JPH04222353A - Operation controller for air conditioner - Google Patents

Operation controller for air conditioner

Info

Publication number
JPH04222353A
JPH04222353A JP2405706A JP40570690A JPH04222353A JP H04222353 A JPH04222353 A JP H04222353A JP 2405706 A JP2405706 A JP 2405706A JP 40570690 A JP40570690 A JP 40570690A JP H04222353 A JPH04222353 A JP H04222353A
Authority
JP
Japan
Prior art keywords
opening degree
refrigerant
temperature
expansion valve
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2405706A
Other languages
Japanese (ja)
Other versions
JP2500519B2 (en
Inventor
Kenji Miyata
賢治 宮田
Masami Horiuchi
正美 堀内
Tsugunori Inoue
世紀 井上
Masahiro Wada
全弘 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2405706A priority Critical patent/JP2500519B2/en
Publication of JPH04222353A publication Critical patent/JPH04222353A/en
Application granted granted Critical
Publication of JP2500519B2 publication Critical patent/JP2500519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To reduce the frequencies of starts and stops by preventing occurrence of instant overrising of high pressure side pressure and discharged-refrigerant temperature at the time of compressor start during heating operation of an air conditioner. CONSTITUTION:At the time of start of a compressor during heating operation, an initial opening degree of a motor-operated expansion valve 5 is retained small by an initial opening degree control means 40. If the discharged-refrigerant temperature exceeds a prescribed value, the opening degree of the motor- operated expansion valve 5 is increased gradually little by an opening degree increasing control means 51. When a prescribed time period has elapsed after starting, control is transferred by a transfer control means 52 to a normal opening degree control means 53 which controls the opening degree of the motor-operated expansion valve 4 depending on a refrigerant state. By this, first an overrising of high pressure side pressure is restricted, and next, an overrising of the discharged refrigerant temperature is restricted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、空気調和装置の運転制
御装置に係り、特に暖房運転中の圧縮機起動時における
発停回数の低減対策に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control device for an air conditioner, and more particularly to a measure for reducing the number of times a compressor starts and stops during heating operation.

【0002】0002

【従来の技術】従来より、例えば、特開昭60―185
076号公報に開示される如く、圧縮機、熱源側熱交換
器、電動膨張弁及び利用側熱交換器を順次接続した冷媒
回路を備えた空気調和装置の運転制御装置として、冷媒
の過熱度又は過冷却度を検出し、通常冷房運転時は過熱
度を、通常暖房運転時は過冷却度をそれぞれ所定値に保
持するよう上記電動膨張弁の開度を制御する一方、冷凍
装置の運転開始時には、電動膨張弁の開度を運転モ―ド
に応じて予め設定された所定開度に制御することにより
、目標開度への速やかな収束を図ろうとするものは公知
の技術である。
[Prior Art] Conventionally, for example, Japanese Patent Application Laid-Open No. 60-185
As disclosed in Publication No. 076, as an operation control device for an air conditioner equipped with a refrigerant circuit in which a compressor, a heat source side heat exchanger, an electric expansion valve, and a user side heat exchanger are sequentially connected, it is possible to control the degree of superheating or The degree of supercooling is detected, and the opening degree of the electric expansion valve is controlled to maintain the degree of superheat at a predetermined value during normal cooling operation and the degree of subcooling during normal heating operation. This is a known technique that attempts to quickly converge to a target opening by controlling the opening of an electric expansion valve to a predetermined opening that is set in advance according to the operation mode.

【0003】0003

【発明が解決しようとする課題】しかしながら、上記従
来のものにおいて、暖房運転時に電動膨張弁の初期開度
を一定に制御する場合、以下のような問題があった。例
えば、電動膨張弁の初期開度が小さいときには、図7に
示すように、高圧側圧力Hp は起動時xo から過上
昇を生じることなく略良好な状態で変化するが、吐出冷
媒温度T2 は、図8に示すごとく立上がり時に瞬間的
な過上昇となるピ―ク部を生じ(図中の時刻x1 にお
けるa部)、吐出管保護等により空気調和装置が停止す
ることがある。一方、電動膨張弁の開度が大きいときに
は、吐出冷媒温度T2 は図10に示すようにピ―ク部
を示すことなく略良好な状態で変化するが、高圧側圧力
Hp は図9に示すごとく立上がり時にピ―ク部を生じ
(図中の時刻x2 におけるb部)、高圧カット等によ
り空気調和装置が停止することがある。すなわち、暖房
運転時、電動膨張弁の開度が小さいと利用側熱交換器に
おける冷媒の蒸発量つまり圧縮機への冷媒の循環量が少
ないことから吐出冷媒温度が過上昇するものであり、電
動膨張弁の開度が大きいと逆に冷媒の循環量が多いのに
熱源側熱交換器の凝縮能力が十分でないうちに多量の冷
媒が吐出されることによるものである。そして、このよ
うな吐出冷媒温度や高圧側圧力の過上昇により空気調和
装置が運転停止する回数が多いために、空気調和装置の
使用限界が狭められるとともに、その都度各弁の切換え
や圧縮機の起動処理が必要となるので、空気調和装置の
信頼性が損なわれるという問題があった。
However, in the above-mentioned conventional device, when the initial opening degree of the electric expansion valve is controlled to be constant during heating operation, there are the following problems. For example, when the initial opening degree of the electric expansion valve is small, as shown in FIG. 7, the high-pressure side pressure Hp changes from xo at the time of startup in a substantially good condition without excessive rise, but the discharge refrigerant temperature T2 As shown in FIG. 8, a peak portion resulting in instantaneous excessive rise occurs at the time of startup (section a at time x1 in the figure), and the air conditioner may be stopped due to discharge pipe protection or the like. On the other hand, when the opening degree of the electric expansion valve is large, the discharge refrigerant temperature T2 changes in an almost favorable condition without showing a peak as shown in Fig. 10, but the high pressure side pressure Hp changes as shown in Fig. 9. A peak portion occurs at startup (portion b at time x2 in the diagram), and the air conditioner may stop due to high pressure cut, etc. In other words, during heating operation, if the opening degree of the electric expansion valve is small, the amount of refrigerant evaporated in the heat exchanger on the user side, that is, the amount of refrigerant circulated to the compressor is small, and the temperature of the discharged refrigerant rises excessively. This is because when the opening degree of the expansion valve is large, the amount of refrigerant circulated is large, but a large amount of refrigerant is discharged before the condensing capacity of the heat source side heat exchanger is insufficient. Since the air conditioner frequently stops operating due to such excessive rises in discharge refrigerant temperature and high-pressure side pressure, the operating limits of the air conditioner are narrowed, and each valve has to be switched or the compressor must be changed each time. Since startup processing is required, there is a problem in that the reliability of the air conditioner is impaired.

【0004】本発明は斯かる点に鑑み、特に上記図8及
び図9において、吐出冷媒温度のピ―クは運転開始後6
0秒程度の時間(図8の時間xo 〜x1)が経過した
時に現れるのに対し、高圧側圧力のピ―クは運転開始後
10秒程度の時間(図9の時間xo 〜x2 )が経過
したときに現れるという時間差があることに着目してな
されたものであって、その目的は、圧縮機の起動時、ま
ず最初に現れる高圧側圧力の過上昇を抑制しながら、次
に吐出冷媒温度の過上昇を抑制する処置を講ずることに
より、空気調和装置の発停回数を低減し、もって、使用
限界の拡大と信頼性の向上とを図ることにある。
[0004] The present invention has been developed in view of the above points, and particularly in FIGS. 8 and 9, the discharge refrigerant temperature peaks at 6 pm after the start of operation.
The peak of high-pressure side pressure appears when a time of about 0 seconds has passed (times xo to x1 in Figure 8), whereas the peak of high pressure side pressure occurs after a time of about 10 seconds has passed (times xo to x2 in Figure 9) after the start of operation. This was done by focusing on the fact that there is a time lag in the high-pressure side pressure that appears when the compressor starts up. The purpose is to reduce the number of times the air conditioner starts and stops by taking measures to suppress excessive rise in the air conditioner, thereby expanding the usage limit and improving reliability.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
、本発明の解決手段は、運転開始直後は電動膨張弁の開
度を小さめに保持し、吐出冷媒温度の上昇に応じて、電
動膨張弁の開度を徐々に増大させていくことにある。
[Means for Solving the Problems] In order to achieve the above object, the solving means of the present invention maintains the opening degree of the electric expansion valve at a small level immediately after the start of operation, and operates the electric expansion valve as the temperature of the discharged refrigerant rises. The purpose is to gradually increase the opening degree of the valve.

【0006】具体的に請求項1の発明の講じた手段は、
図1に示すように(破線部分を含まず)、圧縮機(1)
、熱源側熱交換器(3)、電動膨張弁(5)及び利用側
熱交換器(6)を順次接続してなる冷媒回路(9)と、
該冷媒回路(9)の冷媒の状態に応じて上記電動膨張弁
(5)の開度を制御する通常開度制御手段(53)とを
備えた空気調和装置の運転制御装置を前提とする。
Specifically, the measures taken by the invention of claim 1 are as follows:
As shown in Figure 1 (not including the dashed line part), the compressor (1)
, a refrigerant circuit (9) formed by sequentially connecting a heat source side heat exchanger (3), an electric expansion valve (5), and a user side heat exchanger (6);
The present invention is based on an operation control device for an air conditioner including normal opening degree control means (53) for controlling the opening degree of the electric expansion valve (5) according to the state of the refrigerant in the refrigerant circuit (9).

【0007】そして、上記圧縮機(1)の吐出冷媒の温
度を検出する吐出温度検出手段(Th2)と、暖房運転
中の圧縮機(1)の起動時、上記電動膨張弁(5)の初
期開度を小開度に保持するよう制御する初期開度制御手
段(50)と、上記吐出温度検出手段(Th2)の出力
を受け、圧縮機(1)の起動後、吐出冷媒温度が所定値
以上に達すると上記電動膨張弁(5)の開度を上記初期
開度から微小開度ずつ徐々に増大させるよう制御する開
度増大制御手段(51)と、圧縮機(1)の起動後所定
時間が経過したときに、上記開度増大制御手段(51)
の制御を停止させて上記通常開度制御手段(53)の制
御に移行するよう制御する移行制御手段(52)とを設
ける構成としたものである。
A discharge temperature detection means (Th2) for detecting the temperature of the refrigerant discharged from the compressor (1), and a discharge temperature detection means (Th2) for detecting the temperature of the refrigerant discharged from the compressor (1), and a discharge temperature detection means (Th2) for detecting the temperature of the refrigerant discharged from the compressor (1); After receiving the output of the initial opening degree control means (50) that controls the opening degree to maintain it at a small opening degree and the discharge temperature detection means (Th2), after the compressor (1) is started, the discharge refrigerant temperature is set to a predetermined value. An opening increase control means (51) that controls the opening of the electric expansion valve (5) to gradually increase by small openings from the initial opening when the opening of the electric expansion valve (5) is reached, and a predetermined opening after starting the compressor (1). When the time elapses, the opening degree increase control means (51)
A transition control means (52) is provided to stop the control and shift to the control of the normal opening degree control means (53).

【0008】請求項2の発明の講じた手段は,上記請求
項1の発明において、冷媒の蒸発温度を検出する蒸発温
度検出手段(Thc)と、冷媒の凝縮温度を検出する凝
縮温度検出手段(The)とを設ける。
The means taken by the invention of claim 2 is that in the invention of claim 1, evaporation temperature detection means (Thc) for detecting the evaporation temperature of the refrigerant, and condensation temperature detection means (Thc) for detecting the condensation temperature of the refrigerant. The) is provided.

【0009】そして、通常開度制御手段(53)を、上
記吐出温度検出手段(Th2)、蒸発温度検出手段(T
hc)及び凝縮温度検出手段(The)の出力を受け、
吐出冷媒温度が、冷媒の蒸発温度及び凝縮温度から求め
られる最適な冷凍効果を与える吐出冷媒の最適温度に収
束するよう電動膨張弁(5)の開度を制御するものとし
たものである。
The normal opening control means (53) is connected to the discharge temperature detection means (Th2) and the evaporation temperature detection means (T).
hc) and the output of the condensing temperature detection means (The),
The opening degree of the electric expansion valve (5) is controlled so that the temperature of the discharged refrigerant converges to the optimum temperature of the discharged refrigerant that provides the optimum refrigeration effect determined from the evaporation temperature and condensation temperature of the refrigerant.

【0010】0010

【作用】以上の構成により、請求項1の発明では、暖房
運転中の圧縮機(1)の起動時、初期開度制御手段(5
0)により、電動膨張弁(5)の初期開度が所定の小開
度に保持されるので、高圧側圧力の立上がり時の瞬間的
な過上昇を生じることなく、ほぼ良好な変化が得られる
。そして、吐出温度検出手段(Th2)で検出される吐
出冷媒温度が所定値以上に達すると、開度増大制御手段
(51)により、電動膨張弁(5)の開度を上記初期開
度から微小開度ずつ徐々に増大させるよう制御されるの
で、この電動膨張弁(5)開度の増大変化により、吐出
冷媒温度の上昇が抑制され、立上がり時の瞬間的な過上
昇を生じることなく良好な変化が得られる。さらに、起
動後所定時間が経過すると、移行制御手段(52)によ
り、通常開度制御手段(53)による通常運転に切り換
えられるので、以後の冷媒状態が適正に維持されること
になる。したがって、高圧側圧力や吐出冷媒温度の過上
昇による空気調和装置の運転停止が回避され、発停回数
が低減するので、空気調和装置の運転限界が拡大し、信
頼性が向上することになる。
[Operation] With the above configuration, in the invention of claim 1, when the compressor (1) is started up during heating operation, the initial opening degree control means (5
0), the initial opening degree of the electric expansion valve (5) is maintained at a predetermined small opening degree, so almost a good change can be obtained without causing an instantaneous excessive rise when the high pressure side pressure rises. . When the discharge refrigerant temperature detected by the discharge temperature detection means (Th2) reaches a predetermined value or higher, the opening degree increase control means (51) slightly decreases the opening degree of the electric expansion valve (5) from the above-mentioned initial opening degree. Since the electric expansion valve (5) is controlled to gradually increase the opening degree, the increase in the discharge refrigerant temperature is suppressed by increasing the opening degree of the electric expansion valve (5). You can get change. Further, when a predetermined period of time has elapsed after startup, the transition control means (52) switches to normal operation using the normal opening degree control means (53), so that the refrigerant state thereafter is maintained appropriately. Therefore, the operation of the air conditioner is prevented from being stopped due to an excessive rise in the high pressure side pressure or the discharge refrigerant temperature, and the number of times the air conditioner starts and stops is reduced, so the operating limit of the air conditioner is expanded and the reliability is improved.

【0011】請求項2の発明では、通常開度制御手段(
53)により、吐出冷媒温度を最適な冷凍効果を与える
最適温度に収束させるよう電動膨張弁(5)の開度が制
御されるので、安価な定容量形圧縮機(1)を使用しな
がら、効率の空気調和装置を構成することが可能となり
、定容量形圧縮機(1)の起動時に生じやすい高圧側圧
力や吐出冷媒温度の瞬間的な過上昇が防止されることに
なる。
In the invention of claim 2, the normal opening degree control means (
53), the opening degree of the electric expansion valve (5) is controlled so that the discharge refrigerant temperature converges to the optimum temperature that provides the optimum refrigeration effect, so while using an inexpensive constant displacement compressor (1), It becomes possible to configure an efficient air conditioner, and instantaneous excessive increases in the high-pressure side pressure and the discharge refrigerant temperature, which tend to occur when the constant displacement compressor (1) is started, are prevented.

【0012】0012

【実施例】以下、本発明の実施例について、図2以下の
図面に基づき説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to FIG. 2 and subsequent drawings.

【0013】図2は本発明を適用した空気調和装置の冷
媒配管系統を示し、(1)は定容量形の圧縮機、(2)
は冷房運転時には図中実線のごとく、暖房運転時には図
中破線のごとく切換わる四路切換弁、(3)は冷房運転
時には凝縮器として、暖房運転時には蒸発器として機能
する熱源側熱交換器である室外熱交換器、(4)は液冷
媒を貯留するためのレシ―バ、(5)は冷媒の減圧機能
と冷媒流量の調節機能とを有する電動膨張弁、(6)は
室内に設置され、冷房運転時には蒸発器として、暖房運
転時には凝縮器として機能する利用側熱交換器である室
内熱交換器、(7)は圧縮機(1)の吸入管に介設され
、吸入冷媒中の液冷媒を除去するためのアキュムレ―タ
である。
FIG. 2 shows a refrigerant piping system of an air conditioner to which the present invention is applied, in which (1) is a constant displacement compressor, (2)
(3) is a four-way switching valve that switches as shown in the solid line in the figure during cooling operation and as shown in the broken line in the figure during heating operation, and (3) is the heat source side heat exchanger that functions as a condenser during cooling operation and as an evaporator during heating operation. An outdoor heat exchanger, (4) is a receiver for storing liquid refrigerant, (5) is an electric expansion valve that has a refrigerant pressure reduction function and a refrigerant flow rate adjustment function, and (6) is installed indoors. , an indoor heat exchanger (7) is a user-side heat exchanger that functions as an evaporator during cooling operation and as a condenser during heating operation; This is an accumulator for removing refrigerant.

【0014】上記各機器(1)〜(7)は冷媒配管(8
)により順次接続され、冷媒の循環により熱移動を生ぜ
しめるようにした冷媒回路(9)が構成されている。な
お、(13)は室外熱交換器(3)の液管側に介設され
た過冷却用キャピラリチュ―ブである。
Each of the above-mentioned devices (1) to (7) has refrigerant piping (8
) are successively connected to form a refrigerant circuit (9) that causes heat transfer by circulating the refrigerant. Note that (13) is a supercooling capillary tube installed on the liquid pipe side of the outdoor heat exchanger (3).

【0015】ここで、上記冷媒回路(9)の圧縮機(1
)吐出側には、吐出冷媒中の油を回収するための油回収
器(10)が介設されていて、該油回収器(10)から
圧縮機(1)−アキュムレ―タ(7)間の吸入管まで、
油回収器(10)の油を圧縮機(1)の吸入側に戻すた
めの油戻し通路(11)が流量調節弁(12)を介して
設けられている。
[0015] Here, the compressor (1) of the refrigerant circuit (9)
) An oil recovery device (10) for recovering oil in the discharged refrigerant is interposed on the discharge side, and the oil recovery device (10) is connected between the compressor (1) and the accumulator (7). up to the suction pipe of
An oil return passage (11) for returning oil from the oil recovery device (10) to the suction side of the compressor (1) is provided via a flow control valve (12).

【0016】また、冷媒回路(9)の液管において、上
記レシ―バ(4)と電動膨張弁(5)とは、電動膨張弁
(5)がレシ―バ(4)の下部つまり液部に連通するよ
う共通路(8a)に直列に配置されており、共通路(8
a)のレシ―バ(4)上部側の端部である点(P)と室
外熱交換器(3)との間は、室外熱交換器(3)からレ
シ―バ(4)への冷媒の流通のみを許容する第1逆止弁
(D1)を介して第1流入路(8b)により、上記共通
路(8a)の点(P)と室内熱交換器(6)との間は室
内熱交換器(6)からレシ―バ(4)への冷媒の流通の
みを許容する第2逆止弁(D2)を介して第2流入路(
8c)によりそれぞれ接続されている一方、共通路(8
a)の上記電動膨張弁(5)他端側の端部である点(Q
)と上記第1逆止弁(D1)−室外熱交換器(3)間の
点(S)との間は電動膨張弁(5)から室外熱交換器(
3)への冷媒の流通のみを許容する第3逆止弁(D3)
を介して第1流出路(8d)により、共通路(8a)の
上記点(Q)と上記第2逆止弁(D2)−室内熱交換器
(6)間の点(R)との間は電動膨張弁(5)から室内
熱交換器(6)への冷媒の流通のみを許容する第4逆止
弁(D4)を介して第2流出路(8e)によりそれぞれ
接続されている。また、上記共通路(8a)のレシ―バ
上流側の1点(W)と第2流出路(8e)の第4逆止弁
(D4)上流側の点(U)との間には、キャピラリチュ
―ブ(C)を介設してなる液封防止バイパス路(8f)
が設けられており、圧縮機(1)の停止時における液封
を防止するようになされている。
Furthermore, in the liquid pipe of the refrigerant circuit (9), the receiver (4) and the electric expansion valve (5) are arranged such that the electric expansion valve (5) is connected to the lower part of the receiver (4), that is, the liquid part. The common path (8a) is arranged in series so as to communicate with the common path (8a).
Between the point (P), which is the upper end of the receiver (4) in a), and the outdoor heat exchanger (3), the refrigerant flows from the outdoor heat exchanger (3) to the receiver (4). The indoor heat exchanger (6) is connected between the point (P) of the common path (8a) and the indoor heat exchanger (6) by the first inflow path (8b) via the first check valve (D1) that allows only the flow of A second inflow path (
8c), while the common path (8c)
The point (Q) which is the other end of the electric expansion valve (5) in a)
) and the point (S) between the first check valve (D1) and the outdoor heat exchanger (3).
3) A third check valve (D3) that allows only the flow of refrigerant to
between the point (Q) of the common path (8a) and the point (R) between the second check valve (D2) and the indoor heat exchanger (6) via the first outflow path (8d). are connected to each other by a second outflow path (8e) via a fourth check valve (D4) that allows only the flow of refrigerant from the electric expansion valve (5) to the indoor heat exchanger (6). Further, between a point (W) on the upstream side of the receiver in the common path (8a) and a point (U) on the upstream side of the fourth check valve (D4) in the second outflow path (8e), Liquid seal prevention bypass path (8f) with capillary tube (C) interposed
is provided to prevent liquid sealing when the compressor (1) is stopped.

【0017】また、空気調和装置には、センサ類が配置
されていて、(Thd)は圧縮機(1)の吐出管に配置
され、吐出冷媒温度T2 を検出する吐出温度検出手段
としての吐出管センサ、(Thc)は室外熱交換器(3
)の液管に配置され、冷房運転時には冷媒の凝縮温度、
暖房運転時には冷媒の蒸発温度を検出する蒸発温度検出
手段としての外熱交センサ、(Tha)は室外熱交換器
(3)の空気吸込口に配置され、外気温度を検出する外
気温センサ、(The)は室内熱交換器(6)の液管に
配置され、冷房運転時には蒸発温度、暖房運転時には凝
縮温度を検出する凝縮温度検出手段としての内熱交セン
サ、(Thr)は室内熱交換器(6)の空気吸込口に配
置され、吸込空気温度を検出する室温センサ、(HPS
)は高圧側圧力が上限に達すると作動して異常停止させ
る高圧作動圧力スイッチ、(LPS)は低圧側圧力が下
限に達すると作動して異常停止させる低圧作動圧力スイ
ッチであって、上記各センサ類は、空気調和装置の運転
を制御するためのコントロ―ラ(図示せず)に信号の入
力可能に接続されており、該コントロ―ラにより、セン
サの信号に応じて各機器の運転を制御するようになされ
ている。
[0017] Also, sensors are arranged in the air conditioner, and (Thd) is arranged in the discharge pipe of the compressor (1), and serves as a discharge temperature detection means for detecting the discharge refrigerant temperature T2. The sensor, (Thc) is the outdoor heat exchanger (3
), and during cooling operation, the condensation temperature of the refrigerant,
An external heat exchange sensor (Tha) serving as an evaporation temperature detection means for detecting the evaporation temperature of the refrigerant during heating operation is arranged at the air suction port of the outdoor heat exchanger (3), and an outside temperature sensor (Tha) for detecting the outside air temperature. The) is an internal heat exchange sensor that is placed in the liquid pipe of the indoor heat exchanger (6) and serves as a condensing temperature detection means that detects the evaporation temperature during cooling operation and the condensation temperature during heating operation; (Thr) is the indoor heat exchanger (6) A room temperature sensor located at the air intake port to detect the intake air temperature, (HPS
) is a high-pressure operating pressure switch that operates and abnormally stops when the high-pressure side pressure reaches the upper limit, and (LPS) is a low-pressure operating pressure switch that operates and abnormally stops when the low-pressure side pressure reaches the lower limit. The controller is connected to a controller (not shown) for controlling the operation of the air conditioner so that signals can be input, and the controller controls the operation of each device according to the sensor signals. It is made to be.

【0018】上記冷媒回路(9)において、冷房運転時
には、室外熱交換器(3)で凝縮液化された液冷媒が第
1流通路(8b)から共通路(8a)に流れてレシ―バ
(4)に貯溜され、電動膨張弁(5)で減圧された後、
第2流出路(8e)を経て室内熱交換器(6)で蒸発し
て圧縮機(1)に戻る循環となる。また、暖房運転時に
は、室内熱交換器(6)で凝縮液化された液冷媒が第2
流通路(8c)から共通路(8a)に流れてレシ―バ(
4)に貯溜され、電動膨張弁(5)で減圧された後、第
1流出路(8d)を経て室外熱交換器(3)で蒸発して
圧縮機(1)に戻る循環となる。
In the refrigerant circuit (9), during cooling operation, the liquid refrigerant condensed and liquefied in the outdoor heat exchanger (3) flows from the first flow path (8b) to the common path (8a) and passes through the receiver ( 4) and after being depressurized by the electric expansion valve (5),
It is circulated through the second outlet path (8e), evaporated in the indoor heat exchanger (6), and returned to the compressor (1). Also, during heating operation, the liquid refrigerant condensed and liquefied in the indoor heat exchanger (6) is transferred to the second
It flows from the flow path (8c) to the common path (8a) and flows into the receiver (
4), and after being depressurized by the electric expansion valve (5), it passes through the first outflow path (8d), evaporates in the outdoor heat exchanger (3), and returns to the compressor (1), resulting in circulation.

【0019】ここで、上記空気調和装置の暖房運転中の
圧縮機(1)起動時における制御内容について、図3の
フロ―チャ―ト及び図4の電動膨張弁(5)開度の時間
変化図に基づき説明する。まず、ステップST1で、電
動膨張弁(5)の初期開度を250パルスに設定する。 この電動膨張弁(5)は全開で500パルスのものであ
り、この開度はちょうど半開に相当する。次に、ステッ
プST2,ST3,ST4で、室外ファン(図示せず)
、四路切換弁(2)、圧縮機(1)を順次オンにして運
転を開始する(図4の時刻to )。そして、ステップ
ST5で圧縮機(1)の起動後3分間が経過したか否か
を判別し、3分間が経過するまでは以下の起動制御を行
う。すなわち、ステップST6で、上記吐出管センサ(
Th2)で検出される吐出冷媒温度T2 が70(℃)
を越えるまではそのまま電動膨張弁(5)の開度をステ
ップST1で設定した250パルスに維持して運転する
(図4の時刻to 〜t1 の間)一方、T2>70(
℃)になると、ステップST7に進んで電動膨張弁(5
)の開度を2パルスだけ増大させる。そして、この制御
を2秒ごとのサンプリングについて繰返し実行し、電動
膨張弁(5)の開度を250パルスから2秒毎に2パル
スずつ段階的に徐々に増大させていき(図4の時刻t1
 〜t2 の間)、ステップST5の判別で起動後3分
間が経過する(図4の時刻t2 )と、ステップST8
に移行して、通常運転を行う。
Here, regarding the control contents at the time of starting the compressor (1) during the heating operation of the air conditioner, the flowchart in FIG. 3 and the time change in the opening degree of the electric expansion valve (5) in FIG. This will be explained based on the diagram. First, in step ST1, the initial opening degree of the electric expansion valve (5) is set to 250 pulses. This electric expansion valve (5) has 500 pulses when fully opened, and this opening degree corresponds to exactly half open. Next, in steps ST2, ST3, and ST4, an outdoor fan (not shown) is installed.
, the four-way selector valve (2), and the compressor (1) are turned on in sequence to start operation (time to in FIG. 4). Then, in step ST5, it is determined whether 3 minutes have elapsed since the start of the compressor (1), and the following start-up control is performed until the 3 minutes have elapsed. That is, in step ST6, the discharge pipe sensor (
The discharge refrigerant temperature T2 detected at Th2) is 70 (℃)
The electric expansion valve (5) is operated by maintaining the opening degree of the electric expansion valve (5) at 250 pulses set in step ST1 until T2>70 (between times to and t1 in FIG. 4).
℃), the process proceeds to step ST7 and the electric expansion valve (5℃) is reached.
) is increased by 2 pulses. Then, this control is repeated for sampling every 2 seconds, and the opening degree of the electric expansion valve (5) is gradually increased from 250 pulses by 2 pulses every 2 seconds (time t1 in FIG. 4).
~ t2), and when 3 minutes have elapsed after startup in the determination in step ST5 (time t2 in FIG. 4), step ST8
and perform normal operation.

【0020】この通常運転では、電動膨張弁(5)の開
度は以下のように制御される。すなわち、上記外熱交セ
ンサ(Thc)で検出された冷媒の蒸発温度Te と、
上記内熱交センサ(The)で検出された冷媒の凝縮温
度Tc とから、式  Tk =4−1.13Te +
1.72Tc に基づき、装置の最適な冷凍効果を与え
る最適温度Tk を演算し、吐出冷媒温度T2 がこの
最適温度Tk に収束するように電動膨張弁(5)の開
度を制御する。
In this normal operation, the opening degree of the electric expansion valve (5) is controlled as follows. That is, the evaporation temperature Te of the refrigerant detected by the external heat exchanger sensor (Thc),
From the condensation temperature Tc of the refrigerant detected by the internal heat exchange sensor (The), the formula Tk = 4-1.13Te +
1.72Tc, the optimum temperature Tk that provides the optimum refrigerating effect of the device is calculated, and the opening degree of the electric expansion valve (5) is controlled so that the discharge refrigerant temperature T2 converges to this optimum temperature Tk.

【0021】上記フロ―において、ステップST1の制
御により、本発明の初期開度制御手段(50)が構成さ
れ、ステップST7の制御により開度増大制御手段(5
1)が構成されている。また、ステップST5からステ
ップST8に移行する制御により移行制御手段(52)
が構成され、ステップST8の制御により通常開度制御
手段(53)が構成されている。
In the above flow, the control in step ST1 constitutes the initial opening control means (50) of the present invention, and the control in step ST7 constitutes the opening increase control means (50).
1) is configured. Further, the transition control means (52) is controlled to transition from step ST5 to step ST8.
is configured, and a normal opening degree control means (53) is configured by the control in step ST8.

【0022】したがって、上記実施例では、暖房運転中
の圧縮機(1)の起動時、初期開度制御手段(50)に
より、電動膨張弁(5)の初期開度が所定の小開度(2
50パルス)に保持される。このとき、電動膨張弁(5
)の開度が小さいので、高圧側圧力Hp は上記図9の
ような立上がり時の瞬間的な過上昇を生じることなく、
図5に示すようにほぼ良好な立上がり特性を示す。 ただし、電動膨張弁(5)の初期開度が小さいことから
、吐出冷媒温度T2 は上述の図8のごとくやや遅れた
立上がり時の瞬間的な過上昇を生じようとするが、その
とき、吐出管センサ(Th2)で検出される吐出冷媒温
度T2 が所定値(70℃)に達すると、開度増大制御
手段(51)により、電動膨張弁(5)の開度を上記初
期開度から微小開度(2パルス)ずつ徐々に増大させる
よう制御されるので、この電動膨張弁(5)開度の増大
変化により、図6に示すように、吐出冷媒温度T2 の
上昇が抑制され、上記図8のような立上がり瞬間的な過
上昇を生じることなく良好な変化特性が得られる。さら
に、起動後所定時間(3分間)が経過すると、移行制御
手段(52)により、通常開度制御手段(53)による
通常運転に切り換えられるので、以後の冷媒状態が適正
に維持されることになる。つまり、高圧側圧力Hp の
過上昇や吐出冷媒温度T2 の過上昇による空気調和装
置の運転停止が回避され、発停回数が低減するので、空
気調和装置の運転限界の拡大と信頼性の向上とを図るこ
とができる。
Therefore, in the above embodiment, when the compressor (1) is started during heating operation, the initial opening degree control means (50) controls the initial opening degree of the electric expansion valve (5) to a predetermined small opening degree ( 2
50 pulses). At this time, electric expansion valve (5
) is small, so the high pressure side pressure Hp does not cause the instantaneous excessive rise at the time of rise as shown in Fig. 9 above.
As shown in FIG. 5, almost good rise characteristics are exhibited. However, since the initial opening degree of the electric expansion valve (5) is small, the discharge refrigerant temperature T2 tends to rise momentarily at a slightly delayed rise as shown in Fig. 8 above; When the discharge refrigerant temperature T2 detected by the pipe sensor (Th2) reaches a predetermined value (70°C), the opening degree increase control means (51) slightly reduces the opening degree of the electric expansion valve (5) from the above-mentioned initial opening degree. Since it is controlled to gradually increase the opening degree (2 pulses), the increase in the opening degree of the electric expansion valve (5) suppresses the rise in the discharge refrigerant temperature T2 as shown in FIG. Good change characteristics can be obtained without causing instantaneous excessive rise like in No. 8. Furthermore, when a predetermined period of time (3 minutes) has elapsed after startup, the transition control means (52) switches to normal operation using the normal opening control means (53), so that the refrigerant state can be maintained appropriately thereafter. Become. In other words, the shutdown of the air conditioner due to an excessive rise in the high-pressure side pressure Hp or the discharge refrigerant temperature T2 is avoided, and the number of starts and stops is reduced, which expands the operating limits of the air conditioner and improves its reliability. can be achieved.

【0023】特に、上記実施例のように、圧縮機(1)
を定容量形とし、通常開度制御手段(53)により、吐
出冷媒温度T2 を最適な冷凍効果を与える最適温度T
k に収束させるよう制御した場合、安価な定容量形圧
縮機(1)を使用しながら、効率の空気調和装置を構成
することができるが、反面、圧縮機(1)の容量が固定
されているために、その起動時、上述のような高圧側圧
力Hp や吐出冷媒温度T2 の立上がり時における瞬
間的な過上昇を生じやすい。したがって、上記のような
電動膨張弁(5)開度の一連の制御により運転停止を回
避することで、著効を得ることができる。
In particular, as in the above embodiment, the compressor (1)
is a constant capacity type, and the discharge refrigerant temperature T2 is set to the optimum temperature T that provides the optimum refrigerating effect by the normal opening control means (53).
When controlled so as to converge to Therefore, at the time of startup, instantaneous excessive increases in the high-pressure side pressure Hp and the discharge refrigerant temperature T2 as described above tend to occur. Therefore, a significant effect can be obtained by avoiding a shutdown through a series of controls on the opening degree of the electric expansion valve (5) as described above.

【0024】[0024]

【発明の効果】以上説明したように、請求項1の発明に
よれば、空気調和装置の運転制御装置として、暖房運転
中の圧縮機(1)の起動時、電動膨張弁の初期開度を小
開度に保持するとともに、吐出冷媒温度が上昇して所定
値を越えると電動膨張弁の開度を微小開度ずつ徐々に開
き、起動後所定時間が経過すると通常運転に移行するよ
うにしたので、高圧側圧力や吐出冷媒温度の立上がり瞬
間的な過上昇の発生を防止して空気調和装置の運転停止
を回避することができ、よって、圧縮機の発停回数の低
減による運転限界の拡大と信頼性の向上とを図ることが
できる。
As explained above, according to the invention of claim 1, as an operation control device for an air conditioner, when the compressor (1) is started during heating operation, the initial opening degree of the electric expansion valve is controlled. In addition to maintaining a small opening, when the discharge refrigerant temperature rises and exceeds a predetermined value, the electric expansion valve is gradually opened in small increments, and returns to normal operation after a predetermined period of time has passed after startup. Therefore, it is possible to prevent the occurrence of instantaneous excessive rises in the high-pressure side pressure and discharge refrigerant temperature, thereby avoiding the shutdown of the air conditioner.Therefore, the operating limit is expanded by reducing the number of times the compressor starts and stops. and reliability can be improved.

【0025】請求項2の発明によれば、上記請求項1の
発明において、通常運転時、吐出冷媒温度を蒸発温度と
凝縮温度とから演算される吐出冷媒の最適温度に収束さ
せるよう電動膨張弁の開度を制御するようにしたので、
定容量形圧縮機の使用が可能となり、簡便な制御による
効率の良い空調を行いながら、高圧側圧力や吐出冷媒温
度の過上昇を防止することができ、よって、著効を発揮
することができる。
According to the invention of claim 2, in the invention of claim 1, the electric expansion valve is configured to converge the temperature of the discharged refrigerant to the optimum temperature of the discharged refrigerant calculated from the evaporation temperature and the condensation temperature during normal operation. Since the opening degree of the
It is now possible to use a constant displacement compressor, and while performing efficient air conditioning through simple control, it is possible to prevent excessive rises in high-pressure side pressure and discharge refrigerant temperature, making it highly effective. .

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the present invention.

【図2】実施例に係る空気調和装置の冷媒配管系統図で
ある。
FIG. 2 is a refrigerant piping system diagram of the air conditioner according to the embodiment.

【図3】圧縮機の起動制御の内容を示すフロ―チャ―ト
図である。
FIG. 3 is a flowchart showing the details of compressor startup control.

【図4】起動時における電動膨張弁開度の時間変化を示
す図である。
FIG. 4 is a diagram showing changes over time in the opening degree of the electric expansion valve during startup.

【図5】実施例における起動時の高圧側圧力の時間変化
を示す特性図である。
FIG. 5 is a characteristic diagram showing temporal changes in high-pressure side pressure at startup in the example.

【図6】実施例における起動時の吐出冷媒温度の時間変
化を示す特性図である。
FIG. 6 is a characteristic diagram showing temporal changes in discharge refrigerant temperature at startup in the example.

【図7】従来例における小開度時の高圧側圧力の時間変
化を示す特性図である。
FIG. 7 is a characteristic diagram showing a time change in high pressure side pressure at a small opening degree in a conventional example.

【図8】従来例における小開度時の吐出冷媒温度の時間
変化を示す特性図である。
FIG. 8 is a characteristic diagram showing temporal changes in discharge refrigerant temperature at a small opening in a conventional example.

【図9】従来例における大開度時の高圧側圧力の時間変
化を示す特性図である。
FIG. 9 is a characteristic diagram showing a time change in high pressure side pressure at a large opening degree in a conventional example.

【図10】従来例における大開度時の吐出冷媒温度の時
間変化を示す特性図である。
FIG. 10 is a characteristic diagram showing temporal changes in discharge refrigerant temperature at a large opening degree in a conventional example.

【符号の説明】[Explanation of symbols]

1    圧縮機 3    室外熱交換器(熱源側熱交換器)5    
電動膨張弁 6    室内熱交換器(利用側熱交換器)9    
冷媒回路 50  初期開度制御手段 51  開度増大制御手段 52  移行制御手段 53  通常開度制御手段
1 Compressor 3 Outdoor heat exchanger (heat source side heat exchanger) 5
Electric expansion valve 6 Indoor heat exchanger (user side heat exchanger) 9
Refrigerant circuit 50 Initial opening control means 51 Opening increase control means 52 Transition control means 53 Normal opening control means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機(1)、熱源側熱交換器(3)
、電動膨張弁(5)及び利用側熱交換器(6)を順次接
続してなる冷媒回路(9)と、該冷媒回路(9)の冷媒
の状態に応じて上記電動膨張弁(5)の開度を制御する
通常開度制御手段(53)とを備えた空気調和装置の運
転制御装置において、上記圧縮機(1)の吐出冷媒の温
度を検出する吐出温度検出手段(Th2)と、暖房運転
中の圧縮機(1)の起動時、上記電動膨張弁(5)の初
期開度を小開度に保持するよう制御する初期開度制御手
段(50)と、上記吐出温度検出手段(Th2)の出力
を受け、圧縮機(1)の起動後、吐出冷媒温度が所定値
以上に達すると上記電動膨張弁(5)の開度を上記初期
開度から微小開度ずつ徐々に増大させるよう制御する開
度増大制御手段(51)と、圧縮機(1)の起動後所定
時間が経過したときに、上記開度増大制御手段(51)
の制御を停止させて上記通常開度制御手段(53)の制
御に移行するよう制御する移行制御手段(52)とを備
えたことを特徴とする空気調和装置の運転制御装置。
[Claim 1] Compressor (1), heat source side heat exchanger (3)
, a refrigerant circuit (9) formed by sequentially connecting an electric expansion valve (5) and a user-side heat exchanger (6), and a refrigerant circuit (9) in which the electric expansion valve (5) In the operation control device for an air conditioner, the operation control device includes a normal opening degree control means (53) for controlling the opening degree, and a discharge temperature detection means (Th2) for detecting the temperature of the refrigerant discharged from the compressor (1); an initial opening degree control means (50) that controls the initial opening degree of the electric expansion valve (5) to be maintained at a small opening degree when the compressor (1) in operation is started; and the discharge temperature detection means (Th2). ), after starting the compressor (1), when the discharge refrigerant temperature reaches a predetermined value or more, the opening degree of the electric expansion valve (5) is gradually increased by small opening degrees from the initial opening degree. the opening increase control means (51) to control, and the opening increase control means (51) when a predetermined time has elapsed after starting the compressor (1);
1. An operation control device for an air conditioner, comprising: a transition control means (52) for stopping control of the normal opening degree control means (53) and shifting to control of the normal opening degree control means (53).
【請求項2】  請求項1記載の空気調和装置の運転制
御装置において、冷媒の蒸発温度を検出する蒸発温度検
出手段(Thc)と、冷媒の凝縮温度を検出する凝縮温
度検出手段(The)とを備え、通常開度制御手段(5
3)は、上記吐出温度検出手段(Th2)、蒸発温度検
出手段(Thc)及び凝縮温度検出手段(The)の出
力を受け、吐出冷媒温度が、冷媒の蒸発温度及び凝縮温
度から求められる最適な冷凍効果を与える吐出冷媒の最
適温度に収束するよう電動膨張弁(5)の開度を制御す
るものである空気調和装置の運転制御装置。
2. The operation control device for an air conditioner according to claim 1, comprising evaporation temperature detection means (Thc) for detecting the evaporation temperature of the refrigerant, and condensation temperature detection means (The) for detecting the condensation temperature of the refrigerant. and normal opening control means (5
3) receives the outputs of the discharge temperature detection means (Th2), the evaporation temperature detection means (Thc), and the condensation temperature detection means (The), and determines the discharge refrigerant temperature at the optimum temperature determined from the evaporation temperature and condensation temperature of the refrigerant. An operation control device for an air conditioner that controls the opening degree of an electric expansion valve (5) so that the temperature of the discharged refrigerant converges to the optimum temperature that provides a refrigeration effect.
JP2405706A 1990-12-25 1990-12-25 Operation control device for air conditioner Expired - Fee Related JP2500519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2405706A JP2500519B2 (en) 1990-12-25 1990-12-25 Operation control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2405706A JP2500519B2 (en) 1990-12-25 1990-12-25 Operation control device for air conditioner

Publications (2)

Publication Number Publication Date
JPH04222353A true JPH04222353A (en) 1992-08-12
JP2500519B2 JP2500519B2 (en) 1996-05-29

Family

ID=18515317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2405706A Expired - Fee Related JP2500519B2 (en) 1990-12-25 1990-12-25 Operation control device for air conditioner

Country Status (1)

Country Link
JP (1) JP2500519B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5685168A (en) * 1994-06-29 1997-11-11 Daikin Industries, Ltd. Refrigerating apparatus
KR20010026846A (en) * 1999-09-09 2001-04-06 구자홍 Start-up method for inverter driving heat pump
JP2002031419A (en) * 2000-07-14 2002-01-31 Daikin Ind Ltd Refrigerating apparatus
JP2002144860A (en) * 2000-11-08 2002-05-22 Mitsubishi Heavy Ind Ltd Vehicular air conditioner
JP2003106685A (en) * 2001-09-28 2003-04-09 Mitsubishi Electric Corp Refrigerating and air conditioning device
JP2006132818A (en) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd Control method for refrigerating cycle device, and refrigerating cycle device using the same
JP2007298207A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its control method
WO2008026646A1 (en) * 2006-08-31 2008-03-06 Daikin Industries, Ltd. Air conditioner
JP2008151437A (en) * 2006-12-19 2008-07-03 Yamatake Corp Air-conditioning equipment operation control device and method
WO2014102940A1 (en) * 2012-12-26 2014-07-03 三菱電機株式会社 Refrigeration cycle device and method for controlling refrigeration cycle device
WO2014102939A1 (en) * 2012-12-26 2014-07-03 三菱電機株式会社 Refrigeration cycle device and method for controlling refrigeration cycle device
JP2015087020A (en) * 2013-10-28 2015-05-07 三菱電機株式会社 Refrigeration cycle device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5685168A (en) * 1994-06-29 1997-11-11 Daikin Industries, Ltd. Refrigerating apparatus
KR20010026846A (en) * 1999-09-09 2001-04-06 구자홍 Start-up method for inverter driving heat pump
JP2002031419A (en) * 2000-07-14 2002-01-31 Daikin Ind Ltd Refrigerating apparatus
JP2002144860A (en) * 2000-11-08 2002-05-22 Mitsubishi Heavy Ind Ltd Vehicular air conditioner
JP2003106685A (en) * 2001-09-28 2003-04-09 Mitsubishi Electric Corp Refrigerating and air conditioning device
JP2006132818A (en) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd Control method for refrigerating cycle device, and refrigerating cycle device using the same
JP2007298207A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its control method
WO2008026646A1 (en) * 2006-08-31 2008-03-06 Daikin Industries, Ltd. Air conditioner
JP2008151437A (en) * 2006-12-19 2008-07-03 Yamatake Corp Air-conditioning equipment operation control device and method
WO2014102940A1 (en) * 2012-12-26 2014-07-03 三菱電機株式会社 Refrigeration cycle device and method for controlling refrigeration cycle device
WO2014102939A1 (en) * 2012-12-26 2014-07-03 三菱電機株式会社 Refrigeration cycle device and method for controlling refrigeration cycle device
CN104884876A (en) * 2012-12-26 2015-09-02 三菱电机株式会社 Refrigeration cycle device and method for controlling refrigeration cycle device
JP5875707B2 (en) * 2012-12-26 2016-03-02 三菱電機株式会社 Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
EP2940405A4 (en) * 2012-12-26 2016-08-17 Mitsubishi Electric Corp Refrigeration cycle device and method for controlling refrigeration cycle device
JP6021945B2 (en) * 2012-12-26 2016-11-09 三菱電機株式会社 Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
US10465964B2 (en) 2012-12-26 2019-11-05 Mitsubishi Electric Corporation Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
JP2015087020A (en) * 2013-10-28 2015-05-07 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP2500519B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
JP2783065B2 (en) Operation control device for air conditioner
US5689964A (en) Operation control device for air conditioner
EP1826513A1 (en) Refrigerating air conditioner
JP6370545B2 (en) Heat pump system
JP3341404B2 (en) Operation control device for air conditioner
JPH04222353A (en) Operation controller for air conditioner
JP2500522B2 (en) Refrigeration system operation controller
JP3208923B2 (en) Operation control device for air conditioner
JP2551238B2 (en) Operation control device for air conditioner
JPH05264113A (en) Operation control device of air conditioner
JPH04222349A (en) Operation controller for freezer
JP2842020B2 (en) Operation control device for air conditioner
JP2757685B2 (en) Operation control device for air conditioner
JPH0833245B2 (en) Refrigeration system operation controller
JP3341486B2 (en) Operation control device for air conditioner
JP3481274B2 (en) Separate type air conditioner
JP2822764B2 (en) Operation control device for outdoor fan of air conditioner
JP2765391B2 (en) Oil recovery operation control device for air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
JP2903862B2 (en) Operation control device for refrigeration equipment
JP2555779B2 (en) Operation control device for air conditioner
JPH10132406A (en) Refrigerating system
JP2522116B2 (en) Operation control device for air conditioner
JPH05256496A (en) Operation controller for air conditioner
JPH0772647B2 (en) Pressure equalizer for air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees