WO2021100078A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2021100078A1
WO2021100078A1 PCT/JP2019/045048 JP2019045048W WO2021100078A1 WO 2021100078 A1 WO2021100078 A1 WO 2021100078A1 JP 2019045048 W JP2019045048 W JP 2019045048W WO 2021100078 A1 WO2021100078 A1 WO 2021100078A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
flow path
path switching
switching device
refrigerant
Prior art date
Application number
PCT/JP2019/045048
Other languages
French (fr)
Japanese (ja)
Inventor
一成 馬場
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021558041A priority Critical patent/JPWO2021100078A1/ja
Priority to PCT/JP2019/045048 priority patent/WO2021100078A1/en
Publication of WO2021100078A1 publication Critical patent/WO2021100078A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure

Definitions

  • the present invention relates to an air conditioner provided with a flow path switching device.
  • an air conditioner capable of setting an operation mode to cooling or heating by switching a flow path switching device connected to a pipe through which a refrigerant flows and changing the flow path of the refrigerant. ..
  • the heat exchanger is determined whether to operate as an evaporator or a condenser by changing the flow path of the refrigerant and switching the operation mode.
  • the flow path switching device switches normally and the air conditioner operates according to the set operation mode, the temperature difference between the heat exchanger and the surroundings of the heat exchanger shows an appropriate value. That is, when the heat exchanger operates as an evaporator, the temperature becomes lower than the ambient temperature of the heat exchanger. Further, when the heat exchanger operates as a condenser, the temperature becomes higher than the ambient temperature of the heat exchanger.
  • Patent Document 1 discloses an air conditioner that controls based on the temperature difference between the heat exchanger and the surroundings of the heat exchanger. Patent Document 1 determines whether or not the temperature difference between the heat exchanger and the surroundings of the heat exchanger is an appropriate value when the heat exchanger operates as an evaporator or a condenser in the set operation mode. To do. Patent Document 1 attempts to determine whether or not the operation of the flow path switching device is normal.
  • the operation abnormality of the flow path switching device is determined by the temperature difference between the heat exchanger and the surroundings of the heat exchanger. Therefore, the operating state of the flow path switching device is not correctly determined from the time the compressor operates until the temperature of the heat exchanger stabilizes. Therefore, the air conditioner of Patent Document 1 cannot immediately determine that the operation of the flow path switching device is abnormal after the operation of the compressor.
  • the present invention has been made to solve the above problems, and provides an air conditioner that immediately determines that the operation of the flow path switching device is abnormal after the compressor is operated.
  • a compressor, a flow path switching device, an outdoor heat exchanger, an expansion unit, and an indoor heat exchanger are connected by pipes, and a refrigerant circuit through which refrigerant flows and each device constituting the refrigerant circuit are used.
  • a control unit for controlling the operation is provided, and the control unit has an abnormal operation of the flow path switching device based on the pressure detecting means for detecting the pressure of the refrigerant flowing in the pipe and the pressure value detected by the pressure detecting means. It has a determination means for determining whether or not it is.
  • the control unit determines whether or not the operation of the flow path switching device is abnormal based on the pressure value detected by the pressure detecting means.
  • the change in the pressure of the refrigerant inside the pipe appears immediately after the start of operation of the compressor, and has a higher followability than the temperature as an index indicating the state of the refrigerant circuit. Therefore, the control unit can quickly determine the state of the flow path switching device after the operation of the compressor is started. Therefore, the control unit can immediately determine that the operation of the flow path switching device is abnormal after the operation of the compressor is started.
  • FIG. 1 It is a circuit diagram which shows the air conditioner 1 which concerns on Embodiment 1.
  • FIG. It is a functional block diagram which shows the control part 11 which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the operation of the air conditioner 1 which concerns on Embodiment 1.
  • FIG. It is a circuit diagram which shows the air conditioner 1 which concerns on Embodiment 2.
  • FIG. It is a functional block diagram which shows the control part 11 which concerns on Embodiment 2.
  • FIG. It is a flowchart which shows the operation of the air conditioner 1 which concerns on Embodiment 2.
  • FIG. 1 is a circuit diagram showing an air conditioner 1 according to the first embodiment.
  • the air conditioner 1 has an outdoor unit 2, an indoor unit 3, and a refrigerant pipe 4. Although one indoor unit 3 is illustrated in FIG. 1, the number of indoor units 3 may be two or more.
  • the outdoor unit 2 includes a compressor 6, a flow path switching device 7, an outdoor heat exchanger 8, an outdoor blower 9, an expansion unit 10, a first pressure detection unit 21, a second pressure detection unit 22, and a control unit 11. doing.
  • the indoor unit 3 has an indoor heat exchanger 12 and an indoor blower 13.
  • the refrigerant pipe 4 connects the compressor 6, the flow path switching device 7, the outdoor heat exchanger 8, the expansion unit 10, and the indoor heat exchanger 12, and constitutes the refrigerant circuit 5 by flowing the refrigerant inside. is there.
  • the compressor 6 sucks in the refrigerant in a low temperature and low pressure state, compresses the sucked refrigerant into a refrigerant in a high temperature and high pressure state, and discharges the refrigerant.
  • the flow path switching device 7 switches the flow direction of the refrigerant in the refrigerant circuit 5, and is, for example, a four-way switching valve.
  • the flow path switching device 7 may be a combination of a three-way switching valve, a two-way switching valve, or the like.
  • the outdoor heat exchanger 8 exchanges heat between the refrigerant and the outdoor air, and is, for example, a fin-and-tube heat exchanger.
  • the outdoor heat exchanger 8 acts as a condenser during the cooling operation and as an evaporator during the heating operation.
  • the outdoor blower 9 is a device that sends outdoor air to the outdoor heat exchanger 8.
  • the expansion unit 10 is a pressure reducing valve or an expansion valve that depressurizes and expands the refrigerant.
  • the indoor heat exchanger 12 exchanges heat between the indoor air and the refrigerant.
  • the outdoor heat exchanger 8 acts as an evaporator during the cooling operation and as a condenser during the heating operation.
  • the indoor blower 13 is a device that sends indoor air to the indoor heat exchanger 12, and is, for example, a cross-flow fan.
  • the liquid-state refrigerant flows into the expansion unit 10 and is depressurized and expanded to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant.
  • the gas-liquid two-phase refrigerant flows into the indoor heat exchanger 12 that acts as an evaporator.
  • the refrigerant flowing into the indoor heat exchanger 12 exchanges heat with the indoor air sent by the indoor blower 13 and evaporates to gasify. At that time, the indoor air is cooled and the indoor cooling is performed. After that, the evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
  • Heating operation Next, the heating operation will be described.
  • the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high-temperature and high-pressure gas state.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the indoor heat exchanger 12 acting as a condenser.
  • the refrigerant flowing into the indoor heat exchanger 12 exchanges heat with the indoor air sent by the indoor blower 13, condenses and liquefies. At that time, the indoor air is warmed and the indoor heating is performed.
  • the liquid-state refrigerant flows into the expansion unit 10 and is depressurized and expanded to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant.
  • the gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 8 that acts as an evaporator.
  • the refrigerant flowing into the outdoor heat exchanger 8 exchanges heat with the outdoor air sent by the outdoor blower 9, evaporates and gasifies. After that, the evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
  • the first pressure detection unit 21 is provided between the flow path switching device 7 and the outdoor heat exchanger 8 inside the outdoor unit 2, and flows between the flow path switching device 7 and the outdoor heat exchanger 8. It is a device that detects the pressure P1 of the refrigerant.
  • the second pressure detection unit 22 is provided between the flow path switching device 7 and the indoor heat exchanger 12 inside the outdoor unit 2, and flows between the flow path switching device 7 and the indoor heat exchanger 12. It is a device that detects the pressure P2 of the refrigerant.
  • the first pressure detecting unit 21 may be provided inside the indoor unit 3.
  • Control unit 11 The control unit 11 is housed in the outdoor unit 2 and controls the operation of each device constituting the refrigerant circuit 5.
  • the control unit 11 may be stored in the indoor unit 3 or may be separately provided as an external unit.
  • the control unit 11 is composed of a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer or processor) that executes a program stored in dedicated hardware or a storage device. ..
  • the control unit 11 is dedicated hardware, the control unit 11 is, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applies to.
  • Each of the functional units realized by the control unit 11 may be realized by individual hardware, or each functional unit may be realized by one hardware.
  • each function executed by the control unit 11 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in a storage unit (not shown).
  • the CPU realizes each function by reading and executing the program stored in the storage unit.
  • the storage unit is, for example, a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM. It should be noted that some of the functions of the control unit 11 may be realized by dedicated hardware, and some may be realized by software or firmware.
  • FIG. 2 is a functional block diagram showing the control unit 11 according to the first embodiment.
  • the control unit 11 includes a flow path switching means 41, a pressure detecting means 42, a determining means 43, a restarting means 44, and an abnormal stopping means 45.
  • the flow path switching means 41, the pressure detecting means 42, the determining means 43, the restarting means 44, and the abnormal stop means 45 are made of an algorithm.
  • the control unit 11 has cooling and heating as operation modes. The operation mode is set, for example, from the remote controller (not shown) of the air conditioner 1.
  • the flow path switching means 41 transmits a signal to the flow path switching device 7 so that the refrigerant flowing through the refrigerant pipe 4 has a flow direction according to the operation mode.
  • the pressure detecting means 42 detects the pressure of the refrigerant flowing through the refrigerant pipe 4.
  • the pressure detecting means 42 includes a first pressure detecting means 51 and a second pressure detecting means 52.
  • the first pressure detecting means 51 receives the detection result of the first pressure detecting unit 21 and detects the pressure P1 of the refrigerant. That is, the first pressure detecting means 51 detects the pressure P1 of the refrigerant flowing between the flow path switching device 7 and the outdoor heat exchanger 8.
  • the second pressure detecting means 52 receives the detection result of the second pressure detecting unit 22 and detects the pressure P2 of the refrigerant. That is, the second pressure detecting means 52 detects the pressure P2 of the refrigerant flowing between the flow path switching device 7 and the indoor heat exchanger 12 from the indoor heat exchanger 12.
  • the determination means 43 In the determination means 43, the subtraction value P1-P2 obtained by subtracting the pressure P2 detected by the second pressure detecting means 52 from the pressure P1 detected by the first pressure detecting means 51 is out of the range of the value estimated by the operation mode. At that time, it is determined that the flow path switching device 7 has not been switched. Here, if the flow path switching device 7 is not switched when the operation mode is set to cooling, the refrigerant flowing through the refrigerant pipe 4 is in the direction of the flow for heating. At this time, the subtraction value P1-P2 is estimated to be larger than 0 because the cooling was originally set, but since the refrigerant is flowing in the direction of the flow in which the refrigerant pipe 4 is heated, it is more than 0. It becomes smaller. Therefore, when the operation mode is cooling, the determination means 43 determines that the flow path switching device 7 has not been switched when the subtraction values P1-P2 are smaller than 0.
  • the determination means 43 determines that the flow path switching device 7 has not been switched.
  • the re-operation means 44 operates the compressor 6 when the determination means 43 determines that the operation of the flow path switching device 7 is abnormal, for example, when the flow path switching device 7 has not been switched. After stopping, restart the operation.
  • the restarting means 44 includes a pause means 55, a counting means 56, and an operation restarting means 57.
  • the pausing means 55 suspends the operation of the compressor 6.
  • the counting means 56 stores in the storage unit the number of malfunctions determined by the determination means 43 that the operation of the flow path switching device 7 is abnormal.
  • the operation resuming means 57 restarts the operation of the compressor 6 suspended by the pausing means 55.
  • the abnormal stop means 45 is a compressor 6 that is stopped by the temporary stop means 55 when the number of malfunctions determined by the determination means 43 that the operation of the flow path switching device 7 is abnormal exceeds the threshold number.
  • the abnormality of the flow path switching device 7 is notified without restarting the operation. As described above, the number of malfunctions is stored in the storage unit by the counting means 56.
  • the abnormality notification of the flow path switching device 7 is performed by, for example, sound or light.
  • FIG. 3 is a flowchart showing the operation of the air conditioner 1 according to the first embodiment of the present invention. Next, the operation of the air conditioner 1 will be described.
  • the flow path switching means 41 when the operation of the air conditioner 1 is started (step S0), the refrigerant flowing through the refrigerant pipe 4 is in the flow direction according to the operation mode. A signal is transmitted to the flow path switching device 7 (step S1).
  • the first pressure detecting means 51 detects the pressure P1 of the refrigerant by using the first pressure detecting unit 21.
  • the second pressure detecting means 52 detects the pressure P2 of the refrigerant by using the second pressure detecting unit 22 (step S2).
  • the determination means 43 determines the operation mode, and determines that the flow path switching device 7 has not been switched when the operation mode is cooling (cooling in step S3) and the pressure P1-pressure P2 ⁇ 0. (Step S4). Further, the determination means 43 determines that the flow path switching device 7 has not been switched when the operation mode is heating (heating in step S3) and the pressure P1-pressure P2> 0 (step S5). When it is determined by the determination means 43 that the flow path switching device 7 has been switched (NO in step S4 or NO in step S5), the air conditioner 1 continues the normal operation (step S10).
  • the temporary stop means 55 suspends the operation of the compressor 6 (step S6).
  • the counting means 56 stores the number of malfunctions determined by the determining means 43 that the flow path switching device 7 has not been switched (step S7).
  • the abnormal stop means 45 causes an abnormality in the flow path switching device 7 without restarting the operation of the compressor 6. Notify (step S9).
  • the operation restarting means 57 restarts the operation of the compressor 6 (step S0).
  • the control unit 11 determines whether or not the operation of the flow path switching device 7 is abnormal based on the pressure value detected by the pressure detecting means 42.
  • the change in the pressure of the refrigerant inside the pipe appears immediately after the start of operation of the compressor 6, and has a higher followability than the temperature as an index indicating the state of the refrigerant circuit 5. Therefore, the control unit 11 can quickly determine the state of the flow path switching device 7 after the operation of the compressor 6 is started. Therefore, the control unit 11 can immediately determine that the operation of the flow path switching device 7 is abnormal after the operation of the compressor 6 is started.
  • the determination means 43 compares the magnitude of the subtraction values P1-P2 and 0. Generally, when the refrigerant flows through the refrigerant pipe 4 in the direction in which the cooling is performed, the subtraction values P1-P2 become larger than 0. Further, when the refrigerant flows through the refrigerant pipe 4 in the direction in which heating is performed, the subtraction values P1-P2 become smaller than 0. Therefore, the determination means 43 can detect the flow direction of the refrigerant flowing through the refrigerant pipe 4 by the value of the subtraction values P1-P2. Therefore, the control unit 11 can determine that the flow path switching device 7 has not been switched by comparing the magnitudes of the subtraction values P1-P2 and 0.
  • the re-operation means 44 stops the operation of the compressor 6 and then stops the operation of the compressor 6. Resume operation. Therefore, the operating state of the air conditioner 1 is reset. Therefore, the flow path switching device 7 may recover from the abnormal operation.
  • the abnormal stop means 45 restarts when the number of malfunctions determined by the determination means 43 that the operation of the flow path switching device 7 is abnormal becomes equal to or more than the threshold number.
  • the operation of the compressor 6 stopped by the means 44 is not restarted.
  • the restarting means 44 suspends the compressor 6 until the threshold number is reached, and restarts the operation. Therefore, since the air conditioner 1 can try to reset the operating state until the threshold number is reached so that the abnormality in the operation of the flow path switching device 7 is recovered, the operation of the flow path switching device 7 can be stabilized.
  • the determination means 43 determines the operation of the flow path switching device 7 until the threshold number is reached. Therefore, even if the determination means 43 makes an erroneous determination, the determination made by the determination means 43 is likely to be corrected by the subsequent determination. Therefore, the air conditioner 1 can improve the reliability of the result determined by the determination means 43.
  • the abnormality stopping means 45 notifies the abnormality of the flow path switching device 7.
  • the control unit 11 makes the user recognize that the operation of the flow path switching device 7 is abnormal. Therefore, the user of the air conditioner 1 can quickly deal with the abnormality of the flow path switching device 7.
  • FIG. 4 is a circuit diagram showing the air conditioner 100 according to the second embodiment.
  • the air conditioner 100 does not have the first pressure detecting unit and the second pressure detecting unit, but has the time-dependent pressure detecting unit 131. Is different from the first embodiment.
  • the same parts as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
  • the air conditioner 100 does not have a first pressure detecting unit and a second pressure detecting unit.
  • the time-lapse pressure detecting unit 131 is a device provided between the flow path switching device 7 and the outdoor heat exchanger 8 and detects the pressure P3 and the pressure P4 of the refrigerant flowing through the pipe.
  • the pressure P3 is the pressure of the refrigerant flowing through the refrigerant pipe 4 when the compressor 6 starts operation.
  • the pressure P4 is the pressure of the refrigerant flowing through the refrigerant pipe 4 detected after the lapse of the threshold time from the pressure P3.
  • the time-lapse pressure detection unit 131 may be provided not between the flow path switching device 7 and the outdoor heat exchanger 8 but between the flow path switching device 7 and the indoor heat exchanger 12.
  • FIG. 5 is a functional block diagram showing the control unit 111 according to the second embodiment. As shown in FIG. 5, in the control unit 111, the algorithms of the first pressure detecting means 151, the second pressure detecting means 152, and the determining means 143 included in the pressure detecting means 142 are different from those of the first embodiment.
  • the pressure detecting means 142 detects the pressure of the refrigerant flowing in the pipe.
  • the pressure detecting means 142 includes a first pressure detecting means 151 and a second pressure detecting means 152.
  • the first pressure detecting means 151 receives the detection result of the time-lapse pressure detecting unit 131, and the compressor 6 detects the pressure P3 of the refrigerant flowing through the pipe at the start of operation.
  • the second pressure detecting means 152 uses the time-lapse pressure detecting unit 131 to detect the pressure P3 of the refrigerant flowing through the piping at the start of operation of the compressor 6 by the first pressure detecting means 151, and then the threshold time. After the lapse of time, the pressure P4 of the refrigerant flowing through the pipe is detected.
  • the determination means 143 has a subtraction value P3-P4 obtained by subtracting the pressure P4 detected by the second pressure detecting means 152 from the pressure P3 detected by the first pressure detecting means 151 when the operation mode is cooling from 0. If it is large, it is determined that the flow path switching device 7 has not been switched. Further, the determination means 143 determines that the flow path switching device 7 has not been switched when the subtraction value P3-P4 is smaller than 0 when the operation mode is heating. When the time-lapse pressure detecting unit 131 is provided between the flow path switching device 7 and the indoor heat exchange, not between the flow path switching device 7 and the outdoor heat exchanger 8, as described above, the determination means. The determination of 143 is reversed.
  • the determination means 143 determines that the flow path switching device 7 has not been switched when the subtraction value P3-P4 is smaller than 0. Further, the determination means 143 determines that the flow path switching device 7 has not been switched when the subtraction value P3-P4 is larger than 0 when the operation mode is heating.
  • FIG. 6 is a flowchart showing the operation of the air conditioner 100 according to the second embodiment.
  • the operation of the air conditioner 100 will be described.
  • the flow path switching means 41 starts the operation of the air conditioner 100 (step S20)
  • the first pressure detecting means 151 uses the pressure detecting unit 131 over time to reduce the pressure of the refrigerant. P3 is detected (step S21).
  • the flow path switching means 41 transmits a signal to the flow path switching device 7 so that the refrigerant flowing through the refrigerant pipe 4 has a flow direction according to the operation mode (step S22).
  • the second pressure detecting means 152 detects the pressure P4 of the refrigerant by using the pressure detecting unit 131 over time (step S23).
  • the determination means 143 determines the operation mode, and determines that the flow path switching device 7 has not been switched when the operation mode is cooling (cooling in step S24) and the pressure P3-pressure P4> 0. (Step S25). Further, the determination means 143 determines that the flow path switching device 7 has not been switched when the operation mode is heating (heating in step S24) and the pressure P3-pressure P4 ⁇ 0 (step S26). When it is determined by the determination means 143 that the flow path switching device 7 has been switched (NO in step S25 or NO in step S26), the air conditioner 100 continues the normal operation (step S31).
  • the temporary stop means 55 temporarily stops the operation of the compressor 6 (YES in step S25 or YES in step S26). Step S27).
  • the counting means 56 stores the number of malfunctions determined by the determining means 143 that the flow path switching device 7 has not been switched (step S28).
  • the abnormal stop means 45 causes an abnormality in the flow path switching device 7 without restarting the operation of the compressor 6. Notify (step S30).
  • the operation restarting means 57 restarts the operation after the pressure state of the refrigerant flowing through the refrigerant pipe 4 becomes substantially constant. (Step S20).
  • the determination means 43 compares the magnitude of the subtraction values P3-P4 and 0. Generally, when the refrigerant flows through the refrigerant pipe 4 in the direction in which the cooling is performed, the subtraction value P3-P4 becomes smaller than 0. Further, when the refrigerant flows through the refrigerant pipe 4 in the direction in which heating is performed, the subtraction value P3-P4 becomes larger than 0. Therefore, the determination means 43 can detect the flow path of the refrigerant flowing through the refrigerant pipe 4 by the value of the subtraction value P3-P4. Therefore, the control unit 11 can determine that the flow path switching device 7 has not been switched by comparing the magnitudes of the subtraction values P3-P4 and 0.
  • the device for detecting the pressure of the refrigerant flowing through the pipe may be provided with one time-dependent pressure detecting unit 131. Therefore, the air conditioner 100 of the second embodiment can determine the state of the flow path switching device 7 with fewer devices than the air conditioner 1 of the first embodiment. Therefore, the outdoor unit 2 can secure more internal space and improve the degree of freedom in design.
  • the determination means 43 and the determination means 143 compare the magnitudes of the subtraction values P1-P2 and the subtraction values P3-P4 and 0.
  • the range of values that the subtraction values P1-P2 and the subtraction values P3-P4 can take is determined by the direction in which the refrigerant flows through the refrigerant pipe 4 and the location where the device for detecting the pressure of the refrigerant is provided. Since the place where the device for detecting the pressure of the refrigerant is provided is clear at the time of installation, the direction in which the refrigerant flowing through the refrigerant pipe 4 flows is detected by the values of the subtraction values P1-P2 and the subtraction values P3-P4. Therefore, the control unit 11 can determine that the flow path switching device 7 has not been switched when the subtraction values P1-P2 and the subtraction values P3-P4 are out of the range of the values estimated by the operation mode. it can.

Abstract

This air conditioner comprises: a refrigerant circuit in which a compressor, a flow path switching device, an outdoor heat exchanger, an expansion unit, and an indoor heat exchanger are connected by piping and through which a refrigerant is circulated; and a control unit that controls the operation of each of the devices constituting the refrigerant circuit. The control unit has: a pressure sensing means for detecting the pressure of the refrigerant flowing in the piping; and a determination means for determining whether the operation of the flow path switching device is abnormal or not on the basis of the value of the pressure detected by the pressure sensing means.

Description

空気調和機Air conditioner
 本発明は、流路切替装置を備えた空気調和機に関する。 The present invention relates to an air conditioner provided with a flow path switching device.
 従来、冷媒が流れる配管に接続された流路切替装置が切り替えられ、冷媒の流路が変更されることで、運転モードを冷房又は暖房に設定することが可能な空気調和機が知られている。このような空気調和機において、熱交換器は、冷媒の流路が変更され、運転モードが切り替えられることで、蒸発器又は凝縮器のいずれとして動作するかが決定される。流路切替装置が正常に切り替わり、設定された運転モードの通りに空気調和機が運転する場合、熱交換器と熱交換器の周囲との温度差は、適正な値を示す。即ち、熱交換器は、蒸発器として動作する場合、温度が熱交換器の周囲以下の温度となる。また、熱交換器は、凝縮器として動作する場合、温度が熱交換器の周囲以上の温度となる。 Conventionally, there is known an air conditioner capable of setting an operation mode to cooling or heating by switching a flow path switching device connected to a pipe through which a refrigerant flows and changing the flow path of the refrigerant. .. In such an air conditioner, the heat exchanger is determined whether to operate as an evaporator or a condenser by changing the flow path of the refrigerant and switching the operation mode. When the flow path switching device switches normally and the air conditioner operates according to the set operation mode, the temperature difference between the heat exchanger and the surroundings of the heat exchanger shows an appropriate value. That is, when the heat exchanger operates as an evaporator, the temperature becomes lower than the ambient temperature of the heat exchanger. Further, when the heat exchanger operates as a condenser, the temperature becomes higher than the ambient temperature of the heat exchanger.
 特許文献1には、熱交換器と熱交換器の周囲との温度差に基づく制御を行う空気調和機が開示されている。特許文献1は、設定された運転モードにおいて、熱交換器が蒸発器又は凝縮器として動作するにあたって、熱交換器と熱交換器の周囲との温度差が適正な値であるか否かを判断する。特許文献1は、これにより、流路切替装置の動作が正常であるかどうかを判定しようとするものである。 Patent Document 1 discloses an air conditioner that controls based on the temperature difference between the heat exchanger and the surroundings of the heat exchanger. Patent Document 1 determines whether or not the temperature difference between the heat exchanger and the surroundings of the heat exchanger is an appropriate value when the heat exchanger operates as an evaporator or a condenser in the set operation mode. To do. Patent Document 1 attempts to determine whether or not the operation of the flow path switching device is normal.
特開2003-28544号公報Japanese Unexamined Patent Publication No. 2003-28544
 しかしながら、特許文献1に開示された空気調和機は、流路切替装置の動作異常の判定を熱交換器と熱交換器の周囲との温度差によって行っている。このため、流路切替装置は、圧縮機が運転してから熱交換器の温度が安定するまで、動作状態が正しく判断されない。したがって、特許文献1の空気調和機は、流路切替装置の動作が異常であることを、圧縮機の運転後、直ちに判定することができない。 However, in the air conditioner disclosed in Patent Document 1, the operation abnormality of the flow path switching device is determined by the temperature difference between the heat exchanger and the surroundings of the heat exchanger. Therefore, the operating state of the flow path switching device is not correctly determined from the time the compressor operates until the temperature of the heat exchanger stabilizes. Therefore, the air conditioner of Patent Document 1 cannot immediately determine that the operation of the flow path switching device is abnormal after the operation of the compressor.
 本発明は、上記のような課題を解決するためになされたもので、圧縮機の運転後、流路切替装置の動作が異常であることを直ちに判断する空気調和機を提供するものである。 The present invention has been made to solve the above problems, and provides an air conditioner that immediately determines that the operation of the flow path switching device is abnormal after the compressor is operated.
 本発明に係る空気調和機は、圧縮機、流路切替装置、室外熱交換器、膨張部及び室内熱交換器が配管により接続され、冷媒が流れる冷媒回路と、冷媒回路を構成する各機器の動作を制御する制御部と、を備え、制御部は、配管内を流れる冷媒の圧力を検知する圧力検知手段と、圧力検知手段が検知した圧力の値に基づいて流路切替装置の動作が異常であるか否かを判定する判定手段と、を有する。 In the air conditioner according to the present invention, a compressor, a flow path switching device, an outdoor heat exchanger, an expansion unit, and an indoor heat exchanger are connected by pipes, and a refrigerant circuit through which refrigerant flows and each device constituting the refrigerant circuit are used. A control unit for controlling the operation is provided, and the control unit has an abnormal operation of the flow path switching device based on the pressure detecting means for detecting the pressure of the refrigerant flowing in the pipe and the pressure value detected by the pressure detecting means. It has a determination means for determining whether or not it is.
 本発明によれば、制御部は、圧力検知手段が検知した圧力の値に基づいて流路切替装置の動作が異常であるか否かを判定する。概して、配管内部における冷媒の圧力変化は、圧縮機の運転開始直後から現れ、冷媒回路の状態を表す指標として温度よりも追従性が高い。このため、制御部は、圧縮機の運転開始後、流路切替装置の状態を速やかに判定することができる。したがって、制御部は、圧縮機の運転開始後、流路切替装置の動作が異常であることを直ちに判定することができる。 According to the present invention, the control unit determines whether or not the operation of the flow path switching device is abnormal based on the pressure value detected by the pressure detecting means. In general, the change in the pressure of the refrigerant inside the pipe appears immediately after the start of operation of the compressor, and has a higher followability than the temperature as an index indicating the state of the refrigerant circuit. Therefore, the control unit can quickly determine the state of the flow path switching device after the operation of the compressor is started. Therefore, the control unit can immediately determine that the operation of the flow path switching device is abnormal after the operation of the compressor is started.
実施の形態1に係る空気調和機1を示す回路図である。It is a circuit diagram which shows the air conditioner 1 which concerns on Embodiment 1. FIG. 実施の形態1に係る制御部11を示す機能ブロック図である。It is a functional block diagram which shows the control part 11 which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和機1の動作を示すフローチャートである。It is a flowchart which shows the operation of the air conditioner 1 which concerns on Embodiment 1. FIG. 実施の形態2に係る空気調和機1を示す回路図である。It is a circuit diagram which shows the air conditioner 1 which concerns on Embodiment 2. FIG. 実施の形態2に係る制御部11を示す機能ブロック図である。It is a functional block diagram which shows the control part 11 which concerns on Embodiment 2. FIG. 実施の形態2に係る空気調和機1の動作を示すフローチャートである。It is a flowchart which shows the operation of the air conditioner 1 which concerns on Embodiment 2. FIG.
 実施の形態1.
 以下、実施の形態1に係る空気調和機1について、図面を参照しながら説明する。図1は、実施の形態1に係る空気調和機1を示す回路図である。図1に示すように、空気調和機1は、室外機2、室内機3及び冷媒配管4を有している。なお、図1では、1台の室内機3を例示しているが、室内機3の台数は、2台以上でもよい。
Embodiment 1.
Hereinafter, the air conditioner 1 according to the first embodiment will be described with reference to the drawings. FIG. 1 is a circuit diagram showing an air conditioner 1 according to the first embodiment. As shown in FIG. 1, the air conditioner 1 has an outdoor unit 2, an indoor unit 3, and a refrigerant pipe 4. Although one indoor unit 3 is illustrated in FIG. 1, the number of indoor units 3 may be two or more.
 (室外機2、室内機3、冷媒配管4)
 室外機2は、圧縮機6、流路切替装置7、室外熱交換器8、室外送風機9、膨張部10、第1の圧力検知部21、第2の圧力検知部22及び制御部11を有している。室内機3は、室内熱交換器12及び室内送風機13を有している。冷媒配管4は、圧縮機6、流路切替装置7、室外熱交換器8、膨張部10及び室内熱交換器12を接続すると共に、内部に冷媒が流れることで冷媒回路5を構成するものである。
(Outdoor unit 2, indoor unit 3, refrigerant piping 4)
The outdoor unit 2 includes a compressor 6, a flow path switching device 7, an outdoor heat exchanger 8, an outdoor blower 9, an expansion unit 10, a first pressure detection unit 21, a second pressure detection unit 22, and a control unit 11. doing. The indoor unit 3 has an indoor heat exchanger 12 and an indoor blower 13. The refrigerant pipe 4 connects the compressor 6, the flow path switching device 7, the outdoor heat exchanger 8, the expansion unit 10, and the indoor heat exchanger 12, and constitutes the refrigerant circuit 5 by flowing the refrigerant inside. is there.
 (圧縮機6、流路切替装置7、室外熱交換器8、室外送風機9、膨張部10)
 圧縮機6は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。流路切替装置7は、冷媒回路5において、冷媒の流通方向を切り替えるものであり、例えば、四方切替弁である。なお、流路切替装置7は、三方切替弁又は二方切替弁等を組み合わせたものであってもよい。室外熱交換器8は、冷媒と室外空気との間で熱交換を行うものであり、例えばフィンアンドチューブ型熱交換器である。室外熱交換器8は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。室外送風機9は、室外熱交換器8に室外空気を送る機器である。膨張部10は、冷媒を減圧して膨張させる減圧弁又は膨張弁である。
(Compressor 6, flow path switching device 7, outdoor heat exchanger 8, outdoor blower 9, expansion unit 10)
The compressor 6 sucks in the refrigerant in a low temperature and low pressure state, compresses the sucked refrigerant into a refrigerant in a high temperature and high pressure state, and discharges the refrigerant. The flow path switching device 7 switches the flow direction of the refrigerant in the refrigerant circuit 5, and is, for example, a four-way switching valve. The flow path switching device 7 may be a combination of a three-way switching valve, a two-way switching valve, or the like. The outdoor heat exchanger 8 exchanges heat between the refrigerant and the outdoor air, and is, for example, a fin-and-tube heat exchanger. The outdoor heat exchanger 8 acts as a condenser during the cooling operation and as an evaporator during the heating operation. The outdoor blower 9 is a device that sends outdoor air to the outdoor heat exchanger 8. The expansion unit 10 is a pressure reducing valve or an expansion valve that depressurizes and expands the refrigerant.
 (室内熱交換器12、室内送風機13)
 室内熱交換器12は、室内空気と冷媒との間で熱交換を行うものである。室外熱交換器8は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。室内送風機13は、室内熱交換器12に室内空気を送る機器であり、例えば、クロスフローファンである。
(Indoor heat exchanger 12, indoor blower 13)
The indoor heat exchanger 12 exchanges heat between the indoor air and the refrigerant. The outdoor heat exchanger 8 acts as an evaporator during the cooling operation and as a condenser during the heating operation. The indoor blower 13 is a device that sends indoor air to the indoor heat exchanger 12, and is, for example, a cross-flow fan.
 (冷房運転)
 ここで、空気調和機1の動作について説明する。先ず、冷房運転について説明する。冷房運転において、圧縮機6に吸入された冷媒は、圧縮機6によって圧縮されて高温且つ高圧のガス状態で吐出される。圧縮機6から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置7を通過して、凝縮器として作用する室外熱交換器8に流入する。室外熱交換器8に流入した冷媒は、室外送風機9によって送られる室外空気と熱交換されて凝縮し、液化する。液状態の冷媒は、膨張部10に流入し、減圧及び膨張されて、低温且つ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、蒸発器として作用する室内熱交換器12に流入する。室内熱交換器12に流入した冷媒は、室内送風機13によって送られる室内空気と熱交換されて蒸発し、ガス化する。その際、室内空気が冷却されて室内における冷房が実施される。その後、蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置7を通過して、圧縮機6に吸入される。
(Cooling operation)
Here, the operation of the air conditioner 1 will be described. First, the cooling operation will be described. In the cooling operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high temperature and high pressure gas state. The high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the outdoor heat exchanger 8 acting as a condenser. The refrigerant flowing into the outdoor heat exchanger 8 exchanges heat with the outdoor air sent by the outdoor blower 9, condenses and liquefies. The liquid-state refrigerant flows into the expansion unit 10 and is depressurized and expanded to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant. The gas-liquid two-phase refrigerant flows into the indoor heat exchanger 12 that acts as an evaporator. The refrigerant flowing into the indoor heat exchanger 12 exchanges heat with the indoor air sent by the indoor blower 13 and evaporates to gasify. At that time, the indoor air is cooled and the indoor cooling is performed. After that, the evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
 (暖房運転)
 次に、暖房運転について説明する。暖房運転において、圧縮機6に吸入された冷媒は、圧縮機6によって圧縮されて高温且つ高圧のガス状態で吐出される。圧縮機6から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置7を通過して、凝縮器として作用する室内熱交換器12に流入する。室内熱交換器12に流入した冷媒は、室内送風機13によって送られる室内空気と熱交換されて凝縮し、液化する。その際、室内空気が温められて、室内における暖房が実施される。液状態の冷媒は、膨張部10に流入し、減圧及び膨張されて、低温且つ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、蒸発器として作用する室外熱交換器8に流入する。室外熱交換器8に流入した冷媒は、室外送風機9によって送られる室外空気と熱交換されて蒸発し、ガス化する。その後、蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置7を通過して、圧縮機6に吸入される。
(Heating operation)
Next, the heating operation will be described. In the heating operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high-temperature and high-pressure gas state. The high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the indoor heat exchanger 12 acting as a condenser. The refrigerant flowing into the indoor heat exchanger 12 exchanges heat with the indoor air sent by the indoor blower 13, condenses and liquefies. At that time, the indoor air is warmed and the indoor heating is performed. The liquid-state refrigerant flows into the expansion unit 10 and is depressurized and expanded to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant. The gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 8 that acts as an evaporator. The refrigerant flowing into the outdoor heat exchanger 8 exchanges heat with the outdoor air sent by the outdoor blower 9, evaporates and gasifies. After that, the evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
 (第1の圧力検知部21、第2の圧力検知部22)
 第1の圧力検知部21は、室外機2の内部において、流路切替装置7と室外熱交換器8との間に設けられ、流路切替装置7と室外熱交換器8との間に流れる冷媒の圧力P1を検知する装置である。第2の圧力検知部22は、室外機2の内部において、流路切替装置7と室内熱交換器12との間に設けられ、流路切替装置7と室内熱交換器12との間に流れる冷媒の圧力P2を検知する装置である。なお、第1の圧力検知部21は、室内機3の内部に設けられていてもよい。
(First pressure detection unit 21, second pressure detection unit 22)
The first pressure detection unit 21 is provided between the flow path switching device 7 and the outdoor heat exchanger 8 inside the outdoor unit 2, and flows between the flow path switching device 7 and the outdoor heat exchanger 8. It is a device that detects the pressure P1 of the refrigerant. The second pressure detection unit 22 is provided between the flow path switching device 7 and the indoor heat exchanger 12 inside the outdoor unit 2, and flows between the flow path switching device 7 and the indoor heat exchanger 12. It is a device that detects the pressure P2 of the refrigerant. The first pressure detecting unit 21 may be provided inside the indoor unit 3.
 (制御部11)
 制御部11は、室外機2に格納され、冷媒回路5を構成する各機器の動作を制御するものである。制御部11は、室内機3に格納されていてもよく、外部ユニットとして別途設けられてもよい。制御部11は、専用のハードウェア又は記憶装置に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ又はプロセッサともいう)で構成される。制御部11が専用のハードウェアである場合、制御部11は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。制御部11が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。
(Control unit 11)
The control unit 11 is housed in the outdoor unit 2 and controls the operation of each device constituting the refrigerant circuit 5. The control unit 11 may be stored in the indoor unit 3 or may be separately provided as an external unit. The control unit 11 is composed of a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer or processor) that executes a program stored in dedicated hardware or a storage device. .. When the control unit 11 is dedicated hardware, the control unit 11 is, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applies to. Each of the functional units realized by the control unit 11 may be realized by individual hardware, or each functional unit may be realized by one hardware.
 制御部11がCPUの場合、制御部11が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、記憶部(図示せず)に格納される。CPUは、記憶部に格納されたプログラムを読み出して実行することにより、各機能を実現する。ここで、記憶部は、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の不揮発性又は揮発性の半導体メモリである。なお、制御部11の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 When the control unit 11 is a CPU, each function executed by the control unit 11 is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in a storage unit (not shown). The CPU realizes each function by reading and executing the program stored in the storage unit. Here, the storage unit is, for example, a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM. It should be noted that some of the functions of the control unit 11 may be realized by dedicated hardware, and some may be realized by software or firmware.
 図2は、実施の形態1に係る制御部11を示す機能ブロック図である。図2に示すように、制御部11は、流路切替手段41、圧力検知手段42、判定手段43、再運転手段44及び異常停止手段45を有している。流路切替手段41、圧力検知手段42、判定手段43、再運転手段44及び異常停止手段45は、アルゴリズムからなる。制御部11は、運転モードとして、冷房及び暖房を有している。運転モードは、例えば、空気調和機1のリモコン(図示せず)から設定される。 FIG. 2 is a functional block diagram showing the control unit 11 according to the first embodiment. As shown in FIG. 2, the control unit 11 includes a flow path switching means 41, a pressure detecting means 42, a determining means 43, a restarting means 44, and an abnormal stopping means 45. The flow path switching means 41, the pressure detecting means 42, the determining means 43, the restarting means 44, and the abnormal stop means 45 are made of an algorithm. The control unit 11 has cooling and heating as operation modes. The operation mode is set, for example, from the remote controller (not shown) of the air conditioner 1.
 (流路切替手段41)
 流路切替手段41は、冷媒配管4を流れる冷媒が運転モードに応じた流れの方向となるように、流路切替装置7に対して信号を送信する。
(Flow path switching means 41)
The flow path switching means 41 transmits a signal to the flow path switching device 7 so that the refrigerant flowing through the refrigerant pipe 4 has a flow direction according to the operation mode.
 (圧力検知手段42)
 圧力検知手段42は、冷媒配管4を流れる冷媒の圧力を検知する。圧力検知手段42は、第1の圧力検知手段51及び第2の圧力検知手段52からなる。第1の圧力検知手段51は、第1の圧力検知部21の検知結果を受信して、冷媒の圧力P1を検知する。即ち、第1の圧力検知手段51は、流路切替装置7と室外熱交換器8との間を流れる冷媒の圧力P1を検知する。第2の圧力検知手段52は、第2の圧力検知部22の検知結果を受信して、冷媒の圧力P2を検知する。即ち、第2の圧力検知手段52は、室内熱交換器12から流路切替装置7と室内熱交換器12との間を流れる冷媒の圧力P2を検知する。
(Pressure detecting means 42)
The pressure detecting means 42 detects the pressure of the refrigerant flowing through the refrigerant pipe 4. The pressure detecting means 42 includes a first pressure detecting means 51 and a second pressure detecting means 52. The first pressure detecting means 51 receives the detection result of the first pressure detecting unit 21 and detects the pressure P1 of the refrigerant. That is, the first pressure detecting means 51 detects the pressure P1 of the refrigerant flowing between the flow path switching device 7 and the outdoor heat exchanger 8. The second pressure detecting means 52 receives the detection result of the second pressure detecting unit 22 and detects the pressure P2 of the refrigerant. That is, the second pressure detecting means 52 detects the pressure P2 of the refrigerant flowing between the flow path switching device 7 and the indoor heat exchanger 12 from the indoor heat exchanger 12.
 (判定手段43)
 判定手段43は、第1の圧力検知手段51が検知した圧力P1から前記第2の圧力検知手段52が検知した圧力P2を減算した減算値P1-P2が運転モードによって推定される値の範囲外であった際に、流路切替装置7が切り替わっていないことを判定する。ここで、運転モードが冷房に設定されている際に、流路切替装置7が切り替わらない場合、冷媒配管4を流れる冷媒は、暖房を行う流れの方向となる。この際に、減算値P1-P2は、本来冷房が設定されていたことで0より大きくなると推定されるところが、冷媒が冷媒配管4を暖房が行われる流れの方向に流れているため、0より小さくなる。このため、判定手段43は、運転モードが冷房の際に、減算値P1-P2が0より小さい場合、流路切替装置7が切り替わっていないことを判定する。
(Determining means 43)
In the determination means 43, the subtraction value P1-P2 obtained by subtracting the pressure P2 detected by the second pressure detecting means 52 from the pressure P1 detected by the first pressure detecting means 51 is out of the range of the value estimated by the operation mode. At that time, it is determined that the flow path switching device 7 has not been switched. Here, if the flow path switching device 7 is not switched when the operation mode is set to cooling, the refrigerant flowing through the refrigerant pipe 4 is in the direction of the flow for heating. At this time, the subtraction value P1-P2 is estimated to be larger than 0 because the cooling was originally set, but since the refrigerant is flowing in the direction of the flow in which the refrigerant pipe 4 is heated, it is more than 0. It becomes smaller. Therefore, when the operation mode is cooling, the determination means 43 determines that the flow path switching device 7 has not been switched when the subtraction values P1-P2 are smaller than 0.
 一方、運転モードが暖房に設定されている際に、流路切替装置7が切り替わらない場合、冷媒配管4を流れる冷媒は、冷房を行う流れの方向となる。この際に、減算値P1-P2は、本来暖房が設定されていたことで0より小さくなると推定されるところが、冷媒が冷媒配管4を冷房が行われる方向に流れているため、0より大きくなる。このため、判定手段43は、運転モードが暖房の際に、減算値P1-P2が0より大きい場合、流路切替装置7が切り替わっていないことを判定する。 On the other hand, if the flow path switching device 7 is not switched when the operation mode is set to heating, the refrigerant flowing through the refrigerant pipe 4 is in the direction of the cooling flow. At this time, the subtraction value P1-P2 is estimated to be smaller than 0 because the heating was originally set, but it becomes larger than 0 because the refrigerant flows in the direction in which the refrigerant pipe 4 is cooled. .. Therefore, when the operation mode is heating and the subtraction value P1-P2 is larger than 0, the determination means 43 determines that the flow path switching device 7 has not been switched.
 (再運転手段44)
 再運転手段44は、例えば、流路切替装置7が切り替わっていない場合のように、判定手段43によって流路切替装置7の動作が異常であると判定された際に、圧縮機6の運転を停止させた後、運転を再開させる。再運転手段44は、一時停止手段55、カウント手段56及び運転再開手段57からなる。一時停止手段55は、圧縮機6の運転を一時停止させる。カウント手段56は、判定手段43によって、流路切替装置7の動作が異常であると判定された誤動作回数を記憶部に記憶する。運転再開手段57は、一時停止手段55によって一時停止されている圧縮機6の運転を再開させる。
(Re-driving means 44)
The re-operation means 44 operates the compressor 6 when the determination means 43 determines that the operation of the flow path switching device 7 is abnormal, for example, when the flow path switching device 7 has not been switched. After stopping, restart the operation. The restarting means 44 includes a pause means 55, a counting means 56, and an operation restarting means 57. The pausing means 55 suspends the operation of the compressor 6. The counting means 56 stores in the storage unit the number of malfunctions determined by the determination means 43 that the operation of the flow path switching device 7 is abnormal. The operation resuming means 57 restarts the operation of the compressor 6 suspended by the pausing means 55.
 (異常停止手段45)
 異常停止手段45は、判定手段43によって流路切替装置7の動作が異常であると判定された誤動作回数が閾値回数以上となった際に、一時停止手段55によって停止している圧縮機6の運転を再開させずに、流路切替装置7の異常を報知する。誤動作回数は、上述の如く、カウント手段56によって記憶部に記憶されている。流路切替装置7の異常の報知は、例えば、音又は光によって行われるものである。
(Abnormal stop means 45)
The abnormal stop means 45 is a compressor 6 that is stopped by the temporary stop means 55 when the number of malfunctions determined by the determination means 43 that the operation of the flow path switching device 7 is abnormal exceeds the threshold number. The abnormality of the flow path switching device 7 is notified without restarting the operation. As described above, the number of malfunctions is stored in the storage unit by the counting means 56. The abnormality notification of the flow path switching device 7 is performed by, for example, sound or light.
 (空気調和機1の動作)
 図3は、本発明の実施の形態1に係る空気調和機1の動作を示すフローチャートである。次に、空気調和機1の動作について説明する。図3に示すように、流路切替手段41は、空気調和機1の運転が開始される(ステップS0)と、冷媒配管4を流れる冷媒が運転モードに応じた流れの方向となるように、流路切替装置7に対して信号を送信する(ステップS1)。次に、第1の圧力検知手段51は、第1の圧力検知部21を用いて冷媒の圧力P1を検知する。また、第2の圧力検知手段52は、第2の圧力検知部22を用いて冷媒の圧力P2を検知する(ステップS2)。その後、判定手段43は、運転モードを判定し、運転モードが冷房の際に(ステップS3の冷房)、圧力P1-圧力P2<0の場合、流路切替装置7が切り替わっていないことを判定する(ステップS4)。また、判定手段43は、運転モードが暖房の際に(ステップS3の暖房)、圧力P1-圧力P2>0の場合、流路切替装置7が切り替わっていないことを判定する(ステップS5)。空気調和機1は、判定手段43によって流路切替装置7が切り替わっていることが判定された場合に(ステップS4のNO又はステップS5のNO)、正常時の運転を続行する(ステップS10)。
(Operation of air conditioner 1)
FIG. 3 is a flowchart showing the operation of the air conditioner 1 according to the first embodiment of the present invention. Next, the operation of the air conditioner 1 will be described. As shown in FIG. 3, in the flow path switching means 41, when the operation of the air conditioner 1 is started (step S0), the refrigerant flowing through the refrigerant pipe 4 is in the flow direction according to the operation mode. A signal is transmitted to the flow path switching device 7 (step S1). Next, the first pressure detecting means 51 detects the pressure P1 of the refrigerant by using the first pressure detecting unit 21. Further, the second pressure detecting means 52 detects the pressure P2 of the refrigerant by using the second pressure detecting unit 22 (step S2). After that, the determination means 43 determines the operation mode, and determines that the flow path switching device 7 has not been switched when the operation mode is cooling (cooling in step S3) and the pressure P1-pressure P2 <0. (Step S4). Further, the determination means 43 determines that the flow path switching device 7 has not been switched when the operation mode is heating (heating in step S3) and the pressure P1-pressure P2> 0 (step S5). When it is determined by the determination means 43 that the flow path switching device 7 has been switched (NO in step S4 or NO in step S5), the air conditioner 1 continues the normal operation (step S10).
 一時停止手段55は、判定手段43によって流路切替装置7が切り替わっていないことが判定された場合に(ステップS4のYES又はステップS5のYES)、圧縮機6の運転を一時停止させる(ステップS6)。この際に、カウント手段56は、判定手段43によって、流路切替装置7が切り替わっていないことが判定された誤動作回数を記憶する(ステップS7)。ここで、異常停止手段45は、誤動作回数が予め定められた閾値回数以上となった際に(ステップS8のYES)、圧縮機6の運転を再開させずに、流路切替装置7の異常を報知する(ステップS9)。一方、運転再開手段57は、誤動作回数が予め定められた閾値回数未満の際に(ステップS8のNO)、圧縮機6の運転を再開する(ステップS0)。 When the determination means 43 determines that the flow path switching device 7 has not been switched (YES in step S4 or YES in step S5), the temporary stop means 55 suspends the operation of the compressor 6 (step S6). ). At this time, the counting means 56 stores the number of malfunctions determined by the determining means 43 that the flow path switching device 7 has not been switched (step S7). Here, when the number of malfunctions exceeds a predetermined threshold number (YES in step S8), the abnormal stop means 45 causes an abnormality in the flow path switching device 7 without restarting the operation of the compressor 6. Notify (step S9). On the other hand, when the number of malfunctions is less than a predetermined threshold number (NO in step S8), the operation restarting means 57 restarts the operation of the compressor 6 (step S0).
 本実施の形態1によれば、制御部11は、圧力検知手段42が検知した圧力の値に基づいて流路切替装置7の動作が異常であるか否かを判定する。概して、配管内部における冷媒の圧力変化は、圧縮機6の運転開始直後から現れ、冷媒回路5の状態を表す指標として温度よりも追従性が高い。このため、制御部11は、圧縮機6の運転開始後、流路切替装置7の状態を速やかに判断することができる。したがって、制御部11は、圧縮機6の運転開始後、流路切替装置7の動作が異常であることを直ちに判定することができる。 According to the first embodiment, the control unit 11 determines whether or not the operation of the flow path switching device 7 is abnormal based on the pressure value detected by the pressure detecting means 42. In general, the change in the pressure of the refrigerant inside the pipe appears immediately after the start of operation of the compressor 6, and has a higher followability than the temperature as an index indicating the state of the refrigerant circuit 5. Therefore, the control unit 11 can quickly determine the state of the flow path switching device 7 after the operation of the compressor 6 is started. Therefore, the control unit 11 can immediately determine that the operation of the flow path switching device 7 is abnormal after the operation of the compressor 6 is started.
 また、本実施の形態1によれば、判定手段43は、減算値P1-P2と0との大小の比較を行う。概して、冷媒が冷媒配管4を冷房が行われる方向に流れていた場合、減算値P1-P2は、0より大きくなる。また、冷媒が冷媒配管4を暖房が行われる方向に流れていた場合、減算値P1-P2は、0より小さくなる。このため、判定手段43は、減算値P1-P2の値によって、冷媒配管4を流れる冷媒の流れる方向を検知することができる。したがって、制御部11は、減算値P1-P2と0との大小の比較をすることで、流路切替装置7が切り替わっていないことを判定することができる。 Further, according to the first embodiment, the determination means 43 compares the magnitude of the subtraction values P1-P2 and 0. Generally, when the refrigerant flows through the refrigerant pipe 4 in the direction in which the cooling is performed, the subtraction values P1-P2 become larger than 0. Further, when the refrigerant flows through the refrigerant pipe 4 in the direction in which heating is performed, the subtraction values P1-P2 become smaller than 0. Therefore, the determination means 43 can detect the flow direction of the refrigerant flowing through the refrigerant pipe 4 by the value of the subtraction values P1-P2. Therefore, the control unit 11 can determine that the flow path switching device 7 has not been switched by comparing the magnitudes of the subtraction values P1-P2 and 0.
 更に、本実施の形態1によれば、再運転手段44は、判定手段43によって流路切替装置7の動作が異常であると判定された際に、圧縮機6の運転を停止させた後、運転を再開させる。このため、空気調和機1は、動作状態がリセットされる。したがって、流路切替装置7は、動作の異常を回復する可能性がある。 Further, according to the first embodiment, when the determination means 43 determines that the operation of the flow path switching device 7 is abnormal, the re-operation means 44 stops the operation of the compressor 6 and then stops the operation of the compressor 6. Resume operation. Therefore, the operating state of the air conditioner 1 is reset. Therefore, the flow path switching device 7 may recover from the abnormal operation.
 また、本実施の形態1によれば、異常停止手段45は、判定手段43によって流路切替装置7の動作が異常であると判定された誤動作回数が閾値回数以上となった際に、再運転手段44によって停止している圧縮機6の運転を再開させない。これにより、再運転手段44は、閾値回数になるまで圧縮機6を一時停止させ、運転を再開させる。したがって、空気調和機1は、流路切替装置7の動作の異常が回復するよう、閾値回数になるまで動作状態のリセットを試行できるため、流路切替装置7の動作を安定させることができる。また、判定手段43は、閾値回数になるまで流路切替装置7の動作について、判定を行う。このため、判定手段43が誤った判定を行ったとしても、判定手段43が行った判定は、以降の判定により訂正される可能性が高い。したがって、空気調和機1は、判定手段43が判定した結果に対する信頼性を向上させることができる。 Further, according to the first embodiment, the abnormal stop means 45 restarts when the number of malfunctions determined by the determination means 43 that the operation of the flow path switching device 7 is abnormal becomes equal to or more than the threshold number. The operation of the compressor 6 stopped by the means 44 is not restarted. As a result, the restarting means 44 suspends the compressor 6 until the threshold number is reached, and restarts the operation. Therefore, since the air conditioner 1 can try to reset the operating state until the threshold number is reached so that the abnormality in the operation of the flow path switching device 7 is recovered, the operation of the flow path switching device 7 can be stabilized. Further, the determination means 43 determines the operation of the flow path switching device 7 until the threshold number is reached. Therefore, even if the determination means 43 makes an erroneous determination, the determination made by the determination means 43 is likely to be corrected by the subsequent determination. Therefore, the air conditioner 1 can improve the reliability of the result determined by the determination means 43.
 更に、本実施の形態1によれば、異常停止手段45は、流路切替装置7の異常を報知する。これにより、制御部11は、流路切替装置7の動作が異常であることをユーザに認識させる。したがって、空気調和機1のユーザは、流路切替装置7の異常に速やかに対処することができる。 Further, according to the first embodiment, the abnormality stopping means 45 notifies the abnormality of the flow path switching device 7. As a result, the control unit 11 makes the user recognize that the operation of the flow path switching device 7 is abnormal. Therefore, the user of the air conditioner 1 can quickly deal with the abnormality of the flow path switching device 7.
 実施の形態2.
 図4は、実施の形態2に係る空気調和機100を示す回路図である。図4に示すように、本実施の形態2は、空気調和機100が第1の圧力検知部及び第2の圧力検知部を有しておらず、経時圧力検知部131を有している点で実施の形態1と相違する。本実施の形態2では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2.
FIG. 4 is a circuit diagram showing the air conditioner 100 according to the second embodiment. As shown in FIG. 4, in the second embodiment, the air conditioner 100 does not have the first pressure detecting unit and the second pressure detecting unit, but has the time-dependent pressure detecting unit 131. Is different from the first embodiment. In the second embodiment, the same parts as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
 (経時圧力検知部131)
 空気調和機100は、第1の圧力検知部及び第2の圧力検知部を有していない。経時圧力検知部131は、流路切替装置7と室外熱交換器8との間に、1基設けられ、配管を流れる冷媒の圧力P3及び圧力P4を検知する装置である。圧力P3は、圧縮機6が運転開始時点の冷媒配管4を流れる冷媒の圧力である。圧力P4は、圧力P3から閾値時間の経過後に検知される冷媒配管4を流れる冷媒の圧力である。なお、経時圧力検知部131は、流路切替装置7と室外熱交換器8との間ではなく、流路切替装置7と室内熱交換器12との間に設けられていてもよい。
(Pressure detection unit 131 over time)
The air conditioner 100 does not have a first pressure detecting unit and a second pressure detecting unit. The time-lapse pressure detecting unit 131 is a device provided between the flow path switching device 7 and the outdoor heat exchanger 8 and detects the pressure P3 and the pressure P4 of the refrigerant flowing through the pipe. The pressure P3 is the pressure of the refrigerant flowing through the refrigerant pipe 4 when the compressor 6 starts operation. The pressure P4 is the pressure of the refrigerant flowing through the refrigerant pipe 4 detected after the lapse of the threshold time from the pressure P3. The time-lapse pressure detection unit 131 may be provided not between the flow path switching device 7 and the outdoor heat exchanger 8 but between the flow path switching device 7 and the indoor heat exchanger 12.
 (制御部111)
 図5は、実施の形態2に係る制御部111を示す機能ブロック図である。図5に示すように、制御部111は、圧力検知手段142が有する第1の圧力検知手段151及び第2の圧力検知手段152並びに判定手段143のアルゴリズムが実施の形態1と異なる。
(Control unit 111)
FIG. 5 is a functional block diagram showing the control unit 111 according to the second embodiment. As shown in FIG. 5, in the control unit 111, the algorithms of the first pressure detecting means 151, the second pressure detecting means 152, and the determining means 143 included in the pressure detecting means 142 are different from those of the first embodiment.
 (圧力検知手段142)
 圧力検知手段142は、配管内を流れる冷媒の圧力を検知する。圧力検知手段142は、第1の圧力検知手段151及び第2の圧力検知手段152からなる。第1の圧力検知手段151は、経時圧力検知部131の検知結果を受信して、圧縮機6が運転開始時点の配管を流れる冷媒の圧力P3を検知する。また、第2の圧力検知手段152は、経時圧力検知部131を用いて、第1の圧力検知手段151が圧縮機6の運転開始時点の配管を流れる冷媒の圧力P3を検知してから閾値時間の経過後に、配管を流れる冷媒の圧力P4を検知する。
(Pressure detecting means 142)
The pressure detecting means 142 detects the pressure of the refrigerant flowing in the pipe. The pressure detecting means 142 includes a first pressure detecting means 151 and a second pressure detecting means 152. The first pressure detecting means 151 receives the detection result of the time-lapse pressure detecting unit 131, and the compressor 6 detects the pressure P3 of the refrigerant flowing through the pipe at the start of operation. Further, the second pressure detecting means 152 uses the time-lapse pressure detecting unit 131 to detect the pressure P3 of the refrigerant flowing through the piping at the start of operation of the compressor 6 by the first pressure detecting means 151, and then the threshold time. After the lapse of time, the pressure P4 of the refrigerant flowing through the pipe is detected.
 (判定手段143)
 判定手段143は、運転モードが冷房の際に、第1の圧力検知手段151が検知した圧力P3から前記第2の圧力検知手段152が検知した圧力P4を減算した減算値P3-P4が0より大きい場合、流路切替装置7が切り替わっていないことを判定する。また、判定手段143は、運転モードが暖房の際に、減算値P3-P4が0より小さい場合、流路切替装置7が切り替わっていないことを判定する。なお、上述のように経時圧力検知部131が流路切替装置7と室外熱交換器8との間ではなく、流路切替装置7と室内熱交換との間に設けられていた場合、判定手段143の判定は、逆転する。即ち、判定手段143は、運転モードが冷房の際に、減算値P3-P4が0より小さい場合、流路切替装置7が切り替わっていないことを判定する。また、判定手段143は、運転モードが暖房の際に、減算値P3-P4が0より大きい場合、流路切替装置7が切り替わっていないことを判定する。
(Judgment means 143)
The determination means 143 has a subtraction value P3-P4 obtained by subtracting the pressure P4 detected by the second pressure detecting means 152 from the pressure P3 detected by the first pressure detecting means 151 when the operation mode is cooling from 0. If it is large, it is determined that the flow path switching device 7 has not been switched. Further, the determination means 143 determines that the flow path switching device 7 has not been switched when the subtraction value P3-P4 is smaller than 0 when the operation mode is heating. When the time-lapse pressure detecting unit 131 is provided between the flow path switching device 7 and the indoor heat exchange, not between the flow path switching device 7 and the outdoor heat exchanger 8, as described above, the determination means. The determination of 143 is reversed. That is, when the operation mode is cooling, the determination means 143 determines that the flow path switching device 7 has not been switched when the subtraction value P3-P4 is smaller than 0. Further, the determination means 143 determines that the flow path switching device 7 has not been switched when the subtraction value P3-P4 is larger than 0 when the operation mode is heating.
 図6は、実施の形態2に係る空気調和機100の動作を示すフローチャートである。次に、空気調和機100の動作について説明する。図6に示すように、流路切替手段41は、空気調和機100の運転が開始される(ステップS20)と、第1の圧力検知手段151は、経時圧力検知部131を用いて冷媒の圧力P3を検知する(ステップS21)。次に、流路切替手段41は、冷媒配管4を流れる冷媒が運転モードに応じた流れの方向となるように、流路切替装置7に対して、信号を送信する(ステップS22)。また、第2の圧力検知手段152は、経時圧力検知部131を用いて冷媒の圧力P4を検知する(ステップS23)。その後、判定手段143は、運転モードを判定し、運転モードが冷房の際に(ステップS24の冷房)、圧力P3-圧力P4>0の場合、流路切替装置7が切り替わっていないことを判定する(ステップS25)。また、判定手段143は、運転モードが暖房の際に(ステップS24の暖房)、圧力P3-圧力P4<0の場合、流路切替装置7が切り替わっていないことを判定する(ステップS26)。空気調和機100は、判定手段143によって流路切替装置7が切り替わっていることが判定された場合に(ステップS25のNO又はステップS26のNO)、正常時の運転を続行する(ステップS31)。 FIG. 6 is a flowchart showing the operation of the air conditioner 100 according to the second embodiment. Next, the operation of the air conditioner 100 will be described. As shown in FIG. 6, when the flow path switching means 41 starts the operation of the air conditioner 100 (step S20), the first pressure detecting means 151 uses the pressure detecting unit 131 over time to reduce the pressure of the refrigerant. P3 is detected (step S21). Next, the flow path switching means 41 transmits a signal to the flow path switching device 7 so that the refrigerant flowing through the refrigerant pipe 4 has a flow direction according to the operation mode (step S22). Further, the second pressure detecting means 152 detects the pressure P4 of the refrigerant by using the pressure detecting unit 131 over time (step S23). After that, the determination means 143 determines the operation mode, and determines that the flow path switching device 7 has not been switched when the operation mode is cooling (cooling in step S24) and the pressure P3-pressure P4> 0. (Step S25). Further, the determination means 143 determines that the flow path switching device 7 has not been switched when the operation mode is heating (heating in step S24) and the pressure P3-pressure P4 <0 (step S26). When it is determined by the determination means 143 that the flow path switching device 7 has been switched (NO in step S25 or NO in step S26), the air conditioner 100 continues the normal operation (step S31).
 一時停止手段55は、判定手段143によって流路切替装置7が切り替わっていないことが判定された場合に(ステップS25のYES又はステップS26のYES)、圧縮機6の運転を一時的に停止させる(ステップS27)。この際に、カウント手段56は、判定手段143によって、流路切替装置7が切り替わっていないことが判定された誤動作回数を記憶する(ステップS28)。ここで、異常停止手段45は、誤動作回数が予め定められた閾値回数以上となった際に(ステップS29のYES)、圧縮機6の運転を再開させずに、流路切替装置7の異常を報知する(ステップS30)。一方、運転再開手段57は、誤動作回数が予め定められた閾値回数未満の際には(ステップS29のNO)、冷媒配管4を流れる冷媒の圧力状態が略一定となった後に、再度運転を開始する(ステップS20)。 When the determination means 143 determines that the flow path switching device 7 has not been switched (YES in step S25 or YES in step S26), the temporary stop means 55 temporarily stops the operation of the compressor 6 (YES in step S25 or YES in step S26). Step S27). At this time, the counting means 56 stores the number of malfunctions determined by the determining means 143 that the flow path switching device 7 has not been switched (step S28). Here, when the number of malfunctions exceeds a predetermined threshold number (YES in step S29), the abnormal stop means 45 causes an abnormality in the flow path switching device 7 without restarting the operation of the compressor 6. Notify (step S30). On the other hand, when the number of malfunctions is less than the predetermined threshold number (NO in step S29), the operation restarting means 57 restarts the operation after the pressure state of the refrigerant flowing through the refrigerant pipe 4 becomes substantially constant. (Step S20).
 本実施の形態2によれば、判定手段43は、減算値P3-P4と0との大小の比較を行う。概して、冷媒が冷媒配管4を冷房が行われる方向に流れていた場合、減算値P3-P4は、0より小さくなる。また、冷媒が冷媒配管4を暖房が行われる方向に流れていた場合、減算値P3-P4は、0より大きくなる。このため、判定手段43は、減算値P3-P4の値によって、冷媒配管4を流れる冷媒の流路を検知することができる。したがって、制御部11は、減算値P3-P4と0との大小の比較をすることで、流路切替装置7が切り替わっていないことを判定することができる。 According to the second embodiment, the determination means 43 compares the magnitude of the subtraction values P3-P4 and 0. Generally, when the refrigerant flows through the refrigerant pipe 4 in the direction in which the cooling is performed, the subtraction value P3-P4 becomes smaller than 0. Further, when the refrigerant flows through the refrigerant pipe 4 in the direction in which heating is performed, the subtraction value P3-P4 becomes larger than 0. Therefore, the determination means 43 can detect the flow path of the refrigerant flowing through the refrigerant pipe 4 by the value of the subtraction value P3-P4. Therefore, the control unit 11 can determine that the flow path switching device 7 has not been switched by comparing the magnitudes of the subtraction values P3-P4 and 0.
 また、本実施の形態2によれば、配管を流れる冷媒の圧力を検知する装置は、経時圧力検知部131が1基設けられればよい。このため、本実施の形態2の空気調和機100は、実施の形態1の空気調和機1よりも少ない機器で、流路切替装置7の状態を判断することができる。したがって、室外機2は、内部の空間がより確保され、設計の自由度を向上させることができる。 Further, according to the second embodiment, the device for detecting the pressure of the refrigerant flowing through the pipe may be provided with one time-dependent pressure detecting unit 131. Therefore, the air conditioner 100 of the second embodiment can determine the state of the flow path switching device 7 with fewer devices than the air conditioner 1 of the first embodiment. Therefore, the outdoor unit 2 can secure more internal space and improve the degree of freedom in design.
 実施の形態1及び実施の形態2によれば、判定手段43及び判定手段143は、減算値P1-P2及び減算値P3-P4と0との大小の比較を行う。概して、減算値P1-P2及び減算値P3-P4がとりうる値の範囲は、冷媒が冷媒配管4を流れる方向及び冷媒の圧力を検知する装置が設けられる場所によって決定する。冷媒の圧力を検知する装置が設けられる場所は取付の際に明らかであるため、減算値P1-P2及び減算値P3-P4の値によって、冷媒配管4を流れる冷媒が流れる方向が検知される。したがって、制御部11は、減算値P1-P2及び減算値P3-P4が運転モードによって推定される値の範囲外であった際に、流路切替装置7が切り替わっていないことを判定することができる。 According to the first embodiment and the second embodiment, the determination means 43 and the determination means 143 compare the magnitudes of the subtraction values P1-P2 and the subtraction values P3-P4 and 0. Generally, the range of values that the subtraction values P1-P2 and the subtraction values P3-P4 can take is determined by the direction in which the refrigerant flows through the refrigerant pipe 4 and the location where the device for detecting the pressure of the refrigerant is provided. Since the place where the device for detecting the pressure of the refrigerant is provided is clear at the time of installation, the direction in which the refrigerant flowing through the refrigerant pipe 4 flows is detected by the values of the subtraction values P1-P2 and the subtraction values P3-P4. Therefore, the control unit 11 can determine that the flow path switching device 7 has not been switched when the subtraction values P1-P2 and the subtraction values P3-P4 are out of the range of the values estimated by the operation mode. it can.
 1 空気調和機、2 室外機、3 室内機、4 冷媒配管、5 冷媒回路、6 圧縮機、7 流路切替装置、8 室外熱交換器、9 室外送風機、10 膨張部、11 制御部、12 室内熱交換器、13 室内送風機、21 第1の圧力検知部、22 第2の圧力検知部、41 流路切替手段、42 圧力検知手段、43 判定手段、44 再運転手段、45 異常停止手段、51 第1の圧力検知手段、52 第2の圧力検知手段、55 一時停止手段、56 カウント手段、57 運転再開手段、100 空気調和機、111 制御部、131 経時圧力検知部、142 圧力検知手段、143 判定手段、151 第1の圧力検知手段、152 第2の圧力検知手段。 1 air conditioner, 2 outdoor unit, 3 indoor unit, 4 refrigerant pipe, 5 refrigerant circuit, 6 compressor, 7 flow path switching device, 8 outdoor heat exchanger, 9 outdoor blower, 10 expansion unit, 11 control unit, 12 Indoor heat exchanger, 13 indoor blower, 21 first pressure detection unit, 22 second pressure detection unit, 41 flow path switching means, 42 pressure detection means, 43 judgment means, 44 restart means, 45 abnormal stop means, 51 First pressure detecting means, 52 Second pressure detecting means, 55 Pausing means, 56 Counting means, 57 Operation restarting means, 100 Air conditioner, 111 Control unit, 131 Time-lapse pressure detecting unit, 142 Pressure detecting means, 143 determination means, 151 first pressure detecting means, 152 second pressure detecting means.

Claims (7)

  1.  圧縮機、流路切替装置、室外熱交換器、膨張部及び室内熱交換器が配管により接続され、冷媒が流れる冷媒回路と、
     前記冷媒回路を構成する各機器の動作を制御する制御部と、を備え、
     前記制御部は、
     前記配管内を流れる冷媒の圧力を検知する圧力検知手段と、
     前記圧力検知手段が検知した圧力の値に基づいて前記流路切替装置の動作が異常であるか否かを判定する判定手段と、を有する
     空気調和機。
    A refrigerant circuit in which a compressor, a flow path switching device, an outdoor heat exchanger, an expansion part and an indoor heat exchanger are connected by piping and a refrigerant flows,
    A control unit that controls the operation of each device constituting the refrigerant circuit is provided.
    The control unit
    A pressure detecting means for detecting the pressure of the refrigerant flowing in the pipe, and
    An air conditioner having a determination means for determining whether or not the operation of the flow path switching device is abnormal based on the value of the pressure detected by the pressure detecting means.
  2.  前記圧力検知手段は、
     前記配管内を流れる冷媒の圧力を検知する第1の圧力検知手段と、
     前記配管内を流れる冷媒の圧力を検知する第2の圧力検知手段と、を有し、
     前記判定手段は、
     前記第1の圧力検知手段が検知した圧力の値から前記第2の圧力検知手段が検知した圧力の値を減算した減算値が運転モードによって推定される値の範囲外であった際に、前記流路切替装置が切り替わっていないことを判定する
     請求項1に記載の空気調和機。
    The pressure detecting means is
    A first pressure detecting means for detecting the pressure of the refrigerant flowing in the pipe, and
    It has a second pressure detecting means for detecting the pressure of the refrigerant flowing in the pipe.
    The determination means
    When the subtraction value obtained by subtracting the pressure value detected by the second pressure detecting means from the pressure value detected by the first pressure detecting means is out of the range of the value estimated by the operation mode, the said The air conditioner according to claim 1, wherein it is determined that the flow path switching device has not been switched.
  3.  前記流路切替装置と前記室外熱交換器との間に設けられ、前記流路切替装置と前記室外熱交換器との間に流れる冷媒の圧力を検知する第1の圧力検知部と、
     前記流路切替装置と前記室内熱交換器との間に設けられ、前記流路切替装置と前記室内熱交換器との間に流れる冷媒の圧力を検知する第2の圧力検知部と、を更に備え、
     前記第1の圧力検知手段は、
     前記第1の圧力検知部を用いて冷媒の圧力を検知し、
     前記第2の圧力検知手段は、
     前記第2の圧力検知部を用いて冷媒の圧力を検知し、
     前記判定手段は、
     運転モードが冷房の際に、前記減算値が0より小さい場合、前記流路切替装置が切り替わっていないことを判定し、
     運転モードが暖房の際に、前記減算値が0より大きい場合、前記流路切替装置が切り替わっていないことを判定する
     請求項2に記載の空気調和機。
    A first pressure detecting unit provided between the flow path switching device and the outdoor heat exchanger and detecting the pressure of the refrigerant flowing between the flow path switching device and the outdoor heat exchanger.
    A second pressure detecting unit provided between the flow path switching device and the indoor heat exchanger and detecting the pressure of the refrigerant flowing between the flow path switching device and the indoor heat exchanger is further provided. Prepare,
    The first pressure detecting means is
    The pressure of the refrigerant is detected using the first pressure detection unit, and the pressure is detected.
    The second pressure detecting means is
    The pressure of the refrigerant is detected using the second pressure detection unit, and the pressure is detected.
    The determination means
    If the subtraction value is less than 0 when the operation mode is cooling, it is determined that the flow path switching device has not been switched.
    The air conditioner according to claim 2, wherein when the operation mode is heating, when the subtraction value is larger than 0, it is determined that the flow path switching device has not been switched.
  4.  前記流路切替装置と前記室外熱交換器との間に設けられ、前記流路切替装置と前記室外熱交換器との間に流れる冷媒の圧力を検知する経時圧力検知部と、を更に備え、
     前記第1の圧力検知手段は、
     前記経時圧力検知部を用いて、前記圧縮機が運転開始時点の前記配管を流れる冷媒の圧力を検知し、
     前記第2の圧力検知手段は、
     前記経時圧力検知部を用いて、前記第1の圧力検知手段が前記圧縮機の運転開始時点の前記配管を流れる冷媒の圧力を検知してから閾値時間の経過後に、前記配管を流れる冷媒の圧力を検知し、
     前記判定手段は、
     運転モードが冷房の際に、前記減算値が0より大きい場合、前記流路切替装置が切り替わっていないことを判定し、
     運転モードが暖房の際に、前記減算値が0より小さい場合、前記流路切替装置が切り替わっていないことを判定する
     請求項2に記載の空気調和機。
    A time-dependent pressure detecting unit provided between the flow path switching device and the outdoor heat exchanger and detecting the pressure of the refrigerant flowing between the flow path switching device and the outdoor heat exchanger is further provided.
    The first pressure detecting means is
    Using the time-lapse pressure detection unit, the compressor detects the pressure of the refrigerant flowing through the pipe at the start of operation, and determines the pressure of the refrigerant.
    The second pressure detecting means is
    The pressure of the refrigerant flowing through the pipe is after a threshold time has elapsed since the first pressure detecting means detects the pressure of the refrigerant flowing through the pipe at the start of operation of the compressor by using the pressure detecting unit over time. Detected,
    The determination means
    When the operation mode is cooling, if the subtraction value is larger than 0, it is determined that the flow path switching device has not been switched.
    The air conditioner according to claim 2, wherein when the operation mode is heating, when the subtraction value is less than 0, it is determined that the flow path switching device has not been switched.
  5.  前記流路切替装置と前記室内熱交換器との間に設けられ、前記流路切替装置と前記室内熱交換器との間に流れる冷媒の圧力を検知する経時圧力検知部と、を更に備え、
     前記第1の圧力検知手段は、
     前記経時圧力検知部を用いて、前記圧縮機が運転開始時点の前記配管を流れる冷媒の圧力を検知し、
     前記第2の圧力検知手段は、
     前記経時圧力検知部を用いて、前記第1の圧力検知手段が前記圧縮機の運転開始時点の前記配管を流れる冷媒の圧力を検知してから閾値時間の経過後に、前記配管を流れる冷媒の圧力を検知し、
     前記判定手段は、
     運転モードが冷房の際に、前記減算値が0より小さい場合、前記流路切替装置が切り替わっていないことを判定し、
     運転モードが暖房の際に、前記減算値が0より大きい場合、前記流路切替装置が切り替わっていないことを判定する
     請求項2に記載の空気調和機。
    A time-dependent pressure detecting unit provided between the flow path switching device and the indoor heat exchanger and detecting the pressure of the refrigerant flowing between the flow path switching device and the indoor heat exchanger is further provided.
    The first pressure detecting means is
    Using the time-lapse pressure detection unit, the compressor detects the pressure of the refrigerant flowing through the pipe at the start of operation, and determines the pressure of the refrigerant.
    The second pressure detecting means is
    The pressure of the refrigerant flowing through the pipe is after a threshold time has elapsed since the first pressure detecting means detects the pressure of the refrigerant flowing through the pipe at the start of operation of the compressor by using the pressure detecting unit over time. Detected,
    The determination means
    If the subtraction value is less than 0 when the operation mode is cooling, it is determined that the flow path switching device has not been switched.
    The air conditioner according to claim 2, wherein when the operation mode is heating, when the subtraction value is larger than 0, it is determined that the flow path switching device has not been switched.
  6.  前記制御部は、
     前記判定手段によって前記流路切替装置の動作が異常であると判定された際に、前記圧縮機の運転を停止させた後、運転を再開させる再運転手段を更に有する
     請求項1~5のいずれか1項に記載の空気調和機。
    The control unit
    Any of claims 1 to 5, further comprising a re-operation means for stopping the operation of the compressor and then restarting the operation when the determination means determines that the operation of the flow path switching device is abnormal. Or the air conditioner according to item 1.
  7.  前記制御部は、
     前記判定手段によって前記流路切替装置の動作が異常であると判定された誤動作回数が閾値回数以上となった際に、前記再運転手段によって停止している前記圧縮機の運転を再開させずに、前記流路切替装置の異常を報知する異常停止手段と、を更に有する
     請求項6に記載の空気調和機。
    The control unit
    When the number of malfunctions determined by the determination means to be abnormal in the operation of the flow path switching device exceeds the threshold number, the operation of the compressor stopped by the re-operation means is not restarted. The air conditioner according to claim 6, further comprising an abnormal stop means for notifying an abnormality of the flow path switching device.
PCT/JP2019/045048 2019-11-18 2019-11-18 Air conditioner WO2021100078A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021558041A JPWO2021100078A1 (en) 2019-11-18 2019-11-18
PCT/JP2019/045048 WO2021100078A1 (en) 2019-11-18 2019-11-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/045048 WO2021100078A1 (en) 2019-11-18 2019-11-18 Air conditioner

Publications (1)

Publication Number Publication Date
WO2021100078A1 true WO2021100078A1 (en) 2021-05-27

Family

ID=75981131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045048 WO2021100078A1 (en) 2019-11-18 2019-11-18 Air conditioner

Country Status (2)

Country Link
JP (1) JPWO2021100078A1 (en)
WO (1) WO2021100078A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320753A (en) * 1991-04-18 1992-11-11 Toshiba Corp Air conditioner
JPH0650642A (en) * 1992-07-29 1994-02-25 Daikin Ind Ltd Air conditioner
JPH10160300A (en) * 1996-11-26 1998-06-19 Daikin Ind Ltd Air conditioner
JP2013164238A (en) * 2012-02-13 2013-08-22 Mitsubishi Heavy Ind Ltd Air conditioning device, and four-way valve control method for air conditioning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320753A (en) * 1991-04-18 1992-11-11 Toshiba Corp Air conditioner
JPH0650642A (en) * 1992-07-29 1994-02-25 Daikin Ind Ltd Air conditioner
JPH10160300A (en) * 1996-11-26 1998-06-19 Daikin Ind Ltd Air conditioner
JP2013164238A (en) * 2012-02-13 2013-08-22 Mitsubishi Heavy Ind Ltd Air conditioning device, and four-way valve control method for air conditioning device

Also Published As

Publication number Publication date
JPWO2021100078A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP5405161B2 (en) Air conditioner and energy equipment
KR100690683B1 (en) Air conditioner and heating operation control method therof
EP3819564B1 (en) Refrigeration cycle device
JP2010506132A (en) Method and apparatus for controlling stop operation of air conditioner
JP6716030B2 (en) Refrigeration cycle equipment
JP6692493B2 (en) Air conditioner outdoor unit
KR102337730B1 (en) Air conditional and control method thereof
US20180073786A1 (en) Air-conditioning apparatus
WO2021145007A1 (en) Refrigeration cycle device
WO2020115935A1 (en) Air conditioning system
CN111033152B (en) Refrigerating machine
WO2016060145A1 (en) Air conditioner
JP2007212023A (en) Air conditioning system
KR102500807B1 (en) Air conditioner and a method for controlling the same
JP6304194B2 (en) Air conditioner
WO2021100078A1 (en) Air conditioner
JP3589203B2 (en) Air conditioner
JP6650567B2 (en) Air conditioner
JP7350151B2 (en) Refrigeration cycle equipment
KR101485350B1 (en) Air-conditioner for fire
KR102368987B1 (en) Air conditional and control method thereof
JP6021401B2 (en) Air conditioner and its control device
JP6464700B2 (en) Air conditioner
JP2001280716A (en) Air conditioner
JP3791443B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558041

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953131

Country of ref document: EP

Kind code of ref document: A1