JPH0814698A - Operation control device for air-conditioner - Google Patents

Operation control device for air-conditioner

Info

Publication number
JPH0814698A
JPH0814698A JP6173729A JP17372994A JPH0814698A JP H0814698 A JPH0814698 A JP H0814698A JP 6173729 A JP6173729 A JP 6173729A JP 17372994 A JP17372994 A JP 17372994A JP H0814698 A JPH0814698 A JP H0814698A
Authority
JP
Japan
Prior art keywords
control device
expansion valve
degree
temperature
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6173729A
Other languages
Japanese (ja)
Inventor
Seiichi Miyagawa
誠一 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP6173729A priority Critical patent/JPH0814698A/en
Publication of JPH0814698A publication Critical patent/JPH0814698A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To improve reliability and to reduce a cost by a method wherein the opening of an expansion valve is controlled based on a temperature difference between temperature on the outlet side of at least one of a condenser and a vaporizer and a saturation temperature corresponding to a pressure on the outlet side, and constitution of the system is simplified. CONSTITUTION:The degree of superheating is computed by a degree of superheat computing means 31 based on a saturation temperature corresponding to the pressure of a refrigerant in a suction pipe detected by an inlet pressure sensor 26 and the temperature of a refrigerant fed to the suction pipe of a compressor 11 from a vaporizer 13 and detected by a suction temperature sensor 21. A number of pulses change amount of an expansion valve 14 is computed by an expansion valve opening computing means 32 based on the computed degree of superheating, the target degree of superheating, and a number of revolutions of an engine. The expansion valve 14 is driven by a stepping motor of which a driven device consists based on a computing result to control a valve opening during ordinary operation. Since there is no need to control an air quantity of an outdoor fan as in a conventional device, constitution of a system is simplified and a cost is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、外気を取り込んで空調
を行う空気調和装置において、凝縮器および蒸発器の少
なくとも何れか一方の出口側の温度と出口側の冷媒の圧
力に対応する飽和温度との温度差である過熱度または過
冷却度に基づき前記膨張弁の開度を制御する空気調和装
置の運転制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner for taking in outside air to perform air conditioning, and a saturation temperature corresponding to the temperature of the outlet side of at least one of the condenser and the evaporator and the pressure of the refrigerant on the outlet side. The present invention relates to an operation control device for an air conditioner that controls the opening degree of the expansion valve based on the degree of superheat or the degree of subcooling, which is the temperature difference between

【0002】[0002]

【従来の技術】従来の空気調和装置の運転制御装置(特
開平4−222341)は、図5に示すように部屋H毎
に室内機Iを配設して個別に空調する個別空調方式にお
いて、外気温度検出手段Sにより外気温度を検出して外
気温度に基づき室外機Oの可変風量型の室外ファンFの
風量および電動膨張弁Vの開度を制御するもので有っ
た。
2. Description of the Related Art A conventional air conditioner operation control device (Japanese Patent Laid-Open No. 4-222341) uses an individual air conditioning system in which an indoor unit I is provided for each room H as shown in FIG. The outside air temperature detecting means S detects the outside air temperature and controls the air volume of the variable air volume type outdoor fan F of the outdoor unit O and the opening degree of the electric expansion valve V based on the outside air temperature.

【0003】[0003]

【発明が解決しようとする課題】上記従来の空気調和装
置の運転制御装置は、外気温度に基づき前記室外ファン
Fの風量および前記電動膨張弁Vの開度を制御するの
で、制御ロジック、コントローラ、アクチュエータおよ
びシステム全体が複雑になるという問題が有った。
Since the above-mentioned operation control device for the air conditioner controls the air volume of the outdoor fan F and the opening degree of the electric expansion valve V based on the outside air temperature, the control logic, the controller, There was a problem that the actuator and the entire system became complicated.

【0004】また上記従来の空気調和装置の運転制御装
置は、上述のようにシステム全体が複雑になるので、そ
れに伴いトラブルが増加するとともに、しかも高価な風
量可変型ファンを用いる必要があるため一層コストが増
加するという問題が有った。
Further, the above-mentioned conventional operation control device for the air conditioner has a complicated system as described above, which causes more troubles and requires the use of an expensive variable air volume type fan. There was a problem that the cost increased.

【0005】そこで本発明者は、外気を取り込んで空調
を行う空気調和装置において、凝縮器および蒸発器の少
なくとも何れか一方の出口側の温度と出口側の冷媒の圧
力に対応する飽和温度との温度差である過熱度またはお
よび過冷却度に基づき前記膨張弁の開度を制御するとい
う本発明の技術的思想に着眼し、さらに研究開発を重ね
た結果、システムの構成をシンプルにして、それに伴い
信頼性を高め、コストを下げるという目的を達成する本
発明に到達した。
Therefore, the inventor of the present invention, in an air conditioner that takes in outside air to perform air conditioning, sets the temperature at the outlet side of at least one of the condenser and the evaporator and the saturation temperature corresponding to the pressure of the refrigerant at the outlet side. Focusing on the technical idea of the present invention of controlling the opening degree of the expansion valve based on the degree of superheat or the degree of supercooling which is a temperature difference, as a result of further research and development, the system configuration is simplified, and As a result, the present invention has been achieved which achieves the object of improving reliability and reducing cost.

【0006】[0006]

【課題を解決するための手段】本発明(請求項1に記載
の第1発明)の空気調和装置の運転制御装置は、コンプ
レッサと凝縮器と蒸発器と膨張弁とから成り、外気を取
り込んで空調を行う空気調和装置において、前記凝縮器
および蒸発器の少なくとも何れか一方の出口側の温度と
出口側の冷媒の圧力に対応する飽和温度との温度差に基
づき、前記膨張弁の開度を制御する制御装置を備えたも
のである。
The operation control device of the air conditioner of the present invention (the first invention according to claim 1) comprises a compressor, a condenser, an evaporator and an expansion valve, and takes in outside air. In an air conditioner that performs air conditioning, based on the temperature difference between the temperature on the outlet side of at least one of the condenser and the evaporator and the saturation temperature corresponding to the pressure of the refrigerant on the outlet side, the opening of the expansion valve It is provided with a control device for controlling.

【0007】本発明(請求項2に記載の第2発明)の空
気調和装置の運転制御装置は、第1発明において、前記
制御装置が、前記蒸発器の出口側の温度と前記出口側の
圧力に対応する飽和温度との差で決定される過熱度に基
づき前記膨張弁の開度を制御するものである。
The operation control device for an air conditioner of the present invention (the second invention according to claim 2) is the air conditioner operation control device according to the first invention, wherein the control device is such that the temperature on the outlet side of the evaporator and the pressure on the outlet side are The degree of opening of the expansion valve is controlled based on the degree of superheat determined by the difference between the saturation temperature and the saturation temperature.

【0008】本発明(請求項3に記載の第3発明)の空
気調和装置の運転制御装置は、前記第1発明において、
前記制御装置が、前記凝縮器の出口側の温度と前記出口
側の圧力に対応する飽和温度との差で決定される過冷却
度に基づき前記膨張弁の開度を制御するものである。
An operation control device for an air conditioner of the present invention (the third invention according to claim 3) is the same as the first invention.
The control device controls the opening degree of the expansion valve based on the degree of supercooling determined by the difference between the temperature on the outlet side of the condenser and the saturation temperature corresponding to the pressure on the outlet side.

【0009】本発明(請求項4に記載の第4発明)の空
気調和装置の運転制御装置は、前記第2発明において、
前記制御装置が、前記蒸発器の出口側の温度と前記出口
側の圧力に基づき過熱度を演算する過熱度演算手段と、
前記過熱度演算手段が演算した前記過熱度と目標過熱度
とエンジン回転数とに基づき前記膨張弁の開度を演算す
る膨張弁開度演算手段とから成るものである。
The operation control device for an air conditioner of the present invention (the fourth invention according to claim 4) is the same as the second invention,
A superheat degree calculating means for calculating a superheat degree based on a temperature on the outlet side of the evaporator and a pressure on the outlet side,
It comprises expansion valve opening degree calculation means for calculating the opening degree of the expansion valve based on the degree of superheat calculated by the degree of superheat calculation means, the target degree of superheat, and the engine speed.

【0010】本発明(請求項5に記載の第5発明)の空
気調和装置の運転制御装置は、前記第4発明において、
前記制御装置が、前記コンプレッサの起動後一定時間は
制御定数を大きく設定し、前記一定時間経過後は制御定
数が小さく設定するものである。
The operation control device for an air conditioner of the present invention (the fifth invention according to claim 5) is the same as the fourth invention,
The control device sets a large control constant for a certain period of time after starting the compressor, and sets a small control constant after the certain period of time has elapsed.

【0011】本発明(請求項6に記載の第6発明)の空
気調和装置の運転制御装置は、前記第5発明において、
前記制御装置が、前記過熱度と目標過熱度との差および
過熱度の時間的変化に基づき前記膨張弁の開度を演算す
るものである。
An operation control device for an air conditioner of the present invention (sixth invention according to claim 6) is the same as the fifth invention.
The control device calculates the opening degree of the expansion valve based on the difference between the superheat degree and the target superheat degree and the temporal change of the superheat degree.

【0012】本発明(請求項7に記載の第7発明)の空
気調和装置の運転制御装置は、前記第6発明において、
前記制御装置が、前記エンジン回転数の時間的変化に基
づき前記膨張弁の開度を演算するものである。
The operation control apparatus for an air conditioner of the present invention (the seventh invention according to claim 7) is the same as the sixth invention,
The control device calculates the opening degree of the expansion valve based on a temporal change in the engine speed.

【0013】[0013]

【作用】上記構成より成る第1発明の空気調和装置の運
転制御装置は、前記制御装置が、前記凝縮器および蒸発
器の少なくとも何れか一方の出口側の温度と出口側の冷
媒の圧力に対応する飽和温度との温度差に基づき前記膨
張弁の開度を制御して、必要に応じて外気を取り込んで
空調を行うものである。
In the operation controller for the air conditioner according to the first aspect of the present invention, the controller responds to the temperature on the outlet side of at least one of the condenser and the evaporator and the pressure of the refrigerant on the outlet side. The opening degree of the expansion valve is controlled on the basis of the temperature difference from the saturation temperature, and outside air is taken in as necessary to perform air conditioning.

【0014】上記構成より成る第2発明の空気調和装置
の運転制御装置は、前記制御装置が、前記蒸発器の出口
側の温度と前記出口側の冷媒の圧力に対応する飽和温度
との温度差で決定される過熱度に基づき前記膨張弁の開
度を制御して、必要に応じて外気を取り込んで空調を行
うものである。
In the operation controller for the air conditioner of the second aspect of the present invention having the above-mentioned structure, the controller may control the temperature difference between the temperature on the outlet side of the evaporator and the saturation temperature corresponding to the pressure of the refrigerant on the outlet side. The opening degree of the expansion valve is controlled on the basis of the degree of superheat determined in (3), and outside air is taken in as necessary to perform air conditioning.

【0015】上記構成より成る第5発明の空気調和装置
の運転制御装置は、前記制御装置が、前記コンプレッサ
の起動後一定時間は制御定数を大きく設定し、設定過熱
度に早く近づけ、前記一定時間経過後は制御定数を小さ
く設定し、前記設定過熱度に安定させるように制御す
る。
In the operation controller for the air conditioner of the fifth aspect of the present invention having the above structure, the controller sets the control constant to a large value for a certain time after the compressor is started, and quickly approaches the set superheat degree for the certain time. After the lapse of time, the control constant is set to a small value, and control is performed so as to stabilize the set superheat degree.

【0016】[0016]

【発明の効果】上記作用を奏する第1発明または第2発
明の空気調和装置の運転制御装置は、前記飽和温度との
温度差または前記過熱度に基づき前記膨張弁の開度を制
御するだけで、従来のように室外ファンの風量を制御し
ないので、システムの構成をシンプルにして、それに伴
い信頼性を高め、コストを下げるという効果を奏する。
The operation control device of the air conditioner according to the first or second aspect of the present invention, which has the above-described operation, only controls the opening of the expansion valve based on the temperature difference from the saturation temperature or the degree of superheat. Since the air volume of the outdoor fan is not controlled unlike the conventional case, the system configuration is simplified, and accordingly, the reliability is increased and the cost is reduced.

【0017】上記作用を奏する第5発明の空気調和装置
の運転制御装置は、前記制御装置が、前記コンプレッサ
の起動後一定時間は制御定数を大きく設定し、設定過熱
度に早く近づけるので、屋内温度を設定温度近くに早く
近づけることが出来るという効果を奏するとともに、前
記一定時間経過後は制御定数を小さく設定し、前記設定
過熱度に安定させるように制御するため、過熱度のハン
チングを抑制するという効果を奏する。
In the operation controller for the air conditioner according to the fifth aspect of the present invention, which has the above-described effect, the controller sets a large control constant for a certain period of time after the compressor is started, and quickly approaches the set superheat degree. It is possible to quickly bring the temperature close to the set temperature, and after the lapse of the fixed time, the control constant is set to a small value, and the control is performed so as to stabilize the set superheat, so that hunting of the superheat is suppressed. Produce an effect.

【0018】[0018]

【実施例】以下本発明の実施例につき、図面を用いて説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】(第1実施例)本第1実施例の空気調和装
置の運転制御装置は、図1ないし図4に示すように外気
を取り込んで空調を行うダクト方式の空気調和装置1に
おいて、コンプレッサ11と屋外熱交換機を構成する凝
縮器12と屋内熱交換機を構成する蒸発器13と膨張弁
14とが配設され閉回路を構成する冷媒回路5と、前記
蒸発器13の出口側の温度および前記出口側の圧力その
他を検出するセンサ2と、前記センサ2によって検出さ
れた前記蒸発器13の出口側の温度と前記出口側の圧力
に基づき過熱度を演算する過熱度演算手段31と、前記
過熱度演算手段31が演算した前記過熱度と目標過熱度
とエンジン回転数とに基づき前記膨張弁14の開度を演
算する膨張弁開度演算手段32とから成る制御装置3
と、前記制御装置3からの制御信号に基づき前記膨張弁
14の開度を駆動制御する駆動装置4とから成る。
(First Embodiment) As shown in FIGS. 1 to 4, the operation control device of the air conditioner of the first embodiment is a duct type air conditioner 1 for taking in outside air to perform air conditioning. 11, a condenser 12 that constitutes an outdoor heat exchanger, a refrigerant circuit 5 that constitutes a closed circuit in which an evaporator 13 that constitutes an indoor heat exchanger and an expansion valve 14 are disposed, and a temperature at the outlet side of the evaporator 13 A sensor 2 for detecting the pressure on the outlet side and the like; a superheat degree calculating means 31 for calculating a superheat degree based on the temperature on the outlet side of the evaporator 13 detected by the sensor 2 and the pressure on the outlet side; Control device 3 comprising expansion valve opening degree calculation means 32 for calculating the opening degree of the expansion valve 14 based on the degree of superheat calculated by the degree of superheat calculation means 31, the target degree of superheat, and the engine speed.
And a drive device 4 for driving and controlling the opening degree of the expansion valve 14 based on a control signal from the control device 3.

【0020】前記ダクト方式の空調装置1は、図2に示
すように建物の外壁に形成された外気導入口15より外
気を導入して屋外機16によって制御される屋内機17
によってダクト18を介して各部屋に温度調節された空
気を供給し得る構成より成るものである。
As shown in FIG. 2, the duct type air conditioner 1 has an indoor unit 17 controlled by an outdoor unit 16 by introducing outside air from an outside air inlet 15 formed on the outer wall of the building.
The temperature controllable air can be supplied to each room via the duct 18.

【0021】前記冷媒回路5は、図3に示すようにエン
ジン10によって回転駆動されるコンプレッサ11と、
前記コンプレッサ11の吐出側配管に配設され吐出冷媒
中の油を回収する油回収器51と、前記油回収器51に
連絡しており前記蒸発器13と凝縮器12とを連絡する
配管に配設された四路切換弁52と、前記四路切換弁5
2に連絡しており屋外に配設された前記凝縮器12と、
前記凝縮器12に連絡しており液冷媒を貯留するレシー
バ53と、前記レシーバ53の他端に連絡しており冷媒
の減圧機能と冷媒流量の調節機能とを有する前記膨張弁
14と、前記凝縮器12に連絡しており屋内に配設され
た前記蒸発器13と、前記コンプレッサ11の吸入管に
配設され吸入冷媒中の液冷媒を回収除去するアキューム
レータ54とが配設され、冷媒の循環により熱移動が生
ずるように構成されている。
As shown in FIG. 3, the refrigerant circuit 5 includes a compressor 11 which is rotationally driven by an engine 10,
An oil collector 51 disposed in the discharge side pipe of the compressor 11 for collecting oil in the discharge refrigerant, and a pipe connected to the oil collector 51 and connecting the evaporator 13 and the condenser 12 to each other. The four-way switching valve 52 provided and the four-way switching valve 5
2, the condenser 12 which is connected to the outdoor unit and is arranged outdoors;
A receiver 53 which communicates with the condenser 12 and stores a liquid refrigerant; an expansion valve 14 which communicates with the other end of the receiver 53 and has a refrigerant decompression function and a refrigerant flow rate adjusting function; The evaporator 13 connected to the container 12 and arranged indoors, and the accumulator 54 arranged in the suction pipe of the compressor 11 for recovering and removing the liquid refrigerant in the suction refrigerant are arranged to circulate the refrigerant. Is configured to cause heat transfer.

【0022】前記屋外熱交換機を構成する前記凝縮器1
2は、冷房運転時には凝縮器として機能するが、暖房運
転時には蒸発器として機能し、前記屋内熱交換機を構成
する前記蒸発器13は、冷房運転時には蒸発器として機
能するが、暖房運転時には凝縮器として機能し、それに
伴い前記四路切換弁52が、冷房運転時には図3中実線
で示す連絡関係になり、暖房運転運転時には図3中破線
で示す連絡関係になるように切り替わり得るように構成
されている。
The condenser 1 constituting the outdoor heat exchanger
2 functions as a condenser during cooling operation, but functions as an evaporator during heating operation, and the evaporator 13 constituting the indoor heat exchanger functions as an evaporator during cooling operation, but a condenser during heating operation. 3, and accordingly, the four-way switching valve 52 can be switched so as to have a communication relationship shown by a solid line in FIG. 3 during a cooling operation and a communication relationship shown by a broken line in FIG. 3 during a heating operation. ing.

【0023】前記油回収器51から前記コンプレッサ1
1の前記アキュームレータ54に連絡した吸入管に連絡
し、前記油回収器51の回収した油を前記コンプレッサ
11の吸入側に戻すための油戻し回路55が設けられて
いる。
From the oil recovery unit 51 to the compressor 1
An oil return circuit 55 is provided which connects to the suction pipe connected to the accumulator 54 and returns the oil collected by the oil recovery unit 51 to the suction side of the compressor 11.

【0024】前記膨張弁14は、電動膨張弁によって構
成され、前記レシーバ53の下部の液部に連絡する共通
路500の前記レシーバ53の上部側の一端Pと前記凝
縮器12との間の第1の流路501には、前記凝縮器1
2から前記レシーバ53への冷媒の流れのみを許容する
第1逆止弁56が配設されている。
The expansion valve 14 is constituted by an electric expansion valve, and is disposed between the condenser 12 and one end P of the common path 500, which is connected to the lower liquid portion of the receiver 53, on the upper side of the receiver 53. In the first channel 501, the condenser 1
A first check valve 56 is provided which allows only the flow of the refrigerant from 2 to the receiver 53.

【0025】また前記点Pと前記蒸発器13との間の第
2の流路502には、前記蒸発器13から前記レシーバ
53への冷媒の流れのみを許容する第2逆止弁57が配
設されている。
A second check valve 57, which allows only the flow of the refrigerant from the evaporator 13 to the receiver 53, is arranged in the second flow path 502 between the point P and the evaporator 13. It is set up.

【0026】さらに前記第1逆止弁56の一端Sと前記
膨張弁14の他端Qとの間の第3の流路503には前記
膨張弁14から前記凝縮器12への流れを許容する第3
逆止弁58が配設され、前記第2逆止弁57の一端Rと
前記膨張弁14の他端Qとの間の第4の流路504には
前記膨張弁14から前記蒸発器13への流れを許容する
第4逆止弁59が配設されている。
Further, the flow from the expansion valve 14 to the condenser 12 is allowed in the third flow path 503 between the one end S of the first check valve 56 and the other end Q of the expansion valve 14. Third
A check valve 58 is provided, and from the expansion valve 14 to the evaporator 13, a fourth flow path 504 between the one end R of the second check valve 57 and the other end Q of the expansion valve 14 is provided. A fourth check valve 59 that allows the flow of the above is provided.

【0027】前記センサ2は、図3に示すように前記コ
ンプレッサ11の吸入管に配設され前記蒸発器13から
吸入管に供給される冷媒の温度を検出する吸入温度セン
サ21と、前記コンプレッサ11の吐出管に配設され前
記吐出管に吐出される冷媒の温度を検出する吐出温度セ
ンサ22と、前記屋外熱交換器を構成する前記凝縮器1
2の液管に配置され冷房運転時には冷媒の凝縮温度、暖
房運転時には冷媒の蒸発温度を検出する室外熱交換器温
度センサ23と、前記屋外熱交換器を構成する前記凝縮
器12の空気吸込口に配置され外気温度を検出する外気
温度センサ24と、屋内のサーモスタット近辺に配置さ
れ室内空気温度を検出する室温センサ25と、前記コン
プレッサ11の吸入管内に配設され前記過熱度を演算す
るための吸入圧力を検出する吸入圧力センサ26と、前
記コンプレッサ11の吸入管内に配設され低圧側圧力が
下限に達すると作動して異常停止させる低圧作動スイッ
チ27と、前記コンプレッサ11の吐出管内に配設され
高圧側圧力が上限に達すると作動して異常停止させる高
圧作動スイッチ28と、前記コンプレッサ11を回転駆
動する前記エンジン10の回転数を検出するエンジン回
転数センサ29とから成る。
As shown in FIG. 3, the sensor 2 is provided in the suction pipe of the compressor 11, and a suction temperature sensor 21 for detecting the temperature of the refrigerant supplied from the evaporator 13 to the suction pipe, and the compressor 11 are provided. Discharge temperature sensor 22 for detecting the temperature of the refrigerant discharged to the discharge pipe, and the condenser 1 constituting the outdoor heat exchanger.
An outdoor heat exchanger temperature sensor 23, which is arranged in the second liquid pipe and detects the condensation temperature of the refrigerant during the cooling operation, and the evaporation temperature of the refrigerant during the heating operation, and the air suction port of the condenser 12 that constitutes the outdoor heat exchanger. An outdoor air temperature sensor 24 for detecting the outdoor air temperature, an indoor temperature sensor 25 disposed near the indoor thermostat for detecting the indoor air temperature, and an indoor air temperature sensor 25 disposed in the suction pipe of the compressor 11 for calculating the degree of superheat. A suction pressure sensor 26 for detecting a suction pressure, a low pressure operation switch 27 arranged in the suction pipe of the compressor 11 for activating and abnormally stopping when the low pressure side pressure reaches a lower limit, and arranged in the discharge pipe of the compressor 11. And a high-pressure operation switch 28 that operates and abnormally stops when the high-pressure side pressure reaches the upper limit, and the engine that rotationally drives the compressor 11. Made from the engine speed sensor 29 for detecting the rotational speed of 10.

【0028】前記センサ2を構成する各センサ21ない
し29は、前記制御装置3に接続され検出した信号を出
力して、前記制御装置3によって入力された信号に応じ
て各機器の運転が制御されるように構成されている。
Each of the sensors 21 to 29 constituting the sensor 2 is connected to the control device 3 and outputs a detected signal, and the operation of each device is controlled according to the signal input by the control device 3. Is configured to.

【0029】前記制御装置3は、コンピュータによって
構成され、前記コンプレッサの起動後一定時間は制御定
数が大きく設定され、前記一定時間経過後は制御定数が
小さく設定されるもので、前記過熱度と目標過熱度との
差、過熱度の時間的変化および前記エンジン回転数の時
間的変化に基づき前記膨張弁の開度(パルス数)を演算
するものである。
The control device 3 is composed of a computer, and a large control constant is set for a certain time after the compressor is started, and a small control constant is set after the certain time elapses. The opening degree (pulse number) of the expansion valve is calculated based on the difference from the superheat degree, the temporal change in the superheat degree, and the temporal change in the engine speed.

【0030】すなわち、過熱度と目標過熱度との差に表
1に示される比例定数を乗じたものと、今回の過熱度と
前回の過熱度との差に表1に示される微分定数を乗じた
ものと、今回のエンジン回転数と前回のエンジン回転数
との差に表1に示されるエンジン係数を乗じたものとの
総和によって前記膨張弁14のパルス数変化量が決定さ
れる。
That is, the difference between the superheat degree and the target superheat degree is multiplied by the proportional constant shown in Table 1, and the difference between the present superheat degree and the previous superheat degree is multiplied by the differential constant shown in Table 1. And the difference between the current engine speed and the previous engine speed multiplied by the engine coefficient shown in Table 1, the pulse number change amount of the expansion valve 14 is determined.

【表1】 [Table 1]

【0031】なお、前記目標過熱度は、本第1実施例に
おいては、冷房運転時は10℃、暖房運転時は8℃に夫
々設定され、前記比例定数、微分定数およびエンジン係
数等の制御定数は表1に示すように通常運転時のそれに
比べて大きな値にすることにより、目標過熱度に出来る
だけ早く近づけ、空気調和装置の立ち上がり時間を短縮
するように構成してある。
In the first embodiment, the target superheat degree is set to 10 ° C. during the cooling operation and 8 ° C. during the heating operation, respectively, and the control constants such as the proportional constant, the differential constant and the engine coefficient are set. As shown in Table 1, by making the value larger than that during normal operation, the target superheat is brought closer to the target as soon as possible, and the rising time of the air conditioner is shortened.

【0032】前記制御装置3を構成するコンピュータの
ROMには、上記演算を実現するために図4のフローチ
ャートで示される制御プログラムが予め格納されてい
る。
The control program shown in the flow chart of FIG. 4 is previously stored in the ROM of the computer constituting the control device 3 in order to realize the above-mentioned calculation.

【0033】前記駆動装置4は、ステッピングモータに
よって構成され、前記制御装置3によって出力されたパ
ルス数に応じて前記膨張弁14の可動弁部材を制御し
て、弁開度を制御し得る構成より成る。
The drive unit 4 is composed of a stepping motor, and is configured to control the movable valve member of the expansion valve 14 according to the number of pulses output by the control unit 3 to control the valve opening degree. Become.

【0034】上記構成より成る第1実施例の空気調和装
置は、冷房運転時においては、屋外の凝縮器12で凝縮
液化された液冷媒が、前記第1の流路501から共通路
500に流れて前記レシーバ53に貯留される。
In the air conditioner of the first embodiment having the above structure, during the cooling operation, the liquid refrigerant condensed and liquefied in the outdoor condenser 12 flows from the first flow path 501 to the common path 500. And stored in the receiver 53.

【0035】前記レシーバ53に貯留された前記冷媒
を、前記膨張弁14によって減圧された後、第2の流路
502を介して屋内の前記蒸発器13に供給して蒸発さ
せ、前記コンプレッサ11に戻る循環となる。
The refrigerant stored in the receiver 53 is decompressed by the expansion valve 14 and then supplied to the indoor evaporator 13 through the second flow path 502 to be evaporated and then to the compressor 11. It will be a return cycle.

【0036】他方暖房運転時においては、屋内熱交換器
13において凝縮液化された液冷媒が、前記第2の流路
502から前記共通路500に流れてレシーバ53に貯
留され、前記膨張弁14で減圧された後、前記第3の流
路503を介して前記屋外熱交換器12に供給され、蒸
発して前記コンプレッサ11に戻る循環となる。
On the other hand, during the heating operation, the liquid refrigerant condensed and liquefied in the indoor heat exchanger 13 flows from the second flow path 502 to the common path 500, is stored in the receiver 53, and is expanded by the expansion valve 14. After being decompressed, it is supplied to the outdoor heat exchanger 12 through the third flow path 503, evaporates and returns to the compressor 11 for circulation.

【0037】上記構成より成る第1実施例の空気調和装
置の運転制御装置の冷房運転時における作用、すなわち
前記コンプレッサ11の起動時における起動制御の内容
および通常運転時における制御の内容について図4に示
されるフローチャートに従い説明する。本実施例装置
は、冷房運転時においては20℃以下の場合は動作しな
いように設定されている。
FIG. 4 shows the operation of the operation control device for the air conditioner of the first embodiment having the above-described structure during the cooling operation, that is, the contents of the start control when the compressor 11 is started and the contents of the control during the normal operation. It will be described according to the flowchart shown. The device of this embodiment is set so as not to operate when the temperature is 20 ° C. or lower during the cooling operation.

【0038】ステップ101において、前記膨張弁14
の初期開度を1000パルスに設定し、その後ステップ
102において、前記四路切換弁52をオンつまり冷房
サイクルにする。
In step 101, the expansion valve 14
Is set to 1000 pulses, and then in step 102, the four-way switching valve 52 is turned on, that is, in the cooling cycle.

【0039】ステップ103において、前記コンプレッ
サ11を起動させ、ステップ104において、前記膨張
弁14の開度変化量を演算する。すなわち、前記過熱度
演算手段31が、前記吸入圧力センサ26によって検出
された前記吸入管内の冷媒の圧力に対応する飽和温度と
前記吸入温度センサ21によって検出された前記蒸発器
13より前記コンプレッサ11の吸入管に供給された冷
媒の温度に基づき過熱度を演算し、前記膨張弁開度演算
手段32が、前記過熱度演算手段31によって演算され
た過熱度と、設定された目標過熱度、前回の過熱度、エ
ンジン回転数、および前回のエンジン回転数に基づき演
算を行い、前記膨張弁14のパルス数変化量を演算す
る。
In step 103, the compressor 11 is started, and in step 104, the opening change amount of the expansion valve 14 is calculated. That is, the superheat calculation means 31 causes the saturation temperature corresponding to the pressure of the refrigerant in the suction pipe detected by the suction pressure sensor 26 and the evaporator 13 detected by the suction temperature sensor 21 to move the compressor 11 from the evaporator 13. The degree of superheat is calculated based on the temperature of the refrigerant supplied to the suction pipe, and the expansion valve opening degree calculating means 32 calculates the degree of superheat calculated by the degree of superheat calculating means 31, the set target degree of superheat, and the previous degree of superheat. Calculation is performed based on the degree of superheat, the engine speed, and the previous engine speed, and the pulse number change amount of the expansion valve 14 is calculated.

【0040】ステップ105において、前記膨張弁開度
演算手段32によって演算されたパルス数変化量に基づ
き前記駆動装置4を構成するステッピングモータが前記
膨張弁14を駆動して弁開度を制御し、この状態でタイ
マが15分経過するまで維持される。
In step 105, the stepping motor constituting the drive unit 4 drives the expansion valve 14 to control the valve opening based on the pulse number change amount calculated by the expansion valve opening calculation means 32. In this state, the timer is maintained for 15 minutes.

【0041】15分が経過するとステップ106におい
て、演算された過熱度の平均値が5℃から15℃の範囲
内におさまっている時は、ステップ107において表1
の通常運転の比例定数、微分定数およびエンジン係数等
の制御定数を用いて、前記膨張弁開度演算手段32によ
って上述と同様の演算を行い通常運転における前記膨張
弁14のパルス数変化量を演算する。
After 15 minutes, in step 106, when the average value of the calculated superheat is within the range of 5 ° C. to 15 ° C., in step 107
Using the control constants such as the proportional constant, the differential constant and the engine coefficient in the normal operation, the expansion valve opening calculation means 32 performs the same calculation as described above to calculate the pulse number change amount of the expansion valve 14 in the normal operation. To do.

【0042】ステップ108において、前記膨張弁開度
演算手段32によって演算されたパルス数変化量に基づ
き前記駆動装置4を構成するステッピングモータが前記
膨張弁14を駆動して通常運転の弁開度に制御する。
In step 108, the stepping motor constituting the drive unit 4 drives the expansion valve 14 based on the pulse number change amount calculated by the expansion valve opening calculation means 32 to set the valve opening for normal operation. Control.

【0043】上記通常運転のおける各制御定数は、表1
に示すように小さな値に設定されており、過熱度がオー
バーシュートし、ハンチングしないようにして、運転停
止を回避するようにしてある。
The control constants in the above normal operation are shown in Table 1.
The value is set to a small value as shown in (4) so that the degree of superheat does not overshoot and hunting is prevented so that the operation stop is avoided.

【0044】また暖房運転時においては、前記コンプレ
ッサ11の起動時には前記膨張弁14の初期開度を決定
するパルスは800パルスに設定されている。
In the heating operation, the number of pulses that determine the initial opening of the expansion valve 14 is set to 800 when the compressor 11 is started.

【0045】上記作用を奏する第1実施例の空気調和装
置の運転制御装置は、前記制御装置3によって演算され
た前記過熱度に基づき前記膨張弁14の開度を制御する
ものであるので、従来のように室外ファンの風量を制御
する必要が無いので、システムの構成をシンプルにし
て、それに伴いトラブルを回避して信頼性を高め、コス
トを下げるという効果を奏する。
The operation controller of the air conditioner of the first embodiment having the above-mentioned operation controls the opening degree of the expansion valve 14 based on the degree of superheat calculated by the controller 3, so that it is conventional. Since it is not necessary to control the air flow rate of the outdoor fan as described above, the system configuration is simplified, and accordingly, troubles are avoided, reliability is increased, and cost is reduced.

【0046】また第1実施例の空気調和装置の運転制御
装置は、前記制御装置3が、前記コンプレッサ11の起
動後15分間は制御定数を大きく設定し、空調装置を設
定過熱度に早く近づけるので、屋内温度を設定温度近く
に早く近づけることが出来るという効果を奏するととも
に、前記15分間経過後は制御定数を小さく設定し、前
記設定過熱度に安定させるように制御するため、過熱度
のオーバーシュートに基づくハンチングを抑制して、運
転停止を回避することにより、低コストで信頼性の向上
を図ることを可能にするという効果を奏する。
Further, in the operation control device for the air conditioner of the first embodiment, the control device 3 sets the control constant to a large value for 15 minutes after the compressor 11 is started, so that the air conditioner approaches the set superheat degree quickly. In addition to the effect that the indoor temperature can be brought close to the set temperature quickly, the control constant is set small after the lapse of the 15 minutes, and the control is performed so as to stabilize the set superheat, so that the overshoot of the superheat occurs. There is an effect that it is possible to improve reliability at low cost by suppressing the hunting based on the above and avoiding the operation stop.

【0047】さらに第1実施例の空気調和装置の運転制
御装置は、前記コンプレッサ11の起動時一定時間は制
御定数を大きくしたので、高外気時における高圧側圧力
の上昇を抑制して、高圧カットや、吐出管温度の過上昇
による空気調和装置の運転停止を回避することが出来る
という効果を奏する。
Further, in the operation control device for the air conditioner of the first embodiment, since the control constant is made large during the fixed time when the compressor 11 is started, the high pressure cutoff is suppressed by suppressing the increase of the high pressure side pressure in the high outside air. Further, it is possible to avoid the operation stop of the air conditioner due to the excessive rise of the discharge pipe temperature.

【0048】また、本第1実施例装置は、暖房運転中の
前記コンプレッサ11の起動時においても前記膨張弁の
制御定数を大きくすることにより、低外気時における低
圧側圧力の低下を抑制して、低圧カットや吐出管温度の
過上昇による空気調和装置の運転停止を回避するという
効果を奏するとともに、設定過熱度に到達後は、制御定
数を小さくすることにより、過熱度のハンチングを抑制
して、運転停止を回避することにより、低コストで信頼
性の向上を図ることを可能にするという効果を奏する。
Further, in the first embodiment, the control constant of the expansion valve is increased even when the compressor 11 is started during the heating operation, thereby suppressing the decrease in the low pressure side pressure in the low outside air. In addition to the effect of avoiding the operation stop of the air conditioner due to the low pressure cut and the excessive rise of the discharge pipe temperature, after reaching the set superheat degree, the hunting of the superheat degree is suppressed by reducing the control constant. By avoiding the operation stop, it is possible to improve reliability at low cost.

【0049】すなわち、暖房運転時には従来のように電
動膨張弁14の開度を一定のまま制御すると、低外気域
では室外熱交換器の蒸発能力の低減により低圧側圧力が
低下するので、低圧側圧力が瞬間的に過低下して低圧カ
ットや吐出温度の過上昇による運転停止を招くおそれが
あるが、本第1実施例においては制御定数を一定時間大
きくすることにより、蒸発能力および冷媒循環量が適度
に維持され、低圧側圧力の低下が抑制される。
That is, in the heating operation, if the opening degree of the electric expansion valve 14 is controlled to be constant as in the conventional case, the low pressure side pressure is lowered in the low outside air region due to the reduction of the evaporation capacity of the outdoor heat exchanger. Although the pressure may momentarily excessively decrease to cause a low pressure cut or an excessive increase in the discharge temperature, the operation may be stopped. However, in the first embodiment, by increasing the control constant for a certain period of time, the evaporation capacity and the refrigerant circulation amount are increased. Is moderately maintained, and the pressure drop on the low pressure side is suppressed.

【0050】また本第1実施例においては、高外気域で
は外気導入に切換、暖房運転しないので、室外熱交換器
の蒸発能力が過大となり、高圧側圧力が上昇することに
より、高圧側圧力が瞬間的に過上昇するピークを発生し
て、吐出管温度の過上昇や高圧カットを招くおそれは無
い。以上によって空気調和装置の運転停止が回避される
ことになる。
Further, in the first embodiment, in the high outside air area, the outside air is switched to the outside air and the heating operation is not performed. Therefore, the evaporation capacity of the outdoor heat exchanger becomes excessive, and the high pressure side pressure rises. There is no possibility that a peak that rises excessively instantaneously will occur, resulting in an excessive rise in discharge pipe temperature and a high pressure cut. As a result, the operation stop of the air conditioner is avoided.

【0051】上述の実施例は、説明のために例示したも
ので、本発明としてはそれらに限定されるものでは無
く、特許請求の範囲、発明の詳細な説明および図面の記
載から当業者が認識することができる本発明の技術的思
想に反しない限り、変更および付加が可能である。
The embodiments described above are merely examples for the purpose of explanation, and the present invention is not limited to them. Those skilled in the art will recognize from the claims, the detailed description of the invention and the description of the drawings. Modifications and additions can be made without departing from the technical idea of the present invention.

【0052】上述の実施例においては、過熱度を目標値
に収束させる例について一例として述べたが、本発明
は、それに限定されるものでは無く、例えば吐出温度や
凝縮器の過冷却度を目標値に収束させる態様も採用する
ことができる。
In the above-mentioned embodiments, the example in which the superheat degree is converged to the target value has been described as an example, but the present invention is not limited to this, and for example, the discharge temperature or the supercooling degree of the condenser is targeted. A mode of converging to a value can also be adopted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例装置を示す概略ブロック図
である。
FIG. 1 is a schematic block diagram showing a first embodiment device of the present invention.

【図2】本第1実施例を適用したダクト空調方式を示す
模式図である。
FIG. 2 is a schematic view showing a duct air conditioning system to which the first embodiment is applied.

【図3】本第1実施例の冷媒回路を示すブロック図であ
る。
FIG. 3 is a block diagram showing a refrigerant circuit of the first embodiment.

【図4】本第1実施例の制御フローを示すチャート図で
ある。
FIG. 4 is a chart showing a control flow of the first embodiment.

【図5】従来の個別空調方式を示す模式図である。FIG. 5 is a schematic diagram showing a conventional individual air conditioning system.

【符号の説明】[Explanation of symbols]

1 ダクト方式の空気調和装置 2 センサ 3 制御装置 4 駆動装置 5 冷媒回路 11 コンプレッサ 12 凝縮器 13 蒸発器 14 膨張弁 31 過熱度演算装置 32 膨張弁開度演算手段 1 Duct type air conditioner 2 Sensor 3 Control device 4 Drive device 5 Refrigerant circuit 11 Compressor 12 Condenser 13 Evaporator 14 Expansion valve 31 Superheat calculation device 32 Expansion valve opening calculation means

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 コンプレッサと凝縮器と蒸発器と膨張弁
とから成り、外気を取り込んで空調を行う空気調和装置
において、 前記凝縮器および蒸発器の少なくとも何れか一方の出口
側の温度と出口側の冷媒の圧力に対応する飽和温度との
温度差に基づき、前記膨張弁の開度を制御する制御装置
を備えたことを特徴とする空気調和装置の運転制御装
置。
1. An air conditioner comprising a compressor, a condenser, an evaporator, and an expansion valve, which takes in outside air and performs air conditioning, wherein the temperature and the outlet side of the outlet side of at least one of the condenser and the evaporator. An operation control device for an air conditioner, comprising: a control device that controls the opening degree of the expansion valve based on a temperature difference from a saturation temperature corresponding to the pressure of the refrigerant.
【請求項2】 請求項1において、 前記制御装置が、前記蒸発器の出口側の温度と前記出口
側の圧力に対応する飽和温度との差で決定される過熱度
に基づき前記膨張弁の開度を制御することを特徴とする
空気調和装置の運転制御装置。
2. The control device according to claim 1, wherein the control device opens the expansion valve based on a degree of superheat determined by a difference between a temperature on an outlet side of the evaporator and a saturation temperature corresponding to a pressure on the outlet side. An air conditioner operation control device characterized by controlling the temperature.
【請求項3】 請求項1において、 前記制御装置が、前記凝縮器の出口側の温度と前記出口
側の圧力に対応する飽和温度との差で決定される過冷却
度に基づき前記膨張弁の開度を制御することを特徴とす
る空気調和装置の運転制御装置。
3. The expansion device according to claim 1, wherein the control device controls the expansion valve based on a degree of supercooling determined by a difference between a temperature on an outlet side of the condenser and a saturation temperature corresponding to a pressure on the outlet side. An operation control device for an air conditioner, which controls an opening.
【請求項4】 請求項2において、 前記制御装置が、前記蒸発器の出口側の温度と前記出口
側の圧力に基づき過熱度を演算する過熱度演算手段と、 前記過熱度演算手段が演算した前記過熱度と目標過熱度
とエンジン回転数とに基づき前記膨張弁の開度を演算す
る膨張弁開度演算手段とから成ることを特徴とする空気
調和装置の運転制御装置。
4. The superheat degree calculating means according to claim 2, wherein the controller calculates a superheat degree on the basis of a temperature on the outlet side of the evaporator and a pressure on the outlet side, and the superheat degree calculating means calculates. An operation control device for an air conditioner, comprising: an expansion valve opening degree calculation means for calculating an opening degree of the expansion valve based on the superheat degree, the target superheat degree, and an engine speed.
【請求項5】 請求項4において、 前記制御装置が、前記コンプレッサの起動後一定時間は
制御定数を大きく設定し、前記一定時間経過後は制御定
数が小さく設定することを特徴とする空気調和装置の運
転制御装置。
5. The air conditioner according to claim 4, wherein the control device sets a large control constant for a certain period of time after starting the compressor, and sets a small control constant after the certain period of time has elapsed. Operation control device.
【請求項6】 請求項5において、 前記制御装置が、前記過熱度と目標過熱度との差および
過熱度の時間的変化に基づき前記膨張弁の開度を演算す
ることを特徴とする空気調和装置の運転制御装置。
6. The air conditioner according to claim 5, wherein the control device calculates the opening degree of the expansion valve based on a difference between the superheat degree and the target superheat degree and a temporal change in the superheat degree. Device operation control device.
【請求項7】 請求項6において、 前記制御装置が、前記エンジン回転数の時間的変化に基
づき前記膨張弁の開度を演算することを特徴とする空気
調和装置の運転制御装置。
7. The operation control device for an air conditioner according to claim 6, wherein the control device calculates the opening degree of the expansion valve based on a temporal change in the engine speed.
JP6173729A 1994-06-30 1994-06-30 Operation control device for air-conditioner Pending JPH0814698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6173729A JPH0814698A (en) 1994-06-30 1994-06-30 Operation control device for air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6173729A JPH0814698A (en) 1994-06-30 1994-06-30 Operation control device for air-conditioner

Publications (1)

Publication Number Publication Date
JPH0814698A true JPH0814698A (en) 1996-01-19

Family

ID=15966064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6173729A Pending JPH0814698A (en) 1994-06-30 1994-06-30 Operation control device for air-conditioner

Country Status (1)

Country Link
JP (1) JPH0814698A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1524475A1 (en) * 2003-10-17 2005-04-20 LG Electronics, Inc. Apparatus and method for controlling the super-heating degree in a heat pump system
JP2008275216A (en) * 2007-04-26 2008-11-13 Hitachi Appliances Inc Air conditioner
DE102013004786A1 (en) * 2013-03-20 2014-09-25 SKA GmbH Gesellschaft für Kältetechnik Compression heat pump or compression refrigeration machine and method for Regelug the same
WO2015128899A1 (en) * 2014-02-28 2015-09-03 三菱電機株式会社 Air conditioner device
CN112856712A (en) * 2019-11-28 2021-05-28 广东美的制冷设备有限公司 Expansion valve control method and device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1524475A1 (en) * 2003-10-17 2005-04-20 LG Electronics, Inc. Apparatus and method for controlling the super-heating degree in a heat pump system
EP1760411A1 (en) * 2003-10-17 2007-03-07 LG Electronics, Inc. Method for controlling the super-heating degree in a heat pump system
US7617694B2 (en) 2003-10-17 2009-11-17 Lg Electronics Inc. Apparatus and method for controlling super-heating degree in heat pump system
JP2008275216A (en) * 2007-04-26 2008-11-13 Hitachi Appliances Inc Air conditioner
DE102013004786A1 (en) * 2013-03-20 2014-09-25 SKA GmbH Gesellschaft für Kältetechnik Compression heat pump or compression refrigeration machine and method for Regelug the same
WO2015128899A1 (en) * 2014-02-28 2015-09-03 三菱電機株式会社 Air conditioner device
GB2537525A (en) * 2014-02-28 2016-10-19 Mitsubishi Electric Corp Air conditioner device
JP6042024B2 (en) * 2014-02-28 2016-12-14 三菱電機株式会社 Air conditioner
GB2537525B (en) * 2014-02-28 2019-12-04 Mitsubishi Electric Corp Air conditioning apparatus
CN112856712A (en) * 2019-11-28 2021-05-28 广东美的制冷设备有限公司 Expansion valve control method and device

Similar Documents

Publication Publication Date Title
US6523361B2 (en) Air conditioning systems
EP0692683B1 (en) Air conditioning apparatus having an outdoor unit to which a plurality of indoor units are connected
JPH071954A (en) Air-conditioning device for electric automobile
JP3208923B2 (en) Operation control device for air conditioner
JP2004338447A (en) Air conditioner
JP3668750B2 (en) Air conditioner
CN111981641A (en) Air conditioner defrosting control method and air conditioner system
JPH0814698A (en) Operation control device for air-conditioner
JP3555575B2 (en) Refrigeration equipment
JP2689599B2 (en) Operation control device for air conditioner
JP2551238B2 (en) Operation control device for air conditioner
JPH1038398A (en) Controller of electric expansion valve
JP4483141B2 (en) Air conditioner
JPH0833245B2 (en) Refrigeration system operation controller
JPH06100395B2 (en) Refrigeration system operation controller
JP2522116B2 (en) Operation control device for air conditioner
JP2001201198A (en) Method for controlling air conditioner
JP7284421B2 (en) air conditioner
JP4273547B2 (en) Operation control device for refrigerator
JP2710698B2 (en) Multi-type air conditioner
JP3401873B2 (en) Control device for air conditioner
JPS6332256A (en) Heat pump system
JP3214145B2 (en) Operation control device for refrigeration equipment
JPH08100944A (en) Operation controller for air conditioner
JPH081343B2 (en) Air conditioner