JP2013002749A - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
JP2013002749A
JP2013002749A JP2011135068A JP2011135068A JP2013002749A JP 2013002749 A JP2013002749 A JP 2013002749A JP 2011135068 A JP2011135068 A JP 2011135068A JP 2011135068 A JP2011135068 A JP 2011135068A JP 2013002749 A JP2013002749 A JP 2013002749A
Authority
JP
Japan
Prior art keywords
electric expansion
heat exchanger
expansion valve
air conditioner
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011135068A
Other languages
Japanese (ja)
Inventor
Takeshi Kagaya
剛 加賀谷
Shizuo Kohama
静夫 小浜
Hiroyuki Ogisu
宏幸 荻巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011135068A priority Critical patent/JP2013002749A/en
Publication of JP2013002749A publication Critical patent/JP2013002749A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain an air conditioning device allowing dehumidification while supplying a sufficient air flow even when the cooling load is small.SOLUTION: The air conditioning device includes a compressor 1, an outdoor heat exchanger 3, electric expansion valves 4-6, and an indoor heat exchanger 8 which are sequentially connected by a refrigerant pipe 20 to form a refrigeration cycle. The indoor heat exchanger 8 includes a plurality of heat exchangers 8a, 8b, and these heat exchangers are connected to distribution flow paths 21, 22 diverging in parallel from the refrigerant pipe. The respective distribution flow paths are provided with the electric expansion valves 5, 6. The air conditioning device also includes a suction air temperature sensor 14 for detecting temperature of air flowing into the indoor heat exchanger, a discharge pressure sensor 11 for detecting discharge pressure of the compressor, and a suction pressure sensor 10 for detecting suction pressure. In addition, the air conditioning device includes a control means 13 for closing an electric expansion valve corresponding to any of the plurality of heat exchangers when a difference between the temperature detected by the suction air temperature sensor and set temperature is smaller than a predetermined value and when dehumidifying operation is performed during low-load operation.

Description

本発明は空気調和装置に関し、特に広い領域を空調するために低負荷時でも大風量が要求される設備用の空気調和装置に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner for equipment that requires a large amount of air even at a low load in order to air-condition a wide area.

従来の設備用の空気調和装置としては、例えば特開平7−332736号公報(特許文献1)に記載のものがある。この特許文献1のものには、コンピュータに必要な湿度以上で且つ十分な量の冷風を供給しながら除湿できる空気調和装置が記載されている。更に詳しくは、検出した湿度が所定値より高い時に、分割した室内熱交換器に対応し、配設された電気式膨脹弁の一部を閉止し、閉止しない電気式膨張弁の弁開度を冷媒流量の合計に相当する開度値分増加させるようにした空気調和装置が記載されている。   As a conventional air conditioner for equipment, there is one described in, for example, Japanese Patent Laid-Open No. 7-332736 (Patent Document 1). The thing of this patent document 1 describes the air conditioning apparatus which can dehumidify, supplying the sufficient quantity of cold air more than required humidity to a computer. More specifically, when the detected humidity is higher than a predetermined value, the opening degree of the electric expansion valve that does not close is closed corresponding to the divided indoor heat exchanger, and a part of the arranged electric expansion valve is closed. An air conditioner is described in which the amount of opening is increased corresponding to the total refrigerant flow rate.

特開平7−332736号公報JP 7-332736 A

上記特許文献1には、必要とする湿度以上で且つ十分な量の冷風を供給しながら除湿可能な空気調和装置が開示されている。しかし、特許文献1のものでは検出した湿度が所定値より高い時に、分割された室内熱交換器に対応した膨張弁の一部を閉止することにより除湿を行うため、検出した湿度が所定値より低い場合では、除湿を行うことはできない。   Patent Document 1 discloses an air conditioner that can be dehumidified while supplying a sufficient amount of cold air that is above the required humidity. However, in Patent Document 1, when the detected humidity is higher than a predetermined value, dehumidification is performed by closing a part of the expansion valve corresponding to the divided indoor heat exchanger. If it is low, dehumidification cannot be performed.

即ち、コンピュータ冷却用の空気調和装置では、コンピュータが低湿度の空気で冷却されると、静電気などの障害を受けるため、室内空気を冷却しても除湿しないのが望ましいためである。このため、特許文献1のものでは特に高湿度になった場合にのみ除湿するようにしているものである。   In other words, in an air conditioning apparatus for cooling a computer, it is desirable that the air is not dehumidified even when the room air is cooled because the computer is damaged by static air or the like because it is damaged by static electricity. For this reason, in the thing of patent document 1, it dehumidifies especially when it becomes high humidity.

しかし、この特許文献1のものでは、室内温度が高く、高湿度であるような高負荷時にのみ除湿運転が可能な構成としているので、低負荷時に除湿することについては何らの配慮もなく、除湿することはできない。むしろ、特許文献1のものでは、低負荷時には、静電気の障害を防止するため、除湿はしないように構成されている。   However, in this Patent Document 1, since the dehumidifying operation is possible only at the time of a high load where the room temperature is high and the humidity is high, there is no consideration for dehumidifying at a low load, and the dehumidifying operation is performed. I can't do it. On the other hand, in the thing of patent document 1, in order to prevent the failure | damage of static electricity at the time of low load, it is comprised so that it may not dehumidify.

本発明の目的は、冷房負荷が小さい場合でも、十分な風量を供給しながら除湿を可能にする空気調和装置を得ることにある。   An object of the present invention is to obtain an air conditioner that enables dehumidification while supplying a sufficient air volume even when the cooling load is small.

上記目的を達成するため、本発明は、圧縮機、室外熱交換器、電気式膨張弁及び室内熱交換器を順次冷媒配管によって接続して冷凍サイクルを形成するように構成された空気調和装置において、前記室内熱交換器は分割された複数の熱交換器により構成され、これら複数の熱交換器は前記冷媒配管が並列に分岐された分配流路に接続されると共に、それぞれの分配流路には電気式膨張弁が設けられ、更に前記室内熱交換器に流入する空気の温度を検出する吸込空気温度センサと、前記圧縮機の吐出圧力を検出する吐出圧力センサと、前記圧縮機の吸込圧力を検出する吸込圧力センサと、前記吸込空気温度センサにより検出された温度と設定温度の差が所定値より小さく且つ低負荷運転の時に除湿運転を行う場合、前記複数の熱交換器のうちの何れかに接続された分配流路に設けられている前記電気式膨張弁を閉止させるように制御する制御手段とを備えることを特徴とする。   To achieve the above object, the present invention provides an air conditioner configured to form a refrigeration cycle by sequentially connecting a compressor, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger through refrigerant piping. The indoor heat exchanger is composed of a plurality of divided heat exchangers, and the plurality of heat exchangers are connected to the distribution flow paths in which the refrigerant pipes are branched in parallel, Is provided with an electric expansion valve, and further includes a suction air temperature sensor for detecting the temperature of air flowing into the indoor heat exchanger, a discharge pressure sensor for detecting the discharge pressure of the compressor, and a suction pressure of the compressor When the dehumidifying operation is performed when the difference between the temperature detected by the suction air temperature sensor and the temperature set by the suction air temperature sensor is smaller than a predetermined value and the low load operation is performed, of the plurality of heat exchangers And a controlling means for controlling so as to close said electric expansion valve provided in the connected distribution channel to or Re.

本発明によれば、冷房負荷が小さい場合でも、十分な風量を供給しながら除湿を可能にする空気調和装置を得ることができる。   According to the present invention, it is possible to obtain an air conditioner that enables dehumidification while supplying a sufficient air volume even when the cooling load is small.

本発明の空気調和装置の実施例1を示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows Example 1 of the air conditioning apparatus of this invention. 図1に示す空気調和装置における膨張弁開度制御と各部の状態を説明する線図。The diagram explaining the expansion valve opening degree control in the air conditioning apparatus shown in FIG. 1, and the state of each part. 図1に示す空気調和装置における膨張弁開度と冷媒流量の関係を示す特性図。The characteristic view which shows the relationship between the expansion valve opening degree and refrigerant | coolant flow volume in the air conditioning apparatus shown in FIG. 本発明の空気調和装置の実施例2を示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows Example 2 of the air conditioning apparatus of this invention. 図4に示す空気調和装置における膨張弁開度制御と各部の状態を説明する線図。The diagram explaining the expansion valve opening degree control in the air conditioning apparatus shown in FIG. 4, and the state of each part. 図4に示す空気調和装置における膨張弁開度と冷媒流量の関係を示す特性図。The characteristic view which shows the relationship between the expansion valve opening degree and refrigerant | coolant flow volume in the air conditioning apparatus shown in FIG.

以下、本発明の具体的実施例を、図面を用いて説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

本発明の空気調和装置の実施例1を図1〜図3により説明する。
図1は空気調和装置の冷凍サイクル系統図、図2は膨張弁開度制御と冷凍サイクルの圧力状態などを説明する線図、図3は膨張弁開度と冷媒流量との関係を示す特性図である。
A first embodiment of an air conditioner according to the present invention will be described with reference to FIGS.
FIG. 1 is a refrigeration cycle diagram of an air conditioner, FIG. 2 is a diagram for explaining expansion valve opening control and the pressure state of the refrigeration cycle, and FIG. 3 is a characteristic diagram showing the relationship between the expansion valve opening and the refrigerant flow rate. It is.

図1に示すように、本実施例の空気調和装置は、回転数制御可能な圧縮機1、四方弁2、冷房時には凝縮器となる室外熱交換器3、電気式膨張弁(以下、単に膨張弁ということもある)4,5,6、冷房時には蒸発器となる室内熱交換器8、アキュムレータ9などの主要部品が順次冷媒配管20で接続され、冷凍サイクルを形成している。また、前記圧縮機1の吸込側圧力を検出する吸込圧力センサ10、吐出側圧力を検出する吐出圧力センサ11、吐出側冷媒温度を検出する吐出温度サーミスタ12などが設けられている。更に、前記電気式膨張弁4,5,6に膨張弁開度を出力したり、前記圧力センサ10,11からの圧力検出信号、前記吐出温度サーミスタ12からの冷媒吐出ガス温度信号、前記圧縮機1の回転数検出手段からの圧縮機回転数信号などを受け、空気調和装置を制御するマイクロコンピュータなどにより構成された制御器(制御手段)13も備えられている。
なお、冷房運転専用の空気調和装置とする場合には、前記四方弁2は設けなくて良い。
As shown in FIG. 1, the air conditioner of the present embodiment includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3 that becomes a condenser during cooling, and an electric expansion valve (hereinafter simply referred to as expansion). 4, 5, 6, and main components such as an indoor heat exchanger 8 that serves as an evaporator and an accumulator 9 are sequentially connected by a refrigerant pipe 20 to form a refrigeration cycle. Further, a suction pressure sensor 10 for detecting the suction side pressure of the compressor 1, a discharge pressure sensor 11 for detecting the discharge side pressure, a discharge temperature thermistor 12 for detecting the discharge side refrigerant temperature, and the like are provided. Further, the expansion valve opening is output to the electric expansion valves 4, 5, 6, the pressure detection signal from the pressure sensors 10, 11, the refrigerant discharge gas temperature signal from the discharge temperature thermistor 12, the compressor A controller (control means) 13 constituted by a microcomputer or the like that receives a compressor rotation speed signal from one rotation speed detection means and controls the air conditioner is also provided.
In addition, when it is set as the air conditioning apparatus only for cooling operation, the said four-way valve 2 does not need to be provided.

冷房運転時、圧縮機1から吐出された高温高圧のガス冷媒は、室外熱交換器3で凝縮して高温高圧の液冷媒となり、電気式膨張弁5,6で減圧され、室内熱交換器8で蒸発して低温低圧のガス冷媒となり、アキュムレータ9を経て圧縮機1に戻る冷凍サイクルを形成する。前記室内熱交換器8には、所定風量の空気が吸入され、該室内熱交換器8内を流れる冷媒が蒸発する際に、その冷媒と熱交換して冷却され、この冷却された空気は冷房用として室内に吹き出される。   During the cooling operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 condenses in the outdoor heat exchanger 3 to become a high-temperature and high-pressure liquid refrigerant, is depressurized by the electric expansion valves 5 and 6, and the indoor heat exchanger 8. The refrigeration cycle is formed by evaporating into a low-temperature and low-pressure gas refrigerant and returning to the compressor 1 through the accumulator 9. A predetermined amount of air is sucked into the indoor heat exchanger 8, and when the refrigerant flowing through the indoor heat exchanger 8 evaporates, it is cooled by exchanging heat with the refrigerant, and the cooled air is cooled. It is blown into the room for use.

また、本実施例では、前記室内熱交換器8は異容量に2分割されており、小容量の熱交換器8aと大容量の熱交換器8bとで構成され、小容量の前記熱交換器8aに接続される冷媒配管には前記電気式膨張弁5が、大容量の前記熱交換器8bに接続される冷媒配管には前記電気式膨張弁6が設けられている。   In the present embodiment, the indoor heat exchanger 8 is divided into two parts with different capacities, and is composed of a small capacity heat exchanger 8a and a large capacity heat exchanger 8b, and the small capacity heat exchanger 8a. The electric expansion valve 5 is provided in the refrigerant pipe connected to 8a, and the electric expansion valve 6 is provided in the refrigerant pipe connected to the large-capacity heat exchanger 8b.

更に、前記室内熱交換器8への吸込み空気温度を検知する吸込空気温度センサ14と、前記室内熱交換器8からの吹き出し空気温度を検出する吹出空気温度センサ15とが設けられており、前記制御器13には、これらの空気温度センサ14,15が接続されている。   Furthermore, an intake air temperature sensor 14 for detecting the intake air temperature to the indoor heat exchanger 8 and a blown air temperature sensor 15 for detecting the temperature of the blown air from the indoor heat exchanger 8 are provided, These air temperature sensors 14 and 15 are connected to the controller 13.

このような空気調和装置においては、前記吸込空気温度センサ14及び吹出空気温度センサ15からのデータが前記制御器13に取り込まれることにより、冷房負荷を検出するようにしている。また通常、前記制御器13は、前記冷房負荷により決定した運転周波数により圧縮機1を駆動し、前記吐出温度サーミスタ12により検出された吐出冷媒温度Tdと、前記吐出圧力センサ11で検出された冷媒吐出圧力Pdから算出した凝縮温度Tcとの差である冷媒吐出側過熱度TdSHが、適切な冷凍サイクルを形成するために予め設定された所定値となるように、前記電気式膨張弁5,6の開度を調整して、冷房運転などを行うように構成されている。   In such an air conditioner, data from the intake air temperature sensor 14 and the blown air temperature sensor 15 is taken into the controller 13 to detect the cooling load. Usually, the controller 13 drives the compressor 1 at the operating frequency determined by the cooling load, and the refrigerant temperature Td detected by the discharge temperature thermistor 12 and the refrigerant detected by the discharge pressure sensor 11. The electric expansion valves 5, 6 are set so that the refrigerant discharge side superheat degree TdSH, which is a difference from the condensation temperature Tc calculated from the discharge pressure Pd, becomes a predetermined value set in advance to form an appropriate refrigeration cycle. The air conditioner is adjusted to perform cooling operation or the like.

以上のように、前記冷媒吐出側過熱度TdSHが所定値となるように制御されている通常の冷房運転状態において、図2に示すように、吸込空気温度センサ14により検出された吸込み空気温度T1が低下して、設定温度T2との差が、制御器13に予め設定されている所定値より小さくなり、且つ前記吸込圧力センサ10及び吐出圧力センサ11より検出された吸込圧力Psと吐出圧力Pdとの差、若しくは前記回転数検出手段からの圧縮機回転数Wが、制御器13に予め設定されている所定値より低くなった場合、従来の設備用の空気調和装置などでは除湿が困難となる。   As described above, in the normal cooling operation state in which the refrigerant discharge side superheat degree TdSH is controlled to be a predetermined value, the intake air temperature T1 detected by the intake air temperature sensor 14 as shown in FIG. The suction pressure Ps and the discharge pressure Pd detected by the suction pressure sensor 10 and the discharge pressure sensor 11 are smaller than the predetermined value preset in the controller 13. Or the compressor rotational speed W from the rotational speed detection means is lower than a predetermined value preset in the controller 13, it is difficult to dehumidify with a conventional air conditioner for equipment, etc. Become.

即ち、設備用の空気調和装置などでは、広い空調対象領域に空調空気を行き渡らせるため、前記室内熱交換器8から常に大風量、或いは常に所定風量以上の空気を吹き出すことが要求されるが、低負荷運転となって冷媒循環量が少なくなると、室内熱交換器8において除湿するのに必要な十分低い温度まで空気を冷却することが困難になるためである。   That is, in an air conditioner for equipment, etc., in order to spread the conditioned air over a wide air-conditioning target area, it is required to constantly blow out a large amount of air from the indoor heat exchanger 8 or always a predetermined amount of air or more. This is because it becomes difficult to cool the air to a sufficiently low temperature necessary for dehumidification in the indoor heat exchanger 8 when the refrigerant circulation amount is reduced due to the low load operation.

本実施例では、このような低負荷運転時においても除湿を可能にする除湿促進運転の機能(除湿を促進するように冷凍サイクルを運転する機能)を備えており、前記制御器13により、低負荷時に除湿運転が要求される場合には、前記除湿促進運転に切り替えることができるように構成されている。   In this embodiment, a function of dehumidification promotion operation (function of operating a refrigeration cycle so as to promote dehumidification) that enables dehumidification even during such low load operation is provided. When a dehumidifying operation is required at the time of load, it can be switched to the dehumidifying promotion operation.

即ち、本実施例の空気調和装置は、前記室内熱交換器8が、小容量の熱交換器8aと大容量の熱交換器8bとに異容量に2分割されている。また、これら複数の熱交換器8a,8bは、前記冷媒配管20が並列に分岐された分配流路21,22に接続されると共に、それぞれの前記分配流路21,22には減圧装置としての前記電気式膨張弁5,6が備えられている。   That is, in the air conditioner of the present embodiment, the indoor heat exchanger 8 is divided into two parts of a small capacity heat exchanger 8a and a large capacity heat exchanger 8b. The plurality of heat exchangers 8a and 8b are connected to distribution flow paths 21 and 22 in which the refrigerant pipe 20 is branched in parallel, and each distribution flow path 21 and 22 has a pressure reducing device. The electric expansion valves 5 and 6 are provided.

前記除湿促進運転を行う場合には、例えば、分割された室内熱交換器8の小容量側熱交換器8aに対応した電気式膨張弁5に制御器13から膨張弁開度Vaを全閉状態にするように出力し、膨張弁5に対応する熱交換器8aを閉塞する。この操作により、室内熱交換器8での熱交換能力が低下し、前記吸込圧力Psが低下するので、冷媒が流通している熱交換器8bでの結露は促進され、熱交換器8bを通過する空気からの除湿を促進できる。   When performing the dehumidification promotion operation, for example, the expansion valve opening Va is fully closed from the controller 13 to the electric expansion valve 5 corresponding to the small-capacity side heat exchanger 8a of the divided indoor heat exchanger 8. The heat exchanger 8a corresponding to the expansion valve 5 is closed. By this operation, the heat exchanging capacity in the indoor heat exchanger 8 is lowered and the suction pressure Ps is lowered, so that dew condensation is promoted in the heat exchanger 8b in which the refrigerant flows and passes through the heat exchanger 8b. Can promote dehumidification from the air.

なお、小容量側熱交換器8aに対応した電気式膨張弁5を閉じるのではなく、大容量側熱交換器8bに対応した電気式膨張弁6を閉じるようにしても良く、膨張弁6に対応した熱交換器8bを閉じるようにすれば、室内熱交換器8での熱交換能力を更に低下させて冷媒の吸込圧力Psを更に低下できるので、負荷が非常に小さくなって冷媒循環量が更に低下したような場合においても、冷媒が流通している熱交換器8aでの結露を促進できる。従って、本実施例によれば、非常に負荷が小さくなった場合でも小容量側の熱交換器8aで除湿を促進することが可能となる。   Instead of closing the electric expansion valve 5 corresponding to the small capacity side heat exchanger 8a, the electric expansion valve 6 corresponding to the large capacity side heat exchanger 8b may be closed. If the corresponding heat exchanger 8b is closed, the heat exchanging capacity in the indoor heat exchanger 8 can be further reduced and the refrigerant suction pressure Ps can be further reduced, so the load becomes very small and the refrigerant circulation rate is reduced. Even in a case where the temperature further decreases, dew condensation can be promoted in the heat exchanger 8a in which the refrigerant is circulating. Therefore, according to the present embodiment, it is possible to promote dehumidification with the heat exchanger 8a on the small capacity side even when the load becomes very small.

このように本実施例によれば、室内熱交換器8を異容量の複数の熱交換器8a,8bで構成して、負荷の状態に応じて前記電気式膨張弁5,6を制御することにより、通常運転時はもちろんのこと、負荷が僅かに低下した状態から大幅に低下した状態、即ち圧縮機回転数が大幅に低下する状態まで、広い範囲に渡って、十分な風量を供給しながら除湿を可能にする空気調和装置を得ることができる。   As described above, according to the present embodiment, the indoor heat exchanger 8 is composed of a plurality of heat exchangers 8a and 8b having different capacities, and the electric expansion valves 5 and 6 are controlled according to the state of the load. As a result of supplying a sufficient air volume over a wide range from the state in which the load is slightly reduced to the state in which the load is significantly reduced, that is, the state in which the compressor rotational speed is greatly reduced, as well as during normal operation. An air conditioner that enables dehumidification can be obtained.

低負荷時に上述した除湿促進運転に切り替える制御は、例えば次のように行うと良い。
即ち、除湿運転が要求されている状態において、前記吸込空気温度センサ14により検出された温度T1と設定温度T2の差が予め設定された所定値より小さく、且つ低負荷状態である場合には、前記制御器13から前記電気式膨張弁5,6に指令を出し、複数の前記熱交換器8a,8bの何れかを閉止するように制御する。
The control for switching to the dehumidification promoting operation described above at low load may be performed as follows, for example.
That is, in the state where the dehumidifying operation is required, when the difference between the temperature T1 detected by the intake air temperature sensor 14 and the set temperature T2 is smaller than a predetermined value set in advance and is in a low load state, A command is sent from the controller 13 to the electric expansion valves 5 and 6 so as to close any of the plurality of heat exchangers 8a and 8b.

ここで、前述した低負荷状態か否かの判断は以下のようにすると良い。即ち、前記圧縮機1の運転周波数Wが予め決めた所定値より低いという条件を満たすかどうか、或いは前記圧縮機1の吐出圧力を検出する吐出圧力センサ11で検出された吐出圧力Pdと、吸込圧力を検出する吸込圧力センサ10で検出された吸込圧力Psとの差が予め決めた所定値より小さいという条件を満たすかどうかを、前記制御器13で判断する。そして、この低負荷条件を満たす場合に、前記制御器13から前記電気式膨張弁5,6に指令を出し、複数の前記熱交換器8a,8bの何れかを閉止するように制御すれば良い。   Here, it is preferable to determine whether or not the above-described low-load state is present as follows. That is, whether or not the condition that the operating frequency W of the compressor 1 is lower than a predetermined value is satisfied, or the discharge pressure Pd detected by the discharge pressure sensor 11 that detects the discharge pressure of the compressor 1 and the suction The controller 13 determines whether or not the condition that the difference from the suction pressure Ps detected by the suction pressure sensor 10 that detects the pressure is smaller than a predetermined value is satisfied. And when satisfy | filling this low load condition, what is necessary is just to give control to the said electric expansion valves 5 and 6 from the said controller 13, and to close either of the said heat exchangers 8a and 8b. .

なお、上記除湿促進運転への過渡時には、一方の電気式膨張弁5または6を閉じるため、冷凍サイクルを循環する冷媒量が減少し、冷媒蒸発圧力が低下する。このため冷媒が過度に過熱され、冷媒吐出側過熱度TdSHが上昇してしまう。そこで、制御器13には、図3に示すような電気式膨張弁の開度と冷媒流量との関係を求めるプログラムを予め組み込んでおく。電気式膨張弁5の開度がVa,電気式膨張弁6の開度がVb1の状態では合計の冷媒流量は「Ma+Mb1=Mb2」となっている。この状態から、電気式膨張弁5を全閉にすると冷媒流量はMb1となってしまうので、本実施例では、電気式膨張弁5の開度がVaの状態における前記合計の冷媒流量Mb2となるように、電気式膨張弁6の開度をVb1からVb2に増加させる。   During the transition to the dehumidification promoting operation, one of the electric expansion valves 5 or 6 is closed, so that the amount of refrigerant circulating in the refrigeration cycle is reduced and the refrigerant evaporation pressure is lowered. For this reason, the refrigerant is excessively heated, and the refrigerant discharge side superheat degree TdSH increases. Therefore, a program for obtaining the relationship between the opening of the electric expansion valve and the flow rate of the refrigerant as shown in FIG. When the opening degree of the electric expansion valve 5 is Va and the opening degree of the electric expansion valve 6 is Vb1, the total refrigerant flow rate is “Ma + Mb1 = Mb2”. If the electric expansion valve 5 is fully closed from this state, the refrigerant flow rate becomes Mb1, so in this embodiment, the total refrigerant flow rate Mb2 when the opening degree of the electric expansion valve 5 is Va is obtained. Thus, the opening degree of the electric expansion valve 6 is increased from Vb1 to Vb2.

小容量側の室内熱交換器8aに対応した電気式膨張弁5の開度Vaによる冷媒流量Maは、電気式膨張弁6による冷媒流量よりも少ないため、電気式膨張弁6の制御範囲を超えることなく容易に対応でき、また電気式膨張弁6の制御範囲が広がることにより、除湿促進運転への過渡時に冷媒流量が大きく変化するのを抑制することができる。
電気式膨張弁6は、その後、冷媒吐出側過熱度TdSHが所定値となるように制御される。なお、電気式膨張弁6を閉じる場合でも、同様に電気式膨張弁5を制御することができる。
The refrigerant flow rate Ma due to the opening degree Va of the electric expansion valve 5 corresponding to the small-capacity indoor heat exchanger 8a is smaller than the refrigerant flow rate due to the electric expansion valve 6, and thus exceeds the control range of the electric expansion valve 6. It is possible to easily cope with this, and the control range of the electric expansion valve 6 is widened, so that it is possible to suppress a large change in the refrigerant flow rate during the transition to the dehumidification promoting operation.
Thereafter, the electric expansion valve 6 is controlled such that the refrigerant discharge side superheat degree TdSH becomes a predetermined value. Even when the electric expansion valve 6 is closed, the electric expansion valve 5 can be similarly controlled.

また、上記除湿促進運転の実施中に、前記圧力センサ10,11より検出された高圧圧力Pdと低圧圧力Psとの差、若しくは圧縮機回転数Wが予め制御器13に設定された所定値より大きくなった場合には、図2に示すように、前記制御器13は除湿促進運転を中止し、通常の冷房運転に変更する。   Further, during the execution of the dehumidification promoting operation, the difference between the high pressure Pd and the low pressure Ps detected by the pressure sensors 10 and 11, or the compressor rotational speed W is determined from a predetermined value set in the controller 13 in advance. When it becomes larger, as shown in FIG. 2, the controller 13 stops the dehumidification promoting operation and changes to the normal cooling operation.

この除湿促進運転を中止し、通常の冷房運転に変更する際に、全閉にしていた電気式膨張弁5の開度を、そのまま以前の開度に復帰させると電気式膨張弁5を開いた分だけ全体の冷媒流量が増加して、冷媒蒸発圧力が上昇し、圧縮機1が液圧縮を起こす場合がある。そこで、制御器13は、前記電気式膨張弁5の開度に応じて冷媒流量が増加する分だけ、閉止していない電気式膨張弁6の開度を閉めるように制御する。   When the dehumidification promotion operation is stopped and the operation is changed to the normal cooling operation, the electric expansion valve 5 is opened when the opening degree of the electric expansion valve 5 which has been fully closed is returned to the previous opening degree as it is. In some cases, the refrigerant flow rate of the whole increases, the refrigerant evaporation pressure rises, and the compressor 1 causes liquid compression. Therefore, the controller 13 performs control so that the opening degree of the electric expansion valve 6 that is not closed is closed by an amount corresponding to an increase in the refrigerant flow rate according to the opening degree of the electric expansion valve 5.

即ち、制御器13には、前記図3に示すような、電気式膨張弁の開度と冷媒流量との関係を求めるプログラムが予め組み込まれているので、閉止していない電気式膨張弁6の開度がVb2で、冷媒流量がMb2の状態から、閉じていた電気式膨張弁5の開度をVaに復帰させ、それにより電気式膨張弁5を流れる流量が0からMaに増加させる場合、前記電気式膨張弁6を流れる流量を、増加させる前記流量Ma分だけ減少させるように前記制御器13により制御する。   That is, since the controller 13 incorporates in advance a program for obtaining the relationship between the opening of the electric expansion valve and the flow rate of the refrigerant as shown in FIG. 3, the electric expansion valve 6 that is not closed is installed. When the opening degree of the electric expansion valve 5 is returned to Va from the state where the opening degree is Vb2 and the refrigerant flow rate is Mb2, the flow rate flowing through the electric expansion valve 5 is increased from 0 to Ma. The controller 13 controls the flow rate to flow through the electric expansion valve 6 so as to decrease by the flow rate Ma to be increased.

このためには、図3から明らかなように、前記膨張弁6の開度をVb2からVb1まで小さくすれば良く、これにより、電気式膨張弁6を流れる流量はMb2の状態からMa分だけ減少されたMb1になる。このように制御することにより、通常の冷房運転への復帰時に室内熱交換器8を流れる冷媒流量の変化を抑制することができる。
なお、電気式膨張弁6を閉じていて、これを開く場合でも、同様に電気式膨張弁5を制御することができる。
For this purpose, as is apparent from FIG. 3, the opening degree of the expansion valve 6 may be reduced from Vb2 to Vb1, so that the flow rate flowing through the electric expansion valve 6 is reduced by Ma from the state of Mb2. Mb1. By controlling in this way, it is possible to suppress a change in the flow rate of the refrigerant flowing through the indoor heat exchanger 8 when returning to the normal cooling operation.
Even when the electric expansion valve 6 is closed and opened, the electric expansion valve 5 can be similarly controlled.

以上述べた本実施例によれば、除湿促進運転機能を備えているので、冷房負荷が小さく、圧縮機の回転が低下して冷媒循環量が低下したような場合であっても、十分な風量を供給しながら除湿することが可能になる。   According to the present embodiment described above, since the dehumidification promoting operation function is provided, even if the cooling load is small, the rotation of the compressor is reduced, and the refrigerant circulation rate is reduced, a sufficient air volume is obtained. It becomes possible to dehumidify while supplying.

また、前記除湿促進運転時には、小容量側の電気式膨張弁5を閉じ、大容量側の電気式膨張弁6を開いて除湿促進運転するようにすれば、閉じた膨張弁5側の流量減少分は大容量側の膨張弁6の開度を大きくすることで容易に補うことができ、室内熱交換器8全体での冷媒流量変動を小さくできる。   Further, at the time of the dehumidification promoting operation, if the electric expansion valve 5 on the small capacity side is closed and the electric expansion valve 6 on the large capacity side is opened to perform the dehumidification promoting operation, the flow rate on the closed expansion valve 5 side is reduced. The amount can be easily compensated for by increasing the opening of the expansion valve 6 on the large capacity side, and the refrigerant flow rate fluctuation in the entire indoor heat exchanger 8 can be reduced.

また、大容量側の電気式膨張弁6を閉じ、小容量側の電気式膨張弁5を開いて除湿促進運転する場合には、負荷が非常に小さくなった状態でも、所定の大風量を維持しながら、除湿運転が可能になる。この負荷が非常に小さい状態であれば、冷媒循環量も非常に少なくなるので、小容量側の電気式膨張弁5だけでも必要な冷媒流量を確保することも可能である。   Further, when the electric expansion valve 6 on the large capacity side is closed and the electric expansion valve 5 on the small capacity side is opened to perform the dehumidification promoting operation, the predetermined large air volume is maintained even when the load is very small. However, dehumidifying operation is possible. If this load is in a very small state, the amount of refrigerant circulation is also very small. Therefore, it is possible to ensure the necessary refrigerant flow rate with only the small capacity electric expansion valve 5.

なお、図1に示す空気調和装置では、四方弁2を備えていることにより、暖房運転も可能である。この暖房運転も行う空気調和装置においては、図1に示す構成とすることにより、上述した除湿促進運転だけでなく、暖房運転の始動時において冷風感を防止した運転も可能になる。以下、本実施例における暖房運転始動時における制御例を説明する。   In addition, in the air conditioning apparatus shown in FIG. 1, since the four-way valve 2 is provided, heating operation is also possible. In the air-conditioning apparatus that also performs the heating operation, the configuration shown in FIG. 1 enables not only the above-described dehumidification promoting operation but also an operation that prevents the cool air feeling at the start of the heating operation. Hereinafter, the example of control at the time of the heating operation start in a present Example is demonstrated.

図1に示す空気調和装置において、暖房運転時には、圧縮機1から吐出された高温高圧のガス冷媒は、点線の矢印で示すように、まず室内熱交換器8に流れて凝縮し、高温高圧の液冷媒となり、電気式膨張弁4で減圧された後室外熱交換器3で蒸発し、低温低圧のガス冷媒となる。その後、アキュムレータ9を経て前記圧縮機1に戻る冷凍サイクルを形成する。また、前記室内熱交換器8には所定流量の空気が吸入され、室内熱交換器8内を流れる冷媒と熱交換して暖められ、この温められた空気は暖房用として室内に吹き出される。   In the air conditioner shown in FIG. 1, during the heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 first flows into the indoor heat exchanger 8 to condense, as indicated by the dotted arrows, and the high-temperature and high-pressure refrigerant. It becomes a liquid refrigerant, evaporates in the rear outdoor heat exchanger 3 depressurized by the electric expansion valve 4, and becomes a low-temperature low-pressure gas refrigerant. Thereafter, a refrigeration cycle returning to the compressor 1 through the accumulator 9 is formed. A predetermined flow rate of air is sucked into the indoor heat exchanger 8 and heated by exchanging heat with the refrigerant flowing through the indoor heat exchanger 8, and the warmed air is blown out indoors for heating.

このような空気調和装置において、一般に制御器13は、始動制御により決定した運転周波数により前記圧縮機1を駆動し、また適切な冷凍サイクルを形成できるように、前記電気式膨張弁4の開度を、予め定められた開度になるように調整する暖房始動運転を行う。
また、室内熱交換器8は、小容量の熱交換器8aと大容量の熱交換器8bに2分割され、それぞれの熱交換器8a,8bに対応して電気式膨張弁5,6が並列に設けられている。
In such an air conditioner, the controller 13 generally opens the opening of the electric expansion valve 4 so that the compressor 1 can be driven at an operating frequency determined by start control and an appropriate refrigeration cycle can be formed. A heating start operation is performed to adjust the temperature so as to have a predetermined opening.
The indoor heat exchanger 8 is divided into a small capacity heat exchanger 8a and a large capacity heat exchanger 8b, and the electric expansion valves 5 and 6 are arranged in parallel corresponding to the heat exchangers 8a and 8b. Is provided.

暖房運転始動時には、異容量に分割された室内熱交換器8の小容量側熱交換器8aに対応した電気式膨張弁5に、制御器13から膨張弁開度Vaを全閉状態にするように出力し、電気式膨張弁5に接続されている熱交換器8aを閉塞する。このように制御することにより、冷媒循環量が減少し、冷媒蒸発圧力が低下するため、冷媒が過熱されて圧縮機1の吐出側圧力Pdが上昇する。従って、室内熱交換器8におけるガス冷媒の温度が上昇するため、室内熱交換器8で冷媒が凝縮する際に、その冷媒と熱交換して暖められる所定流量の空気の温度をより上昇させることができ、冷風感を防止できる。   When the heating operation is started, the expansion valve opening Va is fully closed from the controller 13 to the electric expansion valve 5 corresponding to the small capacity side heat exchanger 8a of the indoor heat exchanger 8 divided into different capacities. The heat exchanger 8a connected to the electric expansion valve 5 is closed. By controlling in this way, the refrigerant circulation amount decreases and the refrigerant evaporation pressure decreases, so that the refrigerant is overheated and the discharge side pressure Pd of the compressor 1 increases. Accordingly, since the temperature of the gas refrigerant in the indoor heat exchanger 8 increases, when the refrigerant condenses in the indoor heat exchanger 8, the temperature of the air at a predetermined flow rate that is heated by heat exchange with the refrigerant is further increased. Can prevent the feeling of cold wind.

また、上述した暖房始動制御運転から、例えば所定時間経過して通常の暖房運転に移る場合には、前記制御器13により、暖房運転始動時の制御を解除するように制御し、全閉にしていた前記電気式膨張弁5を開くことで、通常の暖房運転に移行する。   Further, when the heating start control operation described above is shifted to a normal heating operation after a predetermined time has elapsed, for example, the controller 13 is controlled so as to cancel the control at the start of the heating operation, and is fully closed. In addition, the electric expansion valve 5 is opened to shift to a normal heating operation.

ここで、通常の暖房運転に移行させるため、全閉にしていた電気式膨張弁5を開くと、冷媒流量が増加して、圧縮機1の吐出圧力Pdが低下する。本実施例においては、制御器13に、図3の膨張弁開度と流量との関係を求めるプログラムが予め組み込まれているので、以下のように制御する。即ち、閉止していない電気式膨張弁6の開度と、全閉にしていた電気式膨張弁5の開度を、熱交換器8aと8bの容量に対応させて、各熱交換器8a,8bに流れる冷媒流量が適正に配分されるように、電気式膨張弁5,6の開度Va,Vb1を算出し、制御器13により制御する。これにより、通常の暖房運転に移行する際の冷媒流量の変化を抑制できる。   Here, in order to shift to the normal heating operation, when the electric expansion valve 5 that has been fully closed is opened, the refrigerant flow rate increases and the discharge pressure Pd of the compressor 1 decreases. In the present embodiment, since a program for obtaining the relationship between the expansion valve opening degree and the flow rate in FIG. 3 is incorporated in the controller 13 in advance, the following control is performed. That is, the opening degree of the electric expansion valve 6 that is not closed and the opening degree of the electric expansion valve 5 that is fully closed are made to correspond to the capacities of the heat exchangers 8a and 8b. The openings Va and Vb1 of the electric expansion valves 5 and 6 are calculated and controlled by the controller 13 so that the flow rate of the refrigerant flowing through 8b is appropriately distributed. Thereby, the change of the refrigerant | coolant flow volume at the time of transfering to normal heating operation can be suppressed.

このように、本実施例によれば、暖房運転開始時の冷風感防止も可能となる。一般には、暖房運転開始時の冷風感防止策としては、室内熱交換器8に吸入される室内空気の風量を下げるように制御している。しかし、設備用の空気調和装置では、所定量以上の十分な風量を常に供給しなければならず、室内側風量を下げることによる冷風感防止策を採用することはできないが、本実施例によれば、このような設備用の空気調和装置においても、暖房運転の始動時において冷風感を防止した運転も可能になる。   Thus, according to this embodiment, it is possible to prevent the feeling of cold air at the start of heating operation. In general, as a measure to prevent a feeling of cool air at the start of heating operation, control is performed to reduce the air volume of the indoor air sucked into the indoor heat exchanger 8. However, in an air conditioner for facilities, it is necessary to always supply a sufficient air volume of a predetermined amount or more, and it is not possible to adopt a measure for preventing cool air feeling by lowering the indoor air volume. For example, even in such an air conditioner for equipment, an operation in which the feeling of cold air is prevented at the start of the heating operation is possible.

次に、図4〜図6により、本発明の実施例2を説明する。図4はこの実施例2における空気調和装置の冷凍サイクル系統図、図5は図4に示す空気調和装置における膨張弁開度制御と各部の状態を説明する線図、図6は図4に示す空気調和装置における膨張弁開度と冷媒流量の関係を示す特性図である。   Next, Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 4 is a refrigeration cycle system diagram of the air conditioner in the second embodiment, FIG. 5 is a diagram for explaining the expansion valve opening control and the state of each part in the air conditioner shown in FIG. 4, and FIG. 6 is shown in FIG. It is a characteristic view which shows the relationship between the expansion valve opening degree and refrigerant | coolant flow volume in an air conditioning apparatus.

この実施例2は、室内熱交換器8を異容量に3分割して除湿促進を行うようにした例である。図4において、図1と同一符号を付した部分は同一または相当する部分を示しており、同一部分については説明を省略する。   The second embodiment is an example in which the indoor heat exchanger 8 is divided into three parts with different capacities to promote dehumidification. 4, parts denoted by the same reference numerals as those in FIG. 1 indicate the same or corresponding parts, and the description of the same parts is omitted.

図4に示す実施例においては、室内熱交換器8が、小容量熱交換器8a、大容量熱交換器8b及び中容量の熱交換器8cに3分割され、冷媒配管20から3本並列に分岐された分配流路21,22,23にそれぞれ接続されている。また、前記熱交換器8a〜8cにそれぞれ接続された分配流路21,22,23にはそれぞれ電気式膨張弁5,6,7が設けられている。なお、実施例1の場合と同様、冷房運転専用の空気調和装置とする場合には、四方弁2を設けなくて良い。   In the embodiment shown in FIG. 4, the indoor heat exchanger 8 is divided into three, a small capacity heat exchanger 8a, a large capacity heat exchanger 8b, and a medium capacity heat exchanger 8c, and three in parallel from the refrigerant pipe 20. The branched distribution flow paths 21, 22, and 23 are respectively connected. In addition, electric expansion valves 5, 6, and 7 are provided in the distribution flow paths 21, 22, and 23 connected to the heat exchangers 8a to 8c, respectively. As in the case of the first embodiment, the four-way valve 2 does not have to be provided when the air conditioner is used exclusively for cooling operation.

冷房運転時、圧縮機1から吐出された高温高圧のガス冷媒は、室外熱交換3で凝縮して高温高圧の液冷媒となり、電気式膨張弁5,6,7で減圧されて室内熱交換器8(8a〜8c)で蒸発し、低温低圧のガス冷媒となってアキュムレータ9を経て圧縮機1に戻る冷凍サイクルを形成する。前記室内熱交換器8には、所定流量以上の空気が吸入され、該室内熱交換器8内を流れる冷媒が蒸発する際に、その冷媒と熱交換して冷却され、この冷却された空気は冷房用として室内に吹き出される。   During the cooling operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 condenses in the outdoor heat exchange 3 to become a high-temperature and high-pressure liquid refrigerant, and is decompressed by the electric expansion valves 5, 6, and 7 and then the indoor heat exchanger. 8 (8a-8c) evaporates and becomes a low-temperature and low-pressure gas refrigerant to form a refrigeration cycle that returns to the compressor 1 through the accumulator 9. The indoor heat exchanger 8 receives air of a predetermined flow rate or more, and when the refrigerant flowing in the indoor heat exchanger 8 evaporates, it is cooled by exchanging heat with the refrigerant. It is blown out indoors for cooling.

通常、制御器13は、吸込空気温度センサ14及び吹出空気温度センサ15からのデータにより冷房負荷を検出し、この冷房負荷により決定した運転周波数により圧縮機1を駆動する。また、前記吐出温度サーミスタ12により検出された吐出冷媒温度Tdと、前記吐出圧力センサで検出された冷媒吐出圧力Pdから算出した凝縮温度Tcとの差である冷媒吐出側過熱度TdSHが、適切な冷凍サイクルを形成するために予め設定された所定値となるように、前記制御器13は前記電気式膨張弁5〜7の開度を調整し、冷房運転などを行うように構成されている。   Usually, the controller 13 detects the cooling load based on the data from the intake air temperature sensor 14 and the blown air temperature sensor 15, and drives the compressor 1 at the operating frequency determined by the cooling load. Further, the refrigerant discharge side superheat degree TdSH which is the difference between the discharge refrigerant temperature Td detected by the discharge temperature thermistor 12 and the condensation temperature Tc calculated from the refrigerant discharge pressure Pd detected by the discharge pressure sensor is appropriate. The controller 13 is configured to adjust the opening degree of the electric expansion valves 5 to 7 so as to perform a cooling operation or the like so as to have a predetermined value set in advance to form a refrigeration cycle.

更に、本実施例2においても、上記実施例1と同様に、低負荷運転時でも除湿を可能にする除湿促進運転の機能が備えられている。即ち、前記冷媒吐出側過熱度TdSHが所定値となるように制御されている通常の冷房運転状態において、図5に示すように、吸込空気温度センサ14により検出された吸込み空気温度T1が低くなり、設定温度T2との差が、予め制御器13に設定された所定値より小さくなって、且つ前記吸込圧力センサ10及び吐出圧力センサ11により検出された吐出圧力Pdと吸込圧力Psとの差、若しくは圧縮機回転数Wが、制御器13に予め設定されている所定値より小さくなった場合、前記除湿促進運転が行われる。   Further, in the second embodiment, similarly to the first embodiment, the function of the dehumidification promoting operation that enables dehumidification even during the low load operation is provided. That is, in a normal cooling operation state in which the refrigerant discharge side superheat degree TdSH is controlled to be a predetermined value, the intake air temperature T1 detected by the intake air temperature sensor 14 is lowered as shown in FIG. The difference between the set pressure T2 is smaller than a predetermined value preset in the controller 13 and the difference between the suction pressure Pd and the suction pressure Ps detected by the suction pressure sensor 10 and the discharge pressure sensor 11, Alternatively, when the compressor rotation speed W becomes smaller than a predetermined value preset in the controller 13, the dehumidification promoting operation is performed.

設備用の空気調和装置などでは常に所定値以上の大風量が要求されるので、従来の空気調和装置では低負荷運転時の除湿運転は困難となる。しかし、本実施例においては、前記除湿促進運転の機能が備えられているので、低負荷運転時に除湿運転が要求される場合、前記制御器13により除湿促進運転に切り替えられる。以下、本実施例の除湿運転機能について説明する。   In an air conditioner for facilities and the like, a large air volume that is always greater than or equal to a predetermined value is always required. Therefore, a dehumidifying operation during low load operation is difficult with a conventional air conditioner. However, in the present embodiment, since the function of the dehumidification promoting operation is provided, when the dehumidifying operation is required during the low load operation, the controller 13 switches to the dehumidification promoting operation. Hereinafter, the dehumidifying operation function of this embodiment will be described.

本実施例の空気調和装置では、減圧装置として並列に3個の前記電気式膨張弁5〜7を備え、各膨張弁5〜7に対応して前記室内熱交換器8が異容量に3分割されている。除湿促進運転を行う場合には、例えば、図5に示すように、分割された室内熱交換器8の最小容量の熱交換器8aに対応した電気式膨張弁5に、制御器13からその膨張弁開度Vaを全閉状態にするように出力し、電気式膨張弁5に対応する熱交換器8aを閉塞する。この操作により、室内熱交換器8での熱交換能力が低下し、前記吸込圧力Psが低下するので、冷媒が流通している熱交換器8b,8cでの結露は促進され、熱交換器8b,8cを通過する空気からの除湿を促進できる。   In the air conditioner of the present embodiment, the three electric expansion valves 5 to 7 are provided in parallel as pressure reducing devices, and the indoor heat exchanger 8 is divided into three different capacities corresponding to the expansion valves 5 to 7. Has been. When performing the dehumidification promotion operation, for example, as shown in FIG. 5, the expansion is performed from the controller 13 to the electric expansion valve 5 corresponding to the heat exchanger 8 a having the minimum capacity of the divided indoor heat exchanger 8. The valve opening degree Va is output so as to be fully closed, and the heat exchanger 8a corresponding to the electric expansion valve 5 is closed. By this operation, the heat exchange capability in the indoor heat exchanger 8 is lowered and the suction pressure Ps is lowered, so that condensation in the heat exchangers 8b and 8c through which the refrigerant is circulated is promoted, and the heat exchanger 8b. , 8c can be dehumidified from the air passing through.

また、電気式膨張弁5を閉止しても、吸込空気温度センサ14により検出された吸込み空気の温度T1と設定温度T2との差が、予め制御器13に設定された所定値より小さく、且つ前記吸込圧力センサ10及び吐出圧力センサ11により検出された吐出圧力Pdと吸込圧力Psとの差、若しくは圧縮機回転数Wが、制御器13に予め設定されている所定値より小さくなった場合には、次に小容量に分割された熱交換器8cに対応した電気式膨張弁7に、制御器13からその膨張弁開度Vc1を全閉状態にするように出力し、電気式膨張弁7に対応した熱交換器8cも閉塞する。この操作により、室内熱交換器8での熱交換能力が更に低下するので、冷媒が流通している熱交換器8bでの結露は促進され、熱交換器8bを通過する空気からの除湿を促進できる。   Even if the electric expansion valve 5 is closed, the difference between the intake air temperature T1 detected by the intake air temperature sensor 14 and the set temperature T2 is smaller than a predetermined value set in the controller 13 in advance. When the difference between the discharge pressure Pd and the suction pressure Ps detected by the suction pressure sensor 10 and the discharge pressure sensor 11 or the compressor rotational speed W becomes smaller than a predetermined value preset in the controller 13. Is then output from the controller 13 to the electric expansion valve 7 corresponding to the heat exchanger 8c divided into small capacities so that the expansion valve opening Vc1 is fully closed. The heat exchanger 8c corresponding to is also closed. By this operation, the heat exchange capability in the indoor heat exchanger 8 is further reduced, so that dew condensation is promoted in the heat exchanger 8b through which the refrigerant flows, and dehumidification from the air passing through the heat exchanger 8b is promoted. it can.

なお、小容量側熱交換器8aに対応した電気式膨張弁5から閉じていくのではなく、大容量側熱交換器8bに対応した電気式膨張弁6から、或いは中容量の熱交換器8cに対応した電気式膨張弁7から閉じるようにしても良い。このように大容量の熱交換器8b或いは中容量の熱交換器8cから閉塞させていくようにすれば、室内熱交換器8での熱交換能力を更に迅速に低下させて冷媒の吸込圧力Psを更に低下できるので、特に低負荷となって冷媒循環量が更に低下したような場合においても、冷媒が流通している熱交換器8aなどでの結露を促進でき、小容量側の熱交換器8aでの除湿を促進できる。   Instead of closing from the electric expansion valve 5 corresponding to the small capacity side heat exchanger 8a, the electric expansion valve 6 corresponding to the large capacity side heat exchanger 8b or from the medium capacity heat exchanger 8c. You may make it close from the electric expansion valve 7 corresponding to. If the large-capacity heat exchanger 8b or the medium-capacity heat exchanger 8c is closed as described above, the heat exchanging capacity in the indoor heat exchanger 8 is further rapidly reduced, and the refrigerant suction pressure Ps. Therefore, even in the case where the refrigerant circulation rate further decreases due to a low load, it is possible to promote condensation in the heat exchanger 8a or the like in which the refrigerant is circulating, and the heat exchanger on the small capacity side The dehumidification in 8a can be promoted.

本実施例では、室内熱交換器8を異容量の3個の熱交換器8a,8b,8cで構成しているので、負荷の状態に応じて前記電気式膨張弁5〜7を制御することで、通常運転時はもちろんのこと、負荷が僅かに低下した状態から大幅に低下した状態、即ち圧縮機回転数が大幅に低下する状態まで、より広い範囲に渡って十分な風量を供給しながら、除湿が可能となる。   In this embodiment, the indoor heat exchanger 8 is composed of three heat exchangers 8a, 8b, and 8c having different capacities, so that the electric expansion valves 5 to 7 are controlled according to the state of the load. While supplying a sufficient amount of air over a wider range, not only during normal operation, but also from a state where the load is slightly reduced to a state where the load is greatly reduced, that is, a state where the compressor rotational speed is greatly reduced. Dehumidification is possible.

なお、上記除湿促進運転への過渡時には、実施例1と同様に、冷凍サイクルを循環する冷媒量が減少し、冷媒蒸発圧力が低下する。このため冷媒が過度に過熱され、冷媒吐出側過熱度TdSHが上昇してしまう。そこで、制御器13には、図6に示すような電気式膨張弁の開度と冷媒流量との関係を求めるプログラムが予め組み込まれている。電気式膨張弁5の開度がVa、電気式膨張弁6の開度がVb1、電気式膨張弁7の開度がVc1の状態では合計の冷媒流量は「Ma+Mc1+Mb1=Mb3」となっている。この状態から、電気式膨張弁5を全閉にすると冷媒流量は「Mc1+Mb1」となってしまうので、本実施例では、電気式膨張弁5の開度がVaの状態における前記合計の冷媒流量Mb3となるように、電気式膨張弁6の開度をVb1からVb2に、電気式膨張弁7の開度をVc1からVc2に増加させるように、前記制御器13により制御する。   At the time of transition to the dehumidification promoting operation, the amount of refrigerant circulating in the refrigeration cycle is reduced and the refrigerant evaporation pressure is reduced as in the first embodiment. For this reason, the refrigerant is excessively heated, and the refrigerant discharge side superheat degree TdSH increases. Therefore, a program for obtaining the relationship between the opening of the electric expansion valve and the refrigerant flow rate as shown in FIG. When the opening degree of the electric expansion valve 5 is Va, the opening degree of the electric expansion valve 6 is Vb1, and the opening degree of the electric expansion valve 7 is Vc1, the total refrigerant flow rate is “Ma + Mc1 + Mb1 = Mb3”. If the electric expansion valve 5 is fully closed from this state, the refrigerant flow rate becomes “Mc1 + Mb1”. Therefore, in this embodiment, the total refrigerant flow rate Mb3 when the opening degree of the electric expansion valve 5 is Va. Thus, the controller 13 controls the opening of the electric expansion valve 6 from Vb1 to Vb2 and the opening of the electric expansion valve 7 from Vc1 to Vc2.

また、前記電気式膨張弁5が全閉、電気式膨張弁6,7の開度がVb1、Vc1の状態では、合計の冷媒流量は「Mb1+Mc1=Mb3」となっている。この状態から、電気式膨張弁7を全閉にすると冷媒流量はMb1のみとなってしまうので、電気式膨張弁7の開度がVc1の状態における冷媒流量Mc1を加えた合計冷媒流量Mb3となるように、電気式膨張弁6の開度をVb1からVb3に増加させる。これにより、除湿促進運転への過渡時における冷媒流量の変化を抑制することができる。   When the electric expansion valve 5 is fully closed and the opening degrees of the electric expansion valves 6 and 7 are Vb1 and Vc1, the total refrigerant flow rate is “Mb1 + Mc1 = Mb3”. If the electric expansion valve 7 is fully closed from this state, the refrigerant flow rate becomes Mb1 only, so that the opening degree of the electric expansion valve 7 becomes the total refrigerant flow rate Mb3 obtained by adding the refrigerant flow rate Mc1 in the state of Vc1. Thus, the opening degree of the electric expansion valve 6 is increased from Vb1 to Vb3. Thereby, the change of the refrigerant | coolant flow rate at the time of the transition to a dehumidification promotion driving | operation can be suppressed.

本実施例においては、室内熱交換器8を、異容量の熱交換器に3分割しているので、順次閉止していく電気式膨張弁に対応して減少する冷媒流量に対し、開度を大きくしていく電気式膨張弁の開度調整量を段階的に少しづつ増加していくことができる。従って、電気式膨張弁の制御に余裕ができる。   In this embodiment, since the indoor heat exchanger 8 is divided into three heat exchangers of different capacities, the opening degree is set with respect to the refrigerant flow rate that decreases corresponding to the electric expansion valves that are sequentially closed. The opening adjustment amount of the electric expansion valve that is increased can be increased step by step. Therefore, there is a margin in the control of the electric expansion valve.

なお、上記除湿促進運転を実施中に、吸込圧力センサ10及び吐出圧力センサ11により検出された吸込圧力Psと吐出圧力Pdとの差、若しくは圧縮機回転数Wが、前記制御器13に予め設定されている所定値よりも高くなった場合には、制御器13は除湿促進運転を中止し、通常の冷房運転に復帰させる。   During the dehumidification promoting operation, the difference between the suction pressure Ps and the discharge pressure Pd detected by the suction pressure sensor 10 and the discharge pressure sensor 11 or the compressor rotational speed W is preset in the controller 13. When it becomes higher than the predetermined value, the controller 13 stops the dehumidification promoting operation and returns to the normal cooling operation.

ここで、通常の冷房運転に復帰させるため、全閉にしていた電気式膨張弁5などを開いていくと、冷媒流量が増加して冷媒蒸発圧力が上昇するため、圧縮機1において液圧縮が発生する場合がある。本実施例では、前記制御器13に、図6に示すような膨張弁開度と流量との関係を求めるプログラムが組み込まれているので、例えば、全閉にしていた電気式膨張弁5と閉止していない電気式膨張弁6,7を流れる冷媒流量を、熱交換器8a〜8cのそれぞれの容量に対応させて配分するように、前記それぞれの電気式膨張弁5,6,7の開度Va,Vb1,Vc1を算出し、制御器13より開度制御している。これにより通常の冷房運転への復帰時の冷媒流量変化も適正に制御できる。   Here, when the electric expansion valve 5 or the like that has been fully closed is opened in order to return to the normal cooling operation, the refrigerant flow rate increases and the refrigerant evaporation pressure rises. May occur. In this embodiment, since the controller 13 incorporates a program for obtaining the relationship between the expansion valve opening and the flow rate as shown in FIG. The opening degree of each of the electric expansion valves 5, 6, 7 is distributed so that the flow rate of the refrigerant flowing through the unexpanded electric expansion valves 6, 7 is distributed according to the capacity of each of the heat exchangers 8 a to 8 c. Va, Vb1, and Vc1 are calculated and the opening degree is controlled by the controller 13. Thereby, the refrigerant | coolant flow rate change at the time of a return to normal cooling operation can also be controlled appropriately.

また、本実施例2においても、空気調和装置は図4に示すように、四方弁4を備え暖房運転が可能な構成となっているから、実施例1と同様に、上述した除湿促進運転だけでなく、暖房運転の始動時において冷風感を防止した運転も同様に可能になるものである。   Also in the second embodiment, as shown in FIG. 4, the air conditioner includes the four-way valve 4 and is capable of heating operation. Therefore, as in the first embodiment, only the above-described dehumidification promoting operation is performed. In addition, an operation in which the feeling of cold air is prevented at the start of the heating operation is also possible.

なお、本実施例においては、室内熱交換器8を3分割とし、分割されたそれぞれの熱交換器に対応させて電気式膨張弁を設けるようにしているが、前記室内熱交換器8を4分割以上にすることも同様に可能である。   In this embodiment, the indoor heat exchanger 8 is divided into three parts, and an electric expansion valve is provided corresponding to each of the divided heat exchangers. However, the indoor heat exchanger 8 is divided into four parts. It is also possible to make it more than division.

室内熱交換器8を4分割以上にする場合には、吸込空気温度センサ14により検出された吸込空気の温度T1と設定温度T2との差が、制御器13に予め設定された所定値より大きくなるか、または前記吸込圧力センサ10及び吐出圧力センサ11により検出された吸込圧力Psと吐出圧力Pdとの差、若しくは圧縮機回転数Wが予め制御器13に設定された所定値より高くなるまで、分割された熱交換器8a,8b,8c,…を、小容量側の熱交換器に対応した電気式膨張弁からを順次閉止していくようにすれば良い。また、閉止されない電気式膨張弁は、その後、冷媒吐出側過熱度TdSHが所定値となるように制御される。   When the indoor heat exchanger 8 is divided into four or more parts, the difference between the intake air temperature T1 detected by the intake air temperature sensor 14 and the set temperature T2 is larger than a predetermined value preset in the controller 13. Or until the difference between the suction pressure Ps and the discharge pressure Pd detected by the suction pressure sensor 10 and the discharge pressure sensor 11 or the compressor rotational speed W becomes higher than a predetermined value set in the controller 13 in advance. The divided heat exchangers 8a, 8b, 8c,... May be closed sequentially from the electric expansion valve corresponding to the heat exchanger on the small capacity side. The electric expansion valve that is not closed is then controlled so that the refrigerant discharge side superheat degree TdSH becomes a predetermined value.

前記室内熱交換器8を、特に3分割以上とする場合には、必ずしも異容量にする必要はなく、閉塞させる熱交換器の数を制御することで、負荷の状況に応じた除湿促進運転は可能になる。
以上述べた実施例2においても、前記実施例1と同様の効果を得ることができる。また、この実施例2によれば、負荷が大幅に変化しても、負荷の変化にきめ細かく対応させて、より広い範囲に渡って、十分な風量を供給しながら除湿が可能となる。
When the indoor heat exchanger 8 is divided into three or more parts, it is not always necessary to use different capacities. By controlling the number of heat exchangers to be closed, the dehumidification promoting operation according to the load condition is performed. It becomes possible.
Also in the second embodiment described above, the same effects as in the first embodiment can be obtained. Further, according to the second embodiment, even if the load changes greatly, dehumidification can be performed while supplying a sufficient air volume over a wider range in a fine manner corresponding to the change in the load.

1:圧縮機、
2:四方弁、
3:室外熱交換器、
4,5,6,7:電気式膨張弁、
8:室内熱交換器、
8a:小容量の熱交換器、8b:大容量の熱交換器、8c:中容量の熱交換器、
9:アキュムレータ、
10:吸入圧力センサ、11:吐出圧力センサ、
12:吐出温度サーミスタ、
13:制御器(制御手段)、
14:吸込空気温度センサ、15:吹出空気温度センサ、
20:冷媒配管、21,22,23:分配流路。
1: compressor,
2: Four-way valve,
3: Outdoor heat exchanger,
4, 5, 6, 7: electric expansion valve,
8: Indoor heat exchanger,
8a: a small capacity heat exchanger, 8b: a large capacity heat exchanger, 8c: a medium capacity heat exchanger,
9: Accumulator,
10: suction pressure sensor, 11: discharge pressure sensor,
12: Discharge temperature thermistor,
13: Controller (control means),
14: intake air temperature sensor, 15: blown air temperature sensor,
20: Refrigerant piping, 21, 22, 23: Distribution flow path.

Claims (11)

圧縮機、室外熱交換器、電気式膨張弁及び室内熱交換器を順次冷媒配管によって接続して冷凍サイクルを形成するように構成された空気調和装置において、
前記室内熱交換器は分割された複数の熱交換器により構成され、これら複数の熱交換器は前記冷媒配管が並列に分岐された分配流路に接続されると共に、それぞれの分配流路には電気式膨張弁が設けられ、更に
前記室内熱交換器に流入する空気の温度を検出する吸込空気温度センサと、
前記圧縮機の吐出圧力を検出する吐出圧力センサと、
前記圧縮機の吸込圧力を検出する吸込圧力センサと、
前記吸込空気温度センサにより検出された温度と設定温度の差が所定値より小さく且つ低負荷運転の時に除湿運転を行う場合、前記複数の熱交換器のうちの何れかに接続された分配流路に設けられている前記電気式膨張弁を閉止させるように制御する制御手段と
を備えることを特徴とする空気調和装置。
In an air conditioner configured to form a refrigeration cycle by sequentially connecting a compressor, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger with a refrigerant pipe,
The indoor heat exchanger is constituted by a plurality of divided heat exchangers, and the plurality of heat exchangers are connected to distribution channels in which the refrigerant pipes are branched in parallel, An electric expansion valve, and an intake air temperature sensor for detecting the temperature of the air flowing into the indoor heat exchanger;
A discharge pressure sensor for detecting a discharge pressure of the compressor;
A suction pressure sensor for detecting the suction pressure of the compressor;
When the difference between the temperature detected by the intake air temperature sensor and the set temperature is smaller than a predetermined value and the dehumidifying operation is performed at the time of low load operation, the distribution flow path connected to any of the plurality of heat exchangers And an air conditioner comprising: control means for controlling the electric expansion valve provided on the door to be closed.
請求項1に記載の空気調和装置において、前記空気調和装置は、常に所定風量以上の吹出し風量が要求される設備用の空気調和装置であって、前記圧縮機は回転数制御可能に構成され、更に前記制御手段は、前記吸込空気温度センサにより検出された温度と設定温度の差が所定値より小さく、且つ前記圧縮機の運転周波数が所定値より低い時、若しくは前記吐出圧力センサで検出された吐出圧力と前記吸込圧力センサで検出された吸込圧力との差が所定値より小さい時に除湿運転を行う場合、前記何れかの電気式膨張弁を閉止させるように制御することを特徴とする空気調和装置。   The air conditioner according to claim 1, wherein the air conditioner is an equipment air conditioner that always requires a blown air volume equal to or greater than a predetermined air volume, and the compressor is configured to be capable of controlling the rotational speed, Further, the control means is detected when the difference between the temperature detected by the intake air temperature sensor and a set temperature is smaller than a predetermined value and the operating frequency of the compressor is lower than a predetermined value, or detected by the discharge pressure sensor. An air conditioner characterized in that, when a dehumidifying operation is performed when a difference between a discharge pressure and a suction pressure detected by the suction pressure sensor is smaller than a predetermined value, one of the electric expansion valves is controlled to be closed. apparatus. 請求項1または2に記載の空気調和装置において、前記制御手段は、前記電気式膨張弁の何れかを閉止する場合、閉止しない電気式膨張弁の開度を大きくするように制御することを特徴とする空気調和装置。   3. The air conditioner according to claim 1, wherein when the control unit closes any one of the electric expansion valves, the control unit controls the opening degree of the electric expansion valve that does not close. Air conditioner. 請求項1〜3の何れかに記載の空気調和装置において、前記制御手段は、前記電気式膨張弁の何れかを閉止する場合、閉止する前記電気式膨張弁の流量に相当する流量分だけ、閉止しない電気式膨張弁の流量が増加するようにその開度を制御することを特徴とする空気調和装置。   The air conditioning apparatus according to any one of claims 1 to 3, wherein when the control means closes any of the electric expansion valves, the control means is a flow amount corresponding to the flow rate of the electric expansion valve to be closed, An air conditioner that controls the opening degree so that the flow rate of an electric expansion valve that does not close increases. 請求項1〜4の何れかに記載の空気調和装置において、前記室内熱交換器は異容量の複数の熱交換器により構成されていることを特徴とする空気調和装置。   5. The air conditioner according to claim 1, wherein the indoor heat exchanger includes a plurality of heat exchangers having different capacities. 請求項5に記載の空気調和装置において、前記制御手段は、前記電気式膨張弁の何れかを閉止する場合、小容量側の熱交換器に対応した前記電気式膨張弁から閉止するように構成されていることを特徴とする空気調和装置。   6. The air conditioner according to claim 5, wherein the control means is configured to close from the electric expansion valve corresponding to a heat exchanger on a small capacity side when closing any of the electric expansion valves. An air conditioner characterized by being made. 請求項1〜6の何れかに記載の空気調和装置において、前記室内熱交換器は、3分割以上の熱交換器により構成されていることを特徴とする空気調和装置。   The air conditioner according to any one of claims 1 to 6, wherein the indoor heat exchanger is configured by a heat exchanger having three or more divisions. 請求項2に記載の空気調和装置において、前記制御手段は、前記電気式膨張弁の何れかを閉止した場合に、前記吸込空気温度センサにより検出された温度と設定温度の差が所定値より大きくなり、且つ前記圧縮機の運転周波数が所定値より高くなった時、若しくは前記吐出圧力センサで検出された吐出圧力と前記吸込圧力センサで検出された吸込圧力との差が所定値より大きくなった場合、前記閉止させていた電気式膨張弁の弁開度を増加させると共に、弁開度を大きくしていた前記電気式膨張弁の弁開度を低下させるように制御することを特徴とする空気調和装置。   3. The air conditioner according to claim 2, wherein when the control means closes any of the electric expansion valves, a difference between a temperature detected by the suction air temperature sensor and a set temperature is larger than a predetermined value. And the difference between the discharge pressure detected by the discharge pressure sensor and the suction pressure detected by the suction pressure sensor becomes larger than the predetermined value when the operating frequency of the compressor becomes higher than the predetermined value. In this case, the air is controlled to increase the valve opening of the closed electric expansion valve and to decrease the valve opening of the electric expansion valve that has increased the valve opening. Harmony device. 請求項8に記載の空気調和装置において、前記閉止させていた電気式膨張弁の弁開度を増加させると共に弁開度を大きくしていた前記電気式膨張弁の弁開度を低下させる場合に、解除前と解除後の室内熱交換器を流れる冷媒流量を一致させるように制御することを特徴とする空気調和装置。   The air conditioner according to claim 8, wherein the valve opening degree of the electric expansion valve that has been increased while the valve opening degree of the electric expansion valve that has been closed is increased. An air conditioner that controls the flow rate of refrigerant flowing through the indoor heat exchanger before and after the release to coincide with each other. 請求項1〜9の何れかに記載の空気調和装置において、更に四方弁を設けて暖房運転可能に構成し、前記制御手段は、暖房運転の始動時には、前記室内熱交換器を構成する複数の熱交換器の一部に対応する前記電気式膨張弁を閉止するように制御する始動制御を実施し、その後、前記始動制御を解除する時には閉止していた前記電気式膨張弁を開くように制御することを特徴とする空気調和装置。   The air conditioner according to any one of claims 1 to 9, further comprising a four-way valve so as to be capable of heating operation, wherein the control means includes a plurality of components constituting the indoor heat exchanger when starting the heating operation. Start control for closing the electric expansion valve corresponding to a part of the heat exchanger is performed, and then control to open the closed electric expansion valve when releasing the start control. An air conditioner characterized by: 請求項10に記載の空気調和装置において、前記の制御手段は、前記始動制御の解除時に、閉止させていた前記電気式膨張弁を開く際、閉止していない電気式膨張弁の弁開度を低下させ、前記始動制御の解除前後の室内熱交換器を流れる冷媒流量を一致させるように制御することを特徴とする空気調和装置。   The air conditioner according to claim 10, wherein when the start-up control is released, the control means sets the valve opening degree of the non-closed electric expansion valve when the closed electric expansion valve is opened. An air conditioner that controls the flow rate of refrigerant to flow through the indoor heat exchanger before and after the start control is released to be reduced.
JP2011135068A 2011-06-17 2011-06-17 Air conditioning device Withdrawn JP2013002749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011135068A JP2013002749A (en) 2011-06-17 2011-06-17 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011135068A JP2013002749A (en) 2011-06-17 2011-06-17 Air conditioning device

Publications (1)

Publication Number Publication Date
JP2013002749A true JP2013002749A (en) 2013-01-07

Family

ID=47671502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011135068A Withdrawn JP2013002749A (en) 2011-06-17 2011-06-17 Air conditioning device

Country Status (1)

Country Link
JP (1) JP2013002749A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104541114A (en) * 2012-08-03 2015-04-22 阿特拉斯·科普柯空气动力股份有限公司 Cooling circuit, dry cooling installation and method for controlling the cooling circuit
CN110513783A (en) * 2019-08-22 2019-11-29 海信(广东)空调有限公司 A kind of air conditioner dehumidification system and its control method
CN112484160A (en) * 2020-11-10 2021-03-12 珠海格力电器股份有限公司 Air conditioner with self-controlled air suction temperature
CN114923228A (en) * 2022-05-25 2022-08-19 青岛海信日立空调系统有限公司 Central air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104541114A (en) * 2012-08-03 2015-04-22 阿特拉斯·科普柯空气动力股份有限公司 Cooling circuit, dry cooling installation and method for controlling the cooling circuit
CN110513783A (en) * 2019-08-22 2019-11-29 海信(广东)空调有限公司 A kind of air conditioner dehumidification system and its control method
CN112484160A (en) * 2020-11-10 2021-03-12 珠海格力电器股份有限公司 Air conditioner with self-controlled air suction temperature
CN112484160B (en) * 2020-11-10 2021-11-02 珠海格力电器股份有限公司 Air conditioner with self-controlled air suction temperature
CN114923228A (en) * 2022-05-25 2022-08-19 青岛海信日立空调系统有限公司 Central air conditioner
CN114923228B (en) * 2022-05-25 2023-10-31 青岛海信日立空调系统有限公司 Central air conditioner

Similar Documents

Publication Publication Date Title
JP6081033B1 (en) Air conditioner
JP2007333219A (en) Multi-type air-conditioning system
US20100206000A1 (en) Air conditioner and method of controlling the same
JP6667719B2 (en) Air conditioner
JP2008157557A (en) Air-conditioning system
EP3379159B1 (en) Air conditioner
KR102082881B1 (en) Multi-air conditioner for heating and cooling operations at the same time
JP2013002749A (en) Air conditioning device
JP5881339B2 (en) Air conditioner
WO2018043454A1 (en) Air conditioning and hot water supplying system
JP2008039388A (en) Multi-type air conditioner
JP2018071864A (en) Air conditioner
JP2005291553A (en) Multiple air conditioner
JP2014129912A (en) Air conditioner using direct expansion coils
JP2006194525A (en) Multi-chamber type air conditioner
JP4179783B2 (en) Air conditioner
JP6846915B2 (en) Multi-chamber air conditioner
JP2008175430A (en) Air conditioner
JP4270555B2 (en) Reheat dehumidification type air conditioner
KR101321545B1 (en) Air conditioner
JP2016020784A (en) Air conditioning device
KR20130090133A (en) Air conditoner
JP2013117360A (en) Air conditioning device and method
JP7193356B2 (en) Outside air processing device
JP6404539B2 (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902