JP2009079842A - Refrigerating cycle device and its control method - Google Patents

Refrigerating cycle device and its control method Download PDF

Info

Publication number
JP2009079842A
JP2009079842A JP2007249937A JP2007249937A JP2009079842A JP 2009079842 A JP2009079842 A JP 2009079842A JP 2007249937 A JP2007249937 A JP 2007249937A JP 2007249937 A JP2007249937 A JP 2007249937A JP 2009079842 A JP2009079842 A JP 2009079842A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
cycle apparatus
amount
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007249937A
Other languages
Japanese (ja)
Inventor
Koyu Tanaka
航祐 田中
Koji Yamashita
浩司 山下
Masato Yosomiya
正人 四十宮
Hirokuni Shiba
広有 柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007249937A priority Critical patent/JP2009079842A/en
Publication of JP2009079842A publication Critical patent/JP2009079842A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To precisely determine availability of a refrigerant quantity of an air conditioner in response to a difference in an apparatus system constitution of the air conditioner, the pipe length, a pipe diameter and a height difference when installing an apparatus, the connecting number of indoor units and indoor unit capacity, with excellent accuracy even under any environmental condition and an installation condition. <P>SOLUTION: This refrigerating cycle device has an operation control means for operating by switching an ordinary operation mode of controlling the respective apparatuses of the refrigerating cycle device in response to an operation load of using side heat exchangers 7a and 7b and a refrigerant quantity determining operation mode of controlling an orifice means so that an overheating degree of a refrigerant becomes a positive value in an outlet of a heat exchanger being an evaporator among the using side heat exchangers 7a and 7b or a heat source side heat exchanger 3, and also determines the availability of the refrigerant quantity filled in a refrigerant circuit by comparing with a reference value of an operation state quantity in a proper refrigerant quantity prestored in a storage means, by detecting the operation state quantity varying in response to the refrigerant quantity in the refrigerant quantity determining operation mode. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷媒回路内に充填されている冷媒量の適否を、適正冷媒量での運転時に装置から検出される運転状態量と現在の運転状態量とから判定する機能を備えた冷凍サイクル装置とその制御方法に関する。   The present invention relates to a refrigeration cycle apparatus having a function of determining whether or not the amount of refrigerant charged in a refrigerant circuit is appropriate from an operating state quantity detected from the apparatus during operation with the appropriate refrigerant quantity and a current operating state quantity. And its control method.

従来より、熱源ユニットと利用ユニットとが接続配管を介して接続されることにより冷媒回路が構成されたセパレートタイプの冷凍サイクル装置が知られている。このようなものにおいては、配管の接続箇所の締め付け不足や配管の損傷等で冷媒漏れが生じることがある。このような冷媒漏れは、冷凍サイクル装置の冷房もしくは暖房能力の低下や構成機器の損傷を生じさせる原因になる。また、機器据付時に冷凍サイクル装置に過剰な冷媒を充填してしまった場合は、機器稼動時に冷凍サイクル装置内の圧力が高くなり、機器の安全上の問題から停止せざるを得なくなり、運転ができない状態に陥る。また、逆に充填冷媒量が不足している場合は、所望の冷房能力、暖房能力が得られなくなる。このため、冷凍サイクル装置に充填されている冷媒量の適否を判定する機能を備えることが望ましい。   2. Description of the Related Art Conventionally, a separate type refrigeration cycle apparatus is known in which a refrigerant circuit is configured by connecting a heat source unit and a utilization unit via a connection pipe. In such a case, refrigerant leakage may occur due to insufficient tightening of piping connection points or damage to the piping. Such refrigerant leakage may cause a decrease in cooling or heating capacity of the refrigeration cycle apparatus and damage to constituent devices. Also, if the refrigeration cycle device is filled with an excessive amount of refrigerant when the equipment is installed, the pressure inside the refrigeration cycle equipment will increase when the equipment is in operation, and it will be forced to stop due to equipment safety problems, and operation will fail. I ca n’t do it. On the other hand, when the amount of refrigerant charged is insufficient, desired cooling capacity and heating capacity cannot be obtained. For this reason, it is desirable to have a function of determining the suitability of the amount of refrigerant charged in the refrigeration cycle apparatus.

そこで、暖房運転時の室外熱交換器の出口における冷媒過熱度や冷房運転時の室内熱交換器の出口における冷媒過熱度を用いて冷媒量の適否を判定する方法(例えば、特許文献1参照)や、冷房運転時の室外熱交換器の出口における過冷却度より冷媒量を推定し、基準値と比較し、冷媒量の適否を判定する方法(例えば、特許文献2、特許文献3参照)等が提案されている。   Therefore, a method for determining the suitability of the refrigerant amount by using the refrigerant superheat degree at the outlet of the outdoor heat exchanger during the heating operation or the refrigerant superheat degree at the outlet of the indoor heat exchanger during the cooling operation (for example, see Patent Document 1). Also, a method of estimating the refrigerant amount from the degree of supercooling at the outlet of the outdoor heat exchanger during the cooling operation, comparing with the reference value, and determining the suitability of the refrigerant amount (see, for example, Patent Document 2 and Patent Document 3), etc. Has been proposed.

特開平02−208469号公報(図3、図5)Japanese Patent Laid-Open No. 02-208469 (FIGS. 3 and 5) 特開2006−313057号公報(図1、図9〜図11)Japanese Patent Laying-Open No. 2006-313057 (FIGS. 1 and 9 to 11) 特許第3852472号公報(図1、図8)Japanese Patent No. 3852472 (FIGS. 1 and 8)

ところで、機器設置後に冷媒を充填する場合、現地において配管長さや構成機器の容量等から算出した規定冷媒量になるまで冷媒充填を行うが、この規定冷媒量の算出の際の計算ミスや充填作業ミスにより、現地において実際に充填された初期冷媒量と規定冷媒量との間にばらつきが生じることがある。この状態で、前述した冷媒量の適否を判定する従来の手法を適用すると、初期冷媒量と規定冷媒量との間にばらつきが生じているにもかかわらず、規定冷媒量が充填された場合に対応する過熱度や過冷却度等(以下、これらをまとめて「運転状態量」という場合もある)の値をそのまま基準値として用いて、運転状態量の現在値と比較して、冷媒量の適否の判定を行うことになるため、結果的に、冷媒量の適否の判定の精度が低下するという難点があった。   By the way, when the refrigerant is charged after the installation of the equipment, the refrigerant is charged up to the specified refrigerant amount calculated from the pipe length, the capacity of the component equipment, etc. at the site. Due to a mistake, a variation may occur between the initial refrigerant amount actually charged locally and the specified refrigerant amount. In this state, when the above-described conventional method for determining the appropriateness of the refrigerant amount is applied, the specified refrigerant amount is filled even though there is a variation between the initial refrigerant amount and the specified refrigerant amount. The values of the corresponding superheat degree, supercooling degree, etc. (hereinafter, these may be collectively referred to as “operating state quantity”) are used as a reference value as they are, and compared with the current value of the operating state quantity, As a result, determination of suitability is performed, and as a result, there is a problem in that accuracy of judgment of suitability of the refrigerant amount is lowered.

また、冷房運転で冷媒量の適否の判定を行うものにあっては、熱源ユニット側に絞り手段がある冷凍サイクル装置では、接続配管の液配管が冷房運転時は気液二相冷媒で満たされ、暖房運転時は、液冷媒で満たされるため、暖房運転の方が必要冷媒量が多くなる。したがって、暖房運転を基準として規定封入冷媒量が決定されるものにあっては、冷媒量の適否を、前述のように冷房運転状態下で判定した場合、検知精度が低下するという難点があった。   In addition, in a refrigeration cycle apparatus that has a throttling means on the heat source unit side for determining whether or not the refrigerant amount is appropriate in the cooling operation, the liquid piping of the connecting pipe is filled with the gas-liquid two-phase refrigerant during the cooling operation. During the heating operation, the refrigerant is filled with the liquid refrigerant, and thus the heating operation requires a larger amount of refrigerant. Therefore, in the case where the prescribed enclosed refrigerant amount is determined based on the heating operation, there is a problem that the detection accuracy is lowered when the suitability of the refrigerant amount is determined under the cooling operation state as described above. .

また、従来の冷凍サイクル装置で、アキュムレータやレシーバーなどの余剰冷媒を貯留する容器が構成要素としてある機種においては、冷媒漏れを検知するために容器内の余剰冷媒量を超音波センサなどの固有の検出器で直接検出し冷媒量を推定する必要があり、コストがかかるといった難点があった。   Moreover, in a model in which a conventional refrigeration cycle apparatus has a container for storing surplus refrigerant such as an accumulator or a receiver as a constituent element, the amount of surplus refrigerant in the container is determined by an ultrasonic sensor or the like in order to detect refrigerant leakage. There is a problem that it is necessary to detect the amount directly by a detector and estimate the amount of refrigerant, which is costly.

また、冷媒量を検知する運転状態量として冷媒の過冷却度を用いているものにあっては、CO2冷媒などのように超臨界領域での物性変化を伴う冷媒を用いた場合、過冷却度が得られない冷凍サイクル装置に対しては適用できないといった難点があった。 Further, in the one that uses a supercooling degree of the refrigerant as the operation state quantity for detecting the amount of refrigerant, when a refrigerant with a change in physical properties in the supercritical region, such as CO 2 refrigerant supercooling There is a problem that it cannot be applied to a refrigeration cycle apparatus in which the degree cannot be obtained.

また、従来の冷凍サイクル装置では、冷媒の追加充填時に適正冷媒量に近くなってきても、冷媒の封入速度を減少させる制御を行っていないため、追加充填用の冷媒が封入された冷媒ボンベから冷凍サイクル装置へ冷媒が過剰に流入し、オーバーチャージ気味に冷媒が充填されるといった難点があった。   Further, in the conventional refrigeration cycle apparatus, even if the refrigerant amount approaches the appropriate refrigerant amount at the time of additional charging of the refrigerant, control is not performed to reduce the charging speed of the refrigerant, and therefore, from the refrigerant cylinder filled with the additional charging refrigerant. There is a problem that the refrigerant flows excessively into the refrigeration cycle apparatus and is filled with the refrigerant in an overcharged manner.

本発明は、叙上のような課題を解決するためになされたもので、如何なる環境条件、設置条件下においても精度良く、冷凍サイクル装置の機器システム構成の違い、機器据付時の配管長さ、配管径、高低差、室内機接続台数、室内機容量に応じて冷凍サイクル装置の冷媒量の適否を的確に判断できるようにすることを目的とする。   The present invention was made in order to solve the above-mentioned problems, accurately under any environmental conditions and installation conditions, the difference in the equipment system configuration of the refrigeration cycle apparatus, the pipe length at the time of equipment installation, It is an object of the present invention to accurately determine the suitability of the refrigerant amount of a refrigeration cycle apparatus according to the pipe diameter, height difference, number of indoor unit connections, and indoor unit capacity.

本発明に係る冷凍サイクル装置は、下記の構成からなるものである。すなわち、圧縮機と熱源側熱交換器と絞り手段と、少なくとも1つの利用側熱交換器とを液冷媒接続配管およびガス冷媒接続配管で接続し、冷媒回路を構成する冷凍サイクル装置であって、前記利用側熱交換器の運転負荷に応じて前記冷凍サイクル装置の各機器の制御を行う通常運転モードと、前記利用側熱交換器または、前記熱源側熱交換器のうち蒸発器である熱交換器の出口における冷媒の過熱度が正値になるように前記絞り手段を制御する冷媒量判定運転モードとを切り換えて運転する運転制御手段を有し、かつ前記冷媒量判定運転モードにおいて、冷媒量に応じて変動する運転状態量を検出して、記憶手段に予め記憶している適正冷媒量での運転状態量の基準値と比較することで、前記冷媒回路内に充填されている冷媒量の適否を判定する手段を備えたものである。   The refrigeration cycle apparatus according to the present invention has the following configuration. That is, a compressor, a heat source side heat exchanger, an expansion means, and at least one usage side heat exchanger are connected by a liquid refrigerant connection pipe and a gas refrigerant connection pipe to constitute a refrigerant circuit, Normal operation mode for controlling each device of the refrigeration cycle apparatus according to the operation load of the use side heat exchanger, and heat exchange that is an evaporator of the use side heat exchanger or the heat source side heat exchanger Operation control means for switching and operating the refrigerant amount determination operation mode for controlling the throttling means so that the degree of superheat of the refrigerant at the outlet of the condenser becomes a positive value, and in the refrigerant amount determination operation mode, the refrigerant amount The amount of refrigerant charged in the refrigerant circuit is detected by detecting the amount of operating state that varies depending on the amount of refrigerant and comparing it with the reference value of the amount of operating state stored in advance in the storage means. Judgment of suitability Those having means for.

本発明の冷凍サイクル装置によれば、冷凍サイクル装置の適正冷媒量での冷凍サイクルの運転状態量の基準値を予め記憶しておき、冷媒量判定運転モードにおいて、現在の冷凍サイクルの運転状態量と前記基準値とを比較することで、冷媒量の適否を判定するようにしているので、如何なる環境条件、設置条件下においても精度良く、冷凍サイクル装置の冷媒量の適否を的確に判断でき、信頼性の高い冷凍サイクル装置を得ることができる。   According to the refrigeration cycle apparatus of the present invention, the reference value of the operation state quantity of the refrigeration cycle with the appropriate refrigerant amount of the refrigeration cycle apparatus is stored in advance, and the current operation state quantity of the refrigeration cycle is stored in the refrigerant amount determination operation mode. By comparing the reference value with the reference value, it is determined whether or not the refrigerant amount is appropriate, so that it is possible to accurately determine the appropriateness of the refrigerant amount of the refrigeration cycle apparatus accurately under any environmental conditions and installation conditions, A highly reliable refrigeration cycle apparatus can be obtained.

実施の形態1.
以下、図示実施形態により本発明を説明する。
図1は本発明の実施の形態1に係る冷凍サイクル装置を概略的に示す冷媒回路図である。
Embodiment 1 FIG.
The present invention will be described below with reference to illustrated embodiments.
FIG. 1 is a refrigerant circuit diagram schematically showing a refrigeration cycle apparatus according to Embodiment 1 of the present invention.

本実施形態の冷凍サイクル装置は、蒸気圧縮式の冷凍サイクル運転を行うことによって、屋内の冷暖房に使用される装置であり、主として並列に接続された複数台(本実施形態では1台)の熱源ユニット301と、それに冷媒連絡配管となる液接続配管6及びガス接続配管9を介して並列に接続された複数台(本実施形態では2台)の利用ユニット302a、302bとから構成されている。冷凍サイクル装置に用いられる冷媒としては、例えばR410A、R407C、R404AなどのHFC冷媒、R22、R134aなどのHCFC冷媒、もしくは炭化水素、ヘリウムのような自然冷媒などがある。   The refrigeration cycle apparatus of the present embodiment is an apparatus used for indoor air conditioning by performing vapor compression refrigeration cycle operation, and a plurality of heat sources (one in this embodiment) connected mainly in parallel. The unit 301 is composed of a plurality of (two in this embodiment) usage units 302a and 302b connected in parallel via a liquid connection pipe 6 and a gas connection pipe 9 serving as a refrigerant communication pipe. Examples of the refrigerant used in the refrigeration cycle apparatus include HFC refrigerants such as R410A, R407C, and R404A, HCFC refrigerants such as R22 and R134a, or natural refrigerants such as hydrocarbon and helium.

<利用ユニット>
利用ユニット302a、302bは、屋内の天井に埋め込みや吊り下げ等により、または屋内の壁面に壁掛け等により設置され、既述したように液接続配管6及びガス接続配管9を介して熱源ユニット301に接続されて冷媒回路の一部を構成している。
<Usage unit>
The use units 302a and 302b are installed by being embedded or suspended in an indoor ceiling, or wall-mounted on an indoor wall surface, and are connected to the heat source unit 301 via the liquid connection pipe 6 and the gas connection pipe 9 as described above. It is connected and constitutes a part of the refrigerant circuit.

次に、利用ユニット302a、302bの詳細な構成について説明するが、利用ユニット302aと302bとは同様の構成を有しているため、ここでは利用ユニット302aについてのみ説明し、利用ユニット302bについては、各符号にサフィックス「b」を付けて各部の説明を省略する。   Next, the detailed configuration of the usage units 302a and 302b will be described. However, since the usage units 302a and 302b have the same configuration, only the usage unit 302a will be described here, and the usage unit 302b will be described. A suffix “b” is attached to each symbol, and description of each part is omitted.

利用ユニット302aは、冷媒回路の一部である室内側冷媒回路を構成しており、室内送風機8aと、利用側熱交換器である室内熱交換器7aとを備えている。   The usage unit 302a constitutes an indoor refrigerant circuit that is a part of the refrigerant circuit, and includes an indoor fan 8a and an indoor heat exchanger 7a that is a usage-side heat exchanger.

室内熱交換器7aは、ここでは伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器からなり、冷房運転時には冷媒の蒸発器として機能して室内の空気を冷却し、暖房運転時には冷媒の凝縮器として機能して室内の空気を加熱する。   Here, the indoor heat exchanger 7a is a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant evaporator during cooling operation. In the heating operation, it functions as a refrigerant condenser and heats indoor air.

室内送風機8aは、室内熱交換器7aに供給する空気の流量を可変することが可能なファン、例えばDCファンモータ(図示せず)によって駆動される遠心ファンや多翼ファン等からなり、これによって利用ユニット302a内に室内空気を吸入し、室内熱交換器7aにより冷媒との間で熱交換した空気を供給空気として室内に供給する機能を有する。   The indoor blower 8a is composed of a fan capable of changing the flow rate of air supplied to the indoor heat exchanger 7a, such as a centrifugal fan or a multi-blade fan driven by a DC fan motor (not shown). It has a function of sucking indoor air into the utilization unit 302a and supplying the air, which has been heat-exchanged with the refrigerant by the indoor heat exchanger 7a, into the room as supply air.

また、利用ユニット302aには、各種のセンサが設置されている。すなわち、室内熱交換器7aの液側には、液状態または気液二相状態の冷媒の温度(暖房運転時における過冷却液温度Tcoまたは冷房運転時における蒸発温度Teに対応する冷媒温度)を検出する液側温度センサ205aが設けられている。また室内熱交換器7aには、気液二相状態の冷媒の温度(暖房運転時における凝縮温度Tcまたは冷房運転時における蒸発温度Teに対応する冷媒温度)を検出するガス側温度センサ207aが設けられている。更に利用ユニット302aの室内空気の吸入口側には、ユニット内に流入する室内空気の温度を検出する室内温度センサ206aが設けられている。なお、ここでは液側温度センサ205a、ガス側温度センサ207a、及び室内温度センサ206aは、いずれもサーミスタから構成されている。室内送風機8aの動作は、運転制御手段によって制御されるようになっている。   Various sensors are installed in the use unit 302a. That is, on the liquid side of the indoor heat exchanger 7a, the temperature of the refrigerant in the liquid state or the gas-liquid two-phase state (the supercooled liquid temperature Tco during the heating operation or the refrigerant temperature corresponding to the evaporation temperature Te during the cooling operation). A liquid temperature sensor 205a for detection is provided. The indoor heat exchanger 7a is provided with a gas side temperature sensor 207a for detecting the temperature of the refrigerant in the gas-liquid two-phase state (condensation temperature Tc during heating operation or refrigerant temperature corresponding to the evaporation temperature Te during cooling operation). It has been. Further, an indoor temperature sensor 206a for detecting the temperature of the indoor air flowing into the unit is provided on the indoor air inlet side of the utilization unit 302a. Here, all of the liquid side temperature sensor 205a, the gas side temperature sensor 207a, and the room temperature sensor 206a are composed of thermistors. The operation of the indoor fan 8a is controlled by operation control means.

<熱源ユニット>
熱源ユニット301は、屋外に設置されており、液接続配管6およびガス接続配管9を介して利用ユニット302a、302bに接続されており、冷媒回路の一部を構成している。
<Heat source unit>
The heat source unit 301 is installed outdoors and is connected to the utilization units 302a and 302b via the liquid connection pipe 6 and the gas connection pipe 9 and constitutes a part of the refrigerant circuit.

次に、熱源ユニット301の詳細な構成について説明する。熱源ユニット301は、圧縮機1と、四方弁2と、熱源側熱交換器としての室外熱交換器3と、室外送風機4と、絞り手段5aとを備えている。   Next, a detailed configuration of the heat source unit 301 will be described. The heat source unit 301 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3 as a heat source side heat exchanger, an outdoor blower 4, and a throttle means 5a.

絞り手段5aは、冷媒回路内を流れる冷媒の流量の調節等を行うために、熱源ユニット301の液側に接続配置されている。   The throttle means 5a is connected to the liquid side of the heat source unit 301 in order to adjust the flow rate of the refrigerant flowing in the refrigerant circuit.

圧縮機1は、運転容量を可変することが可能な圧縮機であり、ここではインバータにより制御されるモータ(図示せず)によって駆動される容積式圧縮機を用いている。なお、圧縮機1は、ここでは1台のみであるが、これに限定されず、利用ユニットの接続台数等に応じて、2台以上の圧縮機が並列に接続されたものであってもよいことは言うまでもない。   The compressor 1 is a compressor whose operating capacity can be varied. Here, a positive displacement compressor driven by a motor (not shown) controlled by an inverter is used. In addition, although the compressor 1 is only one here, it is not limited to this, According to the number of use units etc., two or more compressors may be connected in parallel. Needless to say.

四方弁2は、冷媒の流れの方向を切り換えるための弁であり、冷房運転時には、室外熱交換器3を圧縮機1において圧縮される冷媒の凝縮器として、かつ室内熱交換器7a、7bを室外熱交換器3において凝縮される冷媒の蒸発器として機能させるために、圧縮機1の吐出側と室外熱交換器3のガス側とを接続するとともに、圧縮機1の吸入側とガス接続配管9側とを接続するように(図1の四方弁2の破線を参照)、冷媒流路を切り換える。また四方弁2は、暖房運転時には、室内熱交換器7a、7bを圧縮機1において圧縮される冷媒の凝縮器として、かつ室外熱交換器3を室内熱交換器7a、7bにおいて凝縮される冷媒の蒸発器として機能させるために、圧縮機1の吐出側とガス接続配管9側とを接続するとともに、圧縮機1の吸入側と室外熱交換器3のガス側とを接続するように(図1の四方弁2の実線を参照)、冷媒流路を切り換える機能を有する。   The four-way valve 2 is a valve for switching the flow direction of the refrigerant. During the cooling operation, the outdoor heat exchanger 3 is used as a refrigerant condenser to be compressed in the compressor 1 and the indoor heat exchangers 7a and 7b are used. In order to function as an evaporator of the refrigerant condensed in the outdoor heat exchanger 3, the discharge side of the compressor 1 and the gas side of the outdoor heat exchanger 3 are connected, and the suction side of the compressor 1 and the gas connection pipe The refrigerant flow path is switched so as to connect to the 9 side (see the broken line of the four-way valve 2 in FIG. 1). In the heating operation, the four-way valve 2 uses the indoor heat exchangers 7a and 7b as the refrigerant condenser compressed in the compressor 1, and the outdoor heat exchanger 3 as the refrigerant condensed in the indoor heat exchangers 7a and 7b. In order to function as an evaporator, the discharge side of the compressor 1 and the gas connection pipe 9 side are connected, and the suction side of the compressor 1 and the gas side of the outdoor heat exchanger 3 are connected (see FIG. 1 (see the solid line of the four-way valve 2), and has a function of switching the refrigerant flow path.

室外熱交換器3は、そのガス側が四方弁2に接続され、その液側が液接続配管6に接続された伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器からなり、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する。   The outdoor heat exchanger 3 is a cross-fin type fin-and-tube heat composed of a heat transfer tube having a gas side connected to the four-way valve 2 and a liquid side connected to the liquid connection pipe 6 and a large number of fins. It consists of an exchanger and functions as a refrigerant condenser during cooling operation and functions as a refrigerant evaporator during heating operation.

室外送風機4は、室外熱交換器3に供給する空気の流量を可変することが可能なファン、例えばDCファンモータ(図示せず)によって駆動されるプロペラファンからなり、これによって熱源ユニット301内に室外空気を吸入し、室外熱交換器3により冷媒との間で熱交換した空気を室外に排出する機能を有する。   The outdoor blower 4 is composed of a fan capable of varying the flow rate of air supplied to the outdoor heat exchanger 3, for example, a propeller fan driven by a DC fan motor (not shown). It has a function of sucking outdoor air and discharging the air heat-exchanged with the refrigerant by the outdoor heat exchanger 3 to the outside.

また、熱源ユニット301には、各種のセンサが設置されている。すなわち、圧縮機1には、吐出温度Tdを検出する吐出温度センサ201が設けられているとともに、室外熱交換器3には、気液二相状態の冷媒の温度(冷房運転時における凝縮温度Tcまたは暖房運転時における蒸発温度Teに対応する冷媒温度)を検出するガス側温度センサ202が設けられている。更に室外熱交換器3の液側には、液状態または気液二相状態の冷媒の温度を検出する液側温度センサ204が設けられている。また、熱源ユニット301の室外空気の吸入口側には、ユニット内に流入する室外空気の温度すなわち外気温度Taを検出する室外温度センサ203が設けられている。なお、圧縮機1、四方弁2、室外送風機4、絞り手段5aは、運転制御手段によって制御されるようになっている。   Various sensors are installed in the heat source unit 301. In other words, the compressor 1 is provided with a discharge temperature sensor 201 for detecting the discharge temperature Td, and the outdoor heat exchanger 3 has a gas-liquid two-phase refrigerant temperature (condensation temperature Tc during cooling operation). Alternatively, a gas side temperature sensor 202 that detects a refrigerant temperature corresponding to the evaporation temperature Te during heating operation) is provided. Further, a liquid side temperature sensor 204 for detecting the temperature of the refrigerant in the liquid state or the gas-liquid two-phase state is provided on the liquid side of the outdoor heat exchanger 3. Further, an outdoor temperature sensor 203 for detecting the temperature of the outdoor air flowing into the unit, that is, the outdoor air temperature Ta is provided on the outdoor air inlet side of the heat source unit 301. The compressor 1, the four-way valve 2, the outdoor fan 4, and the throttle means 5a are controlled by operation control means.

運転制御手段では、各種温度センサによって検知された各諸量を測定部101に入力し、演算部102によって処理し、演算結果が制御部103に送られるようになっている。そして制御部103により、演算手段102の演算結果に基づき、圧縮機1、四方弁2、室外送風機4、絞り手段5a、室内送風機8が、所望の制御目標範囲に収まるように駆動制御されるようになっている。また、演算部102によって得られた運転状態量の演算結果は記憶部104に記憶されるようになっている。また記憶部104には、適正冷媒量で予め採取した基準となる運転状態量が記憶されており、この記憶された基準値と現在の冷凍サイクルの運転状態量の値が、比較部105によって比較され、その比較結果が判定部106に送られて冷凍サイクル装置の冷媒量の適否が判定され、その判定結果が報知部106によってLEDや遠隔地のモニタ等に報知されるようになっている。   In the operation control means, various amounts detected by various temperature sensors are input to the measurement unit 101, processed by the calculation unit 102, and the calculation result is sent to the control unit 103. The control unit 103 drives and controls the compressor 1, the four-way valve 2, the outdoor fan 4, the throttle unit 5 a, and the indoor fan 8 based on the calculation result of the calculation unit 102 so as to be within a desired control target range. It has become. Further, the calculation result of the operation state quantity obtained by the calculation unit 102 is stored in the storage unit 104. In addition, the storage unit 104 stores a reference operation state quantity that is collected in advance with an appropriate refrigerant amount, and the stored reference value is compared with the current operation state quantity value of the refrigeration cycle by the comparison unit 105. Then, the comparison result is sent to the determination unit 106 to determine the suitability of the refrigerant amount of the refrigeration cycle apparatus, and the determination result is notified by the notification unit 106 to an LED, a remote monitor, or the like.

以上のように、熱源ユニット301と利用ユニット302a、302bとが液接続配管6とガス接続配管9を介して接続されて、冷凍サイクル装置の冷媒回路が構成されている。   As described above, the heat source unit 301 and the utilization units 302a and 302b are connected via the liquid connection pipe 6 and the gas connection pipe 9 to constitute the refrigerant circuit of the refrigeration cycle apparatus.

次に、本実施形態の冷凍サイクル装置の動作について説明する。
本実施形態の冷凍サイクル装置の運転モードとしては、利用ユニット302a、302bの運転負荷に応じて熱源ユニット301及び利用ユニット302a、302bの各機器の制御を行う通常運転モードと、冷凍サイクル装置の設置後の冷媒充填時に行われる冷媒自動充填運転モードと、冷媒自動充填運転を終了し通常運転を開始した後において利用ユニット302a、302bを暖房運転しつつ凝縮器として機能する室内熱交換器7a、7bの出口における冷媒の状態量を検出して冷媒回路内に充填されている冷媒量の適否を判断する冷媒量検知モードとがある。なお、通常運転モードには、一般に冷房運転と暖房運転とが含まれる。
Next, operation | movement of the refrigerating-cycle apparatus of this embodiment is demonstrated.
The operation mode of the refrigeration cycle apparatus of the present embodiment includes a normal operation mode for controlling each device of the heat source unit 301 and the usage units 302a and 302b in accordance with the operation load of the usage units 302a and 302b, and installation of the refrigeration cycle apparatus. The automatic refrigerant charging operation mode that is performed when the refrigerant is charged later, and the indoor heat exchangers 7a and 7b that function as condensers while heating the usage units 302a and 302b after the automatic refrigerant charging operation is ended and the normal operation is started. There is a refrigerant quantity detection mode in which the state quantity of the refrigerant at the outlet of the refrigerant is detected to determine whether the refrigerant quantity charged in the refrigerant circuit is appropriate. Note that the normal operation mode generally includes a cooling operation and a heating operation.

次に、冷凍サイクル装置の各運転モードにおける動作について説明する。   Next, the operation in each operation mode of the refrigeration cycle apparatus will be described.

<通常運転モード>
まず、通常運転モードにおける冷房運転について、図1を用いて説明する。
<Normal operation mode>
First, the cooling operation in the normal operation mode will be described with reference to FIG.

冷房運転時は、四方弁2が図1の破線で示される状態、すなわち、圧縮機1の吐出側が室外熱交換器3のガス側に接続され、かつ圧縮機1の吸入側が室内熱交換器7a、7bのガス側に接続された状態となっている。また、絞り手段5aは圧縮機1の吸入側における冷媒の過熱度が所定値になるように開度調節されるようになっている。本実施形態において、圧縮機1の吸入における冷媒の過熱度は、まず圧縮機吸入温度Tsより、ガス側温度センサ207a、207bにより検出される冷媒の蒸発温度Teを差し引くことによって求められる。ここで、圧縮機吸入温度Tsは、ガス側温度センサ207a、207bにより検出される冷媒の蒸発温度を低圧の飽和圧力Psに換算し、ガス側温度センサ202により検出される冷媒の凝縮温度を高圧の飽和圧力Pdに換算し、圧縮機1の吐出温度センサ201により検出される冷媒の吐出温度Tdより、圧縮機1の圧縮工程はポリトロープ指数nのポリトロープ変化と仮定し、下記(1)式より算出することができる。   During the cooling operation, the four-way valve 2 is in the state indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 1 is connected to the gas side of the outdoor heat exchanger 3, and the suction side of the compressor 1 is the indoor heat exchanger 7a. , 7b is connected to the gas side. The opening of the throttle means 5a is adjusted so that the degree of superheat of the refrigerant on the suction side of the compressor 1 becomes a predetermined value. In the present embodiment, the degree of superheating of the refrigerant in the suction of the compressor 1 is first obtained by subtracting the refrigerant evaporation temperature Te detected by the gas side temperature sensors 207a and 207b from the compressor suction temperature Ts. Here, the compressor suction temperature Ts is obtained by converting the refrigerant evaporation temperature detected by the gas side temperature sensors 207a and 207b into a low pressure saturation pressure Ps, and the refrigerant condensation temperature detected by the gas side temperature sensor 202 being a high pressure. From the refrigerant discharge temperature Td detected by the discharge temperature sensor 201 of the compressor 1, the compression process of the compressor 1 is assumed to be a polytropic change of the polytropic index n, and is calculated from the following equation (1). Can be calculated.

Figure 2009079842
Figure 2009079842

ここで、Ts、Tdは温度[K]、Ps、Pdは圧力[MPa]、nはポリトロープ指数[−]である。ポリトロープ指数は一定値(例えばn=1.2)としてもよいが、Ps、Pdの関数として定義することで、より精度よく圧縮機吸入温度Tsを推測することができる。   Here, Ts and Td are the temperature [K], Ps and Pd are the pressure [MPa], and n is the polytropic index [−]. The polytropic index may be a constant value (for example, n = 1.2), but by defining it as a function of Ps and Pd, the compressor intake temperature Ts can be estimated more accurately.

なお、図2の冷媒回路図に示すように、圧縮機1の吸入側に吸入圧力センサ10と吸入温度センサ208を設け、吸入圧力センサ10により検出される圧縮機1の吸入圧力Psより蒸発温度Teに対応する飽和温度値に換算し、吸入温度センサ208により検出される冷媒温度値からこの冷媒の飽和温度値を差し引くことによって冷媒の過熱度を検出するようにしてもよい。   As shown in the refrigerant circuit diagram of FIG. 2, the suction pressure sensor 10 and the suction temperature sensor 208 are provided on the suction side of the compressor 1, and the evaporation temperature is determined from the suction pressure Ps of the compressor 1 detected by the suction pressure sensor 10. The degree of superheat of the refrigerant may be detected by converting to a saturation temperature value corresponding to Te and subtracting the saturation temperature value of the refrigerant from the refrigerant temperature value detected by the suction temperature sensor 208.

なお、高圧の圧力および低圧の圧力を算出するのに、ここでは冷媒の凝縮温度および蒸発温度より換算しているが、圧縮機1の吸入側、吐出側に直接圧力センサを付加し求めるようにしてもよいことは言うまでもない。   Here, the high pressure and the low pressure are calculated by converting from the condensation temperature and the evaporation temperature of the refrigerant. However, a pressure sensor is directly added to the suction side and the discharge side of the compressor 1 to obtain the pressure. Needless to say.

この冷媒回路の状態で、圧縮機1、室外送風機4および室内送風機8a、8bを起動すると、低圧のガス冷媒は、圧縮機1に吸入されて圧縮されて高圧のガス冷媒となる。その後、高圧のガス冷媒は、四方弁2を経由して室外熱交換器3に送られて、室外送風機4によって供給される室外空気と熱交換を行って凝縮されて高圧の液冷媒となる。   When the compressor 1, the outdoor fan 4, and the indoor fans 8a and 8b are started in the state of this refrigerant circuit, the low-pressure gas refrigerant is sucked into the compressor 1 and compressed to become a high-pressure gas refrigerant. Thereafter, the high-pressure gas refrigerant is sent to the outdoor heat exchanger 3 via the four-way valve 2, exchanges heat with the outdoor air supplied by the outdoor blower 4, and is condensed to become a high-pressure liquid refrigerant.

そして、この高圧の液冷媒は、絞り手段5aによって減圧されて、低温低圧の気液二相冷媒となり、液接続配管6を経由して利用ユニット302a、302bに送られ、室内熱交換器7a、7bで室内空気と熱交換を行って蒸発されて低圧のガス冷媒となる。ここで、絞り手段5aは、圧縮機1の吸入における過熱度が所定値になるように室内熱交換器内7a、7bを流れる冷媒の流量を制御しているため、室内熱交換器7a、7bにおいて蒸発された低圧のガス冷媒は、所定の過熱度を有する状態となる。このように、各室内熱交換器7a、7bには、利用ユニット302a、302bが設置された空調空間において要求される運転負荷に応じた流量の冷媒が流れている。   The high-pressure liquid refrigerant is decompressed by the throttling means 5a to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, sent to the utilization units 302a and 302b via the liquid connection pipe 6, and the indoor heat exchanger 7a, In 7b, heat is exchanged with room air to evaporate into a low-pressure gas refrigerant. Here, since the throttle means 5a controls the flow rate of the refrigerant flowing through the indoor heat exchangers 7a and 7b so that the degree of superheat in the suction of the compressor 1 becomes a predetermined value, the indoor heat exchangers 7a and 7b The low-pressure gas refrigerant evaporated in is in a state having a predetermined degree of superheat. Thus, the refrigerant | coolant of the flow volume according to the driving | running load requested | required in each air-conditioning space in which utilization unit 302a, 302b was installed flows into each indoor heat exchanger 7a, 7b.

この低圧のガス冷媒は、ガス接続配管9を経由して熱源ユニット301に送られ、四方弁2を経由して、再び、圧縮機1に吸入される。   This low-pressure gas refrigerant is sent to the heat source unit 301 via the gas connection pipe 9 and is again sucked into the compressor 1 via the four-way valve 2.

次に、通常運転モードにおける暖房運転について説明する。   Next, the heating operation in the normal operation mode will be described.

暖房運転時は、四方弁2が図1の実線で示される状態、すなわち、圧縮機1の吐出側が室内熱交換器7a、7bのガス側に接続され、かつ圧縮機1の吸入側が室外熱交換器3のガス側に接続された状態となっている。また、絞り手段5aは圧縮機1の吸入における冷媒の過熱度が所定値になるように開度調節されるようになっている。本実施形態において、圧縮機1の吸入における冷媒の過熱度は、まず圧縮機吸入温度Tsより、ガス側温度センサ202により検出される冷媒の蒸発温度Teを差し引くことによって求められる。ここで、圧縮機吸入温度Tsは、ガス側温度センサ202により検出される冷媒の蒸発温度を低圧の飽和圧力Psに換算し、ガス側温度センサ207a、207bにより検出される冷媒の凝縮温度を高圧の飽和圧力Pdに換算し、圧縮機1の吐出温度センサ201により検出される冷媒の吐出温度Tdより、圧縮機の圧縮工程はポリトロープ指数nのポリトロープ変化と仮定し、前述の(1)式より算出することができる。   During heating operation, the four-way valve 2 is in the state indicated by the solid line in FIG. 1, that is, the discharge side of the compressor 1 is connected to the gas side of the indoor heat exchangers 7a and 7b, and the suction side of the compressor 1 is the outdoor heat exchange. It is connected to the gas side of the vessel 3. The opening of the throttle means 5a is adjusted so that the degree of superheat of the refrigerant in the suction of the compressor 1 becomes a predetermined value. In the present embodiment, the degree of superheat of the refrigerant in the suction of the compressor 1 is first obtained by subtracting the refrigerant evaporation temperature Te detected by the gas side temperature sensor 202 from the compressor suction temperature Ts. Here, the compressor suction temperature Ts is obtained by converting the refrigerant evaporation temperature detected by the gas side temperature sensor 202 into a low pressure saturation pressure Ps, and increasing the refrigerant condensation temperature detected by the gas side temperature sensors 207a and 207b. From the refrigerant discharge temperature Td detected by the discharge temperature sensor 201 of the compressor 1 and the compression process of the compressor is assumed to be a change in the polytropy of the polytropic index n, and the above equation (1) is used. Can be calculated.

なお、冷房運転と同様に図2に示すように、圧縮機1の吸入側に吸入圧力センサ10と吸入温度センサ208を設け、吸入圧力センサ10により検出される圧縮機1の吸入圧力Psより蒸発温度Teに対応する飽和温度値に換算し、吸入温度センサ208により検出される冷媒温度値からこの冷媒の飽和温度値を差し引くことによって冷媒の過熱度を検出するようにしてもよい。   As in the cooling operation, as shown in FIG. 2, a suction pressure sensor 10 and a suction temperature sensor 208 are provided on the suction side of the compressor 1, and evaporate from the suction pressure Ps of the compressor 1 detected by the suction pressure sensor 10. The degree of superheat of the refrigerant may be detected by converting to a saturation temperature value corresponding to the temperature Te and subtracting the saturation temperature value of the refrigerant from the refrigerant temperature value detected by the suction temperature sensor 208.

なお、冷房運転と同様に高圧の圧力および低圧の圧力を算出するのに、ここでも冷媒の凝縮温度および蒸発温度より換算しているが、圧縮機1の吸入側、吐出側に直接圧力センサを付加し求めるようにしてもよいことは言うまでもない。   It should be noted that the high pressure and the low pressure are calculated in the same manner as in the cooling operation, here again converted from the condensing temperature and the evaporating temperature of the refrigerant, but pressure sensors are directly provided on the suction side and the discharge side of the compressor 1. Needless to say, it may be added.

この冷媒回路の状態で、圧縮機1、室外送風機4および室内送風機8a、8bを起動すると、低圧のガス冷媒は、圧縮機1に吸入されて圧縮されて高圧のガス冷媒となり、四方弁2およびガス接続配管9を経由して、利用ユニット302a、302bに送られる。   When the compressor 1, the outdoor blower 4 and the indoor blowers 8a and 8b are started in the state of the refrigerant circuit, the low-pressure gas refrigerant is sucked into the compressor 1 and compressed to become a high-pressure gas refrigerant. The gas is sent to the utilization units 302a and 302b via the gas connection pipe 9.

そして、利用ユニット302a、302bに送られた高圧のガス冷媒は、室内熱交換器7a、7bにおいて、室内空気と熱交換を行って凝縮されて高圧の液冷媒となった後、液接続配管6を経由して、絞り手段5aによって減圧されて低圧の気液二相状態の冷媒となる。ここで、絞り手段5aは、圧縮機1の吸入における過熱度が所定値になるように室内熱交換器7a、7b内を流れる冷媒の流量を制御しているため、室内熱交換器7a、7bにおいて凝縮された高圧の液冷媒は、所定の過冷却度を有する状態となる。このように、各室内熱交換器7a、7bには、各利用ユニット302a、302bが設置された空調空間において要求される運転負荷に応じた流量の冷媒が流れている。   The high-pressure gas refrigerant sent to the utilization units 302a and 302b is condensed by exchanging heat with indoor air in the indoor heat exchangers 7a and 7b, and then the liquid connection pipe 6 The refrigerant is reduced in pressure by the throttle means 5a and becomes a low-pressure gas-liquid two-phase refrigerant. Here, since the throttle means 5a controls the flow rate of the refrigerant flowing in the indoor heat exchangers 7a and 7b so that the degree of superheat in the suction of the compressor 1 becomes a predetermined value, the indoor heat exchangers 7a and 7b The high-pressure liquid refrigerant condensed in step 1 has a predetermined degree of supercooling. Thus, the refrigerant | coolant of the flow volume according to the driving | running load requested | required in each air-conditioning space in which each utilization unit 302a, 302b is flowing is flowing in each indoor heat exchanger 7a, 7b.

この低圧の気液二相状態の冷媒は、熱源ユニット1の室外熱交換器3に流入する。そして、室外熱交換器3に流入した低圧の気液二相状態の冷媒は、室外送風機4によって供給される室外空気と熱交換を行って凝縮されて低圧のガス冷媒となり、四方弁2を経由して再び、圧縮機1に吸入される。   The low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 3 of the heat source unit 1. The low-pressure gas-liquid two-phase refrigerant flowing into the outdoor heat exchanger 3 is condensed by exchanging heat with the outdoor air supplied by the outdoor blower 4 and becomes a low-pressure gas refrigerant. Then, it is sucked into the compressor 1 again.

このように、冷房運転及び暖房運転を含む通常運転を行う通常運転制御手段として機能する制御部103により、上記の冷房運転および暖房運転を含む通常運転処理が行われる。   Thus, the normal operation process including the cooling operation and the heating operation is performed by the control unit 103 that functions as a normal operation control unit that performs the normal operation including the cooling operation and the heating operation.

<冷媒自動充填運転モード>
次に、冷媒自動充填運転モード時の動作について図3および図1を参照しながら説明する。図3は冷媒自動充填運転モード時および冷媒量の適否の判定動作を示すフローチャートである。なお、ここでは現地において、所定量の冷媒が予め充填された熱源ユニット301と、利用ユニット302a、302bとを設置し、液接続配管6及びガス接続配管9を介して接続して冷媒回路を構成した後に、液接続配管6及びガス接続配管9の長さに応じて不足する冷媒を冷媒回路内に追加充填する場合を例に挙げて説明する。
<Automatic refrigerant charging operation mode>
Next, the operation in the automatic refrigerant charging operation mode will be described with reference to FIGS. FIG. 3 is a flowchart showing an operation of determining whether or not the refrigerant amount is appropriate in the refrigerant automatic charging operation mode. Here, a heat source unit 301 preliminarily filled with a predetermined amount of refrigerant and use units 302a and 302b are installed and connected via the liquid connection pipe 6 and the gas connection pipe 9 to configure a refrigerant circuit. After that, the case where additional refrigerant is filled in the refrigerant circuit according to the length of the liquid connection pipe 6 and the gas connection pipe 9 will be described as an example.

冷媒自動充填運転モードには、運転を行う者が、制御部103に対して直接に、又はリモコン(図示せず)等を通じて遠隔に、冷媒自動充填運転を開始する指令を出すことによって移行する。これにより、制御部103によって図3に示されるステップS11の冷媒自動充填運転モードの運転が開始される。   A transition to the refrigerant automatic charging operation mode is made by an operator who issues a command to start the automatic refrigerant charging operation directly to the control unit 103 or remotely through a remote controller (not shown) or the like. Thereby, the operation of the refrigerant automatic charging operation mode in step S11 shown in FIG.

冷媒自動充填運転の開始指令がなされると、熱源ユニット301の四方弁2が図1の実線で示される状態となるように冷媒回路が切り換えられ、かつ利用ユニット302a、302bの室内送風機8a、8bが起動されるとともに、絞り手段5aが開けられた状態となり、更に圧縮機1、室外送風機4が起動されて、利用ユニット302a、302bの全てについて強制的に暖房運転(以下、これを「利用ユニット全数運転」という)が行われる。   When an instruction to start the automatic refrigerant charging operation is given, the refrigerant circuit is switched so that the four-way valve 2 of the heat source unit 301 is in the state shown by the solid line in FIG. 1, and the indoor fans 8a, 8b of the utilization units 302a, 302b. And the throttle means 5a are opened, and the compressor 1 and the outdoor blower 4 are further activated to forcibly perform heating operation (hereinafter referred to as “usage unit”) for all the use units 302a and 302b. All operations are called).

すると、冷媒回路において、圧縮機1から室内熱交換器7a、7bまでの流路には、圧縮機1において圧縮・吐出された高圧のガス冷媒が供給される。この高圧のガス冷媒は、ガス接続配管9を経て、凝縮器として機能する室内熱交換器7a、7b内を通過する間に室内空気との熱交換によってガス状態から液状態に相変化する高圧の冷媒となり、室内熱交換器7a、7bから絞り手段5aまでの液接続配管6を含む流路に高圧の液冷媒として流れる。この高圧の液冷媒は、絞り手段5aから蒸発器として機能する室外熱交換器3内を通過する間に、室外空気との熱交換によって気液二相状態からガス状態に相変化し、室外熱交換器3から圧縮機1までの流路には低圧のガス冷媒となって流れるようになる。   Then, in the refrigerant circuit, the high-pressure gas refrigerant compressed and discharged in the compressor 1 is supplied to the flow path from the compressor 1 to the indoor heat exchangers 7a and 7b. This high-pressure gas refrigerant passes through the gas connection pipe 9 and passes through the indoor heat exchangers 7a and 7b functioning as condensers, and the high-pressure gas refrigerant undergoes a phase change from a gas state to a liquid state by heat exchange with indoor air. It becomes a refrigerant and flows as a high-pressure liquid refrigerant in a flow path including the liquid connection pipe 6 from the indoor heat exchangers 7a and 7b to the throttle means 5a. This high-pressure liquid refrigerant undergoes a phase change from a gas-liquid two-phase state to a gas state by heat exchange with the outdoor air while passing through the outdoor heat exchanger 3 functioning as an evaporator from the throttle means 5a, and the outdoor heat The low-pressure gas refrigerant flows through the flow path from the exchanger 3 to the compressor 1.

次いで、ステップS12にて、外気温度や室内空気温度などの環境条件や、熱源ユニット301および利用ユニット302a、302bの温度センサや、圧縮機1の運転周波数、絞り手段5aの開度などの冷凍サイクル装置の運転状態が測定される。   Next, in step S12, the refrigeration cycle such as the environmental conditions such as the outside air temperature and the indoor air temperature, the temperature sensors of the heat source unit 301 and the utilization units 302a and 302b, the operating frequency of the compressor 1, and the opening degree of the throttle means 5a. The operating state of the device is measured.

次に、下記のような機器制御を行って、冷媒回路内を循環する冷媒の状態を安定させる運転に移行する。具体的には、圧縮機1のモータの回転数を所定値で一定になるように制御し(圧縮機回転数一定制御)、蒸発器として機能する室外熱交換器3の過熱度SHが所定値で一定になるように絞り手段5aを制御(以下、これを「室外熱交過熱度一定制御」という)する。ここで、回転数一定制御を行うのは、圧縮機1によって吸入・吐出される冷媒の流量を安定させるためである。また、過熱度制御を行うのは、室外熱交換器3における冷媒量を一定にするためである。   Next, the following device control is performed to shift to an operation for stabilizing the state of the refrigerant circulating in the refrigerant circuit. Specifically, the rotation speed of the motor of the compressor 1 is controlled to be constant at a predetermined value (constant compressor rotation speed control), and the superheat degree SH of the outdoor heat exchanger 3 functioning as an evaporator is predetermined. The throttle means 5a is controlled so as to be constant in value (hereinafter referred to as “outdoor heat exchange superheat degree constant control”). Here, the constant rotation speed control is performed in order to stabilize the flow rate of the refrigerant sucked and discharged by the compressor 1. The superheat control is performed in order to keep the amount of refrigerant in the outdoor heat exchanger 3 constant.

これにより、冷媒回路内を循環する冷媒の状態が安定して、室内熱交換器7a、7b以外の機器および配管における冷媒量がほぼ一定となる。このため、続いて行われる冷媒の追加充填によって冷媒回路内に冷媒が充填され始めた際に、室内熱交換器7a、7bに溜まる液冷媒量のみが変化する状態を作り出すことができる。   As a result, the state of the refrigerant circulating in the refrigerant circuit is stabilized, and the refrigerant amount in the equipment and piping other than the indoor heat exchangers 7a and 7b becomes substantially constant. Therefore, it is possible to create a state in which only the amount of liquid refrigerant that accumulates in the indoor heat exchangers 7a and 7b changes when the refrigerant circuit starts to be filled by the subsequent additional charging of the refrigerant.

そして、絞り手段5aが熱源ユニット1側にある場合、液接続配管6内を、冷房時は気液二相冷媒が流れ、暖房時は液冷媒が流れる。このため、暖房の方が液接続配管6の存在冷媒量が多くなる。一方、ガス接続配管9内では、冷房時、暖房時ともにガス冷媒が流れるため、冷媒密度が小さく、冷房、暖房運転での存在冷媒量の差は小さい。   When the throttle means 5a is on the heat source unit 1 side, the gas-liquid two-phase refrigerant flows through the liquid connection pipe 6 during cooling, and the liquid refrigerant flows during heating. For this reason, the amount of refrigerant present in the liquid connection pipe 6 increases in heating. On the other hand, in the gas connection pipe 9, since the gas refrigerant flows during cooling and heating, the refrigerant density is small, and the difference in the amount of refrigerant existing between the cooling and heating operations is small.

図4は接続配管(液接続配管およびガス接続配管)長と冷房、暖房運転時の必要冷媒量の関係を示すグラフである。図4より明らかなように、液接続配管6およびガス接続配管9の長さに対する必要冷媒量は、暖房運転時の方が冷房運転時よりも多い。これは暖房時に適正冷媒量を決定すべきであることを意味する。つまり、暖房運転を基準として適正冷媒量を決定すべきであり、冷媒量を冷凍サイクルの運転状態から判定する場合は、利用ユニット全数運転、圧縮機回転数一定制御、および室外熱交過熱度一定制御を暖房運転にて行うのが望ましい。   FIG. 4 is a graph showing the relationship between the length of the connection pipe (liquid connection pipe and gas connection pipe) and the necessary refrigerant amount during cooling and heating operations. As is clear from FIG. 4, the required refrigerant amount with respect to the length of the liquid connection pipe 6 and the gas connection pipe 9 is larger in the heating operation than in the cooling operation. This means that the proper amount of refrigerant should be determined during heating. In other words, the appropriate amount of refrigerant should be determined based on the heating operation. When determining the amount of refrigerant from the operating state of the refrigeration cycle, operation of all units used, constant compressor rotation control, and outdoor heat exchange superheat degree It is desirable to perform constant control by heating operation.

なお、熱源ユニット1に予め冷媒が充填されていない場合には、前記ステップS11の処理に先だって、冷凍サイクル運転を行うことが可能な程度の冷媒量になるまで冷媒充填を行う必要がある。   In addition, when the refrigerant | coolant is not beforehand filled into the heat-source unit 1, it is necessary to fill with a refrigerant | coolant until it becomes the refrigerant | coolant amount of the grade which can perform a refrigerating cycle driving | operation before the process of said step S11.

次に、上記冷媒自動充填運転の詳細な制御方法について説明する。   Next, a detailed control method of the automatic refrigerant charging operation will be described.

<接続配管冷媒密度一定制御>
液接続配管6、ガス接続配管9は、冷凍サイクル装置を設置する際に、現地にて施工される冷媒配管であり、設置場所や熱源ユニット301と利用ユニット302a、302bとの組み合わせ等の設置条件に応じて種々の長さや管径を有するものが使用される。このため、例えば新規に冷凍サイクル装置を設置する場合には、適正冷媒充填量を計算するために、液接続配管6、ガス接続配管9の長さや管径等の情報を正確に把握する必要があるが、その情報管理や冷媒量の計算自体が煩雑である。また、既設配管を利用して利用ユニット302a、302bや熱源ユニット301を更新するような場合には、液接続配管6、ガス接続配管9の長さや管径等の情報が失われていることがある。
<Constant piping refrigerant density control>
The liquid connection pipe 6 and the gas connection pipe 9 are refrigerant pipes that are constructed on site when the refrigeration cycle apparatus is installed, and the installation conditions such as the installation location and the combination of the heat source unit 301 and the utilization units 302a and 302b. Those having various lengths and tube diameters are used. For this reason, for example, when a new refrigeration cycle apparatus is newly installed, it is necessary to accurately grasp information such as the length and pipe diameter of the liquid connection pipe 6 and the gas connection pipe 9 in order to calculate the appropriate refrigerant charging amount. However, the information management and the calculation of the refrigerant amount are complicated. In addition, when the usage units 302a and 302b and the heat source unit 301 are updated using existing piping, information such as the length and diameter of the liquid connection piping 6 and the gas connection piping 9 may be lost. is there.

したがって、液接続配管6、ガス接続配管9の長さや管径が不明な場合でも、接続配管長さ、管径に応じて一定の冷媒量を封入できるようにする必要があるが、これは液接続配管6、ガス接続配管9部分の冷媒密度を一定に制御してやることで可能になる。   Therefore, even when the length and the pipe diameter of the liquid connection pipe 6 and the gas connection pipe 9 are unknown, it is necessary to be able to enclose a certain amount of refrigerant according to the connection pipe length and pipe diameter. This can be achieved by controlling the refrigerant density of the connecting pipe 6 and the gas connecting pipe 9 at a constant level.

図5は液接続配管の管径を固定してガス接続配管のガス管径を変化させたときに、液接続配管とガス接続配管の冷媒密度が一定となる凝縮温度と凝縮器出口の液温度の関係を示すグラフである。図5より明らかなように、凝縮温度と液温度が等しい場合(図の破線の直線)、過冷却度は零になり、確保できなくなる。液接続配管6の管径に対してガス接続配管9の管径が大きいほど、等密度となる直線の傾きが小さくなっている。これは、例えば液管温度が上昇し、液接続配管6の冷媒密度が減少した場合、ガス接続配管9の密度を増加する必要があるため、凝縮温度を高くし、圧力を増加させる必要があるが、ガス接続配管9の管径が液接続配管6の管径に対して相対的に大きい程、凝縮温度の増加量が小さくてよいことを意味している。   FIG. 5 shows the condensation temperature at which the refrigerant density of the liquid connection pipe and the gas connection pipe becomes constant when the pipe diameter of the liquid connection pipe is fixed and the gas pipe diameter of the gas connection pipe is changed, and the liquid temperature at the outlet of the condenser. It is a graph which shows the relationship. As apparent from FIG. 5, when the condensing temperature and the liquid temperature are equal (dashed line in the figure), the degree of supercooling becomes zero and cannot be secured. The larger the pipe diameter of the gas connection pipe 9 relative to the pipe diameter of the liquid connection pipe 6, the smaller the slope of the straight line having the same density. This is because, for example, when the liquid pipe temperature rises and the refrigerant density of the liquid connection pipe 6 decreases, the density of the gas connection pipe 9 needs to be increased, so the condensation temperature must be increased and the pressure increased. However, the larger the pipe diameter of the gas connection pipe 9 is relative to the pipe diameter of the liquid connection pipe 6, the smaller the increase in the condensation temperature may be.

以上述べたように、既設配管など接続配管の長さ、管径が不明な場合でも冷凍サイクルの状態から冷媒の過不足を判定することができる。そしてこの場合、接続配管の長さ、管径によらず冷凍サイクルが同じ状態となることが冷媒量の判定精度向上に必要不可欠であり、かつ接続配管による冷媒量の増減の影響を排除する必要がある。このためには、液接続配管6、ガス接続配管9の組み合わせによって、図5のように凝縮器出口の液管温度に応じて凝縮温度を目標値に制御してやればよい。ここで、凝縮温度を所望の凝縮温度に近づける方法としては、圧縮機1の回転数を制御し、目標値よりも小さい場合は、回転数を増加させて凝縮温度を増加させ、目標値よりも高い場合は、回転数を減らし凝縮温度を低下させることで制御することができる。   As described above, it is possible to determine the excess or deficiency of the refrigerant from the state of the refrigeration cycle even when the length and the diameter of the connection pipe such as the existing pipe are unknown. In this case, it is indispensable to improve the accuracy of determining the amount of refrigerant that the refrigeration cycle is the same regardless of the length and diameter of the connecting pipe, and it is necessary to eliminate the influence of the increase or decrease in the amount of refrigerant due to the connecting pipe. There is. For this purpose, the condensation temperature may be controlled to a target value according to the liquid pipe temperature at the outlet of the condenser as shown in FIG. 5 by combining the liquid connection pipe 6 and the gas connection pipe 9. Here, as a method of bringing the condensation temperature closer to the desired condensation temperature, the number of revolutions of the compressor 1 is controlled, and when it is smaller than the target value, the number of revolutions is increased to increase the condensation temperature. If it is high, it can be controlled by reducing the number of revolutions and lowering the condensation temperature.

また、液管温度に対する凝縮温度の目標値は、施工時に液接続配管6の管径、ガス接続配管9の管径を入力し、液管温度に対する凝縮温度の関係の直線の傾き、切片を決定し制御目標値を決定してもよいが、煩雑となるため、熱源ユニット301の容量の情報より、熱源ユニット301の容量毎に規定されている標準の液接続配管6、ガス接続配管9の組み合わせで液管温度に応じた凝縮温度目標値を設定すればより簡便となり、作業者にとって煩雑な操作が必要なくなるため操作性が向上する。   The target value of the condensation temperature relative to the liquid pipe temperature is determined by inputting the pipe diameter of the liquid connection pipe 6 and the pipe diameter of the gas connection pipe 9 at the time of construction, and determining the slope and intercept of the relationship between the condensation temperature and the liquid pipe temperature. However, since the control target value may be determined, the combination of the standard liquid connection pipe 6 and the gas connection pipe 9 defined for each capacity of the heat source unit 301 based on the capacity information of the heat source unit 301 is complicated. Thus, setting the condensation temperature target value in accordance with the liquid pipe temperature makes the operation simpler and eliminates the need for complicated operations for the operator, improving operability.

なお、ここでは凝縮器出口の液管温度に応じて決定される凝縮温度を目標値に圧縮機の回転数を制御する構成としているが、凝縮器出口の液管温度に応じてガス接続配管9内の冷媒の高圧を直接制御してもよい。高圧を検出する方法としては、例えば、圧縮機1の吐出側に圧力センサ(図示せず)を付加し、冷媒の高圧の圧力を検出すればよい。   In addition, although it is set as the structure which controls the rotation speed of a compressor here by setting the condensation temperature determined according to the liquid pipe temperature of a condenser exit to a target value, the gas connection piping 9 according to the liquid pipe temperature of a condenser outlet The high pressure of the refrigerant inside may be directly controlled. As a method for detecting the high pressure, for example, a pressure sensor (not shown) may be added to the discharge side of the compressor 1 to detect the high pressure of the refrigerant.

<熱源ユニット冷媒密度一定制御>
液接続配管6、ガス接続配管9に存在する冷媒は、配管の長さ、管径に応じて充填されるものとすると、図6に示すように熱源ユニット301の内容積をVOC、利用ユニット302a、302bの合計の内容積をVICとすれば暖房運転時は下記(2)式が成り立つ。
<Heat source unit refrigerant density constant control>
Assuming that the refrigerant existing in the liquid connection pipe 6 and the gas connection pipe 9 is filled in accordance with the length and diameter of the pipe, the internal volume of the heat source unit 301 is set to VOC and the utilization unit 302a as shown in FIG. When the total internal volume of 302b is VIC, the following equation (2) is established during the heating operation.

[数2]
ρe×VOC+ρc×VIC=M(一定)‥‥‥‥‥‥‥‥‥‥‥(2)
[Equation 2]
ρe × VOC + ρc × VIC = M (Constant) ………………………………………………………………………………………… (2)

ここで、ρeは蒸発側平均冷媒密度[kg/m3 ]、ρcは凝縮側平均冷媒密度[kg/m3 ]、Mは凝縮側と蒸発側の合計冷媒量[kg]を示す。(2)式において、Mは熱源ユニット301の内容積と利用ユニット302a、302bの合計内容積とによって決まる値であるが、適正冷媒量が決まっていれば一定の値となる。VOCは熱源ユニット301の容量によって異なるが、ρeの値を一定に制御し、熱源ユニット301に存在する冷媒量を一定に保てば、接続される利用ユニットの台数、容積によって決まるVICが不明であっても、適正冷媒量となるρcを目標値として冷媒充填すればよいことになる。 Here, ρe represents the evaporation side average refrigerant density [kg / m 3 ], ρc represents the condensation side average refrigerant density [kg / m 3 ], and M represents the total refrigerant amount [kg] on the condensation side and the evaporation side. In the equation (2), M is a value determined by the internal volume of the heat source unit 301 and the total internal volume of the utilization units 302a and 302b, but is a constant value if the appropriate refrigerant amount is determined. VOC varies depending on the capacity of the heat source unit 301. However, if the value of ρe is controlled to be constant and the amount of refrigerant existing in the heat source unit 301 is kept constant, the VIC determined by the number and volume of connected utilization units is unknown. Even if it exists, it will suffice if the refrigerant is charged with ρc as an appropriate refrigerant amount as a target value.

次に、ρeが一定、すなわち熱源ユニット301の存在冷媒量を一定に制御する方法について述べる。熱源ユニット301は、蒸発器であり、蒸発器の存在冷媒量は、絞り手段5aの開度を変更することによって調整可能である。図7は外気温度を横軸にとり、熱源ユニット301内の冷媒密度が一定(存在冷媒量が一定)となるときの室外熱交換器3の出口すなわち圧縮機1の吸入の過熱度を表したものである。図7より明らかなように、熱源ユニット301の冷媒密度を一定にするためには、外気温度に応じて、過熱度を制御すればよいことがわかる。また、外気温度が高いほど、過熱度を高く制御する必要がある。これは、外気温度が高い程、蒸発温度が高くなり、冷媒の気液二相部の平均密度が増加するからであり、その分、蒸発器の冷媒密度の低い過熱ガス域を増やし平均密度を一定にする必要があるためである。   Next, a method of controlling ρe to be constant, that is, the amount of refrigerant present in the heat source unit 301 to be constant will be described. The heat source unit 301 is an evaporator, and the amount of refrigerant present in the evaporator can be adjusted by changing the opening degree of the throttle means 5a. FIG. 7 shows the degree of superheat of the outlet of the outdoor heat exchanger 3, that is, the suction of the compressor 1, when the outside air temperature is taken on the horizontal axis and the refrigerant density in the heat source unit 301 is constant (the amount of refrigerant present is constant). It is. As is clear from FIG. 7, in order to make the refrigerant density of the heat source unit 301 constant, it is understood that the degree of superheat should be controlled according to the outside air temperature. In addition, the higher the outside air temperature is, the higher the degree of superheat needs to be controlled. This is because the higher the outside air temperature, the higher the evaporation temperature, and the average density of the gas-liquid two-phase part of the refrigerant increases. This is because it needs to be constant.

したがって、熱源ユニット301の冷媒密度を一定に制御するには、室外温度センサ203によって測定される温度に応じて、図7に示す圧縮機の吸入過熱度の目標値を設定し、吸入過熱度を絞り手段5aにて制御してやればよい。圧縮機1の吸入の過熱度を所望の過熱度に近づける方法としては、絞り手段5aの開度を制御し、過熱度が目標値よりも小さい場合は、開度を増加させ、目標値よりも大きい場合は、開度を減少させることで制御することができる。   Therefore, in order to control the refrigerant density of the heat source unit 301 to be constant, the target value of the suction superheat degree of the compressor shown in FIG. 7 is set according to the temperature measured by the outdoor temperature sensor 203, and the suction superheat degree is set. What is necessary is just to control by the aperture means 5a. As a method of bringing the superheat degree of the suction of the compressor 1 close to a desired superheat degree, the opening degree of the throttle means 5a is controlled, and when the superheat degree is smaller than the target value, the opening degree is increased, If it is larger, it can be controlled by reducing the opening.

なお、ここでは圧縮機1の吸入の過熱度は、前述した方法にて、凝縮温度、蒸発温度、吐出温度にて演算可能であるため、吸入過熱度を室外温度センサ203に応じて制御すればよいが、吸入過熱度を室外熱交換器3のガス側温度センサ202の値より液側温度センサ204の値を差し引いた値として求めてもよい。このようにすることで、室外熱交換器3の中間位置で冷媒がガス化されるので、熱源ユニット301の平均密度が減少し、利用ユニット302a、302bに冷媒が貯留しやすくなり、冷媒量と相関の大きい、室内熱交換器7a、7bでの過冷却度が確保されやすくなるため、冷媒量を早期検知しやすくなる効果がある。   Here, since the superheat degree of the suction of the compressor 1 can be calculated by the condensation temperature, the evaporation temperature, and the discharge temperature by the method described above, if the suction superheat degree is controlled according to the outdoor temperature sensor 203, However, the suction superheat degree may be obtained as a value obtained by subtracting the value of the liquid side temperature sensor 204 from the value of the gas side temperature sensor 202 of the outdoor heat exchanger 3. By doing so, since the refrigerant is gasified at the intermediate position of the outdoor heat exchanger 3, the average density of the heat source unit 301 is reduced, and the refrigerant is easily stored in the use units 302a and 302b. Since the degree of supercooling in the indoor heat exchangers 7a and 7b having a large correlation is easily secured, there is an effect that the amount of refrigerant can be easily detected at an early stage.

<冷媒量の適否の判定>
図8は冷媒充填時の概観図である。図8に示すように、冷媒ボンベ31を、チャージホース33を介して、熱源ユニット301の絞り手段5aから圧縮機1の吸入に至る流路のいずれかに設置されたサービスポート(図示せず)に接続し、バルブ32を開にすることで、冷媒回路内に冷媒が充填される。冷媒が追加充填されると冷媒回路内の冷媒量が徐々に増加するため、室内熱交換器7a、7b内における冷媒量が増加し、室内熱交換器7a、7bの出口における過冷却度SCが大きくなる傾向が現れる。
<Judgment of suitability of refrigerant amount>
FIG. 8 is an overview diagram when the refrigerant is charged. As shown in FIG. 8, a service port (not shown) in which the refrigerant cylinder 31 is installed in one of the flow paths from the throttle means 5 a of the heat source unit 301 to the suction of the compressor 1 via the charge hose 33. The refrigerant is filled in the refrigerant circuit by opening the valve 32. When the refrigerant is additionally charged, the amount of refrigerant in the refrigerant circuit gradually increases, so the amount of refrigerant in the indoor heat exchangers 7a and 7b increases, and the degree of supercooling SC at the outlets of the indoor heat exchangers 7a and 7b increases. A tendency to become larger appears.

図9は凝縮器内の冷媒温度の変化を表す図である。図9に示すように、凝縮器入口のガス冷媒温度Tciが凝縮器吸込空気温度Taoによって冷却され、凝縮温度Tc にて潜熱変化により凝縮し、さらに冷却されて凝縮器出口にて液冷媒温度Tcoとなる。ここで過冷却度SCは凝縮温度Tc より凝縮器出口冷媒温度Tcoを差し引いた値である。   FIG. 9 is a diagram illustrating changes in the refrigerant temperature in the condenser. As shown in FIG. 9, the gas refrigerant temperature Tci at the condenser inlet is cooled by the condenser suction air temperature Tao, condensed by the change in latent heat at the condensation temperature Tc, and further cooled and liquid refrigerant temperature Tco at the condenser outlet. It becomes. Here, the degree of supercooling SC is a value obtained by subtracting the condenser outlet refrigerant temperature Tco from the condensation temperature Tc.

この温度変化から、室内熱交換器7a、7bの出口における冷媒量すなわち凝縮器の平均冷媒密度と液相の占める量を表す過冷却度SCとに相関があることがわかる。   From this temperature change, it can be seen that there is a correlation between the amount of refrigerant at the outlets of the indoor heat exchangers 7a and 7b, that is, the average refrigerant density of the condenser and the degree of supercooling SC representing the amount occupied by the liquid phase.

図10は冷媒の過冷却度SCと凝縮器内の平均冷媒密度の関係、つまり室内、室外の空気条件を変化させて、適正冷媒量と、適正冷媒量に対して冷媒量を10%増加させたときの過冷却度SCと、凝縮器の平均冷媒密度ρcとの関係を示すグラフである。図10に示すように、過冷却度SCと凝縮器の平均冷媒密度ρcとの相関を表す決定係数R2値が0.65であり、相関が高いことがわかる。   FIG. 10 shows the relationship between the refrigerant supercooling degree SC and the average refrigerant density in the condenser, that is, the indoor and outdoor air conditions, and the refrigerant quantity is increased by 10% with respect to the refrigerant quantity and the refrigerant quantity. It is a graph which shows the relationship between supercooling degree SC at the time of heating, and the average refrigerant density (rho) c of a condenser. As shown in FIG. 10, the coefficient of determination R2 representing the correlation between the degree of supercooling SC and the average refrigerant density ρc of the condenser is 0.65, which indicates that the correlation is high.

したがって、規定冷媒量で冷凍サイクル装置が前述の冷媒自動充填運転モードで運転されたときの凝縮器の平均冷媒密度ρcに相当する室内交換器7a、7bの出口における過冷却度SCの値(以下、これを「過冷却度SCの基準値」という)を予め記憶部104に記憶しておけば、冷媒自動充填運転時にこの過冷却度SCの規定値と冷媒充填時に検出される過冷却度SCの現在値とを比較することによって、冷媒の追加充填により冷媒回路内に充填される冷媒量の適否を判定することができる。   Therefore, the value of the degree of supercooling SC at the outlets of the indoor exchangers 7a and 7b corresponding to the average refrigerant density ρc of the condenser when the refrigeration cycle apparatus is operated in the above-described refrigerant automatic charging operation mode with the specified refrigerant amount (hereinafter referred to as “refrigeration cycle device”). If this is referred to as the “reference value of the degree of supercooling SC” in the storage unit 104 in advance, the specified value of the degree of supercooling SC during the automatic refrigerant charging operation and the degree of supercooling SC detected when the refrigerant is charged. By comparing the current value with the current value, it is possible to determine whether or not the amount of refrigerant charged in the refrigerant circuit by additional charging of the refrigerant is appropriate.

本実施形態のように、利用ユニットが複数台ある場合は、各利用ユニットの過冷却度SCの平均値とすればよい。   As in the present embodiment, when there are a plurality of usage units, the average value of the degree of supercooling SC of each usage unit may be used.

図3のステップS13は、上述のような相関関係を利用して、冷媒の追加充填により冷媒回路内に充填された冷媒量の適否を判定する処理である。   Step S13 in FIG. 3 is a process for determining the suitability of the amount of refrigerant charged in the refrigerant circuit by additional charging of the refrigerant, using the correlation as described above.

すなわち、追加充填される冷媒量が少なく、冷媒回路における冷媒量が規定冷媒量に達していない場合においては、室内熱交換器7a、7bにおける冷媒量が少ない状態となる。ここで、室内熱交換器7a、7bにおける冷媒量が少ない状態とは、室内熱交換器7a、7bの出口における過冷却度SCの現在値が、過冷却度SCの規定値よりも小さいことを意味する。このため、ステップS13において、室内熱交換器7a、7bの出口における過冷却度SCの値が規定値よりも小さく、冷媒の追加充填が完了していない場合には、ステップS15に移行し、異常表示を行い、ステップS11に戻る。   That is, when the amount of refrigerant to be additionally charged is small and the refrigerant amount in the refrigerant circuit does not reach the specified refrigerant amount, the refrigerant amount in the indoor heat exchangers 7a and 7b is small. Here, the state in which the amount of refrigerant in the indoor heat exchangers 7a and 7b is small means that the current value of the degree of supercooling SC at the outlets of the indoor heat exchangers 7a and 7b is smaller than the specified value of the degree of supercooling SC. means. For this reason, in step S13, when the value of the degree of supercooling SC at the outlets of the indoor heat exchangers 7a and 7b is smaller than the specified value and the additional charging of the refrigerant has not been completed, the process proceeds to step S15, and the abnormal Display is performed, and the process returns to step S11.

そして、過冷却度SCの現在値が規定値に達するまで、ステップS13の処理が繰り返される。また、過冷却度SCの現在値が規定値に達した場合には、冷媒の追加充填を完了し、冷媒自動充填運転モードを終了する。なお、現地において配管長さや構成機器の容量等から算出した規定冷媒量と、冷媒の追加充填が完了した後の初期冷媒量とが一致しない場合もある。そのため、本実施形態では、ステップS14にて冷媒の追加充填が完了した際における過冷却度SCの値を初期封入冷媒量での運転状態量として記憶し、後述の冷媒量判定運転モードにおける過冷却度SCの運転状態量の基準値としている。   Then, the process of step S13 is repeated until the current value of the degree of supercooling SC reaches a specified value. When the current value of the degree of supercooling SC reaches the specified value, the additional charging of the refrigerant is completed and the automatic refrigerant charging operation mode is terminated. Note that there may be a case where the specified refrigerant amount calculated from the pipe length, the capacity of the constituent devices, and the like at the site does not match the initial refrigerant amount after completion of additional charging of the refrigerant. Therefore, in the present embodiment, the value of the degree of supercooling SC when the additional charging of the refrigerant is completed in step S14 is stored as the operation state quantity with the initial enclosed refrigerant quantity, and the supercooling in the refrigerant quantity judgment operation mode described later is performed. This is the reference value for the operating state quantity of degree SC.

このように、冷媒自動充填運転において冷媒回路に充填された冷媒量の適否を判定する際には、規定冷媒量もしくは初期封入冷媒量での運転状態量の基準値は、図1の記憶部104にて記憶され、この記憶された基準値と現在の運転状態量とが比較部105によって比較され、冷媒量の適否は判定部106によって行われ、その判定結果に基づいて、報知部107によって冷媒量の過不足をLED等によって報知する処理が行われる。図11はその報知例を示すもので、運転状態量の基準値に対する現在の運転状態量のレベルを色分け等により表示したものである。   As described above, when determining the suitability of the amount of refrigerant charged in the refrigerant circuit in the automatic refrigerant charging operation, the reference value of the operation state amount at the specified refrigerant amount or the initial enclosed refrigerant amount is the storage unit 104 in FIG. And the stored reference value is compared with the current operating state quantity by the comparison unit 105, and the suitability of the refrigerant amount is determined by the determination unit 106. Based on the determination result, the notification unit 107 A process of notifying the excess or deficiency of the amount by an LED or the like is performed. FIG. 11 shows an example of the notification, in which the level of the current driving state quantity with respect to the reference value of the driving state quantity is displayed by color coding or the like.

すなわち、判定部106での判定方法は、図11に示すように、現在の冷媒量を表す運転状態量が基準値の運転状態量に対してある一定値以上で大きい場合は、冷媒量過多と判定(表示)し、基準値の運転状態量に対してある一定値以下で小さい場合は、冷媒量不足と判定(表示)するようにすれば、その判定結果に応じて、報知部107にて出力できるため、冷媒量の適否のみならず過不足も判定できる。また、基準値との乖離度合いによって、判定レベルを多段階に設定しておけば、報知部107の表示方法を切り替えることによって、作業者に現在の冷媒充填量の状態を認識させ易くなり、その状態に応じて、図8に示す冷媒ボンベ31のバルブ32開度を調整できるため、操作性が向上する。   That is, as shown in FIG. 11, the determination method in the determination unit 106 is that the amount of refrigerant is excessive when the operation state amount representing the current refrigerant amount is greater than a certain value with respect to the reference operation state amount. If it is determined (displayed) and is smaller than a certain value with respect to the operation state amount of the reference value, it is determined (displayed) that the refrigerant amount is insufficient. Since it can output, not only the suitability of the refrigerant amount but also the excess or deficiency can be determined. Also, if the determination level is set in multiple stages according to the degree of deviation from the reference value, it is easier for the operator to recognize the current refrigerant charge state by switching the display method of the notification unit 107, Since the opening degree of the valve 32 of the refrigerant cylinder 31 shown in FIG. 8 can be adjusted according to the state, the operability is improved.

また、本実施形態では、冷媒量を表す運転状態量として過冷却度SCを例に説明したが、これに限るものではなく、凝縮器の液相部の熱交換効率を表す温度効率SC/dTcを用いてもよい、ここで、dTcは凝縮温度Tcから凝縮器吸込空気温度Taoを差し引いた値である。一般的に冷媒密度は、冷媒の質量速度が低いほど大きくなるので、冷媒の質量速度が小さいほど温度効率は高くなる。したがって、冷媒の密度が高いほど、温度効率が高くなるため、冷媒量すなわち冷媒密度を表す運転状態量として、液相部の温度効率SC/dTcを採用してもよい。   Further, in the present embodiment, the supercooling degree SC is described as an example of the operating state amount representing the refrigerant amount, but is not limited to this, and the temperature efficiency SC / dTc representing the heat exchange efficiency of the liquid phase portion of the condenser. Where dTc is a value obtained by subtracting the condenser intake air temperature Tao from the condensation temperature Tc. Generally, the refrigerant density increases as the refrigerant mass velocity decreases, so the temperature efficiency increases as the refrigerant mass velocity decreases. Therefore, the higher the density of the refrigerant, the higher the temperature efficiency. Therefore, the temperature efficiency SC / dTc of the liquid phase part may be adopted as the refrigerant quantity, that is, the operation state quantity representing the refrigerant density.

図12は、室内、室外の空気条件を変化させて、適正冷媒量と、適正冷媒量に対して冷媒量を10%増加させたときの液相部の温度効率SC/dTcと凝縮器の平均冷媒密度ρcとの関係を示すグラフである。図12に示すように、液相部の温度効率SC/dTcと凝縮器の平均冷媒密度ρcとの相関を表す決定係数R2値が0.87であり、過冷却度SCを採用した場合よりも相関が高いため、より検知精度の高い判定が可能となる。   FIG. 12 shows the average refrigerant concentration and the temperature efficiency SC / dTc of the liquid phase when the indoor and outdoor air conditions are changed to increase the refrigerant amount by 10% with respect to the appropriate refrigerant amount. It is a graph which shows the relationship with refrigerant density (rho) c. As shown in FIG. 12, the coefficient of determination R2 representing the correlation between the temperature efficiency SC / dTc of the liquid phase part and the average refrigerant density ρc of the condenser is 0.87, which is higher than when the supercooling degree SC is employed. Since the correlation is high, determination with higher detection accuracy is possible.

なお、本実施形態では、図8のように冷媒追加充填時に冷媒ボンベ31のバルブ32と熱源ユニット301とがチャージホース33を介して接続されているが、図13に示すように、チャージホース33から熱源ユニット301に至る流路の途中に絞り手段34を接続する構成とし、冷媒の追加充填の過程において、現在の冷媒量での運転状態量と、規定冷媒量での運転状態量の基準値とを比較し、判定部106での基準値との乖離度合いに応じて、制御部103を介して絞り手段34の開度を制御すれば、規定冷媒量での運転状態量の基準値に対して現在の冷媒量の運転状態量が少ないときには絞り手段34の開度を開けた状態にし、現在の冷媒量が規定冷媒量に近づいてきたら、絞り手段34の開度を絞っていくことで、冷媒充填速度を減少できるので、冷凍サイクルの運転状態が安定し易くなり、より正確に適正冷媒量を充填可能となるとともに、作業者は、バルブ32の開度を調整する必要がなくなるため操作性が向上する。   In the present embodiment, the valve 32 of the refrigerant cylinder 31 and the heat source unit 301 are connected via the charge hose 33 when the refrigerant is additionally charged as shown in FIG. 8, but the charge hose 33 is shown in FIG. The throttle means 34 is connected in the middle of the flow path from the heat source unit 301 to the heat source unit 301, and in the process of additional refrigerant charging, the reference value of the operating state quantity at the current refrigerant amount and the operating state quantity at the specified refrigerant amount And the opening degree of the throttle means 34 is controlled via the control unit 103 in accordance with the degree of deviation from the reference value in the determination unit 106, with respect to the reference value of the operating state amount at the specified refrigerant amount. When the operating state amount of the current refrigerant amount is small, the opening of the throttle means 34 is opened, and when the current refrigerant amount approaches the specified refrigerant amount, the opening degree of the throttle means 34 is reduced. Refrigerant charging speed Since Dekiru small, the operation state of the refrigeration cycle tends to stabilize, it becomes possible more accurately fill the proper refrigerant quantity, the operator, the operability is improved because the need to adjust the opening degree of the valve 32 is eliminated.

また、冷媒の追加充填の過程において、現在の冷媒量での運転状態量と、規定冷媒量での運転状態量の基準値が近接してきたら、圧縮機1の回転数を減少もしくは停止することによって、冷凍サイクル装置の低圧側圧力が増加するため、冷媒ボンベ内の内圧と、冷凍サイクル装置の冷媒吸入圧力との差圧が小さくなり、冷凍サイクル装置への冷媒封入速度が減少する。このように制御することによって、過剰な冷媒が冷凍サイクル装置に流入することを防止でき、より正確な適正冷媒量の充填および判定が可能となる。   Further, in the process of additional charging of the refrigerant, when the operation state quantity at the current refrigerant amount and the reference value of the operation state quantity at the specified refrigerant amount come close to each other, the rotational speed of the compressor 1 is reduced or stopped. Since the low-pressure side pressure of the refrigeration cycle apparatus increases, the differential pressure between the internal pressure in the refrigerant cylinder and the refrigerant suction pressure of the refrigeration cycle apparatus decreases, and the refrigerant charging speed into the refrigeration cycle apparatus decreases. By controlling in this way, it is possible to prevent an excessive amount of refrigerant from flowing into the refrigeration cycle apparatus, and more accurate filling and determination of the appropriate refrigerant amount are possible.

また、図14の冷媒回路図に示すように、圧縮機1の吐出の高圧側から圧縮機1の吸入の低圧側へのバイパス回路12を設け、その流路に絞り手段5cを設けることで、冷媒の追加充填の過程において、現在の冷媒量での運転状態量と、規定冷媒量での運転状態量の基準値が近接してきたら、絞り手段5cの開度を増加することによって、冷凍サイクル装置の低圧側圧力が増加するため、冷媒ボンベ内の内圧と、冷凍サイクル装置の冷媒吸入圧力との差圧が小さくなり、冷凍サイクル装置への冷媒封入速度が減少する。このように制御することによって過剰な冷媒が冷凍サイクル装置に流入することを防止できるため、より正確な適正冷媒量の充填および判定が可能となる。   Further, as shown in the refrigerant circuit diagram of FIG. 14, by providing a bypass circuit 12 from the high pressure side of the discharge of the compressor 1 to the low pressure side of the suction of the compressor 1 and providing a throttle means 5c in the flow path, In the process of additional charging of the refrigerant, when the operation state quantity at the current refrigerant amount and the reference value of the operation state quantity at the specified refrigerant amount are close to each other, the opening degree of the throttle means 5c is increased to thereby increase the refrigeration cycle apparatus. Therefore, the pressure difference between the internal pressure in the refrigerant cylinder and the refrigerant suction pressure of the refrigeration cycle apparatus is reduced, and the refrigerant charging speed into the refrigeration cycle apparatus is reduced. By controlling in this way, it is possible to prevent an excessive amount of refrigerant from flowing into the refrigeration cycle apparatus, so that more accurate filling and determination of the appropriate refrigerant amount can be performed.

<冷媒量判定運転モード>
次に、冷媒量判定運転モード時の動作について、図15を用いて説明する。図15は、冷媒量判定運転モード時の動作を示すフローチャートである。なお、ここでは定期的(例えば、休日や深夜等で空調を行う必要がない時間帯等)に、不測の原因により冷媒回路から冷媒が外部に漏洩していないかどうかを検知する場合を例に挙げて説明する。
<Refrigerant amount judgment operation mode>
Next, the operation in the refrigerant quantity determination operation mode will be described with reference to FIG. FIG. 15 is a flowchart showing the operation in the refrigerant quantity determination operation mode. In this example, the case where it is detected periodically whether the refrigerant leaks from the refrigerant circuit due to an unforeseen cause at regular intervals (for example, when it is not necessary to perform air conditioning during holidays or late at night) is taken as an example. I will give you a description.

まず、前述の冷房運転や暖房運転のような通常運転モードにおける運転が一定時間(例えば、半年〜1年)経過した場合に、自動または手動で通常運転モードから冷媒量判定運転モードに切り換えて、初期設置時に行った冷媒自動充填運転モードと同様に、利用ユニット全数運転にて暖房運転する冷媒量判定運転を開始する(ステップS21)。   First, when the operation in the normal operation mode such as the cooling operation and the heating operation described above has passed for a certain time (for example, half a year to one year), the operation mode is automatically or manually switched from the normal operation mode to the refrigerant amount determination operation mode. Similarly to the automatic refrigerant charging operation mode performed at the time of initial installation, the refrigerant quantity determination operation for heating operation is started in the usage unit total number operation (step S21).

次いで、ステップS22にて室内・室外の空気温度などの環境条件や、熱源ユニット301および利用ユニット302a、302bの冷凍サイクルの運転状態を測定する。次にステップS23にて設置時の初期封入冷媒量で記憶した運転状態量の基準値と現在の運転状態量を比較し、基準値との乖離度合いが大きい場合は、冷媒が漏れて、冷媒量が不足していると判定し、ステップS25にて冷媒漏れあるいは冷媒不足の異常を報知し、ステップS21に戻る。ステップS23にて基準値との乖離が小さいと判定された場合は、冷媒の漏れが無く、正常であるため、ステップS24にて正常であることを報知し、運転を終了する。   Next, in step S22, environmental conditions such as indoor / outdoor air temperatures and the operating states of the refrigeration cycle of the heat source unit 301 and the utilization units 302a and 302b are measured. Next, in step S23, the reference value of the operating state quantity stored as the initial amount of refrigerant charged at the time of installation is compared with the current operating state quantity. If the degree of deviation from the reference value is large, the refrigerant leaks and the refrigerant quantity Is determined to be insufficient, a refrigerant leak or a refrigerant shortage abnormality is notified in step S25, and the process returns to step S21. If it is determined in step S23 that the deviation from the reference value is small, since there is no refrigerant leakage and it is normal, it is notified in step S24 that it is normal, and the operation is terminated.

このように、本実施形態の冷凍サイクル装置は、冷媒充填後の冷媒回路内に充填された冷媒量の適否を判定するための冷媒量判定機能をも備えている。   As described above, the refrigeration cycle apparatus according to the present embodiment also includes a refrigerant amount determination function for determining the suitability of the refrigerant amount charged in the refrigerant circuit after the refrigerant is charged.

また、冷媒自動充填運転モードおよび冷媒量判定運転モード時における熱源ユニット301の室外送風機4および利用ユニット302a、302bの室内送風機8a、8bの送風量は、冷媒充填運転モードおよび冷媒量判定運転モードで常に同じ送風量に設定し固定することは好ましい。この場合、冷凍サイクルが安定し、より正確に冷媒量の適否を判定可能となる。   In addition, in the refrigerant automatic charging operation mode and the refrigerant amount determination operation mode, the outdoor fan 4 of the heat source unit 301 and the blower amounts of the indoor fans 8a and 8b of the utilization units 302a and 302b are the refrigerant charging operation mode and the refrigerant amount determination operation mode. It is preferable to always set and fix the same air flow rate. In this case, the refrigeration cycle is stabilized, and it is possible to determine the suitability of the refrigerant amount more accurately.

また、冷凍サイクル装置に、その各構成機器を管理して運転データを電話回線、LAN回線、無線などの外部との通信を行い取得する管理装置としてのローカルコントローラを接続し、このローカルコントローラを冷凍サイクル装置の運転データを受信する情報管理センターの遠隔サーバにネットワークを介して接続し、遠隔サーバに運転状態量を記憶するディスク装置等の記憶装置を接続することによって、冷媒量判定システムを構成してもよい。例えば、ローカルコントローラを冷凍サイクル装置の運転状態量を取得する測定部および運転状態量を演算する演算部とし、記憶装置を記憶部とし、遠隔サーバを比較部、判定部、及び報知部として機能させる等の構成が考えられる。この場合には、冷凍サイクル装置には現在の運転状態量および運転状態量の基準値や演算比較する機能を有しておく必要がなくなる。また、このように遠隔監視できるシステムを構成することによって、定期メンテナンス時に、作業者が現地に赴いて冷媒量の適否を確認する作業の必要が無くなるため、機器の信頼性、操作性が向上する。   In addition, a local controller is connected to the refrigeration cycle apparatus as a management apparatus that manages each component device and obtains operation data by communicating with the outside such as a telephone line, a LAN line, and wireless communication. A refrigerant quantity determination system is configured by connecting via a network to a remote server of the information management center that receives the operation data of the cycle device, and connecting a storage device such as a disk device that stores the operation state quantity to the remote server. May be. For example, the local controller is used as a measurement unit that acquires the operation state quantity of the refrigeration cycle device and a calculation unit that calculates the operation state quantity, the storage device is used as the storage unit, and the remote server is functioned as a comparison unit, a determination unit, and a notification unit. Such a configuration is conceivable. In this case, it is not necessary for the refrigeration cycle apparatus to have a current operation state quantity, a reference value for the operation state quantity, and a function for comparing operations. In addition, by configuring a system that can be remotely monitored in this way, it is not necessary for the operator to visit the site to check the suitability of the refrigerant amount during regular maintenance, thereby improving the reliability and operability of the equipment. .

以上は冷媒が凝縮過程において二相状態となるものについて述べたものであるが、冷凍サイクル内の冷媒がCO2などの高圧冷媒で超臨界点以上の圧力で状態変化する場合は、図16に示すように、飽和温度が存在しないため、ガスクーラの平均冷媒密度ρcを高圧側圧力Pdとガスクーラ出口の冷媒温度Tcoの関数(すなわち、ρc=f(Pd、Tco))として表して、算出すれば同様の考え方で冷媒漏れ時はρcが小さくなるため凝縮圧力が臨界圧力を超える冷媒であっても冷媒漏れの判定が可能となる。 The above is a description of the refrigerant that is in a two-phase state during the condensation process. If the refrigerant in the refrigeration cycle is a high-pressure refrigerant such as CO 2 and changes its state at a pressure above the supercritical point, FIG. As shown, since there is no saturation temperature, the average refrigerant density ρc of the gas cooler is expressed as a function of the high pressure side pressure Pd and the refrigerant temperature Tco at the gas cooler outlet (ie, ρc = f (Pd, Tco)). In the same way, when the refrigerant leaks, ρc becomes small, so that it is possible to determine the refrigerant leak even for a refrigerant whose condensation pressure exceeds the critical pressure.

なお、ガスクーラ内の冷媒の平均密度ρcの推定方法は、前記方法に限るものではなく、ガスクーラ入口温度Tci、ガスクーラ吸込空気温度Taoの関数として、ガスクーラの平均冷媒密度を推定してもよく、このようにパラメータを増やした方が、冷媒の密度の推定精度が向上する。   Note that the method of estimating the average density ρc of the refrigerant in the gas cooler is not limited to the above method, and the average refrigerant density of the gas cooler may be estimated as a function of the gas cooler inlet temperature Tci and the gas cooler intake air temperature Tao. Thus, the estimation accuracy of the density of the refrigerant is improved by increasing the parameters.

以上、本実施形態について図面に基づいて説明したが、具体的な構成は、これに限られるものでなく、発明の要旨を逸脱しない範囲で変更可能である。例えば前述の実施形態では、冷暖切り換え可能な冷凍サイクル装置に本発明を適用したものを例に挙げて説明したが、これに限定されず、暖房専用の冷凍サイクル装置や冷房専用の冷凍サイクル装置や冷暖同時運転可能な冷凍サイクル装置に本発明を適用してもよい。また、家庭用のルームエアコンや冷蔵庫などの小型の冷凍サイクル装置や、冷蔵倉庫の冷却用の冷凍機やヒートポンプチラーなどの大型の冷凍サイクル装置に本発明を適用してもよい。   While the present embodiment has been described with reference to the drawings, the specific configuration is not limited to this and can be changed without departing from the scope of the invention. For example, in the above-described embodiment, an example in which the present invention is applied to a refrigeration cycle apparatus capable of switching between cooling and heating has been described as an example, but the present invention is not limited to this, and a refrigeration cycle apparatus dedicated to heating, a refrigeration cycle apparatus dedicated to cooling, The present invention may be applied to a refrigeration cycle apparatus capable of simultaneous cooling and heating. Further, the present invention may be applied to a small refrigeration cycle apparatus such as a room air conditioner or a refrigerator for home use, or a large refrigeration cycle apparatus such as a refrigerator or a heat pump chiller for cooling in a refrigerated warehouse.

また、通常運転時に使用環境条件から高圧縮比運転となることによる圧縮機吐出温度上昇抑制するために凝縮器通過後のエンタルピーの小さい液冷媒を圧縮機にバイパスするインジェクションタイプの圧縮機を用いる冷凍サイクル装置でも本発明は適用可能である。   In addition, refrigeration using an injection-type compressor that bypasses the liquid refrigerant having a low enthalpy after passing through the condenser to the compressor in order to suppress an increase in compressor discharge temperature due to a high compression ratio operation from the use environment conditions during normal operation. The present invention can also be applied to a cycle device.

また、前述の実施形態では、1台の熱源ユニットを備えた冷凍サイクル装置に本発明を適用したものを例に挙げて説明したが、これに限定されず、複数台の熱源ユニットを備えた冷凍サイクル装置に本発明を適用してもよい。   In the above-described embodiment, the example in which the present invention is applied to the refrigeration cycle apparatus including one heat source unit has been described as an example. However, the present invention is not limited thereto, and the refrigeration apparatus includes a plurality of heat source units. The present invention may be applied to a cycle device.

また、前述の実施形態では、暖房運転を行う冷凍サイクル装置に本発明を適用したものを例に挙げて説明したが、利用側熱交換器が蒸発器となり、熱源側熱交換器が凝縮器となる冷房運転で本発明を適用し冷媒量を判定してもよい。この場合、暖房運転に比較し、液接続配管6内が二相冷媒となるため、冷媒密度誤差が大きくなり配管長が長い場合は、検知精度は若干低下するが、冷媒回路内に充填された冷媒量の適否を判定することができる。   Further, in the above-described embodiment, the example in which the present invention is applied to the refrigeration cycle apparatus that performs the heating operation has been described as an example, but the use side heat exchanger serves as an evaporator, and the heat source side heat exchanger serves as a condenser. The refrigerant amount may be determined by applying the present invention in the cooling operation. In this case, since the inside of the liquid connection pipe 6 becomes a two-phase refrigerant as compared with the heating operation, if the refrigerant density error is large and the pipe length is long, the detection accuracy is slightly lowered, but the refrigerant circuit is filled. Appropriateness of the refrigerant amount can be determined.

実施の形態2.
図17は本発明の実施の形態2に係る冷凍サイクル装置を概略的に示す冷媒回路図であり、図中、前述の実施の形態1のものと同一部分には同一符号を付してある。
Embodiment 2. FIG.
FIG. 17 is a refrigerant circuit diagram schematically showing a refrigeration cycle apparatus according to Embodiment 2 of the present invention. In the figure, the same parts as those in Embodiment 1 are given the same reference numerals.

本実施形態の冷凍サイクル装置は、図17に示すように、絞り手段5aの後に冷房と暖房の必要冷媒量の差である余剰冷媒量を溜めるレシーバ20を設けるとともに、そのレシーバ20と液接続配管6の流路の間に絞り手段5bを新たに付加したものであり、現地での接続配管長が長く、冷房と暖房の差での余剰冷媒が多量に発生するタイプの冷凍サイクル装置に好適である。それ以外の構成は前述の実施の形態1のものと同様である。   As shown in FIG. 17, the refrigeration cycle apparatus of the present embodiment is provided with a receiver 20 for accumulating an excess refrigerant amount, which is the difference between the required refrigerant amounts for cooling and heating, after the throttling means 5a, and the receiver 20 and the liquid connection piping. The expansion means 5b is newly added between the six flow paths, and it is suitable for a refrigeration cycle apparatus that has a long connection pipe length in the field and generates a large amount of surplus refrigerant due to the difference between cooling and heating. is there. Other configurations are the same as those of the first embodiment.

本実施形態の冷凍サイクル装置においては、冷凍サイクル内に液冷媒が貯留する部分があるため、前述の冷媒自動充填運転モードおよび冷媒量判定運転モードのときに、絞り手段5aの開度を開けて、絞り手段5bの開度を絞り、圧縮機1の吸入部分の過熱度を制御する運転を行いレシーバ20内の余剰冷媒を室内熱交換器7a、7bに貯留する運転を実施させる。このように制御することで、冷凍サイクルは、前述の実施の形態1と同じ冷媒回路になる。その結果、冷媒量が規定冷媒量に対して少ない場合は、凝縮器の過冷却度もしくは凝縮器液相部の温度効率が小さくなるため、凝縮器の平均冷媒密度を冷凍サイクルの運転状態量から推定することができる。したがって、冷凍サイクル装置の冷媒の追加充填時においては、レシーバ20がある機種であっても液面を検知する固有の検出装置を用いることなく、如何なる設置条件、環境条件下にあっても、精度良く、冷媒量の適否の判定を行うことができる。また、通常運用時においては、定期的に冷媒量判定運転モードの運転を行うことにより、冷媒の漏れを早期発見でき、機器の故障を未然に防止することができる。   In the refrigeration cycle apparatus of the present embodiment, since there is a portion in which the liquid refrigerant is stored in the refrigeration cycle, the opening of the throttle means 5a is opened during the above-described refrigerant automatic charging operation mode and refrigerant amount determination operation mode. Then, the opening of the throttle means 5b is throttled, the operation of controlling the degree of superheat of the suction portion of the compressor 1 is performed, and the operation of storing the excess refrigerant in the receiver 20 in the indoor heat exchangers 7a and 7b is performed. By controlling in this way, the refrigeration cycle becomes the same refrigerant circuit as that of the first embodiment. As a result, when the amount of refrigerant is smaller than the specified amount of refrigerant, the degree of supercooling of the condenser or the temperature efficiency of the condenser liquid phase is reduced, so the average refrigerant density of the condenser is calculated from the operating state quantity of the refrigeration cycle. Can be estimated. Therefore, when the refrigerant of the refrigeration cycle apparatus is additionally charged, even if the receiver 20 is a model, the accuracy can be obtained regardless of installation conditions and environmental conditions without using a specific detection device that detects the liquid level. It is possible to determine whether the refrigerant amount is appropriate. Further, during normal operation, by periodically performing the operation in the refrigerant amount determination operation mode, refrigerant leakage can be detected at an early stage, and failure of the device can be prevented.

実施の形態3.
図18は本発明の実施の形態3に係る冷凍サイクル装置を概略的に示す冷媒回路図であり、図中、前述の実施の形態1のものと同一部分には同一符号を付してある。
Embodiment 3 FIG.
FIG. 18 is a refrigerant circuit diagram schematically showing a refrigeration cycle apparatus according to Embodiment 3 of the present invention. In the figure, the same parts as those in Embodiment 1 are given the same reference numerals.

本実施形態の冷凍サイクル装置は、図18に示すように、圧縮機1の吸入部分にアキュムレータ11を設け、冷房と暖房の必要冷媒量の差である余剰冷媒量をアキュムレータ11に溜めるように構成したものであり、現地での接続配管長が長く、冷房と暖房の差での余剰冷媒が多量に発生するタイプの冷凍サイクル装置に好適である。それ以外の構成は前述の実施の形態1のものと同様である。   As shown in FIG. 18, the refrigeration cycle apparatus according to the present embodiment is provided with an accumulator 11 at the suction portion of the compressor 1, and is configured to accumulate in the accumulator 11 an excess refrigerant amount that is the difference between the required refrigerant amounts for cooling and heating. Therefore, it is suitable for a refrigeration cycle apparatus of a type that has a long connecting pipe length in the field and generates a large amount of surplus refrigerant due to the difference between cooling and heating. Other configurations are the same as those of the first embodiment.

アキュムレータ11がある場合は、アキュムレータ11に液冷媒を溜めない運転をする必要があるので、前述の冷媒自動充填運転モードおよび冷媒量判定運転モードのときに室外熱交換器3で十分に過熱度が確保できるように絞り手段5aを絞った運転を行い、アキュムレータ11内の余剰冷媒を室内熱交換器7a、7bに貯留する運転を実施させる。このように制御することで、冷凍サイクルは、前述の実施の形態1と同じ冷媒回路になる。その結果、冷媒量が規定冷媒量に対して少ない場合は、凝縮器の過冷却度もしくは凝縮器液相部の温度効率が小さくなるため、凝縮器の平均冷媒密度を冷凍サイクルの運転状態量から推定することができる。したがって、冷凍サイクル装置の冷媒の追加充填時においては、アキュムレータ11がある機種であっても液面を検知する固有の検出装置を用いることなく、如何なる設置条件、環境条件下にあっても、精度良く、冷媒量の適否の判定を行うことができる。また、通常運用時においては、定期的に冷媒量判定運転モードの運転を行うことにより、冷媒の漏れを早期発見でき、機器の故障を未然に防止することができる。   When the accumulator 11 is present, it is necessary to perform an operation in which the liquid refrigerant is not accumulated in the accumulator 11, so that the outdoor heat exchanger 3 has a sufficient degree of superheat in the automatic refrigerant charging operation mode and the refrigerant amount determination operation mode. The operation of restricting the expansion means 5a so as to be secured is performed, and the operation of storing the excess refrigerant in the accumulator 11 in the indoor heat exchangers 7a and 7b is performed. By controlling in this way, the refrigeration cycle becomes the same refrigerant circuit as that of the first embodiment. As a result, when the amount of refrigerant is smaller than the specified amount of refrigerant, the degree of supercooling of the condenser or the temperature efficiency of the condenser liquid phase is reduced, so the average refrigerant density of the condenser is calculated from the operating state quantity of the refrigeration cycle. Can be estimated. Therefore, when the refrigerant of the refrigeration cycle apparatus is additionally charged, even if the accumulator 11 is a model, the accuracy can be improved under any installation condition or environmental condition without using a specific detection device that detects the liquid level. It is possible to determine whether the refrigerant amount is appropriate. Further, during normal operation, by periodically performing the operation in the refrigerant amount determination operation mode, refrigerant leakage can be detected at an early stage, and failure of the device can be prevented.

実施の形態4.
図19は本発明の実施の形態4に係る冷凍サイクル装置を概略的に示す冷媒回路図であり、図中、前述の実施の形態1のものと同一部分には同一符号を付してある。
Embodiment 4 FIG.
FIG. 19 is a refrigerant circuit diagram schematically showing a refrigeration cycle apparatus according to Embodiment 4 of the present invention. In the figure, the same parts as those in Embodiment 1 are given the same reference numerals.

本実施形態の冷凍サイクル装置は、図19に示すように、圧縮機1の吐出部分に高圧圧力を検出する圧力センサ400を設け、利用ユニット302aは、冷媒回路の一部である室内側冷媒回路を構成しており、利用側熱交換器であるプレート式熱交換器401と、プレート式熱交換器内を流れる冷媒と熱交換する流体の熱交換前後の温度を検出する流体入口温度センサ402と、流体出口温度センサ403とで構成されたものである。それ以外の構成は前述の実施の形態1のものと同様である。   As shown in FIG. 19, the refrigeration cycle apparatus of the present embodiment is provided with a pressure sensor 400 that detects high pressure at the discharge portion of the compressor 1, and the usage unit 302 a is an indoor refrigerant circuit that is part of the refrigerant circuit. A plate-type heat exchanger 401 that is a use-side heat exchanger, and a fluid inlet temperature sensor 402 that detects the temperature before and after heat exchange of the fluid that exchanges heat with the refrigerant flowing in the plate-type heat exchanger; And a fluid outlet temperature sensor 403. Other configurations are the same as those of the first embodiment.

ここで、プレート式熱交換器401内を流れる冷媒と熱交換を行う流体は冷媒の凝縮熱の吸熱対象となるものであり、これは水、冷媒、ブライン等でも構わず、流体の供給手段は圧縮機やポンプ等でもよい。また、プレート式熱交換器401もこの形態に限るものではなく、冷媒と流体間で熱交換できるものであれば、二重管熱交換器やマイクロチャネル等でもよい。   Here, the fluid that exchanges heat with the refrigerant flowing in the plate heat exchanger 401 is a heat absorption target of the condensation heat of the refrigerant, and this may be water, refrigerant, brine, or the like. A compressor or a pump may be used. Further, the plate heat exchanger 401 is not limited to this form, and may be a double pipe heat exchanger, a microchannel, or the like as long as heat can be exchanged between the refrigerant and the fluid.

この冷媒回路構成でも、前述の冷媒自動充填運転モードおよび冷媒量判定運転モードのときに室外熱交換器3で十分に過熱度が確保できるように絞り手段5aを絞った運転を行い、冷媒をプレート式熱交換器401に貯留する運転を実施させる。このように制御することで、冷凍サイクルは、前述の実施の形態1と同じ冷媒回路になる。その結果、冷媒量が規定冷媒量に対して少ない場合は、プレート式熱交換器出口の過冷却度もしくは凝縮器液相部の温度効率が小さくなるため、凝縮器の平均冷媒密度を冷凍サイクルの運転状態量から推定することができる。したがって、冷凍サイクル装置の冷媒回路構成によらず、如何なる設置条件、環境条件下にあっても、精度良く、冷媒量の適否の判定を行うことができる。また、通常運用時においては、定期的に冷媒量判定運転モードの運転を行うことにより、冷媒の漏れを早期発見でき、機器の故障を未然に防止することができる。ここで、温度効率を算出する場合の冷媒と流体の温度差dTcは、図21に示すように圧力センサ400から換算される冷媒の凝縮温度Tcより流体の平均温度(流体入口温度Twi+流体出口温度Two)/2を差し引くことによって演算可能である。また、図19では冷媒と流体の流れの関係は並行流で示しているが、対向流であっても構わない。   Even in this refrigerant circuit configuration, the throttle means 5a is operated so that the degree of superheat can be sufficiently secured in the outdoor heat exchanger 3 during the above-described refrigerant automatic charging operation mode and refrigerant quantity determination operation mode, and the refrigerant is platen. The operation of storing in the heat exchanger 401 is performed. By controlling in this way, the refrigeration cycle becomes the same refrigerant circuit as that in the first embodiment. As a result, when the amount of refrigerant is small relative to the specified amount of refrigerant, the degree of supercooling at the outlet of the plate heat exchanger or the temperature efficiency of the condenser liquid phase decreases, so the average refrigerant density of the condenser is reduced to that of the refrigeration cycle. It can be estimated from the amount of driving state. Therefore, the suitability of the refrigerant amount can be accurately determined regardless of the installation conditions and environmental conditions regardless of the refrigerant circuit configuration of the refrigeration cycle apparatus. Further, during normal operation, by periodically performing the operation in the refrigerant amount determination operation mode, refrigerant leakage can be detected at an early stage, and failure of the device can be prevented. Here, the temperature difference dTc between the refrigerant and the fluid in calculating the temperature efficiency is the average temperature of the refrigerant (fluid inlet temperature Twi + fluid outlet) from the refrigerant condensation temperature Tc converted from the pressure sensor 400 as shown in FIG. It can be calculated by subtracting the temperature Two) / 2. In FIG. 19, the relationship between the flow of the refrigerant and the fluid is shown as a parallel flow, but it may be a counter flow.

実施の形態5.
図20は本発明の実施の形態5に係る冷凍サイクル装置を概略的に示す冷媒回路図であり、図中、前述の実施の形態4のものと同一部分には同一符号を付してある。
Embodiment 5 FIG.
FIG. 20 is a refrigerant circuit diagram schematically showing a refrigeration cycle apparatus according to Embodiment 5 of the present invention. In the figure, the same parts as those in Embodiment 4 are given the same reference numerals.

本実施形態の冷凍サイクル装置は、図20に示すように、実施の形態4に示した液側温度センサ205aを排除したものである。それ以外の構成は前述の実施の形態4のものと同様である。   As shown in FIG. 20, the refrigeration cycle apparatus of the present embodiment excludes the liquid temperature sensor 205a shown in the fourth embodiment. Other configurations are the same as those in the fourth embodiment.

図21に示すように、冷媒と熱交換する流体が水、冷媒、ブライン等の場合は実施の形態1に示したフィン・アンド・チューブ型の空気を媒体とした熱交換の形態に比較し熱通過率が約20倍以上高くなるため、並行流であれば、プレート式熱交換器出口の冷媒温度Tscはほぼ流体出口温度Twoと等しいと仮定してよい。したがって、プレート式熱交換器出口の冷媒温度Tscを流体出口温度Twoで代用することにより過冷却度もしくは凝縮器液相部の温度効率を演算することができる。このように、実施の形態4で示した液側温度センサ205aは不要となるため、液側温度センサ205a分のコストを減らすことでき、冷凍サイクル装置の冷媒回路構成によらず、如何なる設置条件、環境条件下にあっても、精度良く、安価に冷媒量の適否の判定を行うことができる。   As shown in FIG. 21, when the fluid that exchanges heat with the refrigerant is water, refrigerant, brine, or the like, the heat is compared to the heat exchange mode using fin-and-tube type air as the medium shown in the first embodiment. Since the passage rate is increased by about 20 times or more, in the case of a parallel flow, it may be assumed that the refrigerant temperature Tsc at the outlet of the plate heat exchanger is substantially equal to the fluid outlet temperature Two. Therefore, the subcooling degree or the temperature efficiency of the condenser liquid phase can be calculated by substituting the refrigerant temperature Tsc at the outlet of the plate heat exchanger with the fluid outlet temperature Two. Thus, since the liquid side temperature sensor 205a shown in Embodiment 4 is not necessary, the cost for the liquid side temperature sensor 205a can be reduced, and any installation condition can be achieved regardless of the refrigerant circuit configuration of the refrigeration cycle apparatus. Even under environmental conditions, it is possible to accurately determine the appropriateness of the refrigerant amount at low cost.

実施の形態6.
図22は本発明の実施の形態6に係る冷凍サイクル装置を概略的に示す冷媒回路図であり、図中、前述の実施の形態1のものと同一部分には同一符号を付してある。
Embodiment 6 FIG.
FIG. 22 is a refrigerant circuit diagram schematically showing a refrigeration cycle apparatus according to Embodiment 6 of the present invention. In the figure, the same parts as those in Embodiment 1 described above are denoted by the same reference numerals.

本実施形態の冷凍サイクル装置は、図22に示すように、実施の形態1に示した液側温度センサ204と室外熱交換器3の間に、レシーバ20を設け、レシーバ20と液側温度センサ204の間に冷媒-冷媒熱交換器209を設け、高圧側の冷媒-冷媒熱交換器通過後の冷媒を絞り手段5dによって減圧し、低温低圧の冷媒を冷媒-冷媒熱交換器に流し、レシーバ通過後の冷媒の過冷却度を増加により冷却能力を増加させるバイパス回路を備え、冷媒-冷媒熱交換器210の前後に冷媒-冷媒熱交換器入口温度センサ208、冷媒-冷媒熱交換器出口温度センサ209を設けたものである。それ以外の構成は前述の実施の形態1のものと同様である。   As shown in FIG. 22, the refrigeration cycle apparatus of the present embodiment is provided with a receiver 20 between the liquid side temperature sensor 204 and the outdoor heat exchanger 3 shown in Embodiment 1, and the receiver 20 and the liquid side temperature sensor. 204, a refrigerant-refrigerant heat exchanger 209 is provided between the high-pressure side refrigerant-refrigerant heat exchanger 209, the refrigerant after passing through the high-pressure side refrigerant-refrigerant heat exchanger is decompressed by the throttle means 5d, and the low-temperature and low-pressure refrigerant flows through the refrigerant-refrigerant heat exchanger. Provided with a bypass circuit that increases the cooling capacity by increasing the degree of supercooling of the refrigerant after passing, the refrigerant-refrigerant heat exchanger inlet temperature sensor 208 and the refrigerant-refrigerant heat exchanger outlet temperature before and after the refrigerant-refrigerant heat exchanger 210 A sensor 209 is provided. Other configurations are the same as those of the first embodiment.

この冷媒回路構成でも、冷房運転にて前述の冷媒自動充填運転モードおよび冷媒量判定運転モードのときに室内熱交換器207a、207bで十分に過熱度が確保できるように絞り手段5aを絞った運転を行い、冷媒-冷媒熱交換器出口温度センサ209にて検出される温度から冷媒-冷媒熱交換器入口温度センサ208にて検出される温度を減算して算出される過熱度が確保できるように絞り手段5cを絞った運転を行うことで、冷媒を室外熱交換器3もしくはレシーバ20に貯留する運転を実施させる。このとき冷媒-冷媒熱交換器の過冷却度はガス側温度センサ202で検出される凝縮温度から液側温度センサ204を減算することで演算でき、冷媒-冷媒熱交換器での温度効率は、過冷却度を凝縮温度から冷媒-冷媒熱交換器低圧入口温度センサ208との温度差で割った値で演算することができる。冷媒が適正冷媒量よりも減った場合は冷媒-冷媒熱交換器210の高圧側出口の過冷却度もしくは温度効率が小さくなるため、凝縮器の平均冷媒密度を冷凍サイクルの運転状態量から推定することができる。したがって、冷凍サイクル装置の冷媒回路構成によらず、如何なる設置条件、環境条件下にあっても、精度良く、冷媒量の適否の判定を行うことができる。また、通常運用時においては、定期的に冷媒量判定運転モードの運転を行うことにより、冷媒の漏れを早期発見でき、機器の故障を未然に防止することができる。   Even in this refrigerant circuit configuration, the throttle means 5a is throttled so that the degree of superheat can be sufficiently secured by the indoor heat exchangers 207a and 207b in the above-described refrigerant automatic charging operation mode and refrigerant quantity determination operation mode in the cooling operation. So that the degree of superheat calculated by subtracting the temperature detected by the refrigerant-refrigerant heat exchanger inlet temperature sensor 208 from the temperature detected by the refrigerant-refrigerant heat exchanger outlet temperature sensor 209 can be ensured. By performing the operation with the throttle means 5c being throttled, the operation for storing the refrigerant in the outdoor heat exchanger 3 or the receiver 20 is performed. At this time, the subcooling degree of the refrigerant-refrigerant heat exchanger can be calculated by subtracting the liquid side temperature sensor 204 from the condensation temperature detected by the gas side temperature sensor 202, and the temperature efficiency in the refrigerant-refrigerant heat exchanger is The degree of supercooling can be calculated by dividing the condensing temperature by the temperature difference from the refrigerant-refrigerant heat exchanger low pressure inlet temperature sensor 208. When the amount of refrigerant is less than the appropriate amount of refrigerant, the degree of supercooling or temperature efficiency at the high-pressure side outlet of the refrigerant-refrigerant heat exchanger 210 decreases, so the average refrigerant density of the condenser is estimated from the operating state quantity of the refrigeration cycle. be able to. Therefore, the suitability of the refrigerant amount can be accurately determined regardless of the installation conditions and environmental conditions regardless of the refrigerant circuit configuration of the refrigeration cycle apparatus. Further, during normal operation, by periodically performing the operation in the refrigerant amount determination operation mode, refrigerant leakage can be detected at an early stage, and failure of the device can be prevented.

また、本実施の形態ではレシーバ20を設けた冷媒回路構成で示したが、レシーバ20が無い冷凍サイクル装置に本発明を適用してもよい。また、図22で示した冷媒-冷媒熱交換器210はプレート式熱交換器や二重管式熱交換器等が考えられる。   In the present embodiment, the refrigerant circuit configuration in which the receiver 20 is provided is shown, but the present invention may be applied to a refrigeration cycle apparatus without the receiver 20. Moreover, the refrigerant | coolant-refrigerant heat exchanger 210 shown in FIG. 22 can consider a plate type heat exchanger, a double pipe | tube type heat exchanger, etc.

本発明を利用すれば、熱源ユニットと利用ユニットとが接続配管を介して接続された冷凍サイクル装置において、現地において充填された冷媒量にバラツキが生じたり、冷媒連絡配管の配管長さ・管径、複数の容量の利用ユニットの組み合わせによって、規定冷媒量の適否の判定に使用される運転状態量の基準値に変動が生じる場合であっても、装置内に充填されている冷媒量の適否を精度よく判定できるようになる。   If the present invention is used, in the refrigeration cycle apparatus in which the heat source unit and the utilization unit are connected via the connection pipe, the amount of refrigerant charged in the field varies, and the pipe length and pipe diameter of the refrigerant communication pipe Even if there is a change in the reference value of the operating state quantity used for determining the suitability of the specified refrigerant amount due to the combination of the use units having a plurality of capacities, the suitability of the refrigerant amount charged in the apparatus is determined. Judgment can be made with high accuracy.

本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍サイクル装置の別の冷媒回路図である。It is another refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍サイクル装置の冷媒充填時の動作フローチャートである。It is an operation | movement flowchart at the time of refrigerant | coolant filling of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の接続配管長と冷房、暖房運転時の必要冷媒量の関係を示すグラフである。It is a graph which shows the relationship between the connection piping length of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention, and the refrigerant | coolant amount required at the time of air_conditioning | cooling and heating operation. 本発明の実施の形態1に係る冷凍サイクル装置の接続配管の冷媒密度が一定となる、凝縮器出口温度と凝縮温度の関係を示すグラフである。It is a graph which shows the relationship between the condenser exit temperature and condensation temperature in which the refrigerant density of the connection piping of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention becomes constant. 本発明の実施の形態1に係る冷凍サイクル装置のp−h線図である。It is a ph diagram of the refrigerating cycle device concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍サイクル装置の熱源ユニットの冷媒密度が一定となるときの外気温度と過熱度の関係を示すグラフである。It is a graph which shows the relationship between external temperature and superheat degree when the refrigerant density of the heat-source unit of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention becomes fixed. 本発明の実施の形態1に係る冷凍サイクル装置の冷媒充填時の概観図である。It is a general-view figure at the time of refrigerant | coolant filling of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の凝縮器内の冷媒温度の変化を表す図である。It is a figure showing the change of the refrigerant | coolant temperature in the condenser of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の冷媒の過冷却度SCと凝縮器内の平均冷媒密度の関係を示すグラフである。It is a graph which shows the relationship between the supercooling degree SC of the refrigerant | coolant of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention, and the average refrigerant density in a condenser. 本発明の実施の形態1に係る冷凍サイクル装置の運転状態量の基準値に対する、現在の運転状態量の報知レベルの関係を示す図である。It is a figure which shows the relationship of the alerting | reporting level of the present operation state quantity with respect to the reference value of the operation state quantity of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の凝縮器の液相部の温度効率SC/dTcと凝縮器内の平均冷媒密度の関係を示すグラフである。It is a graph which shows the relationship between the temperature efficiency SC / dTc of the liquid phase part of the condenser of the refrigerating cycle device concerning Embodiment 1 of the present invention, and the average refrigerant density in a condenser. 本発明の実施の形態1に係る冷凍サイクル装置の冷媒充填時の別の概観図である。It is another general-view figure at the time of refrigerant | coolant filling of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の更に別の冷媒回路図である。FIG. 5 is still another refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍サイクル装置の冷媒量判定時の動作フローチャートである。It is an operation | movement flowchart at the time of refrigerant | coolant amount determination of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置においてより高圧の冷媒(CO2)を使用した場合のp−h線図である。It is a p-h diagram in the case of using a higher pressure refrigerant (CO 2) in a refrigeration cycle apparatus according to a first embodiment of the present invention. 本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 2 of the present invention. 本発明の実施の形態3に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 3 of the present invention. 本発明の実施の形態4に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 4 of the present invention. 本発明の実施の形態5に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 5 of the present invention. 本発明の実施の形態4、5に係る冷凍サイクル装置のプレート式熱交換器内の冷媒と流体の温度変化を表す図である。It is a figure showing the temperature change of the refrigerant | coolant and fluid in the plate type heat exchanger of the refrigerating-cycle apparatus which concerns on Embodiment 4 and 5 of this invention. 本発明の実施の形態6に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 6 of the present invention.

符号の説明Explanation of symbols

1 圧縮機、2 四方弁、3 室外熱交換器、4 室外送風機、5a、5b、5c、5d 絞り手段、6 液接続配管、7a、7b 室内熱交換器、8a、8b 室内送風機、9 ガス接続配管、11 アキュムレータ、12 バイパス回路、20 レシーバ、31 冷媒ボンベ、32 バルブ、33 チャージホース、34 絞り手段、101 測定部、102 演算部、103 制御部、104 記憶部、105 比較部、106 判定部、107 報知部、201 圧縮機吐出温度センサ、202 ガス側温度センサ、203 室外温度センサ、204 液側温度センサ、205a、205b 液側温度センサ、206a、206b 室内温度センサ、207a、207b ガス側温度センサ、208 冷媒-冷媒熱交換器低圧入口温度センサ、209 冷媒-冷媒熱交換器低圧出口温度センサ、210 冷媒-冷媒熱交換器、301 熱源ユニット、302a、302b 利用ユニット、400 圧力センサ、401 プレート式熱交換器、402 流体入口温度センサ、403 流体出口温度センサ。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four way valve, 3 Outdoor heat exchanger, 4 Outdoor blower, 5a, 5b, 5c, 5d Restriction means, 6 liquid connection piping, 7a, 7b Indoor heat exchanger, 8a, 8b Indoor blower, 9 Gas connection Piping, 11 Accumulator, 12 Bypass circuit, 20 Receiver, 31 Refrigerant cylinder, 32 Valve, 33 Charge hose, 34 Throttle means, 101 Measuring unit, 102 Calculation unit, 103 Control unit, 104 Storage unit, 105 Comparison unit, 106 Determination unit 107 Notification unit 201 Compressor discharge temperature sensor 202 Gas side temperature sensor 203 Outdoor temperature sensor 204 Liquid side temperature sensor 205a 205b Liquid side temperature sensor 206a 206b Indoor temperature sensor 207a 207b Gas side temperature Sensor, 208 Refrigerant-refrigerant heat exchanger low pressure inlet temperature sensor, 209 Refrigerant- Medium heat exchanger low-pressure outlet temperature sensor, 210 a refrigerant - refrigerant heat exchanger 301 heat source unit, 302a, 302b utilization unit, 400 a pressure sensor, 401 plate heat exchanger, 402 fluid inlet temperature sensor, 403 fluid outlet temperature sensor.

Claims (18)

圧縮機と熱源側熱交換器と絞り手段と、少なくとも1つの利用側熱交換器とを液冷媒接続配管およびガス冷媒接続配管で接続し、冷媒回路を構成する冷凍サイクル装置であって、
前記利用側熱交換器の運転負荷に応じて前記冷凍サイクル装置の各機器の制御を行う通常運転モードと、前記利用側熱交換器または、前記熱源側熱交換器のうち蒸発器である熱交換器の出口における冷媒の過熱度が正値になるように前記絞り手段を制御する冷媒量判定運転モードとを切り換えて運転する運転制御手段を有し、かつ前記冷媒量判定運転モードにおいて、冷媒量に応じて変動する運転状態量を検出して、記憶手段に予め記憶している適正冷媒量での運転状態量の基準値と比較することで、前記冷媒回路内に充填されている冷媒量の適否を判定する手段を備えたことを特徴とする冷凍サイクル装置。
A compressor, a heat source side heat exchanger, a throttle means, and at least one usage side heat exchanger are connected with a liquid refrigerant connection pipe and a gas refrigerant connection pipe to constitute a refrigerant circuit,
Normal operation mode for controlling each device of the refrigeration cycle apparatus according to the operation load of the use side heat exchanger, and heat exchange that is an evaporator of the use side heat exchanger or the heat source side heat exchanger Operation control means for switching and operating the refrigerant amount determination operation mode for controlling the throttling means so that the degree of superheat of the refrigerant at the outlet of the condenser becomes a positive value, and in the refrigerant amount determination operation mode, the refrigerant amount The amount of refrigerant charged in the refrigerant circuit is detected by detecting the amount of operating state that varies depending on the amount of refrigerant and comparing it with the reference value of the amount of operating state stored in advance in the storage means. A refrigeration cycle apparatus comprising means for determining suitability.
前記圧縮機から流出した冷媒の流路切り換え手段を有し、前記運転制御手段は、前記流路切り換え手段により前記熱源側熱交換器と前記利用側熱交換器を凝縮器もしくは蒸発器に相互に切り換え可能であることを特徴とする請求項1に記載の冷凍サイクル装置。   A flow path switching means for the refrigerant flowing out from the compressor, wherein the operation control means causes the flow path switching means to connect the heat source side heat exchanger and the usage side heat exchanger to a condenser or an evaporator. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is switchable. 前記圧縮機から前記絞り手段に至る流路のいずれかの位置の冷媒の圧力を検出する高圧検出手段または前記凝縮器の冷媒の圧力を凝縮温度から換算し検出する冷媒温度検出手段のうちのいずれか1つと、前記利用側熱交換器出口の液管温度を検出する液管温度検出手段と、前記利用側熱交換器の冷媒の圧力が前記液管温度に応じて決定される圧力になるように、前記圧縮機の回転数を制御する手段と、を備えたことを特徴とする請求項1又は請求項2記載の冷凍サイクル装置。   Either of high pressure detection means for detecting the pressure of the refrigerant at any position in the flow path from the compressor to the throttle means or refrigerant temperature detection means for detecting the pressure of the refrigerant in the condenser by converting it from the condensation temperature. The liquid pipe temperature detecting means for detecting the liquid pipe temperature at the outlet of the use side heat exchanger, and the pressure of the refrigerant of the use side heat exchanger becomes a pressure determined according to the liquid pipe temperature. The refrigeration cycle apparatus according to claim 1, further comprising: means for controlling a rotation speed of the compressor. 前記凝縮器出口の液管温度は、前記凝縮器で熱交換される流体の温度を検出する流体温度検出手段より推測することを特徴とする請求項1乃至請求項3のいずれかに記載の冷凍サイクル装置。   The refrigeration according to any one of claims 1 to 3, wherein the liquid pipe temperature at the outlet of the condenser is estimated by a fluid temperature detecting means for detecting a temperature of a fluid to be heat-exchanged in the condenser. Cycle equipment. 前記凝縮器内を流れる冷媒と、前記凝縮器で熱交換する流体は並行流であることを特徴とする請求項4に記載の冷凍サイクル装置。   5. The refrigeration cycle apparatus according to claim 4, wherein the refrigerant flowing through the condenser and the fluid that exchanges heat with the condenser are in parallel flow. 前記絞り手段から前記蒸発器に至る流路のいずれかの位置の冷媒の圧力を検出する低圧検出手段または前記蒸発器の冷媒の蒸発温度を検出する低圧冷媒温度検出手段のうちのいずれか1つと、前記蒸発器出口のガス管温度を検出するガス管温度検出手段と、前記蒸発温度に応じて前記蒸発器出口における冷媒の過熱度が所定値になるように絞り手段の開口面積を制御する手段と、を備えたことを特徴とする請求項1乃至請求項5のいずれかに記載の冷凍サイクル装置。   Either one of low pressure detection means for detecting the pressure of the refrigerant at any position in the flow path from the throttling means to the evaporator or low pressure refrigerant temperature detection means for detecting the evaporation temperature of the refrigerant in the evaporator; Gas pipe temperature detecting means for detecting the gas pipe temperature at the evaporator outlet, and means for controlling the opening area of the throttle means so that the degree of superheat of the refrigerant at the evaporator outlet becomes a predetermined value according to the evaporation temperature And a refrigeration cycle apparatus according to any one of claims 1 to 5. 前記冷媒量の適否を判定する手段は、過去に演算された前記運転状態量と現在の演算値である前記運転状態量とを比較し、その変化から冷媒漏れを判断するものであることを特徴とする請求項1乃至請求項6のいずれかに記載の冷凍サイクル装置。   The means for determining the suitability of the refrigerant quantity compares the operation state quantity calculated in the past with the operation state quantity which is a current calculation value, and judges refrigerant leakage from the change. The refrigeration cycle apparatus according to any one of claims 1 to 6. 装置設置後、前記運転状態量を演算し、新たに演算された値と、予め記憶しておいた値または予め記憶しておいた値を元に演算した値と、を比較することで初期冷媒量の過不足を判断する手段を備えたことを特徴とする請求項1乃至請求項7のいずれかに記載の冷凍サイクル装置。   After the apparatus is installed, the initial refrigerant is calculated by calculating the operating state quantity and comparing the newly calculated value with a value stored in advance or a value calculated based on a value stored in advance. The refrigeration cycle apparatus according to any one of claims 1 to 7, further comprising means for determining whether the amount is excessive or insufficient. 前記絞り手段は、冷媒回路内でレシーバを挟む両側にそれぞれ配置されており、前記冷媒量の適否を判定する手段は、冷媒流れの下流側に位置する一方の絞り手段の開口面積を、冷媒流れの上流側に位置する他方の絞り手段の開口面積よりも小さくし、前記レシーバの出口冷媒が二相状態になるようにして前記レシーバ内の余剰冷媒を凝縮器内に移動させる特殊運転モードを有していることを特徴とする請求項1乃至請求項8のいずれかに記載の冷凍サイクル装置。   The throttling means is disposed on both sides of the receiver in the refrigerant circuit, and the means for determining the suitability of the refrigerant amount is based on the opening area of one throttling means located downstream of the refrigerant flow. A special operation mode in which excess refrigerant in the receiver is moved into the condenser so that the outlet refrigerant of the receiver is in a two-phase state with a smaller opening area than the other throttle means located on the upstream side. The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein the refrigeration cycle apparatus is provided. 前記凝縮器と前記圧縮機との間にアキュムレータが設けられており、前記冷媒量の適否を判定する手段は、前記絞り手段を制御して前記アキュムレータに流入する冷媒をガス冷媒にし、前記アキュムレータ内の余剰冷媒を凝縮器内に移動させる特殊運転モードを有していることを特徴とする請求項1乃至請求項8のいずれかに記載の冷凍サイクル装置。   An accumulator is provided between the condenser and the compressor, and the means for determining the suitability of the refrigerant amount controls the throttling means so that the refrigerant flowing into the accumulator is a gas refrigerant, and the accumulator The refrigeration cycle apparatus according to any one of claims 1 to 8, further comprising a special operation mode in which the excess refrigerant is moved into the condenser. 前記冷媒量の適否を判定する手段は、一定時間毎に前記特殊運転モードに入る機能を有していることを特徴とする請求項9又は請求項10記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 9 or 10, wherein the means for determining the suitability of the refrigerant amount has a function of entering the special operation mode at regular intervals. 前記冷媒量の適否を判定する手段は、外部からの操作信号によって前記特殊運転モードに入る機能を有していることを特徴とする請求項9又は請求項10記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 9 or 10, wherein the means for determining the suitability of the refrigerant amount has a function of entering the special operation mode by an operation signal from the outside. 前記記憶手段は、装置内部の基板内のメモリまたは圧縮機付属のメモリまたは装置外部に設置されて装置と有線または無線で接続された機器内のメモリであり、書き換え可能なメモリで構成されてなることを特徴とする請求項1乃至請求項12のいずれかに記載の冷凍サイクル装置。   The storage means is a memory in a substrate inside the apparatus, a memory attached to the compressor, or a memory in a device that is installed outside the apparatus and is connected to the apparatus by wire or wirelessly, and is composed of a rewritable memory. The refrigeration cycle apparatus according to any one of claims 1 to 12, characterized in that. 前記運転状態量とは、前記圧縮機から前記絞り手段に至る流路の圧力から換算される凝縮温度と前記液管温度検出手段にて検出された前記凝縮器の出口冷媒の温度との温度差を、前記凝縮温度と前記凝縮器内に流れる冷媒の熱を吸熱する流体の温度との温度差で除したものであることを特徴とする請求項1乃至請求項13のいずれかに記載の冷凍サイクル装置。   The operating state quantity is a temperature difference between the condensation temperature converted from the pressure of the flow path from the compressor to the throttle means and the temperature of the outlet refrigerant of the condenser detected by the liquid pipe temperature detection means. The refrigeration according to any one of claims 1 to 13, wherein the refrigeration is divided by a temperature difference between the condensing temperature and a temperature of a fluid that absorbs heat of the refrigerant flowing in the condenser. Cycle equipment. 超臨界領域での物性変化を伴う冷媒を使用していることを特徴とする請求項1乃至請求項14のいずれかに記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 14, wherein a refrigerant accompanied by a change in physical properties in a supercritical region is used. 圧縮機と熱源側熱交換器と絞り手段と、少なくとも1つの利用側熱交換器とを液冷媒接続配管およびガス冷媒接続配管で接続し、冷媒回路を構成する冷凍サイクル装置の制御方法において、
冷媒量調整時に、追加充填用の冷媒が封入された冷媒ボンベから前記空気調和冷凍サイクル装置への冷媒回路への流路の位置に流量調整手段を備え、前記冷媒量調整時に、冷媒量に応じて変動する運転状態量を検出して、前記運転状態量が記憶手段に記憶されている基準値に近接してきたら、前記流量調整手段にて、前記冷媒ボンベから前記冷凍サイクル装置への冷媒封入速度を減少させることを特徴とする冷凍サイクル装置の制御方法。
In a control method for a refrigeration cycle apparatus, in which a compressor, a heat source side heat exchanger, a throttle means, and at least one usage side heat exchanger are connected by a liquid refrigerant connection pipe and a gas refrigerant connection pipe to constitute a refrigerant circuit,
At the time of adjusting the amount of refrigerant, a flow rate adjusting means is provided at the position of the flow path from the refrigerant cylinder filled with the additional charging refrigerant to the refrigerant circuit to the air-conditioning refrigeration cycle apparatus, and the amount of refrigerant is adjusted according to the amount of refrigerant at the time of adjusting the amount of refrigerant. When the operating state quantity is detected and the operating state quantity comes close to the reference value stored in the storage means, the flow rate adjusting means causes the refrigerant filling speed from the refrigerant cylinder to the refrigeration cycle apparatus. A control method for a refrigeration cycle apparatus, wherein the refrigeration cycle apparatus is reduced.
圧縮機と熱源側熱交換器と絞り手段と、少なくとも1つの利用側熱交換器とを液冷媒接続配管およびガス冷媒接続配管で接続し、冷媒回路を構成する冷凍サイクル装置の制御方法において、
冷媒充填時に冷媒量の変動に応じて変動する運転状態量を検出して、前記運転状態量が記憶手段に記憶されている基準値に近接してきたら、前記圧縮機の回転数を減少もしくは停止し、追加充填用の冷媒が封入された冷媒ボンベから前記冷凍サイクル装置への冷媒封入速度を減少させることを特徴とする冷凍サイクル装置の制御方法。
In a control method for a refrigeration cycle apparatus, in which a compressor, a heat source side heat exchanger, a throttle means, and at least one usage side heat exchanger are connected by a liquid refrigerant connection pipe and a gas refrigerant connection pipe to constitute a refrigerant circuit,
When the operating state quantity that fluctuates in accordance with the change in the refrigerant quantity when the refrigerant is charged is detected and the operating state quantity comes close to the reference value stored in the storage means, the rotational speed of the compressor is reduced or stopped. A method for controlling a refrigeration cycle apparatus, comprising: reducing a refrigerant charging speed from a refrigerant cylinder filled with a refrigerant for additional charging to the refrigeration cycle apparatus.
圧縮機と熱源側熱交換器と絞り手段と、少なくとも1つの利用側熱交換器とを液冷媒接続配管およびガス冷媒接続配管で接続し、冷媒回路を構成する冷凍サイクル装置の制御方法において、
前記冷媒回路の高圧側と低圧側のバイパス冷媒回路と、前記バイパス冷媒回路の流路に流量調整手段とを備え、冷媒充填時に冷媒量の変動に応じて変動する運転状態量を検出して、前記運転状態量が記憶手段に記憶されている基準値に近接してきたら、前記流量調整手段の開度を増加させることで、追加充填用の冷媒が封入された冷媒ボンベから前記冷凍サイクル装置への冷媒封入速度を減少させることを特徴とする冷凍サイクル装置の制御方法。
In a control method for a refrigeration cycle apparatus, in which a compressor, a heat source side heat exchanger, a throttle means, and at least one usage side heat exchanger are connected by a liquid refrigerant connection pipe and a gas refrigerant connection pipe to constitute a refrigerant circuit,
A bypass refrigerant circuit on a high pressure side and a low pressure side of the refrigerant circuit, and a flow rate adjusting means in a flow path of the bypass refrigerant circuit, detecting an operating state amount that varies according to a variation in the refrigerant amount when the refrigerant is charged; When the operating state quantity is close to the reference value stored in the storage means, the opening degree of the flow rate adjusting means is increased so that the refrigerant cylinder filled with the additional charging refrigerant is supplied to the refrigeration cycle apparatus. A control method for a refrigeration cycle apparatus, characterized by reducing a refrigerant charging speed.
JP2007249937A 2007-09-26 2007-09-26 Refrigerating cycle device and its control method Pending JP2009079842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007249937A JP2009079842A (en) 2007-09-26 2007-09-26 Refrigerating cycle device and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007249937A JP2009079842A (en) 2007-09-26 2007-09-26 Refrigerating cycle device and its control method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010237333A Division JP2011012958A (en) 2010-10-22 2010-10-22 Method for controlling refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
JP2009079842A true JP2009079842A (en) 2009-04-16

Family

ID=40654722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007249937A Pending JP2009079842A (en) 2007-09-26 2007-09-26 Refrigerating cycle device and its control method

Country Status (1)

Country Link
JP (1) JP2009079842A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226704A (en) * 2010-04-20 2011-11-10 Mitsubishi Electric Corp Refrigerating air conditioner, and refrigerating air conditioning system
JP2012007848A (en) * 2010-06-28 2012-01-12 Daikin Industries Ltd Refrigerating unit
JP2012117715A (en) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd Refrigeration equipment
JP2014126337A (en) * 2012-12-27 2014-07-07 Nakano Refrigerators Co Ltd Refrigeration device and method of detecting refrigerant leakage of refrigeration device
US8806877B2 (en) 2009-03-30 2014-08-19 Mitsubishi Electric Corporation Refrigerating cycle apparatus
US20160146521A1 (en) * 2014-11-21 2016-05-26 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2016207992A1 (en) * 2015-06-24 2016-12-29 三菱電機株式会社 Air conditioner
JPWO2015046066A1 (en) * 2013-09-27 2017-03-09 東芝キヤリア株式会社 Refrigeration cycle equipment
US10113763B2 (en) 2013-07-10 2018-10-30 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JPWO2017212606A1 (en) * 2016-06-09 2019-01-17 三菱電機株式会社 Refrigeration cycle equipment
WO2019065635A1 (en) * 2017-09-29 2019-04-04 ダイキン工業株式会社 Refrigerant quantity estimation method and air conditioner
JP2020060309A (en) * 2018-10-05 2020-04-16 富士通株式会社 Estimation program, estimation method and estimation device
JP2020133957A (en) * 2019-02-15 2020-08-31 ダイキン工業株式会社 Refrigerant filling work assist kit or refrigerant filling work assist system
CN114857665A (en) * 2022-05-30 2022-08-05 青岛海信日立空调系统有限公司 Multi-split system
CN114857664A (en) * 2022-05-30 2022-08-05 青岛海信日立空调系统有限公司 Multi-split system
WO2023119605A1 (en) * 2021-12-23 2023-06-29 三菱電機株式会社 Refrigerant amount determination system
WO2023135703A1 (en) * 2022-01-13 2023-07-20 三菱電機株式会社 Device management system and notification method
WO2023135696A1 (en) * 2022-01-13 2023-07-20 三菱電機株式会社 Device management system and refrigerant amount estimation method
JP7425353B1 (en) 2022-09-30 2024-01-31 ダイキン工業株式会社 Air conditioner control system, information processing device and air conditioner control method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391664A (en) * 1989-09-01 1991-04-17 Hitachi Ltd Air-cooled absorption type heating and cooling equipment
JP2002243276A (en) * 2001-02-20 2002-08-28 Toshiba Kyaria Kk Heat pump water heater
JP2005114184A (en) * 2003-10-03 2005-04-28 Hitachi Ltd Refrigerant filling device and refrigerant filling method
JP2005133958A (en) * 2003-10-28 2005-05-26 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its control method
WO2006090451A1 (en) * 2005-02-24 2006-08-31 Mitsubishi Denki Kabushiki Kaisha Air conditioning system
JP2006292213A (en) * 2005-04-07 2006-10-26 Daikin Ind Ltd Air conditioner
JP2006292211A (en) * 2005-04-07 2006-10-26 Daikin Ind Ltd Air conditioner
WO2007049372A1 (en) * 2005-10-25 2007-05-03 Mitsubishi Electric Corporation Air-conditioning apparatus, method of refrigerant filling in air-conditioning apparatus, method of judging state of refrigerant filling in air-conditioning apparatus, and method of refrigerant filling/piping cleaning for air-conditioning apparatus
JP2007240108A (en) * 2006-03-10 2007-09-20 Daikin Ind Ltd Air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391664A (en) * 1989-09-01 1991-04-17 Hitachi Ltd Air-cooled absorption type heating and cooling equipment
JP2002243276A (en) * 2001-02-20 2002-08-28 Toshiba Kyaria Kk Heat pump water heater
JP2005114184A (en) * 2003-10-03 2005-04-28 Hitachi Ltd Refrigerant filling device and refrigerant filling method
JP2005133958A (en) * 2003-10-28 2005-05-26 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its control method
WO2006090451A1 (en) * 2005-02-24 2006-08-31 Mitsubishi Denki Kabushiki Kaisha Air conditioning system
JP2006292213A (en) * 2005-04-07 2006-10-26 Daikin Ind Ltd Air conditioner
JP2006292211A (en) * 2005-04-07 2006-10-26 Daikin Ind Ltd Air conditioner
WO2007049372A1 (en) * 2005-10-25 2007-05-03 Mitsubishi Electric Corporation Air-conditioning apparatus, method of refrigerant filling in air-conditioning apparatus, method of judging state of refrigerant filling in air-conditioning apparatus, and method of refrigerant filling/piping cleaning for air-conditioning apparatus
JP2007240108A (en) * 2006-03-10 2007-09-20 Daikin Ind Ltd Air conditioner

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8806877B2 (en) 2009-03-30 2014-08-19 Mitsubishi Electric Corporation Refrigerating cycle apparatus
JP2011226704A (en) * 2010-04-20 2011-11-10 Mitsubishi Electric Corp Refrigerating air conditioner, and refrigerating air conditioning system
JP2012007848A (en) * 2010-06-28 2012-01-12 Daikin Industries Ltd Refrigerating unit
JP2012117715A (en) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd Refrigeration equipment
JP2014126337A (en) * 2012-12-27 2014-07-07 Nakano Refrigerators Co Ltd Refrigeration device and method of detecting refrigerant leakage of refrigeration device
US10113763B2 (en) 2013-07-10 2018-10-30 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JPWO2015046066A1 (en) * 2013-09-27 2017-03-09 東芝キヤリア株式会社 Refrigeration cycle equipment
JP2016099059A (en) * 2014-11-21 2016-05-30 三菱電機株式会社 Refrigeration cycle device
EP3026371A1 (en) 2014-11-21 2016-06-01 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN105627649A (en) * 2014-11-21 2016-06-01 三菱电机株式会社 Refrigeration cycle apparatus
US20160146521A1 (en) * 2014-11-21 2016-05-26 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US10145595B2 (en) 2014-11-21 2018-12-04 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2016207992A1 (en) * 2015-06-24 2016-12-29 三菱電機株式会社 Air conditioner
JPWO2016207992A1 (en) * 2015-06-24 2017-07-27 三菱電機株式会社 Air conditioner
JPWO2017212606A1 (en) * 2016-06-09 2019-01-17 三菱電機株式会社 Refrigeration cycle equipment
JP2019066164A (en) * 2017-09-29 2019-04-25 ダイキン工業株式会社 Refrigerant amount estimating method and air-conditioner
WO2019065635A1 (en) * 2017-09-29 2019-04-04 ダイキン工業株式会社 Refrigerant quantity estimation method and air conditioner
JP7215058B2 (en) 2018-10-05 2023-01-31 富士通株式会社 Estimation Program, Estimation Method, and Estimation Apparatus
JP2020060309A (en) * 2018-10-05 2020-04-16 富士通株式会社 Estimation program, estimation method and estimation device
JP2020133957A (en) * 2019-02-15 2020-08-31 ダイキン工業株式会社 Refrigerant filling work assist kit or refrigerant filling work assist system
WO2023119605A1 (en) * 2021-12-23 2023-06-29 三菱電機株式会社 Refrigerant amount determination system
WO2023135703A1 (en) * 2022-01-13 2023-07-20 三菱電機株式会社 Device management system and notification method
WO2023135696A1 (en) * 2022-01-13 2023-07-20 三菱電機株式会社 Device management system and refrigerant amount estimation method
CN114857664A (en) * 2022-05-30 2022-08-05 青岛海信日立空调系统有限公司 Multi-split system
CN114857665A (en) * 2022-05-30 2022-08-05 青岛海信日立空调系统有限公司 Multi-split system
CN114857665B (en) * 2022-05-30 2023-09-05 青岛海信日立空调系统有限公司 Multi-split air conditioner system
CN114857664B (en) * 2022-05-30 2023-11-28 青岛海信日立空调系统有限公司 Multi-split air conditioner system
JP7425353B1 (en) 2022-09-30 2024-01-31 ダイキン工業株式会社 Air conditioner control system, information processing device and air conditioner control method
WO2024070060A1 (en) * 2022-09-30 2024-04-04 ダイキン工業株式会社 Air conditioner control system, information processing device, and air conditioner control method

Similar Documents

Publication Publication Date Title
JP2009079842A (en) Refrigerating cycle device and its control method
US10113763B2 (en) Refrigeration cycle apparatus
JP4120676B2 (en) Air conditioner
JP4705878B2 (en) Air conditioner
JP4114691B2 (en) Air conditioner
US7954333B2 (en) Air conditioner
JP3852472B2 (en) Air conditioner
JP4169057B2 (en) Air conditioner
WO2011111114A1 (en) Refrigeration air conditioning device
WO2011048721A1 (en) Refrigerating and air-conditioning device
WO2011161720A1 (en) Air-conditioning apparatus
JP4075933B2 (en) Air conditioner
AU2006324593A1 (en) Air conditioner
JP2010007995A (en) Refrigerant amount determining method of air conditioning device, and air conditioning device
CN112840164B (en) Air conditioner and management device
JP2011012958A (en) Method for controlling refrigeration cycle apparatus
JP5078817B2 (en) Refrigeration cycle equipment
JP4957243B2 (en) Air conditioner
JP3933179B1 (en) Air conditioner
JP2008064456A (en) Air conditioner
JP4665748B2 (en) Air conditioner
JP2008025935A (en) Air conditioner
JP5245576B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP4892954B2 (en) Air conditioner
WO2020111241A1 (en) Refrigeration cycle device and refrigeration cycle system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705