JP3589203B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3589203B2
JP3589203B2 JP2001216989A JP2001216989A JP3589203B2 JP 3589203 B2 JP3589203 B2 JP 3589203B2 JP 2001216989 A JP2001216989 A JP 2001216989A JP 2001216989 A JP2001216989 A JP 2001216989A JP 3589203 B2 JP3589203 B2 JP 3589203B2
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
air conditioner
determination
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001216989A
Other languages
Japanese (ja)
Other versions
JP2003028544A (en
Inventor
徹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2001216989A priority Critical patent/JP3589203B2/en
Publication of JP2003028544A publication Critical patent/JP2003028544A/en
Application granted granted Critical
Publication of JP3589203B2 publication Critical patent/JP3589203B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、空気調和機に関するものである。
【0002】
【従来の技術】
空気調和機は、一般に、圧縮機と、室外熱交換器と、減圧機構と、室内熱交換器とを備え、室外熱交換器を凝縮器として機能させると共に、室内熱交換器を蒸発器として機能させることによって冷房を行う一方、室外熱交換器を蒸発器として機能させると共に、室内熱交換器を凝縮器として機能させることによって暖房運転を行っている。そして、この冷房モードと暖房モードとの切換は、四路切換弁を切換ることによって行っていた。
【0003】
【発明が解決しようとする課題】
そのため、四路切換弁が正常に作動しなければ、冷房運転を行わせるようとして冷房モードに切換操作しても、暖房モードとなって暖房運転が行われたり、逆に、暖房運転を行わせるようとして暖房モードに切換操作しても、冷房モードとなって冷房運転が行われたりするおそれがあった。
【0004】
このように、四路切換弁が異常であれば、正規の運転を行うことができず、室内が設置された室内を快適空間にできないと共に、室内熱交換器が凍結したり、室内熱交換器から水漏れ等が発生したり、さらには、空調調和機がシステム的に危険状態となったりするおそれがあった。
【0005】
この発明は、上記従来の欠点を解決するためになされたものであって、その目的は、四路切換弁の誤動作を速やかに判定して、間違ったモードでの冷暖房運転を防止することができる空気調和機を提供することにある。
【0006】
【課題を解決するための手段】
そこで請求項1の空気調和機は、圧縮機1と、室外熱交換器2と、減圧機構3と、室内熱交換器4と、四路切換弁5とを備え、冷房モードと暖房モードとの切換を上記四路切換弁5にて行、少なくともいずれかの一方の上記熱交換器の温度とその周囲の温度とを比較して、その温度差が設定正常温度差範囲外であるときに、上記四路切換弁5が動作異常であると判定して運転を停止する空気調和機であって、暖房モードにおいては、運転開始から所定時間経過後に上記判定を行い、冷房モードにおいては、運転開始時から上記判定を行なうことを特徴としている。
【0007】
上記請求項1の空気調和機では、冷房モードに切換えて冷房運転を行う場合に四路切換弁5が正常に機能すれば、室外熱交換器2が凝縮器として機能すると共に、室内熱交換器4は蒸発器として機能する。ところが、四路切換弁5が故障等で誤動作すれば、室外熱交換器2が蒸発器として機能すると共に、室内熱交換器4が凝縮器として機能する。このため、室内側では、室内熱交換器4の温度とその周囲の温度(室内の温度)との差がほとんどないか、又は室内熱交換器4の温度が室内の温度よりも高くなり、また、室外側では、室外熱交換器2の温度とその周囲の温度(外気の温度)との差がほとんどないか、又は室外熱交換器2の温度が外気の温度よりも低くなる。従って、いずれかの熱交換器の温度とその周囲の温度とを比較して、この差が予め設定した設定正常温度範囲差外の場合をこの四路切換弁が動作異常であると判断することが可能である。
【0008】
また、暖房モードに切換えた場合に、四路切換弁5が正常に動作すれば、室外熱交換器2が蒸発器として機能すると共に、室内熱交換器4は凝縮器として機能する。ところが、四路切換弁5が動作異常であれば、室外熱交換器2が凝縮器として機能すると共に、室内熱交換器4は蒸発器として機能する。このため、室内側では、室内熱交換器4の温度と室内の温度との差がほとんどないか、又は室内熱交換器4の温度が室内の温度よりも低くなり、室外側では、室外熱交換器2の温度とその周囲の温度(外気の温度)との差がほとんどないか、又は室外熱交換器2の温度が外気の温度よりも高くなる。従って、冷房モードと同様、いずれかの熱交換器の温度とその周囲の温度とを比較して、この差が予め設定した設定正常温度範囲差外の場合をこの四路切換弁5が動作異常であると判断することが可能である。
【0009】
このため、この空気調和機では、冷房モードであっても暖房モードであっても、四路切換弁5の動作異常を把握することができ、異常状態(四路切換弁が故障して正常に動作しない状態)でのこの空気調和機の運転を停止することができる。また、暖房モードにおいては、運転開始時(立ち上がり時)の安定しない状態では動作異常の判定を行わず、所定時間経過後の安定した状態で動作異常の判断を行うものであるので、この判定の信頼性が向上する。さらに、冷房モードにおいては、運転開始から四路切換弁が正常か否かの判定を行うことができるので、冷房モードにおける過負荷時に発生する急激な温度上昇を直ちに検出(検知)することができる。すなわち、冷房モードでの暖房運転は、通常の暖房モードでの暖房運転時よりも高い過負荷状態となるので、この状態で運転が継続されることは好ましくなく、この空気調和機によれば、運転開始の早い段階で、この過負荷時の急激な温度上昇を停止させることができる。
【0010】
請求項2の空気調和機は、圧縮機1と、室外熱交換器2と、減圧機構3と、室内熱交換器4と、四路切換弁5とを備え、冷房モードと暖房モードとの切換を上記四路切換弁5にて行い、少なくともいずれかの一方の上記熱交換器の温度とその周囲の温度とを比較して、その温度差が設定正常温度差範囲外であるときに、上記四路切換弁5が動作異常であると判定して運転を停止する空気調和機であって、冷房モードにおいては、運転開始時から上記判定を行なうと共に、運転開始から所定時間経過後に上記判定とは別の判定を行うべく構成し、上記運転開始時からの判定における設定正常温度差範囲を、運転開始から所定時間経過後の判定における設定正常温度差範囲よりも大きくしたことを特徴としている。
【0011】
請求項2の空気調和機では、冷房モードにおいては、運転開始から四路切換弁が正常か否かの判定を行うことができるので、冷房モードにおける過負荷時に発生する急激な温度上昇を直ちに検出(検知)することができる。すなわち、冷房モードでの暖房運転は、通常の暖房モードでの暖房運転時よりも高い過負荷状態となるので、この状態で運転が継続されることは好ましくなく、この空気調和機によれば、運転開始の早い段階で、この過負荷時の急激な温度上昇を停止させることができる。しかも、所定時間経過後の安定した状態においても、動作異常の判断を行うものであるので、判定の信頼性が向上する。
【0012】
請求項3の空気調和機は、圧縮機1と、室外熱交換器2と、減圧機構3と、室内熱交換器4と、四路切換弁5とを備え、冷房モードと暖房モードとの切換を上記四路切換弁5にて行い、少なくともいずれかの一方の上記熱交換器の温度とその周囲の温度とを比較して、その温度差が設定正常温度差範囲外であるときに、上記四路切換弁5が動作異常であると判定して運転を停止する空気調和機であって、上記圧縮機1の判定用の周波数下限値を設定して、この周波数下限値よりも圧縮機1の周波数が高いときに上記判定を行うべく構成し、さらに圧縮機1の指示周波数が上記周波数下限値よりも低いときには、圧縮機1の周波数を上記周波数下限値を超えさせてから上記判定を行うことを特徴としている。
【0013】
上記請求項3の空気調和機では、圧縮機1の周波数が、判定用の周波数下限値を超えていれば、熱交換器2、4等はそれぞれの機能を発揮し、熱交換器2、4の温度と周囲の温度とは十分温度差がある状態となる。これにより、確実に判定を行うことができる。また、圧縮機1の指示周波数が上記周波数下限値よりも低いときには、圧縮機1の周波数を上記周波数下限値を超えさせてから判定を行うが、これは、熱交換器2、4等がそれぞれの機能を十分発揮する周波数まで運転周波数を上昇させ、この状態で判断させるためであり、熱交換器2、4の温度と周囲の温度とは十分に温度差がある状態となって、これにより、より確実に判定を行うことができる。
【0014】
請求項4の空気調和機は、いずれかの一方の上記熱交換器が上記室内熱交換器4であることを特徴としている。
【0015】
請求項4の空気調和機では、判定を室内側のみで行うので、判定の簡略化を図ることができ、しかも、室内側のみであっても、正常状態と異常状態では充分な温度差を有し、正確に判定することができる。
【0018】
【発明の実施の形態】
この発明の空気調和機の具体的な実施の形態について、図面を参照しつつ詳細に説明する。図2は空気調和機の簡略図である。空気調和機は、圧縮機1と、室外熱交換器2と、減圧機構3と、室内熱交換器4と、四路切換弁5とを備え、冷房モードと暖房モードとの切換を上記四路切換弁5にて行う。
【0019】
すなわち、圧縮機1の吐出路6が四路切換弁5の一方の1次ポートに接続され、四路切換弁5の一方の2次ポートと室外熱交換器2とが第1ガス管7にて接続され、室外熱交換器2と減圧機構3とが第1液管8にて接続され、減圧機構3と室内熱交換器4とが第2液9にて接続され、室内熱交換器4と四路切換弁5の他方の2次ポートとが第2ガス管10にて接続され、四路切換弁5の他方の1次ポートに圧縮機1の吸込管11が接続されている。
【0020】
従って、四路切換弁5を図2の実線で示す状態に切換えて圧縮機1を駆動すると、冷媒は、圧縮機1→四路切換弁5→室外熱交換器2→減圧機構3→室内熱交換器4→四路切換弁5→圧縮機1と流れる。これによって、室外熱交換器2が凝縮器として機能すると共に、室内熱交換器4が蒸発器として機能して、冷房運転が行われる。また、四路切換弁5を図2の破線で示す状態に切換えて圧縮機1を駆動すると、冷媒は、圧縮機1→四路切換弁5→室内熱交換器4→減圧機構3→室外熱交換器2→四路切換弁5→圧縮機1と流れる。これによって、室外熱交換器2が蒸発器として機能すると共に、室内熱交換器4が凝縮器として機能して、暖房運転が行われる。
【0021】
また、空気調和機は、図1に示すように、室外熱交換器2の温度を検知する外熱交温センサー15と、室外の温度を検知する外気センサー16と、室内熱交換器4の温度を検知する内熱交温センサー17と、室内の温度(室温)を検知する室温センサー18等を備え、これらの各センサー15、16、17、18にて検知された温度が、マイクコンピュータ等にて構成される制御部20に入力される。制御部20は、回転数比較部21と、センサー温度比較部22と、計時部23と、異常判断部24等を備える。なお、各センサー15、16、17、18は例えばサーミスタ等にて構成される。
【0022】
回転数比較部21は、圧縮機1の回転数(周波数)を検出する検出手段25からその検出値、つまり回転数が入力され、予め設定された下限制限値(周波数下限値)とこの検出値とを比較するものであり、この検出値が下限制限値を下回っていれば、圧縮機1に回転数を増加させるように指示したりする。
【0023】
また、センサー温度比較部22は、上記各センサー15、16、17、18からの検出された各温度が入力され、室温と内熱交温(室内熱交換器4の温度)との差を、予め設定された室内用の基準値と比較すると共に、外気(室外の温度)と外熱交温(室外熱交換器2の温度)との差を、予め設定された室外用の基準値と比較する。計時部23は、上記センサー温度比較部22の判断を行う時間等を計るものである。そして、異常判断部24は、上記センサー温度比較部22の判断が異常判断であれば、運転を停止させるものである。
【0024】
ところで、冷房運転を行うには、四路切換弁5が図2の実線で示す状態(冷房モード)に切換わる必要があり、また、暖房運転を行うには、四路切換弁5が図2の破線で示す状態(暖房モード)に切換わる必要がある。しかしながら、四路切換弁5が故障等にて動作不良を起こして、冷房モードに切換えようとして、図示省略のリモコン等の切換スイッチを操作しても冷房モードに切換わらず、逆に、暖房モードに切換えようとして、上記切換スイッチを操作しても暖房モードに切換わらない場合がある。
【0025】
すなわち、冷房モードで異常状態が発生すれば、室内熱交換器4が蒸発器として機能せずに、凝縮器として機能することになり、室内熱交換器4の温度も高温状態となって、室内熱交換器4の温度と室温との差は小さいものとなるか、又は室内熱交換器4の温度が室温よりも高くなる。従って、この室温から室内熱交換器4との温度を引いた値がある値(例えば、2℃)よりも小さくなれば、四路切換弁5が正常に作動していない異常状態であるといえる。これに対して、正常に作動していれば、室内熱交換器4は蒸発器として機能し、室内熱交換器4の温度は下降して、室内温度よりも大きく低下する。このため、この室温から室内熱交換器4を引いた値がある値(例えば、2℃)よりも大きければ、正常であるといえる。また、外気と室外熱交換器2の温度を比較した場合、異常状態では、室外熱交換器2の温度が低下して、室外熱交換器2の温度から外気の温度を引いた値はある値(例えば、2℃)よりも小さいものとなり、正常状態では、室外熱交換器2の温度が上昇して、室外熱交換器2の温度から外気の温度引いた値はある値(例えば、2℃)よりも大きくなる。
【0026】
暖房モードで異常状態が発生すれば、室内熱交換器4が凝縮器として機能せずに、蒸発器として機能することになり、室内熱交換器4の温度は下降して、室内熱交換器4の温度と室温との差は小さいものとなるか、又は室内熱交換器4の温度は低くなる。従って、室内熱交換器4から室温を引いた値がある値(例えば、2℃)よりも小さくなれば、四路切換弁5が正常に作動していない異常状態であるといえる。これに対して、正常に作動していれば、室内熱交換器4は凝縮器として機能し、室内熱交換器4の温度は上昇して、室内温度との差が大きくなる。このため、室内熱交換器4から室温を引いた値がある値(例えば、2℃)よりも大きければ、正常であるといえる。また、外気と室外熱交換器2の温度を比較した場合、異常状態では、室外熱交換器2の温度が上昇して、外気から室外熱交換器2の温度を引いた値がある値(例えば、2℃)よりも小さくなり、正常状態では、室外熱交換器2の温度が低下して、外気から室外熱交換器2の温度を引いた値がある値(例えば、2℃)よりも大きくなる。
【0027】
従って、上記センサー温度比較部22では、冷房モードにおいては、室温から内熱交温を引いた値を、所定値(例えば、2℃)と比較すると共に、外熱交温から外気を引いた値を、所定値(例えば、2℃)と比較して、異常か否かを判断する。すなわち、(室温−内熱交温)<Δdac1(2℃)及び(外熱交温−外気)<Δdeoa1(2℃)の関係が成り立つ場合を異常状態とし、いずれかがこの関係が成り立たない場合を正常状態とする。この場合、どちらかの関係のみでもって判定するようにしてもよい。すなわち、室内側及び室外側の両者で判定する他、室内側又は室外側のみの判定であってもよい。
【0028】
また、暖房モードにおいては、内熱交温から室温を引いた値を、所定値(例えば、2℃)と比較すると共に、外気から外熱交温を引いた値を、所定値(例えば、2℃)と比較して、異常か否かを判断する。すなわち、(内熱交温−室温)<Δdca1(2℃)及び(外気−外熱交温)<Δdoae1(2℃)の関係が成り立つ場合を異常状態とし、いずれかがこの関係が成り立たない場合を正常状態とする。この場合も、室内側又は室外側のみの判定であってもよい。
【0029】
ところで、上記の判断は、運転開始から所定時間(例えば、10分程度)経過した後に行うものであるが、冷房モードにおいて、異常状態であれば、高圧側が急激に上昇するおそれがあり、このような場合には、システム的に大変危険であるので、この所定時間に関係なく異常状態か否かを判断するのが好ましい。すなわち、冷房モードにおいては、暖房運転が行われることにより発生する過負荷にて室内熱交換器4が急激に温度上昇するので、これを検出してこのような状態での運転を回避しようとするものである。この場合、室温から内熱交温を引いた値を、所定値(例えば、−14℃)と比較すると共に、外熱交温から外気を引いた値を、所定値(例えば、−2℃)と比較して、異常か否かを判断する。すなわち、(室温−内熱交温)<Δdac2(−14℃)及び(外熱交温−外気)<Δdeoa2(−2℃)の関係が成り立つ場合を異常状態とし、いずれかがこの関係が成り立たない場合を正常状態とする。この場合も、室内側又は室外側のみの判定であってもよい。
【0030】
次に、上記のように構成された空気調和機の具体的な運転制御について図3〜図5のフローチャート図を使用して説明する。まず、運転を開始して、ステップS1で圧縮機1の周波数(指示周波数)が下限制限値(FCW)よりも低いかを判断する。このステップS1で指示周波数がFCWよりも低い場合はステップS2へ移行して、周波数(回転数)の下限制限を行う。すなわち、図1に示すように、圧縮機1の周波数(回転数)を検出手段25にて検出し、この検出した現在の回転数と下限制限値とを回転数比較部21にて比較し、下限値を下回っていれば、回転数が下限値を超えるの待つか、回転数指示指令を行って回転数を増加させて下限値を超えさせる。これは、室内熱交換器4及び室外熱交換器2等がそれぞれの機能を十分発揮する周波数(回転数)まで上昇させ、この状態で判断させるためであり、正常に動作していれば、室内熱交換器4の温度と室内の温度とは十分に温度差がある状態となる。これにより、より確実に判定を行うことができるからである。
【0031】
そして、周波数が下限制限を超えていれば、ステップS3へ移行して、運転開始から所定時間T1(例えば、10分)が経過したか否かを判断する。経過していなければ、後述する▲1▼に進み、経過していれば、ステップS4へ移行する。これは、運転開始からある程度の時間が経過しなければ、冷媒回路等が安定しないので、安定するまで、異常・正常の判定を行わないようにするためである。ステップS4で冷房サイクル(冷房モード)か否かを判断する。冷房サイクルでなければ、後述する▲4▼に進み、冷房サイクルであれば、ステップS5へ移行する。
【0032】
ステップS5では、(室温−内熱交温)<Δdac1(2℃)及び(外熱交温−外気)<Δdeoa1(2℃)の関係が成り立つか否かを判断する。いずれかが関係が成り立たない場合、例えば、室温が27℃で、内熱交温が15℃であれば、この関係は成り立たないので、正常と判断してこのモードでの運転を継続する。そして、このステップS5で上記両関係が成り立つ場合、異常と判断する。この異常と判断した場合、ステップS6へ移行して、この異常状態が所定時間T2(例えば、60秒)が継続しているかを判断し、継続していれば、ステップS7へ移行して、「四路弁切換異常」であると決定して、運転を停止する。また、所定時間T2の間この異常状態が継続しなければ、正常状態に戻っている場合もあり、ステップ5に戻る。
【0033】
また、▲1▼に進んだ場合、図4のステップS8へ移行する。ステップS8では、上記ステップS4と同様、冷房サイクル(冷房モード)か否かを判断する。すなわち、運転開始から所定時間T1が経過しなくても冷房モードか否かの判断を行う。そして、冷房モードでなければ、図3の▲2▼へ戻る。このステップS8で冷房モードであれば、ステップS9へ移行する。ステップS9で、(室温−内熱交温)<Δdac2(−14℃)及び(外熱交温−外気)<Δdeoa2(−2℃)の関係が成り立つか否かを判断する。いずれかが成り立たない場合、図3の▲3▼へ戻る。そして、この両関係が成り立つ場合、異常状態と判断してステップS10へ移行して、この異常状態が所定時間T3(例えば、120秒)の間この異常状態が継続しているかを判断し、継続していれば、ステップS11へ移行して、「四路弁切換異常」であると決定して、運転を停止する。また、所定時間T3の間この異常状態が継続しなければ、正常状態に戻っている場合もあり、ステップ9に戻る。
【0034】
この図4の運転制御は、冷房モードにおいて暖房運転が行われたときにおいて、過負荷時の急激な温度上昇を防止するものである。すなわち、冷房モードでの暖房運転は、通常の暖房モードでの暖房運転時よりも高い過負荷状態となるので、この状態で運転が継続されることは好ましくなく、運転開始の早い段階で、この過負荷時の急激な温度上昇を停止しようとするものである。例えば、室温が27℃で、内熱交温が急激に温度上昇して42℃等となれば、ステップ9での関係が成り立ち、このような急激な温度上昇を検知して、運転を直ちに停止ようとするものである。
【0035】
また、図1において▲4▼に進んだ場合、つまり、暖房サイクルである場合、図5のステップ12へ移行する。ステップ12で、(内熱交温−室温)<Δdca1(2℃)及び(外気−外熱交温)<Δdoae1(2℃)の関係が成り立つか否かを判断する。このいずれかの関係が成り立たない場合、例えば、室温が10℃で、内熱交温が25℃であれば、この関係は成り立たないので、正常と判断してこのモードでの運転を継続する。そして、この両関係が成り立つ場合、異常と判断する。この異常と判断した場合、ステップS13へ移行して、この異常状態が所定時間T2(例えば、60秒)の間この異常状態が継続しているかを判断し、継続していれば、ステップS14へ移行して、「四路弁切換異常」であると決定して、運転を停止する。また、所定時間T2の間この異常状態が継続しなければ、正常状態に戻っている場合もあり、ステップ12に戻る。
【0036】
図6に冷房モードのタイムチャート図を示す。この場合、停止状態から冷房モードへの運転指令を行って、四路切換弁5の切換え動作を行うと共に、圧縮機1を駆動させる。そして、運転開始から所定時間(tcwchk1:T1)経過した後、室温(da)−内熱交温(dc)、及び外熱交温(de)−外気(doa)から異常か正常かを判定する。すなわち、da−dcが、室内温度と室内判断値との差より大きくなるか、de−doaが、室外温度(外気)と室外判断値との差より大きくなれば、正常と判断され、この冷房モードでの運転が継続され、da−dc、及びde−doaがこのように大きくならなければ、異常であると判断され、さらに、所定時間(tcwchk2:T2)の間、この異常状態が継続するかが判断され、継続されれば、この冷房モードでの運転が停止される。なお、この図6においては、図4に示す過負荷時の急激な温度上昇のための保護の動作については省略している。
【0037】
このように、この空気調和機によれば、いずれかの熱交換器の温度とその周囲の温度とを比較して、その温度差が設定正常温度差範囲外であるときに、上記四路切換弁5が動作異常であると判定して運転を停止するものであり、この異常状態での運転を検出することができて、誤った状態での運転を回避することができる。これにより、室内熱交換器4の凍結やこの室内熱交換器4からの水漏れを防止することができる。また、利用者(ユーザー)は異常であることを把握することができるので、直ちに修理等を行うことができ、正常に運転を行うことができる状態に戻すことができる。
【0038】
以上にこの発明の具体的な実施の形態について説明したが、この発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。例えば、室外熱交換器2の温度と室外温度との差に基づく判定(判断)を省略してもよい。これは、室内熱交換器4の温度と室内温度との差に基づく判定にて、十分四路切換弁5の動作異常を判定することができ、しかも、判定の簡略化を図ることができて、異常状態での運転時間の短縮を図ることができ、不快となる運転を早期に防止することができるからである。しかしながら、室内側の判定と室外側の判定との両方の判定を行えば、より精度よく判定することができる利点がある。また、設定正常温度差範囲(Δdac1、Δdca1)や冷房モードにおいて過負荷時の判断を行う設定値(dac2)の変更も可能である。さらに、判定開始時間の所定時間としては、冷媒回路が安定した運転状態となる時間の範囲で変更可能である。また、室内熱交換器4の凍結防止機能や室内熱交換器4の高温防止機能等を有する空気調和機では、これらによって、四路切換弁5の切換が正常であると考えられる制御が作動したときには、上記のような四路切換弁5の動作判断を行わないように設定してもよい。また、動作判断を行った場合、圧縮機1は比較的高い一定の周波数となっており、通常の運転に戻す際に通常運転用の周波数に戻す必要がある。なお、この発明の四路切換弁5としては、この種の空気調和機に一般に使用されるものである。
【0039】
【発明の効果】
請求項1の空気調和機によれば、冷房モードであっても暖房モードであっても、四路切換弁の動作異常を把握することができ、異常状態(四路切換弁が故障して正常に動作しない状態)でのこの空気調和機の運転を停止することができる。これにより、室内熱交換器の凍結や室内熱交換器からの水漏れ等を有効に防止することができると共に、動作異常を起こす四路切換弁の修理等を行って正常運転が行われる状態に戻すことができる。また、暖房モードにおいては、運転開始時(立ち上がり時)の安定しない状態では動作異常の判定を行わず、所定時間経過後の安定した状態で動作異常の判断を行うものであるので、この判定の信頼性が向上し、誤った状態での運転を確実に防止することができる。さらに、冷房モードにおいては、冷房モードにおける過負荷時の急激な温度上昇を防止することができ、空気調和機全体としての故障等を確実に防止することができる。これにより、空気調和機として耐用性に優れたものとなる。
【0040】
請求項2の空気調和機によれば、冷房モードにおける過負荷時の急激な温度上昇を防止することができ、空気調和機全体としての故障等を確実に防止することができる。これにより、空気調和機として耐用性に優れたものとなる。しかも、所定時間経過後の安定した状態においても、動作異常の判断を行うものであるので、判定の信頼性が向上する。
【0041】
請求項3の空気調和機によれば、正常状態と異常状態との判定(判断)をより確実に行うことができ、間違ったモードでの冷暖房運転を安定して防止することができる。さらに、熱交換器等がそれぞれの機能を十分発揮する周波数まで運転周波数を上昇させ、この状態で判断させるため、より確実に判定を行うことができる。
【0042】
請求項4の空気調和機によれば、判定を室内側のみで行うので、判定の簡略化を図ることができる。このため、異常状態での運転時間の短縮を図ることができ、不快となる運転を早期に防止することができる。しかも、室内側のみであっても、正常状態と異常状態では充分な温度差を有し、正確に判定することができる。これにより、安定して動作異常を検知することができる。
【図面の簡単な説明】
【図1】この発明の空気調和機の実施形態を示す簡略構成図である。
【図2】上記空気調和機の簡略図である。
【図3】上記空気調和機の運転動作を示すフローチャート図である。
【図4】上記空気調和機の運転動作を示すフローチャート図である。
【図5】上記空気調和機の運転動作を示すフローチャート図である。
【図6】上記空気調和機の運転動作を示すタイムチャート図である。
【符号の説明】
1 圧縮機
2 室外熱交換器
3 減圧機構
4 室内熱交換器
5 四路切換弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner.
[0002]
[Prior art]
An air conditioner generally includes a compressor, an outdoor heat exchanger, a decompression mechanism, and an indoor heat exchanger.The outdoor heat exchanger functions as a condenser, and the indoor heat exchanger functions as an evaporator. By performing the cooling operation, the outdoor heat exchanger functions as an evaporator, and the indoor heat exchanger functions as a condenser to perform a heating operation. The switching between the cooling mode and the heating mode has been performed by switching the four-way switching valve.
[0003]
[Problems to be solved by the invention]
Therefore, if the four-way switching valve does not operate normally, even if the operation is switched to the cooling mode to perform the cooling operation, the heating mode is performed and the heating operation is performed, or conversely, the heating operation is performed. Even if the operation is switched to the heating mode as described above, there is a possibility that the cooling mode is set and the cooling operation is performed.
[0004]
As described above, if the four-way switching valve is abnormal, normal operation cannot be performed, and the room in which the room is installed cannot be made a comfortable space, and the indoor heat exchanger freezes or the indoor heat exchanger This may lead to water leakage or the like, or the air conditioner may be in a dangerous state in terms of system.
[0005]
The present invention has been made in order to solve the above-mentioned conventional disadvantages, and an object of the present invention is to quickly prevent a malfunction of a four-way switching valve.JudgeIt is another object of the present invention to provide an air conditioner capable of preventing a cooling / heating operation in a wrong mode.
[0006]
[Means for Solving the Problems]
Therefore, the air conditioner according to claim 1 includes a compressor 1, an outdoor heat exchanger 2, a pressure reducing mechanism 3, an indoor heat exchanger 4, and a four-way switching valve 5, and switches between a cooling mode and a heating mode. Switching is performed by the four-way switching valve 5 described above.IComparing the temperature of at least one of the heat exchangers with the surrounding temperature, and when the temperature difference is out of the set normal temperature difference range, the four-way switching valve 5 has an abnormal operation. And stop drivingIn the air conditioner, in the heating mode, the determination is performed after a predetermined time has elapsed from the start of the operation. In the cooling mode, the determination is performed from the start of the operation.It is characterized by:
[0007]
In the air conditioner of the first aspect, when the four-way switching valve 5 functions normally when performing the cooling operation by switching to the cooling mode, the outdoor heat exchanger 2 functions as a condenser and the indoor heat exchanger. 4 functions as an evaporator. However, if the four-way switching valve 5 malfunctions due to a failure or the like, the outdoor heat exchanger 2 functions as an evaporator, and the indoor heat exchanger 4 functions as a condenser. Therefore, on the indoor side, there is almost no difference between the temperature of the indoor heat exchanger 4 and the surrounding temperature (indoor temperature), or the temperature of the indoor heat exchanger 4 becomes higher than the indoor temperature. At the outdoor side, there is almost no difference between the temperature of the outdoor heat exchanger 2 and the surrounding temperature (temperature of the outside air), or the temperature of the outdoor heat exchanger 2 is lower than the temperature of the outside air. Therefore, by comparing the temperature of any one of the heat exchangers with the temperature of the surroundings, if the difference is out of the preset normal temperature range difference, it is determined that the four-way switching valve is abnormal. Is possible.
[0008]
If the four-way switching valve 5 operates normally when the mode is switched to the heating mode, the outdoor heat exchanger 2 functions as an evaporator, and the indoor heat exchanger 4 functions as a condenser. However, if the four-way switching valve 5 operates abnormally, the outdoor heat exchanger 2 functions as a condenser and the indoor heat exchanger 4 functions as an evaporator. Therefore, on the indoor side, there is almost no difference between the temperature of the indoor heat exchanger 4 and the indoor temperature, or the temperature of the indoor heat exchanger 4 becomes lower than the indoor temperature, and on the outdoor side, the outdoor heat exchange There is almost no difference between the temperature of the heat exchanger 2 and the ambient temperature (temperature of the outside air), or the temperature of the outdoor heat exchanger 2 becomes higher than the temperature of the outside air. Therefore, similarly to the cooling mode, the temperature of any one of the heat exchangers is compared with the temperature around the heat exchanger, and when the difference is out of the preset normal temperature range difference, the four-way switching valve 5 operates abnormally. Can be determined.
[0009]
For this reason, in this air conditioner, the operation abnormality of the four-way switching valve 5 can be grasped in both the cooling mode and the heating mode, and the abnormal condition (the four-way switching valve fails and becomes normal). The operation of the air conditioner in a non-operating state) can be stopped.In the heating mode, the operation abnormality is not determined in an unstable state at the start of operation (at startup), and the operation abnormality is determined in a stable state after a predetermined time has elapsed. Reliability is improved. Further, in the cooling mode, it is possible to determine whether or not the four-way switching valve is normal from the start of the operation, so that it is possible to immediately detect (detect) a rapid temperature rise occurring at the time of overload in the cooling mode. . That is, since the heating operation in the cooling mode is in an overload state higher than the heating operation in the normal heating mode, it is not preferable that the operation be continued in this state, and according to this air conditioner, At an early stage of the operation start, the rapid temperature rise at the time of overload can be stopped.
[0010]
The air conditioner of claim 2 isThe air conditioner includes a compressor 1, an outdoor heat exchanger 2, a pressure reducing mechanism 3, an indoor heat exchanger 4, and a four-way switching valve 5, and switches between the cooling mode and the heating mode by the four-way switching valve 5. The temperature of at least one of the heat exchangers is compared with the ambient temperature, and when the temperature difference is out of the set normal temperature difference range, the four-way switching valve 5 malfunctions. An air conditioner that determines that there is an operation and stops the operation. In the cooling mode, the air conditioner is configured to perform the above determination from the start of operation and to perform another determination after a predetermined time has elapsed from the start of operation. The set normal temperature difference range in the determination from the start of the operation was set to be larger than the set normal temperature difference range in the determination after the elapse of a predetermined time from the start of the operation.It is characterized by:
[0011]
In the air conditioner of claim 2,In the cooling mode, it is possible to determine whether or not the four-way switching valve is normal from the start of the operation. Therefore, it is possible to immediately detect (detect) a rapid temperature rise occurring at the time of overload in the cooling mode. That is, since the heating operation in the cooling mode is in an overload state higher than the heating operation in the normal heating mode, it is not preferable that the operation be continued in this state, and according to this air conditioner, At an early stage of the operation start, the rapid temperature rise at the time of overload can be stopped. Moreover, even in a stable state after a lapse of a predetermined time, the operation abnormality is determined, so that the reliability of the determination is improved.
[0012]
The air conditioner of claim 3 isThe air conditioner includes a compressor 1, an outdoor heat exchanger 2, a pressure reducing mechanism 3, an indoor heat exchanger 4, and a four-way switching valve 5, and switches between the cooling mode and the heating mode by the four-way switching valve 5. The temperature of at least one of the heat exchangers is compared with the ambient temperature, and when the temperature difference is out of the set normal temperature difference range, the four-way switching valve 5 malfunctions. An air conditioner that determines that there is a gas turbine and stops operation, and sets a lower frequency limit for determination of the compressor 1 and performs the determination when the frequency of the compressor 1 is higher than the lower frequency limit. When the instruction frequency of the compressor 1 is lower than the lower frequency limit, the determination is made after the frequency of the compressor 1 exceeds the lower frequency limit.It is characterized by:
[0013]
In the air conditioner of the third aspect,If the frequency of the compressor 1 exceeds the frequency lower limit for determination, the heat exchangers 2, 4 and the like exhibit their respective functions, and the temperatures of the heat exchangers 2, 4 and the ambient temperature are sufficiently high. There will be a difference. Thereby, the determination can be made reliably. When the indicated frequency of the compressor 1 is lower than the lower frequency limit, the determination is made after the frequency of the compressor 1 exceeds the lower frequency limit. This is to raise the operating frequency to a frequency at which the function of fully exerts the function, and to make a judgment in this state. The temperature of the heat exchangers 2 and 4 and the ambient temperature become sufficiently different from each other. Thus, the determination can be made more reliably.
[0014]
The air conditioner of claim 4 isOne of the heat exchangers is the indoor heat exchanger 4.
[0015]
In the air conditioner of claim 4,Since the determination is performed only on the indoor side, the determination can be simplified, and even when only on the indoor side, there is a sufficient temperature difference between the normal state and the abnormal state, and accurate determination can be made. .
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Specific embodiments of the air conditioner of the present invention will be described in detail with reference to the drawings. FIG. 2 is a simplified diagram of the air conditioner. The air conditioner includes a compressor 1, an outdoor heat exchanger 2, a decompression mechanism 3, an indoor heat exchanger 4, and a four-way switching valve 5, and switches between the cooling mode and the heating mode by the four-way switching. This is performed by the switching valve 5.
[0019]
That is, the discharge path 6 of the compressor 1 is connected to one primary port of the four-way switching valve 5, and the one secondary port of the four-way switching valve 5 and the outdoor heat exchanger 2 are connected to the first gas pipe 7. The outdoor heat exchanger 2 and the pressure reducing mechanism 3 are connected by a first liquid pipe 8, the pressure reducing mechanism 3 and the indoor heat exchanger 4 are connected by a second liquid 9, and the indoor heat exchanger 4 The other secondary port of the four-way switching valve 5 is connected to the second gas pipe 10, and the other primary port of the four-way switching valve 5 is connected to the suction pipe 11 of the compressor 1.
[0020]
Accordingly, when the four-way switching valve 5 is switched to the state shown by the solid line in FIG. 2 to drive the compressor 1, the refrigerant is compressed from the compressor 1, the four-way switching valve 5, the outdoor heat exchanger 2, the pressure reducing mechanism 3, and the indoor heat. The flow flows from the exchanger 4 to the four-way switching valve 5 to the compressor 1. Thus, the outdoor heat exchanger 2 functions as a condenser, and the indoor heat exchanger 4 functions as an evaporator, thereby performing a cooling operation. When the compressor 1 is driven by switching the four-way switching valve 5 to the state shown by the broken line in FIG. 2, the refrigerant is compressed by the compressor 1, the four-way switching valve 5, the indoor heat exchanger 4, the pressure reducing mechanism 3, and the outdoor heat. It flows from the exchanger 2 → the four-way switching valve 5 → the compressor 1. Thus, the outdoor heat exchanger 2 functions as an evaporator, and the indoor heat exchanger 4 functions as a condenser, thereby performing a heating operation.
[0021]
As shown in FIG. 1, the air conditioner includes an external heat exchange sensor 15 for detecting the temperature of the outdoor heat exchanger 2, an external air sensor 16 for detecting the outdoor temperature, and a temperature of the indoor heat exchanger 4. And a room temperature sensor 18 for detecting the indoor temperature (room temperature), and the temperature detected by each of these sensors 15, 16, 17, 18 is transmitted to a microphone computer or the like. Is input to the control unit 20 configured as follows. The control unit 20 includes a rotation speed comparison unit 21, a sensor temperature comparison unit 22, a timer unit 23, an abnormality determination unit 24, and the like. Each of the sensors 15, 16, 17, 18 is constituted by, for example, a thermistor.
[0022]
The rotation speed comparison unit 21 receives the detection value, that is, the rotation speed, from the detection unit 25 for detecting the rotation speed (frequency) of the compressor 1, and sets a predetermined lower limit value (frequency lower limit value) and the detected value. When the detected value is smaller than the lower limit value, the compressor 1 is instructed to increase the rotation speed.
[0023]
The sensor temperature comparison unit 22 receives the detected temperatures from the sensors 15, 16, 17, and 18 and calculates the difference between the room temperature and the internal heat exchange temperature (the temperature of the indoor heat exchanger 4). The difference between the outside air (outdoor temperature) and the outside heat exchange temperature (temperature of the outdoor heat exchanger 2) is compared with a preset indoor reference value and a preset outdoor reference value. I do. The timer unit 23 measures the time for the determination by the sensor temperature comparison unit 22 and the like. The abnormality determination unit 24 stops the operation if the determination by the sensor temperature comparison unit 22 is an abnormality determination.
[0024]
By the way, in order to perform the cooling operation, the four-way switching valve 5 must be switched to a state (cooling mode) indicated by a solid line in FIG. It is necessary to switch to the state indicated by the broken line (heating mode). However, even if the four-way switching valve 5 malfunctions due to a failure or the like, and the switch to the cooling mode is operated by operating a changeover switch such as a remote controller (not shown), the mode is not switched to the cooling mode. There is a case where the mode is not switched to the heating mode even if the above-mentioned switch is operated.
[0025]
That is, if an abnormal state occurs in the cooling mode, the indoor heat exchanger 4 does not function as an evaporator, but functions as a condenser, and the temperature of the indoor heat exchanger 4 also becomes high, and The difference between the temperature of the heat exchanger 4 and the room temperature becomes small, or the temperature of the indoor heat exchanger 4 becomes higher than the room temperature. Therefore, if the value obtained by subtracting the temperature with the indoor heat exchanger 4 from the room temperature becomes smaller than a certain value (for example, 2 ° C.), it can be said that the four-way switching valve 5 is in an abnormal state in which it is not operating normally. . On the other hand, if it is operating normally, the indoor heat exchanger 4 functions as an evaporator, and the temperature of the indoor heat exchanger 4 falls, and falls significantly below the indoor temperature. For this reason, if the value obtained by subtracting the indoor heat exchanger 4 from the room temperature is larger than a certain value (for example, 2 ° C.), it can be said that it is normal. When the temperature of the outdoor heat exchanger 2 is compared with the temperature of the outdoor air, in the abnormal state, the temperature of the outdoor heat exchanger 2 decreases, and the value obtained by subtracting the temperature of the outdoor air from the temperature of the outdoor heat exchanger 2 is a certain value. (For example, 2 ° C.), and in a normal state, the temperature of the outdoor heat exchanger 2 rises, and a value obtained by subtracting the temperature of the outside air from the temperature of the outdoor heat exchanger 2 is a certain value (for example, 2 ° C.). ).
[0026]
If an abnormal state occurs in the heating mode, the indoor heat exchanger 4 does not function as a condenser but functions as an evaporator, and the temperature of the indoor heat exchanger 4 decreases, and the indoor heat exchanger 4 The difference between this temperature and the room temperature is small, or the temperature of the indoor heat exchanger 4 is low. Therefore, if the value obtained by subtracting the room temperature from the indoor heat exchanger 4 becomes smaller than a certain value (for example, 2 ° C.), it can be said that the four-way switching valve 5 is not operating normally. On the other hand, when operating normally, the indoor heat exchanger 4 functions as a condenser, the temperature of the indoor heat exchanger 4 increases, and the difference from the indoor temperature increases. For this reason, if the value obtained by subtracting the room temperature from the indoor heat exchanger 4 is larger than a certain value (for example, 2 ° C.), it can be said that it is normal. When the temperature of the outdoor heat exchanger 2 is compared with the temperature of the outdoor air, in the abnormal state, the temperature of the outdoor heat exchanger 2 increases, and a value obtained by subtracting the temperature of the outdoor heat exchanger 2 from the outdoor air (for example, a certain value) 2 ° C.), and in a normal state, the temperature of the outdoor heat exchanger 2 decreases, and a value obtained by subtracting the temperature of the outdoor heat exchanger 2 from the outside air is larger than a certain value (for example, 2 ° C.). Become.
[0027]
Therefore, in the cooling mode, the sensor temperature comparing unit 22 compares the value obtained by subtracting the internal heat exchange temperature from the room temperature with a predetermined value (for example, 2 ° C.) and the value obtained by subtracting the outside air from the external heat exchange temperature. Is compared with a predetermined value (for example, 2 ° C.) to determine whether there is an abnormality. That is, a case where the relationship of (room temperature-internal heat exchange temperature) <Δdac1 (2 ° C.) and a relationship of (external heat exchange temperature—outside air) <Δdeoa1 (2 ° C.) is regarded as an abnormal state, and a case in which this relationship does not hold. Is in a normal state. In this case, the determination may be made based on only one of the relationships. That is, in addition to the determination on both the indoor side and the outdoor side, the determination may be only on the indoor side or the outdoor side.
[0028]
In the heating mode, a value obtained by subtracting the room temperature from the internal heat exchange temperature is compared with a predetermined value (for example, 2 ° C.), and a value obtained by subtracting the external heat exchange temperature from the outside air is obtained by a predetermined value (for example, 2 ° C.). ° C) to determine whether it is abnormal. That is, the case where the relationship of (internal heat exchange temperature−room temperature) <Δdca1 (2 ° C.) and the relationship of (outside air−external heat exchange temperature) <Δdoae1 (2 ° C.) is established, and the case where any of these relationships is not established Is in a normal state. Also in this case, the determination may be only for the indoor side or the outdoor side.
[0029]
The above determination is made after a predetermined time (for example, about 10 minutes) has elapsed from the start of operation. However, in the cooling mode, if there is an abnormal state, the high-pressure side may rise rapidly. In such a case, it is very dangerous for the system, so it is preferable to determine whether or not there is an abnormal state regardless of the predetermined time. That is, in the cooling mode, since the temperature of the indoor heat exchanger 4 rises rapidly due to the overload generated by performing the heating operation, this is detected to try to avoid the operation in such a state. Things. In this case, a value obtained by subtracting the internal heat exchange temperature from room temperature is compared with a predetermined value (for example, −14 ° C.), and a value obtained by subtracting the outside air from the external heat exchange temperature is given by a predetermined value (for example, −2 ° C.). Then, it is determined whether or not there is an abnormality. That is, the case where the relationship of (room temperature-internal heat exchange temperature) <Δdac2 (−14 ° C.) and the relationship of (external heat exchange temperature—outside air) <Δdeoa2 (−2 ° C.) is established as an abnormal state, and one of these relationships is established. If not, it is considered normal. Also in this case, the determination may be only for the indoor side or the outdoor side.
[0030]
Next, specific operation control of the air conditioner configured as described above will be described with reference to the flowcharts of FIGS. First, the operation is started, and it is determined in step S1 whether the frequency (instruction frequency) of the compressor 1 is lower than the lower limit value (FCW). If the designated frequency is lower than the FCW in step S1, the process shifts to step S2 to limit the lower limit of the frequency (rotational speed). That is, as shown in FIG. 1, the frequency (rotation speed) of the compressor 1 is detected by the detection means 25, and the detected current rotation speed and the lower limit value are compared by the rotation speed comparison unit 21, If the rotation speed is lower than the lower limit value, wait until the rotation speed exceeds the lower limit value or issue a rotation speed instruction command to increase the rotation speed so as to exceed the lower limit value. This is to increase the frequency (rotation speed) at which the indoor heat exchanger 4 and the outdoor heat exchanger 2 and the like fully exhibit their respective functions, and to make a judgment in this state. There will be a sufficient temperature difference between the temperature of the heat exchanger 4 and the indoor temperature. This is because the determination can be made more reliably.
[0031]
If the frequency exceeds the lower limit, the process proceeds to step S3, and it is determined whether a predetermined time T1 (for example, 10 minutes) has elapsed from the start of operation. If it has not elapsed, the process proceeds to (1) described later, and if it has elapsed, the process proceeds to step S4. This is because the refrigerant circuit and the like are not stabilized unless a certain period of time has elapsed from the start of the operation, so that the determination of abnormality or normal is not performed until the refrigerant circuit is stabilized. In step S4, it is determined whether or not a cooling cycle (cooling mode) is being performed. If it is not a cooling cycle, the process proceeds to (4) described later, and if it is a cooling cycle, the process proceeds to step S5.
[0032]
In step S5, it is determined whether or not the relationship of (room temperature-internal heat exchange temperature) <Δdac1 (2 ° C.) and (external heat exchange temperature-outside air) <Δdeoa1 (2 ° C.) hold. If any of the relations does not hold, for example, if the room temperature is 27 ° C. and the internal heat exchange temperature is 15 ° C., this relation does not hold, so it is determined that the relation is normal, and the operation in this mode is continued. Then, if the above both relationships are established in this step S5, it is determined that there is an abnormality. If it is determined that this is abnormal, the process proceeds to step S6, and it is determined whether or not this abnormal state has continued for a predetermined time T2 (for example, 60 seconds). It is determined that it is "four-way valve switching abnormality", and the operation is stopped. If the abnormal state does not continue during the predetermined time T2, the state may return to the normal state, and the process returns to step S5.
[0033]
When the process proceeds to (1), the process proceeds to step S8 in FIG. In step S8, it is determined whether or not a cooling cycle (cooling mode) is performed, as in step S4. That is, it is determined whether the air conditioner is in the cooling mode even if the predetermined time T1 has not elapsed from the start of the operation. If the mode is not the cooling mode, the process returns to (2) in FIG. If the cooling mode is selected in step S8, the process proceeds to step S9. In step S9, it is determined whether or not the relationship of (room temperature−internal heat exchange temperature) <Δdac2 (−14 ° C.) and (external heat exchange temperature−outside air) <Δdeoa2 (−2 ° C.) hold. If any of these conditions do not hold, the process returns to (3) in FIG. When the relationship is established, it is determined that the state is abnormal, and the process proceeds to step S10, where it is determined whether the abnormal state has continued for a predetermined time T3 (for example, 120 seconds). If so, the process proceeds to step S11, where it is determined that "four-way valve switching abnormality", and the operation is stopped. If the abnormal state does not continue for the predetermined time T3, the state may return to the normal state, and the process returns to step 9.
[0034]
The operation control in FIG. 4 is to prevent a sudden rise in temperature during overload when the heating operation is performed in the cooling mode. That is, since the heating operation in the cooling mode is in an overload state higher than the heating operation in the normal heating mode, it is not preferable to continue the operation in this state. This is to stop a sudden rise in temperature during overload. For example, if the room temperature is 27 ° C. and the internal heat exchange temperature rises rapidly to 42 ° C., etc., the relationship in step 9 is established, and such a rapid temperature rise is detected and the operation is immediately stopped. Is to try.
[0035]
Also, if the process proceeds to (4) in FIG. 1, that is, if it is a heating cycle, the process proceeds to step 12 in FIG. In step 12, it is determined whether or not the relationship of (internal heat exchange temperature−room temperature) <Δdca1 (2 ° C.) and (outside air−external heat exchange temperature) <Δdoae1 (2 ° C.) hold. If any of these relationships does not hold, for example, if the room temperature is 10 ° C. and the internal heat exchange temperature is 25 ° C., this relationship does not hold, so it is determined that the relationship is normal, and operation in this mode is continued. Then, when these two relationships are established, it is determined to be abnormal. If it is determined that the abnormal state is present, the process proceeds to step S13, and it is determined whether the abnormal state is continued for a predetermined time T2 (for example, 60 seconds). If the abnormal state is continued, the process proceeds to step S14. Then, the operation is determined to be "four-way valve switching abnormality" and the operation is stopped. If the abnormal state does not continue for the predetermined time T2, the state may return to the normal state, and the process returns to step 12.
[0036]
FIG. 6 shows a time chart of the cooling mode. In this case, an operation command from the stopped state to the cooling mode is issued, the switching operation of the four-way switching valve 5 is performed, and the compressor 1 is driven. Then, after a lapse of a predetermined time (tcwchk1: T1) from the start of operation, it is determined from the room temperature (da) -the internal heat exchange temperature (dc) and the external heat exchange temperature (de) -the external air (doa) whether it is abnormal or normal. . That is, if da-dc is larger than the difference between the indoor temperature and the indoor judgment value, or if de-doa is larger than the difference between the outdoor temperature (outside air) and the outdoor judgment value, it is determined that the air conditioner is normal, and the cooling is performed. If the operation in the mode is continued and da-dc and de-doa do not increase in this way, it is determined that an abnormality has occurred, and this abnormal state continues for a predetermined time (tcwchk2: T2). If the determination is continued, the operation in the cooling mode is stopped. Note that FIG. 6 omits the protection operation shown in FIG. 4 for a rapid temperature rise at the time of overload.
[0037]
As described above, according to this air conditioner, the temperature of any one of the heat exchangers is compared with the surrounding temperature, and when the temperature difference is outside the set normal temperature difference range, the four-way switching is performed. The operation of the valve 5 is determined to be abnormal, and the operation is stopped. The operation in this abnormal state can be detected, and the operation in an erroneous state can be avoided. Thereby, freezing of the indoor heat exchanger 4 and water leakage from the indoor heat exchanger 4 can be prevented. In addition, since the user (user) can recognize that the operation is abnormal, the user can immediately perform repairs and the like, and can return to a state where normal operation can be performed.
[0038]
Although the specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and can be implemented with various modifications within the scope of the present invention. For example, the determination (determination) based on the difference between the temperature of the outdoor heat exchanger 2 and the outdoor temperature may be omitted. This is because the operation abnormality of the four-way switching valve 5 can be sufficiently determined by the determination based on the difference between the temperature of the indoor heat exchanger 4 and the indoor temperature, and the determination can be simplified. This is because the operation time in an abnormal state can be reduced, and uncomfortable operation can be prevented at an early stage. However, if both the indoor-side determination and the outdoor-side determination are performed, there is an advantage that the determination can be performed with higher accuracy. Further, it is also possible to change the set normal temperature difference range (Δdac1, Δdca1) or the set value (dac2) for determining the overload in the cooling mode. Further, the predetermined time of the determination start time can be changed within a time range in which the refrigerant circuit enters a stable operation state. In the air conditioner having the function of preventing the freezing of the indoor heat exchanger 4 and the function of preventing the high temperature of the indoor heat exchanger 4, etc., the control that the switching of the four-way switching valve 5 is considered to be normal is activated. At times, it may be set so that the operation determination of the four-way switching valve 5 as described above is not performed. Further, when the operation is determined, the compressor 1 has a relatively high constant frequency, and it is necessary to return to the frequency for normal operation when returning to normal operation. The four-way switching valve 5 of the present invention is one generally used in this type of air conditioner.
[0039]
【The invention's effect】
According to the air conditioner of the first aspect, the operation abnormality of the four-way switching valve can be grasped in both the cooling mode and the heating mode, and the abnormal state (the four-way switching valve fails and becomes normal) Operation of the air conditioner can be stopped. Thereby, it is possible to effectively prevent freezing of the indoor heat exchanger and water leakage from the indoor heat exchanger, and to repair the four-way switching valve that causes an abnormal operation to perform a normal operation. You can go back.In the heating mode, the operation abnormality is not determined in an unstable state at the start of operation (at startup), and the operation abnormality is determined in a stable state after a predetermined time has elapsed. Reliability is improved, and operation in an erroneous state can be reliably prevented. Further, in the cooling mode, it is possible to prevent a rapid rise in temperature during overload in the cooling mode, and it is possible to reliably prevent a failure or the like of the air conditioner as a whole. As a result, the air conditioner has excellent durability.
[0040]
According to the air conditioner of claim 2,It is possible to prevent a rapid rise in temperature at the time of overload in the cooling mode, and it is possible to reliably prevent a failure or the like of the air conditioner as a whole. As a result, the air conditioner has excellent durability. Moreover, even in a stable state after a lapse of a predetermined time, the operation abnormality is determined, so that the reliability of the determination is improved.
[0041]
According to the air conditioner of claim 3,The determination (determination) between the normal state and the abnormal state can be performed more reliably, and the cooling and heating operation in the wrong mode can be stably prevented. Further, since the operating frequency is increased to a frequency at which the heat exchanger and the like fully exhibit their respective functions, and the determination is performed in this state, the determination can be performed more reliably.
[0042]
According to the air conditioner of claim 4,Since the determination is performed only on the indoor side, the determination can be simplified. For this reason, it is possible to reduce the operation time in an abnormal state, and to prevent uncomfortable driving at an early stage. In addition, even in the case of only the indoor side, there is a sufficient temperature difference between the normal state and the abnormal state, and accurate determination can be made. Thereby, the operation abnormality can be stably detected.
[Brief description of the drawings]
FIG. 1 is a simplified configuration diagram showing an embodiment of an air conditioner of the present invention.
FIG. 2 is a simplified diagram of the air conditioner.
FIG. 3 is a flowchart showing an operation of the air conditioner.
FIG. 4 is a flowchart showing the operation of the air conditioner.
FIG. 5 is a flowchart showing the operation of the air conditioner.
FIG. 6 is a time chart showing an operation of the air conditioner.
[Explanation of symbols]
1 compressor
2 outdoor heat exchanger
3 Decompression mechanism
4 indoor heat exchanger
5 Four-way switching valve

Claims (4)

圧縮機(1)と、室外熱交換器(2)と、減圧機構(3)と、室内熱交換器(4)と、四路切換弁(5)とを備え、冷房モードと暖房モードとの切換を上記四路切換弁(5)にて行、少なくともいずれかの一方の上記熱交換器の温度とその周囲の温度とを比較して、その温度差が設定正常温度差範囲外であるときに、上記四路切換弁(5)が動作異常であると判定して運転を停止する空気調和機であって、暖房モードにおいては、運転開始から所定時間経過後に上記判定を行い、冷房モードにおいては、運転開始時から上記判定を行なうことを特徴とする空気調和機。The air conditioner includes a compressor (1), an outdoor heat exchanger (2), a pressure reducing mechanism (3), an indoor heat exchanger (4), and a four-way switching valve (5). switching have lines at the four-way switch valve (5), by comparing at least one of the one temperature of the heat exchanger and the temperature of the ambient, the temperature difference is at normal temperature difference range setting Sometimes, the air conditioner determines that the four-way switching valve (5) is in an abnormal operation and stops operation . In the heating mode, the air conditioner performs the determination after a lapse of a predetermined time from the start of the operation. , Wherein the determination is made from the start of operation . 圧縮機(1)と、室外熱交換器(2)と、減圧機構(3)と、室内熱交換器(4)と、四路切換弁(5)とを備え、冷房モードと暖房モードとの切換を上記四路切換弁(5)にて行い、少なくともいずれかの一方の上記熱交換器の温度とその周囲の温度とを比較して、その温度差が設定正常温度差範囲外であるときに、上記四路切換弁(5)が動作異常であると判定して運転を停止する空気調和機であって、冷房モードにおいては、運転開始時から上記判定を行なうと共に、運転開始から所定時間経過後に上記判定とは別の判定を行うべく構成し、上記運転開始時からの判定における設定正常温度差範囲を、運転開始から所定時間経過後の判定における設定正常温度差範囲よりも大きくしたことを特徴とする空気調和機。The air conditioner includes a compressor (1), an outdoor heat exchanger (2), a pressure reducing mechanism (3), an indoor heat exchanger (4), and a four-way switching valve (5). The switching is performed by the four-way switching valve (5), and the temperature of at least one of the heat exchangers is compared with the ambient temperature, and the temperature difference is out of the set normal temperature difference range. An air conditioner that determines that the four-way switching valve (5) is abnormally operated and stops operation. In the cooling mode, the air conditioner performs the determination from the start of operation and a predetermined time from the start of operation. A configuration different from the above-mentioned determination is performed after the elapse, and the set normal temperature difference range in the determination from the start of the operation is set larger than the set normal temperature difference range in the determination after a predetermined time has elapsed from the start of the operation. An air conditioner characterized by the following. 圧縮機(1)と、室外熱交換器(2)と、減圧機構(3)と、室内熱交換器(4)と、四路切換弁(5)とを備え、冷房モードと暖房モードとの切換を上記四路切換弁(5)にて行い、少なくともいずれかの一方の上記熱交換器の温度とその周囲の温度とを比較して、その温度差が設定正常温度差範囲外であるときに、上記四路切換弁(5)が動作異常であると判定して運転を停止する空気調和機であって、上記圧縮機(1)の判定用の周波数下限値を設定して、この周波数下限値よりも圧縮機(1)の周波数が高いときに上記判定を行うべく構成し、さらに圧縮機(1)の指示周波数が上記周波数下限値よりも低いときには、圧縮機(1)の周波数を上記周波数下限値を超えさせてから上記判定を行うことを特徴とする空気調和機。The air conditioner includes a compressor (1), an outdoor heat exchanger (2), a pressure reducing mechanism (3), an indoor heat exchanger (4), and a four-way switching valve (5). The switching is performed by the four-way switching valve (5), and the temperature of at least one of the heat exchangers is compared with the ambient temperature, and the temperature difference is out of the set normal temperature difference range. In the air conditioner, the operation of the four-way switching valve (5) is determined to be abnormal and the operation is stopped, and a lower frequency limit for determination of the compressor (1) is set. When the frequency of the compressor (1) is higher than the lower limit, the determination is made. When the indicated frequency of the compressor (1) is lower than the lower limit of the frequency, the frequency of the compressor (1) is changed. An air conditioner wherein the determination is made after the frequency lower limit value is exceeded. いずれかの一方の上記熱交換器が上記室内熱交換器(4)であることを特徴とする請求項1〜請求項3のいずれかの空気調和機。 The air conditioner according to any one of claims 1 to 3, wherein one of the heat exchangers is the indoor heat exchanger (4).
JP2001216989A 2001-07-17 2001-07-17 Air conditioner Expired - Fee Related JP3589203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001216989A JP3589203B2 (en) 2001-07-17 2001-07-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001216989A JP3589203B2 (en) 2001-07-17 2001-07-17 Air conditioner

Publications (2)

Publication Number Publication Date
JP2003028544A JP2003028544A (en) 2003-01-29
JP3589203B2 true JP3589203B2 (en) 2004-11-17

Family

ID=19051391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001216989A Expired - Fee Related JP3589203B2 (en) 2001-07-17 2001-07-17 Air conditioner

Country Status (1)

Country Link
JP (1) JP3589203B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720616B2 (en) * 2006-05-25 2011-07-13 ダイキン工業株式会社 Air conditioning monitoring support device and air conditioning monitoring support system
JP5494280B2 (en) * 2010-06-23 2014-05-14 ダイキン工業株式会社 Air conditioner
JP6079507B2 (en) * 2013-08-29 2017-02-15 三菱電機株式会社 Hot / cold water air conditioning system
JP6621277B2 (en) * 2015-09-11 2019-12-18 日立ジョンソンコントロールズ空調株式会社 Refrigeration equipment
CN107023935B (en) * 2017-03-08 2019-10-25 广东美的制冷设备有限公司 Air-conditioning system and its halt control method
CN109489177B (en) * 2018-10-16 2020-06-26 珠海格力电器股份有限公司 Air conditioner processing method and device and air conditioner
JP6891910B2 (en) * 2019-03-14 2021-06-18 ダイキン工業株式会社 Refrigeration cycle device and four-way switching valve abnormality determination method
CN111023461B (en) * 2019-12-31 2021-07-06 宁波奥克斯电气股份有限公司 Detection control method and system of air conditioner, air conditioner and storage medium
CN111271821B (en) * 2020-03-16 2021-05-07 珠海格力电器股份有限公司 Four-way valve reversing abnormity control method, storage medium and air conditioner

Also Published As

Publication number Publication date
JP2003028544A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
US11118821B2 (en) Refrigeration cycle apparatus
JP5506770B2 (en) Air conditioner
KR100690683B1 (en) Air conditioner and heating operation control method therof
JPH04257676A (en) Detection and correction of malfunction of reversivle valve in heat pump
JP3589203B2 (en) Air conditioner
JPH07248167A (en) Air conditioner
JPH08261542A (en) Air conditioner
JP2001324234A (en) Heat-pump-type heat supply equipment
JPH04222353A (en) Operation controller for air conditioner
KR100814956B1 (en) Multi Air-Conditioner and its Compressor control method
JPH08247561A (en) Air conditioner
JP2007155226A (en) Air conditioner
JPH07120091A (en) Air conditioner
JP3290251B2 (en) Air conditioner
JP3833497B2 (en) Air conditioner
JP5450208B2 (en) Air conditioner
JPH11153366A (en) Starting control device for refrigerating apparatus
JP3687201B2 (en) Air conditioner
JPH0634224A (en) Room heater/cooler
JP2002147906A (en) Refrigerating plant
JP2541172B2 (en) Operation control device for air conditioner
JP2006170558A (en) Air conditioner
WO2021100078A1 (en) Air conditioner
JPH0727436A (en) Air conditioner
JPH05223360A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

R151 Written notification of patent or utility model registration

Ref document number: 3589203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees