KR20010026846A - Start-up method for inverter driving heat pump - Google Patents

Start-up method for inverter driving heat pump Download PDF

Info

Publication number
KR20010026846A
KR20010026846A KR1019990038332A KR19990038332A KR20010026846A KR 20010026846 A KR20010026846 A KR 20010026846A KR 1019990038332 A KR1019990038332 A KR 1019990038332A KR 19990038332 A KR19990038332 A KR 19990038332A KR 20010026846 A KR20010026846 A KR 20010026846A
Authority
KR
South Korea
Prior art keywords
compressor
current value
heat pump
input current
inverter
Prior art date
Application number
KR1019990038332A
Other languages
Korean (ko)
Inventor
김철민
황윤제
김양규
박종한
Original Assignee
구자홍
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자 주식회사 filed Critical 구자홍
Priority to KR1019990038332A priority Critical patent/KR20010026846A/en
Publication of KR20010026846A publication Critical patent/KR20010026846A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • F25B41/347Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids with the valve member being opened and closed cyclically, e.g. with pulse width modulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/024Compressor control by controlling the electric parameters, e.g. current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE: A start-up method for inverter heat pump is provided to prevent compressor shutdown caused by over-current of the compressor during the initial start-up of the inverter heat pump. CONSTITUTION: A start-up method comprises the first step of operating the compressor at a preset frequency upon the initial start-up of the inverter and judging whether the input current value of the compressor reaches a predetermined value; and the second step of increasing the degree of opening of the electronic expansion valve in accordance with the input current value if it is judged in the first step that the input current value of the compressor has reached a predetermined value. Thus, liquid refrigerant is prevented from entering the compressor upon initial start-up of the inverter heat pump, and the degree of opening of the electronic expansion pump is increased so as to prevent rise of the input current value caused by refrigerant deficiency when the compressor reaches a predetermined level, to thereby prevent compressor shutdown caused by over-current.

Description

인버터 열펌프의 기동방법{START-UP METHOD FOR INVERTER DRIVING HEAT PUMP}START-UP METHOD FOR INVERTER DRIVING HEAT PUMP}

본 발명은 인버터 열펌프의 기동방법에 관한 것으로, 특히 기동시 실내외 온도변화에 따른 전자팽창변의 개도를 인버터 드라이브에 설치된 변류기가 감지하는 압축기 사용전류값에 따라 조절함으로써 초기 기동시 어큐뮬레이터를 통해 압축기에 유입되는 액냉매의 유입을 방지함과 아울러 냉난방운전시에 사용자가 원하는 운전상태로 빠르게 도달할 수 있도록 한 인버터 열펌프의 기동방법에 관한 것이다.The present invention relates to a method of starting an inverter heat pump, and in particular, by adjusting the opening degree of the electronic expansion edge according to the temperature change of the indoor and outdoor at the time of startup according to the compressor operating current value sensed by the current transformer installed in the inverter drive. The present invention relates to a method of starting an inverter heat pump that prevents the inflow of liquid refrigerant and enables the user to quickly reach a desired operating state during an air conditioning operation.

도1은 일반적인 인버터 열펌프의 사이클 구조도로서, 이에 도시된 바와 같이 저온, 저압의 냉매증기를 흡입하여 이를 압축함으로써 고온, 고압의 증기로 만드는 압축기(1)와; 난방 시 상기 압축기(1)에서 토출된 고온, 고압의 냉매증기의 열을 물 또는 공기 중에 방출시키고, 고압의 포화액으로 변화시키는 응축기로 쓰이는 실외 열교환기(3)와; 냉방 시 저온, 저압의 냉매를 증발시켜 액분이 없는 포화증기로 만드는 증발기로 쓰이는 실내 열교환기(5)와; 냉매의 흐름 압력을 조절하는 전자 팽창변(4) 및 이들을 연결하여 주는 배관으로 구성된 냉동 사이클의 냉매의 흐름을 역으로 바꾸어 운전시키는 사방변(2)과; 상기 실내 열교환기(5)의 포화증기를 사방변을 통해 입력받아 기체 상태와 액체 상태의 냉매로 분리한후 그 기체상태의 냉매로 흡입배관(7)을 통해 상기 압축기(1)로 흡입하는 어큐뮬레이터(6)로 구성되며, 이와같이 구성된 종래 장치의 동작을 설명한다.1 is a cycle structure diagram of a general inverter heat pump, and as shown therein, a compressor (1) which makes high-temperature, high-pressure steam by sucking and compressing refrigerant vapor of low temperature and low pressure; An outdoor heat exchanger (3) used as a condenser for dissipating heat of the high-temperature and high-pressure refrigerant vapor discharged from the compressor (1) into water or air and converting it into a high-pressure saturated liquid; An indoor heat exchanger (5) used as an evaporator to evaporate a low-temperature, low-pressure refrigerant to cool it into saturated steam without liquid content; Four sides (2) to reverse the operation of the refrigerant flow of the refrigeration cycle consisting of an electronic expansion valve (4) for controlling the flow pressure of the refrigerant and pipes connecting them to the reverse; Accumulator that receives the saturated steam of the indoor heat exchanger (5) through the four sides and separates the refrigerant into a gaseous state and a liquid state, and then sucks the gaseous refrigerant into the compressor (1) through the suction pipe (7). The operation of the conventional apparatus, which is configured as (6), is thus described.

먼저, 난방 운전의 경우, 압축기(1)에서 압축된 고온고압의 냉매는 사방변(2)을 지나 실내열교환기(5)로 유입되어 응축된후 팽창변(4)을 지나면서 저온저압의 냉매로 된다.First, in the heating operation, the high temperature and high pressure refrigerant compressed by the compressor (1) flows through the four sides (2) to the indoor heat exchanger (5) to condense and passes through the expansion valve (4) to the low temperature and low pressure refrigerant. do.

이후, 실외열교환기(3)를 통과하면서 기체상태로 증발된후 상기 사방변(2)을 지나 어큐뮬레이터(6)에 유입된다.Thereafter, after passing through the outdoor heat exchanger (3) and evaporated in a gaseous state, it passes through the four sides (2) and flows into the accumulator (6).

그러면, 상기 어큐뮬레이터(6)에 유입된 냉매는 기체상태와 액체상태의 냉매로 분리된후 기체상태의 냉매로 흡입배관(7)을 통해 상기 압축기(1)로 흡입된다.Then, the refrigerant introduced into the accumulator 6 is separated into a gaseous state and a liquid state refrigerant, and is sucked into the compressor 1 through the suction pipe 7 as a gaseous refrigerant.

반대로, 냉방운전의 경우, 상기 압축기(1)에서 압축된 고온고압의 냉매는 상기 사방변(2)을 지나면서 상기 실외열교환기(3)로 유입되어 응축된후 상기 팽창변(4)을 지나면서 저온저압의 냉매로 된다.On the contrary, in the cooling operation, the refrigerant having the high temperature and high pressure compressed by the compressor 1 flows into the outdoor heat exchanger 3 while condensing after passing through the four sides 2 and passing through the expansion valve 4. It becomes a low temperature low pressure refrigerant.

이후, 상기 실내열교환기(5)에 유입된 냉매는 이 실내열교환기(5)를 통과하면서 기체상태로 증발된후 상기 사방변(2)을 지나 상기 어큐뮬레이터(6)에 유입된후 기체상태와 액체상태의 냉매로 분리된후 기체상태의 냉매를 상기 흡입배관(7)을 통해 상기 압축기(1)로 흡입된다.Subsequently, the refrigerant introduced into the indoor heat exchanger (5) is evaporated into a gas state while passing through the indoor heat exchanger (5), passes through the four sides (2), and flows into the accumulator (6). After the liquid refrigerant is separated, the gaseous refrigerant is sucked into the compressor 1 through the suction pipe 7.

여기서, 도2는 인버터 열펌프의 기동알고리즘에 대한 개략도로서, 기동시에 제1 기동주파수 'A'와 제2 기동주파수 'B'로 구분하여 운전시킨후 설정주파수로 운전하는 데, 이와같이 운전하는 이유는 기동시에 어큐뮬레이터(6)내에 액체상태의 냉매가 유입되어 압축기(1)로 흡입되는 것을 방지하기 위하여 운전주파수를 단계적으로 올림으로써 압축기(1)의 보호를 위한 것이다.Here, Figure 2 is a schematic diagram of the starting algorithm of the inverter heat pump, the operation is divided into the first start frequency 'A' and the second start frequency 'B' at the time of operation, and then operated at the set frequency. Is for protecting the compressor 1 by raising the operating frequency stepwise to prevent the liquid refrigerant from entering the accumulator 6 and being sucked into the compressor 1 at the start.

또한, 상기 제1 기동주파수 'A'로 운전시에는 전자팽창변(4) 개도를 제1 기동시 전팽창변(4) 개도'a'로 운전하고, 상기 제2 기동주파수 'B'로 운전시에는 제2 기동시 전자 팽창변(4) 개도 'b'로 운전시키며, 상기 각 운전단계의 운전시간은 제1 기동운전시간 '가'와 제2 기동운전시간 '나'로 구분되어 설정주파수 및 설정개도로 운전시킨다.In addition, when driving at the first starting frequency 'A' and driving the electronic expansion edge (4) opening degree at the first starting full-expansion edge (4) opening 'a', when operating at the second starting frequency 'B' During the second start, the electronic expansion valve 4 is opened at 'b', and the operation time of each operation step is divided into the first start operation time 'A' and the second start operation time 'B', so that the set frequency and the set opening degree are To drive.

그러나, 상기와 같이 동작하는 종래 기술은 압축기의 운전주파수를 단계적으로 상승시킴에 따라 냉방운전 및 난방운전시에 사용자가 원하는 운전상태에 느리게 도달함과 아울러 불필요한 운전단계를 지난후 설정주파수로 운전함에 따라 에너지 효율이 떨어지는 문제점이 있었다.However, the prior art operating as described above gradually increases the operating frequency of the compressor to gradually reach the desired operating state during the cooling operation and the heating operation, and to operate at the set frequency after the unnecessary operation step. Therefore, there was a problem of low energy efficiency.

따라서, 상기와 같은 문제점을 감안하여 창안한 본 발명은 기동시 실내외 온도변화에 따른 전자팽창변의 개도를 인버터 드라이브에 설치된 변류기가 감지하는 압축기 사용 전류값에 따라 조절함으로써 초기 기동시 어큐뮬레이터를 통해 압축기에 유입되는 액냉매의 유입을 방지함과 아울러 냉난방운전시에 사용자가 원하는 운전상태로 빠르게 도달할 수 있도록 한 인버터 열펌프의 기동방법을 제공함에 그 목적이 있다.Therefore, the present invention was created in view of the above problems by adjusting the opening degree of the electronic expansion edge according to the change of the indoor and outdoor temperature at start-up according to the compressor use current value sensed by the current transformer installed in the inverter drive to the compressor through the accumulator during the initial start-up. It is an object of the present invention to provide a method of starting an inverter heat pump that prevents the inflow of liquid refrigerant and also allows a user to quickly reach a desired operating state during an air conditioning operation.

도1은 일반적인 인버터 열펌프의 싸이클 구조도.1 is a cycle structure diagram of a typical inverter heat pump.

도2는 종래 인버터 열펌프의 기동 알고리즘에 의한 운전주파수및 팽창변 개도의 상태를 나타낸 예시도.Figure 2 is an exemplary view showing the state of the operating frequency and the expansion valve opening by the start algorithm of the conventional inverter heat pump.

도3은 일반적인 인버터 열펌프의 개략도.3 is a schematic view of a typical inverter heat pump.

도4는 본 발명 인버터 열펌프의 기동방법에 의한 압축기전류와 운전주파수및 팽창변 개도 사이의 상태를 나타낸 예시도4 is an exemplary view showing a state between a compressor current, an operating frequency, and an expansion coefficient according to a starting method of an inverter heat pump according to the present invention.

*****도면의 주요부분에 대한 부호의 설명********** Description of the symbols for the main parts of the drawings *****

1:압축기 2:사방변1: compressor 2: four sides

3:실외열교환기 4:전자팽창변3: outdoor heat exchanger 4: electron expansion valve

5:실내열교환기 6:어큐뮬레이터5: indoor heat exchanger 6: accumulator

7:흡입배관 10:인버터 드라이브7: suction pipe 10: inverter drive

11:변류기11: Current transformer

상기와 같은 목적을 달성하기 위한 본 발명은 인버터의 초기 기동시 기 설정된 주파수로 압축기를 운전시킴과 아울러 압축기의 입력 전류값이 소정값에 도달하였는지를 판단하는 제1 단계와; 상기 제1 단계의 판단결과 압축기의 입력 전류값이 소정값에 도달되면 그 소정 입력 전류값에 따라 다단계로 설정된 개도값으로 전자팽창변의 개도를 증가시키는 제2 단계로 수행함을 특징으로 한다.The present invention for achieving the above object is a first step of operating the compressor at a predetermined frequency at the time of initial startup of the inverter and determining whether the input current value of the compressor has reached a predetermined value; When the input current value of the compressor reaches a predetermined value as a result of the determination in the first step, it is characterized in that the second step of increasing the opening degree of the electronic expansion edge to the opening value set in multiple stages according to the predetermined input current value.

이하, 본 발명에 의한 인버터 열펌프의 기동방법에 대한 작용 및 효과를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, the operation and effects of the method for starting the inverter heat pump according to the present invention will be described in detail.

먼저, 일반적인 인버터 열펌프의 싸이클 구조는 종래 도1과 동일하고, 도3은 일반적인 인버터 열펌프의 개략도로서, 마이크로컴퓨터(미도시)는 인버터 드라이브(10) 상단에 위치한 변류기(11)가 압축기(1)의 사용전류를 감지하여 이 전류값이 설정된 한계값 이상이 되면 인버터 드라이브(10)를 보호하기 위해 압축기(1)를 정지한다.First, the cycle structure of a typical inverter heat pump is the same as that of FIG. 1, and FIG. 3 is a schematic diagram of a typical inverter heat pump. In the microcomputer (not shown), a current transformer 11 located above the inverter drive 10 may include a compressor ( When the current value of 1) is sensed and the current value exceeds the set limit value, the compressor 1 is stopped to protect the inverter drive 10.

따라서, 본 발명은 초기 기동시 압축기(1)에 액체냉매가 유입되지 않도록 설정하고, 상기 압축기(1)의 입력전류를 변류기(11)를 통해 검출하여 그 검출 입력 전류값이 일정한 값에 도달하게 되면 냉매 부족으로 인한 입력 전류값의 상승을 방지하기 위하여 전자팽창변(4)의 개도를 증가시켜 기동시 압축기(1)가 과전류로 인해 정지하는 현상을 방지하도록 하는데, 이를 도4를 참조하여 상세히 설명하면 다음과 같다.Therefore, the present invention is set so that the liquid refrigerant does not flow into the compressor (1) at the initial start, and detects the input current of the compressor (1) through the current transformer (11) so that the detected input current value reaches a constant value In order to prevent an increase in the input current value due to lack of refrigerant, the opening degree of the electronic expansion edge 4 is increased to prevent the compressor 1 from stopping due to overcurrent at start-up, which will be described in detail with reference to FIG. 4. Is as follows.

먼저, 시스템 초기 기동시에 압축기(1)는 기설정된 주파수로 운전되고, 동시에 전자팽창변(4) 개도는 운전시간에 따라 변화하는 압축기(1) 사용 전류값에 따라 변화된다.First, the compressor 1 is operated at a predetermined frequency at the initial start of the system, and at the same time, the opening degree of the electromagnetic expansion edge 4 is changed in accordance with the compressor 1 use current value that changes with the operation time.

즉, 제1 기동 개도 유지 전류값(가)의 경우에는 제1 기동 개도(a)로 전자팽창변(4)이 운전되고, 제2 기동 개도 유지 전류값(나)의 경우에는 제2 기동 개도(b)로 전자팽창변(4)을 운전하며, 제3 기동 개도 유지 전류값(다)의 경우에는 제3 기동 개도(c)로 운전하고, 제4 기동 개도 유지 전류값(라)의 경우에는 제4 기동 개도(d)로 운전하며, 제5 기동 개도 유지 전류값(마)의 경우에는 제5 기동 개도(e)로 전자팽창변(4)을 운전한후 설정 주파수에 적합한 설정 개도로 운전한다.That is, in the case of the first starting opening degree holding current value (a), the electromagnetic expansion edge 4 is operated at the first starting opening degree a, and in the case of the second starting opening degree holding current value (b), the second starting opening degree ( b) the electromagnetic expansion edge 4 is operated, and in the case of the third starting opening degree holding current value (C), the electronic expansion edge 4 is operated at the third starting opening degree c, and in the case of the fourth starting opening degree holding current value (D). 4 The motor is operated at the starting opening degree d, and in the case of the fifth starting opening degree holding current value e, the electronic expansion valve 4 is operated at the fifth starting opening degree e, and then operated at a setting opening suitable for the set frequency.

즉, 초기 기동시에는 압축기(1)에 액냉매가 유입되지 않도록 설정하고 그 압축기(1)가 일정한 값 이상에 도달하게 되면 냉매 부족으로 인한 입력 전류값의 상승을 방지하기 위하여 전자팽창변(4)의 개도를 증가시켜 기동시에 압축기(1)가 과전류로 인해 정지하는 현상을 방지한다.That is, during initial startup, the liquid refrigerant is not introduced into the compressor 1, and when the compressor 1 reaches a predetermined value or more, the electronic expansion valve 4 is used to prevent an increase in the input current value due to lack of refrigerant. The opening degree of is increased to prevent the compressor 1 from stopping due to overcurrent at start-up.

이상에서 상세히 설명한 바와같이 본 발명은 인버터 열펌프의 초기 기동시 압축기에 액냉매가 유입되지 않으면서 기동시 압축기에 과전류가 발생하여 정지되는 것을 방지함과 아울러 설정주파수로 바로 운전을 시킴에 따라 사용자가 원하는 상태로 빨리 도달할 수 있는 효과가 있고, 또한 기동시 압축기 입력전류값을 감지하여 입력전류에 따라 팽창변의 개도를 조절함으로써 기동시 압축기의 정지현상을 방지할 수 있는 효과가 있다.As described in detail above, the present invention prevents overcurrent from occurring in the compressor at start-up without stopping liquid refrigerant into the compressor during initial start-up of the inverter heat pump, and immediately operates at a set frequency. Has the effect of quickly reaching the desired state, and also has the effect of preventing the compressor from stopping by starting by detecting the compressor input current value at startup and adjusting the opening degree of the expansion valve according to the input current.

Claims (1)

인버터의 초기 기동시 기설정된 주파수로 압축기를 운전시킴과 아울러 압축기의 입력 전류값이 소정값에 도달하였는지를 판단하는 제1 단계와; 상기 제1 단계의 판단결과 압축기의 입력 전류값이 소정값에 도달되면 그 소정 입력 전류값에 따라 다단계로 설정된 개도값으로 전자팽창변의 개도를 증가시키는 제2 단계로 수행함을 특징으로 하는 인버터 열펌프의 기동방법.A first step of operating the compressor at a preset frequency upon initial start-up of the inverter and determining whether an input current value of the compressor has reached a predetermined value; When the input current value of the compressor reaches a predetermined value as a result of the determination of the first step, the inverter heat pump is performed in a second step of increasing the opening degree of the electronic expansion edge to the opening value set in multiple stages according to the predetermined input current value How to start.
KR1019990038332A 1999-09-09 1999-09-09 Start-up method for inverter driving heat pump KR20010026846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990038332A KR20010026846A (en) 1999-09-09 1999-09-09 Start-up method for inverter driving heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990038332A KR20010026846A (en) 1999-09-09 1999-09-09 Start-up method for inverter driving heat pump

Publications (1)

Publication Number Publication Date
KR20010026846A true KR20010026846A (en) 2001-04-06

Family

ID=19610722

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990038332A KR20010026846A (en) 1999-09-09 1999-09-09 Start-up method for inverter driving heat pump

Country Status (1)

Country Link
KR (1) KR20010026846A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102705212A (en) * 2012-06-07 2012-10-03 青岛海尔空调电子有限公司 Method for starting variable frequency compressor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192375A (en) * 1984-10-12 1986-05-10 Matsushita Electric Ind Co Ltd Control device of electrically driven expansion valve in air conditioning machine
JPH031055A (en) * 1989-05-29 1991-01-07 Sharp Corp Cooling and heating apparatus
JPH03164657A (en) * 1989-11-24 1991-07-16 Hitachi Ltd Air conditioner
JPH04222353A (en) * 1990-12-25 1992-08-12 Daikin Ind Ltd Operation controller for air conditioner
JPH05196309A (en) * 1992-01-22 1993-08-06 Daikin Ind Ltd Operation control method of air conditioner
JPH10246516A (en) * 1997-02-28 1998-09-14 Fujitsu General Ltd Control for air conditioner
KR20000074950A (en) * 1999-05-27 2000-12-15 구자홍 Start-up algorithm for inverter driving heat pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192375A (en) * 1984-10-12 1986-05-10 Matsushita Electric Ind Co Ltd Control device of electrically driven expansion valve in air conditioning machine
JPH031055A (en) * 1989-05-29 1991-01-07 Sharp Corp Cooling and heating apparatus
JPH03164657A (en) * 1989-11-24 1991-07-16 Hitachi Ltd Air conditioner
JPH04222353A (en) * 1990-12-25 1992-08-12 Daikin Ind Ltd Operation controller for air conditioner
JPH05196309A (en) * 1992-01-22 1993-08-06 Daikin Ind Ltd Operation control method of air conditioner
JPH10246516A (en) * 1997-02-28 1998-09-14 Fujitsu General Ltd Control for air conditioner
KR20000074950A (en) * 1999-05-27 2000-12-15 구자홍 Start-up algorithm for inverter driving heat pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102705212A (en) * 2012-06-07 2012-10-03 青岛海尔空调电子有限公司 Method for starting variable frequency compressor

Similar Documents

Publication Publication Date Title
KR100922222B1 (en) Air conditioning system
KR20090029515A (en) Air-conditioner of the control method
US20240003597A1 (en) Systems for detecting and positioning of reversing valve
JP2012072920A (en) Refrigeration apparatus
KR101802107B1 (en) Refrigeration system
KR100765265B1 (en) Air conditioner
KR100332764B1 (en) Start-up algorithm for inverter driving heat pump
US20240019148A1 (en) System and method to operate hvac system during voltage variation event
JP2006194526A (en) Air conditioner
KR20080059906A (en) Air conditioner and control method of the same
KR20010001012A (en) Defrosting method for air conditioner
KR101144806B1 (en) Air conditioner and Control method of the same
KR20010026846A (en) Start-up method for inverter driving heat pump
JP3996321B2 (en) Air conditioner and its control method
JP4074422B2 (en) Air conditioner and its control method
JP3760259B2 (en) Air conditioner
KR101133617B1 (en) Inverter air-conditioner and its controlling method
JP4086719B2 (en) Air conditioner and control method of air conditioner
WO2020129246A1 (en) Air-conditioning device and control method therefor
JPH11173682A (en) Air conditioner
KR20010003290A (en) Operation frequency control method for inverter air conditioner
JP3481274B2 (en) Separate type air conditioner
KR20000073050A (en) Low pressure side obstruction deciding method for air conditioner
KR101200645B1 (en) Apparatus and method for controlling fan of outdoor unit in gas heat pump system
KR100256317B1 (en) Defrost device and algorithm of heat pump

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application