WO2021171448A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2021171448A1
WO2021171448A1 PCT/JP2020/007888 JP2020007888W WO2021171448A1 WO 2021171448 A1 WO2021171448 A1 WO 2021171448A1 JP 2020007888 W JP2020007888 W JP 2020007888W WO 2021171448 A1 WO2021171448 A1 WO 2021171448A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
pressure sensor
refrigeration cycle
pressure
control device
Prior art date
Application number
PCT/JP2020/007888
Other languages
French (fr)
Japanese (ja)
Inventor
端之 松下
康敬 落合
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022502688A priority Critical patent/JP7350151B2/en
Priority to PCT/JP2020/007888 priority patent/WO2021171448A1/en
Publication of WO2021171448A1 publication Critical patent/WO2021171448A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to a refrigeration cycle device equipped with a pressure sensor.
  • Patent Document 1 a method for diagnosing an abnormality of a pressure sensor in a refrigeration cycle device is known (see, for example, Patent Document 1).
  • Patent Document 1 in the refrigerant circuit of the refrigerating apparatus, a high-pressure pressure sensor that detects the pressure on the discharge side of the compressor, a low-pressure pressure sensor that detects the pressure on the suction side of the compressor, and the ambient temperature of the refrigerating apparatus are detected.
  • An ambient temperature sensor is provided. Then, based on the pressure detected by each pressure sensor, it is determined whether or not the pressure in the refrigerant circuit (hereinafter referred to as internal pressure) is in the equalized state, and when it is determined that the internal pressure is in the equalized state, each pressure sensor Converts the pressure detected by the above to the saturation temperature. Then, the detection temperature of the ambient temperature sensor is compared with each saturation temperature, and if the difference between them is within the permissible range, it is determined to be normal, and if it is out of the permissible range, it is determined to be a failure.
  • internal pressure the pressure in the refrigerant circuit
  • Patent Document 1 does not clearly indicate the definition of the ambient temperature of the refrigerating apparatus.
  • the ambient temperature is not uniform and varies, when the internal pressure is equalized, the internal pressure is most affected by the lowest ambient temperature and approaches the internal pressure at the lowest temperature. Therefore, if the ambient temperature sensor is provided at a position that is higher than the ambient temperature, the difference between the detection temperature of the ambient temperature sensor and the saturation temperature converted from the internal pressure becomes large. Actually, even though the pressure sensor was not out of order, it was sometimes judged as abnormal. That is, when the ambient temperature varies and the ambient temperature sensor is provided at a position where the ambient temperature is high, it is erroneous to perform an abnormality diagnosis of the pressure sensor using the detected temperature. There was a problem of making a diagnosis.
  • the present disclosure has been made in order to solve the above problems, and an object of the present disclosure is to provide a refrigeration cycle device capable of suppressing an erroneous diagnosis of an abnormality diagnosis of a pressure sensor.
  • the refrigeration cycle device includes a refrigerant circuit in which a compressor, an outdoor heat exchanger, a throttle device, and an indoor heat exchanger are connected by pipes to circulate a refrigerant, and at least one that detects a pressure in the refrigerant circuit.
  • a plurality of temperature sensors for detecting the temperature, the lowest detected temperature among the plurality of the temperature sensors, and the detection pressure of the pressure sensor, it is determined whether or not the pressure sensor is abnormal. It is equipped with a control device for performing the operation.
  • an abnormality diagnosis of a pressure sensor is performed using a temperature sensor that detects the lowest temperature among a plurality of temperature sensors. In this way, erroneous diagnosis can be suppressed by performing an abnormality diagnosis of the pressure sensor using the temperature at which the internal pressure is most affected.
  • FIG. 1 is a diagram showing a configuration of a refrigeration cycle device 1 according to an embodiment.
  • an air conditioner that performs cooling operation and heating operation is exemplified as the refrigeration cycle device 1.
  • the compressor 101, the flow path switching device 102, the outdoor heat exchanger 103, the throttle device 105, and the indoor heat exchanger 106 are connected in a ring shape by a pipe 109, and the refrigerant circulates.
  • the refrigerant circuit 100 is provided.
  • an outdoor fan 104 is provided in the vicinity of the outdoor heat exchanger 103, and an indoor fan 107 is provided in the vicinity of the indoor heat exchanger 106.
  • the refrigeration cycle device 1 according to the embodiment exemplifies an air conditioner having one indoor heat exchanger 106, but the present invention is not limited to this, and a multi air conditioner having a plurality of indoor heat exchangers 106 may be used.
  • the refrigeration cycle device 1 includes a plurality of temperature sensors and a plurality of pressure sensors. Specifically, the refrigeration cycle device 1 includes a discharge temperature sensor 111, a high pressure pressure sensor 112, an outside air temperature sensor 113, a refrigerant temperature sensor 114, an indoor temperature sensor 115, and a low pressure pressure sensor 116. ..
  • the refrigeration cycle device 1 includes a control device 200.
  • the control device 200 includes an operation unit 201, a storage unit 202, an extraction unit 203, a calculation unit 204, a comparison unit 205, a determination unit 206, and a notification unit 207 as functional blocks for diagnosing an abnormality of the pressure sensor. It has.
  • the abnormality diagnosis of the pressure sensor is to determine whether or not the pressure sensor included in the refrigeration cycle device 1 is abnormal.
  • the above-mentioned components of the control device 200 may be provided outside the control device 200 instead of inside the control device 200, or may be provided separately from the control device 200.
  • the compressor 101 is a fluid machine that sucks in a low-temperature low-pressure gas refrigerant, compresses it, and discharges it as a high-temperature, high-pressure gas refrigerant.
  • the compressor 101 operates, the refrigerant circulates in the refrigerant circuit 100.
  • the compressor 101 is, for example, an inverter drive type capable of adjusting the operating frequency. Further, the operation of the compressor 101 is controlled by the control device 200.
  • the flow path switching device 102 is, for example, a four-way valve, and switches between a cooling operation and a heating operation by switching the flow direction of the refrigerant.
  • the switching of the flow path switching device 102 is controlled by the control device 200.
  • a combination of a two-way valve and a three-way valve may be used instead of the four-way valve.
  • the outdoor heat exchanger 103 exchanges heat between the outdoor air and the refrigerant.
  • the outdoor heat exchanger 103 functions as a condenser that dissipates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation. Further, the outdoor heat exchanger 103 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air by the heat of vaporization at that time.
  • a cross-fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins is used.
  • the outdoor fan 104 supplies outdoor air to the outdoor heat exchanger 103, and the amount of air blown to the outdoor heat exchanger 103 is adjusted by controlling the rotation speed.
  • a centrifugal fan or a multi-blade fan driven by a motor such as a DC (Direct Current) fan motor or an AC (Alternating Current) fan motor is used.
  • DC fan motor is used as a drive source for the outdoor fan 104
  • the amount of air blown is adjusted by changing the current value and controlling the rotation speed.
  • an AC fan motor is used as a drive source for the outdoor fan 104
  • the amount of air blown is adjusted by controlling the rotation speed by changing the power supply frequency by inverter control.
  • the operation of the outdoor fan 104 is controlled by the control device 200.
  • the throttle device 105 is, for example, an electronic expansion valve capable of adjusting the opening degree of the throttle, and by adjusting the opening degree, the pressure of the refrigerant flowing into the indoor heat exchanger 106 during the cooling operation is controlled. However, during the heating operation, the pressure of the refrigerant flowing into the outdoor heat exchanger 103 is controlled.
  • the opening degree of the aperture device 105 is controlled by the control device 200.
  • the indoor heat exchanger 106 exchanges heat between the indoor air and the refrigerant.
  • the indoor heat exchanger 106 functions as an evaporator that evaporates the refrigerant during the cooling operation and cools the indoor air by the heat of vaporization at that time. Further, the indoor heat exchanger 106 functions as a condenser that dissipates the heat of the refrigerant to the indoor air and condenses the refrigerant during the heating operation.
  • a cross-fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins is used.
  • the indoor fan 107 supplies indoor air to the indoor heat exchanger 106, and the amount of air blown to the indoor heat exchanger 106 is adjusted by controlling the rotation speed.
  • a centrifugal fan or a multi-blade fan driven by a motor such as a DC (Direct Current) fan motor or an AC (Alternating Current) fan motor is used.
  • DC fan motor is used as the drive source of the indoor fan 107
  • the amount of air blown is adjusted by changing the current value and controlling the rotation speed.
  • an AC fan motor is used as a drive source for the indoor fan 107
  • the amount of air blown is adjusted by controlling the rotation speed by changing the power supply frequency by inverter control.
  • the operation of the indoor fan 107 is controlled by the control device 200.
  • the discharge temperature sensor 111 is provided on the discharge side of the compressor 101, detects the temperature on the discharge side of the compressor 101, and outputs a detection signal to the control device 200.
  • the refrigerant temperature sensor 114 is provided in the pipe 109 constituting the refrigerant circuit 100, detects the temperature of the refrigerant flowing in the pipe 109, and outputs a detection signal to the control device 200.
  • a plurality of refrigerant temperature sensors 114 may be provided at different positions.
  • the outside air temperature sensor (hereinafter, also referred to as the first temperature sensor) 113 is provided at or near the suction port (not shown) of the outdoor heat exchanger 103, detects the temperature of the outdoor space, and controls the detection signal. Output to device 200.
  • the indoor temperature sensor (hereinafter, also referred to as the second temperature sensor) 115 is provided at or near the suction port (not shown) of the indoor heat exchanger 106, detects the temperature of the indoor space, and controls the detection signal. Output to device 200.
  • the high-pressure pressure sensor 112 is provided on the discharge side of the compressor 101, detects the pressure of the high-pressure refrigerant, and outputs a detection signal to the control device 200.
  • the low pressure pressure sensor 116 is provided on the suction side of the compressor 101, detects the pressure of the low pressure refrigerant, and outputs a detection signal to the control device 200.
  • the control device 200 is composed of, for example, dedicated hardware or a CPU (also referred to as a central processing unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, or a processor) that executes a program stored in the storage unit 202.
  • a CPU also referred to as a central processing unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, or a processor
  • control device 200 When the control device 200 is dedicated hardware, the control device 200 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applicable.
  • Each of the functional units realized by the control device 30 may be realized by individual hardware, or each functional unit may be realized by one hardware.
  • each function executed by the control device 200 is realized by software, firmware, or a combination of software and firmware.
  • the software and firmware are described as programs and stored in the storage unit 202.
  • the CPU realizes each function of the control device 200 by reading and executing the program stored in the storage unit 202.
  • control device 200 may be realized by dedicated hardware, and some may be realized by software or firmware.
  • the control device 200 sets the components of the refrigerating cycle device 1 such as the compressor 101 based on the detection signals from various sensors provided in the refrigerating cycle device 1 and the operation signals from the remote controller (not shown). It controls and controls the operation of the entire refrigeration cycle device 1.
  • the operation unit 201 operates the outdoor fan 104 and the indoor fan 107 when the refrigeration cycle device 1 is stopped to make the detection temperature of each temperature sensor provided in the refrigeration cycle device 1 uniform.
  • each temperature sensor is a discharge temperature sensor 111, a refrigerant temperature sensor 114, an outside air temperature sensor 113, and an indoor temperature sensor 115.
  • the storage unit 202 stores various types of information, and includes, for example, a non-volatile semiconductor memory such as a flash memory, an EPROM, and an EEPROM in which data can be rewritten.
  • the storage unit 202 may also include, for example, a non-volatile semiconductor memory such as a ROM in which data cannot be rewritten, or a volatile semiconductor memory in which data such as RAM can be rewritten.
  • the storage unit 202 stores each data used for abnormality diagnosis of the pressure sensor, such as temperature data and pressure data detected by each of the various sensors.
  • the extraction unit 203 extracts the data necessary for the abnormality diagnosis of the pressure sensor from the data stored in the storage unit 202. Specifically, the extraction unit 203 extracts data on the detection pressure of the pressure sensor that is the target of the abnormality diagnosis and the lowest detection temperature among the detection temperatures of the plurality of temperature sensors.
  • the calculation unit 204 performs necessary calculations based on the data extracted by the extraction unit 203. Specifically, the calculation unit 204 converts the detection pressure extracted by the extraction unit 203 into the saturation temperature.
  • the comparison unit 205 compares the saturation temperature obtained by the calculation by the calculation unit 204 with the detection temperature extracted by the extraction unit 203.
  • the determination unit 206 determines whether or not the pressure sensor, which is the target of the abnormality diagnosis, is abnormal based on the comparison result of the comparison unit 205.
  • the notification unit 207 notifies the abnormality diagnosis result of the pressure sensor.
  • the notification unit 207 includes at least one of a display means for visually notifying information and an audio output means for aurally notifying information.
  • the notification unit 207 is a control board (not shown) or a remote controller having a display unit, and the control board or the remote controller causes the display unit to display whether it is normal or abnormal.
  • the cooling operation will be described.
  • the flow path switching device 102 is switched so that the discharge side of the compressor 101 and the outdoor heat exchanger 103 are connected.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 flows into the outdoor heat exchanger 103.
  • the outdoor heat exchanger 103 exchanges heat with the outdoor air supplied by the outdoor fan 104, condenses and becomes a high-pressure liquid refrigerant, and flows out from the outdoor heat exchanger 103.
  • the liquid refrigerant flowing out of the outdoor heat exchanger 103 is decompressed by the throttle device 105, becomes a low-pressure two-layer refrigerant, and flows into the indoor heat exchanger 106.
  • the indoor heat exchanger 106 exchanges heat with the indoor air supplied by the indoor fan 107, evaporates to become a low-temperature low-pressure gas refrigerant, and flows out from the indoor heat exchanger 106.
  • the gas refrigerant flowing out of the indoor heat exchanger 106 is sucked into the compressor 101, where it is discharged again as a high-temperature and high-pressure gas refrigerant.
  • the heating operation will be described.
  • the flow path switching device 102 is switched so that the discharge side of the compressor 101 and the indoor heat exchanger 106 are connected.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 flows into the indoor heat exchanger 106.
  • the indoor heat exchanger 106 exchanges heat with the indoor air supplied by the indoor fan 107, condenses and becomes a high-pressure liquid refrigerant, and flows out from the indoor heat exchanger 106.
  • the liquid refrigerant flowing out of the indoor heat exchanger 106 is decompressed by the throttle device 105, becomes a low-pressure two-layer refrigerant, and flows into the outdoor heat exchanger 103.
  • the outdoor heat exchanger 103 exchanges heat with the outdoor air supplied by the outdoor fan 104, evaporates to become a low-temperature low-pressure gas refrigerant, and flows out from the outdoor heat exchanger 103.
  • the gas refrigerant flowing out of the outdoor heat exchanger 103 is sucked into the compressor 101, where it is discharged again as a high-temperature and high-pressure gas refrigerant.
  • FIG. 2 is a diagram showing the characteristics of the pressure sensor of the refrigeration cycle device 1 according to the embodiment.
  • the horizontal axis represents the pressure [MPa] and the vertical axis represents the output voltage [V].
  • the pressure sensor provided in the refrigeration cycle device 1 receives the pressure of the refrigerant with a diaphragm, measures it with a pressure sensitive element via a hydraulic pressure, converts it into an electric signal according to the pressure, and outputs it.
  • the relationship between the electric signal, that is, the output voltage and the pressure is represented by the characteristics shown in FIG.
  • FIG. 3 is a diagram showing a pressure state in the refrigerant circuit 100 when the refrigerating cycle device 1 according to the embodiment is stopped.
  • FIG. 4 is a ph diagram with respect to a plurality of temperatures around the refrigeration cycle apparatus 1 according to the embodiment. Next, the pressure change in the refrigerant circuit 100 when the operation of the refrigeration cycle device 1 according to the embodiment is stopped will be described.
  • the pressure sensor shows a lower detection pressure than in the normal state in the abnormal state, the saturation temperature converted to the detected pressure becomes a value lower than the minimum temperature Tmin. Therefore, when the saturation temperature becomes a value lower than the minimum temperature Tmin, the pressure sensor can determine that it is abnormal.
  • FIG. 5 is a flowchart showing a control flow at the time of abnormality diagnosis of the pressure sensor of the refrigeration cycle device 1 according to the embodiment.
  • the abnormality diagnosis of the pressure sensor it is determined whether or not the pressure sensor included in the refrigeration cycle device 1 is abnormal.
  • the flow of control at the time of abnormality diagnosis of the pressure sensor of the refrigeration cycle device 1 according to the embodiment will be described with reference to FIG.
  • Step S1 The control device 200 determines whether or not the condition for starting the abnormality diagnosis is satisfied.
  • the control device 200 determines that the condition for starting the abnormality diagnosis is satisfied (YES)
  • the process proceeds to step S2.
  • the control device 200 determines that the condition for starting the abnormality diagnosis is not satisfied (NO)
  • the process of step S1 is executed again.
  • the refrigeration cycle device 1 is not in the start / stop operation, but immediately after the operation state is changed to the stop state, that is, immediately after the compressor 101 is stopped. Is. Immediately after stopping the compressor 101 is immediately after the control device 200 receives a stop signal from a remote controller (not shown) or the like, and the control device 200 receives the stop signal to stop the compressor 101. Immediately after. The second is not during the start / stop operation of the refrigeration cycle device 1, but immediately before the state changes from the stopped state to the operating state, that is, immediately before starting the compressor 101. Immediately before starting the compressor 101 is immediately after the control device 200 receives an operation signal from a remote controller (not shown) or the like, and immediately after the control device 200 receives the operation signal and starts the compressor 101. Before.
  • Thermo ON is a state in which the components of the refrigeration cycle device 1 including the compressor 101 are controlled so that the temperature of the indoor space becomes the target temperature.
  • Thermo-OFF is a state in which the temperature of the indoor space is the target temperature, there is no need to exchange heat any more, and the control of the components of the refrigeration cycle device 1 including the compressor 101 is temporarily stopped. be.
  • the control device 200 switches to the thermostat ON.
  • the control device 200 switches the thermostat to OFF.
  • the first threshold value and the second threshold value may be the same value or different values.
  • the refrigerating cycle device 1 determines whether the refrigerating cycle device 1 is in the operating state or the stopped state based on the operating frequency of the compressor 101.
  • the operating frequency F of the compressor 101 is 0 Hz
  • the refrigerating cycle device 1 is in the stopped state
  • the operating frequency F of the compressor 101 is 0 Hz
  • the refrigerating cycle device 1 is in the operating state.
  • the determination as to whether or not the refrigeration cycle device 1 is in the start / stop operation is whether or not the control device 200 is in a state of receiving a stop signal from a remote controller (not shown) installed in the indoor space.
  • the control device 200 when the control device 200 is stopped while receiving the stop signal, the start / stop operation is not in progress, and when the control device 200 is stopped in the state of not receiving the stop signal, the start / stop operation is in progress.
  • the reason why the refrigeration cycle device 1 does not start the abnormality diagnosis during the start / stop operation is to suppress the erroneous diagnosis.
  • Step S2 The control device 200 operates the outdoor fan 104 or the indoor fan 107 to make the ambient temperature of the refrigerating cycle device 1 uniform, thereby making the detection temperature of each temperature sensor provided in the refrigerant circuit 100 uniform.
  • the process proceeds to step S3.
  • the outdoor fan 104 is operated when the temperature of the outdoor space is lower than the temperature of the indoor space, and when the temperature of the indoor space is lower than the temperature of the outdoor space, the outdoor fan 104 is operated.
  • the outdoor fan 104 is operated to equalize the ambient temperature of the refrigeration cycle device 1.
  • the temperature detected by the outside air temperature sensor 113 is compared with the temperature detected by the indoor temperature sensor 115, or the operation mode is cooling operation or heating operation. It is done based on which one it is.
  • Step S3 The control device 200 determines whether the pressure sensor is stable. When the control device 200 determines that the pressure sensor is stable (YES), the process proceeds to step S4. On the other hand, when the control device 200 determines that the pressure sensor is not stable (NO), the process of step S3 is executed again. If the stopped state is released during the determination of whether the pressure sensor is stable and the compressor 101 starts operation, the abnormality diagnosis is stopped.
  • the determination of whether or not the pressure sensor is stable is provided for whether or not the detected pressure of the pressure sensor has changed during the preset first time, or in the space on the fan side during operation. It is performed based on whether or not the detected value of the existing temperature sensor has changed during the preset second time.
  • the space on the operating fan side is an outdoor space when the outdoor fan 104 is operating, and an indoor space when the indoor fan 107 is operating.
  • the pressure sensor moves based on the presence or absence of the movement of the refrigerant in the refrigerant circuit 100. It may be determined whether or not it is stable.
  • the presence or absence of movement of the refrigerant in the refrigerant circuit 100 can be determined, for example, by providing a flow meter in the refrigerant circuit 100 and using the value of the flow meter.
  • the first hour and the second hour may have the same value or different values.
  • the first time may be set based on a response speed that differs depending on the sensor shape of the pressure sensor, the measurement range, and the like.
  • Step S4 The control device 200 extracts the detected pressure of the pressure sensor that is the target of the abnormality diagnosis, and converts the detected pressure into the saturation temperature. After that, the process proceeds to step S5.
  • Step S5 The control device 200 extracts the lowest detected temperature (hereinafter, referred to as the lowest detected temperature) among the detected temperatures of each temperature sensor. After that, the process proceeds to step S6.
  • Step S6 The control device 200 compares the saturation temperature with the minimum detection temperature, and determines whether the saturation temperature is lower than the minimum detection temperature. When the control device 200 determines that the saturation temperature is lower than the minimum detection temperature (YES), the process proceeds to step S7. On the other hand, when the control device 200 determines that the saturation temperature is not lower than the minimum detection temperature (NO), the process proceeds to step S8.
  • Step S7 The control device 200 determines that the pressure sensor that is the target of the abnormality diagnosis is abnormal. After that, the process proceeds to step S9.
  • Step S8 The control device 200 determines that the pressure sensor that is the target of the abnormality diagnosis is normal. After that, the process proceeds to step S9.
  • Step S9 The control device 200 stops the operating fan, that is, stops the outdoor fan 104 when the outdoor fan 104 is operating, and stops the indoor fan 107 when the indoor fan 107 is operating. After that, the process proceeds to step S10.
  • Step S10 The control device 200 stores each data used for the abnormality diagnosis and notifies the abnormality diagnosis result.
  • the refrigeration cycle device 1 includes a refrigerant circuit 100 in which a compressor 101, an outdoor heat exchanger 103, a throttle device 105, and an indoor heat exchanger 106 are connected by a pipe 109 and a refrigerant circulates. .. Further, the refrigeration cycle device 1 includes at least one or more pressure sensors that detect the pressure in the refrigerant circuit 100, and a plurality of temperature sensors that detect the temperature. Further, the refrigeration cycle device 1 includes a control device 200 for diagnosing an abnormality of the pressure sensor by using the lowest detected temperature among the plurality of temperature sensors and the detected pressure of the pressure sensor.
  • an abnormality diagnosis of the pressure sensor is performed using the temperature sensor that detects the lowest temperature among the plurality of temperature sensors. In this way, erroneous diagnosis can be suppressed by performing an abnormality diagnosis of the pressure sensor using the temperature at which the internal pressure is most affected.
  • the refrigeration cycle device 1 includes an indoor fan 107 that supplies air to the indoor heat exchanger 106. Then, when the temperature of the indoor space is lower than the temperature of the outdoor space, the control device 200 operates the indoor fan 107 and then determines whether or not the pressure sensor is abnormal.
  • the refrigeration cycle device 1 includes an outdoor fan 104 that supplies air to the outdoor heat exchanger 103. Then, when the temperature of the outdoor space is lower than the temperature of the indoor space, the control device 200 operates the outdoor fan 104 and then determines whether or not the pressure sensor is abnormal.
  • the outdoor fan 104 is operated when the temperature of the outdoor space is lower than the temperature of the indoor space, and the outdoor fan is operated when the temperature of the indoor space is lower than the temperature of the outdoor space.
  • the temperature around the refrigeration cycle device 1 is made uniform. Then, by equalizing the ambient temperature of the refrigeration cycle device 1 and then extracting the minimum temperature, the accuracy of the abnormality diagnosis of the pressure sensor can be improved.
  • the refrigeration cycle device 1 includes a notification unit 207 for notifying an abnormality of the pressure sensor. Then, the control device 200 determines whether or not the pressure sensor is abnormal, and when the pressure sensor determines that the pressure sensor is abnormal, the notification unit 207 notifies that the pressure sensor is abnormal.
  • the notification unit 207 can notify the user or the like that the pressure sensor is abnormal.
  • the refrigeration cycle device 1 is applied to an air conditioner, but the present invention is not limited to this, and the refrigeration cycle device 1 can be applied to other devices such as a refrigeration device.
  • Refrigeration cycle device 30 control device, 100 refrigerant circuit, 101 compressor, 102 flow path switching device, 103 outdoor heat exchanger, 104 outdoor fan, 105 throttle device, 106 indoor heat exchanger, 107 indoor fan, 109 piping, 111 discharge temperature sensor, 112 high pressure pressure sensor, 113 outside air temperature sensor, 114 refrigerant temperature sensor, 115 indoor temperature sensor, 116 low pressure pressure sensor, 200 control device, 201 operation unit, 202 storage unit, 203 extraction unit, 204 calculation unit, 205 comparison unit, 206 judgment unit, 207 notification unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The present invention provides a refrigeration cycle device including: a refrigerant circuit in which a compressor, an outdoor heat exchanger, a throttle device, and an indoor heat exchanger are connected by pipes and in which a refrigerant is circulated; at least one pressure sensor that detects the pressure in the refrigerant circuit; a plurality of temperature sensors that detect temperatures; and a control device that determines whether the pressure sensor is abnormal by using the lowest detected temperature among the temperatures detected by the plurality of temperature sensors and the pressure detected by the pressure sensor.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本開示は、圧力センサを備えた冷凍サイクル装置に関するものである。 The present disclosure relates to a refrigeration cycle device equipped with a pressure sensor.
 従来、冷凍サイクル装置における圧力センサの異常診断方法が知られている(例えば、特許文献1参照)。 Conventionally, a method for diagnosing an abnormality of a pressure sensor in a refrigeration cycle device is known (see, for example, Patent Document 1).
 特許文献1では、冷凍装置の冷媒回路において、圧縮機の吐出側の圧力を検知する高圧圧力センサと、圧縮機の吸入側の圧力を検知する低圧圧力センサと、冷凍装置の周囲温度を検知する周囲温度センサとが設けられている。そして、各圧力センサによる検知圧力に基づいて冷媒回路内の圧力(以下、内圧と称する)が均圧状態であるかどうかの判定を行い、内圧が均圧状態であると判定したら、各圧力センサによる検知圧力を飽和温度に換算する。そして、周囲温度センサの検知温度と各飽和温度とを比較し、それらの差が許容範囲内であれば正常と判定し、許容範囲外であれば故障と判定する。 In Patent Document 1, in the refrigerant circuit of the refrigerating apparatus, a high-pressure pressure sensor that detects the pressure on the discharge side of the compressor, a low-pressure pressure sensor that detects the pressure on the suction side of the compressor, and the ambient temperature of the refrigerating apparatus are detected. An ambient temperature sensor is provided. Then, based on the pressure detected by each pressure sensor, it is determined whether or not the pressure in the refrigerant circuit (hereinafter referred to as internal pressure) is in the equalized state, and when it is determined that the internal pressure is in the equalized state, each pressure sensor Converts the pressure detected by the above to the saturation temperature. Then, the detection temperature of the ambient temperature sensor is compared with each saturation temperature, and if the difference between them is within the permissible range, it is determined to be normal, and if it is out of the permissible range, it is determined to be a failure.
特開平1-137175号公報Japanese Unexamined Patent Publication No. 1-13751
 しかしながら、特許文献1では、冷凍装置の周囲温度の定義が明確に示されていない。そして、周囲温度が均一でなくばらつきがある場合、内圧が均圧状態では、内圧は周囲温度の中で最低の温度に最も影響を受け、その最低の温度での内圧に近づく。そのため、周囲温度の中で高い温度となる位置に周囲温度センサが設けられている場合、周囲温度センサの検知温度と内圧から換算した飽和温度とを比較した際、それらの差が大きくなってしまい、実際には圧力センサが故障していないにも関わらず異常と判定しまうことがあった。つまり、周囲温度にばらつきがある場合であって、周囲温度の中で高い温度となる位置に周囲温度センサが設けられている場合にその検知温度を用いて圧力センサの異常診断を行うと、誤診断してしまうという課題があった。 However, Patent Document 1 does not clearly indicate the definition of the ambient temperature of the refrigerating apparatus. When the ambient temperature is not uniform and varies, when the internal pressure is equalized, the internal pressure is most affected by the lowest ambient temperature and approaches the internal pressure at the lowest temperature. Therefore, if the ambient temperature sensor is provided at a position that is higher than the ambient temperature, the difference between the detection temperature of the ambient temperature sensor and the saturation temperature converted from the internal pressure becomes large. Actually, even though the pressure sensor was not out of order, it was sometimes judged as abnormal. That is, when the ambient temperature varies and the ambient temperature sensor is provided at a position where the ambient temperature is high, it is erroneous to perform an abnormality diagnosis of the pressure sensor using the detected temperature. There was a problem of making a diagnosis.
 本開示は、以上のような課題を解決するためになされたもので、圧力センサの異常診断の誤診断を抑制することができる冷凍サイクル装置を提供することを目的としている。 The present disclosure has been made in order to solve the above problems, and an object of the present disclosure is to provide a refrigeration cycle device capable of suppressing an erroneous diagnosis of an abnormality diagnosis of a pressure sensor.
 本開示に係る冷凍サイクル装置は、圧縮機、室外熱交換器、絞り装置、室内熱交換器が配管で接続され、冷媒が循環する冷媒回路と、前記冷媒回路内の圧力を検知する少なくとも1つ以上の圧力センサと、温度を検知する複数の温度センサと、複数の前記温度センサの中で最低の検知温度と前記圧力センサの検知圧力とを用いて、前記圧力センサが異常かどうかの判定を行う制御装置と、を備えたものである。 The refrigeration cycle device according to the present disclosure includes a refrigerant circuit in which a compressor, an outdoor heat exchanger, a throttle device, and an indoor heat exchanger are connected by pipes to circulate a refrigerant, and at least one that detects a pressure in the refrigerant circuit. Using the above pressure sensor, a plurality of temperature sensors for detecting the temperature, the lowest detected temperature among the plurality of the temperature sensors, and the detection pressure of the pressure sensor, it is determined whether or not the pressure sensor is abnormal. It is equipped with a control device for performing the operation.
 本開示に係る冷凍サイクル装置によれば、複数の温度センサのうち最低の温度を検知する温度センサを用いて、圧力センサの異常診断を行う。このように、内圧が最も影響を受ける温度を用いて圧力センサの異常診断を行うことで、誤診断を抑制することができる。 According to the refrigeration cycle apparatus according to the present disclosure, an abnormality diagnosis of a pressure sensor is performed using a temperature sensor that detects the lowest temperature among a plurality of temperature sensors. In this way, erroneous diagnosis can be suppressed by performing an abnormality diagnosis of the pressure sensor using the temperature at which the internal pressure is most affected.
実施の形態に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigeration cycle apparatus which concerns on embodiment. 実施の形態に係る冷凍サイクル装置の圧力センサの特性を示す図である。It is a figure which shows the characteristic of the pressure sensor of the refrigeration cycle apparatus which concerns on embodiment. 実施の形態に係る冷凍サイクル装置の運転停止時の冷媒回路内の圧力状態を示す図である。It is a figure which shows the pressure state in the refrigerant circuit at the time of stopping operation of the refrigeration cycle apparatus which concerns on embodiment. 実施の形態に係る冷凍サイクル装置の周囲の複数の温度に対するp-h線図である。It is a ph diagram with respect to a plurality of temperatures around the refrigeration cycle apparatus which concerns on embodiment. 実施の形態に係る冷凍サイクル装置の圧力センサの異常診断時の制御の流れを示すフローチャートである。It is a flowchart which shows the flow of control at the time of abnormality diagnosis of the pressure sensor of the refrigeration cycle apparatus which concerns on embodiment.
 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the embodiments described below. Further, in the drawings below, the relationship between the sizes of the constituent members may differ from the actual one.
 実施の形態.
 図1は、実施の形態に係る冷凍サイクル装置1の構成を示す図である。
 実施の形態では、冷凍サイクル装置1として冷房運転および暖房運転を行う空気調和装置を例示している。冷凍サイクル装置1は、図1に示すように、圧縮機101、流路切替装置102、室外熱交換器103、絞り装置105、室内熱交換器106が配管109で環状に接続され、冷媒が循環する冷媒回路100を備えている。また、室外熱交換器103の近傍には室外ファン104が設けられており、室内熱交換器106の近傍には室内ファン107が設けられている。なお、実施の形態に係る冷凍サイクル装置1では、室内熱交換器106を1つ有する空気調和装置を例示しているが、それに限定されず、室内熱交換器106を複数有するマルチエアコンでもよい。
Embodiment.
FIG. 1 is a diagram showing a configuration of a refrigeration cycle device 1 according to an embodiment.
In the embodiment, an air conditioner that performs cooling operation and heating operation is exemplified as the refrigeration cycle device 1. As shown in FIG. 1, in the refrigeration cycle device 1, the compressor 101, the flow path switching device 102, the outdoor heat exchanger 103, the throttle device 105, and the indoor heat exchanger 106 are connected in a ring shape by a pipe 109, and the refrigerant circulates. The refrigerant circuit 100 is provided. Further, an outdoor fan 104 is provided in the vicinity of the outdoor heat exchanger 103, and an indoor fan 107 is provided in the vicinity of the indoor heat exchanger 106. The refrigeration cycle device 1 according to the embodiment exemplifies an air conditioner having one indoor heat exchanger 106, but the present invention is not limited to this, and a multi air conditioner having a plurality of indoor heat exchangers 106 may be used.
 冷凍サイクル装置1は、複数の温度センサと複数の圧力センサとを備えている。具体的には、冷凍サイクル装置1は、吐出温度センサ111と、高圧圧力センサ112と、外気温度センサ113と、冷媒温度センサ114と、室内温度センサ115と、低圧圧力センサ116とを備えている。 The refrigeration cycle device 1 includes a plurality of temperature sensors and a plurality of pressure sensors. Specifically, the refrigeration cycle device 1 includes a discharge temperature sensor 111, a high pressure pressure sensor 112, an outside air temperature sensor 113, a refrigerant temperature sensor 114, an indoor temperature sensor 115, and a low pressure pressure sensor 116. ..
 また、冷凍サイクル装置1は、制御装置200を備えている。制御装置200は、圧力センサの異常診断を行う機能ブロックとして、操作部201と、記憶部202と、抽出部203と、演算部204と、比較部205と、判定部206と、報知部207とを備えている。ここで、圧力センサの異常診断とは、冷凍サイクル装置1が備えている圧力センサが異常であるかどうかを判定することである。なお、制御装置200の上記構成要素は、制御装置200の内部ではなく外部に設けられていてもよいし、制御装置200とは別体として設けられていてもよい。 Further, the refrigeration cycle device 1 includes a control device 200. The control device 200 includes an operation unit 201, a storage unit 202, an extraction unit 203, a calculation unit 204, a comparison unit 205, a determination unit 206, and a notification unit 207 as functional blocks for diagnosing an abnormality of the pressure sensor. It has. Here, the abnormality diagnosis of the pressure sensor is to determine whether or not the pressure sensor included in the refrigeration cycle device 1 is abnormal. The above-mentioned components of the control device 200 may be provided outside the control device 200 instead of inside the control device 200, or may be provided separately from the control device 200.
 圧縮機101は、低温低圧のガス冷媒を吸入して圧縮し、高温高圧のガス冷媒として吐出する流体機械である。圧縮機101が動作すると、冷媒回路100内を冷媒が循環する。圧縮機101は、例えば運転周波数の調整が可能なインバータ駆動式である。また、圧縮機101の動作は、制御装置200によって制御される。 The compressor 101 is a fluid machine that sucks in a low-temperature low-pressure gas refrigerant, compresses it, and discharges it as a high-temperature, high-pressure gas refrigerant. When the compressor 101 operates, the refrigerant circulates in the refrigerant circuit 100. The compressor 101 is, for example, an inverter drive type capable of adjusting the operating frequency. Further, the operation of the compressor 101 is controlled by the control device 200.
 流路切替装置102は、例えば四方弁であり、冷媒の流れ方向を切り替えることで、冷房運転と暖房運転とを切り替えるものである。流路切替装置102の切替は、制御装置200によって制御される。なお、流路切替装置102として、四方弁に代えて二方弁および三方弁の組み合わせなどを用いてもよい。 The flow path switching device 102 is, for example, a four-way valve, and switches between a cooling operation and a heating operation by switching the flow direction of the refrigerant. The switching of the flow path switching device 102 is controlled by the control device 200. As the flow path switching device 102, a combination of a two-way valve and a three-way valve may be used instead of the four-way valve.
 室外熱交換器103は、室外空気と冷媒との間で熱交換を行うものである。室外熱交換器103は、冷房運転の際に、冷媒の熱を室外空気に放熱して冷媒を凝縮させる凝縮器として機能する。また、室外熱交換器103は、暖房運転の際に、冷媒を蒸発させ、その際の気化熱により室外空気を冷却する蒸発器として機能する。室外熱交換器103として、例えば、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器が用いられる。 The outdoor heat exchanger 103 exchanges heat between the outdoor air and the refrigerant. The outdoor heat exchanger 103 functions as a condenser that dissipates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation. Further, the outdoor heat exchanger 103 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air by the heat of vaporization at that time. As the outdoor heat exchanger 103, for example, a cross-fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins is used.
 室外ファン104は、室外熱交換器103に対して室外空気を供給するものであり、回転数が制御されることにより、室外熱交換器103に対する送風量が調整される。室外ファン104として、例えば、DC(Direct Current)ファンモータあるいはAC(Alternating Current)ファンモータなどのモータによって駆動される遠心ファンまたは多翼ファンなどが用いられる。なお、室外ファン104の駆動源としてDCファンモータが用いられる場合は、電流値を変化させて回転数を制御することで送風量が調整される。また、室外ファン104の駆動源としてACファンモータが用いられる場合は、インバータ制御により電源周波数を変化させて回転数を制御することで送風量が調整される。室外ファン104の動作は、制御装置200によって制御される。 The outdoor fan 104 supplies outdoor air to the outdoor heat exchanger 103, and the amount of air blown to the outdoor heat exchanger 103 is adjusted by controlling the rotation speed. As the outdoor fan 104, for example, a centrifugal fan or a multi-blade fan driven by a motor such as a DC (Direct Current) fan motor or an AC (Alternating Current) fan motor is used. When a DC fan motor is used as a drive source for the outdoor fan 104, the amount of air blown is adjusted by changing the current value and controlling the rotation speed. When an AC fan motor is used as a drive source for the outdoor fan 104, the amount of air blown is adjusted by controlling the rotation speed by changing the power supply frequency by inverter control. The operation of the outdoor fan 104 is controlled by the control device 200.
 絞り装置105は、例えば絞りの開度を調整することができる電子式膨張弁であり、開度を調整することによって、冷房運転の際には室内熱交換器106に流入する冷媒の圧力を制御し、暖房運転の際には室外熱交換器103に流入する冷媒の圧力を制御する。絞り装置105の開度は、制御装置200によって制御される。 The throttle device 105 is, for example, an electronic expansion valve capable of adjusting the opening degree of the throttle, and by adjusting the opening degree, the pressure of the refrigerant flowing into the indoor heat exchanger 106 during the cooling operation is controlled. However, during the heating operation, the pressure of the refrigerant flowing into the outdoor heat exchanger 103 is controlled. The opening degree of the aperture device 105 is controlled by the control device 200.
 室内熱交換器106は、室内空気と冷媒との間で熱交換を行うものである。室内熱交換器106は、冷房運転の際に、冷媒を蒸発させ、その際の気化熱により室内空気を冷却する蒸発器として機能する。また、室内熱交換器106は、暖房運転の際に、冷媒の熱を室内空気に放熱して冷媒を凝縮させる凝縮器として機能する。室内熱交換器106として、例えば、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器が用いられる。 The indoor heat exchanger 106 exchanges heat between the indoor air and the refrigerant. The indoor heat exchanger 106 functions as an evaporator that evaporates the refrigerant during the cooling operation and cools the indoor air by the heat of vaporization at that time. Further, the indoor heat exchanger 106 functions as a condenser that dissipates the heat of the refrigerant to the indoor air and condenses the refrigerant during the heating operation. As the indoor heat exchanger 106, for example, a cross-fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins is used.
 室内ファン107は、室内熱交換器106に対して室内空気を供給するものであり、回転数が制御されることにより、室内熱交換器106に対する送風量が調整される。室内ファン107として、例えば、DC(Direct Current)ファンモータあるいはAC(Alternating Current)ファンモータなどのモータによって駆動される遠心ファンまたは多翼ファンなどが用いられる。なお、室内ファン107の駆動源としてDCファンモータが用いられる場合は、電流値を変化させて回転数を制御することで送風量が調整される。また、室内ファン107の駆動源としてACファンモータが用いられる場合は、インバータ制御により電源周波数を変化させて回転数を制御することで送風量が調整される。室内ファン107の動作は、制御装置200によって制御される。 The indoor fan 107 supplies indoor air to the indoor heat exchanger 106, and the amount of air blown to the indoor heat exchanger 106 is adjusted by controlling the rotation speed. As the indoor fan 107, for example, a centrifugal fan or a multi-blade fan driven by a motor such as a DC (Direct Current) fan motor or an AC (Alternating Current) fan motor is used. When a DC fan motor is used as the drive source of the indoor fan 107, the amount of air blown is adjusted by changing the current value and controlling the rotation speed. When an AC fan motor is used as a drive source for the indoor fan 107, the amount of air blown is adjusted by controlling the rotation speed by changing the power supply frequency by inverter control. The operation of the indoor fan 107 is controlled by the control device 200.
 吐出温度センサ111は、圧縮機101の吐出側に設けられており、圧縮機101の吐出側の温度を検知し、検知信号を制御装置200に出力する。 The discharge temperature sensor 111 is provided on the discharge side of the compressor 101, detects the temperature on the discharge side of the compressor 101, and outputs a detection signal to the control device 200.
 冷媒温度センサ114は、冷媒回路100を構成する配管109に設けられており、配管109内を流れる冷媒温度を検知し、検知信号を制御装置200に出力する。なお、冷媒温度センサ114は、それぞれ異なる位置に複数設けられていてもよい。 The refrigerant temperature sensor 114 is provided in the pipe 109 constituting the refrigerant circuit 100, detects the temperature of the refrigerant flowing in the pipe 109, and outputs a detection signal to the control device 200. A plurality of refrigerant temperature sensors 114 may be provided at different positions.
 外気温度センサ(以下、第一温度センサとも称する)113は、室外熱交換器103の吸込口(図示せず)あるいはその近傍に設けられており、室外空間の温度を検知し、検知信号を制御装置200に出力する。 The outside air temperature sensor (hereinafter, also referred to as the first temperature sensor) 113 is provided at or near the suction port (not shown) of the outdoor heat exchanger 103, detects the temperature of the outdoor space, and controls the detection signal. Output to device 200.
 室内温度センサ(以下、第二温度センサとも称する)115は、室内熱交換器106の吸込口(図示せず)あるいはその近傍に設けられており、室内空間の温度を検知し、検知信号を制御装置200に出力する。 The indoor temperature sensor (hereinafter, also referred to as the second temperature sensor) 115 is provided at or near the suction port (not shown) of the indoor heat exchanger 106, detects the temperature of the indoor space, and controls the detection signal. Output to device 200.
 高圧圧力センサ112は、圧縮機101の吐出側に設けられており、高圧冷媒の圧力を検知し、検知信号を制御装置200に出力する。 The high-pressure pressure sensor 112 is provided on the discharge side of the compressor 101, detects the pressure of the high-pressure refrigerant, and outputs a detection signal to the control device 200.
 低圧圧力センサ116は、圧縮機101の吸入側に設けられており、低圧冷媒の圧力を検知し、検知信号を制御装置200に出力する。 The low pressure pressure sensor 116 is provided on the suction side of the compressor 101, detects the pressure of the low pressure refrigerant, and outputs a detection signal to the control device 200.
 制御装置200は、例えば、専用のハードウェア、または記憶部202に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、プロセッサともいう)で構成される。 The control device 200 is composed of, for example, dedicated hardware or a CPU (also referred to as a central processing unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, or a processor) that executes a program stored in the storage unit 202. NS.
 制御装置200が専用のハードウェアである場合、制御装置200は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。制御装置30が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。 When the control device 200 is dedicated hardware, the control device 200 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applicable. Each of the functional units realized by the control device 30 may be realized by individual hardware, or each functional unit may be realized by one hardware.
 制御装置200がCPUの場合、制御装置200が実行する各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアはプログラムとして記述され、記憶部202に格納される。CPUは、記憶部202に格納されたプログラムを読み出して実行することにより、制御装置200の各機能を実現する。 When the control device 200 is a CPU, each function executed by the control device 200 is realized by software, firmware, or a combination of software and firmware. The software and firmware are described as programs and stored in the storage unit 202. The CPU realizes each function of the control device 200 by reading and executing the program stored in the storage unit 202.
 なお、制御装置200の機能の一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。 Note that some of the functions of the control device 200 may be realized by dedicated hardware, and some may be realized by software or firmware.
 制御装置200は、冷凍サイクル装置1に設けられた各種センサからの検知信号、および、リモコン(図示せず)からの操作信号などに基づいて、圧縮機101などの冷凍サイクル装置1の構成要素を制御し、冷凍サイクル装置1全体の動作を制御する。 The control device 200 sets the components of the refrigerating cycle device 1 such as the compressor 101 based on the detection signals from various sensors provided in the refrigerating cycle device 1 and the operation signals from the remote controller (not shown). It controls and controls the operation of the entire refrigeration cycle device 1.
 操作部201は、冷凍サイクル装置1が停止時に室外ファン104および室内ファン107を運転させ、冷凍サイクル装置1に設けられた各温度センサの検知温度を均一化させるものである。なお、各温度センサは、実施の形態では、吐出温度センサ111、冷媒温度センサ114、外気温度センサ113、及び、室内温度センサ115のことである。 The operation unit 201 operates the outdoor fan 104 and the indoor fan 107 when the refrigeration cycle device 1 is stopped to make the detection temperature of each temperature sensor provided in the refrigeration cycle device 1 uniform. In the embodiment, each temperature sensor is a discharge temperature sensor 111, a refrigerant temperature sensor 114, an outside air temperature sensor 113, and an indoor temperature sensor 115.
 記憶部202は、各種情報を記憶するものであり、例えば、フラッシュメモリ、EPROM、および、EEPROMなどの、データの書き換え可能な不揮発性の半導体メモリを備えている。なお、記憶部202は、その他に、例えばROMなどのデータの書き換え不可能な不揮発性の半導体メモリ、あるいは、RAMなどのデータの書き換え可能な揮発性の半導体メモリなどを備えていてもよい。記憶部202は、各種センサのそれぞれで検知された温度データおよび圧力データなど、圧力センサの異常診断に用いた各データを記憶する。 The storage unit 202 stores various types of information, and includes, for example, a non-volatile semiconductor memory such as a flash memory, an EPROM, and an EEPROM in which data can be rewritten. In addition, the storage unit 202 may also include, for example, a non-volatile semiconductor memory such as a ROM in which data cannot be rewritten, or a volatile semiconductor memory in which data such as RAM can be rewritten. The storage unit 202 stores each data used for abnormality diagnosis of the pressure sensor, such as temperature data and pressure data detected by each of the various sensors.
 抽出部203は、記憶部202に記憶されたデータの中から、圧力センサの異常診断に必要となるデータを抽出するものである。具体的には、抽出部203は、異常診断の対象となる圧力センサの検知圧力、および、複数の温度センサの検知温度の中で最低の検知温度に関するデータを抽出する。 The extraction unit 203 extracts the data necessary for the abnormality diagnosis of the pressure sensor from the data stored in the storage unit 202. Specifically, the extraction unit 203 extracts data on the detection pressure of the pressure sensor that is the target of the abnormality diagnosis and the lowest detection temperature among the detection temperatures of the plurality of temperature sensors.
 演算部204は、抽出部203で抽出されたデータに基づき、必要な演算を行うものである。具体的には、演算部204は、抽出部203で抽出された検知圧力を飽和温度に換算する。 The calculation unit 204 performs necessary calculations based on the data extracted by the extraction unit 203. Specifically, the calculation unit 204 converts the detection pressure extracted by the extraction unit 203 into the saturation temperature.
 比較部205は、演算部204での演算により得られた飽和温度と抽出部203で抽出された検知温度とを比較するものである。 The comparison unit 205 compares the saturation temperature obtained by the calculation by the calculation unit 204 with the detection temperature extracted by the extraction unit 203.
 判定部206は、比較部205での比較結果に基づき、異常診断の対象となる圧力センサが異常であるかどうかの判定を行うものである。 The determination unit 206 determines whether or not the pressure sensor, which is the target of the abnormality diagnosis, is abnormal based on the comparison result of the comparison unit 205.
 報知部207は、圧力センサの異常診断結果を報知するものである。報知部207は、情報を視覚的に報知する表示手段、および、情報を聴覚的に報知する音声出力手段のうち、少なくとも一方を備えている。例えば、報知部207は、表示部を有する制御基板(図示せず)あるいはリモコンであり、制御基板あるいはリモコンは、正常あるいは異常であることを表示部に表示させる。報知部207によって圧力センサの異常診断結果を報知することにより、圧力センサの異常診断結果をユーザーなどに知らせることができる。 The notification unit 207 notifies the abnormality diagnosis result of the pressure sensor. The notification unit 207 includes at least one of a display means for visually notifying information and an audio output means for aurally notifying information. For example, the notification unit 207 is a control board (not shown) or a remote controller having a display unit, and the control board or the remote controller causes the display unit to display whether it is normal or abnormal. By notifying the abnormality diagnosis result of the pressure sensor by the notification unit 207, the abnormality diagnosis result of the pressure sensor can be notified to the user or the like.
 次に、実施の形態に係る冷凍サイクル装置1の運転動作について説明する。 Next, the operation operation of the refrigeration cycle device 1 according to the embodiment will be described.
[冷房運転]
 まず、冷房運転について説明する。冷房運転では、圧縮機101の吐出側と室外熱交換器103とが接続されるように、流路切替装置102が切り替えられる。圧縮機101から吐出した高温高圧のガス冷媒は、室外熱交換器103に流入する。そして、室外熱交換器103で室外ファン104によって供給された室外空気と熱交換し、凝縮して高圧の液冷媒となって室外熱交換器103から流出する。室外熱交換器103から流出した液冷媒は、絞り装置105によって減圧され、低圧の二層冷媒となって室内熱交換器106に流入する。そして、室内熱交換器106で室内ファン107によって供給された室内空気と熱交換し、蒸発して低温低圧のガス冷媒となって室内熱交換器106から流出する。室内熱交換器106から流出したガス冷媒は、圧縮機101に吸入され、そこで再び高温高圧のガス冷媒となって吐出される。
[Cooling operation]
First, the cooling operation will be described. In the cooling operation, the flow path switching device 102 is switched so that the discharge side of the compressor 101 and the outdoor heat exchanger 103 are connected. The high-temperature and high-pressure gas refrigerant discharged from the compressor 101 flows into the outdoor heat exchanger 103. Then, the outdoor heat exchanger 103 exchanges heat with the outdoor air supplied by the outdoor fan 104, condenses and becomes a high-pressure liquid refrigerant, and flows out from the outdoor heat exchanger 103. The liquid refrigerant flowing out of the outdoor heat exchanger 103 is decompressed by the throttle device 105, becomes a low-pressure two-layer refrigerant, and flows into the indoor heat exchanger 106. Then, the indoor heat exchanger 106 exchanges heat with the indoor air supplied by the indoor fan 107, evaporates to become a low-temperature low-pressure gas refrigerant, and flows out from the indoor heat exchanger 106. The gas refrigerant flowing out of the indoor heat exchanger 106 is sucked into the compressor 101, where it is discharged again as a high-temperature and high-pressure gas refrigerant.
[暖房運転]
 次に、暖房運転について説明する。暖房運転では、圧縮機101の吐出側と室内熱交換器106とが接続されるように、流路切替装置102が切り替えられる。圧縮機101から吐出した高温高圧のガス冷媒は、室内熱交換器106に流入する。そして、室内熱交換器106で室内ファン107によって供給された室内空気と熱交換し、凝縮して高圧の液冷媒となって室内熱交換器106から流出する。室内熱交換器106から流出した液冷媒は、絞り装置105によって減圧され、低圧の二層冷媒となって室外熱交換器103に流入する。そして、室外熱交換器103で室外ファン104によって供給された室外空気と熱交換し、蒸発して低温低圧のガス冷媒となって室外熱交換器103から流出する。室外熱交換器103から流出したガス冷媒は、圧縮機101に吸入され、そこで再び高温高圧のガス冷媒となって吐出される。
[Heating operation]
Next, the heating operation will be described. In the heating operation, the flow path switching device 102 is switched so that the discharge side of the compressor 101 and the indoor heat exchanger 106 are connected. The high-temperature and high-pressure gas refrigerant discharged from the compressor 101 flows into the indoor heat exchanger 106. Then, the indoor heat exchanger 106 exchanges heat with the indoor air supplied by the indoor fan 107, condenses and becomes a high-pressure liquid refrigerant, and flows out from the indoor heat exchanger 106. The liquid refrigerant flowing out of the indoor heat exchanger 106 is decompressed by the throttle device 105, becomes a low-pressure two-layer refrigerant, and flows into the outdoor heat exchanger 103. Then, the outdoor heat exchanger 103 exchanges heat with the outdoor air supplied by the outdoor fan 104, evaporates to become a low-temperature low-pressure gas refrigerant, and flows out from the outdoor heat exchanger 103. The gas refrigerant flowing out of the outdoor heat exchanger 103 is sucked into the compressor 101, where it is discharged again as a high-temperature and high-pressure gas refrigerant.
 図2は、実施の形態に係る冷凍サイクル装置1の圧力センサの特性を示す図である。なお、図2において、横軸は圧力[MPa]であり、縦軸は出力電圧[V]である。
 次に、実施の形態に係る冷凍サイクル装置1の圧力センサの異常時の特性について説明する。
FIG. 2 is a diagram showing the characteristics of the pressure sensor of the refrigeration cycle device 1 according to the embodiment. In FIG. 2, the horizontal axis represents the pressure [MPa] and the vertical axis represents the output voltage [V].
Next, the characteristics of the pressure sensor of the refrigeration cycle device 1 according to the embodiment at the time of abnormality will be described.
 冷凍サイクル装置1に設けられている圧力センサは、冷媒の圧力をダイヤフラムで受け、油圧を介して感圧素子で計測し、圧力に応じた電気信号に変換して出力するものである。電気信号つまり出力電圧と、圧力との関係は、図2に示すような特性で表される。圧力センサの異常時は、センサ内部の油に気泡が混入し、油圧が阻害されて出力電圧が低くなるため、正常時に比べて低い圧力を示す。 The pressure sensor provided in the refrigeration cycle device 1 receives the pressure of the refrigerant with a diaphragm, measures it with a pressure sensitive element via a hydraulic pressure, converts it into an electric signal according to the pressure, and outputs it. The relationship between the electric signal, that is, the output voltage and the pressure is represented by the characteristics shown in FIG. When the pressure sensor is abnormal, air bubbles are mixed in the oil inside the sensor, the oil pressure is hindered, and the output voltage becomes low. Therefore, the pressure is lower than that in the normal state.
 図3は、実施の形態に係る冷凍サイクル装置1の運転停止時の冷媒回路100内の圧力状態を示す図である。図4は、実施の形態に係る冷凍サイクル装置1の周囲の複数の温度に対するp-h線図である。
 次に、実施の形態に係る冷凍サイクル装置1の運転停止時の冷媒回路100内の圧力変化について説明する。
FIG. 3 is a diagram showing a pressure state in the refrigerant circuit 100 when the refrigerating cycle device 1 according to the embodiment is stopped. FIG. 4 is a ph diagram with respect to a plurality of temperatures around the refrigeration cycle apparatus 1 according to the embodiment.
Next, the pressure change in the refrigerant circuit 100 when the operation of the refrigeration cycle device 1 according to the embodiment is stopped will be described.
 図3に示すように、室外空間の温度Toでの冷媒回路100内の圧力(以下、内圧Poと称する)と、室内空間の温度Tiでの冷媒回路100内の圧力(以下、内圧Piと称する)とは、ともに同じ値Pで均衡している。つまり、Po=P、Pi=Pである。 As shown in FIG. 3, the pressure in the refrigerant circuit 100 at the temperature To of the outdoor space (hereinafter referred to as internal pressure Po) and the pressure in the refrigerant circuit 100 at the temperature Ti of the indoor space (hereinafter referred to as internal pressure Pi). ) Are both balanced with the same value P. That is, Po = P and Pi = P.
 図4は、「室内空間の温度Ti>室外空間の温度To>冷凍サイクル装置1の周囲の温度の中で最低の温度(以下、最低温度と称する)Tmin」の場合におけるp-h線図を示している。図4に示すように、冷媒状態が気液二相の場合、温度Tiに対する内圧PiをP、温度Toに対する内圧PoをPとすると、冷媒状態がガスの場合、温度Tiに対する内圧Pi=P’、温度Toに対する内圧Po=P’となる。そして、P’、P’は、最低温度Tminに対する冷媒回路100内の圧力(以下、内圧Pminと称する)に近づく。つまり、Po≒Pmin、Pi≒Pminとなる。また、圧力センサは、異常時では正常時よりも低い検知圧力を示すため、その検知圧力を換算した飽和温度は、最低温度Tminよりも低い値となる。したがって、飽和温度が最低温度Tminよりも低い値となった場合、圧力センサは異常であると判定することができる。 FIG. 4 is a ph diagram in the case of "indoor space temperature Ti> outdoor space temperature To> lowest temperature (hereinafter referred to as the lowest temperature) Tmin among the ambient temperatures of the refrigeration cycle device 1". Shown. As shown in FIG. 4, when the refrigerant state is gas-liquid two-phase, the internal pressure Pi with respect to the temperature Ti is P 1 , and the internal pressure Po with respect to the temperature To is P 2. When the refrigerant state is gas, the internal pressure Pi with respect to the temperature Ti = P 1 becomes ", the internal pressure Po = P 2 with respect to the temperature the To '. Then, P 1 ', P 2', the pressure of the refrigerant circuit 100 for the lowest temperature Tmin approaches (hereinafter, referred to as pressure Pmin). That is, Po ≈ Pmin and Pi ≈ Pmin. Further, since the pressure sensor shows a lower detection pressure than in the normal state in the abnormal state, the saturation temperature converted to the detected pressure becomes a value lower than the minimum temperature Tmin. Therefore, when the saturation temperature becomes a value lower than the minimum temperature Tmin, the pressure sensor can determine that it is abnormal.
 室外空間または室内空間では、温度ばらつきが生じている可能性もある。そこで、例えば圧力センサの異常診断を行う際、室内空間の温度の方が室外空間の温度よりも低い場合は室内ファン107を運転させ、室外空間の温度の方が室内空間の温度よりも低い場合は室外ファン104を運転させる。そして、冷凍サイクル装置1の周囲の温度を均一化してから最低温度を抽出するとよい。そうすることで、圧力センサの異常診断の精度を向上させることができる。 There is a possibility that temperature variation may occur in the outdoor space or indoor space. Therefore, for example, when performing an abnormality diagnosis of the pressure sensor, when the temperature of the indoor space is lower than the temperature of the outdoor space, the indoor fan 107 is operated, and when the temperature of the outdoor space is lower than the temperature of the indoor space. Operates the outdoor fan 104. Then, it is advisable to extract the minimum temperature after equalizing the ambient temperature of the refrigeration cycle device 1. By doing so, the accuracy of the abnormality diagnosis of the pressure sensor can be improved.
 図5は、実施の形態に係る冷凍サイクル装置1の圧力センサの異常診断時の制御の流れを示すフローチャートである。圧力センサの異常診断では、冷凍サイクル装置1が備えている圧力センサが異常であるかどうかの判定が行われる。以下、実施の形態に係る冷凍サイクル装置1の圧力センサの異常診断時の制御の流れについて、図5を用いて説明する。 FIG. 5 is a flowchart showing a control flow at the time of abnormality diagnosis of the pressure sensor of the refrigeration cycle device 1 according to the embodiment. In the abnormality diagnosis of the pressure sensor, it is determined whether or not the pressure sensor included in the refrigeration cycle device 1 is abnormal. Hereinafter, the flow of control at the time of abnormality diagnosis of the pressure sensor of the refrigeration cycle device 1 according to the embodiment will be described with reference to FIG.
(ステップS1)
 制御装置200は、異常診断の開始条件を満たすかどうかを判定する。制御装置200が、異常診断の開始条件を満たすと判定した場合(YES)、ステップS2の処理に進む。一方、制御装置200が、異常診断の開始条件を満たさないと判定した場合(NO)、再度ステップS1の処理を実行する。
(Step S1)
The control device 200 determines whether or not the condition for starting the abnormality diagnosis is satisfied. When the control device 200 determines that the condition for starting the abnormality diagnosis is satisfied (YES), the process proceeds to step S2. On the other hand, when the control device 200 determines that the condition for starting the abnormality diagnosis is not satisfied (NO), the process of step S1 is executed again.
 ここで、異常診断の開始条件は二つあり、一つ目は、冷凍サイクル装置1が発停運転中ではなく、運転状態から停止状態になった直後、つまり、圧縮機101を停止させた直後である。なお、圧縮機101を停止させた直後とは、制御装置200がリモコン(図示せず)などから停止信号を受信した直後であり、制御装置200が停止信号を受信して圧縮機101を停止させたすぐ後である。また、二つ目は、冷凍サイクル装置1が発停運転中ではなく、停止状態から運転状態になる直前、つまり、圧縮機101を起動させる直前である。なお、圧縮機101を起動させる直前とは、制御装置200がリモコン(図示せず)などから運転信号を受信した直後であり、制御装置200が運転信号を受信して圧縮機101を起動させるすぐ前である。 Here, there are two conditions for starting the abnormality diagnosis. The first is that the refrigeration cycle device 1 is not in the start / stop operation, but immediately after the operation state is changed to the stop state, that is, immediately after the compressor 101 is stopped. Is. Immediately after stopping the compressor 101 is immediately after the control device 200 receives a stop signal from a remote controller (not shown) or the like, and the control device 200 receives the stop signal to stop the compressor 101. Immediately after. The second is not during the start / stop operation of the refrigeration cycle device 1, but immediately before the state changes from the stopped state to the operating state, that is, immediately before starting the compressor 101. Immediately before starting the compressor 101 is immediately after the control device 200 receives an operation signal from a remote controller (not shown) or the like, and immediately after the control device 200 receives the operation signal and starts the compressor 101. Before.
 なお、発停運転とは、サーモONとサーモOFFとを繰り返す運転である。サーモONとは、室内空間の温度が目標温度になるよう圧縮機101を含む冷凍サイクル装置1の構成部品を制御している状態である。サーモOFFとは、室内空間の温度が目標温度になっており、それ以上熱交換させる必要がなく、一時的に圧縮機101を含む冷凍サイクル装置1の構成部品の制御を停止している状態である。そして、制御装置200は、サーモOFF中に室内空間の温度と目標温度との差が、あらかじめ設定された第一閾値以上になった場合、サーモONに切り替える。また、制御装置200は、サーモON中に室内空間の温度と目標温度との差があらかじめ設定された第二閾値以内になった場合、サーモOFFに切り替える。なお、第一閾値値と第二閾値とは同じ値でも異なる値でもよい。 Note that the start / stop operation is an operation in which the thermo is turned on and the thermo is turned off repeatedly. Thermo ON is a state in which the components of the refrigeration cycle device 1 including the compressor 101 are controlled so that the temperature of the indoor space becomes the target temperature. Thermo-OFF is a state in which the temperature of the indoor space is the target temperature, there is no need to exchange heat any more, and the control of the components of the refrigeration cycle device 1 including the compressor 101 is temporarily stopped. be. Then, when the difference between the temperature of the indoor space and the target temperature becomes equal to or higher than a preset first threshold value while the thermostat is OFF, the control device 200 switches to the thermostat ON. Further, when the difference between the temperature of the indoor space and the target temperature becomes within a preset second threshold value while the thermostat is ON, the control device 200 switches the thermostat to OFF. The first threshold value and the second threshold value may be the same value or different values.
 また、冷凍サイクル装置1が運転状態か停止状態かの判定は、圧縮機101の運転周波数に基づいて行われる。そして、圧縮機101の運転周波数F=0Hzであれば、冷凍サイクル装置1は停止状態であり、圧縮機101の運転周波数F>0Hzであれば、冷凍サイクル装置1は運転状態である。さらに、冷凍サイクル装置1が発停運転中か否かの判定は、制御装置200が室内空間に設置されているリモコン(図示せず)などから停止信号を受信した状態であるかどうかである。そして、制御装置200が停止信号を受信した状態で停止している場合は発停運転中ではなく、制御装置200が停止信号を受信していない状態で停止している場合は発停運転中である。ここで、冷凍サイクル装置1が発停運転中に異常診断を開始させないのは、誤診断を抑制するためである。 Further, it is determined whether the refrigerating cycle device 1 is in the operating state or the stopped state based on the operating frequency of the compressor 101. When the operating frequency F of the compressor 101 is 0 Hz, the refrigerating cycle device 1 is in the stopped state, and when the operating frequency F of the compressor 101 is 0 Hz, the refrigerating cycle device 1 is in the operating state. Further, the determination as to whether or not the refrigeration cycle device 1 is in the start / stop operation is whether or not the control device 200 is in a state of receiving a stop signal from a remote controller (not shown) installed in the indoor space. Then, when the control device 200 is stopped while receiving the stop signal, the start / stop operation is not in progress, and when the control device 200 is stopped in the state of not receiving the stop signal, the start / stop operation is in progress. be. Here, the reason why the refrigeration cycle device 1 does not start the abnormality diagnosis during the start / stop operation is to suppress the erroneous diagnosis.
(ステップS2)
 制御装置200は、室外ファン104または室内ファン107を運転させ、冷凍サイクル装置1の周囲の温度を均一化させることで、冷媒回路100に設けられている各温度センサの検知温度を均一にする。その後、ステップS3の処理に進む。ここで、異常診断には最低の検知温度を用いるため、室外空間の温度が室内空間の温度よりも低い場合は室外ファン104を運転させ、室内空間の温度が室外空間の温度よりも低い場合は室外ファン104を運転させ、冷凍サイクル装置1の周囲の温度を均一化させる。なお、室内空間の温度および室外空間の温度のうちどちらが低いかの判定は、外気温度センサ113の検知温度と室内温度センサ115の検知温度との比較、あるいは運転モードが冷房運転および暖房運転のうちどちらであるか、などに基づいて行われる。
(Step S2)
The control device 200 operates the outdoor fan 104 or the indoor fan 107 to make the ambient temperature of the refrigerating cycle device 1 uniform, thereby making the detection temperature of each temperature sensor provided in the refrigerant circuit 100 uniform. After that, the process proceeds to step S3. Here, since the lowest detected temperature is used for the abnormality diagnosis, the outdoor fan 104 is operated when the temperature of the outdoor space is lower than the temperature of the indoor space, and when the temperature of the indoor space is lower than the temperature of the outdoor space, the outdoor fan 104 is operated. The outdoor fan 104 is operated to equalize the ambient temperature of the refrigeration cycle device 1. To determine which of the indoor space temperature and the outdoor space temperature is lower, the temperature detected by the outside air temperature sensor 113 is compared with the temperature detected by the indoor temperature sensor 115, or the operation mode is cooling operation or heating operation. It is done based on which one it is.
(ステップS3)
 制御装置200は、圧力センサが安定しているかどうかを判定する。制御装置200が、圧力センサが安定していると判定した場合(YES)、ステップS4の処理に進む。一方、制御装置200が、圧力センサが安定していないと判定した場合(NO)、再度ステップS3の処理を実行する。なお、圧力センサが安定しているかどうかの判定中に停止状態が解除され、圧縮機101が運転を開始した場合は、異常診断を中止する。
(Step S3)
The control device 200 determines whether the pressure sensor is stable. When the control device 200 determines that the pressure sensor is stable (YES), the process proceeds to step S4. On the other hand, when the control device 200 determines that the pressure sensor is not stable (NO), the process of step S3 is executed again. If the stopped state is released during the determination of whether the pressure sensor is stable and the compressor 101 starts operation, the abnormality diagnosis is stopped.
 ここで、圧力センサが安定しているかどうかの判定は、圧力センサの検知圧力があらかじめ設定された第一時間の間に変化したかどうか、または、運転しているファン側の空間に設けられている温度センサの検知値があらかじめ設定された第二時間の間に変化したかどうかなどに基づいて行われる。なお、運転しているファン側の空間とは、室外ファン104が運転している場合は室外空間であり、室内ファン107が運転している場合は室内空間である。 Here, the determination of whether or not the pressure sensor is stable is provided for whether or not the detected pressure of the pressure sensor has changed during the preset first time, or in the space on the fan side during operation. It is performed based on whether or not the detected value of the existing temperature sensor has changed during the preset second time. The space on the operating fan side is an outdoor space when the outdoor fan 104 is operating, and an indoor space when the indoor fan 107 is operating.
 また、冷媒回路100内の冷媒の移動がない場合には、圧力センサの検知圧力および温度センサの検知温度は変化しなくなるため、冷媒回路100内の冷媒の移動の有無に基づいて、圧力センサが安定しているかどうかの判定を行ってもよい。冷媒回路100内の冷媒の移動の有無の判定は、例えば流量計を冷媒回路100に設け、その流量計の値を用いて行うことができる。なお、第一時間と第二時間とは同じ値でも異なる値でもよい。また、第一時間は、圧力センサのセンサ形状および測定範囲などによって異なる応答速度に基づいて設定するとよい。 Further, when the refrigerant in the refrigerant circuit 100 does not move, the detection pressure of the pressure sensor and the detection temperature of the temperature sensor do not change. Therefore, the pressure sensor moves based on the presence or absence of the movement of the refrigerant in the refrigerant circuit 100. It may be determined whether or not it is stable. The presence or absence of movement of the refrigerant in the refrigerant circuit 100 can be determined, for example, by providing a flow meter in the refrigerant circuit 100 and using the value of the flow meter. The first hour and the second hour may have the same value or different values. Further, the first time may be set based on a response speed that differs depending on the sensor shape of the pressure sensor, the measurement range, and the like.
(ステップS4)
 制御装置200は、異常診断の対象となる圧力センサの検知圧力を抽出し、その検知圧力を飽和温度に換算する。その後、ステップS5の処理に進む。
(Step S4)
The control device 200 extracts the detected pressure of the pressure sensor that is the target of the abnormality diagnosis, and converts the detected pressure into the saturation temperature. After that, the process proceeds to step S5.
(ステップS5)
 制御装置200は、各温度センサの検知温度の中で最低の検知温度(以下、最低検知温度と称する)を抽出する。その後、ステップS6の処理に進む。
(Step S5)
The control device 200 extracts the lowest detected temperature (hereinafter, referred to as the lowest detected temperature) among the detected temperatures of each temperature sensor. After that, the process proceeds to step S6.
(ステップS6)
 制御装置200は、飽和温度と最低検知温度とを比較し、飽和温度が最低検知温度よりも低いかどうかを判定する。制御装置200が、飽和温度が最低検知温度よりも低いと判定した場合(YES)、ステップS7の処理に進む。一方、制御装置200が、飽和温度が最低検知温度よりも低くないと判定した場合(NO)、ステップS8の処理に進む。
(Step S6)
The control device 200 compares the saturation temperature with the minimum detection temperature, and determines whether the saturation temperature is lower than the minimum detection temperature. When the control device 200 determines that the saturation temperature is lower than the minimum detection temperature (YES), the process proceeds to step S7. On the other hand, when the control device 200 determines that the saturation temperature is not lower than the minimum detection temperature (NO), the process proceeds to step S8.
(ステップS7)
 制御装置200は、異常診断の対象となる圧力センサは、異常であると判定する。その後、ステップS9の処理に進む。
(Step S7)
The control device 200 determines that the pressure sensor that is the target of the abnormality diagnosis is abnormal. After that, the process proceeds to step S9.
(ステップS8)
 制御装置200は、異常診断の対象となる圧力センサは、正常であると判定する。その後、ステップS9の処理に進む。
(Step S8)
The control device 200 determines that the pressure sensor that is the target of the abnormality diagnosis is normal. After that, the process proceeds to step S9.
(ステップS9)
 制御装置200は、運転しているファンを停止させる、つまり室外ファン104が運転している場合は室外ファン104を停止させ、室内ファン107が運転している場合は室内ファン107を停止させる。その後、ステップS10の処理に進む。
(Step S9)
The control device 200 stops the operating fan, that is, stops the outdoor fan 104 when the outdoor fan 104 is operating, and stops the indoor fan 107 when the indoor fan 107 is operating. After that, the process proceeds to step S10.
(ステップS10)
 制御装置200は、異常診断に用いた各データを保存し、異常診断結果を報知する。
(Step S10)
The control device 200 stores each data used for the abnormality diagnosis and notifies the abnormality diagnosis result.
 以上、実施の形態に係る冷凍サイクル装置1は、圧縮機101、室外熱交換器103、絞り装置105、室内熱交換器106が配管109で接続され、冷媒が循環する冷媒回路100を備えている。また、冷凍サイクル装置1は、冷媒回路100内の圧力を検知する少なくとも1つ以上の圧力センサと、温度を検知する複数の温度センサと、を備えている。さらに、冷凍サイクル装置1は、複数の温度センサの中で最低の検知温度と圧力センサの検知圧力とを用いて、圧力センサの異常診断を行う制御装置200を備えている。 As described above, the refrigeration cycle device 1 according to the embodiment includes a refrigerant circuit 100 in which a compressor 101, an outdoor heat exchanger 103, a throttle device 105, and an indoor heat exchanger 106 are connected by a pipe 109 and a refrigerant circulates. .. Further, the refrigeration cycle device 1 includes at least one or more pressure sensors that detect the pressure in the refrigerant circuit 100, and a plurality of temperature sensors that detect the temperature. Further, the refrigeration cycle device 1 includes a control device 200 for diagnosing an abnormality of the pressure sensor by using the lowest detected temperature among the plurality of temperature sensors and the detected pressure of the pressure sensor.
 実施の形態に係る冷凍サイクル装置1によれば、複数の温度センサのうち最低の温度を検知する温度センサを用いて、圧力センサの異常診断を行う。このように、内圧が最も影響を受ける温度を用いて圧力センサの異常診断を行うことで、誤診断を抑制することができる。 According to the refrigeration cycle device 1 according to the embodiment, an abnormality diagnosis of the pressure sensor is performed using the temperature sensor that detects the lowest temperature among the plurality of temperature sensors. In this way, erroneous diagnosis can be suppressed by performing an abnormality diagnosis of the pressure sensor using the temperature at which the internal pressure is most affected.
 また、実施の形態に係る冷凍サイクル装置1は、室内熱交換器106に空気を供給する室内ファン107を備えている。そして、制御装置200は、室内空間の温度が室外空間の温度よりも低い場合には、室内ファン107を運転させてから、圧力センサが異常かどうかの判定を行う。 Further, the refrigeration cycle device 1 according to the embodiment includes an indoor fan 107 that supplies air to the indoor heat exchanger 106. Then, when the temperature of the indoor space is lower than the temperature of the outdoor space, the control device 200 operates the indoor fan 107 and then determines whether or not the pressure sensor is abnormal.
 また、実施の形態に係る冷凍サイクル装置1は、室外熱交換器103に空気を供給する室外ファン104を備えている。そして、制御装置200は、室外空間の温度が室内空間の温度よりも低い場合には、室外ファン104を運転させてから、圧力センサが異常かどうかの判定を行う。 Further, the refrigeration cycle device 1 according to the embodiment includes an outdoor fan 104 that supplies air to the outdoor heat exchanger 103. Then, when the temperature of the outdoor space is lower than the temperature of the indoor space, the control device 200 operates the outdoor fan 104 and then determines whether or not the pressure sensor is abnormal.
 実施の形態に係る冷凍サイクル装置1によれば、室外空間の温度が室内空間の温度よりも低い場合は室外ファン104を運転させ、室内空間の温度が室外空間の温度よりも低い場合は室外ファン104を運転させることで、冷凍サイクル装置1の周囲の温度を均一化させる。そして、冷凍サイクル装置1の周囲の温度を均一化してから最低温度を抽出することで、圧力センサの異常診断の精度を向上させることができる。 According to the refrigeration cycle device 1 according to the embodiment, the outdoor fan 104 is operated when the temperature of the outdoor space is lower than the temperature of the indoor space, and the outdoor fan is operated when the temperature of the indoor space is lower than the temperature of the outdoor space. By operating 104, the temperature around the refrigeration cycle device 1 is made uniform. Then, by equalizing the ambient temperature of the refrigeration cycle device 1 and then extracting the minimum temperature, the accuracy of the abnormality diagnosis of the pressure sensor can be improved.
 また、実施の形態に係る冷凍サイクル装置1は、圧力センサの異常を報知する報知部207を備えている。そして、制御装置200は、圧力センサが異常かどうかの判定を行い、圧力センサが異常であると判定した場合、報知部207により圧力センサが異常であることを報知する。 Further, the refrigeration cycle device 1 according to the embodiment includes a notification unit 207 for notifying an abnormality of the pressure sensor. Then, the control device 200 determines whether or not the pressure sensor is abnormal, and when the pressure sensor determines that the pressure sensor is abnormal, the notification unit 207 notifies that the pressure sensor is abnormal.
 実施の形態に係る冷凍サイクル装置1によれば、報知部207によって圧力センサが異常であることをユーザーなどに知らせることができる。 According to the refrigeration cycle device 1 according to the embodiment, the notification unit 207 can notify the user or the like that the pressure sensor is abnormal.
 実施の形態では、冷凍サイクル装置1を空気調和装置に適用した例を挙げたが、それに限定されず、冷凍装置など他の装置にも適用できる。 In the embodiment, an example in which the refrigeration cycle device 1 is applied to an air conditioner is given, but the present invention is not limited to this, and the refrigeration cycle device 1 can be applied to other devices such as a refrigeration device.
 1 冷凍サイクル装置、30 制御装置、100 冷媒回路、101 圧縮機、102 流路切替装置、103 室外熱交換器、104 室外ファン、105 絞り装置、106 室内熱交換器、107 室内ファン、109 配管、111 吐出温度センサ、112 高圧圧力センサ、113 外気温度センサ、114 冷媒温度センサ、115 室内温度センサ、116 低圧圧力センサ、200 制御装置、201 操作部、202 記憶部、203 抽出部、204 演算部、205 比較部、206 判定部、207 報知部。 1 Refrigeration cycle device, 30 control device, 100 refrigerant circuit, 101 compressor, 102 flow path switching device, 103 outdoor heat exchanger, 104 outdoor fan, 105 throttle device, 106 indoor heat exchanger, 107 indoor fan, 109 piping, 111 discharge temperature sensor, 112 high pressure pressure sensor, 113 outside air temperature sensor, 114 refrigerant temperature sensor, 115 indoor temperature sensor, 116 low pressure pressure sensor, 200 control device, 201 operation unit, 202 storage unit, 203 extraction unit, 204 calculation unit, 205 comparison unit, 206 judgment unit, 207 notification unit.

Claims (13)

  1.  圧縮機、室外熱交換器、絞り装置、室内熱交換器が配管で接続され、冷媒が循環する冷媒回路と、
     前記冷媒回路内の圧力を検知する少なくとも1つ以上の圧力センサと、
     温度を検知する複数の温度センサと、
     複数の前記温度センサの中で最低の検知温度と前記圧力センサの検知圧力とを用いて、前記圧力センサが異常かどうかの判定を行う制御装置と、を備えた
     冷凍サイクル装置。
    A refrigerant circuit in which a compressor, an outdoor heat exchanger, a throttle device, and an indoor heat exchanger are connected by piping and the refrigerant circulates.
    At least one or more pressure sensors that detect the pressure in the refrigerant circuit,
    Multiple temperature sensors that detect temperature and
    A refrigeration cycle device including a control device for determining whether or not the pressure sensor is abnormal by using the lowest detected temperature among the plurality of temperature sensors and the detected pressure of the pressure sensor.
  2.  前記制御装置は、
     前記圧力センサの検知圧力を飽和温度に換算し、該飽和温度と複数の前記温度センサの中で最低の検知温度とを比較することで、前記圧力センサが異常かどうかの判定を行う
     請求項1に記載の冷凍サイクル装置。
    The control device is
    Claim 1 for determining whether or not the pressure sensor is abnormal by converting the detected pressure of the pressure sensor into a saturation temperature and comparing the saturation temperature with the lowest detected temperature among the plurality of temperature sensors. The refrigeration cycle device according to.
  3.  複数の前記温度センサは、室外空間の温度を検知する第一温度センサと、室内空間の温度を検知する第二温度センサとを含む
     請求項1または2に記載の冷凍サイクル装置。
    The refrigeration cycle device according to claim 1 or 2, wherein the plurality of temperature sensors include a first temperature sensor that detects the temperature of the outdoor space and a second temperature sensor that detects the temperature of the indoor space.
  4.  前記室内熱交換器に空気を供給する室内ファンを備え、
     前記制御装置は、
     前記室内空間の温度が前記室外空間の温度よりも低い場合には、前記室内ファンを運転させてから、前記圧力センサが異常かどうかの判定を行う
     請求項3に記載の冷凍サイクル装置。
    It is equipped with an indoor fan that supplies air to the indoor heat exchanger.
    The control device is
    The refrigeration cycle apparatus according to claim 3, wherein when the temperature of the indoor space is lower than the temperature of the outdoor space, the indoor fan is operated and then it is determined whether or not the pressure sensor is abnormal.
  5.  前記室外熱交換器に空気を供給する室外ファンを備え、
     前記制御装置は、
     前記室外空間の温度が前記室内空間の温度よりも低い場合には、前記室外ファンを運転させてから、前記圧力センサが異常かどうかの判定を行う
     請求項3または4に記載の冷凍サイクル装置。
    An outdoor fan that supplies air to the outdoor heat exchanger is provided.
    The control device is
    The refrigeration cycle device according to claim 3 or 4, wherein when the temperature of the outdoor space is lower than the temperature of the indoor space, the outdoor fan is operated and then it is determined whether or not the pressure sensor is abnormal.
  6.  前記制御装置は、
     前記圧縮機の運転を停止させた場合に、前記圧力センサが異常かどうかの判定を行う
     請求項1~5のいずれか一項に記載の冷凍サイクル装置。
    The control device is
    The refrigeration cycle apparatus according to any one of claims 1 to 5, which determines whether or not the pressure sensor is abnormal when the operation of the compressor is stopped.
  7.  前記制御装置は、
     前記圧縮機の運転を停止させ、かつ、前記圧力センサの検知圧力があらかじめ設定された第一時間の間に変化しなかった場合に、前記圧力センサが異常かどうかの判定を行う
     請求項6に記載の冷凍サイクル装置。
    The control device is
    According to claim 6, when the operation of the compressor is stopped and the detected pressure of the pressure sensor does not change within a preset first time, it is determined whether or not the pressure sensor is abnormal. The refrigeration cycle device described.
  8.  前記制御装置は、
     前記室外ファンが運転中では、
     前記圧縮機の運転を停止させ、かつ、前記第一温度センサの検知温度があらかじめ設定された第二時間の間に変化しなかった場合に、
     前記室内ファンが運転中では、
     前記圧縮機の運転を停止させ、かつ、前記第二温度センサの検知温度が前記第二時間の間に変化しなかった場合に、
     前記圧力センサが異常かどうかの判定を行う
     請求項4および5に従属する請求項6に記載の冷凍サイクル装置。
    The control device is
    While the outdoor fan is in operation,
    When the operation of the compressor is stopped and the detection temperature of the first temperature sensor does not change during the preset second time.
    While the indoor fan is operating,
    When the operation of the compressor is stopped and the temperature detected by the second temperature sensor does not change during the second time.
    The refrigeration cycle apparatus according to claim 6, which is subordinate to claims 4 and 5, which determines whether or not the pressure sensor is abnormal.
  9.  前記制御装置は、
     前記圧縮機を起動させる前に、前記圧力センサが異常かどうかの判定を行う
     請求項1~5のいずれか一項に記載の冷凍サイクル装置。
    The control device is
    The refrigeration cycle apparatus according to any one of claims 1 to 5, which determines whether or not the pressure sensor is abnormal before starting the compressor.
  10.  前記制御装置は、
     前記圧縮機を起動させる前、かつ、前記圧力センサの検知圧力があらかじめ設定された第一時間の間に変化しなかった場合に、前記圧力センサが異常かどうかの判定を行う
     請求項9に記載の冷凍サイクル装置。
    The control device is
    The ninth aspect of claim 9, wherein it is determined whether or not the pressure sensor is abnormal before the compressor is started and when the detected pressure of the pressure sensor does not change within a preset first time. Refrigeration cycle equipment.
  11.  前記制御装置は、
     前記室外ファンが運転中では、
     前記圧縮機を起動させる前、かつ、前記第一温度センサの検知温度があらかじめ設定された第二時間の間に変化しなかった場合に、
     前記室内ファンが運転中では、
     前記圧縮機を起動させる前、かつ、前記第二温度センサの検知温度が前記第二時間の間に変化しなかった場合に、
     前記圧力センサが異常かどうかの判定を行う
     請求項4および5に従属する請求項9に記載の冷凍サイクル装置。
    The control device is
    While the outdoor fan is in operation,
    Before starting the compressor and when the detection temperature of the first temperature sensor does not change during the preset second time.
    While the indoor fan is operating,
    Before starting the compressor and when the detection temperature of the second temperature sensor does not change during the second time.
    The refrigeration cycle apparatus according to claim 9, which is subordinate to claims 4 and 5, which determines whether or not the pressure sensor is abnormal.
  12.  前記第一時間は、前記圧力センサの応答速度に基づいて設定されている
     請求項7または10に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to claim 7 or 10, wherein the first time is set based on the response speed of the pressure sensor.
  13.  前記圧力センサの異常を報知する報知部を備え、
     前記制御装置は、
     前記圧力センサが異常かどうかの判定を行い、前記圧力センサが異常であると判定した場合、前記報知部により前記圧力センサが異常であることを報知する
     請求項1~12のいずれか一項に記載の冷凍サイクル装置。
    A notification unit for notifying an abnormality of the pressure sensor is provided.
    The control device is
    If the pressure sensor is determined to be abnormal and the pressure sensor is determined to be abnormal, the notification unit notifies that the pressure sensor is abnormal according to any one of claims 1 to 12. The refrigeration cycle device described.
PCT/JP2020/007888 2020-02-27 2020-02-27 Refrigeration cycle device WO2021171448A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022502688A JP7350151B2 (en) 2020-02-27 2020-02-27 Refrigeration cycle equipment
PCT/JP2020/007888 WO2021171448A1 (en) 2020-02-27 2020-02-27 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/007888 WO2021171448A1 (en) 2020-02-27 2020-02-27 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021171448A1 true WO2021171448A1 (en) 2021-09-02

Family

ID=77491077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007888 WO2021171448A1 (en) 2020-02-27 2020-02-27 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7350151B2 (en)
WO (1) WO2021171448A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023039065A (en) * 2021-09-08 2023-03-20 ダイキン工業株式会社 Diagnosis system, diagnosis method, diagnosis program and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137175A (en) * 1987-11-24 1989-05-30 Mitsubishi Heavy Ind Ltd Method of diagnosing trouble of pressure sensor in refrigerator
JPH05141822A (en) * 1991-11-25 1993-06-08 Sanyo Electric Co Ltd Detecting method for abnormality of pressure sensor in air conditioner
JP2006266661A (en) * 2005-02-28 2006-10-05 Mitsubishi Heavy Ind Ltd Refrigerating device and its operating method
JP2010223477A (en) * 2009-03-23 2010-10-07 Sanyo Electric Co Ltd Air conditioner and energy equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137175A (en) * 1987-11-24 1989-05-30 Mitsubishi Heavy Ind Ltd Method of diagnosing trouble of pressure sensor in refrigerator
JPH05141822A (en) * 1991-11-25 1993-06-08 Sanyo Electric Co Ltd Detecting method for abnormality of pressure sensor in air conditioner
JP2006266661A (en) * 2005-02-28 2006-10-05 Mitsubishi Heavy Ind Ltd Refrigerating device and its operating method
JP2010223477A (en) * 2009-03-23 2010-10-07 Sanyo Electric Co Ltd Air conditioner and energy equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023039065A (en) * 2021-09-08 2023-03-20 ダイキン工業株式会社 Diagnosis system, diagnosis method, diagnosis program and air conditioner
JP7348538B2 (en) 2021-09-08 2023-09-21 ダイキン工業株式会社 Diagnostic system, diagnostic method, diagnostic program, and air conditioner

Also Published As

Publication number Publication date
JP7350151B2 (en) 2023-09-25
JPWO2021171448A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
EP2728280B1 (en) Air conditioner and control method thereof
CN107407514B (en) Indoor unit of air conditioner
CN106958958B (en) Air conditioning apparatus
EP2204621B1 (en) Air conditioner and method for detecting malfunction thereof
JP7257782B2 (en) air conditioning system
JP5494280B2 (en) Air conditioner
JP6444577B1 (en) Air conditioner
US11255560B2 (en) Air-conditioning apparatus and method of determining operation condition
US11874039B2 (en) Refrigeration cycle apparatus
WO2021171448A1 (en) Refrigeration cycle device
JP2008039388A (en) Multi-type air conditioner
KR20140094813A (en) An air conditioner, an air condition system and a control method thereof
KR20060119428A (en) Refrigerant pipe connection inspection method for multi pipe multi type air conditioner
JPWO2018037496A1 (en) Air conditioner
KR101152936B1 (en) A multi air conditioner system and a pipe connection searching method of the multi air conditioner system
JP6650567B2 (en) Air conditioner
JP2020091080A (en) Refrigeration cycle device
JP2004251583A (en) Air conditioner
JP4105413B2 (en) Multi-type air conditioner
KR20090088069A (en) Controlling method of an air conditioner
WO2019198176A1 (en) Indoor unit for air conditioning device
KR20000073043A (en) Fan trouble sensing method for air conditioner
JP2020165545A (en) Air conditioner
WO2018167866A1 (en) Air conditioning device
WO2023199425A1 (en) Refrigerant leak detection system and leak detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022502688

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921692

Country of ref document: EP

Kind code of ref document: A1