒸発温度
以上になった時点で、圧縮機(1)の容量ステップが容
量低減手段(52)により強制的に下げられるので、高圧
の上昇が抑制ないし解消されて、高圧保護装置の作動が
未然に防止され、その結果、装置は運転を続行すること
になる。
Thus, as described above, when the evaporation temperature of the refrigerant exceeds the target value, in particular, many indoor units (B) to (F) are operated and the capacity of the indoor heat exchanger (12) approaches the maximum capacity. Then, the high pressure of the refrigerant circulation system (Z) greatly rises and approaches the pressure value at which the high pressure protection device operates, but at this time,
When the evaporation temperature of the refrigerant becomes equal to or higher than the upper limit evaporation temperature of the upper limit evaporation temperature setting means (51) corresponding to the capacity step of the compressor (1) at that time, the capacity step of the compressor (1) is changed to the capacity reduction means ( Since it is forcibly lowered by 52), the rise in high voltage is suppressed or eliminated, and the operation of the high voltage protection device is prevented in advance, so that the device continues to operate.

その場合、高圧保護装置の作動する時点での冷媒の凝縮
温度に対応する蒸発温度は、そのときに取っている圧縮
機(1)の容量ステップで異なるが、この各容量ステッ
プ毎に高圧保護装置の作動する直前の冷媒の蒸発温度が
上限蒸発温度設定手段(51)によって設定されるので、
従来の如くアンロード機構を作動させて容量を一律に半
減させるものに比べて、容量を可及的に高く確保しつつ
装置の連続運転を行うことができる。
In that case, the evaporation temperature corresponding to the condensation temperature of the refrigerant at the time of operation of the high pressure protection device differs depending on the capacity step of the compressor (1) being taken at that time. Since the evaporation temperature of the refrigerant immediately before the operation of is set by the upper limit evaporation temperature setting means (51),
It is possible to continuously operate the device while securing the capacity as high as possible as compared with the conventional one in which the capacity is uniformly halved by operating the unload mechanism.

しかも、上限蒸発温度設定手段(51)で設定される蒸発
温度の上限蒸発温度の一定線は、第9図に示す如く、各
容量ステップ毎に破線で示す等高圧線に対し、従来のも
の(第10図参照)に比べて近い傾きを有して、圧縮機の
容量を不必要に一段下げる領域を狭くできるので、負荷
に応じた容量制御を行なう領域を拡大することができ
る。
Moreover, the constant line of the upper limit evaporation temperature of the evaporation temperature set by the upper limit evaporation temperature setting means (51) is different from the conventional high voltage line shown by the broken line for each capacity step as shown in FIG. (See FIG. 10), it has a slope closer to that of FIG. 10 and can narrow the area in which the capacity of the compressor is unnecessarily lowered by one step, so that the area for carrying out capacity control according to the load can be expanded.

(実施例) 以下、本発明の実施例を第2図以下の図面に基づいて説
明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.

第2図は本発明をマルチ型式の空気調和装置に適用した
実施例を示し、(A)は室外ユニット、(B)〜(F)
は該室外ユニット(A)に並列に接続された室内ユニッ
トである。上記室外ユニット(A)には、圧縮機(1)
と、上記圧縮機(1)から吐出されるガス中の油を分離
する油分離器(4)と、暖房運転時には図中実線の如く
切換わり冷房運転時には図中破線の如く切換わる四路切
換弁(5)と、冷房運転時に凝縮器、暖房運転時に蒸発
器となる室外熱交換器(6)およびそのファン(6a)
と、過冷却コイル(7)と、冷房運転時には冷媒流量を
調節し、暖房運転時には冷媒の絞り作用を行う室外電動
膨張弁(8)と、液化した冷媒を貯蔵するレシーバ
(9)と、アキュムレータ(10)とが主要機器として内
蔵されていて、該各機器(1)〜(10)は各々冷媒の連
絡配管(11)を介して冷媒の流通可能に接続されてい
る。
FIG. 2 shows an embodiment in which the present invention is applied to a multi-type air conditioner, (A) is an outdoor unit, and (B) to (F).
Is an indoor unit connected in parallel to the outdoor unit (A). The outdoor unit (A) includes a compressor (1)
And an oil separator (4) for separating the oil in the gas discharged from the compressor (1), and a four-way switching that switches as shown by the solid line in the drawing during heating operation and as shown by the broken line in the drawing during cooling operation. A valve (5), an outdoor heat exchanger (6) that serves as a condenser during cooling operation and an evaporator during heating operation, and its fan (6a)
A supercooling coil (7), an outdoor electric expansion valve (8) that adjusts the refrigerant flow rate during cooling operation, and performs a refrigerant throttling operation during heating operation, a receiver (9) that stores liquefied refrigerant, and an accumulator. (10) is built in as a main device, and each of the devices (1) to (10) is connected through a refrigerant communication pipe (11) so that the refrigerant can flow.

そして、上記圧縮機(1)には、該圧縮機(1)の運転
周波数(つまり容量ステップ)を複数段(例えば5段
階)に可変に調整するインバータ(2a)が備えられてい
ると共に、パイロット圧の高低に応じて圧縮機(1)の
容量を、容量100%のフルロード状態と、容量50%のア
ンロード状態との2段階に調節するアンロード機構(2
b)と、該アンロード機構(2b)のパイロット管(図示
せず)へのパイロット圧を圧縮機(1)の吐出管(11
n)側(高圧側)または吸入管(11q)側(低圧側)に切
換える電磁弁(2c)とが付設されており、該電磁弁(2
c)が高圧側に切換えられると、圧縮機(1)の運転容
量が100%のフルロード状態に切換られる一方、電磁弁
(2c)が低圧側に切換えられると、圧縮機(1)の運転
容量が50%のアンロード状態に切換られるように構成さ
れている。
The compressor (1) is provided with an inverter (2a) that variably adjusts the operating frequency (that is, capacity step) of the compressor (1) to a plurality of stages (for example, five stages), and a pilot. An unload mechanism (2) that adjusts the capacity of the compressor (1) according to the level of pressure in two stages: 100% capacity full load state and 50% capacity unload state.
b) and the pilot pressure to the pilot pipe (not shown) of the unload mechanism (2b) are supplied to the discharge pipe (11) of the compressor (1).
The solenoid valve (2c) for switching to the n) side (high pressure side) or the suction pipe (11q) side (low pressure side) is attached.
When c) is switched to the high pressure side, the operating capacity of the compressor (1) is switched to the full load state of 100%, while when the solenoid valve (2c) is switched to the low pressure side, the operation of the compressor (1) It is configured so that it can be switched to the unload state where the capacity is 50%.

また、上記室内ユニット(B)〜(F)は同一構成であ
り、各々その内部には、冷房運転時には蒸発器、暖房運
転時には凝縮器となる室内熱交換器(12)…及びその送
風ファン(12a)…と、液冷媒分岐管(11a)…に介設さ
れて冷媒流量を調節し、冷房運転時に冷媒の絞り作用を
行う室内電動膨張弁(13)…が備えられ、該各機器(1
2),(13)は手動閉鎖弁(17)を配した連絡配管(11
b)を介して室外ユニット(A)に接続されて、冷媒を
室外ユニット(A)と複数台(5台)の室内ユニット
(B)〜(F)に循環させる冷媒循環系統(Z)が形成
されている。
Further, the indoor units (B) to (F) have the same configuration, and inside thereof, an indoor heat exchanger (12), which serves as an evaporator during cooling operation and a condenser during heating operation, and its blower fan ( , And an indoor electric expansion valve (13), which is provided in the liquid refrigerant branch pipes (11a), adjusts the refrigerant flow rate, and performs a refrigerant throttling action during the cooling operation.
2) and (13) are connecting pipes (11) equipped with a manual shutoff valve (17).
A refrigerant circulation system (Z) that is connected to the outdoor unit (A) via b) and circulates the refrigerant to the outdoor unit (A) and a plurality of (five) indoor units (B) to (F). Has been done.

また、各室内ユニット(B)〜(F)内において、(TH
1)…は各室内温度を検出する室温センサ、(TH2)…お
よび(TH3)…は各々室内熱交換器(12)…の液側およ
びガス側配管の温度を検出する温度センサである。ま
た、室外ユニット(A)において、(TH4)は圧縮機
(1)の吐出管の温度を検出する温度センサ、(TH5)
は暖房運転時に室外熱交換器(6)における蒸発温度を
検出する蒸発温度センサ、(TH6)は圧縮機(1)の吸
入ガス温度を検出する吸入ガス温度センサ、(P1)は暖
房運転時には吐出ガスの圧力、冷房運転時には吸入ガス
の圧力を検知する圧力センサである。
In addition, in each indoor unit (B) ~ (F), (TH
1) ... are room temperature sensors that detect the room temperature, and (TH2) ... and (TH3) ... are temperature sensors that detect the temperature of the liquid side and gas side piping of the indoor heat exchangers (12). Further, in the outdoor unit (A), (TH4) is a temperature sensor that detects the temperature of the discharge pipe of the compressor (1), and (TH5)
Is an evaporation temperature sensor that detects the evaporation temperature in the outdoor heat exchanger (6) during heating operation, (TH6) is an intake gas temperature sensor that detects the intake gas temperature of the compressor (1), and (P1) is discharge during heating operation. It is a pressure sensor that detects the pressure of gas and the pressure of suction gas during cooling operation.

なお、第2図において上記各主要機器以外に補助用の諸
機器が設けられている。(1h)は油分離器(4)から圧
縮機(1)に潤滑油を戻す油戻し配管(11u)に介設さ
れ、返油量をコントロールするキャピラリーチューブ、
(21)は吐出管と吸入管とを接続する均圧ホットガスバ
イパス回路(11d)に介設され、デフロスト時等に開作
動するホットガス用電磁弁である。また、(11e)は暖
房過負荷制御用バイパス回路であって、該バイパス回路
(11e)には、補助コンデンサ(22)、第1逆止弁(2
3)、暖房運転時に室内熱交換器(12)(凝縮器)が低
負荷時のとき開作動する高圧制御弁(24)および第2逆
止弁(25)が順次直列に接続されており、その一部には
運転停止時に液封を防止するための液封防止バイパス回
路(11f)および(11f′)が第3逆止弁(27)およびキ
ャピラリーチューブ(CP3)を介して設けられている。
さらに、(11g)は上記暖房過負荷バイパス回路(11e)
の液冷媒側配管と主配管の吸入ガス管との間を接続し、
冷暖房運転時に吸入ガスの過熱度を調節するためのリキ
ッドインジェクションバイパス回路であって、該リキッ
ドインジェクションバイパス回路(11g)には圧縮機
(1)のオン・オフと連動して開閉するインジェクショ
ン用電磁弁(29)と、感温筒(TP1)により検出される
吸入ガスの過熱度に応じて開度調節される自動膨張弁
(30)とが介設されている。
In addition, in FIG. 2, various auxiliary devices are provided in addition to the above main devices. (1h) is a capillary tube that is provided in an oil return pipe (11u) that returns lubricating oil from the oil separator (4) to the compressor (1), and controls the amount of returned oil.
Reference numeral (21) is a hot gas solenoid valve that is provided in a pressure equalizing hot gas bypass circuit (11d) that connects the discharge pipe and the suction pipe and that opens when defrosting or the like. Reference numeral (11e) is a heating overload control bypass circuit, and the bypass circuit (11e) includes an auxiliary capacitor (22) and a first check valve (2).
3), the high-pressure control valve (24) and the second check valve (25), which open when the indoor heat exchanger (12) (condenser) is under a low load during heating operation, are sequentially connected in series, A liquid seal prevention bypass circuit (11f) and (11f ') for preventing liquid seal at the time of stop of operation is provided in a part thereof through a third check valve (27) and a capillary tube (CP3). .
Furthermore, (11g) is the above heating overload bypass circuit (11e)
Connect between the liquid refrigerant side pipe and the main gas intake gas pipe,
A liquid injection bypass circuit for adjusting the degree of superheat of intake gas during air-conditioning operation, wherein the liquid injection bypass circuit (11g) opens and closes in conjunction with turning on and off of the compressor (1). (29) and an automatic expansion valve (30) whose opening is adjusted according to the degree of superheat of the intake gas detected by the temperature sensing tube (TP1).

また、第2図中、(F1)〜(F6)は冷媒回路あるいは油
戻し管中に介設された液浄化用フィルタ、(HPS)は圧
縮機保護用の高圧圧力開閉器、(SP)はサービスポート
である。
Further, in FIG. 2, (F1) to (F6) are liquid purification filters provided in the refrigerant circuit or the oil return pipe, (HPS) is a high pressure switch for protecting the compressor, and (SP) is It is a service port.

次に、上記圧縮機(1)の運転容量の制御を冷房運転時
を例に挙げて説明する。尚、この容量制御は室外ユニッ
ト(A)に接続した室外制御装置(15)により行われ
る。
Next, the control of the operating capacity of the compressor (1) will be described by taking the cooling operation as an example. The capacity control is performed by the outdoor control device (15) connected to the outdoor unit (A).

すなわち、圧力センサ(P1)により検出した吸入ガス圧
力を相当飽和温度に換算して得られる冷媒温度Te、つま
り冷媒循環系統(Z)における冷媒の蒸発温度を検出す
る蒸発温度検出手段(50)として機能した後、この蒸発
温度Teを目標値T2Oに保持するよう、圧縮機(1)の運
転容量のフィードバック制御としてPI制御(比例−積分
制御)を行うこととし、圧縮機(1)の目標容量L1を、
上記蒸発温度Teとその目標値T2Oとの偏差の,今回と前
回の値e(t),e(t−Δt)に基いて、蒸発温度Teが
その目標値T2Oになるよう下記式 L1=LO+Kc{e(t)−e(t−Δt) +(Δt/2Ti)(e(t)+e(t−Δt)} LO;現在の運転容量 Kc;ゲイン(定数) Ti;積分時間 Δt;サンプリング時間 で演算して、冷媒の蒸発温度Teの目標値TeOを越えると
きには、圧縮機(1)の容量ステップを高める一方、逆
に蒸発温度Teが目標値TeO未満のときには、圧縮機
(1)の容量ステップを低くすることとする。
That is, as the evaporation temperature detecting means (50) for detecting the refrigerant temperature Te obtained by converting the intake gas pressure detected by the pressure sensor (P1) into the equivalent saturation temperature, that is, the evaporation temperature of the refrigerant in the refrigerant circulation system (Z). After functioning, PI control (proportional-integral control) is performed as feedback control of the operating capacity of the compressor (1) so as to maintain this evaporation temperature Te at the target value T2O , and the target of the compressor (1) is determined. Capacity L 1 ,
Based on the current and previous values e (t) and e (t-Δt) of the deviation between the evaporation temperature Te and its target value T 2O , the following equation L is set so that the evaporation temperature Te reaches its target value T 2O. 1 = L O + Kc {e (t) -e (t-Δt) + (Δt / 2Ti) (e (t) + e (t-Δt)} L O ; Current operating capacity Kc; Gain (constant) Ti; Integral time Δt; calculated by sampling time, when the evaporation temperature Te of the refrigerant exceeds the target value Te O , the capacity step of the compressor (1) is increased, while conversely, when the evaporation temperature Te is less than the target value Te O , The capacity step of the compressor (1) is lowered.

しかる後、予め設定した容量マップに基いて上記目標容
量L1に対応した圧縮機(1)の運転容量を把握して、こ
の運転容量になるよう、圧縮機(1)の実際の運転容量
をインバータ(2a)及びアンロード機構(2b)で制御す
る。そして、サンプリング時間Δtの経過を待って以上
の動作を繰返して、冷媒循環系統(Z)における冷媒の
蒸発温度Teを目標値TeOに保持するよう圧縮機(1)を
容量制御するようにしている。
After that, the operating capacity of the compressor (1) corresponding to the target capacity L 1 is grasped based on a preset capacity map, and the actual operating capacity of the compressor (1) is adjusted so as to become this operating capacity. It is controlled by the inverter (2a) and the unload mechanism (2b). Then, after the elapse of the sampling time Δt, the above operation is repeated, and the capacity of the compressor (1) is controlled so that the evaporation temperature Te of the refrigerant in the refrigerant circulation system (Z) is maintained at the target value Te O. There is.

而して、上記室外制御装置(15)は、冷房過負荷時での
高圧の異常上昇を抑制ないし解消すべく、圧縮機(1)
の容量制御を下記の如く行うものである。
Thus, the outdoor control device (15) has a compressor (1) in order to suppress or eliminate an abnormal increase in high pressure during cooling overload.
The capacity control is performed as follows.

つまり、第3図に示す如く、圧縮機(1)の運転周波
数、つまり容量ステップFmaxが、Fmax=0,40,50,60,70H
zの5段階の下で、各容量ステップ毎に、高圧保護装置
の作動する直前の冷媒循環系統(Z)の冷媒の凝縮温度
Tcに対応する蒸発温度(以下、上限蒸発温度という)を
所定ディファレンシャルを有する値として、下記式 Tel=TeS-C1(FT−40) −C2(Tair−TO) Te2=TeL-C1(Fmax−40) −C2−(Tair−TO) に基いて算出して設定する。
That is, as shown in FIG. 3, the operating frequency of the compressor (1), that is, the capacity step Fmax is Fmax = 0,40,50,60,70H.
Condensation temperature of the refrigerant in the refrigerant circulation system (Z) immediately before the operation of the high pressure protection device at each capacity step under the 5 stages of z
Evaporation temperature corresponding to Tc (hereinafter, referred to as the upper limit evaporation temperature) as the value of a predetermined differential, the following formula Tel = Te S -C 1 (F T -40) -C 2 (Tair-T O) Te2 = Te L -C 1 (Fmax−40) −C 2 − (Tair−T O ) Calculate and set.

ここに、Te1は上限蒸発温度のディファレンシャル上限
値、Te2は上限蒸発温度のディファレンシャル下限値、F
Tは圧縮機(1)の運転周波数、Tairは外気温度、TeS
圧縮機(1)の運転周波数が基準周波数(40Hz)の状況
の下での上限蒸発温度、TeLは上記上限蒸発温度TeSに対
して所定偏差を有する上限蒸発温度(TeS>TeL)、Fmax
は規制される圧縮機(1)の上限周波数、TOは基準温
度、C1は運転周波数に対する比例定数、C2は外気温度に
対する比例定数である。
Here, Te1 is the upper limit of the differential of the upper limit evaporation temperature, Te2 is the lower limit of the differential of the upper limit evaporation temperature, F2
T is the operating frequency of the compressor (1), Tair is the outside air temperature, Te S is the upper limit evaporation temperature when the operating frequency of the compressor (1) is the reference frequency (40 Hz), and Te L is the above upper limit evaporation temperature. the upper limit evaporation temperature with a predetermined deviation with respect to Te S (Te S> Te L ), Fmax
Is the upper limit frequency of the regulated compressor (1), T O is the reference temperature, C 1 is a proportional constant with respect to the operating frequency, and C 2 is a proportional constant with respect to the outside air temperature.

尚、以上の如く、外気温度Tairで上限蒸発温度Te1,Te2
を補正設定するのは、圧縮機(1)の容量が一定なら
ば、第6図に示す如く、冷媒の凝縮温度Tcがほぼ外気温
度Tairと比例関係にある点を考慮して、この外気温度Ta
irで補正して、第9図に示す上限蒸発温度Te1の一定線
の傾きを等高圧線の傾きにほぼ一致させるためである。
As described above, the upper limit evaporation temperatures Te1 and Te2 at the outside air temperature Tair
The correction value is set so that if the capacity of the compressor (1) is constant, the condensation temperature Tc of the refrigerant is almost proportional to the outside air temperature Tair, as shown in FIG. Ta
This is because the slope of the constant line of the upper limit evaporation temperature Te1 shown in FIG.

而して、第3図に示す如く、サーモがON作動すると、Fm
ax=0の停止状態から図中のFmax=40Hzに相当する容
量にし、その後は、その時の運転周波数(容量ステッ
プ)の上限に応じた上限蒸発温度のディファレンシャル
下限値Te2に対して、蒸発温度Teが、Te<Te2の関係にあ
るときには、順次図中〜に移行して、運転周波数
(容量ステップ)の上限を1ステップ上げて、遂には最
高ステップ(Fmax=70Hz)にする。一方、上記各容量ス
テップ〜で、蒸発温度Teが上限蒸発温度のディファ
レンシャル上限値Te1に対し、Te>Te1の関係にあるとき
には、高圧の異常上昇時で高圧保護装置が作動すること
のある状況と判断して、図中の容量ステップ(Fmax=
40Hz)に戻り、ここからTe<Te2の関係を満足する容量
ステップに移行する。
Then, as shown in FIG. 3, when the thermostat is turned on, Fm
The capacity corresponding to Fmax = 40Hz in the figure is set from the stopped state of ax = 0, and thereafter the evaporation temperature Te is changed with respect to the differential lower limit value Te2 of the upper limit evaporation temperature according to the upper limit of the operating frequency (capacity step) at that time. However, if Te <Te2, the process sequentially shifts to in the figure to increase the upper limit of the operating frequency (capacity step) by one step, and finally reach the maximum step (Fmax = 70 Hz). On the other hand, in each of the above capacity steps, when the evaporating temperature Te has a relation of Te> Te1 with respect to the differential upper limit value Te1 of the upper limit evaporating temperature, there is a situation in which the high pressure protection device may be activated when the high pressure abnormally rises. Judgment, capacity step (Fmax =
40Hz) and move from here to the capacity step that satisfies the relationship of Te <Te2.

また、上記各容量ステップ〜にて、サーモがOFF作
動したときには、Fmax=0の停止状態に移行する。
Also, in each of the above capacity steps, when the thermostat is turned off, the state shifts to the stopped state of Fmax = 0.

よって、以上の構成により、上限蒸発温度Te1,Te2(高
圧保護装置の作動する直前の冷媒の凝縮温度に対応する
冷媒の蒸発温度)を、高圧保護に対する上限蒸発温度と
して、上記式に基いて、圧縮機(1)の各容量ステップ
〜毎に設定するようにした上限蒸発温度設定手段
(51)を構成している。また、第3図の状態遷移図によ
り、上記蒸発温度検出手段(50)の出力を受け、冷媒の
蒸発温度Teがその時の容量ステップに対応する上限蒸発
温度設定手段(51)の上限蒸発温度(上限蒸発温度のデ
ィファレンシャル上限値Te1)を越えるとき、圧縮機
(1)の容量ステップを最低段の容量ステップに戻し
た後、蒸発温度TeがTe<Te2の関係を満足する容量ステ
ップ〜にまで強制的に下げるよう、インバータ(2
a)を制御するようにした容量低減手段(52)を構成し
ている。
Therefore, with the above configuration, the upper limit evaporation temperature Te1, Te2 (refrigerant evaporation temperature corresponding to the condensation temperature of the refrigerant immediately before the high pressure protection device is activated) as the upper limit evaporation temperature for high pressure protection, based on the above formula, The upper limit evaporation temperature setting means (51) is configured so as to be set for each capacity step of the compressor (1). Further, according to the state transition diagram of FIG. 3, the upper limit evaporation temperature (51) of the upper limit evaporation temperature setting means (51), which receives the output of the above evaporation temperature detection means (50) and the evaporation temperature Te of the refrigerant corresponds to the capacity step at that time ( When the differential upper limit value Te1) of the upper limit evaporation temperature is exceeded, after returning the capacity step of the compressor (1) to the lowest capacity step, the evaporation temperature Te is forced to the capacity step ~ which satisfies the relation of Te <Te2. Inverter (2
A capacity reducing means (52) for controlling a) is constructed.

したがって、上記実施例においては、基本的に圧縮機
(1)の容量がインバータ(2a)で増減調整されて、冷
媒の蒸発温度Teが目標値TeOに保持されるように制御さ
れ、この蒸発温度Teが目標値TeOを越えるときには、圧
縮機(1)の容量はより高いステップに移行して、蒸発
温度Teを低下させ、目標値TeOに収束させようとする。
Therefore, in the above embodiment, basically, the capacity of the compressor (1) is adjusted to be increased or decreased by the inverter (2a), and the evaporation temperature Te of the refrigerant is controlled to be maintained at the target value Te O. When the temperature Te exceeds the target value Te O , the capacity of the compressor (1) shifts to a higher step to reduce the evaporation temperature Te and try to converge to the target value Te O.

その場合、特に、室内ユニット(B)〜(F)の多くが
運転して冷房過負荷状態となる場合には、冷媒循環系統
(Z)の高圧が異常上昇して、高圧保護装置の作動を招
く状況となるが、その作動前において、冷媒の蒸発温度
Teが上限蒸発温度設定手段(51)で設定された上限蒸発
温度のディファレンシャル上限値Te1を越えた段階で、
圧縮機(1)の容量ステップが容量低減手段(52)で強
制的に低減されるので、高圧保護装置の作動を招くこと
なく、装置の運転が良好に続行されることになる。
In that case, in particular, when many of the indoor units (B) to (F) are operated to enter the cooling overload state, the high pressure of the refrigerant circulation system (Z) abnormally rises, and the operation of the high pressure protection device is stopped. However, the evaporation temperature of the refrigerant before the operation
When Te exceeds the differential upper limit Te1 of the upper limit evaporation temperature set by the upper limit evaporation temperature setting means (51),
Since the capacity step of the compressor (1) is forcibly reduced by the capacity reducing means (52), the operation of the device can be favorably continued without causing the operation of the high pressure protection device.

その際、上限蒸発温度設定手段(51)における上限蒸発
温度のディファレンシャル上限値Te1は、圧縮機(1)
の容量ステップ毎に設定されて、例えば第7図に示す如
く、圧縮機(1)の100%容量時には低くてTe1(100)
となり、圧縮機(1)の容量が漸次90%、80%…と低下
するのに応じて順次大きくなる(Te1(90)<Te1(80)
…)ので、例えば100%容量時に蒸発温度Teがこの100%
容量に対応する上限蒸発温度のディファレンシャル上限
値Te1(100)を越えた時点で、圧縮機(1)の容量ステ
ップが容量低減手段(52)で低減されて、上限蒸発温度
のディファレンシャル下限値Te2に対してTe<Te2の関係
を満足する容量ステップ(例えばFmax=60Hz(90%容量
時))になるので、従来の如くアンロード機構(2b)の
作動により容量を一律に半減するものに比べて、圧縮機
(1)の運転容量を可及的に高く確保しながら装置の連
続運転を行うことができる。
At that time, the differential upper limit value Te1 of the upper limit evaporation temperature in the upper limit evaporation temperature setting means (51) is determined by the compressor (1).
The capacity is set for each capacity step, and as shown in FIG. 7, for example, when the compressor (1) is at 100% capacity, it is low at Te1 (100).
Then, as the capacity of the compressor (1) gradually decreases to 90%, 80%, etc., it gradually increases (Te1 (90) <Te1 (80)
…) So, for example, the evaporation temperature Te is 100% at 100% capacity
When the differential upper limit value Te1 (100) of the upper limit evaporation temperature corresponding to the capacity is exceeded, the capacity step of the compressor (1) is reduced by the capacity reducing means (52) to the differential lower limit value Te2 of the upper limit evaporation temperature. On the other hand, since the capacity step (for example, Fmax = 60Hz (at 90% capacity)) satisfies the relationship of Te <Te2, the capacity is uniformly halved by the operation of the unload mechanism (2b) as in the past. The continuous operation of the device can be performed while ensuring the operating capacity of the compressor (1) as high as possible.

また、上限蒸発温度のディファレンシャル上限値Te1の
一定線は、第9図に示すように、高圧保護装置の作動す
る等高圧線の傾きに近づくので、従来の第10図に示すも
のに比べて、圧縮機(1)の容量ステップを不必要に低
下制御する領域を狭くでき、その分、負荷に応じた圧縮
機(1)の容量制御を行う領域を拡大することができ
る。しかも、本実施例では、上限蒸発温度Te1,Te2を外
気温度Tairに応じて補正して、その一定線の傾きを等高
圧線の傾きにほぼ一致させることができるので、負荷に
応じた圧縮機(1)の容量制御の領域を最大限に拡大す
ることができる。
Further, since the constant line of the differential upper limit value Te1 of the upper limit evaporation temperature approaches the slope of the iso-high pressure line at which the high pressure protection device operates, as shown in FIG. 9, compared with the conventional one shown in FIG. The region in which the capacity step of the compressor (1) is unnecessarily reduced and controlled can be narrowed, and the region in which the capacity control of the compressor (1) is controlled according to the load can be expanded accordingly. Moreover, in the present embodiment, the upper limit evaporation temperatures Te1 and Te2 can be corrected according to the outside air temperature Tair, and the slope of the constant line can be made substantially equal to the slope of the iso-high pressure line. The capacity control area of (1) can be maximized.

また、上限蒸発温度にディファレンシャルを設けている
ので、第8図に示す如く、100%容量時に蒸発温度Teが
ディファレンシャル上限値Te1(100)を越えて圧縮機
(1)の容量が90%容量に低下したときにも、ディファ
レンシャル下限値Te2(90)未満になった時点で、初め
て容量の増大制御が行われることになり、ハンチングを
生じることはない。
Further, since the upper limit evaporation temperature is provided with a differential, the evaporation temperature Te exceeds the differential upper limit value Te1 (100) at 100% capacity and the capacity of the compressor (1) becomes 90% capacity as shown in FIG. Even when it decreases, the capacity increase control is performed for the first time when it becomes less than the lower limit differential value Te2 (90), and hunting does not occur.

さらに、装置の始動時には、均圧している場合には冷媒
の蒸発温度Teは極端に高く、第3図の各容量ステップ
〜でのTe<Te2の関係を満足せず、圧縮機(1)は当
初は最低ステップのFmax=40Hzで運転するが、この運
転により蒸発温度Teが低下すると、Te<Te2(40)の関
係を満足した時点でFmax=50Hz運転となり、以後、同様
にして順次60Hz運転、70Hz運転に移行するので、運転の
立上がりは比較的速く行われることになる。しかも、蒸
発温度を下げるべく始動時に圧縮機(1)が最大容量で
回転し始めるので、オーバシュートに起因する高圧カッ
トの危険性も回避できる。
Further, at the time of starting the apparatus, the evaporation temperature Te of the refrigerant is extremely high when the pressure is equalized, and the relationship of Te <Te2 in each capacity step ~ in Fig. 3 is not satisfied, and the compressor (1) is Initially, it operates at the lowest step Fmax = 40Hz, but if the evaporation temperature Te decreases due to this operation, it will become Fmax = 50Hz operation when the relationship of Te <Te2 (40) is satisfied, and then 60Hz operation in the same manner. , 70Hz operation, so the start-up of operation will be performed relatively quickly. Moreover, since the compressor (1) starts to rotate at the maximum capacity at the time of starting in order to lower the evaporation temperature, the risk of high pressure cut due to overshoot can be avoided.

尚、上記実施例では、圧縮機(1)の運転周波数をイン
バータ(2a)で停止時を含んで5段階に制御したが、容
量の制御段数は、これに限らず、多段階に制御してもよ
い。また、圧縮機は往復式、回転式、遠心式等の何れで
もよく、またアンロード機構としては吸込み式、開放
式、ホットガスバイパス式など何れを採用してもよいも
のである。
In the above embodiment, the operating frequency of the compressor (1) is controlled by the inverter (2a) in five stages including the stop time. However, the number of capacity control stages is not limited to this, but may be controlled in multiple stages. Good. The compressor may be of a reciprocating type, a rotating type, a centrifugal type, or the like, and the unloading mechanism may be a suction type, an open type, a hot gas bypass type, or the like.

(発明の効果) 以上説明したように、本発明によれば、マルチ形式の冷
凍装置において、インバータにより容量が複数ステップ
に調整される圧縮機の各容量ステップ毎に上限蒸発温度
(高圧保護装置の作動する直前の冷媒の凝縮温度に相当
する冷媒の蒸発温度)を設定して、この上限蒸発温度を
越えた時点で圧縮機の容量を強制的に低減制御したの
で、特に多くの室内ユニットが運転する過負荷時での高
圧の上昇を、圧縮機の高い容量ステップを確保した状態
で、高圧保護装置作動する前の段階で抑制ないし解消し
たので、冷凍能力を高く維持しながら装置の連続運転を
可能にできると共に、負荷に対応した圧縮機の容量制御
を行う領域を拡大できて、冷凍性の向上を図ることがで
きるものである。
(Effects of the Invention) As described above, according to the present invention, in the multi-type refrigeration system, the upper limit evaporation temperature (of the high pressure protection device) is increased for each capacity step of the compressor whose capacity is adjusted to a plurality of steps by the inverter. The evaporation temperature of the refrigerant, which corresponds to the condensation temperature of the refrigerant just before the operation, was set, and when the upper limit evaporation temperature was exceeded, the capacity of the compressor was forcibly reduced and controlled. The increase in high pressure at the time of overload is suppressed or eliminated in the stage before the high pressure protection device is activated while the high capacity step of the compressor is secured, so that the continuous operation of the device can be performed while maintaining high refrigeration capacity. In addition to being possible, it is possible to expand the region for controlling the capacity of the compressor corresponding to the load and improve the refrigerating property.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成を示すブロック図である。第2図
ないし第9図は本発明の実施例を示し、第2図は空気調
和機に適用した冷媒配管系統図、第3図は状態遷移図、
第4図は圧縮機の容量変化に対する上限蒸発温度の変化
特性を示す図、第5図は上限蒸発温度と圧縮機の容量と
の関係を示す図、第6図は外気温度の変化に対する冷媒
の凝縮温度の変化特性を示す図、第7図及び第8図は作
動説明図、第9図は不必要に圧縮機の容量の低減制御が
行われる領域が縮小されることを示す図である。第10図
は従来例を示す第9図相当図である。 (A)……室外ユニット、(B)〜(F)……室内ユニ
ット、(1)……圧縮機、(2a)……インバータ、(P
1)……圧力センサ、(12)……室内熱交換器、(Z)
……冷媒循環系統、(50)……蒸発温度検出手段、(5
1)……上限蒸発温度設定手段、(52)……容量低減手
段。
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 9 show an embodiment of the present invention, FIG. 2 is a refrigerant piping system diagram applied to an air conditioner, FIG. 3 is a state transition diagram,
FIG. 4 is a diagram showing the change characteristic of the upper limit evaporation temperature with respect to the change of the capacity of the compressor, FIG. 5 is a diagram showing the relationship between the upper limit evaporation temperature and the capacity of the compressor, and FIG. FIG. 7 is a diagram showing a change characteristic of the condensing temperature, FIGS. 7 and 8 are operation explanatory diagrams, and FIG. 9 is a diagram showing that an area where the capacity reduction control of the compressor is unnecessarily reduced. FIG. 10 is a view corresponding to FIG. 9 showing a conventional example. (A) …… Outdoor unit, (B) to (F) …… Indoor unit, (1) …… Compressor, (2a) …… Inverter, (P
1) …… Pressure sensor, (12) …… Indoor heat exchanger, (Z)
…… Refrigerant circulation system, (50) …… Evaporation temperature detection means, (5
1) …… Upper limit evaporation temperature setting means, (52) …… Volume reduction means.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】インバータ(2a)により複数段の容量ステ
ップに調整される圧縮機(1)を内蔵する室外ユニット
(A)に対して、室内熱交換器(12)を内蔵する複数台
の室内ユニット(B)〜(F)を並列に接続してなる冷
媒循環系統(Z)を備え、上記冷媒循環系統(Z)にお
ける冷媒の蒸発温度を目標値に保持するよう圧縮機
(1)を容量制御するようにしたマルチ形式の冷凍装置
であって、上記冷媒循環系統(Z)における冷媒の蒸発
温度を検出する蒸発温度検出手段(50)と、高圧保護装
置の作動する直前の冷媒の凝縮温度に相当する冷媒の蒸
発温度を、高圧保護に対する上限蒸発温度として、上記
圧縮機(1)の各容量ステップ毎に設定する上限蒸発温
度設定手段(51)と、上記蒸発温度検出手段(50)の出
力を受け、冷媒の蒸発温度がその時の圧縮機(1)の容
量ステップに対応する上記上限蒸発温度設定手段(51)
の上限蒸発温度を越えるとき、上記圧縮機(1)の容量
ステップを強制的に下げるようインバータ(2a)を制御
する容量低減手段(52)とを備えたことを特徴とする冷
凍装置の運転制御装置。
1. A plurality of indoor units having an indoor heat exchanger (12) for an outdoor unit (A) having a compressor (1) having a plurality of capacity steps adjusted by an inverter (2a). A refrigerant circulation system (Z) in which units (B) to (F) are connected in parallel is provided, and the compressor (1) has a capacity so that the evaporation temperature of the refrigerant in the refrigerant circulation system (Z) is maintained at a target value. A multi-type refrigeration system controlled, wherein an evaporation temperature detecting means (50) for detecting an evaporation temperature of the refrigerant in the refrigerant circulation system (Z) and a condensation temperature of the refrigerant immediately before the high pressure protection device operates. The evaporation temperature of the refrigerant corresponding to the above is set as the upper limit evaporation temperature for high pressure protection by the upper limit evaporation temperature setting means (51) and the evaporation temperature detecting means (50) which are set for each capacity step of the compressor (1). Received output, evaporation temperature of refrigerant Is the upper limit evaporation temperature setting means (51) corresponding to the capacity step of the compressor (1) at that time.
Control means for controlling the inverter (2a) so as to forcibly reduce the capacity step of the compressor (1) when the upper limit evaporation temperature is exceeded. apparatus.
JP29819787A 1987-11-26 1987-11-26 Refrigeration system operation controller Expired - Lifetime JPH06100395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29819787A JPH06100395B2 (en) 1987-11-26 1987-11-26 Refrigeration system operation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29819787A JPH06100395B2 (en) 1987-11-26 1987-11-26 Refrigeration system operation controller

Publications (2)

Publication Number Publication Date
JPH01139965A JPH01139965A (en) 1989-06-01
JPH06100395B2 true JPH06100395B2 (en) 1994-12-12

Family

ID=17856471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29819787A Expired - Lifetime JPH06100395B2 (en) 1987-11-26 1987-11-26 Refrigeration system operation controller

Country Status (1)

Country Link
JP (1) JPH06100395B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174750A1 (en) * 2015-04-28 2016-11-03 三菱電機株式会社 Air-conditioning device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720641B2 (en) * 2006-06-20 2011-07-13 ダイキン工業株式会社 Refrigeration equipment
JP5735441B2 (en) * 2012-02-22 2015-06-17 日立アプライアンス株式会社 Refrigeration equipment
JP6277005B2 (en) * 2014-01-31 2018-02-07 ダイキン工業株式会社 Refrigeration equipment
WO2019058542A1 (en) * 2017-09-25 2019-03-28 三菱電機株式会社 Refrigeration device
CN113028674B (en) * 2021-03-31 2022-06-21 四川长虹空调有限公司 Control protection method of refrigeration system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174750A1 (en) * 2015-04-28 2016-11-03 三菱電機株式会社 Air-conditioning device
JPWO2016174750A1 (en) * 2015-04-28 2017-11-24 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH01139965A (en) 1989-06-01

Similar Documents

Publication Publication Date Title
JP3290306B2 (en) Air conditioner
JPH0868576A (en) Refrigerator
JP2508860B2 (en) Operation control device for air conditioner
JPH06100395B2 (en) Refrigeration system operation controller
JP3458293B2 (en) Operation control device for multi-room air conditioner
JP3170532B2 (en) Air conditioner
JPH0814435B2 (en) Refrigerator protection device
JPH0239179Y2 (en)
JPH04222341A (en) Operation controller for air conditioner
JP3481274B2 (en) Separate type air conditioner
JPH0217358A (en) Degree of overheat control device for freezing device
JPH0395343A (en) Operating controller for air conditioner
JPH0814698A (en) Operation control device for air-conditioner
JP2508043B2 (en) Compressor capacity control device for refrigeration equipment
JP2536337B2 (en) Operation control device for air conditioner
JP2592141B2 (en) Heat pump type air conditioner
JPH02208436A (en) Defrosting operation control device for air conditioner
JPH08100944A (en) Operation controller for air conditioner
JPH06272971A (en) Air conditioner
JPH06100396B2 (en) Refrigerator protection device
JPH03217767A (en) Air conditioner
JPH0814434B2 (en) Compressor capacity control device for refrigeration equipment
KR20050011530A (en) a heat pump system and an operating control method for the same
JPH02263049A (en) Refrigerating plant
JPH0830616B2 (en) Refrigeration system operation controller