JP5494280B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5494280B2
JP5494280B2 JP2010142564A JP2010142564A JP5494280B2 JP 5494280 B2 JP5494280 B2 JP 5494280B2 JP 2010142564 A JP2010142564 A JP 2010142564A JP 2010142564 A JP2010142564 A JP 2010142564A JP 5494280 B2 JP5494280 B2 JP 5494280B2
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
refrigerant
indoor heat
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010142564A
Other languages
Japanese (ja)
Other versions
JP2012007780A (en
Inventor
匡史 齋藤
友佳子 二浦尾
達也 牧野
克典 永吉
剛 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2010142564A priority Critical patent/JP5494280B2/en
Publication of JP2012007780A publication Critical patent/JP2012007780A/en
Application granted granted Critical
Publication of JP5494280B2 publication Critical patent/JP5494280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、空気調和装置に関し、特に冷媒回路に設けられている当該四路切換弁の作動不良を判定する技術に関する。   The present invention relates to an air conditioner, and more particularly to a technique for determining an operation failure of the four-way switching valve provided in a refrigerant circuit.

空気調和装置の冷媒回路に設けられる四路切換弁は、その4つのポートの連通状態が切換えられることで、圧縮機から吐出される高圧ガス冷媒が流入する熱交換器を、室外熱交換器または室内熱交換器のいずれかに切換える。この四路切換弁は、圧縮機の吐出側に連通する高圧ポートと、吸込側に連通する低圧ポートとの間の差圧により駆動されて前記の切換動作を行うように構成されている。   The four-way switching valve provided in the refrigerant circuit of the air conditioner switches the communication state of the four ports so that the high-temperature gas refrigerant discharged from the compressor flows into the outdoor heat exchanger or Switch to one of the indoor heat exchangers. This four-way switching valve is configured to perform the switching operation by being driven by a differential pressure between a high pressure port communicating with the discharge side of the compressor and a low pressure port communicating with the suction side.

しかし、前記高圧ポートと前記低圧ポートとの間の前記差圧が不足すると、前記四路切換弁に作動不良が発生することがある。この四路切換弁の作動不良を検知するために、例えば特許文献1に開示の空気調和装置は、四路切換弁の各ポートに、冷媒圧力を検知するための圧力センサと、切換作動判定手段とを備え、当該切換作動判定手段は、熱源側接続ポート側の冷媒圧力が、低圧ポート側の冷媒圧力と略同じ程度の低圧でないとき、又は高圧ポート側の冷媒圧力と略同じ程度の高圧でないときに切換作動不良と判定する。   However, if the differential pressure between the high pressure port and the low pressure port is insufficient, the four-way switching valve may malfunction. In order to detect the malfunction of the four-way switching valve, for example, an air conditioner disclosed in Patent Document 1 includes a pressure sensor for detecting the refrigerant pressure at each port of the four-way switching valve, and a switching operation determination unit. The switching operation determining means includes the refrigerant pressure on the heat source side connection port side when the refrigerant pressure on the heat source side connection port side is not as low as the refrigerant pressure on the low pressure port side, or not as high as the refrigerant pressure on the high pressure port side. Sometimes it is determined that the switching operation is defective.

特開平6−50642号公報JP-A-6-50642

しかしながら、特許文献1に開示の空気調和装置では、四路切換弁の各ポートのそれぞれに圧力センサが必要になる。また、圧力センサは、他のセンサ(例えば温度センサ)と比較すると高額であるため、コスト削減の観点からは、当該圧力センサの配設数を削減することが好ましい。   However, in the air conditioner disclosed in Patent Document 1, a pressure sensor is required for each port of the four-way switching valve. Further, since the pressure sensor is expensive compared to other sensors (for example, temperature sensors), it is preferable to reduce the number of the pressure sensors provided from the viewpoint of cost reduction.

本発明は、このような従来の問題点を解決するためになされたものであり、四路切換弁の各ポートに圧力センサを設けること等なく製造コストを低減して、四路切換弁の作動不良を検知可能にすることを目的とする。   The present invention has been made to solve such a conventional problem, and reduces the manufacturing cost without providing a pressure sensor at each port of the four-way switching valve. The purpose is to enable detection of defects.

本発明の請求項1に係る空気調和機は、室内熱交換器(31)と、室外熱交換器(22)と、圧縮機(40)と、四路切換弁(21)と、膨張弁(24)とが冷媒配管で接続された冷媒回路(10)と、
前記室内熱交換器(31)に設けられ、当該室内熱交換器(31)の温度を検出する室内熱交換器温度検出部(85)と、
前記室外熱交換器(22)に設けられ、当該室外熱交換器(22)の温度を検出する室外熱交換器温度検出部(76)と、
前記四路切換弁(21)にポート切換信号を出力し、当該四路切換弁(21)のポート切換を制御する制御部(91)と、
前記制御部(91)によるポート切換信号出力後に、前記室内熱交換器温度検出部(85)が検出した室内熱交換器(31)の温度の温度変化率が予め定められた第1の範囲を外れて下回り、前記室外熱交換器温度検出部(76)が検出した前記室外熱交換器(22)の温度の温度変化率が予め定められた第2の範囲を外れて下回り、かつ、前記室内熱交換器(31)の前記温度と、前記室外熱交換器(22)の前記温度とが、予め定められた期間内に逆転しないという切換不良判定条件を満たした場合に、前記四路切換弁(21)のポート切換不良であると判定する切換不良判定部(92)と
を備える空気調和装置である。
An air conditioner according to claim 1 of the present invention includes an indoor heat exchanger (31), an outdoor heat exchanger (22), a compressor (40), a four-way switching valve (21), an expansion valve ( 24) and a refrigerant circuit (10) connected by refrigerant piping;
An indoor heat exchanger temperature detector (85) provided in the indoor heat exchanger (31) for detecting the temperature of the indoor heat exchanger (31);
An outdoor heat exchanger temperature detection unit (76) provided in the outdoor heat exchanger (22) for detecting the temperature of the outdoor heat exchanger (22);
A controller (91) for outputting a port switching signal to the four-way switching valve (21) and controlling port switching of the four-way switching valve (21);
After the port switching signal is output by the control unit (91), the temperature change rate of the temperature of the indoor heat exchanger (31) detected by the indoor heat exchanger temperature detection unit (85) is within a predetermined first range. The temperature change rate of the temperature of the outdoor heat exchanger (22) detected by the outdoor heat exchanger temperature detection unit (76) falls outside a predetermined second range, and The four-way switching valve when the temperature of the heat exchanger (31) and the temperature of the outdoor heat exchanger (22) satisfy a switching failure determination condition that they do not reverse within a predetermined period. It is an air conditioning apparatus provided with the switching failure determination part (92) determined to be port switching failure of (21).

四路切換弁(21)においてポート切換不良を生じ、予定したポートに切り換えられず、例えば、閉じるべきポートが完全に閉じられず、開放すべきポートが不完全にしか開放されないような場合には、冷媒回路を流れる冷媒を予定したルートに正常に流すことができないため、制御部(91)から四路切換弁(21)にポート切換信号を出力しても、室内熱交換器(31)及び室外熱交換器(22)の温度は、予定した時間内に予定した温度に達しない。さらに、室内熱交換器(31)の温度と、室外熱交換器(22)の温度とが逆転するという現象も生じない。   In the case where a port switching failure occurs in the four-way switching valve (21) and the port is not switched to a predetermined port, for example, a port to be closed is not completely closed and a port to be opened is opened only incompletely. Since the refrigerant flowing through the refrigerant circuit cannot normally flow to the planned route, even if the port switching signal is output from the control unit (91) to the four-way switching valve (21), the indoor heat exchanger (31) and The temperature of the outdoor heat exchanger (22) does not reach the planned temperature within the scheduled time. Furthermore, the phenomenon that the temperature of the indoor heat exchanger (31) and the temperature of the outdoor heat exchanger (22) are reversed does not occur.

これに基づいて、本発明では、室内熱交換器温度検出部(85)が検出した室内熱交換器(31)の温度の温度変化率が予め定められた第1の範囲を外れて下回り、室外熱交換器温度検出部(76)が検出した室外熱交換器(22)の温度の温度変化率が予め定められた第2の範囲を外れて下回り、かつ、室内熱交換器(31)の温度と室外熱交換器(22)の温度とが予め定められた期間内に逆転しないという切換不良判定条件を満たした場合に、四路切換弁(21)のポート切換不良であると判定することにより、圧縮機の低圧側及び高圧側の圧力検出センサや、熱源側冷媒圧検知センサ等の圧力センサを必要とすることなく、四路切換弁(21)のポート切換不良を判定可能としている。   Based on this, in the present invention, the temperature change rate of the temperature of the indoor heat exchanger (31) detected by the indoor heat exchanger temperature detecting unit (85) falls below a predetermined first range, The temperature change rate of the temperature of the outdoor heat exchanger (22) detected by the heat exchanger temperature detection unit (76) falls below a predetermined second range, and the temperature of the indoor heat exchanger (31) When the switching failure determination condition that the temperature of the outdoor heat exchanger (22) and the temperature of the outdoor heat exchanger (22) do not reverse within a predetermined period is satisfied, the port switching failure of the four-way switching valve (21) is determined. Further, it is possible to determine the port switching failure of the four-way switching valve (21) without the need for pressure sensors such as the low pressure side and high pressure side pressure detection sensors of the compressor and the heat source side refrigerant pressure detection sensor.

すなわち、(1) 四路切換弁(21)のポート切換信号出力後に、室内熱交換器温度検出部(85)が検出した室内熱交換器(31)の温度の温度変化率が、予め定められた第1の範囲内であり、さらに、室外熱交換器温度検出部(76)が検出した室外熱交換器(22)の温度の温度変化率が予め定められた第2の範囲内であり、しかも、室内熱交換器(31)の温度と室外熱交換器(22)の温度とが予め定められた期間内に逆転する場合は、当該現象は、予定した通りに冷媒の循環方向が切り換わって、室内熱交換器(31)及び室外熱交換器(22)による凝縮及び蒸発の作用の切り換えを予定した期間内に終えていることを示すと想定されるので、四路切換弁(21)の切り換えが正常に行われていると判定可能である。   That is, (1) The temperature change rate of the temperature of the indoor heat exchanger (31) detected by the indoor heat exchanger temperature detector (85) after the port switching signal of the four-way selector valve (21) is output is determined in advance. The temperature change rate of the temperature of the outdoor heat exchanger (22) detected by the outdoor heat exchanger temperature detection unit (76) is within a predetermined second range, In addition, when the temperature of the indoor heat exchanger (31) and the temperature of the outdoor heat exchanger (22) are reversed within a predetermined period, the phenomenon causes the refrigerant circulation direction to change as planned. Therefore, it is assumed that the switching of the condensation and evaporation by the indoor heat exchanger (31) and the outdoor heat exchanger (22) is completed within the scheduled period, so that the four-way switching valve (21) It can be determined that the switching is normally performed.

また、(2) 四路切換弁(21)のポート切換信号出力後に、室内熱交換器温度検出部(85)が検出した室内熱交換器(31)の温度の温度変化率が予め定められた第1の範囲を外れて下回り、さらに、室外熱交換器温度検出部(76)が検出した室外熱交換器(22)の温度の温度変化率が予め定められた第2の範囲を外れて下回る場合であって、室内熱交換器(31)の温度と室外熱交換器(22)の温度とが予め定められた期間内に逆転する場合は、当該逆転している現象は、予定した通りに冷媒の循環方向が切り換わっており、予定した期間を超えてはいるが、室内熱交換器(31)及び室外熱交換器(22)による凝縮及び蒸発の作用は正常に切り替わっていると想定されるので、四路切換弁(21)の切り換え自体は正常に行われていると判定可能である。   (2) The rate of temperature change of the temperature of the indoor heat exchanger (31) detected by the indoor heat exchanger temperature detector (85) after the port switching signal is output from the four-way switching valve (21) is determined in advance. The temperature change rate of the temperature of the outdoor heat exchanger (22) detected by the outdoor heat exchanger temperature detection unit (76) falls below the first range, and falls below the predetermined second range. In the case where the temperature of the indoor heat exchanger (31) and the temperature of the outdoor heat exchanger (22) are reversed within a predetermined period, the reversed phenomenon is as expected. Although the refrigerant circulation direction has been switched and it has exceeded the scheduled period, it is assumed that the effects of condensation and evaporation by the indoor heat exchanger (31) and the outdoor heat exchanger (22) have been switched normally. Therefore, the switching of the four-way selector valve (21) itself is performed normally. It can be determined that

また、(3) 四路切換弁(21)のポート切換信号出力後に、室内熱交換器温度検出部(85)が検出した室内熱交換器(31)の温度の温度変化率が予め定められた第1の範囲内であり、さらに、室外熱交換器温度検出部(76)が検出した室外熱交換器(22)の温度の温度変化率が予め定められた第2の範囲内であるものの、室内熱交換器(31)の温度と室外熱交換器(22)の温度とが予め定められた期間内に逆転しない場合は、四路切換弁(21)及び圧縮機(40)のいずれの不具合であるかまでは判定できない。   (3) After the port switching signal is output from the four-way selector valve (21), the temperature change rate of the temperature of the indoor heat exchanger (31) detected by the indoor heat exchanger temperature detector (85) is predetermined. Although the temperature change rate of the temperature of the outdoor heat exchanger (22) detected by the outdoor heat exchanger temperature detection unit (76) is within the first range, the temperature change rate is within a predetermined second range. When the temperature of the indoor heat exchanger (31) and the temperature of the outdoor heat exchanger (22) do not reverse within a predetermined period, any of the problems of the four-way switching valve (21) and the compressor (40) It cannot be judged whether it is.

一方、(4) 四路切換弁(21)のポート切換信号出力後に、室内熱交換器温度検出部(85)が検出した室内熱交換器(31)の温度の温度変化率が予め定められた第1の範囲を外れて下回り、さらに、室外熱交換器温度検出部(76)が検出した室外熱交換器(22)の温度の温度変化率が予め定められた第2の範囲を外れて下回り、かつ、室内熱交換器(31)の温度と室外熱交換器(22)の温度とが予め定められた期間内に逆転しないという切換不良判定条件を満たした場合は、当該室内熱交換器(31)の温度と室外熱交換器(22)の温度とが逆転していない現象は、予定した通りに冷媒の循環方向が切り換わっておらず、室内熱交換器(31)及び室外熱交換器(22)による凝縮及び蒸発の作用は正常に切り替わっていないことを示すと想定されるので、少なくとも、四路切換弁(21)のポート切換に不良が生じていると判定可能である。   On the other hand, (4) The temperature change rate of the temperature of the indoor heat exchanger (31) detected by the indoor heat exchanger temperature detecting unit (85) after the port switching signal of the four-way switching valve (21) is output is determined in advance. The temperature change rate of the temperature of the outdoor heat exchanger (22) detected by the outdoor heat exchanger temperature detection unit (76) falls outside the first range and falls below the predetermined second range. If the switching failure determination condition that the temperature of the indoor heat exchanger (31) and the temperature of the outdoor heat exchanger (22) do not reverse within a predetermined period is satisfied, the indoor heat exchanger ( The phenomenon in which the temperature of 31) and the temperature of the outdoor heat exchanger (22) are not reversed is that the circulation direction of the refrigerant is not switched as planned, and the indoor heat exchanger (31) and the outdoor heat exchanger Condensation and evaporation due to (22) are not switching normally. Therefore, it can be determined that at least the port switching of the four-way switching valve (21) is defective.

本発明の請求項2に係る空気調和機は、請求項1に記載の空気調和装置であって、前記切換不良判定部(92)は、前記室内熱交換器温度検出部(85)が検出した室内熱交換器(31)の温度の温度変化率が、前記予め定められた第1の範囲よりも更に小さい温度変化率に基づいて定められた第3の範囲を外れて下回り、前記室外熱交換器温度検出部(76)が検出した前記室外熱交換器(22)の温度の温度変化率が、前記予め定められた第2の範囲よりも更に小さい温度変化率に基づいて定められた第4の範囲を外れて下回り、かつ、前記室内熱交換器(31)の前記温度と、前記室外熱交換器(22)の前記温度とが、予め定められた期間内に逆転しないという切換不良判定条件を満たした場合に、前記圧縮機(40)の動作不良であると判定するものである。   An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect, wherein the switching failure determination unit (92) is detected by the indoor heat exchanger temperature detection unit (85). The temperature change rate of the temperature of the indoor heat exchanger (31) falls below a third range determined based on a temperature change rate smaller than the predetermined first range, and the outdoor heat exchange A temperature change rate of the temperature of the outdoor heat exchanger (22) detected by the temperature detector (76) is determined based on a temperature change rate that is smaller than the predetermined second range. Switching failure determination condition that the temperature is lower than the range of the temperature and the temperature of the indoor heat exchanger (31) and the temperature of the outdoor heat exchanger (22) are not reversed within a predetermined period. If the compressor (40) malfunctions, It is intended to determine that that.

四路切換弁(21)によるポート切換時に、圧縮機(40)の動作不良により、冷媒回路において予定した熱交換が行われない場合にも、室内熱交換器(31)及び室外熱交換器(22)の温度は、予定した時間内に予定した温度に達しないが、この場合は、圧縮機(40)による冷媒圧縮が不十分にしか行われないため、このときの室内熱交換器(31)の温度の温度変化率と、室外熱交換器(22)の温度の温度変化率は、四路切換弁(21)にポート切換不良が発生した場合よりも更に小さくなる。このため、本発明では、室内熱交換器温度検出部(85)が検出した室内熱交換器(31)の温度の温度変化率が、予め定められた第1の範囲よりも更に小さい温度変化率に基づいて定められた第3の範囲を外れて下回り、室外熱交換器温度検出部(76)が検出した室外熱交換器(22)の温度の温度変化率が、予め定められた第2の範囲よりも更に小さい温度変化率に基づいて定められた第4の範囲を外れて下回り、かつ、室内熱交換器(31)の温度と室外熱交換器(22)の温度とが逆転しないという切換不良判定条件を満たした場合に、圧縮機(40)が動作不良を生じていると判定することにより、四路切換弁(21)の各ポートに圧力センサを設けたりすることなく、四路切換弁(21)のポート切換不良が生じているか否か、圧縮機(40)に動作不良を生じているか否かを区別して判定することができる。   When the port is switched by the four-way switching valve (21), even if the heat exchange scheduled in the refrigerant circuit is not performed due to the malfunction of the compressor (40), the indoor heat exchanger (31) and the outdoor heat exchanger ( The temperature of 22) does not reach the planned temperature within the scheduled time, but in this case, refrigerant compression by the compressor (40) is performed only insufficiently, so the indoor heat exchanger (31 at this time) ) And the temperature change rate of the temperature of the outdoor heat exchanger (22) are further smaller than when the port switching failure occurs in the four-way switching valve (21). For this reason, in the present invention, the temperature change rate of the temperature of the indoor heat exchanger (31) detected by the indoor heat exchanger temperature detection unit (85) is a temperature change rate that is even smaller than the predetermined first range. The temperature change rate of the temperature of the outdoor heat exchanger (22) detected by the outdoor heat exchanger temperature detection unit (76) is less than the third range determined based on the Switching that falls below a fourth range determined based on a temperature change rate that is smaller than the range, and that the temperature of the indoor heat exchanger (31) and the temperature of the outdoor heat exchanger (22) are not reversed. By determining that the compressor (40) has malfunctioned when the failure determination condition is satisfied, the four-way switching can be performed without providing a pressure sensor at each port of the four-way switching valve (21). Whether there is a port switching failure in the valve (21) It can be determined by distinguishing whether cause malfunction to the compressor (40).

本発明の請求項3に係る空気調和機は、室内熱交換器(31)と、室外熱交換器(22)と、圧縮機(40)と、四路切換弁(21)と、前記室内熱交換器(31)と前記室外熱交換器(22)との間に位置して設けられた膨張弁(24)とが冷媒配管で接続された冷媒回路(10)と、
前記室内熱交換器(31)に設けられ、当該室内熱交換器(31)の温度を検出する室内熱交換器温度検出部(85)と、
前記室外熱交換器(22)に設けられ、当該室外熱交換器(22)の温度を検出する室外熱交換器温度検出部(76)と、
前記冷媒回路(10)における前記圧縮機(40)の吐出側に設けられ、当該圧縮機(40)から吐出された冷媒の温度を検出する吐出温度検出部(75)と、
前記冷媒回路(10)における前記圧縮機(40)の吸入側に設けられ、当該圧縮機(40)に吸入される冷媒の温度を検出する吸入温度検出部(73)と、
前記四路切換弁(21)の駆動部にポート切換信号を出力し、当該四路切換弁(21)のポート切換を制御する制御部(91)と、
前記制御部(91)によるポート切換信号出力後に、前記吐出温度検出部(75)が検出した前記吐出冷媒の温度と、前記吸入温度検出部(73)が検出した前記吸入冷媒の温度との温度差が、予め定められた温度差を下回り、かつ、前記室内熱交換器(31)の前記温度と、前記室外熱交換器(22)の前記温度とが、予め定められた期間内に逆転しない場合に、前記四路切換弁(21)のポート切換不良であると判定する切換不良判定部(92)と
を備える空気調和装置である。
An air conditioner according to claim 3 of the present invention includes an indoor heat exchanger (31), an outdoor heat exchanger (22), a compressor (40), a four-way selector valve (21), and the indoor heat. A refrigerant circuit (10) in which an expansion valve (24) provided between the exchanger (31) and the outdoor heat exchanger (22) is connected by a refrigerant pipe;
An indoor heat exchanger temperature detector (85) provided in the indoor heat exchanger (31) for detecting the temperature of the indoor heat exchanger (31);
An outdoor heat exchanger temperature detection unit (76) provided in the outdoor heat exchanger (22) for detecting the temperature of the outdoor heat exchanger (22);
A discharge temperature detection unit (75) that is provided on the discharge side of the compressor (40) in the refrigerant circuit (10) and detects the temperature of the refrigerant discharged from the compressor (40);
A suction temperature detection unit (73) provided on the suction side of the compressor (40) in the refrigerant circuit (10) for detecting the temperature of the refrigerant sucked into the compressor (40);
A control unit (91) for outputting a port switching signal to the drive unit of the four-way switching valve (21) and controlling the port switching of the four-way switching valve (21);
The temperature of the discharge refrigerant detected by the discharge temperature detection unit (75) and the temperature of the intake refrigerant detected by the suction temperature detection unit (73) after the port switching signal is output by the control unit (91). The difference is less than a predetermined temperature difference, and the temperature of the indoor heat exchanger (31) and the temperature of the outdoor heat exchanger (22) are not reversed within a predetermined period. In this case, the air conditioner includes a switching failure determination unit (92) that determines that the port switching of the four-way switching valve (21) is defective.

この発明によれば、四路切換弁(21)においてポート切換不良を生じ、予定したポートに切り換えられず、例えば、閉じるべきポートが完全に閉じられず、開放すべきポートが不完全にしか開放されないような場合には、冷媒回路を流れる冷媒を予定したルートに正常に流すことができないため、制御部(91)から四路切換弁(21)にポート切換信号を出力しても、圧縮機(40)の吐出冷媒温度と吸入冷媒温度との間に、予定した温度差が発生しない。さらに、室内熱交換器(31)の温度と、室外熱交換器(22)の温度とが逆転するという現象も生じない。   According to the present invention, a port switching failure occurs in the four-way switching valve (21), and the port is not switched to a predetermined port. For example, the port to be closed is not completely closed, and the port to be opened is only opened incompletely. In such a case, since the refrigerant flowing through the refrigerant circuit cannot normally flow through the planned route, even if a port switching signal is output from the control unit (91) to the four-way switching valve (21), the compressor There is no planned temperature difference between the discharged refrigerant temperature and the intake refrigerant temperature of (40). Furthermore, the phenomenon that the temperature of the indoor heat exchanger (31) and the temperature of the outdoor heat exchanger (22) are reversed does not occur.

これに基づいて、本発明では、切換不良判定部が、制御部(91)によるポート切換信号出力後に、圧縮機(40)の吐出冷媒温度と吸入冷媒温度との温度差が予め定められた温度差を下回り、かつ、室内熱交換器(31)の温度と室外熱交換器(22)の温度とが逆転しない場合に、四路切換弁(21)のポート切換不良であると判定することにより、圧縮機の低圧側及び高圧側の圧力検出センサや、熱源側冷媒圧検知センサ等の圧力センサを必要とすることなく、四路切換弁(21)のポート切換不良を判定可能としている。   Based on this, in the present invention, after the switching failure determination unit outputs the port switching signal by the control unit (91), the temperature difference between the discharge refrigerant temperature and the suction refrigerant temperature of the compressor (40) is determined in advance. By determining that the port switching failure of the four-way switching valve (21) is below the difference and the temperature of the indoor heat exchanger (31) and the temperature of the outdoor heat exchanger (22) are not reversed. Further, it is possible to determine the port switching failure of the four-way switching valve (21) without the need for pressure sensors such as the low pressure side and high pressure side pressure detection sensors of the compressor and the heat source side refrigerant pressure detection sensor.

本発明の請求項4に係る空気調和機は、請求項1に記載の空気調和装置であって、前記冷媒回路(10)における前記圧縮機(40)の吐出側に設けられ、当該圧縮機(40)から吐出された冷媒の温度を検出する吐出温度検出部(75)と、
前記冷媒回路(10)における前記圧縮機(40)の吸入側に設けられ、当該圧縮機(40)に吸入される冷媒の温度を検出する吸入温度検出部(73)とを更に備え、
前記切換不良判定部(92)は、前記制御部(91)によるポート切換信号出力後に、前記切換不良判定条件を満たし、かつ、前記吐出温度検出部(75)が検出した前記吐出冷媒の温度と、前記吸入温度検出部(73)が検出した前記吸入冷媒の温度との温度差が、予め定められた温度差を下回る場合に、前記四路切換弁(21)のポート切換不良であると判定するものである。
An air conditioner according to a fourth aspect of the present invention is the air conditioner according to the first aspect, wherein the air conditioner is provided on a discharge side of the compressor (40) in the refrigerant circuit (10), and the compressor ( 40) a discharge temperature detection unit (75) for detecting the temperature of the refrigerant discharged from
A suction temperature detector (73) provided on the suction side of the compressor (40) in the refrigerant circuit (10) and detecting the temperature of the refrigerant sucked into the compressor (40);
The switching failure determination unit (92) satisfies the switching failure determination condition and outputs the temperature of the discharged refrigerant detected by the discharge temperature detection unit (75) after the port switching signal is output by the control unit (91). When the temperature difference with the temperature of the suction refrigerant detected by the suction temperature detection unit (73) is less than a predetermined temperature difference, it is determined that the port switching failure of the four-way switching valve (21). To do.

この発明によれば、上記切換不良判定条件を満たすことに加えて、圧縮機(40)の吐出冷媒温度と吸入冷媒温度との温度差が予め定められた温度差を下回るという条件を満たした場合に、四路切換弁(21)のポート切換不良であると判定することにより、当該切換不良判定の正確性を高めている。   According to the present invention, in addition to satisfying the above switching failure determination condition, when the condition that the temperature difference between the discharge refrigerant temperature and the suction refrigerant temperature of the compressor (40) is less than a predetermined temperature difference is satisfied. Moreover, the accuracy of the switching failure determination is enhanced by determining that the port switching failure of the four-way switching valve (21) is detected.

本発明によれば、圧力センサを用いることなく四路切換弁の作動不良を検知することができ、空気調和装置の製造コストを低減することが可能になる。   According to the present invention, it is possible to detect a malfunction of the four-way switching valve without using a pressure sensor, and it is possible to reduce the manufacturing cost of the air conditioner.

本発明の一実施形態に係る空気調和装置の概略構成を示す冷媒回路図である。It is a refrigerant circuit figure showing a schematic structure of an air harmony device concerning one embodiment of the present invention. 四路切換弁の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of a four-way selector valve. コントローラの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of a controller. 空気調和装置による四路切換弁の切換不良判定処理の第1実施形態を示すフローチャートである。It is a flowchart which shows 1st Embodiment of the switching failure determination process of the four-way switching valve by an air conditioning apparatus. 暖房運転についてのポート状態から、冷房運転についてのポート状態に四路切換弁を切り換えた後における室内熱交換器温度及び室外熱交換器温度の推移を示す図であり、(a)は四路切換弁が正常に作動した場合を示す図、(b)は四路切換弁が作動不良の場合を示す図である。It is a figure which shows transition of the indoor heat exchanger temperature and the outdoor heat exchanger temperature after switching a four-way switching valve from the port state about heating operation to the port state about cooling operation, (a) is four-way switching The figure which shows the case where a valve operate | moves normally, (b) is a figure which shows the case where a four-way selector valve is a malfunctioning. (a)は暖房運転時における四路切換弁のスライド弁の正常な状態を示す図、(b)は冷房運転時における四路切換弁のスライド弁の正常な状態を示す図、(c)は四路切換弁のスライド弁の動作不良状態を示す図である。(A) is a figure which shows the normal state of the slide valve of a four-way selector valve at the time of heating operation, (b) is a figure which shows the normal state of the slide valve of the four-way selector valve at the time of cooling operation, (c) is It is a figure which shows the malfunctioning state of the slide valve of a four-way selector valve. 空気調和装置による四路切換弁の切換不良判定処理の第2実施形態を示すフローチャートである。It is a flowchart which shows 2nd Embodiment of the switching failure determination process of the four-way switching valve by an air conditioning apparatus. 暖房運転時のポート状態から、冷房運転時のポート状態に四路切換弁を切り換えた後における圧縮機の吐出冷媒温度及び吸入冷媒温度の推移を示す図であり、(a)は四路切換弁が正常に作動した場合を示す図、(b)は四路切換弁が作動不良の場合を示す図である。It is a figure which shows transition of the refrigerant | coolant discharge refrigerant | coolant temperature and suction | inhalation refrigerant | coolant temperature of a compressor after switching a four-way switching valve from the port state at the time of heating operation to the port state at the time of cooling operation, (a) is a four-way switching valve. The figure which shows the case where is operated normally, (b) is a figure which shows the case where a four-way selector valve is malfunctioning. 空気調和装置による四路切換弁の切換不良判定処理の第3実施形態を示すフローチャートである。It is a flowchart which shows 3rd Embodiment of the switching failure determination process of the four-way switching valve by an air conditioning apparatus. 空気調和装置によるポンプダウン完了判定処理を示すフローチャートである。It is a flowchart which shows the pump down completion determination process by an air conditioning apparatus. ポンプダウン完了判定を行う空気調和装置が備えるコントローラの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the controller with which the air conditioning apparatus which performs pump down completion determination is provided.

以下、図面に基づいて本発明の実施形態に係る空気調和装置、及び四路切換弁の切換不良判定方法につき詳細に説明する。   Hereinafter, an air conditioner according to an embodiment of the present invention and a switching failure determination method for a four-way switching valve will be described in detail with reference to the drawings.

<実施形態1>
図1は本発明の実施形態に係る空気調和装置の概略構成を示す冷媒回路図である。図1に示すように、空気調和装置1は、室外機2と室内機3とを備えている。また、空気調和装置1は、冷媒が循環して蒸気圧縮式冷凍サイクルを行う冷媒回路10を備えている。
<Embodiment 1>
FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of an air-conditioning apparatus according to an embodiment of the present invention. As shown in FIG. 1, the air conditioner 1 includes an outdoor unit 2 and an indoor unit 3. The air conditioner 1 also includes a refrigerant circuit 10 that performs a vapor compression refrigeration cycle by circulating the refrigerant.

冷媒回路10は、室外回路20、室内回路30、液側連絡管16、及びガス側連絡管17により構成されている。室外回路20と、室内回路30とは、液側連絡管16およびガス側連絡管17を介して接続されている。   The refrigerant circuit 10 includes an outdoor circuit 20, an indoor circuit 30, a liquid side communication pipe 16, and a gas side communication pipe 17. The outdoor circuit 20 and the indoor circuit 30 are connected via a liquid side communication pipe 16 and a gas side communication pipe 17.

室外回路20は、室外機2に収納されている。室外回路20には、圧縮機40、四路切換弁21、室外熱交換器22、膨張弁24、アキュームレータ23、液側閉鎖弁25、及びガス側閉鎖弁26が設けられている。   The outdoor circuit 20 is housed in the outdoor unit 2. The outdoor circuit 20 is provided with a compressor 40, a four-way switching valve 21, an outdoor heat exchanger 22, an expansion valve 24, an accumulator 23, a liquid side closing valve 25, and a gas side closing valve 26.

圧縮機40は、例えば密閉型のスクロール圧縮機である。圧縮機40は、圧縮機構と該圧縮機構を駆動する電動機とを、円筒状のハウジングに収納して構成されている。なお、前記圧縮機構および前記電動機は、詳しい図示を省略する。圧縮機40は、後述する制御部91による制御で、前記電動機の回転数が段階的にまたは連続的に変更されて、その容量が可変に構成されている。   The compressor 40 is, for example, a hermetic scroll compressor. The compressor 40 is configured by housing a compression mechanism and an electric motor that drives the compression mechanism in a cylindrical housing. The detailed illustration of the compression mechanism and the electric motor is omitted. The compressor 40 is configured to be variable in capacity by changing the rotational speed of the electric motor stepwise or continuously under the control of the control unit 91 described later.

圧縮機40には、低圧ガス管である吸入管43と、高圧ガス管である吐出管44とがそれぞれ接続されている。吸入管43は、圧縮機40へ吸入される冷媒が流通する。吐出管44は、圧縮機40から吐出される冷媒が流通する。吸入管43は、その入口端がアキュームレータ23を介して四路切換弁21のポートP4に接続され、その出口端が圧縮機40の吸入側に接続されている。吐出管44は、その入口端が圧縮機40の吐出側に接続され、その出口端が油分離器を介してのポートP1に接続されている。   A suction pipe 43 that is a low-pressure gas pipe and a discharge pipe 44 that is a high-pressure gas pipe are respectively connected to the compressor 40. In the suction pipe 43, the refrigerant sucked into the compressor 40 flows. The refrigerant discharged from the compressor 40 flows through the discharge pipe 44. The inlet end of the suction pipe 43 is connected to the port P4 of the four-way switching valve 21 via the accumulator 23, and the outlet end thereof is connected to the suction side of the compressor 40. The discharge pipe 44 has an inlet end connected to the discharge side of the compressor 40 and an outlet end connected to a port P1 through an oil separator.

室外熱交換器22は、例えばクロスフィン式のフィン・アンド・チューブ型熱交換器により構成されている。この室外熱交換器22では、冷媒回路10を循環する冷媒と室外空気とが熱交換を行う。室外熱交換器22の他端には分流器27が設けられ、液側連絡管16と配管接続されている。室外ファン70は、室外熱交換器22へ室外空気を送る。   The outdoor heat exchanger 22 is configured by, for example, a cross fin type fin-and-tube heat exchanger. In the outdoor heat exchanger 22, the refrigerant circulating in the refrigerant circuit 10 and the outdoor air exchange heat. A flow divider 27 is provided at the other end of the outdoor heat exchanger 22 and connected to the liquid side communication pipe 16 by piping. The outdoor fan 70 sends outdoor air to the outdoor heat exchanger 22.

アキュームレータ23は、円筒状の容器であって、液冷媒とガス冷媒を分離してガス冷媒を圧縮機40に吸入させるために、分離した液冷媒を貯留する。アキュームレータ23は、四路切換弁21と圧縮機40とを繋ぐ吸入管43に設けられている。   The accumulator 23 is a cylindrical container, and stores the separated liquid refrigerant so that the liquid refrigerant and the gas refrigerant are separated and the gas refrigerant is sucked into the compressor 40. The accumulator 23 is provided in a suction pipe 43 that connects the four-way switching valve 21 and the compressor 40.

また、室外機2には、各種のセンサが設けられている。具体的には、室外機2には、室外機2に吸い込まれる室外空気の温度を検出するための外気温センサ71が設けられている。室外機2において、室外熱交換器22の一端に位置する分流器27には、分流器27の管温度を検出するための温度センサ72(デアイササーミスタ)が設けられている。また、室外熱交換器22に、その内部の冷媒温度を検出するための室外熱交換器温度センサ76が設けられている。室外熱交換器温度センサ76は、後述の冷房運転時に凝縮温度を検出する一方、暖房運転時に蒸発温度を検出する。さらに、膨張弁24と液側閉鎖弁25との間には液管温度センサ61が設けられている。なお、膨張弁24と後述の室内熱交換器31との間の配管を、以下、液冷媒配管11という。前述の液側連絡管16は液冷媒配管11に含まれる。液管温度センサ61は、液管温度センサ61が設けられている部分の液冷媒配管11の温度を検出する。   The outdoor unit 2 is provided with various sensors. Specifically, the outdoor unit 2 is provided with an outside air temperature sensor 71 for detecting the temperature of the outdoor air sucked into the outdoor unit 2. In the outdoor unit 2, the flow divider 27 located at one end of the outdoor heat exchanger 22 is provided with a temperature sensor 72 (deisathermistor) for detecting the tube temperature of the flow divider 27. The outdoor heat exchanger 22 is provided with an outdoor heat exchanger temperature sensor 76 for detecting the refrigerant temperature inside the outdoor heat exchanger 22. The outdoor heat exchanger temperature sensor 76 detects the condensation temperature during the cooling operation described later, and detects the evaporation temperature during the heating operation. Further, a liquid pipe temperature sensor 61 is provided between the expansion valve 24 and the liquid side closing valve 25. A pipe between the expansion valve 24 and an indoor heat exchanger 31 described later is hereinafter referred to as a liquid refrigerant pipe 11. The liquid side communication pipe 16 described above is included in the liquid refrigerant pipe 11. The liquid pipe temperature sensor 61 detects the temperature of the liquid refrigerant pipe 11 in the portion where the liquid pipe temperature sensor 61 is provided.

圧縮機40の吸入管43には、圧縮機40に吸入される冷媒の温度である吸入温度を検出(例えば、吸入管43の温度を当該吸入冷媒の温度として検出)するための吸入冷媒温度センサ73(吸入温度検出部)が設けられている。吐出管44には、圧縮機40から吐出される冷媒の温度である吐出温度を検出(例えば、吐出管44の温度を当該吐出冷媒の温度として検出)するための吐出冷媒温度センサ75(吐出温度検出部)が設けられている。   The intake pipe 43 of the compressor 40 has an intake refrigerant temperature sensor for detecting the intake temperature, which is the temperature of the refrigerant sucked into the compressor 40 (for example, detecting the temperature of the intake pipe 43 as the temperature of the intake refrigerant). 73 (intake temperature detection unit) is provided. The discharge pipe 44 is provided with a discharge refrigerant temperature sensor 75 (discharge temperature) for detecting a discharge temperature that is the temperature of the refrigerant discharged from the compressor 40 (for example, detecting the temperature of the discharge pipe 44 as the temperature of the discharge refrigerant). Detection section) is provided.

さらに、室外機2には、コントローラ90が設けられている。コントローラ90は、上記のセンサ類からの信号やリモコン等からの指令信号を受けて空気調和装置1の運転制御を行う。   Furthermore, the outdoor unit 2 is provided with a controller 90. The controller 90 controls the operation of the air conditioner 1 in response to signals from the sensors and a command signal from a remote controller or the like.

室内機3には、室内回路30が設けられている。室内回路30には、室内熱交換器31が設けられている。室内熱交換器31は、例えは、クロスフィン式のフィン・アンド・チューブ型熱交換器により構成されている。室内熱交換器31では、冷媒回路10を循環する冷媒と室内空気とが熱交換を行う。さらに室内機3には、室内ファン80が設けられている。この室内ファン80は、室内熱交換器31に室内空気を送る。   The indoor unit 3 is provided with an indoor circuit 30. The indoor circuit 30 is provided with an indoor heat exchanger 31. The indoor heat exchanger 31 is configured by, for example, a cross fin type fin-and-tube heat exchanger. In the indoor heat exchanger 31, the refrigerant circulating in the refrigerant circuit 10 and the room air exchange heat. Furthermore, the indoor unit 3 is provided with an indoor fan 80. The indoor fan 80 sends room air to the indoor heat exchanger 31.

液側連絡管16は、その一端が液側閉鎖弁25に接続され、他端が室内回路30における室内熱交換器31の一端側となる分流器32に接続されている。ガス側連絡管17は、その一端がガス側閉鎖弁26に接続され、他端が室内熱交換器31の他端側に接続されている。なお、四路切換弁21との室内熱交換器31との間の配管を、以下、ガス冷媒配管12という。ガス側連絡管17はガス冷媒配管12に含まれる。   One end of the liquid side communication pipe 16 is connected to the liquid side closing valve 25, and the other end is connected to a flow divider 32 that is one end side of the indoor heat exchanger 31 in the indoor circuit 30. One end of the gas side communication pipe 17 is connected to the gas side closing valve 26, and the other end is connected to the other end side of the indoor heat exchanger 31. The pipe between the four-way switching valve 21 and the indoor heat exchanger 31 is hereinafter referred to as a gas refrigerant pipe 12. The gas side communication pipe 17 is included in the gas refrigerant pipe 12.

室内機3には、温度センサや湿度センサが設けられている。具体的に、この室内機3には、吸込風温センサ81、分流温度センサ84及び室内熱交換器温度センサ85が設けられている。吸込風温センサ81は、室内機3へ吸い込まれる室内空気の温度、すなわち室内機3の吸込風温を検出する。分流温度センサ84は、室内熱交換器31の一端に位置する分流器32に設けられ、分流器32の管温度を検出する。室内熱交換器温度センサ85は、室内熱交換器31の内部の冷媒温度を検出する。すなわち、室内熱交換器温度センサ85は、後述の冷房運転時に蒸発温度を検出する一方、暖房運転時に凝縮温度を検出する。   The indoor unit 3 is provided with a temperature sensor and a humidity sensor. Specifically, the indoor unit 3 is provided with a suction air temperature sensor 81, a shunt temperature sensor 84, and an indoor heat exchanger temperature sensor 85. The intake air temperature sensor 81 detects the temperature of the indoor air sucked into the indoor unit 3, that is, the intake air temperature of the indoor unit 3. The shunt temperature sensor 84 is provided in the shunt 32 located at one end of the indoor heat exchanger 31 and detects the tube temperature of the shunt 32. The indoor heat exchanger temperature sensor 85 detects the refrigerant temperature inside the indoor heat exchanger 31. That is, the indoor heat exchanger temperature sensor 85 detects the evaporation temperature during the cooling operation described later, and detects the condensation temperature during the heating operation.

図2は四路切換弁21の概略構成を示す図である。四路切換弁21には、圧縮機の吐出側に接続する吐出ポートP1、2つの切換ポートP3,P2、及び圧縮機40の吸入側に接続する吸入ポートP4を有するバルブ本体212と、その内部で切換ポートP3,P2の接続先を切換えるためのバルブシート213、スライド弁(ポート切換弁)214及びピストン215,216が含まれる。スライド弁214は、ばね217によって、図2に示す状態、すなわち切換ポートP3が吸入ポートP4に導通し、切換ポートP2が吐出ポートP1に導通する状態を維持するように付勢される。パイロットバルブ218を、コイル219に電流を流して切換えると、ピストン216側を吸引し、スライド弁214をバルブシート213に対して、図2では右方に摺動移動させ、切換ポートP3,P2には吸入ポートP4及び吐出ポートP1がそれぞれ導通するように切換えることができる。   FIG. 2 is a diagram showing a schematic configuration of the four-way switching valve 21. The four-way switching valve 21 includes a valve body 212 having a discharge port P1, two switching ports P3, P2 connected to the discharge side of the compressor, and a suction port P4 connected to the suction side of the compressor 40, and the inside thereof. The valve seat 213, the slide valve (port switching valve) 214, and the pistons 215 and 216 for switching the connection destination of the switching ports P3 and P2 are included. The slide valve 214 is biased by the spring 217 so as to maintain the state shown in FIG. 2, that is, the state in which the switching port P3 is electrically connected to the suction port P4 and the switching port P2 is electrically connected to the discharge port P1. When the pilot valve 218 is switched by passing an electric current through the coil 219, the piston 216 side is sucked, and the slide valve 214 is slid rightward in FIG. 2 with respect to the valve seat 213, and is switched to the switching ports P3 and P2. Can be switched so that the suction port P4 and the discharge port P1 are conductive.

四路切換弁21は、ポートP3がガス側閉鎖弁26と配管接続され、ポートP2が室外熱交換器22の一端と配管接続されている。四路切換弁21は、ポートP1とポートP2が連通し、かつ、ポートP3とポートP4が連通する状態(図1に実線で示す状態)と、ポートP1とポートP3が連通し、かつ、ポートP2とポートP4が連通する状態(図1に破線で示す状態)とに切り換わる。この四路切換弁21の切換動作によって、冷媒回路10における冷媒の循環方向が反転する。   In the four-way switching valve 21, the port P <b> 3 is connected to the gas side closing valve 26 by piping, and the port P <b> 2 is connected to one end of the outdoor heat exchanger 22 by piping. The four-way switching valve 21 is configured such that the port P1 and the port P2 communicate with each other, the port P3 and the port P4 communicate with each other (the state indicated by the solid line in FIG. 1), the port P1 and the port P3 communicate with each other, and The state is switched to a state where P2 and port P4 communicate with each other (a state indicated by a broken line in FIG. 1). By the switching operation of the four-way switching valve 21, the refrigerant circulation direction in the refrigerant circuit 10 is reversed.

図3は、コントローラ90の概略構成を示すブロック図である。コントローラ90は、制御部91と、切換不良判定部92と、入力受付部93とを備えている。   FIG. 3 is a block diagram illustrating a schematic configuration of the controller 90. The controller 90 includes a control unit 91, a switching failure determination unit 92, and an input reception unit 93.

制御部91は、空気調和装置1の運転制御を行う。すなわち制御部91は、膨張弁24の開度調節や、四路切換弁21の切り換え、圧縮機40の駆動制御(回転数制御)、室外ファン70および室内ファン80の送風量制御等を行う。   The control unit 91 performs operation control of the air conditioner 1. That is, the control unit 91 performs adjustment of the opening degree of the expansion valve 24, switching of the four-way switching valve 21, driving control of the compressor 40 (rotational speed control), air volume control of the outdoor fan 70 and the indoor fan 80, and the like.

切換不良判定部92は、制御部91による四路切換弁21へのポート切換信号出力後に、室内熱交換器温度センサ85が検出した室内熱交換器31の温度の温度変化率と、室外熱交換器温度センサ76が検出した室外熱交換器22の温度の温度変化率の両方が予め定められた範囲を外れて下回るか否かの判断、さらには、室内熱交換器31の上記温度と、室外熱交換器22の上記温度とが逆転するか否かという切換不良判定条件を満たすかの判断に基づいて、四路切換弁21のポート切換が不良であるか否か、さらには、圧縮機40が動作不良か否かを判定する。   The switching failure determination unit 92 outputs the temperature change rate of the temperature of the indoor heat exchanger 31 detected by the indoor heat exchanger temperature sensor 85 and the outdoor heat exchange after the port switching signal is output to the four-way switching valve 21 by the control unit 91. Whether the temperature change rate of the temperature of the outdoor heat exchanger 22 detected by the outdoor temperature sensor 76 falls outside a predetermined range, and further, the temperature of the indoor heat exchanger 31 and the outdoor temperature Based on the determination as to whether or not the switching failure determination condition of whether or not the temperature of the heat exchanger 22 is reversed is satisfied, whether or not the port switching of the four-way switching valve 21 is defective, and further, the compressor 40 It is determined whether or not is malfunctioning.

また、切換不良判定部92は、制御部91による四路切換弁21へのポート切換信号出力後に、吐出冷媒温度センサ75が検出した吐出冷媒の温度と、吸入冷媒温度センサ73が検出した上記吸入冷媒の温度との温度差が、予め定められた温度差を下回り、かつ、室内熱交換器31の上記温度と、室外熱交換器22の上記温度とが逆転しない場合に、四路切換弁21のポート切換が不良であると判定する。   Further, the switching failure determination unit 92 outputs the temperature of the discharged refrigerant detected by the discharged refrigerant temperature sensor 75 and the suction detected by the suction refrigerant temperature sensor 73 after the port switching signal is output to the four-way switching valve 21 by the control unit 91. When the temperature difference with the refrigerant temperature is less than a predetermined temperature difference and the temperature of the indoor heat exchanger 31 and the temperature of the outdoor heat exchanger 22 are not reversed, the four-way switching valve 21 Is determined to be defective.

また、切換不良判定部92は、制御部91による四路切換弁21へのポート切換信号出力時からの経過時間を計測可能なタイマ921を内蔵している。   Further, the switching failure determination unit 92 has a built-in timer 921 that can measure an elapsed time from when the control unit 91 outputs the port switching signal to the four-way switching valve 21.

次に、空気調和装置1の運転動作を説明する。空気調和装置1の運転時には、冷媒回路10において冷媒が相変化しつつ循環して蒸気圧縮式の冷凍サイクルが行われる。この空気調和装置1は、冷房運転と暖房運転とを行う。   Next, the operation of the air conditioner 1 will be described. When the air conditioner 1 is in operation, the refrigerant circulates while changing phase in the refrigerant circuit 10 to perform a vapor compression refrigeration cycle. The air conditioner 1 performs a cooling operation and a heating operation.

《冷房運転》冷房運転時には、室内熱交換器31が蒸発器として機能し、冷却動作が行われる。この冷房運転時において、四路切換弁21は、図1に実線で示す状態となる。膨張弁24は、コントローラ90の制御部91により、所定の開度に調節される。   << Cooling Operation >> During the cooling operation, the indoor heat exchanger 31 functions as an evaporator, and a cooling operation is performed. During the cooling operation, the four-way switching valve 21 is in a state indicated by a solid line in FIG. The expansion valve 24 is adjusted to a predetermined opening degree by the controller 91 of the controller 90.

圧縮機40を運転すると、この圧縮機40で圧縮された冷媒が吐出管44へ吐出される。この吐出冷媒は、四路切換弁21を通り、室外熱交換器22へ流入する。室外熱交換器22では、冷媒が室外空気へ放熱して凝縮する。なお、圧縮機40には、その後、冷媒は、液側連絡管16から室内回路30へ送られる。   When the compressor 40 is operated, the refrigerant compressed by the compressor 40 is discharged to the discharge pipe 44. This discharged refrigerant passes through the four-way switching valve 21 and flows into the outdoor heat exchanger 22. In the outdoor heat exchanger 22, the refrigerant dissipates heat to the outdoor air and condenses. The refrigerant is then sent to the compressor 40 from the liquid side communication pipe 16 to the indoor circuit 30.

室内回路30へ流入した冷媒は、室内熱交換器31へ導入される。室内熱交換器31では、冷媒が室内空気から吸熱して蒸発する。つまり、室内回路30へ導入された冷媒は、室内熱交換器31で蒸発し、その結果、室内空気が冷却される。   The refrigerant that has flowed into the indoor circuit 30 is introduced into the indoor heat exchanger 31. In the indoor heat exchanger 31, the refrigerant absorbs heat from the indoor air and evaporates. That is, the refrigerant introduced into the indoor circuit 30 evaporates in the indoor heat exchanger 31, and as a result, the indoor air is cooled.

室内熱交換器31で蒸発した冷媒は、ガス側連絡管17を通って室外回路20へ流入する。その後、冷媒は、四路切換弁21を通過し、吸入管43およびアキュームレータ23を通って圧縮機40に吸入される。圧縮機40は、吸入した吸入冷媒を圧縮して再び吐出する。冷媒回路10では、このような冷媒の循環が繰り返される。   The refrigerant evaporated in the indoor heat exchanger 31 flows into the outdoor circuit 20 through the gas side communication pipe 17. Thereafter, the refrigerant passes through the four-way switching valve 21 and is sucked into the compressor 40 through the suction pipe 43 and the accumulator 23. The compressor 40 compresses the sucked refrigerant and discharges it again. In the refrigerant circuit 10, such circulation of the refrigerant is repeated.

また、コントローラ90の制御部91は、前述のように膨張弁24の開度調節を行う。その際、制御部91は、室内熱交換器31から流出し、圧縮機40に吸入されるガス冷媒の過熱度が一定となるように、膨張弁24の開度を調節する。具体的には、吸入冷媒温度センサ73の検出温度と室内熱交換器温度センサ85の検出温度の差が所定値に保たれるように、膨張弁24の開度が適宜変更される。   The controller 91 of the controller 90 adjusts the opening degree of the expansion valve 24 as described above. At that time, the control unit 91 adjusts the opening degree of the expansion valve 24 so that the degree of superheat of the gas refrigerant flowing out of the indoor heat exchanger 31 and sucked into the compressor 40 becomes constant. Specifically, the opening degree of the expansion valve 24 is appropriately changed so that the difference between the detected temperature of the intake refrigerant temperature sensor 73 and the detected temperature of the indoor heat exchanger temperature sensor 85 is maintained at a predetermined value.

《暖房運転》暖房運転時には、室内熱交換器31が凝縮器として機能し、加熱動作が行われる。この暖房運転時において、四路切換弁21は、図1に破線で示す状態となる。そして、膨張弁24は所定の開度に調節される。   << Heating Operation >> During the heating operation, the indoor heat exchanger 31 functions as a condenser, and a heating operation is performed. During the heating operation, the four-way switching valve 21 is in a state indicated by a broken line in FIG. The expansion valve 24 is adjusted to a predetermined opening.

圧縮機40を運転すると、この圧縮機40で圧縮された冷媒が吐出管44へ吐出される。この冷媒は、四路切換弁21からガス側閉鎖弁26に向かって流れ、ガス側連絡管17を通って室内回路30に流入する。   When the compressor 40 is operated, the refrigerant compressed by the compressor 40 is discharged to the discharge pipe 44. The refrigerant flows from the four-way switching valve 21 toward the gas-side closing valve 26 and flows into the indoor circuit 30 through the gas-side communication pipe 17.

室内回路30へ流入した冷媒は、室内熱交換器31へ導入される。室内熱交換器31では、冷媒が室内空気へ放熱して凝縮する。つまり、室内回路30へ導入された冷媒は、室内熱交換器31で凝縮し、その結果、室内空気が加熱される。   The refrigerant that has flowed into the indoor circuit 30 is introduced into the indoor heat exchanger 31. In the indoor heat exchanger 31, the refrigerant dissipates heat to the indoor air and condenses. That is, the refrigerant introduced into the indoor circuit 30 is condensed in the indoor heat exchanger 31, and as a result, the indoor air is heated.

室内熱交換器31で凝縮した冷媒は、液側連絡管16を通って室外回路20へ流入する。その後、冷媒は、膨張弁24で減圧された後に、室外熱交換器22へ導入される。   The refrigerant condensed in the indoor heat exchanger 31 flows into the outdoor circuit 20 through the liquid side communication pipe 16. Thereafter, the refrigerant is decompressed by the expansion valve 24 and then introduced into the outdoor heat exchanger 22.

室外熱交換器22では、冷媒が室外空気から吸熱して蒸発する。室外熱交換器22で蒸発した冷媒は、四路切換弁21を通過し、吸入管43を通って圧縮機40に吸入される。圧縮機40は、吸入した冷媒を圧縮して再び吐出する。冷媒回路10では、このような冷媒の循環が繰り返される。   In the outdoor heat exchanger 22, the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant evaporated in the outdoor heat exchanger 22 passes through the four-way switching valve 21 and is sucked into the compressor 40 through the suction pipe 43. The compressor 40 compresses the sucked refrigerant and discharges it again. In the refrigerant circuit 10, such circulation of the refrigerant is repeated.

また、コントローラ90の制御部91は、前述のように膨張弁24の開度調節を行う。その際、制御部91は、室外熱交換器22から流出し、圧縮機40に吸入されるガス冷媒の過熱度が一定となるように、膨張弁24の開度を調節する。具体的には、吸入冷媒温度センサ73の検出温度と室外熱交換器温度センサ76の検出温度の差が所定値に保たれるように、膨張弁24の開度が適宜変更される。   The controller 91 of the controller 90 adjusts the opening degree of the expansion valve 24 as described above. At that time, the control unit 91 adjusts the opening degree of the expansion valve 24 so that the degree of superheat of the gas refrigerant flowing out of the outdoor heat exchanger 22 and sucked into the compressor 40 becomes constant. Specifically, the opening degree of the expansion valve 24 is appropriately changed so that the difference between the temperature detected by the intake refrigerant temperature sensor 73 and the temperature detected by the outdoor heat exchanger temperature sensor 76 is maintained at a predetermined value.

次に、空気調和装置1による四路切換弁21の切換不良判定処理(四路切換弁の切換不良判定方法)の第1実施形態を説明する。図4は、空気調和装置1による四路切換弁21の切換不良判定処理の第1実施形態を示すフローチャートである。図5は、暖房運転についてのポート状態から、冷房運転についてのポート状態に四路切換弁21を切り換えた後における室内熱交換器温度及び室外熱交換器温度の推移を示す図であり、(a)は四路切換弁21が正常に作動した場合を示す図、(b)は四路切換弁21が作動不良の場合を示す図である。図6(a)は暖房運転時における四路切換弁21のスライド弁214の正常な状態を示す図、(b)は冷房運転時における四路切換弁21のスライド弁214の正常な状態を示す図、(c)は四路切換弁21のスライド弁214の動作不良状態を示す図である。   Next, a first embodiment of a switching failure determination process (a switching failure determination method for a four-way switching valve) of the four-way switching valve 21 by the air conditioner 1 will be described. FIG. 4 is a flowchart showing the first embodiment of the switching failure determination process for the four-way switching valve 21 by the air conditioner 1. FIG. 5 is a diagram showing changes in the indoor heat exchanger temperature and the outdoor heat exchanger temperature after switching the four-way switching valve 21 from the port state for the heating operation to the port state for the cooling operation. ) Is a diagram illustrating a case where the four-way switching valve 21 is normally operated, and (b) is a diagram illustrating a case where the four-way switching valve 21 is malfunctioning. 6A shows a normal state of the slide valve 214 of the four-way switching valve 21 during the heating operation, and FIG. 6B shows a normal state of the slide valve 214 of the four-way switching valve 21 during the cooling operation. FIG. 4C is a diagram showing a malfunctioning state of the slide valve 214 of the four-way switching valve 21.

空気調和装置1において冷暖房運転の切換時や、又は暖房運転からデフロスト運転への切換時等に、四路切換弁21のポートを切り換えるために、制御部91が、四路切換弁21にポート切換信号を送信すると(S1でYES)、切換不良判定部92のタイマ921が、制御部91による四路切換弁21へのポート切換信号出力時からの経過時間の計測を開始する(S2)。   The controller 91 switches the port of the four-way switching valve 21 to the four-way switching valve 21 in order to switch the port of the four-way switching valve 21 when the air-conditioning apparatus 1 is switched between cooling and heating operations or when switching from heating operation to defrost operation. When the signal is transmitted (YES in S1), the timer 921 of the switching failure determination unit 92 starts measuring the elapsed time from when the control unit 91 outputs the port switching signal to the four-way switching valve 21 (S2).

切換不良判定部92は、室内熱交換器温度センサ85から、当該室内熱交換器温度センサ85が検出した室内熱交換器31の温度Th3のサンプリングを開始し(S3)、室外熱交換器温度センサ76から、当該室外熱交換器温度センサ76が検出した室外熱交換器22の温度Tmのサンプリングを開始する(S4)。   The switching failure determination unit 92 starts sampling the temperature Th3 of the indoor heat exchanger 31 detected by the indoor heat exchanger temperature sensor 85 from the indoor heat exchanger temperature sensor 85 (S3), and the outdoor heat exchanger temperature sensor. From 76, sampling of the temperature Tm of the outdoor heat exchanger 22 detected by the outdoor heat exchanger temperature sensor 76 is started (S4).

さらに、切換不良判定部92は、上記タイマ921によって、予め定められた一定時間(単位時間)tの経過が計測されると、当該経過時間における室内熱交換器温度Th3の温度変化率ΔTh3を算出すると共に(S5)、当該経過時間における室外熱交換器温度Tmの温度変化率ΔTmを算出する(S6)。この予め定められた一定時間tは、四路切換弁21のポートが正常に切り換えられたとした場合に室内熱交換器温度Th3と室外熱交換器温度Tmとの関係が逆転すると想定される、S1での制御部91による四路切換弁21へのポート切換信号出力時からの経過時間である。   Further, when the timer 921 measures the elapse of a predetermined time (unit time) t, the switching failure determination unit 92 calculates the temperature change rate ΔTh3 of the indoor heat exchanger temperature Th3 during the elapse time. At the same time (S5), the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm at the elapsed time is calculated (S6). This predetermined time t is assumed that the relationship between the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm is reversed when the port of the four-way switching valve 21 is normally switched. It is the elapsed time from the time of the port switching signal output to the four-way switching valve 21 by the control unit 91 in FIG.

サンプリング開始時点でサンプリングした温度をTh1、上記予め定められた一定時間をt、サンプリング開始時点から上記予め定められた一定時間tの経過後にサンプリングした温度をTh2としたとき、S5及びS6において、切換不良判定部92は、上記経過時間における室内熱交換器温度Th3の温度変化率ΔTh3と、上記経過時間における室外熱交換器温度Tmの温度変化率ΔTmとを、それぞれ以下の式に基づいて算出する。   In S5 and S6, the temperature sampled at the sampling start time is Th1, the predetermined time t is the predetermined time, and the temperature sampled after the predetermined time t has elapsed from the sampling start time is Th2. The defect determination unit 92 calculates the temperature change rate ΔTh3 of the indoor heat exchanger temperature Th3 during the elapsed time and the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm during the elapsed time based on the following equations, respectively. .

温度変化率ΔTm,ΔTh3=(Th1−Th2)/t
そして、切換不良判定部92は、室内熱交換器温度Th3の温度変化率ΔTh3が予め定められた範囲Ta(第1の範囲)を外れて下回っているか否かと、室外熱交換器温度Tmの温度変化率ΔTmが予め定められた範囲Ta(第2の範囲)を外れて下回っているかを判断する(S7)。
Temperature change rate ΔTm, ΔTh3 = (Th1-Th2) / t
Then, the switching failure determination unit 92 determines whether or not the temperature change rate ΔTh3 of the indoor heat exchanger temperature Th3 is below a predetermined range Ta 1 (first range), and whether the outdoor heat exchanger temperature Tm It is determined whether or not the temperature change rate ΔTm is outside a predetermined range Ta 2 (second range) (S7).

予め定められた範囲Ta,Taは以下の通りである。例えば、空気調和装置1の運転動作が暖房運転から冷房運転に切り換えられ、四路切換弁21が正常に動作して、図6(a)に示す状態(P1とP3が導通、P2P4が導通)から、図6(b)に示す状態(P3とP4が導通、P1とP2が導通)に切り換えられて、圧縮機40から吐出される高圧冷媒の流入先が室内熱交換器31から室外熱交換器22に変わる場合、室内熱交換器温度Th3の温度変化率ΔTh3に対しては、室内熱交換器31が蒸発器として機能していた時点から、当該室内熱交換器31が凝縮器として正常に機能した時点までにおける基準温度変化率α(各空気調和装置1の性能(圧縮機性能、冷媒性質、配管長等)に基づいて、予め測定されているものとする)以上の範囲が、上記予め定められた範囲Taとされる。例えば、室内熱交換器温度Th3の温度変化率ΔTh3に対して用いられる予め定められた範囲Taは、基準温度変化率α≦Taとして定められる。なお、この場合における基準温度変化率αは、温度下降率となる。 The predetermined ranges Ta 1 and Ta 2 are as follows. For example, the operation of the air conditioner 1 is switched from the heating operation to the cooling operation, the four-way switching valve 21 operates normally, and the state shown in FIG. 6A (P1 and P3 are conductive, P2P4 is conductive) 6 (b) (P3 and P4 are conductive, P1 and P2 are conductive), and the inflow destination of the high-pressure refrigerant discharged from the compressor 40 is exchanged from the indoor heat exchanger 31 to the outdoor heat exchange. In the case of changing to the condenser 22, the indoor heat exchanger 31 is normally used as a condenser from the time when the indoor heat exchanger 31 functions as an evaporator with respect to the temperature change rate ΔTh3 of the indoor heat exchanger temperature Th3. A range above the reference temperature change rate α (assumed to be measured in advance based on the performance (compressor performance, refrigerant properties, pipe length, etc.) of each air conditioner 1) up to the time of functioning is a range Ta 1 defined . For example, the predetermined range Ta 1 used for the temperature change rate ΔTh3 of the indoor heat exchanger temperature Th3 is determined as the reference temperature change rate α ≦ Ta 1 . In this case, the reference temperature change rate α is a temperature decrease rate.

一方、室外熱交換器温度Tmの温度変化率ΔTmに対しては、室外熱交換器22が凝縮器として機能していた時点から、当該室外熱交換器22が蒸発器として正常に機能した時点までにおける基準温度変化率(各空気調和装置1の性能(圧縮機性能、冷媒性質、配管長等)に基づいて、予め測定されているものとする)以上の範囲が、上記予め定められた範囲Taとされる。例えば、室外熱交換器温度Tmの温度変化率ΔTmに対して用いられる予め定められた範囲Taは、基準温度変化率β≦Taとして定められる。なお、この場合における基準温度変化率βは、温度上昇率となる。 On the other hand, for the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm, from the time when the outdoor heat exchanger 22 functions as a condenser to the time when the outdoor heat exchanger 22 functions normally as an evaporator. The range above the reference temperature change rate (assumed to be measured in advance based on the performance (compressor performance, refrigerant properties, pipe length, etc.) of each air conditioner 1) is the predetermined range Ta 2 . For example, the predetermined range Ta 2 used for the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm is determined as the reference temperature change rate β ≦ Ta 2 . In this case, the reference temperature change rate β is a temperature increase rate.

当該予め定められた範囲Ta,Taは、上記のように各空気調和装置1の性能に応じて測定された基準温度変化率に基づいて予め定められ、切換不良判定部92に記憶されている。従って、予め定められた範囲Ta,Taは、例えば室内熱交換器31、室外熱交換器22のそれぞれの性能に応じて、それぞれ別個に定められた値が用いられることになる。 The predetermined ranges Ta 1 and Ta 2 are predetermined based on the reference temperature change rate measured according to the performance of each air conditioner 1 as described above, and stored in the switching failure determination unit 92. Yes. Therefore, for the predetermined ranges Ta 1 and Ta 2 , separately determined values are used according to the performances of the indoor heat exchanger 31 and the outdoor heat exchanger 22, for example.

ここで、切換不良判定部92は、室内熱交換器温度Th3の温度変化率ΔTh3が予め定められた範囲Ta内であり、かつ、室外熱交換器温度Tmの温度変化率ΔTmが予め定められた範囲Ta内であると判断した場合は(S7でNO)、上記四路切換弁21へのポート切換信号の送信に基づいて、四路切換弁21のスライド弁214は正常に動作し、及び圧縮機40は正常に動作して正しくポートを切り換えたと判定し(S12)、処理を終了する。 Here, not switch properly determining unit 92, the temperature change rate ΔTh3 of the indoor heat exchanger temperature Th3 is is within the range Ta 1 predetermined, and the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm is determined in advance If it is determined that it is within the range Ta 2 (NO in S7), the slide valve 214 of the four-way switching valve 21 operates normally based on the transmission of the port switching signal to the four-way switching valve 21. The compressor 40 operates normally and determines that the port has been switched correctly (S12), and the process ends.

一方、切換不良判定部92が、室内熱交換器温度Th3の温度変化率ΔTh3が予め定められた範囲Taから外れて下回り、かつ、室外熱交換器温度Tmの温度変化率ΔTmが予め定められた範囲Taから外れて下回ると判断した場合は(S7でYES)、さらに、S3及びS4でのサンプリング開始当初の室内熱交換器温度Th3と室外熱交換器温度Tmの関係(暖房運転時Th3>Tm、又は冷房運転時Th3<Tm)が、この時点(S1での制御部91による四路切換弁21へのポート切換信号出力時から上記予め定められた一定期間の経過後の時点)で逆転しているかを判断する(S8)。当該予め定められた期間とは、四路切換弁21のポートが正常に切り換えられたとした場合に室内熱交換器温度Th3と室外熱交換器温度Tmとの関係が逆転すると想定される、S1での制御部91による四路切換弁21へのポート切換信号出力時からの経過時間である。 On the other hand, not switch properly determining section 92, below out of range Ta 1 in which the temperature change rate ΔTh3 of the indoor heat exchanger temperature Th3 is predetermined, and the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm is determined in advance If it is determined that the value falls outside the range Ta 2 (YES in S7), the relationship between the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm at the beginning of sampling in S3 and S4 (Th3 during heating operation) > Tm, or Th3 <Tm at the time of cooling operation, at this time (the time after the passage of the predetermined period from the time when the port switching signal is output to the four-way switching valve 21 by the controller 91 in S1). It is determined whether the rotation is reversed (S8). The predetermined period is assumed to be that when the port of the four-way switching valve 21 is normally switched, the relationship between the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm is reversed. Is the elapsed time from when the port switching signal is output to the four-way switching valve 21 by the controller 91.

ここで、上記予め定められた一定期間tの経過後において、S3及びS4でのサンプリング開始当初の室内熱交換器温度Th3と室外熱交換器温度Tmの関係が逆転していると、切換不良判定部92が判断した場合は(S8でYES)、上記四路切換弁21へのポート切換信号の送信に基づいて四路切換弁21のスライド弁214は正常に動作し、及び圧縮機40は正常に動作して正しくポートを切り換えたと判定し(S12)、処理を終了する。   If the relationship between the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm at the beginning of sampling in S3 and S4 is reversed after the predetermined period t has elapsed, the switching failure determination is made. If the unit 92 determines (YES in S8), the slide valve 214 of the four-way switching valve 21 operates normally based on the transmission of the port switching signal to the four-way switching valve 21, and the compressor 40 is normal. It is determined that the port has been correctly switched (S12), and the process ends.

例えば、空気調和装置1の運転動作を暖房運転から冷房運転に切り換えた場合、四路切換弁21が正常に動作して、図6(a)に示す状態(P1とP3が導通、P2P4が導通)から、図6(b)に示す状態(P3とP4が導通、P1とP2が導通)に切り換えられた場合、圧縮機40から吐出される高圧冷媒の流入先が室内熱交換器31から室外熱交換器22に変わり、それまで蒸発器として機能していた室内熱交換器31が凝縮器として機能し、図5(a)に示すように、基準温度変化率α,β(或いは、少なくとも予め定められた範囲Ta,Ta内の温度変化率)で、室内熱交換器温度Th3が下降し、室外熱交換器温度Tmが上昇する。そして、室内熱交換器温度Th3と室外熱交換器温度Tmが逆転する。 For example, when the operation of the air conditioner 1 is switched from the heating operation to the cooling operation, the four-way switching valve 21 operates normally, and the state shown in FIG. 6A (P1 and P3 are conductive, P2P4 is conductive) ) To the state shown in FIG. 6B (P3 and P4 are conductive and P1 and P2 are conductive), the inflow destination of the high-pressure refrigerant discharged from the compressor 40 is changed from the indoor heat exchanger 31 to the outdoor. Instead of the heat exchanger 22, the indoor heat exchanger 31 that has been functioning as an evaporator until then functions as a condenser, and as shown in FIG. 5A, the reference temperature change rates α, β (or at least in advance) In the predetermined ranges Ta 1 and Ta 2 ), the indoor heat exchanger temperature Th3 decreases and the outdoor heat exchanger temperature Tm increases. Then, the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm are reversed.

しかし、図6(c)に示すように、四路切換弁21のスライド弁214によるスライド移動量が不十分でポート切換が不良であった場合、四路切換弁21のポートP1からポートP2に向かうべき高圧冷媒の一部がポートP4に流入するため、高圧冷媒を十分に室外熱交換器22に送ることができない。このため、図5(b)に示すように、予定した通りの基準温度変化率α,β(或いは、少なくとも予め定められた範囲Ta,Ta内の温度変化率)では、室内熱交換器温度Th3は下降せず、室外熱交換器温度Tmも上昇しない。又、圧縮機40による圧縮工程が不十分であるため、室内熱交換器31及び室外熱交換器22での熱交換も不十分となり、室内熱交換器温度Th3と室外熱交換器温度Tmは逆転しない。 However, as shown in FIG. 6C, when the amount of sliding movement by the slide valve 214 of the four-way switching valve 21 is insufficient and the port switching is poor, the port P1 of the four-way switching valve 21 is changed from the port P1 to the port P2. Since a part of the high-pressure refrigerant to be directed flows into the port P4, the high-pressure refrigerant cannot be sufficiently sent to the outdoor heat exchanger 22. Therefore, as shown in FIG. 5B, at the reference temperature change rates α and β (or at least the temperature change rates in the predetermined ranges Ta 1 and Ta 2 ) as planned, the indoor heat exchanger The temperature Th3 does not decrease, and the outdoor heat exchanger temperature Tm does not increase. Further, since the compression process by the compressor 40 is insufficient, heat exchange between the indoor heat exchanger 31 and the outdoor heat exchanger 22 is also insufficient, and the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm are reversed. do not do.

このため、制御部91が四路切換弁21に切換指示を出力した後、室内熱交換器温度Th3の温度変化率ΔTh3と、室外熱交換器温度Tmの温度変化率ΔTmとが、上記予め定められた範囲Ta,Ta内の温度変化率を外れて下回る図5(b)に示した状態となり、さらに、室内熱交換器温度Th3と室外熱交換器温度Tmは逆転しない状態を検出することで、当該検出結果に基づいて、切換不良判定部92が、四路切換弁21のポート切換が正常に行われたか否かを判定可能となる。 For this reason, after the control unit 91 outputs a switching instruction to the four-way switching valve 21, the temperature change rate ΔTh3 of the indoor heat exchanger temperature Th3 and the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm are determined in advance. The state shown in FIG. 5 (b), which falls below the temperature change rate in the obtained ranges Ta 1 and Ta 2 , is detected, and further, the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm are detected not to be reversed. Thus, based on the detection result, the switching failure determination unit 92 can determine whether or not the port switching of the four-way switching valve 21 has been performed normally.

また、上記予め定められた一定期間tの経過後において、S3及びS4でのサンプリング開始当初の室内熱交換器温度Th3と室外熱交換器温度Tmの関係が逆転していないと、切換不良判定部92が判断した場合は(S8でNO)、さらに、切換不良判定部92は、室内熱交換器温度Th3の温度変化率ΔTh3が予め定められた範囲Tb(第3の範囲)を外れて下回るかと、室外熱交換器温度Tmの温度変化率ΔTmが予め定められた範囲Tb(第4の範囲)を外れて下回るかとを判断する(S9)。 In addition, if the relationship between the indoor heat exchanger temperature Th3 at the beginning of sampling in S3 and S4 and the outdoor heat exchanger temperature Tm is not reversed after the predetermined period t has elapsed, the switching failure determination unit If 92 is determined (NO in S8), switching failure determination unit 92 further causes temperature change rate ΔTh3 of indoor heat exchanger temperature Th3 to fall below a predetermined range Tb 1 (third range). Whether the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm is outside the predetermined range Tb 2 (fourth range) is determined (S9).

当該予め定められた範囲Tbは、上述の予め定められた範囲Taと同様に、基準温度変化率α’≦Tbとして定められるが、この予め定められた範囲Tbを定義するために用いられる基準温度変化率α’は、上述の予め定められた範囲Taに用いられる基準温度変化率αよりも小さい値とされる。予め定められた範囲Tbは、例えば、圧縮機40の性能低下等により圧縮動作が不十分となり、圧縮機40から吐出される高圧冷媒の圧力が予定した値に至っていない場合の温度変化率からの一定の範囲である。当該予め定められた範囲Tbは、各空気調和装置1の性能(圧縮機性能、冷媒性質、配管長等)に基づいて予め定められ、切換不良判定部92に記憶されている。 The predetermined range Tb 1 is determined as the reference temperature change rate α ′ ≦ Tb 1 in the same manner as the above-described predetermined range Ta 1. In order to define the predetermined range Tb 1 The reference temperature change rate α ′ used is a value smaller than the reference temperature change rate α used in the above-described predetermined range Ta 1 . The predetermined range Tb 1 is based on the rate of change in temperature when, for example, the compression operation becomes insufficient due to a decrease in the performance of the compressor 40 and the pressure of the high-pressure refrigerant discharged from the compressor 40 does not reach a predetermined value. Is a certain range. The predetermined range Tb 1 is predetermined based on the performance (compressor performance, refrigerant properties, pipe length, etc.) of each air conditioner 1 and stored in the switching failure determination unit 92.

また、当該予め定められた範囲Tbも、上述の予め定められた範囲Taと同様に、基準温度変化率β’≦Tbとして定められるが、この予め定められた範囲Tbを定義するために用いられる基準温度変化率β’は、上述の予め定められた範囲Taに用いられる基準温度変化率β’よりも小さい値とされる。予め定められた範囲Tbは、例えば、圧縮機40の性能低下等により圧縮動作が不十分となり、圧縮機40から吐出される高圧冷媒の圧力が予定した値に至っていない場合の温度変化率からの一定の範囲である。当該予め定められた範囲Tbは、各空気調和装置1の性能(圧縮機性能、冷媒性質、配管長等)に基づいて予め定められ、切換不良判定部92に記憶されている。 Also, the predetermined range Tb 2 is determined as a reference temperature change rate β ′ ≦ Tb 2 , similarly to the above-described predetermined range Ta 2, and defines the predetermined range Tb 2 . Therefore, the reference temperature change rate β ′ used for the purpose is set to a value smaller than the reference temperature change rate β ′ used for the predetermined range Ta 2 described above. The predetermined range Tb 2 is based on the rate of change in temperature when, for example, the compression operation becomes insufficient due to a decrease in the performance of the compressor 40 and the pressure of the high-pressure refrigerant discharged from the compressor 40 does not reach the predetermined value. Is a certain range. The predetermined range Tb 2 is predetermined based on the performance (compressor performance, refrigerant properties, pipe length, etc.) of each air conditioner 1, and is stored in the switching failure determination unit 92.

ここで、切換不良判定部92は、室内熱交換器温度Th3の温度変化率ΔTh3が予め定められた範囲Tb内であり、かつ、室外熱交換器温度Tmの温度変化率ΔTmが予め定められた範囲Tb内であると判断した場合は(S9でNO)、圧縮機40の動作不良ではなく、上記四路切換弁21へのポート切換信号の送信に基づいてスライド弁214が正常に動作せずに、四路切換弁21のポート切り換えが不良を生じていると判定する(S10)。 Here, not switch properly determining unit 92, the temperature change rate ΔTh3 of the indoor heat exchanger temperature Th3 is is within the range Tb 1 of the predetermined and the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm is determined in advance If it is determined that it is within the range Tb 2 (NO in S9), the slide valve 214 operates normally based on the transmission of the port switching signal to the four-way switching valve 21, not the malfunction of the compressor 40. Otherwise, it is determined that the port switching of the four-way switching valve 21 is defective (S10).

一方、切換不良判定部92が、室内熱交換器温度Th3の温度変化率ΔTh3が予め定められた範囲Tbを外れて下回り、室外熱交換器温度Tmの温度変化率ΔTmが予め定められた範囲Tbを外れて下回ると判断した場合は(S9でYES)、四路切換弁21のスライド弁214の動作不良ではなく、圧縮機40が正常に動作せずに不良を生じていると判定する(S13)。 Range Meanwhile, not switch properly determining section 92, below out of the range Tb 1 in which the temperature change rate ΔTh3 of the indoor heat exchanger temperature Th3 is predetermined, that the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm is predetermined If it is determined that the value is less than Tb 2 (YES in S9), it is determined that the compressor 40 is not operating normally and not defective, and that the slide valve 214 of the four-way switching valve 21 is not operating normally. (S13).

この後、制御部91は、報知部94に、上記各判定結果に応じて、四路切換弁21のポート切り換えが不良である旨、又は圧縮機40が動作不良である旨を示す報知を行わせる(S11)。例えば、報知部94が、LCD(Liquid Crystal Display)等の表示部からなる場合は、制御部91は、当該四路切換弁21のポート切り換えが不良である旨、又は圧縮機40が動作不良である旨を示すメッセージを表示部に表示させる。また、報知部94が、ブザー等からなる場合は、制御部91は当該ブザーに警告音等を発させる。   Thereafter, the control unit 91 notifies the notifying unit 94 that the port switching of the four-way switching valve 21 is defective or the compressor 40 is malfunctioning according to each determination result. (S11). For example, when the notification unit 94 includes a display unit such as an LCD (Liquid Crystal Display), the control unit 91 indicates that the port switching of the four-way switching valve 21 is defective or the compressor 40 is malfunctioning. A message indicating that there is a message is displayed on the display unit. When the notification unit 94 is composed of a buzzer or the like, the control unit 91 causes the buzzer to emit a warning sound or the like.

また、暖房運転からデフロスト運転に切り換えた場合も、上記と同様に四路切換弁21のポート切換不良、及び圧縮機40の動作不良を判定可能である。また、空気調和装置1を冷房運転から暖房運転に切り換えた場合は、例えば図5(a)(b)に示した室内熱交換器温度Th3と室外熱交換器温度Tmの関係を逆として考えることで、上記と同様に四路切換弁21のポート切換不良、及び圧縮機40の動作不良を判定可能である。   In addition, when switching from the heating operation to the defrost operation, it is possible to determine the port switching failure of the four-way switching valve 21 and the operation failure of the compressor 40 in the same manner as described above. Further, when the air conditioner 1 is switched from the cooling operation to the heating operation, for example, consider the relationship between the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm shown in FIGS. Thus, the port switching failure of the four-way switching valve 21 and the operation failure of the compressor 40 can be determined in the same manner as described above.

なお、本実施形態では、S9及びS13の処理をも行うことによって、四路切換弁21のポート切換不良、又は圧縮機40の動作不良のいずれが生じているかまでを判定するようにしているが、S9及びS13の処理の判断を行わず、四路切換弁21のスライド弁214か正常に動作して正しくポートを切り換えたか否かを判定するようにしてもよい。   In the present embodiment, the process of S9 and S13 is also performed to determine whether a port switching failure of the four-way switching valve 21 or a malfunction of the compressor 40 has occurred. Instead of determining the processing of S9 and S13, it may be determined whether the slide valve 214 of the four-way switching valve 21 operates normally and switches the port correctly.

次に、空気調和装置1による四路切換弁21の切換不良判定処理(四路切換弁の切換不良判定方法)の第2実施形態を説明する。図7は、空気調和装置1による四路切換弁21の切換不良判定処理の第2実施形態を示すフローチャートである。図8は、暖房運転時のポート状態から、冷房運転時のポート状態に四路切換弁21を切り換えた後における圧縮機40の吐出冷媒温度及び吸入冷媒温度の推移を示す図であり、(a)は四路切換弁21が正常に作動した場合を示す図、(b)は四路切換弁21が作動不良の場合を示す図である。   Next, a second embodiment of a switching failure determination process (a switching failure determination method for a four-way switching valve) of the four-way switching valve 21 by the air conditioner 1 will be described. FIG. 7 is a flowchart showing a second embodiment of the switching failure determination process for the four-way switching valve 21 by the air-conditioning apparatus 1. FIG. 8 is a diagram illustrating changes in the discharge refrigerant temperature and the intake refrigerant temperature of the compressor 40 after switching the four-way switching valve 21 from the port state during the heating operation to the port state during the cooling operation. ) Is a diagram illustrating a case where the four-way switching valve 21 is normally operated, and (b) is a diagram illustrating a case where the four-way switching valve 21 is malfunctioning.

空気調和装置1において冷暖房運転の切換時や、又は暖房運転からデフロスト運転への切換時等に、四路切換弁21のポートを切り換えるために、制御部91が、四路切換弁21にポート切換信号を送信すると(S21でYES)、切換不良判定部92のタイマ921が、制御部91による四路切換弁21へのポート切換信号出力時からの経過時間の計測
開始する(S22)。
The controller 91 switches the port of the four-way switching valve 21 to the four-way switching valve 21 in order to switch the port of the four-way switching valve 21 when the air-conditioning apparatus 1 is switched between cooling and heating operations or when switching from heating operation to defrost operation. When the signal is transmitted (YES in S21), the timer 921 of the switching failure determination unit 92 starts measuring the elapsed time from when the control unit 91 outputs the port switching signal to the four-way switching valve 21 (S22).

切換不良判定部92は、吸入冷媒温度センサ73から、当該吸入冷媒温度センサ73が検出した圧縮機40に吸入される冷媒の温度(吸入温度)Tsのサンプリングを開始し(S23)、吐出冷媒温度センサ75から、当該吐出冷媒温度センサ75が検出した圧縮機40から吐出される冷媒の温度(吐出温度)Tdのサンプリングを開始する(S24)。   The switching failure determination unit 92 starts sampling of the refrigerant temperature (intake temperature) Ts sucked into the compressor 40 detected by the intake refrigerant temperature sensor 73 from the intake refrigerant temperature sensor 73 (S23). Sampling of the temperature (discharge temperature) Td of the refrigerant discharged from the compressor 40 detected by the discharged refrigerant temperature sensor 75 is started from the sensor 75 (S24).

さらに、切換不良判定部92は、室内熱交換器温度センサ85から室内熱交換器31の温度Th3のサンプリングを開始し(S25)、室外熱交換器温度センサ76から室外熱交換器22の温度Tmのサンプリングを開始する(S26)。   Further, the switching failure determination unit 92 starts sampling the temperature Th3 of the indoor heat exchanger 31 from the indoor heat exchanger temperature sensor 85 (S25), and the temperature Tm of the outdoor heat exchanger 22 from the outdoor heat exchanger temperature sensor 76. Sampling is started (S26).

そして、切換不良判定部92は、上記タイマ921によって、予め定められた一定時間の経過が計測されると、上記吐出温度Tdと吸入温度Tsとの差が、予め定められた温度差T3を下回っているか否かを判断する(S27)。   When the timer 921 measures the elapse of a predetermined time, the switching failure determination unit 92 determines that the difference between the discharge temperature Td and the suction temperature Ts is less than the predetermined temperature difference T3. It is determined whether or not (S27).

当該予め定められた一定期間とは、第1実施形態の場合と同様に、四路切換弁21のポートが正常に切り換えられたとした場合に室内熱交換器温度Th3と室外熱交換器温度Tmとの関係が逆転すると想定される、S21での制御部91による四路切換弁21へのポート切換信号出力時からの経過時間である。   As in the case of the first embodiment, the predetermined period of time refers to the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm when the port of the four-way switching valve 21 is normally switched. Is the elapsed time from the time when the port switching signal is output to the four-way switching valve 21 by the control unit 91 in S21.

また、予め定められた温度差T3は、例えば、空気調和装置1の運転動作を暖房運転から冷房運転に切り換えた場合、四路切換弁21が正常に動作して、図6(a)に示す状態(P1とP3が導通、P2P4が導通)から、図6(b)に示す状態(P3とP4が導通、P1とP2が導通)に切り換えられ、圧縮機40から吐出される高圧冷媒の流入先が室内熱交換器31から室外熱交換器22に変わり、それまで蒸発器として機能していた室内熱交換器31が凝縮器として正常に機能したときの吐出温度Tdと吸入温度Tsとの温度差である。当該温度差T3は、各空気調和装置1の性能(圧縮機性能、冷媒性質、配管長等)に基づいて、予め測定されて定められ、切換不良判定部92に記憶されている。   Further, the predetermined temperature difference T3 is shown in FIG. 6A, for example, when the operation of the air conditioner 1 is switched from heating operation to cooling operation, the four-way switching valve 21 operates normally. The state (P1 and P3 are conducting, P2P4 is conducting) is switched to the state shown in FIG. 6B (P3 and P4 are conducting, P1 and P2 are conducting), and the high-pressure refrigerant discharged from the compressor 40 flows in. The temperature between the discharge temperature Td and the suction temperature Ts when the indoor heat exchanger 31 changes from the indoor heat exchanger 31 to the outdoor heat exchanger 22 and the indoor heat exchanger 31 that has previously functioned as an evaporator functions normally as a condenser. It is a difference. The temperature difference T <b> 3 is measured and determined in advance based on the performance (compressor performance, refrigerant properties, pipe length, etc.) of each air conditioner 1, and is stored in the switching failure determination unit 92.

ここで、切換不良判定部92は、上記吐出温度Tdと吸入温度Tsとの温度差が、予め定められた温度差T3を下回っていないと判断した場合は(S27でNO)、上記四路切換弁21へのポート切換信号の送信に基づいて、四路切換弁21のスライド弁214は正常に動作して正しくポートを切り換えたと判定し(S12)、処理を終了する。   Here, if the switching failure determination unit 92 determines that the temperature difference between the discharge temperature Td and the suction temperature Ts is not less than the predetermined temperature difference T3 (NO in S27), the four-way switching is performed. Based on the transmission of the port switching signal to the valve 21, it is determined that the slide valve 214 of the four-way switching valve 21 operates normally and switches the port correctly (S12), and the process ends.

一方、切換不良判定部92は、上記吐出温度Tdと吸入温度Tsとの温度差が、予め定められた温度差T3を下回っていると判断した場合は(S27でYES)、さらに、S25及びS26でのサンプリング開始当初の室内熱交換器温度Th3と室外熱交換器温度Tmの関係(暖房運転時Th3>Tm、又は冷房運転時Th3<Tm)が、この時点(S21での制御部91による四路切換弁21へのポート切換信号出力時から上記予め定められた一定期間の経過後の時点)で逆転しているかを判断する(S28)。   On the other hand, when the switching failure determination unit 92 determines that the temperature difference between the discharge temperature Td and the suction temperature Ts is less than the predetermined temperature difference T3 (YES in S27), S25 and S26 are further performed. The relationship between the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm at the beginning of sampling in (at the time of heating operation Th3> Tm, or at the time of cooling operation Th3 <Tm) is determined at this time (four by the controller 91 in S21). It is determined whether or not the rotation is reversed after the port switching signal is output to the path switching valve 21 (at the time after the elapse of the predetermined period) (S28).

ここで、上記予め定められた一定期間の経過後において、S25及びS26でのサンプリング開始当初の室内熱交換器温度Th3と室外熱交換器温度Tmの関係が逆転していると、切換不良判定部92が判断した場合は(S28でYES)、上記四路切換弁21へのポート切換信号の送信に基づいて、四路切換弁21のスライド弁214は正常に動作して正しくポートを切り換えたと判定し(S12)、処理を終了する。   Here, if the relationship between the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm at the beginning of sampling in S25 and S26 is reversed after the predetermined period, the switching failure determination unit If YES is determined (YES in S28), it is determined that the slide valve 214 of the four-way switching valve 21 operates normally and switches the port correctly based on the transmission of the port switching signal to the four-way switching valve 21. (S12), and the process ends.

他方、上記予め定められた一定期間の経過後において、S25及びS26でのサンプリング開始当初の室内熱交換器温度Th3と室外熱交換器温度Tmの関係が逆転していないと、切換不良判定部92が判断した場合は(S28でNO)、切換不良判定部92は、上記四路切換弁21へのポート切換信号の送信に基づいてスライド弁214は正常に動作せずに、四路切換弁21のポート切り換えが不良であると判定する(S29)。   On the other hand, if the relationship between the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm at the beginning of sampling in S25 and S26 is not reversed after the predetermined period has elapsed, the switching failure determination unit 92 Is determined (NO in S28), the switching failure determination unit 92 determines that the slide valve 214 does not operate normally on the basis of the transmission of the port switching signal to the four-way switching valve 21 and the four-way switching valve 21. Is determined to be defective (S29).

この場合、制御部91は、第1実施形態と同様に、報知部94に、四路切換弁21のポート切り換えが不良である旨を示す報知を行わせる(S30)。   In this case, similarly to the first embodiment, the control unit 91 causes the notification unit 94 to perform notification indicating that the port switching of the four-way switching valve 21 is defective (S30).

例えば、空気調和装置1の運転動作を暖房運転から冷房運転に切り換えた場合、四路切換弁21が正常に動作して、図6(a)に示す状態(P1とP3が導通、P2とP4が導通)から、図6(b)に示す状態(P3とP4が導通、P1とP2が導通)に切り換えられた場合、圧縮機40から吐出される高圧冷媒の流入先が室内熱交換器31から室外熱交換器22に変わり、それまで蒸発器として機能していた室内熱交換器31が凝縮器として機能し、図8(a)に示すように、予定した通りの温度差T4で、吐出温度Tdと吸入温度Tsとが落ち着く。そして、室内熱交換器温度Th3と室外熱交換器温度Tmが逆転する。   For example, when the operation of the air conditioner 1 is switched from the heating operation to the cooling operation, the four-way switching valve 21 operates normally, and the state shown in FIG. 6A (P1 and P3 are conductive, P2 and P4 Is switched to the state shown in FIG. 6B (P3 and P4 are conductive and P1 and P2 are conductive), the inflow destination of the high-pressure refrigerant discharged from the compressor 40 is the indoor heat exchanger 31. Is changed to the outdoor heat exchanger 22, and the indoor heat exchanger 31 that has been functioning as an evaporator until then functions as a condenser. As shown in FIG. 8A, the discharge is performed at a temperature difference T4 as planned. The temperature Td and the suction temperature Ts are settled. Then, the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm are reversed.

しかし、図6(c)に示すように、四路切換弁21のスライド弁214によるスライド移動量が不十分でポート切換が不良であった場合、四路切換弁21のポートP1からポートP2に向かうべき高圧冷媒の一部がポートP4に流入するため、高圧冷媒を十分に室外熱交換器22に送ることができない。このため、図8(b)に示すように、吐出温度Tdと吸入温度Tsは、予定した通りの温度差T4では落ち着かない。又、圧縮機40による圧縮工程が不十分であるため、室内熱交換器31及び室外熱交換器22での熱交換も不十分となり、室内熱交換器温度Th3と室外熱交換器温度Tmは逆転しない。   However, as shown in FIG. 6C, when the amount of sliding movement by the slide valve 214 of the four-way switching valve 21 is insufficient and the port switching is poor, the port P1 of the four-way switching valve 21 is changed from the port P1 to the port P2. Since a part of the high-pressure refrigerant to be directed flows into the port P4, the high-pressure refrigerant cannot be sufficiently sent to the outdoor heat exchanger 22. For this reason, as shown in FIG. 8B, the discharge temperature Td and the suction temperature Ts are not settled at the expected temperature difference T4. Further, since the compression process by the compressor 40 is insufficient, heat exchange between the indoor heat exchanger 31 and the outdoor heat exchanger 22 is also insufficient, and the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm are reversed. do not do.

このため、制御部91が四路切換弁21に切換指示を出力した後、吐出温度Tdと吸入温度Tsは、予定した通りの温度差T4を下回る図8(b)に示した状態となり、さらに、室内熱交換器温度Th3と室外熱交換器温度Tmは逆転しない状態を検出することで、当該検出結果に基づいて、切換不良判定部92が、四路切換弁21のポート切換が正常に行われたか否かを判定可能となる。   For this reason, after the control unit 91 outputs a switching instruction to the four-way switching valve 21, the discharge temperature Td and the suction temperature Ts are in the state shown in FIG. By detecting a state in which the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm are not reversed, the switching failure determination unit 92 performs normal port switching of the four-way switching valve 21 based on the detection result. It is possible to determine whether or not it has been broken.

なお、暖房運転からデフロスト運転に切り換えた場合も、上記と同様に四路切換弁21のポート切換不良を判定可能である。また、空気調和装置1を冷房運転から暖房運転に切り換えた場合は、例えば図8(a)(b)に示した室内熱交換器温度Th3と室外熱交換器温度Tmの関係を逆として考えることで、上記と同様に四路切換弁21のポート切換不良を判定可能である。   Even when the heating operation is switched to the defrost operation, it is possible to determine the port switching failure of the four-way switching valve 21 as described above. When the air conditioner 1 is switched from the cooling operation to the heating operation, for example, consider the relationship between the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm shown in FIGS. Thus, the port switching failure of the four-way switching valve 21 can be determined in the same manner as described above.

次に、空気調和装置1による四路切換弁21の切換不良判定処理の第3実施形態を説明する。図9は、空気調和装置1による四路切換弁21の切換不良判定処理の第3実施形態を示すフローチャートである。なお、上記第1又は第2実施形態と同様の処理は説明を省略する。   Next, a third embodiment of the switching failure determination process for the four-way switching valve 21 by the air conditioner 1 will be described. FIG. 9 is a flowchart showing a third embodiment of the switching failure determination process for the four-way switching valve 21 by the air conditioner 1. Note that the description of the same processing as in the first or second embodiment is omitted.

本第3実施形態は、上述した第1実施形態の処理に加え、更に第2実施形態で用いた上記吐出温度Tdと吸入温度Tsとの差が温度差T3を下回っているか否かの判断を、四路切換弁21の切換不良判定に適用したものである。   In the third embodiment, in addition to the processing of the first embodiment described above, it is further determined whether or not the difference between the discharge temperature Td and the suction temperature Ts used in the second embodiment is lower than the temperature difference T3. This is applied to the switching failure determination of the four-way switching valve 21.

本第3実施形態では、空気調和装置1において冷暖房運転の切換時や、又は暖房運転からデフロスト運転への切換時等に、四路切換弁21のポートを切り換えるために、制御部91が、四路切換弁21にポート切換信号を送信すると(S41でYES)、第1実施形態に示したS2乃至S6と同様の処理S42乃至S46を実行する。   In the third embodiment, in order to switch the port of the four-way switching valve 21 at the time of switching the cooling / heating operation or switching from the heating operation to the defrost operation in the air conditioner 1, the control unit 91 When a port switching signal is transmitted to the path switching valve 21 (YES in S41), the same processes S42 to S46 as S2 to S6 shown in the first embodiment are executed.

この後、切換不良判定部92は、吸入冷媒温度センサ73から、当該吸入冷媒温度センサ73が検出した圧縮機40に吸入される冷媒の温度(吸入温度)Tsのサンプリングを開始し(S47)、吐出冷媒温度センサ75から、当該吐出冷媒温度センサ75が検出した圧縮機40から吐出される冷媒の温度(吐出温度)Tdのサンプリングを開始する(S48)。   Thereafter, the switching failure determination unit 92 starts sampling the refrigerant temperature (suction temperature) Ts sucked into the compressor 40 detected by the suction refrigerant temperature sensor 73 from the suction refrigerant temperature sensor 73 (S47). Sampling of the temperature (discharge temperature) Td of the refrigerant discharged from the compressor 40 detected by the discharged refrigerant temperature sensor 75 is started from the discharged refrigerant temperature sensor 75 (S48).

そして、切換不良判定部92は、室内熱交換器温度Th3の温度変化率ΔTh3が予め定められた範囲Ta(第1の範囲)を外れて下回っているか否かと、室外熱交換器温度Tmの温度変化率ΔTmが予め定められた範囲Ta(第2の範囲)を外れて下回っているかを判断し(S49)、切換不良判定部92が、室内熱交換器温度Th3の温度変化率ΔTh3が予め定められた範囲Taから外れて下回り、かつ、室外熱交換器温度Tmの温度変化率ΔTmが予め定められた範囲Taから外れて下回ると判断した場合は(S49でYES)、さらに、切換不良判定部92は、上記タイマ921によって、上記予め定められた一定時間の経過が計測されると、上記吐出温度Tdと吸入温度Tsとの差が、予め定められた温度差T3を下回っているか否かを判断する(S50)。 Then, the switching failure determination unit 92 determines whether or not the temperature change rate ΔTh3 of the indoor heat exchanger temperature Th3 is below a predetermined range Ta 1 (first range), and whether the outdoor heat exchanger temperature Tm It is determined whether or not the temperature change rate ΔTm is below a predetermined range Ta 2 (second range) (S49), and the switching failure determination unit 92 determines that the temperature change rate ΔTh3 of the indoor heat exchanger temperature Th3 is When it is determined that the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm is less than the predetermined range Ta 1 and is lower than the predetermined range Ta 2 (YES in S49), When the timer 921 measures the elapse of the predetermined time, the switching failure determination unit 92 reduces the difference between the discharge temperature Td and the suction temperature Ts below the predetermined temperature difference T3. Tsu determines whether or not that (S50).

ここで、切換不良判定部92は、上記吐出温度Tdと吸入温度Tsとの差が、予め定められた温度差T3を下回っていると判断した場合は(S50でYES)、さらに、S33及びS34でのサンプリング開始当初の室内熱交換器温度Th3と室外熱交換器温度Tmの関係(暖房運転時Th3>Tm、又は冷房運転時Th3<Tm)が、S41での制御部91による四路切換弁21へのポート切換信号出力時から上記予め定められた一定期間の経過後の時点で逆転しているかを判断する(S51)。   Here, when the switching failure determination unit 92 determines that the difference between the discharge temperature Td and the suction temperature Ts is lower than a predetermined temperature difference T3 (YES in S50), S33 and S34 are further performed. The relationship between the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm at the beginning of sampling in (the heating operation Th3> Tm or the cooling operation Th3 <Tm) is the four-way switching valve by the control unit 91 in S41. It is determined whether the rotation is reversed at the time after the elapse of the predetermined period from the time when the port switching signal is output to 21 (S51).

ここで、上記予め定められた一定期間の経過後において、S43乃至S46でのサンプリング開始当初の室内熱交換器温度Th3と室外熱交換器温度Tmの関係が逆転していないと、切換不良判定部92が判断した場合は(S51でNO)、さらに、切換不良判定部92は、室内熱交換器温度Th3の温度変化率ΔTh3が予め定められた範囲Tb(第3の範囲)を外れて下回るかと、室外熱交換器温度Tmの温度変化率ΔTmが予め定められた範囲Tb(第4の範囲)を外れて下回るかとを判断する(S52)。 If the relationship between the indoor heat exchanger temperature Th3 and the outdoor heat exchanger temperature Tm at the beginning of sampling in S43 to S46 is not reversed after the predetermined period has elapsed, the switching failure determination unit When 92 is determined (NO in S51), switching failure determination unit 92 further causes temperature change rate ΔTh3 of indoor heat exchanger temperature Th3 to fall below a predetermined range Tb 1 (third range). Whether or not the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm is out of the predetermined range Tb 2 (fourth range) is determined (S52).

ここで、切換不良判定部92は、室内熱交換器温度Th3の温度変化率ΔTh3が予め定められた範囲Tb内であり、かつ、室外熱交換器温度Tmの温度変化率ΔTmが予め定められた範囲Tb内であると判断した場合は(S52でNO)、圧縮機40の動作不良ではなく、上記四路切換弁21へのポート切換信号の送信に基づいてスライド弁214が正常に動作せずに、四路切換弁21のポート切り換えが不良を生じていると判定する(S53)。 Here, not switch properly determining unit 92, the temperature change rate ΔTh3 of the indoor heat exchanger temperature Th3 is is within the range Tb 1 of the predetermined and the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm is determined in advance If it is determined that it is within the range Tb 2 (NO in S52), the slide valve 214 operates normally not based on the malfunction of the compressor 40 but based on the transmission of the port switching signal to the four-way switching valve 21. Otherwise, it is determined that the port switching of the four-way switching valve 21 is defective (S53).

一方、切換不良判定部92が、室内熱交換器温度Th3の温度変化率ΔTh3が予め定められた範囲Tbを外れて下回り、室外熱交換器温度Tmの温度変化率ΔTmが予め定められた範囲Tbを外れて下回ると判断した場合は(S52でYES)、四路切換弁21のスライド弁214の動作不良ではなく、圧縮機40が正常に動作せずに不良を生じていると判定する(S56)。 Range Meanwhile, not switch properly determining section 92, below out of the range Tb 1 in which the temperature change rate ΔTh3 of the indoor heat exchanger temperature Th3 is predetermined, that the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm is predetermined If it is determined to be below out of the Tb 2 (YES in S52), it is not malfunction of the slide valve 214 of the four-way switching valve 21, it is determined that the compressor 40 is caused a defect to not operate normally (S56).

なお、S49でNO,S50でNO,S51でYESの場合は、上記四路切換弁21へのポート切換信号の送信に基づいて四路切換弁21のスライド弁214は正常に動作し、及び圧縮機40は正常に動作して正しくポートを切り換えたと判定し(S55)、処理を終了する。   If NO in S49, NO in S50, and YES in S51, the slide valve 214 of the four-way switching valve 21 operates normally based on the transmission of the port switching signal to the four-way switching valve 21, and the compression is performed. The machine 40 operates normally and determines that the port has been switched correctly (S55), and ends the process.

この第3実施形態によれば、上述した第1実施形態の処理に加え、更に第2実施形態で用いた上記吐出温度Tdと吸入温度Tsとの差が予め定められた温度差T3を下回っているか否かの判断を、四路切換弁21の切換不良判定に適用したので、当該四路切換弁21のポー切換不良判定の正確性が高められる。   According to the third embodiment, in addition to the processing of the first embodiment described above, the difference between the discharge temperature Td and the suction temperature Ts used in the second embodiment is less than a predetermined temperature difference T3. Since the determination as to whether or not the four-way switching valve 21 is switched is determined to be accurate, the accuracy of the Po-switching failure determination of the four-way switching valve 21 is improved.

次に、空気調和装置1によるポンプダウン完了判定について説明する。図10は、空気調和装置1によるポンプダウン完了判定処理を示すフローチャートである。図11は当該ポンプダウン完了判定を行う空気調和装置1が備えるコントローラ90’の概略構成を示すブロック図である。   Next, the pump down completion determination by the air conditioner 1 will be described. FIG. 10 is a flowchart showing pump down completion determination processing by the air conditioner 1. FIG. 11 is a block diagram illustrating a schematic configuration of a controller 90 ′ included in the air conditioner 1 that performs the pump down completion determination.

空気調和装置1は、操作者により、室外機2及び室内機3がその設置場所から取り外される時に、操作者の指示に基づいて、冷媒回路10内の冷媒を室外機2側に回収するポンプダウン動作を行う。この空気調和装置1のコントローラ90’は、図3に示した空気調和装置1の構成における切換不良判定部92に代えて、ポンプダウン動作が完了した否かを判定する完了判定部95と、当該完了判定部95に内蔵されるタイマ951を備える(図11)。   The air conditioner 1 is a pump-down unit that recovers the refrigerant in the refrigerant circuit 10 to the outdoor unit 2 side based on an instruction from the operator when the outdoor unit 2 and the indoor unit 3 are removed from the installation location by the operator. Perform the action. The controller 90 ′ of the air conditioner 1 replaces the switching failure determination unit 92 in the configuration of the air conditioner 1 shown in FIG. 3 with a completion determination unit 95 that determines whether or not the pump-down operation is completed, A timer 951 built in the completion determination unit 95 is provided (FIG. 11).

ポンプダウンを行う場合、(1)操作者は、まず、室外機2の液側閉鎖弁25を全閉にし、(2)室外機2のガス側閉鎖弁26を全閉近くまで閉める。   When pumping down, (1) the operator first closes the liquid side closing valve 25 of the outdoor unit 2 and (2) closes the gas side closing valve 26 of the outdoor unit 2 to near full closing.

この後、操作者による操作に基づいて、入力受付部93に強制冷房運転の指示が受け付けられると(S61でYES)、この指示に基づいて、制御部91は圧縮機40等を駆動制御して強制冷房運転動作を開始させる(S62)。   Thereafter, when an instruction for forced cooling operation is received by the input receiving unit 93 based on an operation by the operator (YES in S61), the control unit 91 controls driving of the compressor 40 and the like based on this instruction. The forced cooling operation is started (S62).

続いて、完了判定部95のタイマ951が、制御部91による強制冷房運転動作開始時からの経過時間の計測を開始する(S63)。   Subsequently, the timer 951 of the completion determination unit 95 starts measuring the elapsed time from the start of the forced cooling operation by the control unit 91 (S63).

完了判定部95は、室外熱交換器温度センサ76によって検出される室外熱交換器22の温度Tmのサンプリングを開始し(S64)、室内熱交換器温度センサ85によって検出される室内熱交換器31の温度Th3のサンプリングを開始する(S65)。   The completion determination unit 95 starts sampling the temperature Tm of the outdoor heat exchanger 22 detected by the outdoor heat exchanger temperature sensor 76 (S64), and the indoor heat exchanger 31 detected by the indoor heat exchanger temperature sensor 85. The sampling of the temperature Th3 is started (S65).

さらに、完了判定部95は、上記タイマ951によって、予め定められた一定時間の経過が計測されると、当該経過時間における室外熱交換器温度Tmの温度変化率ΔTmを算出する(S66)。   Further, when the elapsed time of a predetermined time is measured by the timer 951, the completion determination unit 95 calculates the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm during the elapsed time (S66).

そして、完了判定部95は、室外熱交換器温度Tmの温度変化率ΔTmが、予め定められた温度変化率T3を下回っているか否かを判断する(S67)。なお、このS67において、完了判定部95は、当該判断に代えて、室外熱交換器温度Tmの温度変化率ΔTmが無くなってから、予め定められた時間を経過したか否かの判断を行ってもよい。   Then, the completion determination unit 95 determines whether or not the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm is lower than a predetermined temperature change rate T3 (S67). In S67, the completion determination unit 95 determines whether or not a predetermined time has elapsed since the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm has disappeared, instead of the determination. Also good.

ここで、完了判定部95が、温度変化率ΔTmが温度上昇率T3を下回っている(室外熱交換器温度Tmの温度変化率ΔTmが無くなってから、予め定められた時間を経過した)と判断した場合(S67でYES)、さらに、完了判定部95は、この時点で、室内熱交換器31の温度Th3が一旦最小値を記録した後に、当該最小値よりも高い温度に復帰し、かつ、当該復帰した温度Th3が、外気温センサ71によって検出される室内吸込温度Th4に略等しい状態になっているかを判断する(S68)。   Here, the completion determination unit 95 determines that the temperature change rate ΔTm is lower than the temperature increase rate T3 (a predetermined time has elapsed since the temperature change rate ΔTm of the outdoor heat exchanger temperature Tm has disappeared). In this case (YES in S67), the completion determination unit 95 further returns to a temperature higher than the minimum value after the temperature Th3 of the indoor heat exchanger 31 once records the minimum value at this point, and It is determined whether the restored temperature Th3 is substantially equal to the indoor suction temperature Th4 detected by the outside air temperature sensor 71 (S68).

完了判定部95は、室内熱交換器31の温度Th3が一旦最小値を記録した後に、当該最小値よりも高い温度に復帰し、かつ、当該復帰した温度Th3が室内吸込温度Th4に略等しい状態になっていると判断した場合(S68でYES)、ポンプダウン完了と判定する(S69)。なお、S67でNO,S68でNOの場合は、処理はS66に戻る。   After the temperature Th3 of the indoor heat exchanger 31 once records the minimum value, the completion determination unit 95 returns to a temperature higher than the minimum value, and the recovered temperature Th3 is substantially equal to the indoor suction temperature Th4. Is determined (YES in S68), it is determined that the pump-down is completed (S69). If NO in S67 and NO in S68, the process returns to S66.

この後、制御部91は、報知部94に、ポンプダウンが完了した旨を示す報知を行わせる(S70)。例えば、報知部94が、LCD(Liquid Crystal Display)等の表示部からなる場合は、制御部91は、ポンプダウンが完了した旨を示すメッセージを表示部に表示させる。また、報知部94が、ブザー等からなる場合は、制御部91は当該ブザーに警告音等を発させる。   Then, the control part 91 makes the alerting | reporting part 94 alert | report that the pump down was completed (S70). For example, when the notification unit 94 includes a display unit such as an LCD (Liquid Crystal Display), the control unit 91 displays a message indicating that the pump-down is completed on the display unit. When the notification unit 94 is composed of a buzzer or the like, the control unit 91 causes the buzzer to emit a warning sound or the like.

従来、ポンプダウン運転時には、圧縮機40の吸入部が真空状態に近くなるが、この状態で圧縮機40の運転を継続すると、圧縮機40の設計によっては、前記吸入部に負荷がかかり、圧縮機40の不具合につながるおそれがある。このため、操作者は、室外回路20に設けられた図略のサービスポートに、冷媒圧力を計測する圧力センサを取り付け、当該圧力センサにより計測される圧力が0MPa(0kg/cm2)になったときに、操作者が当該圧力値に基づいてポンプダウン完了を判断する必要があった。しかし、一般に、空気調和装置は、ポンプダウンが完了に近付くに連れて、冷媒回路内を循環する冷媒の量が減少するために室外熱交換器での温度上昇が徐々になくなり、室内熱交換器では、冷媒回路を冷媒が循環している間は室内熱交換器温度が下降するが、循環する冷媒が無くなると室内熱交換器が冷却されなくなるために、室内熱交換器温度は室内吸込温度と同等に近付く。本実施形態に係る空気調和装置1は、これに基づいて、完了判定部95が、当該室外熱交換器22での温度上昇がなくなる状態と、熱交換器温度Th3は室内吸込温度Th4と同等に近付いた状態とを検知した時に、当該検知をもって、ポンプダウン完了と判定することで、上記圧力センサ、及び当該圧力センサにより計測される圧力の値に基づいた操作者によるポンプダウン完了判断の必要性をなくすことができる。   Conventionally, at the time of pump-down operation, the suction portion of the compressor 40 is close to a vacuum state. If the operation of the compressor 40 is continued in this state, depending on the design of the compressor 40, the suction portion may be loaded and compressed. There is a possibility that it may lead to malfunction of the machine 40. For this reason, the operator attaches a pressure sensor for measuring the refrigerant pressure to a service port (not shown) provided in the outdoor circuit 20 and the pressure measured by the pressure sensor becomes 0 MPa (0 kg / cm 2). In addition, it is necessary for the operator to determine completion of pump down based on the pressure value. However, in general, as the air conditioner closes to completion of the pump down, the amount of refrigerant circulating in the refrigerant circuit decreases, so the temperature rise in the outdoor heat exchanger gradually disappears, and the indoor heat exchanger Then, the indoor heat exchanger temperature decreases while the refrigerant is circulating in the refrigerant circuit, but the indoor heat exchanger is not cooled when there is no circulating refrigerant, so the indoor heat exchanger temperature is equal to the indoor suction temperature. It approaches the same. Based on this, the air conditioner 1 according to the present embodiment is such that the completion determination unit 95 is in a state where there is no temperature increase in the outdoor heat exchanger 22, and the heat exchanger temperature Th3 is equal to the indoor suction temperature Th4. Necessity of determination of completion of pump down by the operator based on the pressure sensor and the pressure value measured by the pressure sensor by determining that the pump down is completed with the detection when the approaching state is detected Can be eliminated.

以上、本発明の一実施形態に係る空気調和装置1について説明したが、当該実施形態はあくまでも例示であって、本発明は当該実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で種々変更、改良等が可能である。   As mentioned above, although the air conditioning apparatus 1 which concerns on one Embodiment of this invention was demonstrated, the said embodiment is an illustration to the last, Comprising: This invention is not limited to the said embodiment, In the range which does not deviate from the meaning. Various changes and improvements can be made.

1 空気調和装置
2 室外機
3 室内機
10 冷媒回路
11 液冷媒配管
12 ガス冷媒配管
16 液側連絡管
17 ガス側連絡管
214 スライド弁
21 四路切換弁
22 室外熱交換器
30 室内回路
31 室内熱交換器
40 圧縮機
61 液管温度センサ
73 吸入冷媒温度センサ
75 吐出冷媒温度センサ
76 室外熱交換器温度センサ
85 室内熱交換器温度センサ
90 コントローラ
91 制御部
92 切換不良判定部
93 入力受付部
94 報知部
95 完了判定部
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Outdoor unit 3 Indoor unit 10 Refrigerant circuit 11 Liquid refrigerant pipe 12 Gas refrigerant pipe 16 Liquid side communication pipe 17 Gas side communication pipe 214 Slide valve 21 Four-way switching valve 22 Outdoor heat exchanger 30 Indoor circuit 31 Indoor heat Exchanger 40 Compressor 61 Liquid pipe temperature sensor 73 Intake refrigerant temperature sensor 75 Discharged refrigerant temperature sensor 76 Outdoor heat exchanger temperature sensor 85 Indoor heat exchanger temperature sensor 90 Controller 91 Control unit 92 Switching failure determination unit 93 Input reception unit 94 Notification Part 95 Completion determination part

Claims (4)

室内熱交換器(31)と、室外熱交換器(22)と、圧縮機(40)と、四路切換弁(21)と、膨張弁(24)とが冷媒配管で接続された冷媒回路(10)と、
前記室内熱交換器(31)に設けられ、当該室内熱交換器(31)の温度を検出する室内熱交換器温度検出部(85)と、
前記室外熱交換器(22)に設けられ、当該室外熱交換器(22)の温度を検出する室外熱交換器温度検出部(76)と、
前記四路切換弁(21)にポート切換信号を出力し、当該四路切換弁(21)のポート切換を制御する制御部(91)と、
前記制御部(91)によるポート切換信号出力後に、前記室内熱交換器温度検出部(85)が検出した室内熱交換器(31)の温度の温度変化率が予め定められた第1の範囲を外れて下回り、前記室外熱交換器温度検出部(76)が検出した前記室外熱交換器(22)の温度の温度変化率が予め定められた第2の範囲を外れて下回り、かつ、前記室内熱交換器(31)の前記温度と、前記室外熱交換器(22)の前記温度とが、予め定められた期間内に逆転しないという切換不良判定条件を満たした場合に、前記四路切換弁(21)のポート切換不良であると判定する切換不良判定部(92)と
を備える空気調和装置。
A refrigerant circuit in which an indoor heat exchanger (31), an outdoor heat exchanger (22), a compressor (40), a four-way switching valve (21), and an expansion valve (24) are connected by a refrigerant pipe ( 10) and
An indoor heat exchanger temperature detector (85) provided in the indoor heat exchanger (31) for detecting the temperature of the indoor heat exchanger (31);
An outdoor heat exchanger temperature detection unit (76) provided in the outdoor heat exchanger (22) for detecting the temperature of the outdoor heat exchanger (22);
A controller (91) for outputting a port switching signal to the four-way switching valve (21) and controlling port switching of the four-way switching valve (21);
After the port switching signal is output by the control unit (91), the temperature change rate of the temperature of the indoor heat exchanger (31) detected by the indoor heat exchanger temperature detection unit (85) is within a predetermined first range. The temperature change rate of the temperature of the outdoor heat exchanger (22) detected by the outdoor heat exchanger temperature detection unit (76) falls outside a predetermined second range, and The four-way switching valve when the temperature of the heat exchanger (31) and the temperature of the outdoor heat exchanger (22) satisfy a switching failure determination condition that they do not reverse within a predetermined period. An air conditioner comprising: a switching failure determination unit (92) that determines that the port switching failure is (21).
前記切換不良判定部(92)は、前記室内熱交換器温度検出部(85)が検出した室内熱交換器(31)の温度の温度変化率が、前記予め定められた第1の範囲よりも更に小さい温度変化率に基づいて定められた第3の範囲を外れて下回り、前記室外熱交換器温度検出部(76)が検出した前記室外熱交換器(22)の温度の温度変化率が、前記予め定められた第2の範囲よりも更に小さい温度変化率に基づいて定められた第4の範囲を外れて下回り、かつ、前記室内熱交換器(31)の前記温度と、前記室外熱交換器(22)の前記温度とが、予め定められた期間内に逆転しないという切換不良判定条件を満たした場合に、前記圧縮機(40)の動作不良であると判定する請求項1に記載の空気調和装置。   In the switching failure determination unit (92), the temperature change rate of the temperature of the indoor heat exchanger (31) detected by the indoor heat exchanger temperature detection unit (85) is more than the predetermined first range. Further, the temperature change rate of the temperature of the outdoor heat exchanger (22) detected by the outdoor heat exchanger temperature detection unit (76) is less than the third range determined based on the smaller temperature change rate, The temperature of the indoor heat exchanger (31) falls below a fourth range determined based on a temperature change rate that is smaller than the predetermined second range, and the outdoor heat exchange. The temperature of the compressor (22) is determined to be a malfunction of the compressor (40) when the switching failure determination condition that the temperature does not reverse within a predetermined period is satisfied. Air conditioner. 室内熱交換器(31)と、室外熱交換器(22)と、圧縮機(40)と、四路切換弁(21)と、前記室内熱交換器(31)と前記室外熱交換器(22)との間に位置して設けられた膨張弁(24)とが冷媒配管で接続された冷媒回路(10)と、
前記室内熱交換器(31)に設けられ、当該室内熱交換器(31)の温度を検出する室内熱交換器温度検出部(85)と、
前記室外熱交換器(22)に設けられ、当該室外熱交換器(22)の温度を検出する室外熱交換器温度検出部(76)と、
前記冷媒回路(10)における前記圧縮機(40)の吐出側に設けられ、当該圧縮機(40)から吐出された冷媒の温度を検出する吐出温度検出部(75)と、
前記冷媒回路(10)における前記圧縮機(40)の吸入側に設けられ、当該圧縮機(40)に吸入される冷媒の温度を検出する吸入温度検出部(73)と、
前記四路切換弁(21)の駆動部にポート切換信号を出力し、当該四路切換弁(21)のポート切換を制御する制御部(91)と、
前記制御部(91)によるポート切換信号出力後に、前記吐出温度検出部(75)が検出した前記吐出冷媒の温度と、前記吸入温度検出部(73)が検出した前記吸入冷媒の温度との温度差が、予め定められた温度差を下回り、かつ、前記室内熱交換器(31)の前記温度と、前記室外熱交換器(22)の前記温度とが、予め定められた期間内に逆転しない場合に、前記四路切換弁(21)のポート切換不良であると判定する切換不良判定部(92)と
を備える空気調和装置。
Indoor heat exchanger (31), outdoor heat exchanger (22), compressor (40), four-way switching valve (21), indoor heat exchanger (31), and outdoor heat exchanger (22 And an expansion valve (24) provided between the refrigerant circuit (10) and the refrigerant pipe (24),
An indoor heat exchanger temperature detector (85) provided in the indoor heat exchanger (31) for detecting the temperature of the indoor heat exchanger (31);
An outdoor heat exchanger temperature detection unit (76) provided in the outdoor heat exchanger (22) for detecting the temperature of the outdoor heat exchanger (22);
A discharge temperature detection unit (75) that is provided on the discharge side of the compressor (40) in the refrigerant circuit (10) and detects the temperature of the refrigerant discharged from the compressor (40);
A suction temperature detection unit (73) provided on the suction side of the compressor (40) in the refrigerant circuit (10) for detecting the temperature of the refrigerant sucked into the compressor (40);
A control unit (91) for outputting a port switching signal to the drive unit of the four-way switching valve (21) and controlling the port switching of the four-way switching valve (21);
The temperature of the discharge refrigerant detected by the discharge temperature detection unit (75) and the temperature of the intake refrigerant detected by the suction temperature detection unit (73) after the port switching signal is output by the control unit (91). The difference is less than a predetermined temperature difference, and the temperature of the indoor heat exchanger (31) and the temperature of the outdoor heat exchanger (22) are not reversed within a predetermined period. An air conditioner including a switching failure determination unit (92) that determines that the port switching of the four-way switching valve (21) is defective.
前記冷媒回路(10)における前記圧縮機(40)の吐出側に設けられ、当該圧縮機(40)から吐出された冷媒の温度を検出する吐出温度検出部(75)と、
前記冷媒回路(10)における前記圧縮機(40)の吸入側に設けられ、当該圧縮機(40)に吸入される冷媒の温度を検出する吸入温度検出部(73)とを更に備え、
前記切換不良判定部(92)は、前記制御部(91)によるポート切換信号出力後に、前記切換不良判定条件を満たし、かつ、前記吐出温度検出部(75)が検出した前記吐出冷媒の温度と、前記吸入温度検出部(73)が検出した前記吸入冷媒の温度との温度差が、予め定められた温度差を下回る場合に、前記四路切換弁(21)のポート切換不良であると判定する請求項1に記載の空気調和装置。
A discharge temperature detection unit (75) that is provided on the discharge side of the compressor (40) in the refrigerant circuit (10) and detects the temperature of the refrigerant discharged from the compressor (40);
A suction temperature detector (73) provided on the suction side of the compressor (40) in the refrigerant circuit (10) and detecting the temperature of the refrigerant sucked into the compressor (40);
The switching failure determination unit (92) satisfies the switching failure determination condition and outputs the temperature of the discharged refrigerant detected by the discharge temperature detection unit (75) after the port switching signal is output by the control unit (91). When the temperature difference with the temperature of the suction refrigerant detected by the suction temperature detection unit (73) is less than a predetermined temperature difference, it is determined that the port switching failure of the four-way switching valve (21). The air conditioning apparatus according to claim 1.
JP2010142564A 2010-06-23 2010-06-23 Air conditioner Active JP5494280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142564A JP5494280B2 (en) 2010-06-23 2010-06-23 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142564A JP5494280B2 (en) 2010-06-23 2010-06-23 Air conditioner

Publications (2)

Publication Number Publication Date
JP2012007780A JP2012007780A (en) 2012-01-12
JP5494280B2 true JP5494280B2 (en) 2014-05-14

Family

ID=45538539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142564A Active JP5494280B2 (en) 2010-06-23 2010-06-23 Air conditioner

Country Status (1)

Country Link
JP (1) JP5494280B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454409B2 (en) 2019-03-15 2022-09-27 Carrier Corporation Failure detection method for air conditioning system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301789B2 (en) * 2014-09-08 2018-03-28 シャープ株式会社 Compressor step-out detection system and step-out detection method in a refrigeration cycle
JP6621277B2 (en) * 2015-09-11 2019-12-18 日立ジョンソンコントロールズ空調株式会社 Refrigeration equipment
CN105928278A (en) * 2016-05-05 2016-09-07 广东美的制冷设备有限公司 Four-way valve fault detection method and device and air conditioner
CN105928150A (en) * 2016-05-05 2016-09-07 广东美的制冷设备有限公司 Four-way valve fault detection method and device and air conditioner
CN107560105B (en) * 2017-09-01 2020-01-31 广东美的暖通设备有限公司 Method and device for judging connection pipe error of four-way valve and machine readable storage medium
CN108954669B (en) * 2018-07-06 2020-05-22 广东美的暖通设备有限公司 Four-way valve fault detection method, refrigerating and heating equipment and readable storage medium
CN109269007B (en) * 2018-09-27 2020-10-27 宁波奥克斯电气股份有限公司 Control method and control system for household water machine and air conditioner
CN109579190B (en) * 2018-12-25 2021-01-29 新奥数能科技有限公司 Method and device for determining operation mode of heat pump unit compressor
JP6891910B2 (en) * 2019-03-14 2021-06-18 ダイキン工業株式会社 Refrigeration cycle device and four-way switching valve abnormality determination method
CN117450701B (en) * 2023-12-20 2024-04-05 珠海格力电器股份有限公司 Heat pump unit control method and device, electronic equipment and readable storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275868A (en) * 1988-09-09 1990-03-15 Hitachi Ltd Controlling method for refrigerator
JPH09243138A (en) * 1996-03-12 1997-09-16 Fujitsu General Ltd Method for controlling air conditioner
JP3920508B2 (en) * 1999-09-20 2007-05-30 三洋電機株式会社 Air conditioner
JP3589203B2 (en) * 2001-07-17 2004-11-17 ダイキン工業株式会社 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454409B2 (en) 2019-03-15 2022-09-27 Carrier Corporation Failure detection method for air conditioning system

Also Published As

Publication number Publication date
JP2012007780A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5494280B2 (en) Air conditioner
JP5147889B2 (en) Air conditioner
JP4823264B2 (en) Cooling device and cooling device monitoring system
WO2013099047A1 (en) Air conditioner
AU2007244357B2 (en) Air conditioner
JP6479162B2 (en) Air conditioner
EP3885670B1 (en) Refrigeration cycle apparatus
KR100815030B1 (en) Air-conditioning apparatus
EP1998124B1 (en) Air conditioner
JP6444577B1 (en) Air conditioner
JP2009079842A (en) Refrigerating cycle device and its control method
JP7473833B2 (en) Refrigeration Cycle Equipment
JP5078817B2 (en) Refrigeration cycle equipment
JP4418936B2 (en) Air conditioner
WO2020241622A1 (en) Refrigeration device
JP4985608B2 (en) Air conditioner
JP3541798B2 (en) Refrigeration equipment
JP2002147905A (en) Refrigerating plant
JP2008145044A (en) Air conditioner
JP2002147904A (en) Method for detecting frost formation on heat exchanger
JPH0571822A (en) Air-conditioner
JP5056794B2 (en) Air conditioner
JP4374775B2 (en) Refrigeration equipment
WO2021171448A1 (en) Refrigeration cycle device
WO2017094172A1 (en) Air conditioning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R151 Written notification of patent or utility model registration

Ref document number: 5494280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151