JPH1038398A - Controller of electric expansion valve - Google Patents

Controller of electric expansion valve

Info

Publication number
JPH1038398A
JPH1038398A JP19357796A JP19357796A JPH1038398A JP H1038398 A JPH1038398 A JP H1038398A JP 19357796 A JP19357796 A JP 19357796A JP 19357796 A JP19357796 A JP 19357796A JP H1038398 A JPH1038398 A JP H1038398A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
expansion valve
electric expansion
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19357796A
Other languages
Japanese (ja)
Inventor
Kiyotaka Ueno
野 聖 隆 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba AVE Co Ltd
Original Assignee
Toshiba Corp
Toshiba AVE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba AVE Co Ltd filed Critical Toshiba Corp
Priority to JP19357796A priority Critical patent/JPH1038398A/en
Publication of JPH1038398A publication Critical patent/JPH1038398A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the degree of superheat of a refrigerant more accurately and also, control an electric expansion valve, according to this degree of superheat, by detecting the temperature of the refrigerant on outlet side of an evaporator and the temperature of the refrigerant on inlet side severally, and computing the temperature of evaporation, and further, seeking the degree of superheat of the refrigerant. SOLUTION: A temporary degree-of-superheat computing means 12 receives the input of the refrigerant temperature TC1 on outlet side of an outdoor heat exchanger 24 detected by a temperature sensor 51 and the refrigerant temperature TC2 on inlet side, and computes temporary degree SH0 of superheat, and adds it to a temperature displacement retrieval means 13. A evaporation temperature computing means 14 receives the input of the refrigerant temperature TC2 on inlet side detected by a temperature sensor in addition to the displacement TGX of saturation temperature, and computes the evaporation temperature TG. The degree of superheat SH computed with a refrigerant degree-of-superheat computing means 15 is added to an expansion valve aperture control means 16, and it controls the aperture of the electric expansion valve 25. Hereby, the degree of superheat of the refrigerant can be detected more accurately, and the electric expansion valve can be controlled, according to this degree of superheat.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍サイクルの冷
媒を適正な過熱度とするように電動式膨張弁の開度を制
御する電動式膨張弁の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an electric expansion valve for controlling the opening of the electric expansion valve so that the refrigerant in the refrigeration cycle has an appropriate degree of superheating.

【0002】[0002]

【従来の技術】図14は空気調和機を構成する冷凍サイ
クルのうち、室外ユニットに対応する部分を示したもの
で、商用電源によって駆動される圧縮機21の吐出側に
マフラー22が設けられ、このマフラーを通してガス冷
媒が四方切換弁23に供給される。四方切換弁23は、
冷房運転モードにて実線の矢印で示したようにガス冷媒
を室外熱交換器24に送り込み、暖房運転モードでは破
線の矢印で示したようにガス冷媒を、ストレーナ28を
介して、図示省略の室内ユニットを構成する室内熱交換
器に送り込む。
2. Description of the Related Art FIG. 14 shows a portion corresponding to an outdoor unit in a refrigeration cycle constituting an air conditioner. A muffler 22 is provided on a discharge side of a compressor 21 driven by a commercial power supply. The gas refrigerant is supplied to the four-way switching valve 23 through the muffler. The four-way switching valve 23
In the cooling operation mode, the gas refrigerant is sent to the outdoor heat exchanger 24 as indicated by the solid line arrow, and in the heating operation mode, the gas refrigerant is transmitted through the strainer 28 through the strainer 28 as shown in a room (not shown) in the heating operation mode. It is sent to the indoor heat exchanger that constitutes the unit.

【0003】いま、冷房モードで運転されたとすれば、
室外熱交換器24に送り込まれたガス冷媒はここで熱交
換されて液冷媒に変換され、この液冷媒は電動式膨張弁
25によって流量制御がなされ、さらに、リキッドタン
ク26に蓄えられた後、水分を除去するためのドライヤ
27を介して図示省略の室内熱交換器に送り込まれる。
この液冷媒は室内熱交換器にてガス冷媒に変換され、ス
トレーナ28を介して四方切換弁23に戻される。さら
に、四方切換弁23を通ったガス冷媒はアキュムレータ
30に送り込まれる。このガス冷媒には若干の液冷媒が
混入しており、アキュムレータ30はこの液冷媒を分離
してガス冷媒のみを送り出して圧縮機21に吸入させ
る。
[0003] Assuming that the air conditioner is operated in the cooling mode,
The gas refrigerant sent to the outdoor heat exchanger 24 is heat-exchanged here and converted into a liquid refrigerant. The liquid refrigerant is subjected to flow control by an electric expansion valve 25, and further stored in a liquid tank 26. It is sent to an indoor heat exchanger (not shown) via a dryer 27 for removing moisture.
This liquid refrigerant is converted into a gas refrigerant in the indoor heat exchanger and returned to the four-way switching valve 23 via the strainer 28. Further, the gas refrigerant that has passed through the four-way switching valve 23 is sent to the accumulator 30. The gas refrigerant contains some liquid refrigerant, and the accumulator 30 separates the liquid refrigerant, sends out only the gas refrigerant, and causes the compressor 21 to suck it.

【0004】一方、暖房モードで運転されたとすれば、
ストレーナ28を介して室内熱交換器に送り込まれたガ
ス冷媒は、ここで液冷媒に変換されたのち、ドライヤ2
7を介して、リキッドタンク26に蓄えられる。さら
に、この液冷媒は電動式膨張弁25によって流量制御が
なされて室外熱交換器24に供給される。この室外熱交
換器24によって、液冷媒はガス冷媒に変換されたの
ち、四方切換弁23を通してアキュムレータ30に送り
込まれる。そして、内部に含まれた若干の液冷媒を分離
して得られたガス冷媒のみが圧縮機21に吸入される。
On the other hand, if operated in the heating mode,
The gas refrigerant sent to the indoor heat exchanger via the strainer 28 is converted here into a liquid refrigerant, and then is converted into a liquid refrigerant.
7, and is stored in the liquid tank 26. Further, the flow rate of the liquid refrigerant is controlled by the electric expansion valve 25 and is supplied to the outdoor heat exchanger 24. The liquid refrigerant is converted into a gas refrigerant by the outdoor heat exchanger 24 and then sent to the accumulator 30 through the four-way switching valve 23. Then, only the gas refrigerant obtained by separating some of the liquid refrigerant contained therein is sucked into the compressor 21.

【0005】[0005]

【発明が解決しようとする課題】周知の如く、電動式膨
張弁25は蒸発器として作用する熱交換器、すなわち、
暖房モードで運転される場合の室外熱交換器、又は、冷
房モードで運転される場合の室内熱交換器の状態を最適
に保つべく液冷媒の流量を制御するもので、そのために
ガス冷媒の過熱度、すなわち、飽和温度との差を求める
必要がある。
As is well known, the motorized expansion valve 25 is a heat exchanger acting as an evaporator,
It controls the flow rate of the liquid refrigerant to keep the state of the outdoor heat exchanger when operating in the heating mode or the state of the indoor heat exchanger when operating in the cooling mode. It is necessary to determine the degree, that is, the difference from the saturation temperature.

【0006】本来、この過熱度は圧縮機の吸入側に圧力
センサを設けることによって高精度で検出できるが、圧
力センサは高価であるため、図14に冷凍サイクルの一
部を例示した空気調和機においては、圧力センサと比較
して格段に廉価な温度センサを含む疑似飽和温度検出回
路によって過熱度を求めている。
Originally, this degree of superheat can be detected with high accuracy by providing a pressure sensor on the suction side of the compressor. However, since the pressure sensor is expensive, an air conditioner as shown in FIG. In, the degree of superheat is determined by a pseudo-saturation temperature detection circuit including a temperature sensor which is much cheaper than a pressure sensor.

【0007】すなわち、図14に示した冷凍サイクルに
おいては、暖房運転モードにおける電動式膨張弁25の
入側とアキュムレータ30の吸入側との間にキャピラリ
ーチューブ29を設けてアキュムレータ30側のガス冷
媒の温度を疑似飽和温度TGとして温度センサ34によ
って検出している。しかし、この場合には冷媒の流量や
フラッシュガスの存在によつて実飽和温度とのずれが生
じるため、圧縮機21の吸入側に設けた温度センサ3
1、吐出側に設けた温度センサ32及び室外熱交換器2
4の入側に設けた温度センサ33の各温度検出値TS,
TD,TEによって疑似飽和温度TGを補正する必要が
あった。このため、実過熱度を求めるに当って多数の温
度センサを必要とし、かつ、複雑な補正演算を余儀なく
されていた。
That is, in the refrigeration cycle shown in FIG. 14, a capillary tube 29 is provided between the inlet side of the motor-operated expansion valve 25 and the suction side of the accumulator 30 in the heating operation mode, so that the gas refrigerant on the accumulator 30 side is cooled. The temperature is detected by the temperature sensor 34 as the pseudo saturation temperature TG. However, in this case, a difference from the actual saturation temperature occurs due to the flow rate of the refrigerant and the presence of the flash gas. Therefore, the temperature sensor 3 provided on the suction side of the compressor 21 is used.
1. Temperature sensor 32 provided on discharge side and outdoor heat exchanger 2
4, each temperature detection value TS of the temperature sensor 33 provided on the input side,
It was necessary to correct the pseudo saturation temperature TG by TD and TE. For this reason, a large number of temperature sensors are required to determine the actual degree of superheat, and a complicated correction operation has to be performed.

【0008】本発明は上記の課題を解決するためになさ
れたもので、冷凍サイクルの制御に使用される必要最小
限の温度センサの温度情報に基づいて、冷媒の過熱度を
より正確に検出すると共に、この過熱度に従って電動式
膨張弁を制御する電動式膨脹弁の制御装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and more precisely detects the degree of superheat of a refrigerant based on temperature information of a minimum necessary temperature sensor used for controlling a refrigeration cycle. It is another object of the present invention to provide a control device for an electric expansion valve that controls the electric expansion valve according to the degree of superheat.

【0009】[0009]

【課題を解決するための手段】以下、本発明をその原理
と併せて説明する。いま、図7(a)に示したように、
蒸発器としての室外熱交換器24の上流部に電動式膨張
弁25を備え、冷媒はA矢印方向に循環するものとす
る。そして、室内熱交換器の出口側に温度センサ51
を、電動式膨張弁25と室外熱交換器24との間、すな
わち、室外熱交換器24の入口側に温度センサ52をそ
れぞれ設けて冷媒の温度を検出するものとする。
The present invention will be described below together with its principle. Now, as shown in FIG.
An electric expansion valve 25 is provided upstream of the outdoor heat exchanger 24 as an evaporator, and the refrigerant circulates in the direction of arrow A. A temperature sensor 51 is provided at the outlet side of the indoor heat exchanger.
The temperature sensors 52 are provided between the electric expansion valve 25 and the outdoor heat exchanger 24, that is, on the inlet side of the outdoor heat exchanger 24 to detect the temperature of the refrigerant.

【0010】ここで、電動式膨張弁25の絞り量が少な
く冷媒の循環量が多い場合、電動式膨張弁25を出た冷
媒の温度は、同図(b)中に実線Pで示したように変化
する。逆に、電動式膨張弁25の絞り量が大きく冷媒の
循環量が少ない場合、電動式膨張弁25を出た冷媒の温
度は、同図(b)中に一点鎖線Qで示したように変化す
る。このうち、循環量が少ない場合の電動式膨張弁25
の出口側の温度、すなわち、温度センサ52によって検
出される温度TC2を蒸発温度TGと仮定する。これら
の温度変化の状態及び冷媒の持つ性質から、次のa〜h
項の内容を推測することができる。 a.蒸発器としての室外熱交換器24の入口側と出口側
とで圧力差(以下、圧損又は流量圧損とも言う)がある
と温度変位TGXを生じる。 b.電動式膨張弁による絞り量が大きいときは、冷媒の
循環量が低下し、流量圧損は小さくなるため、室外熱交
換器24の入口側の温度TC2は蒸発温度TGに限りな
く近付く。 c.流量圧損による温度変位TGXは冷媒の循環量と室
外熱交換器24の流量圧損との関係によって変化する。 d.冷媒の循環量が一定であれば流量圧損による温度変
位TGXも一定と考えられる。 e.ただし、流量圧損が一定であっても、冷媒の温度に
よって温度変位TGXの値は変化する。 f.この温度変位TGXの変位は、冷媒の飽和圧力と冷
媒温度との関係から求められる。 g.以上の事項から、蒸発温度TGは次式によって求め
られる。 TG=TC2−TGX …(1) h.この蒸発温度TGが分かれば、過熱度SHは次式に
よって求められる。 SH=TC1−TG …(2) 上述した推測が妥当なものであるか否かを実運転データ
と対比して検証してみることとする。空気調和機に用い
られる各種の冷媒のうち、例えば、R22についてその
飽和圧力と冷媒温度との関係を線図で示すと図8のよう
になる。この線図から、冷媒の温度をパラメータとし
て、冷媒圧力の変位すなわち圧損と飽和温度の変位との
関係を図表で示すと図9のようになる。もし、冷媒の温
度として温度センサ52の検出値TC2を用いたとすれ
ば、表中の各値が蒸発温度に応じて定まる圧損を温度に
換算した温度変位TGXに相当しており、本発明ではこ
の表中の圧損に対して、図12に示すように、室外熱交
換器24の出口側の冷媒温度TC1から入口側の冷媒温
度TC2を引き算した仮の過熱度SH0を割り当ててい
る。
Here, when the throttle amount of the electric expansion valve 25 is small and the circulation amount of the refrigerant is large, the temperature of the refrigerant exiting the electric expansion valve 25 is indicated by a solid line P in FIG. Changes to Conversely, when the throttle amount of the electric expansion valve 25 is large and the circulation amount of the refrigerant is small, the temperature of the refrigerant that has exited the electric expansion valve 25 changes as indicated by the dashed-dotted line Q in FIG. I do. Among them, the electric expansion valve 25 when the circulation amount is small
, The temperature TC2 detected by the temperature sensor 52 is assumed to be the evaporation temperature TG. From the state of these temperature changes and the properties of the refrigerant, the following a to h
You can guess the content of the term. a. If there is a pressure difference between the inlet side and the outlet side of the outdoor heat exchanger 24 as an evaporator (hereinafter, also referred to as pressure loss or flow rate pressure loss), a temperature displacement TGX occurs. b. When the throttle amount by the electric expansion valve is large, the circulation amount of the refrigerant decreases and the flow pressure loss decreases, so that the temperature TC2 on the inlet side of the outdoor heat exchanger 24 approaches the evaporation temperature TG without limit. c. The temperature displacement TGX due to the flow rate pressure loss changes depending on the relationship between the refrigerant circulation amount and the flow rate pressure loss of the outdoor heat exchanger 24. d. If the circulation amount of the refrigerant is constant, it is considered that the temperature displacement TGX due to the flow pressure loss is also constant. e. However, even if the flow pressure loss is constant, the value of the temperature displacement TGX changes depending on the temperature of the refrigerant. f. The displacement of the temperature displacement TGX is obtained from the relationship between the saturation pressure of the refrigerant and the refrigerant temperature. g. From the above, the evaporation temperature TG is obtained by the following equation. TG = TC2-TGX (1) h. If this evaporation temperature TG is known, the degree of superheat SH can be obtained by the following equation. SH = TC1-TG (2) Whether the above guess is appropriate or not will be verified by comparing it with actual operation data. Among various refrigerants used in the air conditioner, for example, the relationship between the saturation pressure and the refrigerant temperature of R22 is shown in FIG. 8. FIG. 9 is a graph showing the relationship between the displacement of the refrigerant pressure, that is, the pressure loss and the displacement of the saturation temperature, using the temperature of the refrigerant as a parameter from this diagram. If the detected value TC2 of the temperature sensor 52 is used as the temperature of the refrigerant, each value in the table corresponds to a temperature displacement TGX obtained by converting a pressure loss determined according to the evaporation temperature into a temperature. As shown in FIG. 12, a temporary superheat degree SH0 obtained by subtracting the refrigerant temperature TC2 on the inlet side from the refrigerant temperature TC1 on the outlet side of the outdoor heat exchanger 24 is assigned to the pressure loss in the table.

【0011】いま、図10に示すように、1台の室外機
に3台の室内機が接続されたマルチ式空気調和機におい
て、A,B,C各室の配管長は互いに等しく、また、室
内機はいずれもJISで定めた冷房モードで運転される
ものとする。このとき、蒸発器として作用する室内機の
入口側温度と出口側温度との温度差(出口側の温度−入
口側温度)と冷房能力との関係を調べると図11の線図
に示す実運転データが得られた。なお、この線図は過熱
度及び蒸発圧力をパラメータとして示したものである。
この場合、A,B,C各室の負荷要求はそれぞれ100
%,80%,50%であった。
As shown in FIG. 10, in a multi-type air conditioner in which three indoor units are connected to one outdoor unit, the pipe lengths of the A, B, and C rooms are equal to each other. All of the indoor units are operated in the cooling mode defined by JIS. At this time, the relationship between the temperature difference between the inlet side temperature and the outlet side temperature of the indoor unit acting as an evaporator (outlet side temperature−inlet side temperature) and the cooling capacity was examined, and the actual operation shown in the diagram of FIG. Data was obtained. This diagram shows the degree of superheat and the evaporation pressure as parameters.
In this case, the load demand of each of the rooms A, B and C is 100
%, 80% and 50%.

【0012】もし、A室の室内機の過熱度が5Kのと
き、入口側の温度TC2と出口側の温度TC1との差が
1℃であったとすれば、負荷要求100%に対応する蒸
発圧力は5.2(Kg/cm2 )と見做されるため次式
が成立する。 TC1=5+5.2=10.2 [℃] …(3) TC2=1+10.2=11.2 [℃] …(4) 従って、TC2と蒸発温度との誤差は6[℃]となり図
12の図表の値(SH0が「〜1」でTC2が「10〜
15」となる位置の値)と一致する。
If the difference between the temperature TC2 on the inlet side and the temperature TC1 on the outlet side is 1 ° C. when the degree of superheat of the indoor unit in the room A is 5K, the evaporation pressure corresponding to the load requirement of 100% Is assumed to be 5.2 (Kg / cm 2 ), so that the following equation holds. TC1 = 5 + 5.2 = 10.2 [° C.] (3) TC2 = 1 + 10.2 = 11.2 [° C.] (4) Accordingly, the error between TC2 and the evaporating temperature is 6 [° C.], as shown in FIG. The values in the chart (SH0 is “〜1” and TC2 is “10
15 ").

【0013】次に、B室の室内機においてTC2−TC
1=−7℃であったとする。この室内機においても蒸発
圧力は5.2(Kg/cm2 )であるから、この蒸発圧
力の範囲で、冷房能力が80%に対応する過熱度は12
Kとなる。そこで、次式が成立する。 TC1=12+5.2=17.2 [℃] …(5) TC2=−7+17.2=10.2[℃] …(6) 従って、TC2と蒸発温度との誤差は5[℃]となり図
12の図表の値(SH0が「6〜10」でTC2が「1
0〜15」となる位置の値)と一致する。
Next, in the indoor unit of the room B, TC2-TC
1 = −7 ° C. Also in this indoor unit, the evaporating pressure is 5.2 (Kg / cm 2 ), and the superheat degree corresponding to the cooling capacity of 80% is 12 in this evaporating pressure range.
It becomes K. Then, the following equation is established. TC1 = 12 + 5.2 = 17.2 [° C.] (5) TC2 = −7 + 17.2 = 10.2 [° C.] (6) Accordingly, the error between TC2 and the evaporation temperature is 5 [° C.], and FIG. (SH0 is “6 to 10” and TC2 is “1”
0 to 15 ”).

【0014】次に、C室の室内機においてTC2−TC
1=−16℃であったとする。この室内機においても蒸
発圧力は5.2(Kg/cm2 )であるから、この蒸発
圧力の範囲で、冷房能力が50%に対応する過熱度は1
8Kとなる。そこで、次式が成立する。 TC1=18+5.2=23.2 [℃] …(7) TC2=−16+23.2=7.2[℃] …(8) 従って、TC2と蒸発温度との誤差は2[℃]となり図
12の図表の値(SH0が「14〜16」でTC2が
「5〜10」となる斜線を施した位置の値)と一致す
る。
Next, in the indoor unit of the room C, TC2-TC
It is assumed that 1 = −16 ° C. Also in this indoor unit, the evaporating pressure is 5.2 (Kg / cm 2 ), so that within this evaporating pressure range, the degree of superheat corresponding to 50% of the cooling capacity is 1
8K. Then, the following equation is established. TC1 = 18 + 5.2 = 23.2 [° C.] (7) TC2 = −16 + 23.2 = 7.2 [° C.] (8) Accordingly, the error between TC2 and the evaporation temperature is 2 [° C.] and FIG. (Values at hatched positions where SH0 is “14 to 16” and TC2 is “5 to 10”).

【0015】以上、図11に示す実運転データから、T
C2と蒸発温度との誤差を逆算して、圧損に対応させて
予め定めた仮の過熱度が妥当であることの確認ができ
た。
From the actual operation data shown in FIG.
The error between C2 and the evaporating temperature was calculated backward, and it was confirmed that the temporary degree of superheat determined in advance corresponding to the pressure loss was appropriate.

【0016】そこで、請求項1に記載の電動式膨脹弁の
制御装置は、上流部に電動式膨張弁を備えた蒸発器の出
口側の冷媒温度TC1と入口側の冷媒温度TC2とをそ
れぞれ検出する一方、TC1−TC2の値を仮の過熱度
SH0とし、検出温度TC2をパラメータとして、過熱
度SH0と温度変位TGXとを関連付けた図12に示す
冷媒温度特性表を記憶手段に記憶させ、TC2から冷媒
温度特性表の値TGXを減算して蒸発温度TGを算出
し、さらに、TC1からこのTGを差引くことによって
冷媒過熱度を求め、さらに、この冷媒過熱度に基づいて
電動式膨張弁の開度を制御するするもので、これによっ
て、冷凍サイクルの制御に使用される必要最小限の温度
センサの温度情報に基づいて、冷媒の過熱度をより正確
に検出すると共に、この過熱度に従って電動式膨張弁を
制御することができる。
Therefore, the control device for the electric expansion valve according to the present invention detects the refrigerant temperature TC1 on the outlet side and the refrigerant temperature TC2 on the inlet side of the evaporator having the electric expansion valve upstream. On the other hand, the refrigerant temperature characteristic table shown in FIG. 12 in which the superheat degree SH0 and the temperature displacement TGX are associated with each other using the detected temperature TC2 as a parameter and the value of TC1-TC2 as the temporary superheat degree SH0 is stored in the storage means. From the refrigerant temperature characteristic table to calculate the evaporation temperature TG, and further subtract the TG from TC1 to determine the refrigerant superheat degree. Further, based on the refrigerant superheat degree, the electric expansion valve It controls the opening degree, thereby detecting the degree of superheat of the refrigerant more accurately, based on the temperature information of the minimum necessary temperature sensor used for controlling the refrigeration cycle, It is possible to control the motorized expansion valve according to the degree of superheat.

【0017】また、請求項2に記載の電動式膨脹弁の制
御装置は、マルチ式空気調和機を冷房モードで運転する
場合、蒸発器として作用する室内熱交換器の上流側にそ
れぞれ電動式膨張弁を備える冷凍サイクルに適用したも
ので、これらの電動式膨張弁を請求項1に記載の制御系
を用いて制御するようにしたものである。
Further, in the control device for the electric expansion valve according to the present invention, when the multi-type air conditioner is operated in the cooling mode, the electric expansion valve is provided on the upstream side of the indoor heat exchanger acting as an evaporator. The present invention is applied to a refrigeration cycle having a valve, and controls these electric expansion valves using the control system according to the first aspect.

【0018】さらに、請求項3に記載の電動式膨脹弁の
制御装置は、圧縮機、四方切換弁、室外熱交換器及び電
動式膨張弁を収納した室外機に、室内熱交換器を収納し
た室内機を接続してなる、いわゆる、カスタム空気調和
機の冷凍サイクルに適用するものであり、この空気調和
機を暖房モードで運転するとき、電子膨張弁、室外熱交
換器、圧縮機の順に冷媒を循環させる場合の電動式膨張
弁を制御するに当って、第1の温度検出手段として、圧
縮機の吸込み側の配管に設置されることの多い温度セン
サを用いるようにしたもので、これによって、既設の温
度センサを利用することができる。
Further, in the control device for the electric expansion valve according to the third aspect, the indoor heat exchanger is housed in an outdoor unit that houses the compressor, the four-way switching valve, the outdoor heat exchanger, and the electric expansion valve. This is applied to the so-called refrigeration cycle of a custom air conditioner that connects indoor units, and when this air conditioner is operated in the heating mode, the refrigerant flows in the order of an electronic expansion valve, an outdoor heat exchanger, and a compressor. In controlling the electric expansion valve in the case of circulating water, a temperature sensor which is often installed in a pipe on the suction side of the compressor is used as the first temperature detecting means. , An existing temperature sensor can be used.

【0019】ところで、カスタム空気調和機の冷凍サイ
クルに使用される電動式膨張弁は、室内機に設けられた
り、室外機に設けられたりする。請求項4に記載の電動
式膨脹弁の制御装置は、電動式膨張弁の設置位置に関係
なく、要は、圧縮機、四方切換弁、室外熱交換器、電動
式膨張弁、室内熱交換器、四方切換弁及び圧縮機を順次
接続した冷凍サイクルの電動式膨張弁を制御対象とした
ものである。
The electric expansion valve used in the refrigeration cycle of a custom air conditioner is provided in an indoor unit or an outdoor unit. The control device for the electric expansion valve according to the fourth aspect is essentially a compressor, a four-way switching valve, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger, regardless of the installation position of the electric expansion valve. , An electric expansion valve of a refrigeration cycle in which a four-way switching valve and a compressor are sequentially connected.

【0020】一方、暖房モードで運転中に、室外熱交換
器に着霜することがある。この着霜に対処する一つの方
法として、室外熱交換の入口側の温度TEを検出し、室
外ファンの回転数を変更している。この回転数の変更に
よつて、蒸発器としての室外熱交換器の入口側温度TE
と圧損との関係も変化する。従って、蒸発器の入口側温
度TEに対する蒸発温度の変位(補正値)TGXは、圧
損をパラメータとして線図で示すと図13のようにな
る。そこで、請求項5に記載の電動式膨脹弁の制御装置
は、室外ファンの回転数を、室外熱交換器の入口側の温
度TEによって変更制御するとき、圧縮機の吐出側の温
度を検出する第3の温度検出手段の温度検出値に応じて
過熱度を補正すると共に、補正された過熱度に基づいて
電動式膨張弁の開度目標値を補正するので、室外ファン
の回転数を制御する場合でも、冷媒の過熱度をより正確
に検出すると共に、この過熱度に従って電動式膨張弁を
制御することができる。
On the other hand, frost may form on the outdoor heat exchanger during operation in the heating mode. As one method for dealing with this frost formation, the temperature TE on the inlet side of the outdoor heat exchange is detected, and the rotation speed of the outdoor fan is changed. By changing the rotation speed, the inlet side temperature TE of the outdoor heat exchanger as the evaporator is changed.
The relationship between pressure drop and pressure loss also changes. Accordingly, the displacement (correction value) TGX of the evaporation temperature with respect to the inlet-side temperature TE of the evaporator is as shown in FIG. Therefore, the control device for the electric expansion valve according to claim 5 detects the temperature on the discharge side of the compressor when the rotation speed of the outdoor fan is changed and controlled by the temperature TE on the inlet side of the outdoor heat exchanger. Since the degree of superheat is corrected in accordance with the temperature detection value of the third temperature detecting means, and the opening target value of the electric expansion valve is corrected based on the corrected degree of superheat, the number of rotations of the outdoor fan is controlled. Even in this case, the degree of superheat of the refrigerant can be detected more accurately, and the electric expansion valve can be controlled according to the degree of superheat.

【0021】[0021]

【発明の実施の形態】以下、本発明を図面に示す好適な
実施形態に基づいて詳細に説明する。図2は本発明の第
1の実施形態の概略構成図であり、図中、従来装置を示
す図14と同一の要素には同一の符号を付してその説明
を省略する。これは、空気調和機を構成する冷凍サイク
ルのうち、室外ユニットに対応する部分を示したもの
で、この冷凍サイクルを暖房モードで運転したとき、冷
媒は矢印A方向に循環し、室外熱交換器24は蒸発器と
して作用する。この室外熱交換器24の上流部に電動式
膨張弁25が設けられている。この電動式膨張弁25の
開度を制御するために、室外熱交換器24の出口側に温
度センサ51が、入口側に温度センサ52がそれぞれ設
けられ、これらの温度センサの各検出信号が過熱度制御
系10に加えられる。過熱度制御系10はこれらの温度
検出値TC1,TC2に基づいて電動式膨張弁25の開
度を制御する構成になっている。なお、この実施形態に
おいては、温度センサ51,52の温度検出値TC1,
TC2に基づいて電動式膨張弁25を制御するため、図
14中のキャピラリチューブ29及び温度センサ34で
なる疑似飽和温度検出回路が除去されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on preferred embodiments shown in the drawings. FIG. 2 is a schematic configuration diagram of the first embodiment of the present invention. In the figure, the same elements as those in FIG. 14 showing the conventional apparatus are denoted by the same reference numerals, and the description thereof will be omitted. This shows a part corresponding to the outdoor unit in the refrigeration cycle constituting the air conditioner. When the refrigeration cycle is operated in the heating mode, the refrigerant circulates in the direction of arrow A, and the outdoor heat exchanger 24 acts as an evaporator. An electric expansion valve 25 is provided upstream of the outdoor heat exchanger 24. In order to control the degree of opening of the electric expansion valve 25, a temperature sensor 51 is provided on the outlet side of the outdoor heat exchanger 24, and a temperature sensor 52 is provided on the inlet side, and the detection signals of these temperature sensors are overheated. Added to the degree control system 10. The superheat control system 10 is configured to control the opening of the electric expansion valve 25 based on the detected temperature values TC1 and TC2. In this embodiment, the temperature detection values TC1, TC1,
In order to control the electric expansion valve 25 based on TC2, the pseudo saturation temperature detection circuit including the capillary tube 29 and the temperature sensor 34 in FIG. 14 is eliminated.

【0022】図1は過熱温度制御系をマイクロプロセッ
サ(CPU)で構成した場合の詳細な構成を示す機能ブ
ロック図である。同図において、冷媒温度特性記憶手段
11は、図12に示すように、室外熱交換器24の入口
側の温度TC2をパラメータとして、仮の過熱度SH0
と飽和温度の変位TGXとの関係を示す冷媒温度特性を
テーブルとして記憶させたものである。仮過熱度算出手
段12は温度センサ51によつて検出された室外熱交換
器24の出口側の冷媒温度TC1と、入口側の冷媒温度
TC2とを入力し、ここで、次式によって仮の過熱度S
H0を算出して温度変位検索手段13に加える。 SH0=TC1−TC2 …(9) 温度変位検索手段13はこの仮の過熱度SH0及び温度
センサ52によって検出された冷媒温度TC2を入力
し、冷媒温度特性記憶手段11を検索することによっ
て、各入力SH0とTC2に対応する飽和温度の変位T
GXを読み出す。この冷媒温度特性記憶手段11から読
み出された飽和温度の変位TGXは蒸発温度算出手段1
4に加えられる。蒸発温度算出手段14は飽和温度の変
位TGXの他に温度センサ52によって検出された室外
熱交換器24の入口側の冷媒温度TC2を入力し、次式
に従って蒸発温度TGを算出する。 TG=TC2−TGX …(10) そこで、冷媒過熱度算出手段15は算出された蒸発温度
TGと、温度センサ51によって検出された室外熱交換
器24の出口側の冷媒温度TC1を入力として次式によ
り実過熱度SHを算出する。 SH=TC1−TG …(11) 冷媒過熱度算出手段15で算出された過熱度SHは膨張
弁開度制御手段16に加えられ、膨張弁開度制御手段1
6はこの過熱度SHが予め定めた値に追随するように電
動式膨張弁25の開度を制御する。なお、電動式膨張弁
25は、例えば、全開時のパルス数を500として、パ
ルスモータで駆動されるものでなり、その詳細について
は各種提案され、公知であるのでその詳しい説明を省略
する。なお、室外熱交換器24の出口側に設けた温度セ
ンサ51の代わりに、四方切換弁23を通った後、圧縮
機21に吸入される系統に設けられる温度センサ31の
温度検出値TSを用いることができる。
FIG. 1 is a functional block diagram showing a detailed configuration when the overheating temperature control system is constituted by a microprocessor (CPU). As shown in FIG. 12, the refrigerant temperature characteristic storage means 11 uses the temperature TC2 on the inlet side of the outdoor heat exchanger 24 as a parameter to temporarily store the degree of superheat SH0.
And a refrigerant temperature characteristic indicating the relationship between the temperature and the displacement TGX of the saturation temperature. The temporary superheat degree calculating means 12 inputs the refrigerant temperature TC1 on the outlet side of the outdoor heat exchanger 24 and the refrigerant temperature TC2 on the inlet side detected by the temperature sensor 51, and the temporary superheat is calculated by the following equation. Degree S
H0 is calculated and added to the temperature displacement search means 13. SH0 = TC1-TC2 (9) The temperature displacement search means 13 inputs the provisional degree of superheat SH0 and the refrigerant temperature TC2 detected by the temperature sensor 52, and searches the refrigerant temperature characteristic storage means 11 for each input. Saturation temperature displacement T corresponding to SH0 and TC2
Read GX. The displacement TGX of the saturation temperature read from the refrigerant temperature characteristic storage means 11 is calculated by the evaporating temperature calculation means 1
Added to 4. The evaporating temperature calculating means 14 inputs the refrigerant temperature TC2 on the inlet side of the outdoor heat exchanger 24 detected by the temperature sensor 52 in addition to the saturation temperature displacement TGX, and calculates the evaporating temperature TG according to the following equation. TG = TC2−TGX (10) Then, the refrigerant superheat degree calculating means 15 receives the calculated evaporation temperature TG and the refrigerant temperature TC1 on the outlet side of the outdoor heat exchanger 24 detected by the temperature sensor 51, and receives the following equation. To calculate the actual superheat degree SH. SH = TC1-TG (11) The superheat degree SH calculated by the refrigerant superheat degree calculation means 15 is added to the expansion valve opening degree control means 16, and the expansion valve opening degree control means 1
6 controls the opening degree of the electric expansion valve 25 so that the degree of superheat SH follows a predetermined value. The electric expansion valve 25 is, for example, driven by a pulse motor with the number of pulses at the time of full opening being 500, and various details have been proposed and publicly known, and thus detailed description thereof will be omitted. In addition, instead of the temperature sensor 51 provided on the outlet side of the outdoor heat exchanger 24, the temperature detection value TS of the temperature sensor 31 provided in the system which is drawn into the compressor 21 after passing through the four-way switching valve 23 is used. be able to.

【0023】かくして、図1、2に示した第1の実施形
態によれば、冷凍サイクルの制御に使用される必要最小
限の温度センサの温度情報に基づいて、冷媒の過熱度を
より正確に検出すると共に、この過熱度に従って電動式
膨張弁を制御することができる。
Thus, according to the first embodiment shown in FIGS. 1 and 2, the superheat degree of the refrigerant can be more accurately determined based on the minimum necessary temperature information of the temperature sensor used for controlling the refrigeration cycle. In addition to the detection, the electric expansion valve can be controlled according to the degree of superheat.

【0024】図3は本発明の第2の実施形態の概略構成
図である。これはマルチ式空気調和機の例として、1台
の室外機1に3台の室内機2A,2B,2Cが接続され
た場合を示し、各室内機2A,2B,2Cを構成する室
内熱交換器41A,41B,41Cと直列に、電動式膨
張弁25A,25B,25Cが接続されたものである。
このマルチ式空気調和機を冷房モードで運転するときに
冷媒が矢印方向に循環するものとすると、電動式膨張弁
25A,25B,25Cはそれぞれ室内熱交換器41
A,41B,41Cの上流側に設けられている。そし
て、室内熱交換器41A,41B,41Cの出口側の冷
媒の過熱度を制御するために、これらの室内熱交換器4
1A,41B,41Cの出口側に温度センサ51を、入
口側に温度センサ52をそれぞれ設け、室内機2A,2
B,2C毎に電動式膨張弁25A,25B,25Cの開
度を制御する過熱度制御系10A,10B,10Cを設
けたものである。これらの過熱度制御系10A,10
B,10Cは図1に示した過熱度制御系10と同一に構
成されている。これによって、図10を用いて原理説明
をした過熱度制御が可能となる。
FIG. 3 is a schematic configuration diagram of a second embodiment of the present invention. This shows a case where three indoor units 2A, 2B, 2C are connected to one outdoor unit 1 as an example of a multi-type air conditioner, and the indoor heat exchange constituting each indoor unit 2A, 2B, 2C is shown. The electric expansion valves 25A, 25B, 25C are connected in series with the devices 41A, 41B, 41C.
Assuming that the refrigerant circulates in the direction of the arrow when operating the multi-type air conditioner in the cooling mode, the electric expansion valves 25A, 25B, and 25C are connected to the indoor heat exchanger 41, respectively.
A, 41B, and 41C are provided on the upstream side. In order to control the degree of superheat of the refrigerant on the outlet side of the indoor heat exchangers 41A, 41B, 41C, these indoor heat exchangers 4
A temperature sensor 51 is provided on the outlet side of each of the indoor units 2A, 2B, and 2C.
A superheat control system 10A, 10B, 10C for controlling the degree of opening of the electric expansion valves 25A, 25B, 25C for each of B, 2C is provided. These superheat control systems 10A, 10A
B and 10C have the same configuration as the superheat control system 10 shown in FIG. Thereby, the superheat degree control explained in principle with reference to FIG. 10 becomes possible.

【0025】図4は本発明の第3の実施形態の構成例を
示したもので、それぞれ1台の室外機に1台の室内機が
接続される、いわゆる、カスタムエアコンを構成する冷
凍サイクルに適用したものである。このうち、図4
(a)に示したものは、圧縮機21、四方切換弁23、
室外熱交換器24、電動式膨張弁25、室内熱交換器4
1、四方切換弁23及び圧縮機21を順次接続した冷凍
サイクルを有し、このうち、室内機4Aには室内熱交換
器41のみが収納され、これ以外の構成要素が全て室外
機3Aに収納されている。そして、この冷凍サイクルを
制御するために、圧縮機21の吸入側の配管に温度セン
サ31が、吐出側の配管に温度センサ32が、室外熱交
換器24と電動式膨張弁25との間に温度センサ33が
設けられ、さらに、暖房モードの運転時に冷媒がA矢印
方向に循環するものとして、室内熱交換器41の出側に
温度センサ35がそれぞれ設けられている。過熱度制御
系10Aは、暖房モードでの運転時に、温度センサ31
の検出温度TSを蒸発器の出口側の温度TC1とし、温
度センサ33の検出温度TEを蒸発器の入口側の温度T
C2として電動式膨張弁25の開度を制御する。一方、
冷媒がB矢印方向に循環する冷房モードでの運転時に
は、温度センサ31の検出温度TSを蒸発器の出口側の
温度TC1とし、温度センサ35の検出温度TCを蒸発
器の入口側の温度TC2として電動式膨張弁25の開度
を制御する。
FIG. 4 shows a configuration example of a third embodiment of the present invention. In a refrigeration cycle constituting a so-called custom air conditioner, one indoor unit is connected to one outdoor unit. Applied. Figure 4
(A) shows a compressor 21, a four-way switching valve 23,
Outdoor heat exchanger 24, electric expansion valve 25, indoor heat exchanger 4
1, a refrigeration cycle in which the four-way switching valve 23 and the compressor 21 are sequentially connected. Among these, only the indoor heat exchanger 41 is housed in the indoor unit 4A, and all other components are housed in the outdoor unit 3A. Have been. In order to control the refrigeration cycle, a temperature sensor 31 is provided on a pipe on the suction side of the compressor 21, and a temperature sensor 32 is provided on a pipe on the discharge side, between the outdoor heat exchanger 24 and the electric expansion valve 25. A temperature sensor 33 is provided, and a temperature sensor 35 is provided on the outlet side of the indoor heat exchanger 41, assuming that the refrigerant circulates in the direction of the arrow A during the operation in the heating mode. When operating in the heating mode, the superheat degree control system 10A
Is the temperature TC1 on the outlet side of the evaporator, and the detected temperature TE of the temperature sensor 33 is the temperature T1 on the inlet side of the evaporator.
The opening degree of the electric expansion valve 25 is controlled as C2. on the other hand,
At the time of operation in the cooling mode in which the refrigerant circulates in the direction of arrow B, the detected temperature TS of the temperature sensor 31 is set as the temperature TC1 on the outlet side of the evaporator, and the detected temperature TC of the temperature sensor 35 is set as the temperature TC2 on the inlet side of the evaporator. The opening of the electric expansion valve 25 is controlled.

【0026】図4(b)に示した冷凍サイクルは、室内
機4Bに室内熱交換器41のみを設け、温度センサ35
を室外機3Bに設けた点が図4(a)と構成を異にして
る。この場合も、過熱度制御系10Bは、暖房モードで
の運転時に、温度センサ31の検出温度TSを蒸発器の
出口側の温度TC1とし、温度せンサ33の検出温度T
Eを蒸発器の入口側の温度TC2として電動式膨張弁2
5の開度を制御する。一方、冷媒がB矢印方向に循環す
る冷房モードでの運転時には、温度センサ31の検出温
度TSを蒸発器の出口側の温度TC1とし、温度センサ
35の検出温度TCを蒸発器の入口側の温度TC2とし
て電動式膨張弁25の開度を制御する。図4(c)は室
内機4Cに室内熱交換器41の他に電動式膨張弁25を
設けた例で、このうち、室内熱交換器41と電動式膨張
弁25との間に温度センサ35が設けられている。この
場合、過熱度制御系10Cは、暖房モードでの運転時
に、温度センサ31の検出温度TSを蒸発器の出口側の
温度TC1とし、温度センサ33の検出温度TEを蒸発
器の入口側の温度TC2として電動式膨張弁25の開度
を制御する。一方、冷媒がB矢印方向に循環する冷房モ
ードでの運転時には、温度センサ31の検出温度TSを
蒸発器の出口側の温度TC1とし、温度センサ35の検
出温度TCを蒸発器の入口側の温度TC2として電動式
膨張弁25の開度を制御する。
In the refrigerating cycle shown in FIG. 4B, only the indoor heat exchanger 41 is provided in the indoor unit 4B, and the temperature sensor 35
4A is different from that of FIG. 4A in that it is provided in the outdoor unit 3B. Also in this case, the superheat degree control system 10B sets the detected temperature TS of the temperature sensor 31 to the temperature TC1 on the outlet side of the evaporator and the detected temperature T of the temperature sensor 33 during the operation in the heating mode.
Let E be the temperature TC2 on the inlet side of the evaporator,
5 is controlled. On the other hand, during the operation in the cooling mode in which the refrigerant circulates in the direction of the arrow B, the detected temperature TS of the temperature sensor 31 is set to the temperature TC1 on the outlet side of the evaporator, and the detected temperature TC of the temperature sensor 35 is set to the temperature on the inlet side of the evaporator. The opening of the electric expansion valve 25 is controlled as TC2. FIG. 4C shows an example in which the indoor unit 4C is provided with the electric expansion valve 25 in addition to the indoor heat exchanger 41. Among them, the temperature sensor 35 is provided between the indoor heat exchanger 41 and the electric expansion valve 25. Is provided. In this case, during operation in the heating mode, the superheat control system 10C sets the detected temperature TS of the temperature sensor 31 to the temperature TC1 on the outlet side of the evaporator, and sets the detected temperature TE of the temperature sensor 33 to the temperature on the inlet side of the evaporator. The opening of the electric expansion valve 25 is controlled as TC2. On the other hand, during the operation in the cooling mode in which the refrigerant circulates in the direction of the arrow B, the detected temperature TS of the temperature sensor 31 is set to the temperature TC1 on the outlet side of the evaporator, and the detected temperature TC of the temperature sensor 35 is set to the temperature on the inlet side of the evaporator. The opening of the electric expansion valve 25 is controlled as TC2.

【0027】かくして、種々な構成のエアコンにおいて
も、冷凍サイクルの制御に使用される必要最小限の温度
センサの温度情報に基づいて、冷媒の過熱度をより正確
に検出すると共に、この過熱度に従って電動式膨張弁を
制御することができる。
Thus, in various types of air conditioners, the degree of superheat of the refrigerant is more accurately detected based on the minimum necessary temperature information of the temperature sensor used for controlling the refrigeration cycle, and the degree of superheat is determined in accordance with the degree of superheat. The electric expansion valve can be controlled.

【0028】図5は本発明の第4の実施形態の構成を示
すブロック図であり、図中、図1と同一の要素には同一
の符号を付してその説明を省略する。この実施形態は過
熱度制御系の他の構成例を示したもので、図1に示した
要素に対して、膨張弁開度制御手段16の代わりに、圧
縮機の吐出側に設けられる温度センサ32の検出温度T
Dによつて過熱度SHを補正して電動式膨張弁25の開
度を制御する膨張弁開度制御手段16Aを用い、さら
に、蒸発器の入口側に設けられる温度センサ33の検出
温度TEに基づいて室外フアン制御手段43が室外ファ
ン42の回転数を制御する点が図1と構成を異にしてい
る。
FIG. 5 is a block diagram showing the configuration of the fourth embodiment of the present invention. In the drawing, the same elements as those in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted. This embodiment shows another example of the configuration of the superheat control system. For the elements shown in FIG. 1, a temperature sensor provided on the discharge side of the compressor instead of the expansion valve opening control means 16 is used. 32 detected temperature T
D, the degree of superheat SH is corrected to control the degree of opening of the motor-operated expansion valve 25, and expansion valve opening control means 16A is used. Further, the detected temperature TE of the temperature sensor 33 provided on the inlet side of the evaporator is used. The configuration differs from FIG. 1 in that the outdoor fan control means 43 controls the rotation speed of the outdoor fan 42 based on this.

【0029】マルチ式空気調和機においては、暖房運転
モードにおいて、室外ファン制御手段43が蒸発器の入
側の冷媒温度TEによって負荷状態を判断して、室外フ
ァン42の回転数を微風、弱風、強風に対応する3段階
の回転数に切換えると共に、過熱度の検出値を補正して
いる。図5に示す膨張弁開度制御手段16Aはこれに従
って過熱度SHを補正して電動式膨張弁25の開度を制
御するものである。以下、この過熱度の補正について、
図6(a),(b),(c)の図表を参照して以下に詳
しく説明する。
In the multi-type air conditioner, in the heating operation mode, the outdoor fan control means 43 determines the load state based on the refrigerant temperature TE on the inlet side of the evaporator, and changes the rotation speed of the outdoor fan 42 to a light wind or a weak wind. In addition, the rotation speed is switched to three stages corresponding to strong winds, and the detection value of the degree of superheat is corrected. The expansion valve opening control means 16A shown in FIG. 5 corrects the degree of superheat SH and controls the opening of the electric expansion valve 25 in accordance with the correction. Hereinafter, regarding the correction of the degree of superheat,
This will be described in detail below with reference to the tables in FIGS. 6 (a), 6 (b) and 6 (c).

【0030】先ず、室外ファン制御手段43が蒸発器の
入側の温度TEに応じて室外ファン42の回転数を微
風、弱風、強風のいずれかに運転する。また、温度セン
サ32によって検出される圧縮機の吐出側の温度TDに
応じて膨張弁開度制御手段16Aは、図6(a)に示す
α値だけ過熱度SHの補正を行う。すなわち、冷媒過熱
度算出手段15によって求められた過熱度SHと、図6
(a)の補正値αを用いて現在の過熱度ΔTを次式によ
って算出する。 ΔT=SH−α …(12) 次に、膨張弁開度制御手段16Aは算出された過熱度Δ
Tと、補正値αとから、図6(b)に示すように、過熱
度ΔTがA〜Gの7段階に区分けしたどのゾーンに属す
るかを判定する。
First, the outdoor fan control means 43 drives the rotation speed of the outdoor fan 42 to one of light wind, weak wind, and strong wind according to the temperature TE on the inlet side of the evaporator. Further, the expansion valve opening degree control means 16A corrects the degree of superheat SH by an α value shown in FIG. 6A in accordance with the temperature TD on the discharge side of the compressor detected by the temperature sensor 32. That is, the degree of superheat SH obtained by the refrigerant superheat degree calculating means 15 and the degree of superheat SH shown in FIG.
The current superheat degree ΔT is calculated by the following equation using the correction value α of (a). ΔT = SH−α (12) Next, the expansion valve opening degree control means 16A calculates the superheat degree Δ
As shown in FIG. 6B, it is determined from the T and the correction value α to which of the seven zones A to G the superheat degree ΔT belongs.

【0031】次に、現在の過熱度ゾーンと前回の過熱度
ゾーンに応じて、図6(c)に示す値だけ電動式膨張弁
25を駆動するパルスモータのパルス数を変更する。こ
の場合、パルス数500が電動式膨張弁25の全開に対
応し、膨張弁開度制御手段16Aは70パルスを下限と
し、500パルスを上限としてこの範囲で図6(c)に
示したパルス数に対応した開度の補正を行う。
Next, the number of pulses of the pulse motor for driving the electric expansion valve 25 is changed by the value shown in FIG. 6C according to the current superheat zone and the previous superheat zone. In this case, the number of pulses 500 corresponds to the full opening of the electric expansion valve 25, and the expansion valve opening degree control means 16A sets the lower limit to 70 pulses and sets the upper limit to 500 pulses in the range shown in FIG. Is corrected for the opening degree corresponding to.

【0032】かくして、この実施形態によれば、室外熱
交換器を蒸発器とする暖房運転時に、その入口側の温度
に応じて室外ファンの回転数を切換える場合において
も、予め実験によって得られた補正値による過熱度の補
正と、これに伴う電動式膨張弁の開度の変更によって、
低温域から高温域まで空調負荷が大きく変動する場合に
おいても、過熱度を適切に制御することができる。
Thus, according to this embodiment, during the heating operation using the outdoor heat exchanger as the evaporator, even in the case where the number of revolutions of the outdoor fan is switched in accordance with the temperature on the inlet side, the experiment was previously obtained. By the correction of the degree of superheat by the correction value and the change of the opening of the electric expansion valve accompanying this,
Even when the air conditioning load fluctuates greatly from a low temperature range to a high temperature range, the degree of superheat can be appropriately controlled.

【0033】なお、図5に示した実施形態のうち、TE
を検出する温度センサ33とTC2を検出する温度セン
サ52とは、図4に示した第3の実施形態で説明したよ
うに、同一のものを使用することができる。
In the embodiment shown in FIG. 5, TE
As described in the third embodiment shown in FIG. 4, the same sensor can be used as the temperature sensor 33 for detecting the temperature and the temperature sensor 52 for detecting the TC2.

【0034】[0034]

【発明の効果】以上の説明によって明らかなように、請
求項1に記載の電動式膨脹弁の制御装置によれば、上流
部に電動式膨張弁を備えた蒸発器の出口側の冷媒温度と
入口側の冷媒温度とをそれぞれ検出する一方、その温度
差を仮の過熱度とし、入口側の温度をパラメータとし
て、仮の過熱度と温度変位とを関連付けた冷媒温度特性
表を用いて蒸発温度を算出し、さらに、この蒸発温度か
ら冷媒過熱度を求めて電動式膨張弁の開度を制御する構
成としたので、冷凍サイクルの制御に使用される必要最
小限の温度センサの温度情報に基づいて、冷媒の過熱度
をより正確に検出すると共に、この過熱度に従って電動
式膨張弁を制御することができる。
As is apparent from the above description, according to the control device for the electric expansion valve according to the first aspect, the refrigerant temperature and the refrigerant temperature at the outlet side of the evaporator having the electric expansion valve in the upstream portion are determined. While detecting the refrigerant temperature on the inlet side, the temperature difference is used as a temporary superheat degree, and the temperature on the inlet side is used as a parameter, using the refrigerant temperature characteristic table in which the temporary superheat degree and the temperature displacement are associated with each other. Is calculated, and the degree of superheat of the refrigerant is obtained from the evaporation temperature to control the opening of the electric expansion valve.Therefore, based on the temperature information of the minimum necessary temperature sensor used for controlling the refrigeration cycle. Thus, the degree of superheat of the refrigerant can be detected more accurately, and the electric expansion valve can be controlled according to the degree of superheat.

【0035】また、従来装置で用いられた疑似飽和温度
検出回路を不要化することができる。
Further, the pseudo-saturation temperature detecting circuit used in the conventional device can be eliminated.

【0036】請求項2に記載の電動式膨脹弁の制御装置
は、マルチ式空気調和機を冷房モードで運転する場合、
蒸発器として作用する室内熱交換器の上流側にそれぞれ
電動式膨張弁を備える冷凍サイクルに適用したもので、
これによって、請求項1に記載のものとほぼ同様な効果
が得られる。
According to a second aspect of the present invention, when the multi-type air conditioner is operated in the cooling mode,
Applied to a refrigeration cycle equipped with an electric expansion valve on the upstream side of the indoor heat exchanger acting as an evaporator, respectively.
Thereby, substantially the same effect as that of the first aspect can be obtained.

【0037】請求項3に記載の電動式膨脹弁の制御装置
は、圧縮機、四方切換弁、室外熱交換器及び電動式膨張
弁を収納した室外ユニットに、室内熱交換器を収納した
室内ユニットを接続してなるカスタム空気調和機の冷凍
サイクルに適用するものであり、請求項1に記載のもの
とほぼ同様な効果が得られる他、第1の温度検出手段と
して、圧縮機の吸込み側の配管に設置されることの多い
温度センサを使用できる利点がある。
A control unit for an electric expansion valve according to a third aspect of the present invention is an indoor unit in which an indoor heat exchanger is housed in an outdoor unit in which a compressor, a four-way switching valve, an outdoor heat exchanger, and an electric expansion valve are housed. The present invention is applied to a refrigeration cycle of a custom air conditioner in which a compressor is connected, and in addition to obtaining substantially the same effects as those described in claim 1, as a first temperature detecting means, a suction side of a compressor is provided. There is an advantage that a temperature sensor often installed in a pipe can be used.

【0038】請求項4に記載の電動式膨脹弁の制御装置
は、圧縮機、四方切換弁、室外熱交換器、電動式膨張
弁、室内熱交換器、四方切換弁及び圧縮機を順次接続し
た冷凍サイクルの電動式膨張弁を制御対象としたもの
で、請求項1に記載のものとほぼ同様な効果が得られ
る。
According to a fourth aspect of the present invention, there is provided a control device for an electric expansion valve in which a compressor, a four-way switching valve, an outdoor heat exchanger, an electric expansion valve, an indoor heat exchanger, a four-way switching valve, and a compressor are sequentially connected. Since the electric expansion valve of the refrigeration cycle is controlled, substantially the same effects as those of the first aspect can be obtained.

【0039】請求項5に記載の電動式膨脹弁の制御装置
は、室外ファンの回転数を、室外熱交換器の入口側の温
度によって変更制御するとき、圧縮機の吐出側の温度を
検出する第3の温度検出手段の温度検出値に応じて過熱
度を補正すると共に、補正された過熱度に基づいて電動
式膨張弁の開度目標値を補正するので、室外ファンの回
転数を制御する場合でも、冷媒の過熱度をより正確に検
出すると共に、この過熱度に従って電動式膨張弁を制御
することができる。
The control device for the electric expansion valve according to the fifth aspect detects the temperature on the discharge side of the compressor when the rotational speed of the outdoor fan is changed and controlled by the temperature on the inlet side of the outdoor heat exchanger. Since the degree of superheat is corrected in accordance with the temperature detection value of the third temperature detecting means, and the opening target value of the electric expansion valve is corrected based on the corrected degree of superheat, the number of rotations of the outdoor fan is controlled. Even in this case, the degree of superheat of the refrigerant can be detected more accurately, and the electric expansion valve can be controlled according to the degree of superheat.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の主要な構成要素であ
る過熱度制御系の詳細な構成を示す機能ブロック図。
FIG. 1 is a functional block diagram showing a detailed configuration of a superheat control system, which is a main component of a first embodiment of the present invention.

【図2】本発明の第1の実施形態の概略構成図。FIG. 2 is a schematic configuration diagram of a first embodiment of the present invention.

【図3】本発明の第2の実施形態の概略構成図。FIG. 3 is a schematic configuration diagram of a second embodiment of the present invention.

【図4】本発明の第3の実施形態の各種構成例を示した
系統図。
FIG. 4 is a system diagram showing various configuration examples according to a third embodiment of the present invention.

【図5】本発明の第4の実施形態の主要な構成要素であ
る過熱度制御系の詳細な構成を示す機能ブロック図。
FIG. 5 is a functional block diagram showing a detailed configuration of a superheat control system, which is a main component of a fourth embodiment of the present invention.

【図6】図5に示した第4の実施形態の動作を説明する
ための図表。
FIG. 6 is a table for explaining the operation of the fourth embodiment shown in FIG. 5;

【図7】本発明の原理を説明するために、冷凍サイクル
の一部を示すと共に、冷媒の温度変化を示した図。
FIG. 7 is a diagram showing a part of a refrigeration cycle and showing a change in temperature of a refrigerant in order to explain the principle of the present invention.

【図8】代表的な冷媒の飽和圧力と冷媒温度との関係を
示した線図。
FIG. 8 is a diagram showing a relationship between a representative refrigerant saturation pressure and a refrigerant temperature.

【図9】代表的な冷媒の圧力変位と飽和温度の変位との
関係を、温度をパラメータとして表現した図表。
FIG. 9 is a chart expressing a relationship between a typical refrigerant pressure displacement and a saturation temperature displacement using temperature as a parameter.

【図10】本発明の原理を実証するための、空気調和機
の構成例を示すブロック図。
FIG. 10 is a block diagram showing a configuration example of an air conditioner for demonstrating the principle of the present invention.

【図11】図10に示した空気調和機の冷房能力と、蒸
発器の入口側・出口側温度差との関係を、過熱度及び蒸
発温度をパラメータとして示した実運転特性図。
11 is an actual operation characteristic diagram showing the relationship between the cooling capacity of the air conditioner shown in FIG. 10 and the temperature difference between the inlet side and the outlet side of the evaporator, using the degree of superheat and the evaporation temperature as parameters.

【図12】図9に示した圧力変位と飽和温度の変位との
関係を、仮の過熱度と飽和温度の変位との関係に置換え
て表現した図表。
12 is a chart expressing the relationship between the pressure displacement and the saturation temperature displacement shown in FIG. 9 by replacing the relationship between the provisional degree of superheat and the saturation temperature displacement.

【図13】冷媒の蒸発温度と蒸発器入側の温度との関係
を、圧損をパラメータとして示した線図。
FIG. 13 is a diagram showing the relationship between the evaporation temperature of the refrigerant and the temperature on the evaporator inlet side, using pressure loss as a parameter.

【図14】電動式膨張弁を制御するに当り、過熱度を求
める従来の方法を説明するための冷凍サイクルの一部を
示した図。
FIG. 14 is a diagram showing a part of a refrigeration cycle for explaining a conventional method of obtaining a degree of superheat in controlling an electric expansion valve.

【符号の説明】[Explanation of symbols]

1,3A,3B,3C 室外機 2A,2B,2C,4A,4B,4C 室内機 10,10A,10B,10C 過熱度制御系 11 冷媒温度特性記憶手段 12 仮過熱度算出手段 13 温度変位検索手段 14 蒸発温度算出手段 15 冷媒過熱度算出手段 16,16A 膨張弁開度制御手段 21 圧縮機 23 四方切換弁 24 室外熱交換器 25 電動式膨張弁 30 アキュムレータ 31,32,33,34,51,52 温度センサ 41,41A.41B,41C 室内熱交換器 1, 3A, 3B, 3C Outdoor unit 2A, 2B, 2C, 4A, 4B, 4C Indoor unit 10, 10A, 10B, 10C Superheat degree control system 11 Refrigerant temperature characteristic storage means 12 Temporary superheat degree calculation means 13 Temperature displacement search means 14 Evaporation temperature calculation means 15 Refrigerant superheat degree calculation means 16, 16A Expansion valve opening degree control means 21 Compressor 23 Four-way switching valve 24 Outdoor heat exchanger 25 Electric expansion valve 30 Accumulator 31, 32, 33, 34, 51, 52 Temperature sensor 41, 41A. 41B, 41C Indoor heat exchanger

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】蒸発器の上流部に電動式膨張弁を備えた冷
凍サイクルの冷媒の過熱度を制御するに当たり、前記蒸
発器の出口側の冷媒温度を検出する第1の温度検出手段
及び入口側の冷媒温度を検出する第2の温度検出手段の
各検出値に基づいて、前記電動式膨張弁の開度を制御す
る電動式膨張弁の制御装置において、 前記蒸発器の出口側の温度と入口側の温度との差を仮の
過熱度とし、前記冷凍サイクルに使用される冷媒の圧力
変位とこの圧力変位に対応する飽和温度の変位との関係
を、予め定めた前記仮の過熱度と前記飽和温度の変位と
の関係に置換えると共に、前記冷媒の温度をパラメータ
として表現した冷媒温度特性表を記憶する冷媒温度特性
記憶手段と、 前記第1の温度検出手段及び前記第2の温度検出手段の
各検出値の差から前記仮の過熱度を算出する仮過熱度算
出手段と、 前記第2の温度検出手段の検出値を冷媒温度として前記
冷媒温度特性記憶手段を検索することにより、前記仮過
熱度算出手段によって算出された前記仮の過熱度に対応
する前記飽和温度の変位を求める温度変位検索手段と、 前記温度変位検索手段によって求められた前記飽和温度
の変位を補正値として、前記第2の温度検出手段の検出
値から前記補正値を減算して前記蒸発器の出口側の冷媒
の実蒸発温度とする蒸発温度算出手段と、 前記第1の温度検出手段の検出値から前記実蒸発温度を
減算して冷媒過熱度として出力する冷媒過熱度算出手段
と、 前記冷媒過熱度に基づいて前記電動式膨張弁の開度を制
御する膨張弁制御手段と、 を備えたことを特徴とする電動式膨脹弁の制御装置。
1. A first temperature detecting means for detecting a refrigerant temperature at an outlet side of an evaporator and an inlet for controlling a superheat degree of a refrigerant in a refrigeration cycle having an electric expansion valve upstream of the evaporator. A controller for controlling the degree of opening of the motor-operated expansion valve on the basis of the respective detected values of the second temperature detecting means for detecting the refrigerant temperature of the evaporator; The difference between the temperature of the inlet side and the temporary superheat degree, the relationship between the pressure displacement of the refrigerant used in the refrigeration cycle and the saturation temperature displacement corresponding to this pressure displacement, the predetermined temporary superheat degree and A refrigerant temperature characteristic storage unit that stores a refrigerant temperature characteristic table expressing the temperature of the refrigerant as a parameter, while replacing the relationship with the displacement of the saturation temperature, the first temperature detection unit, and the second temperature detection Before the difference between each detection value of the means A temporary superheat degree calculating means for calculating a temporary superheat degree, and a value calculated by the temporary superheat degree calculating means by searching the refrigerant temperature characteristic storage means with the detected value of the second temperature detecting means as a refrigerant temperature. A temperature displacement search means for obtaining a displacement of the saturation temperature corresponding to the temporary degree of superheat; and a detection value of the second temperature detection means, using the displacement of the saturation temperature obtained by the temperature displacement search means as a correction value. Evaporating temperature calculating means for subtracting the correction value from the above to obtain the actual evaporating temperature of the refrigerant at the outlet side of the evaporator; and subtracting the actual evaporating temperature from the detected value of the first temperature detecting means to obtain the degree of superheat of the refrigerant. A control device for an electric expansion valve, comprising: a refrigerant superheat degree calculating means for outputting as the following; and an expansion valve control means for controlling an opening degree of the electric expansion valve based on the refrigerant superheat degree.
【請求項2】前記冷凍サイクルは、室外ユニットを形成
する室外熱交換器に、それぞれ室内ユニットを形成する
複数の室内熱交換器が接続されると共に、前記室内熱交
換器の入口側にそれぞれ前記電動式膨張弁を設けて冷房
モード運転をするマルチ式空気調和機を構成するもので
あり、この冷凍サイクルの前記電動式膨張弁をそれぞれ
制御対象とすることを特徴とする請求項1に記載の電動
式膨張弁の制御装置。
2. The refrigerating cycle, wherein a plurality of indoor heat exchangers each forming an indoor unit are connected to an outdoor heat exchanger forming an outdoor unit, and the plurality of indoor heat exchangers are respectively provided at an inlet side of the indoor heat exchanger. 2. A multi-type air conditioner which operates in a cooling mode by providing an electric expansion valve and comprises a multi-type air conditioner, wherein the electric expansion valves of the refrigeration cycle are respectively controlled. Control device for electric expansion valve.
【請求項3】前記冷凍サイクルは、圧縮機、四方切換
弁、室外熱交換器及び電動式膨張弁を収納した室外ユニ
ットに、室内熱交換器を収納した室内ユニットを接続し
てなる空気調和機を構成するものであり、この空気調和
機を暖房モードで運転するとき、前記四方切換弁が前記
電子膨張弁、室外熱交換器、圧縮機の順に冷媒を循環さ
せる場合の前記電動式膨張弁を制御対象とし、前記第1
の温度検出手段が前記圧縮機の吸込み側の配管に設置さ
れたことを特徴とする請求項1に記載の電動式膨張弁の
制御装置。
3. The air conditioner according to claim 1, wherein the refrigeration cycle includes an indoor unit containing the indoor heat exchanger connected to an outdoor unit containing the compressor, the four-way switching valve, the outdoor heat exchanger, and the electric expansion valve. When operating this air conditioner in the heating mode, the four-way switching valve, the electronic expansion valve, the outdoor heat exchanger, the electric expansion valve in the case of circulating the refrigerant in order of the compressor. To be controlled, the first
The control device for an electric expansion valve according to claim 1, wherein the temperature detecting means is provided in a pipe on a suction side of the compressor.
【請求項4】前記冷凍サイクルは、圧縮機、四方切換
弁、室外熱交換器、電動式膨張弁、室内熱交換器、前記
四方切換弁及び前記圧縮機を順次接続した空気調和機を
構成するものであり、この冷凍サイクルの前記電動式膨
張弁を制御対象とすることを特徴とする請求項1に記載
の電動式膨張弁の制御装置。
4. The refrigeration cycle forms an air conditioner in which a compressor, a four-way switching valve, an outdoor heat exchanger, an electric expansion valve, an indoor heat exchanger, the four-way switching valve, and the compressor are sequentially connected. The control device for an electric expansion valve according to claim 1, wherein the electric expansion valve of the refrigeration cycle is controlled.
【請求項5】前記冷凍サイクルが、暖房モードの運転時
に、前記室外熱交換器の入口側の冷媒温度に応じて室外
ファン制御手段が室外ファンの回転数を制御するもので
あるとき、前記圧縮機の吐出側の冷媒温度を検出する第
3の温度検出手段を備え、前記膨張弁開度制御手段は前
記第3の温度検出手段の温度検出値に応じて前記電動式
膨張弁の開度目標値を補正することを特徴とする請求項
3又は4に記載の電動式膨張弁の制御装置。
5. When the refrigeration cycle is operating in a heating mode, the outdoor fan control means controls the number of revolutions of the outdoor fan in accordance with the refrigerant temperature on the inlet side of the outdoor heat exchanger. And a third temperature detecting means for detecting a refrigerant temperature on a discharge side of the compressor, wherein the expansion valve opening control means controls an opening target of the electric expansion valve in accordance with a temperature detection value of the third temperature detecting means. 5. The control device for an electric expansion valve according to claim 3, wherein the value is corrected.
JP19357796A 1996-07-23 1996-07-23 Controller of electric expansion valve Pending JPH1038398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19357796A JPH1038398A (en) 1996-07-23 1996-07-23 Controller of electric expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19357796A JPH1038398A (en) 1996-07-23 1996-07-23 Controller of electric expansion valve

Publications (1)

Publication Number Publication Date
JPH1038398A true JPH1038398A (en) 1998-02-13

Family

ID=16310324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19357796A Pending JPH1038398A (en) 1996-07-23 1996-07-23 Controller of electric expansion valve

Country Status (1)

Country Link
JP (1) JPH1038398A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141323A (en) * 1999-11-12 2001-05-25 Mitsubishi Electric Corp Air conditioner
JP2008032250A (en) * 2006-07-26 2008-02-14 Fuji Electric Retail Systems Co Ltd Method and device for controlling refrigerating air-conditioning system
JP2008039388A (en) * 2007-09-21 2008-02-21 Hitachi Appliances Inc Multi-type air conditioner
WO2008112063A2 (en) * 2007-03-08 2008-09-18 Nordyne, Inc. System and method for controlling an air conditioner or heat pump
US20150176878A1 (en) * 2013-12-23 2015-06-25 Alstom Technology Ltd System and method for evaporator outlet temperature control
CN108036465A (en) * 2017-11-20 2018-05-15 青岛海尔空调电子有限公司 Pressure for air conditioner test adjusts simulator and its operating method
CN111271809A (en) * 2019-12-20 2020-06-12 宁波奥克斯电气股份有限公司 Control method and device, air conditioner and computer readable storage medium
CN114992798A (en) * 2022-04-29 2022-09-02 青岛海信日立空调系统有限公司 Air conditioning system and indoor unit capacity calculation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141323A (en) * 1999-11-12 2001-05-25 Mitsubishi Electric Corp Air conditioner
JP2008032250A (en) * 2006-07-26 2008-02-14 Fuji Electric Retail Systems Co Ltd Method and device for controlling refrigerating air-conditioning system
WO2008112063A2 (en) * 2007-03-08 2008-09-18 Nordyne, Inc. System and method for controlling an air conditioner or heat pump
WO2008112063A3 (en) * 2007-03-08 2009-01-29 Nordyne Inc System and method for controlling an air conditioner or heat pump
US7784296B2 (en) 2007-03-08 2010-08-31 Nordyne Inc. System and method for controlling an air conditioner or heat pump
JP2008039388A (en) * 2007-09-21 2008-02-21 Hitachi Appliances Inc Multi-type air conditioner
US20150176878A1 (en) * 2013-12-23 2015-06-25 Alstom Technology Ltd System and method for evaporator outlet temperature control
KR20160101933A (en) * 2013-12-23 2016-08-26 제네럴 일렉트릭 테크놀러지 게엠베하 System and method for evaporator outlet temperature control
US10260784B2 (en) * 2013-12-23 2019-04-16 General Electric Company System and method for evaporator outlet temperature control
CN108036465A (en) * 2017-11-20 2018-05-15 青岛海尔空调电子有限公司 Pressure for air conditioner test adjusts simulator and its operating method
CN111271809A (en) * 2019-12-20 2020-06-12 宁波奥克斯电气股份有限公司 Control method and device, air conditioner and computer readable storage medium
CN114992798A (en) * 2022-04-29 2022-09-02 青岛海信日立空调系统有限公司 Air conditioning system and indoor unit capacity calculation method thereof

Similar Documents

Publication Publication Date Title
JP2997487B2 (en) Refrigeration apparatus and method for indicating amount of refrigerant in refrigeration apparatus
US6807815B2 (en) Air conditioning system and method for operating the same
JP6072901B2 (en) Heat pump device and air conditioning system
JP2004218879A (en) Air conditioner and its control method
JPH1038398A (en) Controller of electric expansion valve
JP5989534B2 (en) Refrigeration system apparatus and air conditioner
JPH1030853A (en) Controller for air conditioner
JP3791444B2 (en) Air conditioner
JPH08189690A (en) Heating and dehumidifying operation controller for multi-room split type air conditioner
JPH0668410B2 (en) Air conditioner
JP2002147819A (en) Refrigeration unit
JP2893844B2 (en) Air conditioner
JP3558788B2 (en) Air conditioner and control method thereof
JP3225738B2 (en) Air conditioner
JP3661014B2 (en) Refrigeration equipment
JP6444536B2 (en) Compressor deterioration diagnosis device and compressor deterioration diagnosis method
JPH0814698A (en) Operation control device for air-conditioner
JP2536313B2 (en) Operation control device for air conditioner
JP2755040B2 (en) Heat pump system
JPS62299660A (en) Air conditioner
JPH05126384A (en) Air conditioner
WO2023203593A1 (en) Refrigeration cycle device and control method
JP2719456B2 (en) Air conditioner
JP2515862B2 (en) Multi-room air conditioner
JPS60133267A (en) Separate type air conditioner

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040903

Free format text: JAPANESE INTERMEDIATE CODE: A02