JP2008039388A - Multi-type air conditioner - Google Patents

Multi-type air conditioner Download PDF

Info

Publication number
JP2008039388A
JP2008039388A JP2007245099A JP2007245099A JP2008039388A JP 2008039388 A JP2008039388 A JP 2008039388A JP 2007245099 A JP2007245099 A JP 2007245099A JP 2007245099 A JP2007245099 A JP 2007245099A JP 2008039388 A JP2008039388 A JP 2008039388A
Authority
JP
Japan
Prior art keywords
indoor unit
temperature
indoor
expansion valve
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007245099A
Other languages
Japanese (ja)
Inventor
Tatsuya Hizume
達也 樋爪
Hiroshi Shinozaki
弘 篠崎
Tomonobu Watanabe
智暢 渡辺
Shinji Takeuchi
伸至 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007245099A priority Critical patent/JP2008039388A/en
Publication of JP2008039388A publication Critical patent/JP2008039388A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently ensure heating capability of an operating indoor unit in a multi-type air conditioner by appropriately controlling a stopped indoor heat exchanger and refrigerant collected in a liquid-side pipe even if the circumferential state of the stopped indoor unit is changed during heating operation. <P>SOLUTION: This air conditioner comprises a plurality of indoor units A and B connected in parallel to one outdoor unit C, temperature sensors 23a and 23b for detecting temperatures of liquid-side pipes 11a and 11b which are inlet side of electric expansion valves 7a and 7b in heating operation, and a control device. The control device includes a control means for correcting, based on the temperatures of the liquid-side pipes 11a and 11b on the stopped indoor unit side detected by the temperature sensors 23a and 23b in heating operation, the opening of the electric expansion valve 7a or 7b on the stopped indoor unit side. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マルチ式空気調和機に係り、1台の室外機に対し複数の室内機を並列に接続して構成するマルチ式空気調和機に好適なものである。   The present invention relates to a multi-type air conditioner, and is suitable for a multi-type air conditioner configured by connecting a plurality of indoor units in parallel to one outdoor unit.

近年のマルチ式空気調和機においては、各々の室内機に対応づけられた電動膨張弁を液側配管側にのみ設けて、ガス側配管側から電磁弁を削除するようにした安価な冷媒回路で空調を行うものが増えてきている。   In recent multi-type air conditioners, an electrically operated expansion valve associated with each indoor unit is provided only on the liquid side piping side, and an inexpensive refrigerant circuit in which the electromagnetic valve is eliminated from the gas side piping side. The number of air conditioning is increasing.

このようなマルチ式空気調和機の一例(従来技術1)を図4により説明する。なお、図4において後述する本発明における同一物または相当物には同一符号を付す。この例では2台の室内機A、Bが1台の室外機Cに接続されている。2台の室内機A、Bはガス側配管10a、10bと液側配管11a、11bとの間に接続されており、各々、室内熱交換器4a、4bおよび室内ファン5a、5bを備えている。一方、室外機Cには圧縮機1、四方弁2、室外熱交換器8、室外ファン9が設けられており、室外機C内の液側配管11a、11bには各々の室内機A、Bに対応した電動膨張弁7a、7bが設けられている。また、冷媒は暖房運転時に実線矢印方向に流れる。   An example of such a multi-type air conditioner (Prior Art 1) will be described with reference to FIG. In FIG. 4, the same reference numerals are assigned to the same or equivalent components in the present invention described later. In this example, two indoor units A and B are connected to one outdoor unit C. The two indoor units A and B are connected between the gas-side pipes 10a and 10b and the liquid-side pipes 11a and 11b, and include indoor heat exchangers 4a and 4b and indoor fans 5a and 5b, respectively. . On the other hand, the outdoor unit C is provided with a compressor 1, a four-way valve 2, an outdoor heat exchanger 8, and an outdoor fan 9. The liquid side pipes 11a and 11b in the outdoor unit C are provided with respective indoor units A and B. Electric expansion valves 7a and 7b corresponding to the above are provided. The refrigerant flows in the direction of the solid arrow during the heating operation.

このマルチ式空気調和機において、室内機A、Bを同時に暖房運転する場合には、空調負荷に応じて室内機A用の電動膨張弁7aと室内機B用の電動膨張弁7bを各々個別に制御し室内機Aおよび室内機Bの熱交換器4a、4bに対して冷媒を適正量分配することで、冷媒回路を効率良く動作させることができる。また、室内機A側の暖房運転を継続し、室内機B側を停止した場合には、室内機B用の電動膨張弁7bを全閉にすることで室内機B側への冷媒通路を閉鎖し、暖房運転している室内機Aと室外機Cとにより冷媒回路を構成するようにしている。   In this multi-type air conditioner, when heating the indoor units A and B simultaneously, the electric expansion valve 7a for the indoor unit A and the electric expansion valve 7b for the indoor unit B are individually provided according to the air conditioning load. By controlling and distributing an appropriate amount of refrigerant to the heat exchangers 4a and 4b of the indoor unit A and the indoor unit B, the refrigerant circuit can be operated efficiently. When the heating operation on the indoor unit A side is continued and the indoor unit B side is stopped, the refrigerant passage to the indoor unit B side is closed by fully closing the electric expansion valve 7b for the indoor unit B. The indoor unit A and the outdoor unit C that are in the heating operation form a refrigerant circuit.

しかしながら、この冷媒回路は、ガス側配管10a、10bに各々の室内機A、Bに対応した冷媒進入防止用の弁を備えていないために、暖房運転時に高圧ガス冷媒が停止中の室内機Bの室内熱交換器4bに進入し、ここで放熱した後に凝縮してしまう。このため、室内機B用の電動膨張弁7bを長時間に亘り全閉していると、室内機Bの室内熱交換器4bと液側配管11b内に冷媒が多量に滞留し、冷媒回路の全体の冷媒循環量が不足することで室内機A側の暖房能力が著しく低下してしまう欠点を抱えていた。   However, since the refrigerant circuit does not include the refrigerant ingress prevention valves corresponding to the indoor units A and B in the gas side pipes 10a and 10b, the indoor unit B in which the high-pressure gas refrigerant is stopped during the heating operation. Enters the indoor heat exchanger 4b and condenses after radiating heat. For this reason, if the electric expansion valve 7b for the indoor unit B is fully closed for a long time, a large amount of refrigerant stays in the indoor heat exchanger 4b and the liquid side pipe 11b of the indoor unit B, and the refrigerant circuit There was a drawback that the heating capacity on the indoor unit A side was significantly reduced due to the lack of the total refrigerant circulation.

そこで、従来のマルチ式空気調和機では、停止側の冷媒回路上にある電動膨張弁を所定開度で開放し、冷媒を流通させる制御を行なうことにより滞留を防止しするようにしたものがある。例えば、特開平8−159590号公報に示されたもの(従来技術2)では、暖房運転を開始する際に停止側の室内機に対応した電動膨張弁を所定の開度で開放し、その後運転側の電動膨張弁の開度に対応させて停止側の電動膨張弁の開度も変化させ、冷媒の滞留を防止するようにしている。また、停止側の初期開度は接続された室内機の能力クラスと配管長さによって補正可能になっており、室外制御装置に備えられた設定スイッチにより据付時に作業者が設定を切換えて補正するようになっている。   Therefore, in the conventional multi-type air conditioner, there is one in which the electric expansion valve on the refrigerant circuit on the stop side is opened at a predetermined opening to prevent the stagnation by performing the control of circulating the refrigerant. . For example, in the one disclosed in Japanese Patent Laid-Open No. 8-159590 (prior art 2), when starting the heating operation, the electric expansion valve corresponding to the indoor unit on the stop side is opened at a predetermined opening degree, and then the operation is started. Corresponding to the opening of the electric expansion valve on the side, the opening of the electric expansion valve on the stop side is also changed to prevent the refrigerant from staying. In addition, the initial opening on the stop side can be corrected by the capacity class and piping length of the connected indoor unit, and the operator switches the setting and corrects it at the time of installation using the setting switch provided in the outdoor control device. It is like that.

しかしながら、従来技術2のマルチ式空気調和機では、停止側の室内機から戻ってきた冷媒の過冷却度を考慮した制御については開示されていない。このため、停止している室内機の周囲状態、例えば周囲温度が変化した際に、停止している室内機の熱交換器および液側配管に溜まる冷媒量が変化することに確実に対応できないという問題がある。 However, in the multi-type air conditioner of Prior Art 2, there is no disclosure about control in consideration of the degree of supercooling of the refrigerant returned from the indoor unit on the stop side. For this reason, when the ambient state of the stopped indoor unit, for example, the ambient temperature changes, it cannot reliably cope with the change in the amount of refrigerant accumulated in the heat exchanger and the liquid side pipe of the stopped indoor unit. There's a problem.

また、従来技術2のマルチ式空気調和機では、据付時に作業者が室外制御装置に備えられた設定スイッチにより設定を切換えて補正するようにしているため、補正の誤設定を生ずるおそれがあるという問題がある。   Moreover, in the multi-type air conditioner of the prior art 2, since the operator switches and corrects the setting with the setting switch provided in the outdoor control device at the time of installation, there is a possibility that an erroneous setting of correction may occur. There's a problem.

本発明の第1の目的は、暖房運転時に停止している室内機の周囲状態が変化しても停止側の室内熱交換器および液側配管内に溜まる冷媒を適切に制御することができ、これによって運転している室内機の暖房能力を十分に確保できるマルチ式空気調和機を提供することにある。   The first object of the present invention is to appropriately control the refrigerant accumulated in the stop-side indoor heat exchanger and the liquid-side pipe even when the ambient state of the indoor unit stopped during the heating operation changes, An object of the present invention is to provide a multi-type air conditioner that can sufficiently secure the heating capacity of an indoor unit that is operating.

本発明の第2の目的は、簡単な制御で、暖房運転時に停止している室内機の周囲状態が変化しても停止側の室内熱交換器および液側配管内に溜まる冷媒を適切に制御することができ、これによって運転している室内機の暖房能力を十分に確保できるマルチ式空気調和機を提供することにある。   The second object of the present invention is to control easily the refrigerant that accumulates in the indoor heat exchanger on the stop side and the liquid side piping even if the ambient state of the indoor unit that is stopped during the heating operation changes with simple control. Accordingly, an object of the present invention is to provide a multi-type air conditioner that can sufficiently ensure the heating capacity of an indoor unit that is in operation.

本発明の第3の目的は、暖房運転時に誤操作なく停止側の室内熱交換器および液側配管内に溜まる冷媒を適切に制御することができ、これによって運転している室内機の暖房能力を十分に確保できるマルチ式空気調和機を提供することにある。   The third object of the present invention is to appropriately control the refrigerant accumulated in the indoor heat exchanger on the stop side and the liquid side piping without any erroneous operation during the heating operation, thereby improving the heating capacity of the indoor unit being operated. The object is to provide a multi-type air conditioner that can be sufficiently secured.

上記第1の目的を達成するための本発明の第1の特徴は、各々室内熱交換器を有する複数の室内機と、前記室内機を並列に接続すると共に、冷暖房運転を切換える切換弁および前記室内機に対応して冷媒流量を個別に制御する電動膨張弁を備えた室外機と、前記膨張弁を制御する制御装置と、を備えるマルチ式空気調和機において、暖房運転時に前記電動膨張弁の入口側となる液側配管温度を検知するための温度センサーを備え、前記制御装置は、暖房運転時に前記温度センサーで検出した室内機停止側の液側配管温度に基づいて室内機停止側の前記電動膨張弁の開度を補正する制御手段を備えたことにある。   A first feature of the present invention for achieving the first object is that a plurality of indoor units each having an indoor heat exchanger, a switching valve for connecting the indoor units in parallel and switching between cooling and heating operations, and In a multi-type air conditioner comprising: an outdoor unit that includes an electric expansion valve that individually controls the refrigerant flow rate corresponding to the indoor unit; and a control device that controls the expansion valve. The controller includes a temperature sensor for detecting a liquid side pipe temperature on the inlet side, and the control device is configured to detect the indoor unit stop side based on a liquid side pipe temperature on the indoor unit stop side detected by the temperature sensor during heating operation. The control means for correcting the opening degree of the electric expansion valve is provided.

上記第2の目的を達成するための本発明の第2の特徴は、各々室内熱交換器を有する複数の室内機と、前記室内機を並列に接続すると共に、冷暖房運転を切換える切換弁および前記室内機に対応して冷媒流量を個別に制御する電動膨張弁を備えた室外機と、前記膨張弁を制御する制御装置と、を備えるマルチ式空気調和機において、暖房運転時に前記電動膨張弁の入口側となる液側配管温度を検知するための温度センサーを備え、前記制御装置は、暖房運転時に、前記温度センサーで検出した室内機運転側の液側配管温度および室内機停止側の液側配管温度に基づいて、室内機運転側の液側配管温度と室内機停止側の液側配管温度とが所定の温度差となるように室内機停止側の電動膨張弁の開度を補正する制御手段を備えたことにある。   The second feature of the present invention for achieving the second object described above is that a plurality of indoor units each having an indoor heat exchanger, a switching valve for connecting the indoor units in parallel and switching between cooling and heating operations, and In a multi-type air conditioner comprising: an outdoor unit that includes an electric expansion valve that individually controls the refrigerant flow rate corresponding to the indoor unit; and a control device that controls the expansion valve. A temperature sensor for detecting the temperature of the liquid side pipe on the inlet side is provided, and the control device detects the liquid side pipe temperature on the indoor unit operation side and the liquid side on the indoor unit stop side detected by the temperature sensor during heating operation. Control to correct the opening of the electric expansion valve on the indoor unit stop side based on the piping temperature so that the liquid side piping temperature on the indoor unit operation side and the liquid side piping temperature on the indoor unit stop side have a predetermined temperature difference There is a means.

上記第3の目的を達成するための本発明の第2の特徴は、各々室内熱交換器を有する複数の室内機と、前記室内機を並列に接続すると共に、冷暖房運転を切換える切換弁および前記室内機に対応して冷媒流量を個別に制御する電動膨張弁を備えた室外機と、前記膨張弁を制御する制御装置と、を備えるマルチ式空気調和機において、前記各室内機は室内機の能力クラスや室内熱交換器の容積クラス等の補正パラメータをその組立て時に記憶した記憶装置を備え、前記制御装置は、暖房運転時に補正パラメータに基づいて室内機停止側の前記電動膨張弁の開度を補正する制御手段を備えたことにある。   The second feature of the present invention for achieving the third object is that a plurality of indoor units each having an indoor heat exchanger, a switching valve for connecting the indoor units in parallel and switching between cooling and heating operations, and In the multi-type air conditioner, comprising: an outdoor unit that includes an electric expansion valve that individually controls the refrigerant flow rate corresponding to the indoor unit; and a control device that controls the expansion valve. The storage device stores a correction parameter such as a capacity class and a volume class of the indoor heat exchanger at the time of assembly, and the control device opens the opening of the electric expansion valve on the indoor unit stop side based on the correction parameter during heating operation. Is provided with a control means for correcting the above.

本発明によれば、暖房運転時に停止している室内機の周囲状態が変化しても停止側の室内熱交換器および液側配管内に溜まる冷媒を適切に制御することができ、これによって運転している室内機の暖房能力を十分に確保できるマルチ式空気調和機が得られる。   ADVANTAGE OF THE INVENTION According to this invention, even if the surrounding state of the indoor unit stopped at the time of heating operation changes, the refrigerant | coolant collected in a stop side indoor heat exchanger and liquid side piping can be controlled appropriately, and operation is carried out by this A multi-type air conditioner that can sufficiently secure the heating capacity of the indoor unit is obtained.

また、本発明によれば、簡単な制御で、暖房運転時に停止している室内機の周囲状態が変化しても停止側の室内熱交換器および液側配管内に溜まる冷媒を適切に制御することができ、これによって運転している室内機の暖房能力を十分に確保できるマルチ式空気調和機が得られる。   Further, according to the present invention, the refrigerant that accumulates in the stop-side indoor heat exchanger and the liquid-side pipe is appropriately controlled by simple control even when the ambient state of the indoor unit that is stopped during the heating operation changes. Thus, a multi-type air conditioner that can sufficiently secure the heating capacity of the indoor unit being operated can be obtained.

また、本発明によれば、据付時に補正パラメータの誤設定をすることなく、暖房運転時に停止側の室内熱交換器および液側配管内に溜まる冷媒を適切に制御することができ、これによって運転している室内機の暖房能力を十分に確保できるマルチ式空気調和機が得られる。   Further, according to the present invention, it is possible to appropriately control the refrigerant accumulated in the stop side indoor heat exchanger and the liquid side pipe during the heating operation without erroneously setting the correction parameter at the time of installation. A multi-type air conditioner that can sufficiently secure the heating capacity of the indoor unit is obtained.

以下、本発明の一実施形態におけるマルチ式空気調和機を図1から図3を用いて説明する。   Hereinafter, a multi-type air conditioner according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3.

図1は本発明の一実施形態におけるマルチ式空気調和機の冷媒回路構成図である。この実施例のマルチ式空気調和機は、2台の室内機A、Bが1台の室外機Cに接続された例である。   FIG. 1 is a refrigerant circuit configuration diagram of a multi-type air conditioner according to an embodiment of the present invention. The multi-type air conditioner of this embodiment is an example in which two indoor units A and B are connected to one outdoor unit C.

2台の室内機A、Bは、冷媒回路において、ガス側配管10a、10bに設けられたガス側配管接続バルブ3a、3bと液側配管11a、11bに設けられた液側配管接続バルブ6a、6bとを介して室外機Cに接続されている。このガス側配管接続バルブ3a、3bおよび液側配管接続バルブ6a、6bは、手動式バルブであり、据付時等に開閉して用いられ、据付後は通常全開状態で用いられるものである。各々の室内機A、Bには室内熱交換器4a、4b、室内ファン5a、5b、および室温センサー32a、32bが設けられている。この室内機A、Bは、室内熱交換器4a、4bの容積が同一または異なるものが使用者の希望に応じて選択され、室外機Cに組み合わされるものである。室内ファン5a、5bは、室内熱交換器4a、4bに室内空気を通風して熱交換し、室内空気を冷却または加熱する。室温センサー32a、32bは、室内空気の温度を検出するものであり、具体的には室内熱交換器4a、4bの吸込側の空気温度を検出するものである。   In the refrigerant circuit, the two indoor units A and B include gas side pipe connection valves 3a and 3b provided in the gas side pipes 10a and 10b and liquid side pipe connection valves 6a provided in the liquid side pipes 11a and 11b, 6b is connected to the outdoor unit C. The gas side pipe connection valves 3a and 3b and the liquid side pipe connection valves 6a and 6b are manual valves that are opened and closed during installation or the like, and are normally used in a fully opened state after installation. Each indoor unit A, B is provided with indoor heat exchangers 4a, 4b, indoor fans 5a, 5b, and room temperature sensors 32a, 32b. In the indoor units A and B, the indoor heat exchangers 4a and 4b having the same or different volumes are selected according to the user's request and combined with the outdoor unit C. The indoor fans 5a and 5b ventilate the indoor air through the indoor heat exchangers 4a and 4b to exchange heat, and cool or heat the indoor air. The room temperature sensors 32a and 32b detect the temperature of indoor air, and specifically detect the air temperature on the suction side of the indoor heat exchangers 4a and 4b.

一方、室外機Cには圧縮機1、四方弁2、室外熱交換器8、および電動膨張弁7a、7bが設けられている。四方弁2は、圧縮機1から吐出した冷媒ガスを室外熱交換器8に導くか室内機A、Bに導くかの切換えを行なうものであり、冷房運転か暖房運転かを切換えるものである。図1の四方弁2の状態は暖房運転にした状態であり、冷媒は冷媒回路中を実線矢印のように循環する。電動膨張弁7a、7bは、液側配管11a、11bに各々の室内機A、Bに対応して設けられている。この冷媒回路では、ガス側配管接続バルブ3a、室内熱交換器4a、液側配管接続バルブ6aおよび電動膨張弁7aが直列に接続されると共に、ガス側配管接続バルブ3b、室内熱交換器4b、液側配管接続バルブ6bおよび電動膨張弁7bが直列に接続され、両直列冷媒回路が並列に接続されている。また、室外機Cには、室外ファン9が室外空気を室外熱交換器8に通風するように配置されている。そして、冷媒回路の主要な冷媒温度を検知するために、圧縮機近傍の吐出配管には冷媒吐出温度センサー22が配置され、電動膨張弁7a、7bと液側配管接続バルブ6a、6bとの間の配管11a、11bには過冷却冷媒温度センサー23a、23bが配置されている。   On the other hand, the outdoor unit C is provided with a compressor 1, a four-way valve 2, an outdoor heat exchanger 8, and electric expansion valves 7a and 7b. The four-way valve 2 switches whether the refrigerant gas discharged from the compressor 1 is led to the outdoor heat exchanger 8 or the indoor units A and B, and switches between the cooling operation and the heating operation. The state of the four-way valve 2 in FIG. 1 is a state in which the heating operation is performed, and the refrigerant circulates in the refrigerant circuit as indicated by solid arrows. The electric expansion valves 7a and 7b are provided in the liquid side pipes 11a and 11b corresponding to the indoor units A and B, respectively. In this refrigerant circuit, the gas side pipe connection valve 3a, the indoor heat exchanger 4a, the liquid side pipe connection valve 6a and the electric expansion valve 7a are connected in series, and the gas side pipe connection valve 3b, the indoor heat exchanger 4b, The liquid side pipe connection valve 6b and the electric expansion valve 7b are connected in series, and both series refrigerant circuits are connected in parallel. In the outdoor unit C, an outdoor fan 9 is disposed so as to vent outdoor air to the outdoor heat exchanger 8. And in order to detect the main refrigerant temperature of a refrigerant circuit, the refrigerant | coolant discharge temperature sensor 22 is arrange | positioned at the discharge piping of the compressor vicinity, and between electric expansion valve 7a, 7b and liquid side piping connection valve 6a, 6b. The subcooled refrigerant temperature sensors 23a and 23b are arranged in the pipes 11a and 11b.

図2は本発明の実施形態におけるマルチ式空気調和機の制御ブロック図を示す。図2において、21が室外機Cに設けられた室外制御装置、31aが室内機Aの室内制御装置、31bが室内機Bの室内制御装置を示す。   FIG. 2 is a control block diagram of the multi-type air conditioner according to the embodiment of the present invention. In FIG. 2, 21 is an outdoor control device provided in the outdoor unit C, 31 a is an indoor control device of the indoor unit A, and 31 b is an indoor control device of the indoor unit B.

2つの室内制御装置31a、31bは制御信号の送受信を行うためのデータ伝送線51a、51bにより室外制御装置21と接続されている。室内制御装置31a、31bと室外制御装置21とによりマルチ式空気調和機の制御装置が構成されている。各々の室内制御装置31a、31bは、室温を検知するための室温センサー32a、32bと、室内機A、Bの能力クラスや室内熱交換器4a、4bの容積クラス等の補正パラメータを室内機A,Bの組立て時に記憶した記憶装置33a、33bとが接続されていると共に、リモコン41a、41bから制御信号を受けるようになっており、室温センサー32a、32b、記憶装置33a、33bおよびリモコン41a、41bからデータを入力してこれに基づいて所定の制御を行なうようになっている。   The two indoor control devices 31a and 31b are connected to the outdoor control device 21 through data transmission lines 51a and 51b for transmitting and receiving control signals. The indoor control devices 31a and 31b and the outdoor control device 21 constitute a control device for a multi-type air conditioner. Each of the indoor control devices 31a and 31b includes room temperature sensors 32a and 32b for detecting the room temperature, and correction parameters such as the capacity class of the indoor units A and B and the volume class of the indoor heat exchangers 4a and 4b. , B are connected to the storage devices 33a, 33b stored at the time of assembly, and receive control signals from the remote controllers 41a, 41b. The room temperature sensors 32a, 32b, the storage devices 33a, 33b, and the remote control 41a, Data is input from 41b, and predetermined control is performed based on the data.

一方、室外制御装置21は、圧縮機1から吐出した冷媒の温度を検知するための冷媒吐出温度センサー22、過冷却冷媒温度を検知するための過冷却冷媒温度センサー23a、23b、圧縮機1、および電動膨張弁7a、7bが接続されている。そして、室外機制御装置21は、これらおよび室内制御装置31a、31bからデータを入手して制御するものであり、具体的には、圧縮機回転数検出手段、圧縮機回転数制御手段および電動膨張弁制御手段等の制御手段が備えられており、この制御手段により圧縮機1および各電動膨張弁7a、7bを制御するようになっている。なお、冷媒吐出温度センサー22は、圧縮機1近傍の吐出配管上に設けられており、過冷却冷媒温度センサー23a,23bは電動膨張弁7a、7bと液側配管接続バルブ6a、6bとの間の液側配管11a、11b上に設置されている。   On the other hand, the outdoor control device 21 includes a refrigerant discharge temperature sensor 22 for detecting the temperature of the refrigerant discharged from the compressor 1, supercooled refrigerant temperature sensors 23a and 23b for detecting the supercooled refrigerant temperature, the compressor 1, And the electric expansion valves 7a and 7b are connected. The outdoor unit control device 21 obtains data from these and the indoor control devices 31a and 31b and controls them. Specifically, the compressor rotational speed detection means, the compressor rotational speed control means, and the electric expansion Control means such as valve control means is provided, and the compressor 1 and the electric expansion valves 7a and 7b are controlled by the control means. The refrigerant discharge temperature sensor 22 is provided on the discharge pipe in the vicinity of the compressor 1, and the supercooled refrigerant temperature sensors 23a and 23b are provided between the electric expansion valves 7a and 7b and the liquid side pipe connection valves 6a and 6b. Installed on the liquid side pipes 11a and 11b.

このように構成したマルチ式空気調和機で室内機Aと室内機Bを共に暖房運転した場合の動作概要について説明する。リモコン41a、41bの操作により暖房運転が開始されると、各室内制御装置31a、31bはリモコン41a、41bから受けた設定風速に従い室内ファン5a、5bを制御すると共に、暖房運転開始指令と暖房能力と補正パラメータをデータ伝送線51a、51bを通して室外制御装置21に送信する。この暖房能力はリモコン41a、41bにより設定された設定温度と室温センサー32a、32bから検知した室温をもとにその時の空調負荷を演算して設定される。また、補正パラメータは、室内制御装置31a、31bの電源投入時に記憶装置33a、33bから取得し、室内機A、Bの運転、停止に係わらず、常に室外制御装置21へ送信されている。   An outline of the operation when both the indoor unit A and the indoor unit B are heated in the multi-type air conditioner configured as described above will be described. When the heating operation is started by the operation of the remote controllers 41a and 41b, the indoor control devices 31a and 31b control the indoor fans 5a and 5b according to the set wind speed received from the remote controllers 41a and 41b, as well as the heating operation start command and the heating capacity. And the correction parameter are transmitted to the outdoor control device 21 through the data transmission lines 51a and 51b. The heating capacity is set by calculating the air conditioning load at that time based on the set temperature set by the remote controllers 41a and 41b and the room temperature detected by the room temperature sensors 32a and 32b. The correction parameters are acquired from the storage devices 33a and 33b when the indoor control devices 31a and 31b are turned on, and are always transmitted to the outdoor control device 21 regardless of whether the indoor units A and B are operated or stopped.

そして、室外制御装置21は、室内機A、Bから暖房運転の開始指令を受けると、四方弁2を暖房サイクル側に切換え、室外ファン9を所定の回転数で駆動し、各室内機A、Bの補正パラメータにあわせて、各々の電動膨張弁7a、7bを所定の運転用初期開度に絞込む。さらに、室内機A、Bから受信した圧縮機1の回転数指令値をもとに2台運転に必要な圧縮機回転数を演算により求めて圧縮機1を駆動する。その後、室外制御装置21は圧縮機回転数検出手段により検知した実際の回転数(以下、圧縮機実回転数N(n)と称す)と上記演算により求めた圧縮機回転数目標値とを比較しながら高精度な圧縮機回転数制御を行う。   When the outdoor control device 21 receives a heating operation start command from the indoor units A and B, the outdoor control device 21 switches the four-way valve 2 to the heating cycle side and drives the outdoor fan 9 at a predetermined rotational speed. In accordance with the correction parameter B, each electric expansion valve 7a, 7b is narrowed to a predetermined initial opening for operation. Further, based on the rotation speed command value of the compressor 1 received from the indoor units A and B, the compressor rotation speed required for the operation of the two units is obtained by calculation to drive the compressor 1. Thereafter, the outdoor control device 21 compares the actual rotation speed detected by the compressor rotation speed detection means (hereinafter referred to as the compressor actual rotation speed N (n)) with the compressor rotation speed target value obtained by the above calculation. High-precision compressor rotation speed control is performed.

上記室外制御装置21の働きにより冷媒回路内の冷媒は図1に示す矢印の方向に流れる。圧縮機1で圧縮された冷媒は高温高圧のガス冷媒として四方弁2を通過して各室内熱交換器4a、4bに流れ込み、室内ファン5a、5bにより送られる空気に放熱することで過冷却冷媒となる。その後、各電動膨張弁7a、7bを通過することで減圧され、室外熱交換器8で室外ファン9により送られる空気により加熱されて、四方弁2を経由し圧縮機1に戻る。   Due to the action of the outdoor control device 21, the refrigerant in the refrigerant circuit flows in the direction of the arrow shown in FIG. The refrigerant compressed by the compressor 1 passes through the four-way valve 2 as a high-temperature and high-pressure gas refrigerant, flows into the indoor heat exchangers 4a and 4b, and dissipates heat to the air sent by the indoor fans 5a and 5b. It becomes. Thereafter, the pressure is reduced by passing through each of the electric expansion valves 7 a and 7 b, the air is heated by the outdoor fan 9 in the outdoor heat exchanger 8, and returns to the compressor 1 via the four-way valve 2.

次に、上記の冷媒回路において冷媒循環量と冷媒温度を調整している電動膨張弁7a、7bの制御動作について図3を参照しながら説明する。図3は室外制御装置に設けた電動膨張弁制御手段の動作を示すフローチャート図である。   Next, the control operation of the electric expansion valves 7a and 7b adjusting the refrigerant circulation amount and the refrigerant temperature in the refrigerant circuit will be described with reference to FIG. FIG. 3 is a flowchart showing the operation of the electric expansion valve control means provided in the outdoor control device.

電動膨張弁制御手段は、冷媒吐出温度補正制御(S1)、圧縮機回転数偏差補正制御(S2)、分配制御(S3)、開閉制御(S4)から構成されており、冷媒吐出温度センサー22により検知した冷媒吐出温度Tdと圧縮機回転数検出手段により検知した圧縮機実回転数N(n)と過冷却冷媒温度センサー23a、23bにより検知した過冷却冷媒温度をもとに、各電動膨張弁7a、7bの弁開度を制御する。   The electric expansion valve control means includes refrigerant discharge temperature correction control (S1), compressor rotation speed deviation correction control (S2), distribution control (S3), and open / close control (S4). Each electric expansion valve is based on the detected refrigerant discharge temperature Td, the actual compressor speed N (n) detected by the compressor speed detecting means, and the subcooled refrigerant temperature detected by the subcooled refrigerant temperature sensors 23a and 23b. The valve opening degree of 7a, 7b is controlled.

まず、冷媒吐出温度補正制御(S1)では、圧縮機1により圧縮して吐出された冷媒の温度、すなわち冷媒吐出温度Tdが圧縮機回転数に対応した所定の温度となるよう電動膨張弁7a、7bの開度を補正するための演算を行っている。この演算には冷媒吐出温度補正用のファジー演算が用いられており、この演算に冷媒吐出温度Tdと圧縮機実回転数N(n)を代入すると電動膨張弁7a、7bの補正開度ΔPtdを符号付きで求めることができる。この演算結果を以下、冷媒吐出温度補正開度ΔPtdと称する。   First, in the refrigerant discharge temperature correction control (S1), the electric expansion valve 7a, so that the temperature of the refrigerant compressed and discharged by the compressor 1, that is, the refrigerant discharge temperature Td becomes a predetermined temperature corresponding to the compressor rotation speed, The calculation for correcting the opening degree of 7b is performed. For this calculation, fuzzy calculation for correcting the refrigerant discharge temperature is used. When the refrigerant discharge temperature Td and the actual compressor speed N (n) are substituted for this calculation, the correction opening degree ΔPtd of the electric expansion valves 7a and 7b is obtained. It can be obtained with a sign. Hereinafter, the calculation result is referred to as a refrigerant discharge temperature correction opening degree ΔPtd.

次いで、圧縮機回転数偏差補正制御(S2)では、冷媒回路の負荷変動により圧縮機1の回転数が変動した場合の補正開度を求めている。この演算には圧縮機実回転数がN(n-1)からN(n)に変動した場合の差ΔN(n)=N(n)−N(n-1)と所定定数である圧縮機回転数変動補正定数Knmとを掛け合わせ、符号付き補正開度ΔPnを求めている。この演算結果を以下、圧縮機回転数変動補正開度ΔPnと称する。   Next, in the compressor rotation speed deviation correction control (S2), the corrected opening when the rotation speed of the compressor 1 fluctuates due to the load fluctuation of the refrigerant circuit is obtained. In this calculation, the difference ΔN (n) = N (n) −N (n−1) when the actual rotational speed of the compressor fluctuates from N (n−1) to N (n) and a predetermined constant compressor. The signed correction opening degree ΔPn is obtained by multiplying by the rotation speed fluctuation correction constant Knm. Hereinafter, the calculation result is referred to as a compressor rotation speed fluctuation correction opening degree ΔPn.

次いで、分配制御(S3)では、室内機A、Bの運転台数を検知して2台運転か1台運転かを判定し(S31)、2台運転中の処理と1台運転中の処理に分けて演算を行っている。2台運転中の演算は各室内機A、Bに適正な冷媒循環量を供給するための分配制御として行っている。すなわち、2台運転中の処理は、室内機Aに対応する過冷却冷媒温度Tscaと室内機Bに対応する過冷却冷媒温度Tscbとが同一温度となるように各電動膨張弁7a、7bの補正開度を演算するものであり、現在の温度差Tsc=Tscb−Tscaを演算し(S32)、この温度差Tscを分配制御用のファジー演算に代入して補正開度ΔPtscを符号付きで求めている(S33)。一方、1台運転中の演算は、各々の室内制御装置31a、31bから受信した室内機A、Bの能力クラスと室内熱交換器4a、4bの容積クラス等の補正パラメータをもとに、温度差補正定数Kscを演算し(S34)、室内機Aに対応する過冷却冷媒温度Tscaと室内機Bに対応する過冷却冷媒温度Tscbとの差に温度差補正定数Kscを加えた温度差Tscを演算し(S35)、この温度差Tscを分配制御用のファジー演算に代入して補正開度ΔPtscを符号付きで求めている(S33)。ここで求められた結果を以下、過冷却冷媒温度補正開度ΔPtscと称する。このように、室内機Aに対応する過冷却冷媒温度Tscaと室内機Bに対応する過冷却冷媒温度Tscbとが所定の温度差になるように制御するようにしているため、極めて簡単な制御とすることができる。   Next, in distribution control (S3), the number of operating indoor units A and B is detected to determine whether they are operating in two units or one unit (S31). The calculation is performed separately. The calculation during the operation of the two units is performed as distribution control for supplying an appropriate refrigerant circulation amount to each of the indoor units A and B. That is, the processing during the operation of the two units is performed by correcting each of the electric expansion valves 7a and 7b so that the supercooling refrigerant temperature Tsca corresponding to the indoor unit A and the supercooling refrigerant temperature Tscb corresponding to the indoor unit B are the same. An opening is calculated, the current temperature difference Tsc = Tscb−Tsca is calculated (S32), and this temperature difference Tsc is substituted for fuzzy calculation for distribution control to obtain a corrected opening ΔPtsc with a sign. (S33). On the other hand, the calculation during the operation of one unit is based on the correction parameters such as the capacity classes of the indoor units A and B and the volume classes of the indoor heat exchangers 4a and 4b received from the indoor control devices 31a and 31b. The difference correction constant Ksc is calculated (S34), and the temperature difference Tsc obtained by adding the temperature difference correction constant Ksc to the difference between the supercooling refrigerant temperature Tsca corresponding to the indoor unit A and the supercooling refrigerant temperature Tscb corresponding to the indoor unit B is obtained. Calculation is made (S35), and the temperature difference Tsc is substituted for fuzzy calculation for distribution control to obtain the corrected opening ΔPtsc with a sign (S33). The result obtained here is hereinafter referred to as a supercooled refrigerant temperature correction opening degree ΔPtsc. As described above, since the supercooling refrigerant temperature Tsca corresponding to the indoor unit A and the supercooling refrigerant temperature Tscb corresponding to the indoor unit B are controlled to have a predetermined temperature difference, extremely simple control and can do.

最後に開閉制御(S4)では、各電動膨張弁7a、7bの現在開度Pa(n-1)、Pb(n-1)に対して前述した3つの補正開度ΔPtd、ΔPn、ΔPtscを総計し目標開度Pa(n)、Pb(n)を求め(S41)、各々の電動膨張弁7a、7bをこの目標開度Pa(n)、Pb(n)に合わせるように開閉制御している。このように、冷媒吐出温度補正制御(S1)、圧縮機回転数偏差補正制御(S2)および分配制御(S3)を組合せて3つの補正開度ΔPtd、ΔPn、ΔPtscを設定するようにしているので、極めて適切な電動膨張弁7a、7bの開度補正を行なうことができ、さらに暖房運転性能を向上することができる。   Finally, in the opening / closing control (S4), the above-described three corrected openings ΔPtd, ΔPn, ΔPtsc are totaled with respect to the current openings Pa (n-1), Pb (n-1) of the electric expansion valves 7a, 7b. The target openings Pa (n) and Pb (n) are obtained (S41), and the electric expansion valves 7a and 7b are controlled to be opened and closed so as to match the target openings Pa (n) and Pb (n). . As described above, the three correction openings ΔPtd, ΔPn, and ΔPtsc are set by combining the refrigerant discharge temperature correction control (S1), the compressor rotation speed deviation correction control (S2), and the distribution control (S3). It is possible to correct the opening degree of the electric expansion valves 7a and 7b, which is extremely appropriate, and to further improve the heating operation performance.

係る電動膨張弁7a、7bの制御は、所定周期ごとに実施し、冷媒回路内の冷媒循環量と冷媒温度を継続的に最適な状態に維持するようにしている。   The electric expansion valves 7a and 7b are controlled at predetermined intervals so that the refrigerant circulation amount and the refrigerant temperature in the refrigerant circuit are continuously maintained in an optimum state.

次に、暖房運転において室内機Aを運転し室内機Bを停止させた場合の1台運転の詳細について、図1から図3を参照しながら説明する。   Next, details of the single operation when the indoor unit A is operated and the indoor unit B is stopped in the heating operation will be described with reference to FIGS. 1 to 3.

室外制御装置21は、例えばデータ伝送線51a、51b上の暖房運転開始指令により室内機Aの1台だけが暖房運転を開始したことを確認すると、四方弁2を暖房サイクル側に切換え、室外ファン9を所定の回転数で駆動して、室内機Aの電動膨張弁7aを所定の運転用初期開度に、また室内機Bの電動膨張弁7bを所定の停止用初期開度に絞込む。さらに、室外制御装置21は室内機Aから受信した圧縮機1の指令回転数をもとに1台運転に必要な圧縮機回転数を求めて圧縮機1を駆動する。その後、停止している室内機Bへの冷媒滞留を防止し、且つ冷媒回路全体の冷媒循環量と冷媒温度を継続的に最適な状態に維持するために、電動膨張弁制御手段により各々の電動膨張弁7a、7bを所定の開度に制御する。   When the outdoor control device 21 confirms that only one of the indoor units A has started the heating operation by a heating operation start command on the data transmission lines 51a and 51b, for example, the outdoor control device 21 switches the four-way valve 2 to the heating cycle side, 9 is driven at a predetermined number of revolutions, and the electric expansion valve 7a of the indoor unit A is narrowed to a predetermined initial opening for operation, and the electric expansion valve 7b of the indoor unit B is narrowed to a predetermined initial opening for stopping. Further, the outdoor control device 21 drives the compressor 1 by obtaining the compressor rotational speed necessary for one unit operation based on the command rotational speed of the compressor 1 received from the indoor unit A. Thereafter, in order to prevent the refrigerant from staying in the stopped indoor unit B and to maintain the refrigerant circulation amount and the refrigerant temperature in the entire refrigerant circuit continuously in an optimal state, the electric expansion valve control means controls each electric motor. The expansion valves 7a and 7b are controlled to a predetermined opening degree.

この1台運転における電動膨張弁7a、7bの開閉動作を具体的に説明する。各々の電動膨張弁開度は電動膨張弁制御手段によって2台運転と同じく補正を行っている。しかしながら、1台運転時の分配制御については運転している室内機Aの空調負荷と停止している室内機Bの熱漏洩量を考慮して補正開度を求める必要があるため、2台運転時と同じ演算で単純に補正開度を求めることができない。そこで、記憶装置33a、33bに記憶された補正パラメータ、すなわち室内機A、Bの能力クラスや室内熱交換器4a、4bの容積クラス等の補正パラメータをもとに、運転している室内機Aの空調負荷と停止している室内機Bの熱漏洩量とを判断し、運転側と停止側の過冷却冷媒に所定の温度差がつくように分配制御を実施している。   The opening / closing operation of the electric expansion valves 7a and 7b in the single operation will be specifically described. Each electric expansion valve opening is corrected by the electric expansion valve control means in the same manner as the two-unit operation. However, since it is necessary to calculate the correction opening in consideration of the air conditioning load of the operating indoor unit A and the amount of heat leakage of the stopped indoor unit B for the distribution control during the single unit operation, the two units are operated. The corrected opening cannot be obtained simply by the same calculation as the time. Therefore, the operating indoor unit A is operated based on the correction parameters stored in the storage devices 33a and 33b, that is, the correction parameters such as the capacity classes of the indoor units A and B and the volume classes of the indoor heat exchangers 4a and 4b. The air conditioning load and the amount of heat leakage of the stopped indoor unit B are determined, and distribution control is performed so that a predetermined temperature difference is generated between the supercooled refrigerant on the operation side and the stop side.

1台運転における分配制御は、図3のステップS34において、各々の室内制御装置31a、31bから受信した室内機A、Bの能力クラスや室内熱交換器4a、4bの容積クラス等の補正パラメータをもとに所定の温度差補正定数Kscを演算により求める。次いで、図3のステップS35で、現在の温度差Tscを演算する時に温度差補正定数Kscを加算するようにしている。その結果を分配制御用のファジー演算に代入し補正開度ΔPtscを符号付きで求めている。また、上記のステップS34では温度差補正定数Kscを符号付きで求めることで、室内機A、室内機Bのいづれかが1台運転を行っても、室内機の場合分けせずにステップS34の演算式を利用可能にしている。   In the distribution control in the single unit operation, correction parameters such as the capacity classes of the indoor units A and B and the volume classes of the indoor heat exchangers 4a and 4b received from the indoor control devices 31a and 31b in step S34 of FIG. First, a predetermined temperature difference correction constant Ksc is obtained by calculation. Next, in step S35 in FIG. 3, the temperature difference correction constant Ksc is added when the current temperature difference Tsc is calculated. The result is substituted for fuzzy calculation for distribution control, and the corrected opening degree ΔPtsc is obtained with a sign. In step S34, the temperature difference correction constant Ksc is obtained with a sign so that even if one of the indoor unit A and the indoor unit B is operated alone, the calculation of step S34 is performed without dividing the case of the indoor unit. The expression is made available.

係る電動膨張弁7a、7bの制御を所定周期ごとに実施することで、1台運転における停止側の室内熱交換器4a、4bと液側接続配管における冷媒の滞留を防止し、冷媒回路内の冷媒循環量と冷媒温度を継続的に最適な状態に維持するようにしている。   By controlling the electric expansion valves 7a and 7b at predetermined intervals, it is possible to prevent the refrigerant from staying in the stop-side indoor heat exchangers 4a and 4b and the liquid-side connection pipe in the single operation, The refrigerant circulation amount and the refrigerant temperature are continuously maintained in an optimum state.

上述したこの実施形態においては、複数台の室内機A、Bを1台の室外機Cに接続して構成されたマルチ式空気調和機において、停止している室内機Aが含まれた暖房運転を行う際、運転している室内機側の過冷却冷媒温度と停止している室内機側の過冷却冷媒温度を検知して所定の温度差となるよう電動膨張弁7a、7bを制御することで、室温や外気温度等の空調負荷要因に影響を受けずに停止側の室内熱交換器4bおよび液側接続配管11bにおける冷媒の滞留を防止し、運転している室内機Aの暖房能力を十分に引き出すことができる。   In the above-described embodiment, in the multi-type air conditioner configured by connecting a plurality of indoor units A and B to a single outdoor unit C, the heating operation including the stopped indoor unit A is included. When performing the operation, the electric expansion valves 7a and 7b are controlled so that a predetermined temperature difference is obtained by detecting the temperature of the subcooling refrigerant on the side of the operating indoor unit and the temperature of the subcooling refrigerant on the side of the stopped indoor unit. Thus, the refrigerant is prevented from staying in the stop-side indoor heat exchanger 4b and the liquid-side connection pipe 11b without being affected by air-conditioning load factors such as room temperature and outside air temperature, and the heating capacity of the indoor unit A in operation is reduced. It can be pulled out sufficiently.

また、1台の室外機Cに異なるタイプの室内機A、Bを複数接続しても、室内機A、Bの能力クラス、および室内熱交換器4a、4bの容積クラス等の補正パラメータを制御要素として上記制御に加えることで、制御の適正化を図ることができる。   Even if a plurality of different types of indoor units A and B are connected to one outdoor unit C, the correction parameters such as the capacity class of the indoor units A and B and the volume class of the indoor heat exchangers 4a and 4b are controlled. By adding to the above control as an element, the control can be optimized.

さらに室内機A、Bの能力クラス、および室内熱交換器4a、4bの容積クラス等の補正パラメータを記憶するための記憶装置33a、33bを設け、空気調和機を組み立てる時に記憶装置33a、33bへ補正パラメータを記憶させ、電動膨張弁7a、7bを制御する際に記憶装置33a、33bから自動的に補正パラメータを取得する制御手段により補正パラメータを取得することで、人為的ミスによる誤設定を防止し、上記制御を確実に動作させることができる。   Furthermore, storage devices 33a and 33b are provided for storing correction parameters such as capacity classes of the indoor units A and B and volume classes of the indoor heat exchangers 4a and 4b. When the air conditioner is assembled, the storage devices 33a and 33b are provided. By storing the correction parameters and acquiring the correction parameters by the control means that automatically acquires the correction parameters from the storage devices 33a and 33b when controlling the electric expansion valves 7a and 7b, erroneous setting due to human error is prevented. Thus, the above control can be reliably operated.

以上、2台の室内機A、Bを1台の室外機Cに接続したマルチ式空気調和機における本発明の実施形態を説明してきたが、3台以上の室内機を1台の室外機に接続したマルチ式空気調和機においても本発明を適用することが可能である。なお、3台以上の室内機を1台の室外機に接続したマルチ式空気調和機で、全ての室内機を暖房運転した場合には各々の室内機に対応した過冷却冷媒温度センサーから最高温度と最低温度を検知して、この温度差を同一温度とするよう電動膨張弁を制御することにより、各々の室内機における冷媒回路内の冷媒循環量と冷媒温度を継続的に最適な状態に維持することが可能である。   As described above, the embodiment of the present invention in the multi-type air conditioner in which two indoor units A and B are connected to one outdoor unit C has been described. However, three or more indoor units are used as one outdoor unit. The present invention can also be applied to connected multi-type air conditioners. In the case of a multi-type air conditioner in which three or more indoor units are connected to one outdoor unit, when all indoor units are heated, the maximum temperature is determined from the supercooling refrigerant temperature sensor corresponding to each indoor unit. By detecting the minimum temperature and controlling the motorized expansion valve so that this temperature difference is the same temperature, the refrigerant circulation amount and the refrigerant temperature in the refrigerant circuit in each indoor unit are continuously maintained in the optimum state. Is possible.

また、停止している室内機を含む暖房運転を実施する場合において、運転側の過冷却冷媒温度の平均値と停止側の過冷却冷媒温度の平均値を求め、この温度差が所定の温度差となるように制御することで、安定的に、停止している室内熱交換器および液側接続配管における冷媒の滞留を防止し、冷媒回路内の冷媒循環量と冷媒温度を継続的に適切な状態に維持することが可能である。   In addition, when performing heating operation including a stopped indoor unit, an average value of the operation side supercooling refrigerant temperature and an average value of the stop side supercooling refrigerant temperature are obtained, and this temperature difference is a predetermined temperature difference. By controlling so as to become stable, the refrigerant is prevented from staying in the stopped indoor heat exchanger and the liquid side connection pipe, and the refrigerant circulation amount and the refrigerant temperature in the refrigerant circuit are continuously adjusted appropriately. It is possible to maintain the state.

本発明の一実施形態におけるマルチ式空気調和機の冷媒回路構成図である。It is a refrigerant circuit block diagram of the multi type air conditioner in one Embodiment of this invention. 同空気調和機の制御ブロック図である。It is a control block diagram of the air conditioner. 同空気調和機のおける電動膨張弁の制御動作を示すフローチャート図である。It is a flowchart figure which shows the control action of the electric expansion valve in the air conditioner. 従来のマルチ式空気調和機の冷媒回路構成図である。It is a refrigerant circuit block diagram of the conventional multi type air conditioner.

符号の説明Explanation of symbols

A…室内機、B…室内機、C…室外機、1…圧縮機、2…四方弁、3a、3b…ガス側配管接続バルブ、4a、4b…室内熱交換器、5a、5b…室内ファン、6a、6b…液側配管接続バルブ、7a、7b…電動膨張弁、8…室外熱交換器、9…室外ファン、10a、10b…ガス側配管、11a、11b…液側配管、21…室外制御装置、22…冷媒吐出温度センサー、23a、23b…過冷却冷媒温度センサー、31a、31b…室内制御装置、32a、32b…室温センサー、33a、33b…記憶装置、41a、41b…リモコン、51a、51b…データ伝送線。   A ... Indoor unit, B ... Indoor unit, C ... Outdoor unit, 1 ... Compressor, 2 ... Four-way valve, 3a, 3b ... Gas side pipe connection valve, 4a, 4b ... Indoor heat exchanger, 5a, 5b ... Indoor fan 6a, 6b ... Liquid side pipe connection valve, 7a, 7b ... Electric expansion valve, 8 ... Outdoor heat exchanger, 9 ... Outdoor fan, 10a, 10b ... Gas side pipe, 11a, 11b ... Liquid side pipe, 21 ... Outdoor Control device, 22 ... refrigerant discharge temperature sensor, 23a, 23b ... supercooled refrigerant temperature sensor, 31a, 31b ... indoor control device, 32a, 32b ... room temperature sensor, 33a, 33b ... storage device, 41a, 41b ... remote control, 51a, 51b: Data transmission line.

Claims (9)

各々室内熱交換器を有する複数の室内機と、前記室内機を並列に接続すると共に、冷暖房運転を切換える切換弁および前記室内機に対応して冷媒流量を個別に制御する電動膨張弁を備えた室外機と、前記膨張弁を制御する制御装置と、を備えるマルチ式空気調和機において、
暖房運転時に前記電動膨張弁の入口側となる液側配管温度を検知するための温度センサーを備え、
前記制御装置は、暖房運転時に前記温度センサーで検出した室内機停止側の液側配管温度に基づいて室内機停止側の前記電動膨張弁の開度を補正する制御手段を備えたことを特徴とするマルチ式空気調和機。
A plurality of indoor units each having an indoor heat exchanger, the indoor unit connected in parallel, a switching valve for switching between cooling and heating operation, and an electric expansion valve for individually controlling the refrigerant flow rate corresponding to the indoor unit In a multi-type air conditioner comprising an outdoor unit and a control device that controls the expansion valve,
A temperature sensor for detecting the temperature of the liquid side pipe that becomes the inlet side of the electric expansion valve during heating operation,
The control device includes control means for correcting the opening of the electric expansion valve on the indoor unit stop side based on the liquid side piping temperature on the indoor unit stop side detected by the temperature sensor during heating operation. Multi-type air conditioner.
各々室内熱交換器を有する複数の室内機と、前記室内機を並列に接続すると共に、冷暖房運転を切換える切換弁および前記室内機に対応して冷媒流量を個別に制御する電動膨張弁を備えた室外機と、前記膨張弁を制御する制御装置と、を備えるマルチ式空気調和機において、
暖房運転時に前記電動膨張弁の入口側となる液側配管温度を検知するための温度センサーを備え、
前記制御装置は、暖房運転時に、前記温度センサーで検出した室内機運転側の液側配管温度および室内機停止側の液側配管温度に基づいて、室内機運転側の液側配管温度と室内機停止側の液側配管温度とが所定の温度差となるように室内機停止側の電動膨張弁の開度を補正する制御手段を備えたことを特徴とするマルチ式空気調和機。
A plurality of indoor units each having an indoor heat exchanger, the indoor unit connected in parallel, a switching valve for switching between cooling and heating operation, and an electric expansion valve for individually controlling the refrigerant flow rate corresponding to the indoor unit In a multi-type air conditioner comprising an outdoor unit and a control device that controls the expansion valve,
A temperature sensor for detecting the temperature of the liquid side pipe that becomes the inlet side of the electric expansion valve during heating operation,
The controller controls the liquid side piping temperature on the indoor unit operation side and the indoor unit based on the liquid side piping temperature on the indoor unit operation side and the liquid side piping temperature on the indoor unit stop side detected by the temperature sensor during heating operation. A multi-type air conditioner comprising control means for correcting the opening of an electric expansion valve on the indoor unit stop side so that the liquid side pipe temperature on the stop side has a predetermined temperature difference.
請求項2において、前記制御装置は、暖房運転時に室内機の能力クラスや室内熱交換器の容積クラス等の補正パラメータに基づいて室内機運転側の液側配管温度と室内機停止側の液側配管温度との所定の温度差を補正する制御手段としたことを特徴とするマルチ式空気調和機。   3. The control device according to claim 2, wherein the controller is configured to control the liquid side pipe temperature on the indoor unit operation side and the liquid side on the indoor unit stop side based on correction parameters such as the capacity class of the indoor unit and the volume class of the indoor heat exchanger during heating operation. A multi-type air conditioner characterized by being a control means for correcting a predetermined temperature difference from the pipe temperature. 請求項2において、前記圧縮機の冷媒吐出温度補正および前記圧縮機の回転数変動補正を組合せて、室内機運転側の液側配管温度と室内機停止側の液側配管温度との所定の温度差を補正する制御手段としたことを特徴とするマルチ式空気調和機。   3. The predetermined temperature between the liquid side piping temperature on the indoor unit operation side and the liquid side piping temperature on the indoor unit stop side by combining the refrigerant discharge temperature correction of the compressor and the rotation speed fluctuation correction of the compressor in claim 2. A multi-type air conditioner characterized by being a control means for correcting the difference. 各々室内熱交換器を有する複数の室内機と、前記室内機を並列に接続すると共に、冷暖房運転を切換える切換弁および前記室内機に対応して冷媒流量を個別に制御する電動膨張弁を備えた室外機と、前記膨張弁を制御する制御装置と、を備えるマルチ式空気調和機において、
前記制御装置は、暖房運転時に、室内機運転側の過冷却冷媒温度および室内機停止側の過冷却冷媒温度に基づいて、室内機運転側の過冷却冷媒温度と室内機停止側の過冷却冷媒温度とが所定の温度差となるように制御手段を備えたことを特徴とするマルチ式空気調和機。
A plurality of indoor units each having an indoor heat exchanger, the indoor unit connected in parallel, a switching valve for switching between cooling and heating operation, and an electric expansion valve for individually controlling the refrigerant flow rate corresponding to the indoor unit In a multi-type air conditioner comprising an outdoor unit and a control device that controls the expansion valve,
During the heating operation, the control device, based on the subcooling refrigerant temperature on the indoor unit operation side and the subcooling refrigerant temperature on the indoor unit stop side, and the supercooling refrigerant on the indoor unit stop side A multi-type air conditioner comprising control means so that a temperature difference is a predetermined temperature.
請求項5において、室内機運転側の過冷却冷媒温度の平均値と室内機停止側の過冷却冷媒温度の平均値を求めてこの両者の温度差が所定温度差となるように制御する制御手段としたことを特徴とするマルチ式空気調和機。   6. The control means according to claim 5, wherein the average value of the subcooling refrigerant temperature on the indoor unit operation side and the average value of the subcooling refrigerant temperature on the indoor unit stop side are obtained and controlled so that the temperature difference between the two becomes a predetermined temperature difference. A multi-type air conditioner characterized by 各々室内熱交換器を有する複数の室内機と、前記室内機を並列に接続すると共に、冷暖房運転を切換える切換弁および前記室内機に対応して冷媒流量を個別に制御する電動膨張弁を備えた室外機と、前記膨張弁を制御する制御装置と、を備えるマルチ式空気調和機において、
前記各室内機は室内機の能力クラスや室内熱交換器の容積クラス等の補正パラメータをその組立て時に記憶した記憶装置を備え、
前記制御装置は、暖房運転時に補正パラメータに基づいて室内機停止側の前記電動膨張弁の開度を補正する制御手段を備えたことを特徴とするマルチ式空気調和機。
A plurality of indoor units each having an indoor heat exchanger, the indoor unit connected in parallel, a switching valve for switching between cooling and heating operation, and an electric expansion valve for individually controlling the refrigerant flow rate corresponding to the indoor unit In a multi-type air conditioner comprising an outdoor unit and a control device that controls the expansion valve,
Each of the indoor units includes a storage device that stores correction parameters such as the capacity class of the indoor unit and the volume class of the indoor heat exchanger at the time of assembly.
The said control apparatus is provided with the control means which correct | amends the opening degree of the said electric expansion valve by the side of an indoor unit based on a correction parameter at the time of heating operation, The multi-type air conditioner characterized by the above-mentioned.
請求項7において、暖房運転時に前記電動膨張弁の入口側となる液側配管温度を検知するための温度センサーを備えると共に、暖房運転時に前記温度センサーで検出した室内機停止側の液側配管温度に基づいて室内機停止側の前記電動膨張弁の開度を補正する制御手段を前記制御装置に備えたことを特徴とするマルチ式空気調和機。   8. The liquid side piping temperature on the indoor unit stop side detected by the temperature sensor for detecting the liquid side piping temperature on the inlet side of the electric expansion valve during heating operation and detecting the temperature sensor during heating operation according to claim 7. The multi-type air conditioner is provided with a control means for correcting the opening of the electric expansion valve on the indoor unit stop side based on the control unit. 各々室内熱交換器および室内ファンを有すると共に、各々個別に運転、停止できる複数の室内機と、前記室内機を並列に配管接続バルブを介して接続すると共に、冷暖房運転を切換える切換弁および前記室内機に対応して冷媒流量を個別に制御する電動膨張弁を備えた室外機と、前記膨張弁を制御する制御装置と、を備えるマルチ式空気調和機において、
前記電動膨張弁と前記液側配管接続バルブとの間に冷媒温度を検知するための温度センサーを備え、
前記制御装置は、暖房運転時に、室内機の能力クラスや室内熱交換器の容積クラス等の補正パラメータに基づいて室内機運転側の液側配管温度と室内機停止側の液側配管温度との所定の温度差を補正すると共に、前記温度センサーで検出した室内機運転側の液側配管温度および室内機停止側の液側配管温度に基づいて室内機運転側の液側配管温度と室内機停止側の液側配管温度とが所定の温度差となるように室内機停止側の電動膨張弁の開度を補正する制御手段を備えたことを特徴とするマルチ式空気調和機。
A plurality of indoor units each having an indoor heat exchanger and an indoor fan, each of which can be individually operated and stopped, and the indoor unit connected in parallel via a pipe connection valve, and a switching valve for switching between cooling and heating operations and the indoor In a multi-type air conditioner comprising an outdoor unit equipped with an electric expansion valve that individually controls the refrigerant flow rate corresponding to the machine, and a control device that controls the expansion valve,
A temperature sensor for detecting a refrigerant temperature between the electric expansion valve and the liquid side pipe connection valve;
During the heating operation, the control device determines whether the liquid side pipe temperature on the indoor unit operation side and the liquid side pipe temperature on the indoor unit stop side are based on correction parameters such as the capacity class of the indoor unit and the volume class of the indoor heat exchanger. Corrects a predetermined temperature difference, and based on the liquid side piping temperature on the indoor unit operation side and the liquid side piping temperature on the indoor unit stop side detected by the temperature sensor, the liquid side piping temperature on the indoor unit operation side and the indoor unit stop A multi-type air conditioner comprising control means for correcting the opening of the electric expansion valve on the indoor unit stop side so that the liquid side pipe temperature on the side has a predetermined temperature difference.
JP2007245099A 2007-09-21 2007-09-21 Multi-type air conditioner Pending JP2008039388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007245099A JP2008039388A (en) 2007-09-21 2007-09-21 Multi-type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007245099A JP2008039388A (en) 2007-09-21 2007-09-21 Multi-type air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001240091A Division JP4105413B2 (en) 2001-08-08 2001-08-08 Multi-type air conditioner

Publications (1)

Publication Number Publication Date
JP2008039388A true JP2008039388A (en) 2008-02-21

Family

ID=39174593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007245099A Pending JP2008039388A (en) 2007-09-21 2007-09-21 Multi-type air conditioner

Country Status (1)

Country Link
JP (1) JP2008039388A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037192A (en) * 2010-08-11 2012-02-23 Mitsubishi Electric Corp Electronic expansion valve, and air conditioner with the same
WO2014083683A1 (en) * 2012-11-30 2014-06-05 三菱電機株式会社 Air conditioning device
US20150338121A1 (en) * 2013-03-12 2015-11-26 Mitsubishi Electric Corporation Air-conditioning apparatus
CN106403201A (en) * 2016-11-10 2017-02-15 广东美的暖通设备有限公司 Control method for accumulating liquid of fresh air ventilator heat exchanger of air conditioner and air conditioner
CN106568136A (en) * 2016-10-28 2017-04-19 芜湖美智空调设备有限公司 Adaptive method and system for controlling shutdown opening for multi-split air-conditioner during heating and air conditioner
CN109612021A (en) * 2018-11-28 2019-04-12 宁波奥克斯电气股份有限公司 A kind of multi-gang air conditioner abnormal sound control method and multi-gang air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108164A (en) * 1986-10-24 1988-05-13 株式会社日立製作所 Heat pump type air conditioner
JPH02133744A (en) * 1988-11-11 1990-05-22 Daikin Ind Ltd Air conditioner
JPH02213639A (en) * 1989-02-10 1990-08-24 Mitsubishi Electric Corp Air conditioner for multi rooms
JPH03158662A (en) * 1989-11-16 1991-07-08 Mitsubishi Electric Corp Multiroom separation type air conditioner
JPH04190054A (en) * 1990-11-26 1992-07-08 Matsushita Refrig Co Ltd Multi-chamber type air conditioner
JPH06207741A (en) * 1993-01-11 1994-07-26 Hitachi Ltd Air conditioner
JPH08159590A (en) * 1994-12-06 1996-06-21 Toshiba Corp Air conditioner
JPH1038398A (en) * 1996-07-23 1998-02-13 Toshiba Ave Corp Controller of electric expansion valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108164A (en) * 1986-10-24 1988-05-13 株式会社日立製作所 Heat pump type air conditioner
JPH02133744A (en) * 1988-11-11 1990-05-22 Daikin Ind Ltd Air conditioner
JPH02213639A (en) * 1989-02-10 1990-08-24 Mitsubishi Electric Corp Air conditioner for multi rooms
JPH03158662A (en) * 1989-11-16 1991-07-08 Mitsubishi Electric Corp Multiroom separation type air conditioner
JPH04190054A (en) * 1990-11-26 1992-07-08 Matsushita Refrig Co Ltd Multi-chamber type air conditioner
JPH06207741A (en) * 1993-01-11 1994-07-26 Hitachi Ltd Air conditioner
JPH08159590A (en) * 1994-12-06 1996-06-21 Toshiba Corp Air conditioner
JPH1038398A (en) * 1996-07-23 1998-02-13 Toshiba Ave Corp Controller of electric expansion valve

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037192A (en) * 2010-08-11 2012-02-23 Mitsubishi Electric Corp Electronic expansion valve, and air conditioner with the same
US9797608B2 (en) 2012-11-30 2017-10-24 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2014083683A1 (en) * 2012-11-30 2014-06-05 三菱電機株式会社 Air conditioning device
CN104813110A (en) * 2012-11-30 2015-07-29 三菱电机株式会社 Air conditioning device
JP5984960B2 (en) * 2012-11-30 2016-09-06 三菱電機株式会社 Air conditioner
JPWO2014083683A1 (en) * 2012-11-30 2017-01-05 三菱電機株式会社 Air conditioner
US10168068B2 (en) * 2013-03-12 2019-01-01 Mitsubishi Electric Corporation Air-conditioning apparatus
US20150338121A1 (en) * 2013-03-12 2015-11-26 Mitsubishi Electric Corporation Air-conditioning apparatus
CN106568136A (en) * 2016-10-28 2017-04-19 芜湖美智空调设备有限公司 Adaptive method and system for controlling shutdown opening for multi-split air-conditioner during heating and air conditioner
CN106568136B (en) * 2016-10-28 2019-06-14 芜湖美智空调设备有限公司 Adaptive shutdown aperture control method, system and air conditioner when a kind of multi-split air conditioner heats
CN106403201A (en) * 2016-11-10 2017-02-15 广东美的暖通设备有限公司 Control method for accumulating liquid of fresh air ventilator heat exchanger of air conditioner and air conditioner
CN106403201B (en) * 2016-11-10 2019-03-15 广东美的暖通设备有限公司 The control method and air conditioner of the fresh air machine heat exchanger hydrops of air conditioner
CN109612021A (en) * 2018-11-28 2019-04-12 宁波奥克斯电气股份有限公司 A kind of multi-gang air conditioner abnormal sound control method and multi-gang air conditioner

Similar Documents

Publication Publication Date Title
JP6899896B2 (en) Air conditioning system
US10168066B2 (en) Air conditioner with outdoor fan control in accordance with suction pressure and suction superheating degree of a compressor
JP2008064439A (en) Air conditioner
KR101550573B1 (en) Refrigeration device
JP2008039388A (en) Multi-type air conditioner
EP1643193B1 (en) Method of determining the configuration of an air conditioning system
JP2006145204A (en) Air conditioner
JP6123289B2 (en) Air conditioning system
JP4105413B2 (en) Multi-type air conditioner
WO2008069265A1 (en) Air-conditioner
JP2006234295A (en) Multiple air conditioner
JP2013002749A (en) Air conditioning device
JP2016020784A (en) Air conditioning device
WO2021054463A1 (en) Refrigeration device
JP2015222157A (en) Air conditioning device
WO2021171448A1 (en) Refrigeration cycle device
JP7211913B2 (en) heat pump equipment
JP3835310B2 (en) Air conditioner
JP4583114B2 (en) Air conditioning apparatus and control method thereof
JP2018048753A (en) Air conditioner
JP2005315477A (en) Multi-chamber type air conditioner
JP2005140431A (en) Air conditioner
US20190264934A1 (en) Configuration management systems for heating, ventilation, and air conditioning (hvac) systems
KR101229345B1 (en) Controlling method of multi type air conditioning
JP7408942B2 (en) air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201