JP2008275216A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2008275216A
JP2008275216A JP2007117229A JP2007117229A JP2008275216A JP 2008275216 A JP2008275216 A JP 2008275216A JP 2007117229 A JP2007117229 A JP 2007117229A JP 2007117229 A JP2007117229 A JP 2007117229A JP 2008275216 A JP2008275216 A JP 2008275216A
Authority
JP
Japan
Prior art keywords
outdoor
rotational speed
fan
power
total power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007117229A
Other languages
Japanese (ja)
Inventor
Naoyuki Fushimi
直之 伏見
Shinichiro Nagamatsu
信一郎 永松
Hiroyuki Kawaguchi
博之 川口
Junichiro Tezuka
純一郎 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007117229A priority Critical patent/JP2008275216A/en
Publication of JP2008275216A publication Critical patent/JP2008275216A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce power consumption of a compressor and an air distribution fan of an air conditioner and to suppress degradation of heat exchanging performance of a heat exchanger. <P>SOLUTION: This air conditioner is provided with a refrigerating cycle constituted by connecting an outdoor machine 13 comprising the compressors 1, 2, a four-way valve 3, an outdoor heat exchanger 4, an outdoor expansion valve 5 and an outdoor air distribution fan 8, and an indoor machine 12 comprising an indoor expansion valve 9 and an indoor heat exchanger 10 by a refrigerant pipe, and a power control means 21 controlling power consumption of the outdoor machine. The power control means 21 controls the increase and decrease of a rotational frequency of the outdoor air distribution fan by every control period in both of a cooling operation and a heating operation to minimize the total power of the compressor and the outdoor fan, and sets a lower limit value in the control of increase and decrease of the rotational frequency of the outdoor air distribution fan to the rotational frequency free from frost formation of the outdoor heat exchanger. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空気調和機に係り、特に、圧縮機及び室外ファンの合計電力を抑制する空気調和機に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner that suppresses the total power of a compressor and an outdoor fan.

近年、環境問題は地球規模での課題となっており、ひとつの解決策として省エネルギー化があげられる。また、JISの改定によりAPF(Annual Performance Factor:通年エネルギー消費効率)の表示も義務付けられており、APF向上の要請が高まっている。   In recent years, environmental problems have become a global issue, and one solution is energy saving. In addition, with the revision of JIS, APF (Annual Performance Factor) is obligated to be displayed, and there is an increasing demand for improvement of APF.

空気調和機の省エネルギー技術としては、特許文献1に記載されているように、冷房運転時の圧縮機の消費電力と凝縮器の冷媒を冷却するファンモータの消費電力とを算出して、これらの合計値が最小となるようにファンモータを増減制御することが知られている。   As an energy-saving technology of an air conditioner, as described in Patent Document 1, the power consumption of a compressor during cooling operation and the power consumption of a fan motor that cools the refrigerant of a condenser are calculated, and these It is known to increase / decrease the fan motor so that the total value is minimized.

特許公開平5−118609号公報Japanese Patent Publication No. 5-118609

しかしながら、上記特許文献の技術を、四方弁の切り替えによる暖房運転にそのまま適用した場合、蒸発器の熱交換能力の低下をまねくおそれがある。   However, when the technique of the above-mentioned patent document is applied as it is to the heating operation by switching the four-way valve, there is a possibility that the heat exchange capability of the evaporator is lowered.

すなわち、暖房運転時における圧縮機の消費電力と蒸発器の冷媒を加熱する送風ファンの消費電力との合計値は、送風ファンの回転数の減少にともなって低下する。そこで、消費電力抑制のために送風ファン回転数を下げていくと、冷媒の低圧圧力が下がるとともに蒸発温度も下がり、蒸発温度が0℃以下まで下がると蒸発器に霜が附着する。この着霜の結果、大幅な熱交換能力低下を生じる場合がある。   That is, the total value of the power consumption of the compressor and the power consumption of the blower fan that heats the refrigerant of the evaporator during the heating operation decreases as the rotational speed of the blower fan decreases. Therefore, when the rotational speed of the blower fan is lowered to suppress power consumption, the low pressure of the refrigerant is lowered and the evaporation temperature is lowered. When the evaporation temperature is lowered to 0 ° C. or less, frost is attached to the evaporator. As a result of this frost formation, the heat exchange capacity may be significantly reduced.

そこで、本発明は、空気調和機の圧縮機及び送風ファンによる消費電力を抑制し、かつ熱交換器の熱交換能力低下を抑制することを課題とする。   Then, this invention makes it a subject to suppress the power consumption by the compressor and ventilation fan of an air conditioner, and to suppress the heat exchange capability fall of a heat exchanger.

上記課題を解決するため、本発明の空気調和機は、圧縮機、四方弁、室外熱交換器、室外膨張弁、及び室外送風ファンを備えた室外機と、室内膨張弁及び室内熱交換器を備えた室内機とを冷媒配管で接続して冷凍サイクルを形成しており、さらに、室外機の消費電力を制御する電力制御手段を備えている。この電力制御手段は、冷房運転時及び暖房運転のいずれの場合も、制御周期ごとに室外送風ファンの回転数の増減制御を行い、圧縮機及び室外ファンの合計電力を最小にするとともに、暖房運転時には、室外送風ファンの回転数の増減制御の下限値を、室外熱交換器に着霜しない回転数に設定することを特徴とする。   In order to solve the above problems, an air conditioner of the present invention includes a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, an outdoor unit including an outdoor fan, an indoor expansion valve, and an indoor heat exchanger. The refrigeration cycle is formed by connecting the provided indoor units with refrigerant pipes, and further includes power control means for controlling the power consumption of the outdoor units. This power control means performs the increase / decrease control of the rotational speed of the outdoor blower fan for each control cycle in both the cooling operation and the heating operation, minimizes the total power of the compressor and the outdoor fan, and also performs the heating operation. In some cases, the lower limit value of the increase / decrease control of the rotational speed of the outdoor fan is set to a rotational speed at which the outdoor heat exchanger does not form frost.

すなわち、冷房及び暖房運転の両時において通常運転を行っているときは、室外送風ファンの回転数を増減制御することによって圧縮機及び室外ファンの合計電力の最小化を図っている。その一方で、暖房運転時には、送風ファンの回転数増減制御の下限値を室外熱交換器に着霜しない回転数に設定しているので、着霜による熱交換器の熱交換能力低下を抑制することができる。   That is, during normal operation during both cooling and heating operations, the total power of the compressor and the outdoor fan is minimized by increasing / decreasing the rotational speed of the outdoor fan. On the other hand, during the heating operation, the lower limit value of the rotation speed increase / decrease control of the blower fan is set to the rotation speed at which the outdoor heat exchanger does not form frost, so that the heat exchange capacity decline of the heat exchanger due to frost formation is suppressed. be able to.

この場合において、冷房運転時の電力制御手段の制御内容を以下のようにすることができる。まず、室外送風ファンの初期回転数を該ファンの上限回転数付近に設定し、初回制御周期で所定の減少幅で室外送風ファンの回転数を減少させるとともに、制御周期ごとに圧縮機の電力及び室外送風ファンの電力を検出してこれらの合計電力を求めて、前回制御周期における前記合計電力と今回制御周期における前記合計電力とを比較する。   In this case, the control content of the power control means during the cooling operation can be as follows. First, the initial rotational speed of the outdoor blower fan is set near the upper limit rotational speed of the fan, and the rotational speed of the outdoor blower fan is decreased by a predetermined reduction width in the initial control cycle, and the power of the compressor and The power of the outdoor fan is detected and the total power of these is obtained, and the total power in the previous control cycle is compared with the total power in the current control cycle.

そして、合計電力が減少しており、かつその減少幅が予め設定された値より大きければ、つまり、前回制御周期での回転数の増減方向が適切な方向であり、かつ最小電力付近にはまだ到達していないときは、室外送風ファンの回転数を、前回制御周期での室外送風ファンの回転数の増減方向と同一方向に、前回制御周期での増減幅と同じ増減幅で変更する。   If the total power is reduced and the reduction range is greater than a preset value, that is, the direction of increase / decrease in the number of revolutions in the previous control cycle is an appropriate direction, and is not yet near the minimum power. When it has not reached, the rotation speed of the outdoor fan is changed in the same direction as the increase / decrease direction of the rotation speed of the outdoor fan in the previous control cycle with the same increase / decrease width as the increase / decrease width in the previous control cycle.

一方、合計電力が増加していれば、つまり、前回制御周期での回転数の増減によって放物線の下端に相当する最小電力付近を通過してしまったときは、室外送風ファンの回転数を、前回制御周期での室外送風ファンの回転数の増減方向と逆方向に、前回制御周期での増減幅より少ない増減幅、例えば前回制御周期の1/2の増減幅で変更する。   On the other hand, if the total power has increased, that is, if it has passed near the minimum power corresponding to the lower end of the parabola due to the increase or decrease of the rotation speed in the previous control cycle, the rotation speed of the outdoor fan is In the direction opposite to the increase / decrease direction of the rotational speed of the outdoor fan in the control cycle, the change is made with an increase / decrease width smaller than the increase / decrease width in the previous control cycle, for example, an increase / decrease width of 1/2 of the previous control cycle.

また、合計電力が減少しており、かつ減少幅が予め設定された値より小さいとき、つまり、合計電力は減少しているが下げ幅は小さく最小電力付近に到達したと判断できるとき、あるいは合計電力が同値のときは、室外送風ファンの回転数を維持する。このように合計電力を監視して室外送風ファンの回転数の合わせ込み制御を行うことで、合計電力の最小化を実現することができる。
また、暖房運転時の電力制御手段の制御内容を以下のようにすることができる。室外熱交換器の冷媒温度を検出する温度センサを設けて、まず、電力制御手段は、室外送風ファンの初期回転数を該ファンの上限回転数付近に設定し、初回制御周期で所定の減少幅で室外送風ファンの回転数を減少させるとともに、制御周期ごとに圧縮機の電力及び室外送風ファンの電力を検出してこれらの合計電力を求めて、前回制御周期における合計電力と今回制御周期における合計電力とを比較する。
Also, when the total power is decreasing and the decrease is smaller than the preset value, that is, when it is determined that the total power is decreasing but the decrease is small and the vicinity of the minimum power is reached, or the total When the electric power is the same value, the rotational speed of the outdoor fan is maintained. Thus, the total power can be minimized by monitoring the total power and performing control for adjusting the rotation speed of the outdoor fan.
Moreover, the control content of the electric power control means at the time of heating operation can be made as follows. A temperature sensor for detecting the refrigerant temperature of the outdoor heat exchanger is provided. First, the power control means sets the initial rotational speed of the outdoor blower fan in the vicinity of the upper limit rotational speed of the fan, and a predetermined decrease width in the initial control cycle. The number of rotations of the outdoor blower fan is reduced and the compressor power and the outdoor blower fan power are detected for each control period to obtain the total power, and the total power in the previous control period and the total in the current control period are obtained. Compare with power.

そして、合計電力が減少していれば、室外送風ファンの回転数を、前回制御周期での減少幅と同じ減少幅で減少し、合計電力が増加あるいは同値のときは、室外送風ファンの回転数を維持する制御を行いながら、室外送風ファンの回転数を減少させるごとに、温度センサの検出温度が0℃以下か否かを判定して、0℃以下のときは、室外送風ファンの回転数を減少前の回転数に戻して、該回転数を維持する。   If the total power is reduced, the rotational speed of the outdoor blower fan is reduced by the same reduction width as that in the previous control cycle. When the total power is increased or equal, the rotational speed of the outdoor blower fan is reduced. Each time the rotational speed of the outdoor blower fan is reduced while maintaining the control, it is determined whether or not the detected temperature of the temperature sensor is 0 ° C. or lower. Is returned to the rotational speed before the decrease, and the rotational speed is maintained.

これにより、圧縮機及び室外ファンの合計電力の最小化を図りつつ、室外熱交換器への着霜による熱交換能力低下を抑制することができる。   Accordingly, it is possible to suppress a reduction in heat exchange capacity due to frost formation on the outdoor heat exchanger while minimizing the total power of the compressor and the outdoor fan.

また、電力制御手段は、冷房運転及び暖房運転のいずれの場合も、冷凍サイクルの高圧圧力、低圧圧力、及び圧力比が予め設定された範囲内となるように室外送風ファンの回転数の増減制御を行うように構成できる。   Further, the power control means controls the increase / decrease in the rotation speed of the outdoor fan so that the high pressure, low pressure, and pressure ratio of the refrigeration cycle are within a preset range in both cooling operation and heating operation. Can be configured.

本発明によれば、空気調和機の圧縮機及び送風ファンによる消費電力を抑制し、かつ熱交換器の熱交換能力低下を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the power consumption by the compressor and ventilation fan of an air conditioner can be suppressed, and the heat exchange capability fall of a heat exchanger can be suppressed.

以下、本発明を適用してなる空気調和機の実施形態を図1〜10を用いて説明する。なお、以下は、1台の室外機に対して複数台の室内機が接続されるいわゆるマルチタイプの空気調和機を例に説明するが、これに限らず、本発明は、室外機と室内機とが1対1で接続される一般家庭用の空気調和機にも適用できる。   Hereinafter, embodiments of an air conditioner to which the present invention is applied will be described with reference to FIGS. In the following description, a so-called multi-type air conditioner in which a plurality of indoor units are connected to one outdoor unit will be described as an example. The present invention can also be applied to an air conditioner for general households that are connected in a one-to-one relationship.

図1は、本実施形態の空気調和機の全体構成図である。空気調和機は、室外機13と2台の室内機12とが、液冷媒配管14,ガス冷媒配管15によって接続されて構成されている。   FIG. 1 is an overall configuration diagram of the air conditioner of the present embodiment. The air conditioner is configured by connecting an outdoor unit 13 and two indoor units 12 by a liquid refrigerant pipe 14 and a gas refrigerant pipe 15.

室外機13は、運転周波数をインバータで可変して制御される容量可変式圧縮機1と、2台の容量固定式圧縮機2とを有しており、各圧縮機1,2は、四方弁3と並列に接続されている。四方弁3は、互いに並列に設けられた室外熱交換器4に配管接続され、各室外熱交換器4に対して設けられた室外膨張弁5を介して冷媒量調節器7へ接続されている。   The outdoor unit 13 includes a variable capacity compressor 1 that is controlled by changing an operation frequency with an inverter, and two fixed capacity compressors 2. Each of the compressors 1 and 2 is a four-way valve. 3 is connected in parallel. The four-way valve 3 is connected by piping to an outdoor heat exchanger 4 provided in parallel to each other, and is connected to a refrigerant amount regulator 7 via an outdoor expansion valve 5 provided for each outdoor heat exchanger 4. .

また、四方弁3と一方の室外熱交換器4とを接続する配管には、室外熱交換器4への流路を切換える電動弁6が設けられている。そして、各室外熱交換器4に対して送風を行う室外送風ファン8が設けられている。   In addition, an electric valve 6 that switches a flow path to the outdoor heat exchanger 4 is provided in a pipe connecting the four-way valve 3 and one outdoor heat exchanger 4. And the outdoor ventilation fan 8 which ventilates with respect to each outdoor heat exchanger 4 is provided.

また、圧縮機1,2の高圧側には高圧圧力センサ16、低圧側には低圧圧力センサ17が設けられ、各室外熱交換器4には暖房時に冷媒蒸発温度を測定する温度センサ18が設けられている。さらに、各圧縮機1,2の合計消費電力を測定する電力計19と、各室外送風ファン8の合計消費電力を測定する電力計20とが設けられている。図示していないが、各圧力センサ16,17、温度センサ18、及び電力計19,20の検出値は、電力制御手段21へ入力されるようになっており、また、電力制御手段21の出力信号は各室外送風ファン8に入力されるようになっている。   The high pressure side of the compressors 1 and 2 is provided with a high pressure sensor 16, the low pressure side is provided with a low pressure sensor 17, and each outdoor heat exchanger 4 is provided with a temperature sensor 18 for measuring the refrigerant evaporation temperature during heating. It has been. Furthermore, a wattmeter 19 for measuring the total power consumption of the compressors 1 and 2 and a wattmeter 20 for measuring the total power consumption of the outdoor blower fans 8 are provided. Although not shown, the detected values of the pressure sensors 16, 17, the temperature sensor 18, and the wattmeters 19, 20 are input to the power control means 21, and the output of the power control means 21 is also shown. The signal is input to each outdoor fan 8.

各室内機12は、室内膨脹弁9と室内熱交換器10とを有しており、そして、各室内熱交換器10に対して送風を行う室内送風ファン11が設けられている。   Each indoor unit 12 includes an indoor expansion valve 9 and an indoor heat exchanger 10, and an indoor blower fan 11 that blows air to each indoor heat exchanger 10 is provided.

ここで、一般的な圧縮機の消費電力特性について説明する。圧縮機の消費電力は、(1)圧縮機効率(=圧縮機実機のCOP/圧縮機の理論COP)、及び(2)動力によるもの、によって大部分が決定される。また、(1)圧縮機効率は、高圧圧力、及び圧力比(=高圧圧力/低圧圧力)などの因子が関係し、(2)動力によるものは、圧縮機回転数、差圧(=高圧圧力−低圧圧力)、及び吸入冷媒の密度(低圧圧力、吸入SHに起因)などの因子が関係する。   Here, the power consumption characteristic of a general compressor will be described. The power consumption of the compressor is largely determined by (1) compressor efficiency (= compressor actual COP / compressor theoretical COP) and (2) power. Further, (1) the compressor efficiency is related to factors such as high pressure and pressure ratio (= high pressure / low pressure), and (2) the power depends on the compressor rotation speed and differential pressure (= high pressure). -Low pressure) and the density of refrigerant sucked (low pressure, due to suction SH).

これらの項目の内、圧縮機回転数以外は冷媒圧力により変動するものであり、室外送風ファンの回転数にて変化させることができる。よって室外送風ファンの回転数を最適化することで圧縮機効率を上げ、圧縮機電力を減らすことができる。   Among these items, except the compressor rotation speed, it fluctuates depending on the refrigerant pressure, and can be changed by the rotation speed of the outdoor blower fan. Therefore, by optimizing the rotation speed of the outdoor fan, the compressor efficiency can be increased and the compressor power can be reduced.

次に、本実施形態の空気調和機の動作を説明する。図2に示すように一般的に圧縮機効率は、高圧圧力は低いほうがよく、圧力比は例えば2.5付近に最も効率のよいところが存在する。   Next, operation | movement of the air conditioner of this embodiment is demonstrated. As shown in FIG. 2, in general, the compressor efficiency should be low at a high pressure, and the pressure ratio is most effective at, for example, around 2.5.

冷房運転の場合、各圧縮機1,2で圧縮された高温高圧のガス冷媒は、図の実線の矢印で示すように、四方弁3を経て、室外熱交換器4へと流入し、ここで熱交換器して凝縮液化する。凝縮液化した冷媒は室外膨張弁5を通り、余剰冷媒は冷媒量調節器7に貯留され、残りが液冷媒配管14を通り、室内機12へ送られる。送られた液冷媒は、室内膨張弁9へ流入し、ここで低圧まで減圧されて低圧2相状態となり、室内熱交換器10で空気と熱交換して蒸発・ガス化する。その後、ガス冷媒は、ガス冷媒配管15を経て各圧縮機1,2へ戻る。   In the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressors 1 and 2 flows into the outdoor heat exchanger 4 through the four-way valve 3 as shown by the solid line arrows in the figure. Heat exchanger to condense. The condensed and liquefied refrigerant passes through the outdoor expansion valve 5, the surplus refrigerant is stored in the refrigerant amount regulator 7, and the remainder passes through the liquid refrigerant pipe 14 and is sent to the indoor unit 12. The sent liquid refrigerant flows into the indoor expansion valve 9, where it is decompressed to a low pressure to be in a low pressure two-phase state, and exchanges heat with air in the indoor heat exchanger 10 to evaporate and gasify. Thereafter, the gas refrigerant returns to the compressors 1 and 2 via the gas refrigerant pipe 15.

この冷媒運転時においては、図3に示すように、送風ファン回転数は直接的には高圧圧力を変化させ、回転数を増やすと高圧圧力が低くなり、それに伴い圧力比、差圧が低くなる。回転数変化に伴う圧縮機効率の変化を図2にプロットしてみると、常用する外気温度ではファン回転数を増やすと高圧圧力と圧力比が落ち、圧縮機効率は上がることがわかる。   During this refrigerant operation, as shown in FIG. 3, the rotational speed of the blower fan directly changes the high pressure, and the high pressure decreases as the rotational speed increases, and the pressure ratio and differential pressure decrease accordingly. . When the change in the compressor efficiency due to the change in the rotational speed is plotted in FIG. 2, it can be seen that when the fan rotational speed is increased at the normal outside air temperature, the high pressure and the pressure ratio are lowered, and the compressor efficiency is increased.

よって、ファン回転数を増やせば圧縮機電力は下がる。しかしファン電力は単純に増えるため、図4のようにそれぞれの合計電力が最小となるところが存在することとなる。図5のようにCOPも同様の傾向となり、回転数の上限から下げていけば、電力の最小となる回転数にたどりつくことがわかる。回転数の下限は高圧圧力が上限圧力以下となる回転数とする。   Therefore, if the fan speed is increased, the compressor power decreases. However, since the fan power simply increases, there is a place where the total power of each of them is minimum as shown in FIG. As shown in FIG. 5, COP has the same tendency, and it can be seen that if the rotational speed is lowered from the upper limit of the rotational speed, the rotational speed at which the electric power is minimized is reached. The lower limit of the rotational speed is the rotational speed at which the high pressure is equal to or lower than the upper limit pressure.

これらをふまえた電力制御手段21による制御フローを図6に示す。まず、運転が開始されると、室外送風ファン回転数の初期値[V]を上限回転数とする(S1)。ここで、上限回転数とは、ファンの機械的上限回転数以下で、かつ、冷凍サイクルの高圧圧力、低圧圧力が最低許容圧力を満たす範囲内で最大の回転数とする。 A control flow by the power control means 21 based on these is shown in FIG. First, when the operation is started, the initial value [V 0 ] of the outdoor blower fan rotation speed is set as the upper limit rotation speed (S1). Here, the upper limit number of rotations is the maximum number of rotations within a range that is equal to or less than the mechanical upper limit number of rotations of the fan and the high pressure and low pressure of the refrigeration cycle satisfy the minimum allowable pressure.

所定時間経過後、圧縮機とファンの消費電力を電力計19,20にて算出し、合計電力[P]を求める(S2)。続いて、ファンの回転数を一定量[ΔV]、例えば現回転数の10%減少させる(Vset=V−ΔV)(S3)。 After a predetermined time has elapsed, the power consumption of the compressor and the fan is calculated by the wattmeters 19 and 20 to obtain the total power [P 0 ] (S2). Subsequently, the rotational speed of the fan is reduced by a certain amount [ΔV 0 ], for example, 10% of the current rotational speed (Vset = V 0 −ΔV 0 ) (S 3).

次に、圧縮機には運転可能な圧力範囲があり、それを満たすために冷凍サイクルの高圧圧力、低圧圧力、圧力比の上下限が規定の範囲内であるかを高圧圧力センサ16、低圧圧力センサ17にて判定する(S4)。規定の範囲外であれば(S4でNO)、回転数を元に戻し、本制御を終了する(S8)。規定の範囲内であれば(S4でYES)、圧縮機とファンの合計電力[P]を算出する(S5)。 Next, the compressor has an operable pressure range, and in order to satisfy it, the high pressure sensor 16, the low pressure pressure, whether the high and low pressures of the refrigeration cycle are within the specified range. The determination is made by the sensor 17 (S4). If it is outside the specified range (NO in S4), the rotational speed is returned to the original value, and this control is terminated (S8). If within the specified range (YES in S4), the total power [P n ] of the compressor and the fan is calculated (S5).

そして、算出した合計電力[P]と前回の測定値[Pn−1]とを比較して消費電力が低下したか否かを判定する(S6)。Pn−1≧Pで電力が下がって、あるいは同値だったら(S6でYES)、電力低下率に相当するΔVに応じた電力低下量[Q]、(例えばQ=ΔP/ΔV)が所定の値[Qmin]以下かどうか判定する(S7)。Q<QminでQnが所定の値以下と判断すれば(S7でNO)、制御を終了する。 Then, the calculated total power [ Pn ] is compared with the previous measurement value [ Pn-1 ] to determine whether or not the power consumption has decreased (S6). If P n−1 ≧ P n and the power decreases or is equal (YES in S6), the power decrease amount [Q n ] corresponding to ΔV n corresponding to the power decrease rate (for example, Q n = ΔP n / Whether ΔV n ) is equal to or smaller than a predetermined value [Q min ] is determined (S7). If it is determined that Q n <Q min and Q n is not more than a predetermined value (NO in S7), the control is terminated.

一方、S6でPn−1<Pとなり電力が上がっていた場合は(S6でNO)、回転数を前回と逆方向に変更するとともに、回転数を前回の回転数に戻らないようにΔV/2だけ変更して(S4)に戻る(S9)。 On the other hand, if P n-1 <P n and the power is increased in S6 (NO in S6), the rotational speed is changed in the opposite direction to the previous time, and ΔV is set so that the rotational speed does not return to the previous rotational speed. Change by / 2 and return to (S4) (S9).

また、S7でQ>QminとなりQが所定の値以上であれば(S7でYES)、さらにファン回転数を前回と同方向にΔVnだけ変更して(S4)に戻る(S10)。ここで、ΔVは電力が最小となる回転数に収束するようにQに応じた値(例えばΔV=V×aQ a:定数)とし、Qが大きければΔVも大きくし、Qが小さければΔVを小さくする。 Further, the flow returns to change only Q n> Q min becomes Q n is (YES at S7) equal to or greater than a predetermined value, [Delta] V n further fan speed to previous and the same direction in S7 (S4) (S10) . Here, ΔV n is a value corresponding to Q n (for example, ΔV n = V n × aQ n a: constant) so that the power converges to the minimum rotation speed, and ΔV n is increased if Q n is large. , to reduce the ΔV n the smaller the Q n.

このように、圧縮機効率をふまえた上で、消費電力が最小となるように室外送風ファン8の回転数を制御し、ファン電力と圧縮機電力の合計を最小とすることによって室外機消費電力を低減することができる。   In this way, the rotational speed of the outdoor fan 8 is controlled so that the power consumption is minimized based on the compressor efficiency, and the total of the fan power and the compressor power is minimized, thereby reducing the outdoor unit power consumption. Can be reduced.

続いて、暖房運転時の動作の説明をする。暖房運転の場合、各圧縮機1,2で圧縮された高温高圧のガス冷媒は、図の破線の矢印で示すように、四方弁3、ガス冷媒配管15を経て室内機12の室内熱交換器10へ流入し、ここで空気と熱交換して凝縮液化する。凝縮液化した冷媒は、室内膨張弁9、液冷媒配管14を介して冷媒量調節器7へ流入し、室外膨張弁5で減圧された後に室外熱交換器4で空気と熱交換して蒸発、ガス化する。ガス化した冷媒は四方弁3を経て各圧縮機1,2へ戻る。   Next, the operation during the heating operation will be described. In the case of heating operation, the high-temperature and high-pressure gas refrigerant compressed by the compressors 1 and 2 passes through the four-way valve 3 and the gas refrigerant pipe 15 as shown by the dashed arrows in the figure, and the indoor heat exchanger of the indoor unit 12 10 where it condenses and liquefies by exchanging heat with air. The condensed and liquefied refrigerant flows into the refrigerant amount regulator 7 through the indoor expansion valve 9 and the liquid refrigerant pipe 14, and after being decompressed by the outdoor expansion valve 5, heat is exchanged with air in the outdoor heat exchanger 4 and evaporates. Gasify. The gasified refrigerant returns to the compressors 1 and 2 through the four-way valve 3.

このような暖房運転時は、室外送風ファン8の回転数は、変化量は小さいが低圧圧力を変化させる。それに伴い圧縮機効率や差圧が変化する。図7に示すように、暖房では冷房ほど圧力の変化は少ないが、ファン回転数を増やすと、圧力比は下がるものの、高圧圧力及び低圧圧力は高くなる。   During such heating operation, the rotational speed of the outdoor blower fan 8 changes the low-pressure pressure although the amount of change is small. As a result, the compressor efficiency and differential pressure change. As shown in FIG. 7, in heating, the change in pressure is less as cooling, but when the number of fan rotations is increased, the pressure ratio decreases, but the high pressure and low pressure increase.

そして、図8に示すように、暖房運転ではファン回転数を上限回転数から下げていけば、圧縮機電力とファン電力は共に下がり、図9に示すようにCOPも上がる。したがって、圧縮機電力とファン電力の合計値を下げるには、ファン回転数を下げていけばよいことがわかる。しかし、やみくもにファン回転数を下げていくと、低圧圧力が下がることで蒸発温度も下がり、蒸発温度が0℃以下まで下がると空気中に含まれる水分が室外熱交換器に着霜する。その結果、大幅な熱交換能力の低下となる。   As shown in FIG. 8, if the fan speed is decreased from the upper limit speed in the heating operation, both the compressor power and the fan power are lowered, and the COP is also raised as shown in FIG. Therefore, it can be seen that the fan rotational speed should be lowered to lower the total value of the compressor power and the fan power. However, when the fan rotation speed is decreased gradually, the evaporation temperature also decreases as the low-pressure pressure decreases, and when the evaporation temperature decreases to 0 ° C. or less, moisture contained in the air frosts on the outdoor heat exchanger. As a result, the heat exchange capacity is greatly reduced.

そこで、本発明では、圧縮機の消費電力と室外送風ファンの消費電力との合計を抑制するとともに、ファン回転数の下限を設定して、室外熱交換器への着霜を抑制している。具体的には、ファンの回転数の下限を、温度センサ18で検出される蒸発温度が0℃以下とならないところまでとする。また、回転数の上限は低圧圧力の上限圧力とする。   So, in this invention, while suppressing the sum total of the power consumption of a compressor and the power consumption of an outdoor ventilation fan, the lower limit of a fan rotation speed is set and the frost formation to an outdoor heat exchanger is suppressed. Specifically, the lower limit of the rotational speed of the fan is set so that the evaporation temperature detected by the temperature sensor 18 does not become 0 ° C. or less. The upper limit of the rotation speed is the upper limit pressure of the low pressure.

暖房運転時の電力制御手段21による制御フローを図10に示す。ここでは、冷房運転と同様の部分は省略して、異なる部分のみ説明する。運転が開始されると、室外送風ファン回転数の初期値[V]を上限回転数に設定する(S11)。ここで、上限回転数とは、ファンの機械的上限回転数以下で、かつ、サイクルの低圧圧力が最高許容圧力を満たす範囲内で最大の回転数とする。以降の処理は、基本的に冷房運転時の時と同様であるが、S14において、暖房運転時のみの処理を行っている。 The control flow by the power control means 21 during the heating operation is shown in FIG. Here, the same parts as the cooling operation are omitted, and only different parts will be described. When the operation is started, the initial value [V 0 ] of the outdoor blower fan rotation speed is set to the upper limit rotation speed (S11). Here, the upper limit rotational speed is the maximum rotational speed within a range that is equal to or lower than the mechanical upper limit rotational speed of the fan and the low pressure of the cycle satisfies the maximum allowable pressure. The subsequent processing is basically the same as that during cooling operation, but in S14, processing is performed only during heating operation.

すなわち、S13,S17においてファン回転数を変更した後は、冷凍サイクルの高圧圧力、低圧圧力、圧力比の上下限が規定の範囲内であるかを高圧圧力センサ16、低圧圧力センサ17にて判定し、さらに冷媒蒸発温度が0℃以下になっていないか温度センサ18にて判定する(S14)。そして、冷媒蒸発温度が0℃以下と判断したら(S14でNO)、ファン回転数を元に戻し(S18)、本制御を終了する。   That is, after the fan speed is changed in S13 and S17, the high pressure sensor 16 and the low pressure sensor 17 determine whether the high and low pressures of the refrigeration cycle and the upper and lower limits of the pressure ratio are within the specified ranges. Further, it is determined by the temperature sensor 18 whether the refrigerant evaporation temperature is 0 ° C. or less (S14). If it is determined that the refrigerant evaporation temperature is equal to or lower than 0 ° C. (NO in S14), the fan rotational speed is returned to the original (S18), and this control is terminated.

冷媒温度が0℃より大きければ(S14でYES)、圧縮機とファンの合計電力[P]を算出して(S15)、合計電力[P]と前回の測定値[Pn−1]とを比較して消費電力が低下したか否かを判定する(S16)。ここで、Pn−1>Pで電力が下がっていたら(S16でYES)、ファンの回転数を一定量[ΔV]減少させて(S17)、S14へ戻る。一方、Pn−1≦Pで電力が減少しない場合は(S16でNO)、何らかの異常があるとみなして、本制御を終了する。 If the refrigerant temperature is higher than 0 ° C. (YES in S14), the total power [P n ] of the compressor and the fan is calculated (S15), and the total power [P n ] and the previous measured value [P n−1 ] are calculated. To determine whether or not the power consumption has decreased (S16). Here, if the power is reduced because P n−1 > P n (YES in S16), the fan speed is decreased by a certain amount [ΔV 0 ] (S17), and the process returns to S14. On the other hand, if the power does not decrease with P n−1 ≦ P n (NO in S16), it is considered that there is some abnormality and this control is terminated.

これにより、圧縮機効率をふまえた上で、消費電力が最小となるように室外送風ファン8の回転数を制御してファン電力と圧縮機電力の合計を抑制しつつ、室外熱交換器への着霜を抑制することができ、その結果、室外熱交換器の熱交換能力の低下を抑制することができる。   As a result, based on the compressor efficiency, the rotational speed of the outdoor fan 8 is controlled so that the power consumption is minimized, and the total of the fan power and the compressor power is suppressed. Frosting can be suppressed, and as a result, a decrease in heat exchange capability of the outdoor heat exchanger can be suppressed.

本実施形態の空気調和機の全体構成図である。It is a whole block diagram of the air conditioner of this embodiment. 圧縮機の圧力比と圧縮機効率の関係を示す図である。It is a figure which shows the relationship between the pressure ratio of a compressor, and compressor efficiency. 冷房時の室外送風ファンの回転数と各圧力の関係を示す図である。It is a figure which shows the relationship between the rotation speed of an outdoor ventilation fan at the time of air_conditioning | cooling, and each pressure. 冷房時の室外送風ファンの回転数に対する圧縮機の消費電力及び送風ファンの消費電力の関係を示す図である。It is a figure which shows the relationship between the power consumption of a compressor with respect to the rotation speed of the outdoor ventilation fan at the time of cooling, and the power consumption of a ventilation fan. 冷房時の室外送風ファンの回転数とCOPの関係を示す図である。It is a figure which shows the relationship between the rotation speed of the outdoor ventilation fan at the time of cooling, and COP. 冷房時の室外送風ファンの回転数制御のフローチャートである。It is a flowchart of rotation speed control of the outdoor ventilation fan at the time of air_conditioning | cooling. 暖房時の室外送風ファンの回転数と各圧力の関係を示す図である。It is a figure which shows the relationship between the rotation speed of the outdoor ventilation fan at the time of heating, and each pressure. 暖房時の室外送風ファンの回転数に対する圧縮機の消費電力及び送風ファンの消費電力の関係を示す図である。It is a figure which shows the relationship between the power consumption of the compressor with respect to the rotation speed of the outdoor ventilation fan at the time of heating, and the power consumption of a ventilation fan. 暖房時の室外送風ファンの回転数とCOPの関係を示す図である。It is a figure which shows the relationship between the rotation speed of the outdoor ventilation fan at the time of heating, and COP. 暖房時の室外送風ファンの回転数制御のフローチャートである。It is a flowchart of rotation speed control of the outdoor ventilation fan at the time of heating.

符号の説明Explanation of symbols

1 容量可変式圧縮機
2 容量固定式圧縮機
3 四方弁
4 室外熱交換器
5 室外膨張弁
8 室外送風ファン
9 室内膨脹弁
10 室内熱交換器
11 室内送風ファン
12 室内機
13 室外機
14 液接続配管
15 ガス配管
16 高圧圧力センサ
17 低圧圧力センサ
18 温度センサ
19,20 電力計
21 電力制御手段
1 Variable capacity compressor 2 Fixed capacity compressor
3 Four-way valve 4 Outdoor heat exchanger 5 Outdoor expansion valve 8 Outdoor blower fan 9 Indoor expansion valve 10 Indoor heat exchanger 11 Indoor blower fan 12 Indoor unit 13 Outdoor unit 14 Liquid connection pipe 15 Gas pipe 16 High pressure sensor 17 Low pressure sensor 18 Temperature sensors 19, 20 Wattmeter 21 Power control means

Claims (3)

圧縮機、四方弁、室外熱交換器、室外膨張弁、及び室外送風ファンを備えた室外機と、室内膨張弁及び室内熱交換器を備えた室内機とを冷媒配管で接続して冷凍サイクルを形成し、前記室外機の消費電力を制御する電力制御手段を備えた空気調和機であって、
前記電力制御手段は、冷房運転時及び暖房運転のいずれの場合も、制御周期ごとに前記室外送風ファンの回転数の増減制御を行い、前記圧縮機及び室外ファンの合計電力を最小にするとともに、暖房運転時には、前記室外送風ファンの回転数の増減制御の下限値を、前記室外熱交換器に着霜しない回転数に設定することを特徴とする空気調和機。
A refrigeration cycle is established by connecting a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, and an outdoor unit equipped with an outdoor fan, and an indoor unit equipped with an indoor expansion valve and an indoor heat exchanger with a refrigerant pipe. An air conditioner comprising power control means for forming and controlling power consumption of the outdoor unit,
The power control means performs increase / decrease control of the rotational speed of the outdoor fan in each control cycle in both the cooling operation and the heating operation, and minimizes the total power of the compressor and the outdoor fan, An air conditioner characterized in that, during heating operation, the lower limit value of the increase / decrease control of the rotational speed of the outdoor fan is set to a rotational speed at which the outdoor heat exchanger does not form frost.
前記電力制御手段は、冷房運転時は、前記室外送風ファンの初期回転数を該ファンの上限回転数付近に設定し、初回制御周期で所定の減少幅で前記室外送風ファンの回転数を減少させるとともに、制御周期ごとに前記圧縮機の電力及び前記室外送風ファンの電力を検出してこれらの合計電力を求めて、前回制御周期における前記合計電力と今回制御周期における前記合計電力とを比較して、
前記合計電力が減少しており、かつその減少幅が予め設定された値より大きければ、前記室外送風ファンの回転数を、前回制御周期での前記室外送風ファンの回転数の増減方向と同一方向に、前回制御周期での増減幅と同じ増減幅で変更し、
前記合計電力が増加していれば、前記室外送風ファンの回転数を、前回制御周期での前記室外送風ファンの回転数の増減方向と逆方向に、前回制御周期での増減幅より少ない増減幅で変更し、
前記合計電力が減少しており、かつ減少幅が予め設定された値より小さいとき、あるいは前記合計電力が同値のときは、前記室外送風ファンの回転数を維持することを特徴とする請求項1に記載の空気調和機。
The power control means sets the initial rotational speed of the outdoor blower fan in the vicinity of the upper limit rotational speed of the fan during the cooling operation, and decreases the rotational speed of the outdoor blower fan by a predetermined reduction width in the initial control cycle. In addition, the power of the compressor and the power of the outdoor blower fan are detected for each control cycle to obtain the total power, and the total power in the previous control cycle is compared with the total power in the current control cycle. ,
If the total power is reduced and the reduction range is larger than a preset value, the rotational speed of the outdoor fan is the same as the increase / decrease direction of the rotational speed of the outdoor fan in the previous control cycle. To the same increase / decrease width as the previous control cycle,
If the total power is increased, the rotation speed of the outdoor fan is increased or decreased in the opposite direction to the increase or decrease direction of the rotation speed of the outdoor fan in the previous control period, which is smaller than the increase or decrease width in the previous control period. Change
2. The rotational speed of the outdoor fan is maintained when the total power is reduced and the reduction width is smaller than a preset value or when the total power is the same value. The air conditioner described in 1.
前記室外熱交換器の冷媒温度を検出する温度センサを備え、前記電力制御手段は、暖房運転時は、前記室外送風ファンの初期回転数を該ファンの上限回転数付近に設定し、初回制御周期で所定の減少幅で前記室外送風ファンの回転数を減少させるとともに、制御周期ごとに前記圧縮機の電力及び前記室外送風ファンの電力を検出してこれらの合計電力を求めて、前回制御周期における前記合計電力と今回制御周期における前記合計電力とを比較して、
合計電力が減少していれば、前記室外送風ファンの回転数を、前回制御周期での減少幅と同じ減少幅で減少し、合計電力が増加あるいは同値のときは、前記室外送風ファンの回転数を維持する制御を行いながら、
前記室外送風ファンの回転数を減少させるごとに、前記温度センサの検出温度が0℃以下か否かを判定して、0℃以下のときは、前記室外送風ファンの回転数を減少前の回転数に戻して、該回転数を維持することを特徴とする請求項1に記載の空気調和機。
A temperature sensor that detects a refrigerant temperature of the outdoor heat exchanger, and the power control means sets an initial rotational speed of the outdoor blower fan in the vicinity of an upper limit rotational speed of the fan during heating operation, and an initial control cycle The rotational speed of the outdoor blower fan is reduced by a predetermined reduction width at the same time, and the power of the compressor and the outdoor blower fan are detected for each control cycle to obtain the total power, and in the previous control cycle Compare the total power with the total power in the current control cycle,
If the total power is reduced, the rotational speed of the outdoor blower fan is reduced by the same reduction width as the previous control cycle, and when the total power is increased or equal, the rotational speed of the outdoor blower fan is reduced. While performing control to maintain
Each time the rotational speed of the outdoor blower fan is decreased, it is determined whether or not the temperature detected by the temperature sensor is 0 ° C. or lower. When the detected temperature is 0 ° C. or lower, the rotational speed of the outdoor blower fan is decreased before the decrease. The air conditioner according to claim 1, wherein the rotational speed is maintained by returning to a number.
JP2007117229A 2007-04-26 2007-04-26 Air conditioner Pending JP2008275216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007117229A JP2008275216A (en) 2007-04-26 2007-04-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007117229A JP2008275216A (en) 2007-04-26 2007-04-26 Air conditioner

Publications (1)

Publication Number Publication Date
JP2008275216A true JP2008275216A (en) 2008-11-13

Family

ID=40053378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007117229A Pending JP2008275216A (en) 2007-04-26 2007-04-26 Air conditioner

Country Status (1)

Country Link
JP (1) JP2008275216A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217643A (en) * 2011-09-30 2013-10-24 Daikin Industries Ltd Coolant cycle system
JP5549773B1 (en) * 2013-09-30 2014-07-16 株式会社富士通ゼネラル Air conditioner
WO2016051472A1 (en) * 2014-09-29 2016-04-07 三菱電機株式会社 Power amount management device for cooling system
CN106545953A (en) * 2016-09-20 2017-03-29 珠海格力电器股份有限公司 A kind of state of air-conditioning determines method, device and air-conditioning
JPWO2015145714A1 (en) * 2014-03-28 2017-04-13 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
US9638448B2 (en) 2011-09-30 2017-05-02 Daikin Industries, Ltd. Refrigerant cycle system
CN106949605A (en) * 2017-04-10 2017-07-14 广东美的暖通设备有限公司 Air-conditioner, outdoor unit accumulated snow determination methods and system
WO2020203849A1 (en) * 2019-03-29 2020-10-08 日立ジョンソンコントロールズ空調株式会社 Refrigeration cycle prediction control

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169436A (en) * 1986-12-29 1988-07-13 Mitsubishi Heavy Ind Ltd Automatic refrigeration and cold storage controller
JPH05118609A (en) * 1991-10-28 1993-05-14 Nippondenso Co Ltd Method of controlling air conditioning and device thereof
JPH0814698A (en) * 1994-06-30 1996-01-19 Aisin Seiki Co Ltd Operation control device for air-conditioner
JPH08166174A (en) * 1994-12-14 1996-06-25 Toshiba Ave Corp Air conditioner
JPH08247561A (en) * 1995-03-10 1996-09-27 Toshiba Ave Corp Air conditioner
JPH10148378A (en) * 1996-11-20 1998-06-02 Sanyo Electric Co Ltd Air conditioner
JPH10185284A (en) * 1996-10-28 1998-07-14 Daikin Ind Ltd Air conditioner
JP2005265218A (en) * 2004-03-16 2005-09-29 Toshiba Corp Fan control method and fan controller
JP2006179405A (en) * 2004-12-24 2006-07-06 Ebara Corp Fuel cell power generating method and fuel cell power generating device
JP2008215678A (en) * 2007-03-01 2008-09-18 Mitsubishi Electric Corp Operation control method of air-conditioning system and air conditioning system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169436A (en) * 1986-12-29 1988-07-13 Mitsubishi Heavy Ind Ltd Automatic refrigeration and cold storage controller
JPH05118609A (en) * 1991-10-28 1993-05-14 Nippondenso Co Ltd Method of controlling air conditioning and device thereof
JPH0814698A (en) * 1994-06-30 1996-01-19 Aisin Seiki Co Ltd Operation control device for air-conditioner
JPH08166174A (en) * 1994-12-14 1996-06-25 Toshiba Ave Corp Air conditioner
JPH08247561A (en) * 1995-03-10 1996-09-27 Toshiba Ave Corp Air conditioner
JPH10185284A (en) * 1996-10-28 1998-07-14 Daikin Ind Ltd Air conditioner
JPH10148378A (en) * 1996-11-20 1998-06-02 Sanyo Electric Co Ltd Air conditioner
JP2005265218A (en) * 2004-03-16 2005-09-29 Toshiba Corp Fan control method and fan controller
JP2006179405A (en) * 2004-12-24 2006-07-06 Ebara Corp Fuel cell power generating method and fuel cell power generating device
JP2008215678A (en) * 2007-03-01 2008-09-18 Mitsubishi Electric Corp Operation control method of air-conditioning system and air conditioning system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217643A (en) * 2011-09-30 2013-10-24 Daikin Industries Ltd Coolant cycle system
US9638448B2 (en) 2011-09-30 2017-05-02 Daikin Industries, Ltd. Refrigerant cycle system
EP3054230A4 (en) * 2013-09-30 2017-05-17 Fujitsu General Limited Air conditioner
JP5549773B1 (en) * 2013-09-30 2014-07-16 株式会社富士通ゼネラル Air conditioner
WO2015045428A1 (en) * 2013-09-30 2015-04-02 株式会社 富士通ゼネラル Air conditioner
CN105121973A (en) * 2013-09-30 2015-12-02 富士通将军股份有限公司 Air conditioner
AU2014325839B2 (en) * 2013-09-30 2016-05-19 Fujitsu General Limited Air conditioner
EP3054230A1 (en) * 2013-09-30 2016-08-10 Fujitsu General Limited Air conditioner
US10168066B2 (en) 2013-09-30 2019-01-01 Fujitsu General Limited Air conditioner with outdoor fan control in accordance with suction pressure and suction superheating degree of a compressor
US10222108B2 (en) 2014-03-28 2019-03-05 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner
JPWO2015145714A1 (en) * 2014-03-28 2017-04-13 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
WO2016051472A1 (en) * 2014-09-29 2016-04-07 三菱電機株式会社 Power amount management device for cooling system
JPWO2016051472A1 (en) * 2014-09-29 2017-04-27 三菱電機株式会社 Power management device for cooling system
CN106545953A (en) * 2016-09-20 2017-03-29 珠海格力电器股份有限公司 A kind of state of air-conditioning determines method, device and air-conditioning
CN106949605A (en) * 2017-04-10 2017-07-14 广东美的暖通设备有限公司 Air-conditioner, outdoor unit accumulated snow determination methods and system
WO2020203849A1 (en) * 2019-03-29 2020-10-08 日立ジョンソンコントロールズ空調株式会社 Refrigeration cycle prediction control

Similar Documents

Publication Publication Date Title
KR101462745B1 (en) Control device for an air-conditioning device and air-conditioning device provided therewith
JP5056855B2 (en) Air conditioner
JP4767199B2 (en) Air conditioning system operation control method and air conditioning system
JP2008275216A (en) Air conditioner
US20050284163A1 (en) Cooling cycle apparatus and method of controlling linear expansion valve of the same
WO2009157191A1 (en) Air conditioner and method for determining the amount of refrigerant therein
JP5263522B2 (en) Refrigeration equipment
WO2016171052A1 (en) Refrigeration cycle device
JP4840522B2 (en) Refrigeration equipment
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
US10184683B2 (en) Air conditioning device
US20150362238A1 (en) Refrigeration cycle apparatus and method of controlling refrigeration cycle apparatus
EP3690356A1 (en) Refrigeration cycle device
US20180023870A1 (en) Air conditioning device
JP2010190563A (en) Controlling method of compressor and system thereof
JP6495064B2 (en) Air conditioning system control device, air conditioning system, air conditioning system control program, and air conditioning system control method
JP5505477B2 (en) AIR CONDITIONER AND REFRIGERANT AMOUNT JUDGING METHOD FOR AIR CONDITIONER
JP5316457B2 (en) Air conditioner
JP2012202581A (en) Refrigeration cycle device and control method thereof
JP2004278825A (en) Air conditioner
JP2011007482A (en) Air conditioner
US20190120513A1 (en) Air-conditioning apparatus
JP6537629B2 (en) Air conditioner
JP5245576B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP2002147819A (en) Refrigeration unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529