WO2020129246A1 - Air-conditioning device and control method therefor - Google Patents
Air-conditioning device and control method therefor Download PDFInfo
- Publication number
- WO2020129246A1 WO2020129246A1 PCT/JP2018/047305 JP2018047305W WO2020129246A1 WO 2020129246 A1 WO2020129246 A1 WO 2020129246A1 JP 2018047305 W JP2018047305 W JP 2018047305W WO 2020129246 A1 WO2020129246 A1 WO 2020129246A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compressor
- current value
- temperature
- shell
- air conditioner
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
Definitions
- the present invention relates to an air conditioner including an outdoor unit and a control method thereof.
- the input current value of the compressor at startup exceeds the preset upper limit value
- the input current value is kept low to avoid the operation of the compressor protection device, etc., and the compressor stabilizes after a certain period of time. It is known to recover operation and prevent a decrease in cooling or heating capacity. With such an air conditioner, indoor comfort can be maintained.
- the operating value of the overcurrent detector is set as the preset upper limit value of the input current value at the time of starting the compressor, and the overcurrent detection at the time of starting is detected. Avoid stopping the compressor due to the operation of the compressor.
- the present invention is for solving the above-mentioned problems, and by operating the thermal protector to stop the outdoor unit before the winding of the compressor reaches the dielectric breakdown temperature, the dielectric breakdown of the winding is prevented.
- An object of the present invention is to provide an air conditioner that can be prevented and a control method thereof.
- An air conditioner is an air conditioner including an outdoor unit having a compressor, the overheat protection device being provided in a shell of the compressor and detecting a surface temperature of the shell, and the compressor.
- a lock detection unit for detecting the lock state of, and a control unit for controlling the input current value to the compressor, the control unit, when the lock state of the compressor is detected by the lock detection unit, The current value input to the compressor is reduced to a preset current value at which the overheat protection device can operate.
- an air conditioner control method is an air conditioner control method including an outdoor unit having a compressor, the lock detecting step of detecting a lock state of the compressor, and the compressor. And a control step of controlling an input current value for the compressor, wherein in the control step, when the lock state of the compressor is detected in the lock detecting step, a current value input to the compressor is set in advance.
- the overheat protection device for detecting the set surface temperature in the shell of the compressor is lowered to a current value at which it can operate.
- an increase in winding temperature of the compressor is suppressed, and the overheat protection device is activated to stop the outdoor unit before the winding reaches the dielectric breakdown temperature. It is possible to prevent the insulation breakdown of the winding wire.
- FIG. 1 It is a schematic diagram which shows the refrigerant circuit of the air conditioning apparatus which concerns on Embodiment 1 of this invention. It is a front view which shows the structure of the outdoor unit in the air conditioning apparatus of FIG. It is a perspective view which shows the structure of the outdoor unit in the air conditioning apparatus of FIG. It is a flowchart which shows the input current processing procedure in the air conditioning apparatus of FIG. It is explanatory drawing which shows the operating characteristic of the control part in the air conditioning apparatus of FIG.
- FIG. 1 is a schematic diagram showing a refrigerant circuit 5 of an air conditioner 1 according to Embodiment 1 of the present invention.
- the air-conditioning apparatus 1 cools or heats the room by conditioning heat by transferring heat between the outside air and the room air via a refrigerant. It has an indoor unit 2 and an outdoor unit 3.
- the indoor unit 2 and the outdoor unit 3 are pipe-connected via the refrigerant pipes 4, 4a, 4b to form a refrigerant circuit 5 in which the refrigerant circulates.
- the refrigerant circuit 5 is provided with a compressor 10, a flow path switching device 11, an outdoor heat exchanger 12, an expansion valve 13 and an indoor heat exchanger 14, which are connected via refrigerant pipes 4, 4a, 4b. There is.
- the outdoor unit 3 has a compressor 10, a flow path switching device 11, an outdoor heat exchanger 12, and an expansion valve 13.
- the compressor 10 compresses the drawn refrigerant and discharges it.
- the compressor 10 may include an inverter device.
- the operating frequency can be changed by the control unit 6 to change the capacity of the compressor 10.
- the capacity of the compressor 10 is the amount of refrigerant sent out per unit time.
- the compressor 10 has a thermal protector 7 (see also FIG. 3) as an overheat protection device attached to a shell 101 described later.
- the outdoor unit 3 includes a lock detection unit 8 that detects a locked state of the compressor 10 by detecting a step-out of a motor included in the compressor 10.
- the control unit 6 controls the input current value of the compressor 10 to the compressor 10. Then, when the locked state of the compressor 10 is detected by the lock detection unit 8, the control unit 6 sets the current value input to the compressor 10 to a preset current value at which the thermal protector 7 can operate. It is supposed to be lowered. At this time, the current value at which the thermal protector 7 can operate is set in advance by conducting an experiment to obtain a current value that allows the surface temperature of the shell 101 to follow the rise in the winding temperature of the compressor 10. ..
- the flow path switching device 11 is, for example, a four-way valve, and is a device that switches the direction of the refrigerant flow path.
- the air conditioner 1 can realize the heating operation or the cooling operation by switching the flow of the refrigerant using the flow path switching device 11 based on the instruction from the control unit 6.
- the outdoor heat exchanger 12 exchanges heat between the refrigerant and the outdoor air. Further, the outdoor heat exchanger 12 is provided with an outdoor blower 15 in order to enhance the efficiency of heat exchange between the refrigerant and the outdoor air.
- An inverter device may be attached to the outdoor blower 15. In this case, the inverter device changes the operating frequency of the fan motor 16 that is the drive source of the outdoor blower 15 to change the rotation speed of the fan.
- the outdoor blower 15 is not limited to this as long as the same effect can be obtained.
- the type of fan may be a sirocco fan or a plug fan.
- the outdoor blower 15 may be of a push type or a pull type.
- the outdoor heat exchanger 12 functions as an evaporator during the heating operation, and heat-exchanges between the low-pressure refrigerant flowing from the refrigerant pipe 4b side and the outdoor air to evaporate and evaporate the refrigerant. Then, it is made to flow out to the refrigerant pipe 4a side. Further, the outdoor heat exchanger 12 functions as a condenser during the cooling operation, and the refrigerant that has been compressed by the compressor 10 that has flowed in from the refrigerant pipe 4a side via the flow path switching device 11 and the outdoor air. Heat is exchanged between them to condense and liquefy the refrigerant and let it flow out to the refrigerant pipe 4b side.
- the outdoor air is used as the external fluid
- the external fluid is not limited to the gas containing the outdoor air and may be a liquid containing water.
- the expansion valve 13 is a throttle device that controls the flow rate of the refrigerant, and the pressure of the refrigerant is adjusted by adjusting the flow rate of the refrigerant flowing through the refrigerant pipe 4 by changing the opening degree of the expansion valve 13.
- the expansion valve 13 expands and depressurizes the high-pressure liquid-state refrigerant into the low-pressure gas-liquid two-phase refrigerant during the cooling operation.
- the expansion valve 13 is not limited to this, and may be an electronic expansion valve or a capillary tube as long as the same effect can be obtained.
- the expansion valve 13 is an electronic expansion valve, the opening degree is adjusted based on an instruction from the control unit 6.
- the indoor unit 2 includes an indoor heat exchanger 14 that exchanges heat between the refrigerant and the indoor air, and an indoor blower 17 that adjusts the flow of air for the indoor heat exchanger 14 to exchange heat.
- the indoor heat exchanger 14 functions as a condenser during heating operation, performs heat exchange between the refrigerant flowing from the refrigerant pipe 4a side and the indoor air, condenses and liquefies the refrigerant, and the refrigerant pipe It is discharged to the 4b side.
- the indoor heat exchanger 14 functions as an evaporator during the cooling operation, and performs heat exchange between the refrigerant that is brought into a low pressure state by the expansion valve 13 that has flowed in from the refrigerant pipe 4b side and the indoor air, The heat of the air is taken by the refrigerant to be evaporated and vaporized, and the refrigerant is made to flow to the refrigerant pipe 4a side.
- the indoor air is used as the external fluid
- the external fluid is not limited to the gas including the indoor air, and may be a liquid including water.
- the operating speed of the indoor blower 17 is determined by user settings. It is preferable to attach an inverter device to the indoor blower 17 and change the operating frequency of the fan motor 18 to change the rotation speed of the fan.
- the indoor blower 17 is not limited to this as long as the same effect can be obtained.
- the type of fan may be a sirocco fan or a plug fan.
- the indoor blower 17 may be of a push type or a pull type.
- the high-temperature high-pressure gas refrigerant compressed and discharged by the compressor 10 flows into the outdoor heat exchanger 12 via the flow path switching device 11.
- the gas refrigerant flowing into the outdoor heat exchanger 12 is condensed by heat exchange with the outside air blown by the outdoor blower 15, becomes a low-temperature refrigerant, and flows out from the outdoor heat exchanger 12.
- the refrigerant flowing out of the outdoor heat exchanger 12 is expanded and decompressed by the expansion valve 13 to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
- This gas-liquid two-phase refrigerant flows into the indoor heat exchanger 14 of the indoor unit 2, evaporates by heat exchange with the indoor air blown by the indoor blower 17, and becomes a low-temperature low-pressure gas refrigerant, which becomes the indoor heat exchanger. Outflow from 14. At this time, the indoor air cooled by the heat absorbed by the refrigerant becomes conditioned air (blowing air) and is blown from the indoor unit 2 into the room that is the air conditioning target space. The gas refrigerant flowing out of the indoor heat exchanger 14 is sucked into the compressor 10 via the flow path switching device 11 and compressed again. The above operation is repeated in the cooling operation of the air conditioner 1 (indicated by a solid arrow in FIG. 1 ).
- the heating operation will be described as an operation example of the air conditioning apparatus 1.
- the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 10 flows into the indoor heat exchanger 14 of the indoor unit 2 via the flow path switching device 11.
- the gas refrigerant flowing into the indoor heat exchanger 14 is condensed by heat exchange with the indoor air blown by the indoor blower 17, becomes a low-temperature refrigerant, and flows out from the indoor heat exchanger 14.
- the indoor air warmed by receiving heat from the gas refrigerant becomes conditioned air (blowing air) and is blown out from the indoor unit 2 into the room.
- the refrigerant flowing out from the indoor heat exchanger 14 is expanded and decompressed by the expansion valve 13 to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
- the gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 12 of the outdoor unit 3, evaporates by heat exchange with the outside air blown by the outdoor blower 15, and becomes a low-temperature and low-pressure gas refrigerant, which is the outdoor heat exchanger 12 Drained from.
- the gas refrigerant flowing out of the outdoor heat exchanger 12 is sucked into the compressor 10 via the flow path switching device 11 and compressed again. The above operation is repeated in the heating operation of the air conditioner 1 (indicated by a dashed arrow in FIG. 1 ).
- FIG. 2 is a front view showing the configuration of the outdoor unit 3 in the air conditioning apparatus 1 of FIG.
- FIG. 3 is a perspective view showing the configuration of the outdoor unit 3 in the air conditioning apparatus 1 of FIG.
- a housing panel 30 that covers the outer shell is formed in a rectangular parallelepiped shape.
- the interior of the housing panel 30 is partitioned by a partition plate 31 into an air passage chamber 32 and a machine chamber 33.
- the outdoor blower 15 is installed on the front side of the housing panel 30 in the air duct chamber 32. Further, on the rear side of the outdoor blower 15 in the air duct chamber 32, the outdoor heat exchanger 12 mounted in an L shape from the back side to the side face of the air duct chamber 32 of the housing panel 30 is installed.
- the housing panel 30 includes a front upper outer panel 30a, a lower front outer panel 30b, and a rear upper outer panel (not shown), and surrounds the four side surfaces of the machine room 33 together with the partition plate 31.
- the configuration of the housing panel 30 of the machine room 33 described above is an example, and the number of parts of the housing panel 30 or the position of the joint is not limited.
- the outdoor unit 3 may be a front outer panel that integrates the front upper outer panel 30a and the lower front outer panel 30b.
- the outdoor blower 15 is provided with a plurality of blades 15b on the outer circumference of a boss 15a which is the center of rotation, and is rotationally driven by a fan motor 16.
- the front upper outer panel 30a of the housing panel 30 located on the front side of the outdoor blower 15 has a slit-shaped blow for discharging the air inside the housing panel 30 to the outside of the housing panel 30.
- An outlet 30c is provided.
- the outdoor heat exchanger 12 has a structure including a heat transfer tube through which a refrigerant flows, although not shown in detail, and fins for increasing a heat transfer area between the refrigerant flowing through the heat transfer tube and the outside air. ing.
- the machine room 33 is provided with a compressor 10 that is connected to the outdoor heat exchanger 12 via the refrigerant pipe 4 and supplies the refrigerant to the outdoor heat exchanger 12.
- the thermal protector 7 is attached to the shell 101 of the compressor 10.
- the thermal protector 7 functions as an overheat protection device that detects the surface temperature of the shell 101.
- electric components such as a power module and an inverter board are installed, including a current sensor that detects whether the outdoor unit 3 is operating.
- FIG. 4 is a flowchart showing an input current processing procedure in the air conditioner 1 of FIG.
- FIG. 5 is explanatory drawing which shows the operation characteristic of the control part 6 in the air conditioning apparatus 1 of FIG.
- the vertical axis of the upper graph shows temperature T
- the vertical axis of the lower graph shows current I
- the horizontal axis shows time t in both upper and lower stages.
- the control unit 6 first deactivates the motor provided in the compressor 10 by the lock detection unit 8 in step S1.
- the lock state of the compressor 10 is detected by detecting the key.
- the control unit 6 proceeds to step S2 and becomes the normal operation, and ends the input current processing procedure.
- the controller 6 proceeds to step S3 and suppresses the input current to a preset control value I0 (set value). The operation of the outdoor unit 3 is continued.
- step S3 the control unit 6 reduces the current value input to the compressor 10 to a preset control value I0.
- the control value I0 is set in advance by conducting an experiment to obtain a current value that allows the surface temperature L2 of the shell 101 to follow the rise in the winding temperature L1 of the motor provided in the compressor 10. deep. In this way, the control value I0 is set at a current value that allows the surface temperature L2 of the shell 101 to follow the rise in the winding temperature L1 of the compressor 10, so the winding of the motor provided in the compressor 10
- the thermal protector 7 can be actuated before the dielectric breakdown occurs.
- control unit 6 proceeds to step S4 and ends the input current processing procedure when the thermal protector 7 is activated.
- the thermal protector 7 When the surface temperature L2 of the shell 101 of the compressor 10 exceeds the operating temperature T0 and reaches the operating temperature T1 of the thermal protector 7 (time point t2), the thermal protector 7 operates and the operation of the outdoor unit 3 starts. Stop.
- the control value I0 is set in advance as described above, it is possible to control the winding temperature L1 of the compressor 10 to follow the surface temperature L2 of the shell 101 so as not to exceed the dielectric breakdown temperature T2.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
An air-conditioning device comprising: an outdoor unit having a compressor; an overheating protection device that is provided on a shell of the compressor and detects the surface temperature of shell; a lock detection unit that detects a locked state for the compressor; and a control unit that controls the input current value for the compressor. The control unit reduces the current value input to the compressor to a preset current value at which the overheating protection device can operate, if a compressor locked state is detected by the lock detection unit. As a result, increase in the compressor winding temperature can be suppressed, a thermal protector can be operated before the winding reaches a dielectric breakdown temperature and the outdoor unit safely stopped, and dielectric breakdown of windings can be prevented.
Description
本発明は、室外機を備える空気調和装置およびその制御方法に関する。
The present invention relates to an air conditioner including an outdoor unit and a control method thereof.
従来から空気調和装置では、室外機に設けられた圧縮機が負荷過大によるロック状態で電源を投入し起動させると、入力電流値が増大し、過電流検出器が作動して電源を遮断する。この場合、過電流検出器が正常な状態に復帰するまでは、圧縮機が作動せず、その間、空気調和装置における冷房または暖房が停止するため、室内の快適性を損なう事例が多発していた。
In conventional air conditioners, when the compressor installed in the outdoor unit is turned on and started in a locked state due to excessive load, the input current value increases and the overcurrent detector operates to shut off the power. In this case, the compressor does not operate until the overcurrent detector returns to the normal state, and during that time, the cooling or heating in the air conditioner is stopped, so there are many cases where the comfort of the room is impaired. ..
そのため、起動時における圧縮機の入力電流値が予め設定された上限値を超える場合に、入力電流値を低く抑えることで圧縮機の保護装置等の動作を避け、一定時間経過後に圧縮機の安定運転を取り戻し、冷房または暖房能力の低下を防止するものが知られている。このような空気調和装置では、室内の快適性を維持することができる。
Therefore, when the input current value of the compressor at startup exceeds the preset upper limit value, the input current value is kept low to avoid the operation of the compressor protection device, etc., and the compressor stabilizes after a certain period of time. It is known to recover operation and prevent a decrease in cooling or heating capacity. With such an air conditioner, indoor comfort can be maintained.
例えば、特許文献1に開示されている空気調和装置では、圧縮機の起動時における入力電流値の予め設定された上限値として、過電流検出器の動作値を設定し、起動時の過電流検出器の作動による圧縮機の停止を避けている。
For example, in the air conditioner disclosed in Patent Document 1, the operating value of the overcurrent detector is set as the preset upper limit value of the input current value at the time of starting the compressor, and the overcurrent detection at the time of starting is detected. Avoid stopping the compressor due to the operation of the compressor.
しかしながら、かかる従来の空気調和装置では、圧縮機がロック状態になった場合、過電流検出器が動作せず、圧縮機の巻線が絶縁破壊を起こしてしまう虞があった。また、圧縮機のシェルに過熱保護装置であるサーマルプロテクタを取り付けた場合でも、設定した入力電流値によっては、巻線の温度上昇にシェルの表面温度が追従できずに、サーマルプロテクタが動作する前に巻線が絶縁破壊を起こしてしまう虞があった。
However, in such a conventional air conditioner, when the compressor is in the locked state, the overcurrent detector may not operate, and the winding of the compressor may have a dielectric breakdown. Even when a thermal protector, which is an overheat protection device, is attached to the shell of the compressor, the surface temperature of the shell cannot follow the temperature rise of the winding depending on the set input current value. There was a risk that the winding would cause dielectric breakdown.
本発明は、上記課題を解決するためのものであり、圧縮機の巻線が絶縁破壊温度に達する前にサーマルプロテクタを作動させて室外機を停止させることで、巻線の絶縁破壊を未然に防止できる空気調和装置およびその制御方法を提供することを目的とする。
The present invention is for solving the above-mentioned problems, and by operating the thermal protector to stop the outdoor unit before the winding of the compressor reaches the dielectric breakdown temperature, the dielectric breakdown of the winding is prevented. An object of the present invention is to provide an air conditioner that can be prevented and a control method thereof.
本発明に係る空気調和装置は、圧縮機を有する室外機を備えた空気調和装置であって、前記圧縮機のシェルに設けられ、当該シェルの表面温度を検知する過熱保護装置と、前記圧縮機のロック状態を検知するロック検知部と、前記圧縮機に対する入力電流値を制御する制御部と、を備え、前記制御部は、前記ロック検知部により前記圧縮機のロック状態が検知されると、前記圧縮機に対して入力される電流値を、予め設定した前記過熱保護装置が作動可能な電流値まで低下させるものである。
An air conditioner according to the present invention is an air conditioner including an outdoor unit having a compressor, the overheat protection device being provided in a shell of the compressor and detecting a surface temperature of the shell, and the compressor. A lock detection unit for detecting the lock state of, and a control unit for controlling the input current value to the compressor, the control unit, when the lock state of the compressor is detected by the lock detection unit, The current value input to the compressor is reduced to a preset current value at which the overheat protection device can operate.
また、本発明に係る空気調和装置の制御方法は、圧縮機を有する室外機を備えた空気調和装置の制御方法であって、前記圧縮機のロック状態を検知するロック検知工程と、前記圧縮機に対する入力電流値を制御する制御工程と、を含み、前記制御工程では、前記ロック検知工程において前記圧縮機のロック状態が検知されると、前記圧縮機に対して入力される電流値を、予め設定した前記圧縮機のシェルにおける表面温度を検知する過熱保護装置が作動可能な電流値まで低下させるものである。
Further, an air conditioner control method according to the present invention is an air conditioner control method including an outdoor unit having a compressor, the lock detecting step of detecting a lock state of the compressor, and the compressor. And a control step of controlling an input current value for the compressor, wherein in the control step, when the lock state of the compressor is detected in the lock detecting step, a current value input to the compressor is set in advance. The overheat protection device for detecting the set surface temperature in the shell of the compressor is lowered to a current value at which it can operate.
本発明に係る空気調和装置およびその制御方法によれば、圧縮機の巻線温度の上昇が抑えられ、巻線が絶縁破壊温度に達する前に過熱保護装置を作動させて室外機を停止させることができ、巻線の絶縁破壊を未然に防止できる。
Advantageous Effects of Invention According to the air conditioner and the control method thereof according to the present invention, an increase in winding temperature of the compressor is suppressed, and the overheat protection device is activated to stop the outdoor unit before the winding reaches the dielectric breakdown temperature. It is possible to prevent the insulation breakdown of the winding wire.
以下、図面に基づいて本発明の実施の形態について説明する。なお、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。すなわち、本発明は、請求の範囲および明細書全体から読み取ることのできる発明の要旨又は思想に反しない範囲で適宜変更可能である。また、そのような変更を伴う空気調和装置も本発明の技術思想に含まれる。さらに、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the forms of the constituent elements shown in the entire specification are merely examples, and the present invention is not limited to these descriptions. That is, the present invention can be appropriately modified without departing from the scope or spirit of the invention that can be read from the claims and the entire specification. Further, an air conditioner with such changes is also included in the technical idea of the present invention. Further, in each of the drawings, the components denoted by the same reference numerals are the same or correspond to the same, and this is common to all the texts of the specification.
実施の形態1.
<空気調和装置1の構成>
図1を参照しながら、本発明の実施の形態1に係る空気調和装置1について説明する。図1は、本発明の実施の形態1に係る空気調和装置1の冷媒回路5を示す模式図である。 Embodiment 1.
<Structure of the air conditioner 1>
An air conditioner 1 according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing arefrigerant circuit 5 of an air conditioner 1 according to Embodiment 1 of the present invention.
<空気調和装置1の構成>
図1を参照しながら、本発明の実施の形態1に係る空気調和装置1について説明する。図1は、本発明の実施の形態1に係る空気調和装置1の冷媒回路5を示す模式図である。 Embodiment 1.
<Structure of the air conditioner 1>
An air conditioner 1 according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing a
図1に示すように、本実施の形態1に係る空気調和装置1は、冷媒を介して外気と室内の空気との間で熱を移動させることにより、冷房または暖房して室内の空気調和を行うものであり、室内機2と室外機3とを有している。
As shown in FIG. 1, the air-conditioning apparatus 1 according to Embodiment 1 cools or heats the room by conditioning heat by transferring heat between the outside air and the room air via a refrigerant. It has an indoor unit 2 and an outdoor unit 3.
空気調和装置1においては、室内機2と室外機3とが冷媒配管4、4a、4bを介して配管接続され、冷媒が循環する冷媒回路5を構成している。冷媒回路5には、圧縮機10、流路切替装置11、室外熱交換器12、膨張弁13および室内熱交換器14が設けられ、これらが冷媒配管4、4a、4bを介して接続されている。
In the air conditioner 1, the indoor unit 2 and the outdoor unit 3 are pipe-connected via the refrigerant pipes 4, 4a, 4b to form a refrigerant circuit 5 in which the refrigerant circulates. The refrigerant circuit 5 is provided with a compressor 10, a flow path switching device 11, an outdoor heat exchanger 12, an expansion valve 13 and an indoor heat exchanger 14, which are connected via refrigerant pipes 4, 4a, 4b. There is.
室外機3は、圧縮機10、流路切替装置11、室外熱交換器12および膨張弁13を有している。圧縮機10は、吸入した冷媒を圧縮して吐出する。ここで、圧縮機10は、インバータ装置を備えていてもよい。インバータ装置を備えた場合、制御部6によって運転周波数を変化させて、圧縮機10の容量を変更することができる。なお、圧縮機10の容量とは、単位時間当たりに送り出す冷媒の量である。また、圧縮機10は後述するシェル101に取り付けられた過熱保護装置としてのサーマルプロテクタ7(図3も参照)を有している。さらに、室外機3は、圧縮機10に備えられたモーターの脱調を検出することによって当該圧縮機10のロック状態を検知するロック検知部8を備えている。本実施の形態1の場合、圧縮機10は、制御部6によって当該圧縮機10に対する入力電流値を制御される。そして、制御部6は、ロック検知部8により当該圧縮機10のロック状態が検知されると、圧縮機10に対して入力される電流値を、予め設定したサーマルプロテクタ7が作動可能な電流値まで低下させるようになっている。このとき、サーマルプロテクタ7が作動可能な電流値は、圧縮機10の巻線温度の上昇に、シェル101の表面温度が追従可能な電流値を求める実験を事前に行って、予め設定しておく。
The outdoor unit 3 has a compressor 10, a flow path switching device 11, an outdoor heat exchanger 12, and an expansion valve 13. The compressor 10 compresses the drawn refrigerant and discharges it. Here, the compressor 10 may include an inverter device. When the inverter device is provided, the operating frequency can be changed by the control unit 6 to change the capacity of the compressor 10. The capacity of the compressor 10 is the amount of refrigerant sent out per unit time. Further, the compressor 10 has a thermal protector 7 (see also FIG. 3) as an overheat protection device attached to a shell 101 described later. Further, the outdoor unit 3 includes a lock detection unit 8 that detects a locked state of the compressor 10 by detecting a step-out of a motor included in the compressor 10. In the case of the first embodiment, the control unit 6 controls the input current value of the compressor 10 to the compressor 10. Then, when the locked state of the compressor 10 is detected by the lock detection unit 8, the control unit 6 sets the current value input to the compressor 10 to a preset current value at which the thermal protector 7 can operate. It is supposed to be lowered. At this time, the current value at which the thermal protector 7 can operate is set in advance by conducting an experiment to obtain a current value that allows the surface temperature of the shell 101 to follow the rise in the winding temperature of the compressor 10. ..
流路切替装置11は、例えば四方弁であり、冷媒流路の方向の切り換えが行われる装置である。空気調和装置1は、制御部6からの指示に基づいて、流路切替装置11を用いて冷媒の流れを切り換えることで、暖房運転または冷房運転を実現することができる。室外熱交換器12は、冷媒と室外空気との熱交換を行う。また、室外熱交換器12には、冷媒と室外空気との間の熱交換の効率を高めるために、室外送風機15が設けられている。室外送風機15には、インバータ装置が取り付けられていてもよい。この場合、インバータ装置は、室外送風機15の駆動源であるファンモーター16の運転周波数を変化させてファンの回転速度を変更する。なお、室外送風機15は、同様の効果が得られるものであればこれに限らず、例えば、ファンの種類はシロッコファンでもよいし、プラグファンでもよい。また、室外送風機15は押し込み方式でもよいし、引っぱり方式でもよい。
The flow path switching device 11 is, for example, a four-way valve, and is a device that switches the direction of the refrigerant flow path. The air conditioner 1 can realize the heating operation or the cooling operation by switching the flow of the refrigerant using the flow path switching device 11 based on the instruction from the control unit 6. The outdoor heat exchanger 12 exchanges heat between the refrigerant and the outdoor air. Further, the outdoor heat exchanger 12 is provided with an outdoor blower 15 in order to enhance the efficiency of heat exchange between the refrigerant and the outdoor air. An inverter device may be attached to the outdoor blower 15. In this case, the inverter device changes the operating frequency of the fan motor 16 that is the drive source of the outdoor blower 15 to change the rotation speed of the fan. The outdoor blower 15 is not limited to this as long as the same effect can be obtained. For example, the type of fan may be a sirocco fan or a plug fan. The outdoor blower 15 may be of a push type or a pull type.
ここで、室外熱交換器12は、暖房運転時において蒸発器として機能し、冷媒配管4b側から流入した低圧の冷媒と、室外空気と、の間で熱交換を行って冷媒を蒸発させて気化させ、冷媒配管4a側に流出させる。また、室外熱交換器12は、冷房運転時において凝縮器として機能し、冷媒配管4a側から流路切替装置11を介して流入した圧縮機10にて圧縮済の冷媒と、室外空気と、の間で熱交換を行い、冷媒を凝縮させて液化させ、冷媒配管4b側に流出させる。なお、ここでは室外空気を外部流体として用いる場合を例に説明したが、外部流体は室外空気を含む気体に限らず、水を含む液体であってもよい。
Here, the outdoor heat exchanger 12 functions as an evaporator during the heating operation, and heat-exchanges between the low-pressure refrigerant flowing from the refrigerant pipe 4b side and the outdoor air to evaporate and evaporate the refrigerant. Then, it is made to flow out to the refrigerant pipe 4a side. Further, the outdoor heat exchanger 12 functions as a condenser during the cooling operation, and the refrigerant that has been compressed by the compressor 10 that has flowed in from the refrigerant pipe 4a side via the flow path switching device 11 and the outdoor air. Heat is exchanged between them to condense and liquefy the refrigerant and let it flow out to the refrigerant pipe 4b side. Although the case where the outdoor air is used as the external fluid has been described here as an example, the external fluid is not limited to the gas containing the outdoor air and may be a liquid containing water.
膨張弁13は、冷媒の流量を制御する絞り装置であり、膨張弁13の開度を変化させることで冷媒配管4を流れる冷媒の流量を調節することにより、冷媒の圧力を調整する。膨張弁13は、冷房運転時において、高圧の液状態の冷媒を低圧の気液二相状態の冷媒へと膨張させ減圧させる。なお、膨張弁13としてはこれに限らず、同様の効果が得られるものであれば、電子膨張弁またはキャピラリーチューブ等でもよい。例えば、膨張弁13が、電子式膨張弁で構成された場合は、制御部6の指示に基づいて開度調整が行われる。
The expansion valve 13 is a throttle device that controls the flow rate of the refrigerant, and the pressure of the refrigerant is adjusted by adjusting the flow rate of the refrigerant flowing through the refrigerant pipe 4 by changing the opening degree of the expansion valve 13. The expansion valve 13 expands and depressurizes the high-pressure liquid-state refrigerant into the low-pressure gas-liquid two-phase refrigerant during the cooling operation. The expansion valve 13 is not limited to this, and may be an electronic expansion valve or a capillary tube as long as the same effect can be obtained. For example, when the expansion valve 13 is an electronic expansion valve, the opening degree is adjusted based on an instruction from the control unit 6.
室内機2は、冷媒と室内空気との間で熱交換を行う室内熱交換器14と、室内熱交換器14が熱交換を行う空気の流れを調整する室内送風機17と、を有する。
The indoor unit 2 includes an indoor heat exchanger 14 that exchanges heat between the refrigerant and the indoor air, and an indoor blower 17 that adjusts the flow of air for the indoor heat exchanger 14 to exchange heat.
室内熱交換器14は、暖房運転時において凝縮器の働きをし、冷媒配管4a側から流入した冷媒と、室内空気と、の間で熱交換を行い、冷媒を凝縮させて液化させ、冷媒配管4b側に流出させる。また、室内熱交換器14は、冷房運転時において蒸発器として機能し、冷媒配管4b側から流入した膨張弁13によって低圧状態にされた冷媒と、室内空気と、の間で熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、冷媒配管4a側に流出させる。なお、ここでは室内空気を外部流体として用いる場合を例に説明したが、外部流体は室内空気を含む気体に限らず、水を含む液体であってもよい。
The indoor heat exchanger 14 functions as a condenser during heating operation, performs heat exchange between the refrigerant flowing from the refrigerant pipe 4a side and the indoor air, condenses and liquefies the refrigerant, and the refrigerant pipe It is discharged to the 4b side. In addition, the indoor heat exchanger 14 functions as an evaporator during the cooling operation, and performs heat exchange between the refrigerant that is brought into a low pressure state by the expansion valve 13 that has flowed in from the refrigerant pipe 4b side and the indoor air, The heat of the air is taken by the refrigerant to be evaporated and vaporized, and the refrigerant is made to flow to the refrigerant pipe 4a side. In addition, although the case where the indoor air is used as the external fluid has been described here as an example, the external fluid is not limited to the gas including the indoor air, and may be a liquid including water.
室内送風機17の運転速度は、ユーザーの設定により決定される。室内送風機17には、インバータ装置を取り付け、ファンモーター18の運転周波数を変化させてファンの回転速度を変更することが好ましい。なお、室内送風機17は、同様の効果が得られるものであればこれに限らず、例えば、ファンの種類はシロッコファンでもよいし、プラグファンでもよい。また、室内送風機17は押し込み方式でもよいし、引っぱり方式でもよい。
The operating speed of the indoor blower 17 is determined by user settings. It is preferable to attach an inverter device to the indoor blower 17 and change the operating frequency of the fan motor 18 to change the rotation speed of the fan. The indoor blower 17 is not limited to this as long as the same effect can be obtained. For example, the type of fan may be a sirocco fan or a plug fan. Further, the indoor blower 17 may be of a push type or a pull type.
<空気調和装置1の冷房および暖房運転の動作例>
次に、空気調和装置1の動作例として冷房運転の動作を説明する。圧縮機10によって圧縮され吐出された高温高圧のガス冷媒は、流路切替装置11を経由して、室外熱交換器12に流入する。室外熱交換器12に流入したガス冷媒は、室外送風機15により送風される外気との熱交換により凝縮し、低温の冷媒となって、室外熱交換器12から流出する。室外熱交換器12から流出した冷媒は、膨張弁13によって膨張および減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室内機2の室内熱交換器14に流入し、室内送風機17により送風される室内空気との熱交換により蒸発し、低温低圧のガス冷媒となって室内熱交換器14から流出する。このとき、冷媒に吸熱されて冷却された室内空気は、空調空気(吹出風)となって、室内機2から空調対象空間である室内に吹き出される。室内熱交換器14から流出したガス冷媒は、流路切替装置11を経由して圧縮機10に吸入され、再び圧縮される。空気調和装置1の冷房運転は、以上の動作が繰り返される(図1中、実線の矢印で示す)。 <Operation example of cooling and heating operation of the air conditioner 1>
Next, the operation of the cooling operation will be described as an operation example of the air conditioner 1. The high-temperature high-pressure gas refrigerant compressed and discharged by thecompressor 10 flows into the outdoor heat exchanger 12 via the flow path switching device 11. The gas refrigerant flowing into the outdoor heat exchanger 12 is condensed by heat exchange with the outside air blown by the outdoor blower 15, becomes a low-temperature refrigerant, and flows out from the outdoor heat exchanger 12. The refrigerant flowing out of the outdoor heat exchanger 12 is expanded and decompressed by the expansion valve 13 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant flows into the indoor heat exchanger 14 of the indoor unit 2, evaporates by heat exchange with the indoor air blown by the indoor blower 17, and becomes a low-temperature low-pressure gas refrigerant, which becomes the indoor heat exchanger. Outflow from 14. At this time, the indoor air cooled by the heat absorbed by the refrigerant becomes conditioned air (blowing air) and is blown from the indoor unit 2 into the room that is the air conditioning target space. The gas refrigerant flowing out of the indoor heat exchanger 14 is sucked into the compressor 10 via the flow path switching device 11 and compressed again. The above operation is repeated in the cooling operation of the air conditioner 1 (indicated by a solid arrow in FIG. 1 ).
次に、空気調和装置1の動作例として冷房運転の動作を説明する。圧縮機10によって圧縮され吐出された高温高圧のガス冷媒は、流路切替装置11を経由して、室外熱交換器12に流入する。室外熱交換器12に流入したガス冷媒は、室外送風機15により送風される外気との熱交換により凝縮し、低温の冷媒となって、室外熱交換器12から流出する。室外熱交換器12から流出した冷媒は、膨張弁13によって膨張および減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室内機2の室内熱交換器14に流入し、室内送風機17により送風される室内空気との熱交換により蒸発し、低温低圧のガス冷媒となって室内熱交換器14から流出する。このとき、冷媒に吸熱されて冷却された室内空気は、空調空気(吹出風)となって、室内機2から空調対象空間である室内に吹き出される。室内熱交換器14から流出したガス冷媒は、流路切替装置11を経由して圧縮機10に吸入され、再び圧縮される。空気調和装置1の冷房運転は、以上の動作が繰り返される(図1中、実線の矢印で示す)。 <Operation example of cooling and heating operation of the air conditioner 1>
Next, the operation of the cooling operation will be described as an operation example of the air conditioner 1. The high-temperature high-pressure gas refrigerant compressed and discharged by the
次に、空気調和装置1の動作例として暖房運転の動作を説明する。圧縮機10によって圧縮され吐出された高温高圧のガス冷媒は、流路切替装置11を経由して、室内機2の室内熱交換器14に流入する。室内熱交換器14に流入したガス冷媒は、室内送風機17により送風される室内空気との熱交換により凝縮し、低温の冷媒となって、室内熱交換器14から流出する。このとき、ガス冷媒から熱を受け取り暖められた室内空気は、空調空気(吹出風)となって、室内機2から室内に吹き出される。室内熱交換器14から流出した冷媒は、膨張弁13によって膨張および減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室外機3の室外熱交換器12に流入し、室外送風機15により送風される外気との熱交換により蒸発し、低温低圧のガス冷媒となって室外熱交換器12から流出する。室外熱交換器12から流出したガス冷媒は、流路切替装置11を経由して圧縮機10に吸入され、再び圧縮される。空気調和装置1の暖房運転は、以上の動作が繰り返される(図1中、破線の矢印で示す)。
Next, the heating operation will be described as an operation example of the air conditioning apparatus 1. The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 10 flows into the indoor heat exchanger 14 of the indoor unit 2 via the flow path switching device 11. The gas refrigerant flowing into the indoor heat exchanger 14 is condensed by heat exchange with the indoor air blown by the indoor blower 17, becomes a low-temperature refrigerant, and flows out from the indoor heat exchanger 14. At this time, the indoor air warmed by receiving heat from the gas refrigerant becomes conditioned air (blowing air) and is blown out from the indoor unit 2 into the room. The refrigerant flowing out from the indoor heat exchanger 14 is expanded and decompressed by the expansion valve 13 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 12 of the outdoor unit 3, evaporates by heat exchange with the outside air blown by the outdoor blower 15, and becomes a low-temperature and low-pressure gas refrigerant, which is the outdoor heat exchanger 12 Drained from. The gas refrigerant flowing out of the outdoor heat exchanger 12 is sucked into the compressor 10 via the flow path switching device 11 and compressed again. The above operation is repeated in the heating operation of the air conditioner 1 (indicated by a dashed arrow in FIG. 1 ).
<室外機3の構成>
ここで、図2および図3を参照しながら、本実施の形態1に係る空気調和装置1の室外機3について説明する。図2は、図1の空気調和装置1における室外機3の構成を示す正面図である。図3は、図1の空気調和装置1における室外機3の構成を示す斜視図である。 <Structure ofoutdoor unit 3>
Here, theoutdoor unit 3 of the air conditioning apparatus 1 according to the first embodiment will be described with reference to FIGS. 2 and 3. FIG. 2 is a front view showing the configuration of the outdoor unit 3 in the air conditioning apparatus 1 of FIG. FIG. 3 is a perspective view showing the configuration of the outdoor unit 3 in the air conditioning apparatus 1 of FIG.
ここで、図2および図3を参照しながら、本実施の形態1に係る空気調和装置1の室外機3について説明する。図2は、図1の空気調和装置1における室外機3の構成を示す正面図である。図3は、図1の空気調和装置1における室外機3の構成を示す斜視図である。 <Structure of
Here, the
図2および図3に示すように、室外機3は、外郭を覆う筐体パネル30が直方体形状で形成されている。筐体パネル30の内部は、仕切板31によって風路室32と機械室33とに区画されている。風路室32における筐体パネル30の前面側には、室外送風機15が設置されている。また、風路室32における室外送風機15の背面側には、筐体パネル30の風路室32における背面側から側面側にかけてL字状に搭載される室外熱交換器12が設置されている。
As shown in FIGS. 2 and 3, in the outdoor unit 3, a housing panel 30 that covers the outer shell is formed in a rectangular parallelepiped shape. The interior of the housing panel 30 is partitioned by a partition plate 31 into an air passage chamber 32 and a machine chamber 33. The outdoor blower 15 is installed on the front side of the housing panel 30 in the air duct chamber 32. Further, on the rear side of the outdoor blower 15 in the air duct chamber 32, the outdoor heat exchanger 12 mounted in an L shape from the back side to the side face of the air duct chamber 32 of the housing panel 30 is installed.
筐体パネル30は、前面上部外郭パネル30a、前面下部外郭パネル30bおよび不図示の背面上部外郭パネルから成り立っており、仕切板31と共に機械室33の側面四面を囲っている。
なお、前述した機械室33の筐体パネル30の構成は一例であり、筐体パネル30の部品点数または継ぎ目の位置等は限定しない。例えば、前面上部外郭パネル30aと前面下部外郭パネル30bとを一体化した前面外郭パネルを用いた室外機3であってもよい。 Thehousing panel 30 includes a front upper outer panel 30a, a lower front outer panel 30b, and a rear upper outer panel (not shown), and surrounds the four side surfaces of the machine room 33 together with the partition plate 31.
The configuration of thehousing panel 30 of the machine room 33 described above is an example, and the number of parts of the housing panel 30 or the position of the joint is not limited. For example, the outdoor unit 3 may be a front outer panel that integrates the front upper outer panel 30a and the lower front outer panel 30b.
なお、前述した機械室33の筐体パネル30の構成は一例であり、筐体パネル30の部品点数または継ぎ目の位置等は限定しない。例えば、前面上部外郭パネル30aと前面下部外郭パネル30bとを一体化した前面外郭パネルを用いた室外機3であってもよい。 The
The configuration of the
室外送風機15は、回転中心となるボス15aの外周に複数の翼15bが設けられ、ファンモーター16により回転駆動される。また、筐体パネル30における室外送風機15の前面側に位置する前面上部外郭パネル30aには、筐体パネル30の内部の空気を当該筐体パネル30の外部へと排出するためのスリット状の吹出口30cが設けられている。室外熱交換器12は、詳細な図示を省略するが冷媒を流通させる伝熱管と、伝熱管を流れる冷媒と外気との間の伝熱面積を大きくするためのフィンとを備えた構造を有している。
The outdoor blower 15 is provided with a plurality of blades 15b on the outer circumference of a boss 15a which is the center of rotation, and is rotationally driven by a fan motor 16. In addition, the front upper outer panel 30a of the housing panel 30 located on the front side of the outdoor blower 15 has a slit-shaped blow for discharging the air inside the housing panel 30 to the outside of the housing panel 30. An outlet 30c is provided. The outdoor heat exchanger 12 has a structure including a heat transfer tube through which a refrigerant flows, although not shown in detail, and fins for increasing a heat transfer area between the refrigerant flowing through the heat transfer tube and the outside air. ing.
機械室33には、室外熱交換器12と冷媒配管4を介して接続され、当該室外熱交換器12へと冷媒を供給する圧縮機10が設置されている。本実施の形態1の場合、圧縮機10のシェル101には、サーマルプロテクタ7が取り付けられている。サーマルプロテクタ7は、シェル101の表面温度を検知する過熱保護装置として機能する。また、機械室33には、室外機3の運転有無を検知する電流センサーをはじめ、パワーモジュールおよびインバータ基板等の電気部品が設置されている。
The machine room 33 is provided with a compressor 10 that is connected to the outdoor heat exchanger 12 via the refrigerant pipe 4 and supplies the refrigerant to the outdoor heat exchanger 12. In the case of the first embodiment, the thermal protector 7 is attached to the shell 101 of the compressor 10. The thermal protector 7 functions as an overheat protection device that detects the surface temperature of the shell 101. In addition, in the machine room 33, electric components such as a power module and an inverter board are installed, including a current sensor that detects whether the outdoor unit 3 is operating.
<入力電流処理手順>
ここで、図4および図5を参照しながら、空気調和装置1における入力電流処理手順を説明する。図4は、図1の空気調和装置1における入力電流処理手順を示すフローチャートである。図5は、図1の空気調和装置1における制御部6の動作特性を示す説明図である。なお、図5において、上段のグラフの縦軸は温度T、下段のグラフの縦軸は電流I、そして、横軸は上下段ともに時間tを示している。 <Input current processing procedure>
Here, the input current processing procedure in the air conditioning apparatus 1 will be described with reference to FIGS. 4 and 5. FIG. 4 is a flowchart showing an input current processing procedure in the air conditioner 1 of FIG. FIG. 5: is explanatory drawing which shows the operation characteristic of thecontrol part 6 in the air conditioning apparatus 1 of FIG. In FIG. 5, the vertical axis of the upper graph shows temperature T, the vertical axis of the lower graph shows current I, and the horizontal axis shows time t in both upper and lower stages.
ここで、図4および図5を参照しながら、空気調和装置1における入力電流処理手順を説明する。図4は、図1の空気調和装置1における入力電流処理手順を示すフローチャートである。図5は、図1の空気調和装置1における制御部6の動作特性を示す説明図である。なお、図5において、上段のグラフの縦軸は温度T、下段のグラフの縦軸は電流I、そして、横軸は上下段ともに時間tを示している。 <Input current processing procedure>
Here, the input current processing procedure in the air conditioning apparatus 1 will be described with reference to FIGS. 4 and 5. FIG. 4 is a flowchart showing an input current processing procedure in the air conditioner 1 of FIG. FIG. 5: is explanatory drawing which shows the operation characteristic of the
図4および図5に示すように、制御部6は、空気調和装置1の室外機3が運転を開始すると、まず、ステップS1において、ロック検知部8により圧縮機10に備えられたモーターの脱調を検出することによって当該圧縮機10のロック状態を検知する。ここで、制御部6は、ロック検知部8により圧縮機10のロック状態が検知されない場合(S1=N)、ステップS2に移行して通常運転となり、この入力電流処理手順を終了する。また、制御部6は、ロック検知部8により圧縮機10のロック状態が検知されると(S1=Y)、ステップS3に移行し、入力電流を予め設定した制御値I0(設定値)まで抑えて室外機3の運転を継続させる。
As shown in FIGS. 4 and 5, when the outdoor unit 3 of the air conditioner 1 starts operating, the control unit 6 first deactivates the motor provided in the compressor 10 by the lock detection unit 8 in step S1. The lock state of the compressor 10 is detected by detecting the key. Here, when the lock state of the compressor 10 is not detected by the lock detection unit 8 (S1=N), the control unit 6 proceeds to step S2 and becomes the normal operation, and ends the input current processing procedure. When the lock detector 8 detects the locked state of the compressor 10 (S1=Y), the controller 6 proceeds to step S3 and suppresses the input current to a preset control value I0 (set value). The operation of the outdoor unit 3 is continued.
具体的に、制御部6はステップS3において、圧縮機10に対して入力される電流値を、予め設定した制御値I0まで低下させる。ここで、制御値I0は、圧縮機10に備えられたモーターの巻線温度L1の上昇に、シェル101の表面温度L2が追従可能な電流値を求める実験を事前に行って、予め設定しておく。このように、制御値I0が圧縮機10の巻線温度L1の上昇に、シェル101の表面温度L2が追従可能な電流値で設定されているので、圧縮機10に備えられたモーターの巻線が絶縁破壊を起こす前にサーマルプロテクタ7を作動させることができる。
Specifically, in step S3, the control unit 6 reduces the current value input to the compressor 10 to a preset control value I0. Here, the control value I0 is set in advance by conducting an experiment to obtain a current value that allows the surface temperature L2 of the shell 101 to follow the rise in the winding temperature L1 of the motor provided in the compressor 10. deep. In this way, the control value I0 is set at a current value that allows the surface temperature L2 of the shell 101 to follow the rise in the winding temperature L1 of the compressor 10, so the winding of the motor provided in the compressor 10 The thermal protector 7 can be actuated before the dielectric breakdown occurs.
次に、制御部6は、ステップS4に移行し、サーマルプロテクタ7が作動すると、この入力電流処理手順を終了する。
Next, the control unit 6 proceeds to step S4 and ends the input current processing procedure when the thermal protector 7 is activated.
ここで、制御値I0を設定するための実験について、制御部6の動作特性を示す図5を参照しながら説明する。
図5に示すように、ロック検知部8による圧縮機10のロック状態検出時点t1にて、入力電流が通常の保護電流値I1よりも高い電流値I2であり、圧縮機10のロック状態が検知されると、制御部6が入力電流を予め設定した制御値I0まで抑える。この状態で室外機3の運転が継続され、圧縮機10の巻線温度L1が上昇すると、これに追従してシェル101の表面温度L2も上昇する。そして、圧縮機10のシェル101の表面温度L2が、通常運転の温度T0を超えてサーマルプロテクタ7の作動温度T1に達すると(時点t2)、サーマルプロテクタ7が作動し、室外機3の運転を停止させる。ここで、制御値I0は、予め前述のように設定されているので、圧縮機10の巻線温度L1をシェル101の表面温度L2に追従させ、絶縁破壊温度T2を超えないよう制御できる。 Here, an experiment for setting the control value I0 will be described with reference to FIG. 5 showing operation characteristics of thecontrol unit 6.
As shown in FIG. 5, at the time t1 when thelock detector 8 detects the lock state of the compressor 10, the input current is a current value I2 higher than the normal protection current value I1, and the lock state of the compressor 10 is detected. Then, the control unit 6 suppresses the input current to a preset control value I0. When the operation of the outdoor unit 3 is continued in this state and the winding temperature L1 of the compressor 10 rises, the surface temperature L2 of the shell 101 also rises following this. When the surface temperature L2 of the shell 101 of the compressor 10 exceeds the operating temperature T0 and reaches the operating temperature T1 of the thermal protector 7 (time point t2), the thermal protector 7 operates and the operation of the outdoor unit 3 starts. Stop. Here, since the control value I0 is set in advance as described above, it is possible to control the winding temperature L1 of the compressor 10 to follow the surface temperature L2 of the shell 101 so as not to exceed the dielectric breakdown temperature T2.
図5に示すように、ロック検知部8による圧縮機10のロック状態検出時点t1にて、入力電流が通常の保護電流値I1よりも高い電流値I2であり、圧縮機10のロック状態が検知されると、制御部6が入力電流を予め設定した制御値I0まで抑える。この状態で室外機3の運転が継続され、圧縮機10の巻線温度L1が上昇すると、これに追従してシェル101の表面温度L2も上昇する。そして、圧縮機10のシェル101の表面温度L2が、通常運転の温度T0を超えてサーマルプロテクタ7の作動温度T1に達すると(時点t2)、サーマルプロテクタ7が作動し、室外機3の運転を停止させる。ここで、制御値I0は、予め前述のように設定されているので、圧縮機10の巻線温度L1をシェル101の表面温度L2に追従させ、絶縁破壊温度T2を超えないよう制御できる。 Here, an experiment for setting the control value I0 will be described with reference to FIG. 5 showing operation characteristics of the
As shown in FIG. 5, at the time t1 when the
<実施の形態1における効果>
以上、説明したように、本実施の形態1の空気調和装置1は、圧縮機10に対する入力電流値を制御する制御部6が、ロック検知部8により圧縮機10のロック状態が検知されると、圧縮機10に対して入力される電流値を、予め設定した制御値まで抑える。この制御値は、圧縮機10の巻線温度の上昇にシェル101の表面温度が追従可能な電流値、すなわち、サーマルプロテクタ7が作動可能な電流値で設定されている。したがって、本実施の形態1の空気調和装置1によれば、圧縮機10の巻線温度の上昇が抑えられ、巻線が絶縁破壊温度に達する前にサーマルプロテクタ7を作動させて室外機3を安全に停止させることができ、巻線の絶縁破壊を未然に防止できる。 <Effects of First Embodiment>
As described above, in the air conditioning apparatus 1 of the first embodiment, when thecontrol unit 6 that controls the input current value to the compressor 10 detects the locked state of the compressor 10 by the lock detection unit 8. The current value input to the compressor 10 is suppressed to a preset control value. This control value is set to a current value at which the surface temperature of the shell 101 can follow the rise in the winding temperature of the compressor 10, that is, a current value at which the thermal protector 7 can operate. Therefore, according to the air conditioner 1 of the first embodiment, the rise of the winding temperature of the compressor 10 is suppressed, and the thermal protector 7 is operated to operate the outdoor unit 3 before the winding reaches the dielectric breakdown temperature. It can be stopped safely and the winding dielectric breakdown can be prevented.
以上、説明したように、本実施の形態1の空気調和装置1は、圧縮機10に対する入力電流値を制御する制御部6が、ロック検知部8により圧縮機10のロック状態が検知されると、圧縮機10に対して入力される電流値を、予め設定した制御値まで抑える。この制御値は、圧縮機10の巻線温度の上昇にシェル101の表面温度が追従可能な電流値、すなわち、サーマルプロテクタ7が作動可能な電流値で設定されている。したがって、本実施の形態1の空気調和装置1によれば、圧縮機10の巻線温度の上昇が抑えられ、巻線が絶縁破壊温度に達する前にサーマルプロテクタ7を作動させて室外機3を安全に停止させることができ、巻線の絶縁破壊を未然に防止できる。 <Effects of First Embodiment>
As described above, in the air conditioning apparatus 1 of the first embodiment, when the
1 空気調和装置、2 室内機、3 室外機、4、4a、4b 冷媒配管、5 冷媒回路、6 制御部、7 サーマルプロテクタ、8 ロック検知部、10 圧縮機、11 流路切替装置、12 室外熱交換器、13 膨張弁、14 室内熱交換器、15 室外送風機、15a ボス、15b 翼、16 ファンモーター、17 室内送風機、18 ファンモーター、30 筐体パネル、30a 前面上部外郭パネル、30b 前面下部外郭パネル、30c 吹出口、31 仕切板、32 風路室、33 機械室、101 シェル。
1 air conditioner, 2 indoor unit, 3 outdoor unit, 4 4a, 4b refrigerant piping, 5 refrigerant circuit, 6 control unit, 7 thermal protector, 8 lock detection unit, 10 compressor, 11 flow path switching device, 12 outdoor Heat exchanger, 13 expansion valve, 14 indoor heat exchanger, 15 outdoor blower, 15a boss, 15b blades, 16 fan motor, 17 indoor blower, 18 fan motor, 30 housing panel, 30a front upper outer panel, 30b front lower part Outer panel, 30c outlet, 31 partition, 32 air duct, 33 machine room, 101 shell.
Claims (8)
- 圧縮機を有する室外機を備えた空気調和装置であって、
前記圧縮機のシェルに設けられ、当該シェルの表面温度を検知する過熱保護装置と、
前記圧縮機のロック状態を検知するロック検知部と、
前記圧縮機に対する入力電流値を制御する制御部と、を備え、
前記制御部は、
前記ロック検知部により前記圧縮機のロック状態が検知されると、前記圧縮機に対して入力される電流値を、予め設定した前記過熱保護装置が作動可能な電流値まで低下させる空気調和装置。 An air conditioner including an outdoor unit having a compressor,
An overheat protection device provided in the shell of the compressor and detecting the surface temperature of the shell,
A lock detection unit that detects the locked state of the compressor,
A control unit for controlling an input current value to the compressor,
The control unit is
An air conditioner that reduces a current value input to the compressor to a preset current value at which the overheat protection device can operate when the lock detection unit detects a locked state of the compressor. - 前記ロック検知部は、
前記圧縮機に備えられたモーターの脱調を検出することにより、前記ロック状態を検知する請求項1に記載の空気調和装置。 The lock detector is
The air conditioner according to claim 1, wherein the locked state is detected by detecting a step-out of a motor provided in the compressor. - 前記予め設定した電流値は、
前記圧縮機に備えられたモーターの巻線温度の上昇に、前記シェルの表面温度が追従可能な電流値からなる請求項1または2に記載の空気調和装置。 The preset current value is
The air conditioner according to claim 1 or 2, wherein the surface temperature of the shell has a current value capable of following the rise in the winding temperature of the motor provided in the compressor. - 前記圧縮機に備えられたモーターの巻線温度の上昇に、前記シェルの表面温度が追従可能な電流値は、
前記シェルの表面温度が前記過熱保護装置の作動温度に達した際に、前記圧縮機に備えられたモーターの巻線温度が絶縁破壊温度未満となる電流値からなる請求項3に記載の空気調和装置。 The increase in the winding temperature of the motor provided in the compressor, the current value that the surface temperature of the shell can follow,
The air conditioner according to claim 3, wherein when the surface temperature of the shell reaches the operating temperature of the overheat protection device, the winding temperature of the motor provided in the compressor is a current value that is less than the dielectric breakdown temperature. apparatus. - 圧縮機を有する室外機を備えた空気調和装置の制御方法であって、
前記圧縮機のロック状態を検知するロック検知工程と、
前記圧縮機に対する入力電流値を制御する制御工程と、を含み、
前記制御工程では、
前記ロック検知工程において前記圧縮機のロック状態が検知されると、前記圧縮機に対して入力される電流値を、予め設定した前記圧縮機のシェルにおける表面温度を検知する過熱保護装置が作動可能な電流値まで低下させる空気調和装置の制御方法。 A method for controlling an air conditioner including an outdoor unit having a compressor,
A lock detection step of detecting the lock state of the compressor,
A control step of controlling an input current value to the compressor,
In the control step,
When the locked state of the compressor is detected in the lock detection step, the overheat protection device that detects the surface temperature of the shell of the compressor that presets the current value input to the compressor is operable. Method for controlling an air conditioner to reduce the current value to a proper value. - 前記ロック検知工程では、
前記圧縮機に備えられたモーターの脱調を検出することにより、前記ロック状態を検知する請求項5に記載の空気調和装置の制御方法。 In the lock detection step,
The control method of the air conditioning apparatus according to claim 5, wherein the locked state is detected by detecting a step-out of a motor provided in the compressor. - 前記制御工程における前記過熱保護装置が作動可能な電流値は、
前記圧縮機に備えられたモーターの巻線温度の上昇に、前記シェルの表面温度が追従可能な電流値からなる請求項5または6に記載の空気調和装置の制御方法。 The current value at which the overheat protection device in the control step can operate is
The control method for an air conditioner according to claim 5 or 6, wherein the surface temperature of the shell has a current value capable of following the rise in the winding temperature of the motor provided in the compressor. - 前記圧縮機に備えられたモーターの巻線温度の上昇に、前記シェルの表面温度が追従可能な電流値は、
前記シェルの表面温度が前記過熱保護装置の作動温度に達した際に、前記圧縮機に備えられたモーターの巻線温度が絶縁破壊温度未満となる電流値からなる請求項7に記載の空気調和装置の制御方法。 The increase in the winding temperature of the motor provided in the compressor, the current value that the surface temperature of the shell can follow,
The air conditioner according to claim 7, wherein when the surface temperature of the shell reaches the operating temperature of the overheat protection device, the winding temperature of the motor provided in the compressor is a current value that is less than the dielectric breakdown temperature. Device control method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/047305 WO2020129246A1 (en) | 2018-12-21 | 2018-12-21 | Air-conditioning device and control method therefor |
JP2020561124A JP6956903B2 (en) | 2018-12-21 | 2018-12-21 | Air conditioner and its control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/047305 WO2020129246A1 (en) | 2018-12-21 | 2018-12-21 | Air-conditioning device and control method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020129246A1 true WO2020129246A1 (en) | 2020-06-25 |
Family
ID=71102754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/047305 WO2020129246A1 (en) | 2018-12-21 | 2018-12-21 | Air-conditioning device and control method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6956903B2 (en) |
WO (1) | WO2020129246A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113432259A (en) * | 2021-06-23 | 2021-09-24 | Tcl空调器(中山)有限公司 | Air conditioner and defrosting method and device thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63212785A (en) * | 1987-02-27 | 1988-09-05 | Daikin Ind Ltd | Lock detecting system for compressor for inverter driven type air conditioner |
JPH04350442A (en) * | 1991-05-27 | 1992-12-04 | Fujitsu General Ltd | Control method of air conditioner |
JPH0763447A (en) * | 1993-08-25 | 1995-03-10 | Mitsubishi Electric Corp | Refrigerating cycling apparatus |
JP2003269341A (en) * | 2002-03-15 | 2003-09-25 | Sanyo Electric Co Ltd | Protection device of compressor |
JP3120688U (en) * | 2006-01-06 | 2006-04-20 | 山田電機製造株式会社 | Overload protector and equipment using the same |
KR20080013402A (en) * | 2006-08-08 | 2008-02-13 | 엘지전자 주식회사 | Invert compressor's control method and air-condition to be apply for the same |
JP2009108754A (en) * | 2007-10-30 | 2009-05-21 | Toshiba Corp | Control device of compressor |
US20100293397A1 (en) * | 2009-05-18 | 2010-11-18 | Pham Hung M | Diagnostic system |
CN102678508A (en) * | 2011-03-18 | 2012-09-19 | 森萨塔科技(常州)有限公司 | Air conditioner compressor provided with motor protector, and air conditioner |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY190716A (en) * | 2014-05-12 | 2022-05-12 | Panasonic Ip Man Co Ltd | Refrigeration cycle device |
-
2018
- 2018-12-21 WO PCT/JP2018/047305 patent/WO2020129246A1/en active Application Filing
- 2018-12-21 JP JP2020561124A patent/JP6956903B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63212785A (en) * | 1987-02-27 | 1988-09-05 | Daikin Ind Ltd | Lock detecting system for compressor for inverter driven type air conditioner |
JPH04350442A (en) * | 1991-05-27 | 1992-12-04 | Fujitsu General Ltd | Control method of air conditioner |
JPH0763447A (en) * | 1993-08-25 | 1995-03-10 | Mitsubishi Electric Corp | Refrigerating cycling apparatus |
JP2003269341A (en) * | 2002-03-15 | 2003-09-25 | Sanyo Electric Co Ltd | Protection device of compressor |
JP3120688U (en) * | 2006-01-06 | 2006-04-20 | 山田電機製造株式会社 | Overload protector and equipment using the same |
KR20080013402A (en) * | 2006-08-08 | 2008-02-13 | 엘지전자 주식회사 | Invert compressor's control method and air-condition to be apply for the same |
JP2009108754A (en) * | 2007-10-30 | 2009-05-21 | Toshiba Corp | Control device of compressor |
US20100293397A1 (en) * | 2009-05-18 | 2010-11-18 | Pham Hung M | Diagnostic system |
CN102678508A (en) * | 2011-03-18 | 2012-09-19 | 森萨塔科技(常州)有限公司 | Air conditioner compressor provided with motor protector, and air conditioner |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113432259A (en) * | 2021-06-23 | 2021-09-24 | Tcl空调器(中山)有限公司 | Air conditioner and defrosting method and device thereof |
CN113432259B (en) * | 2021-06-23 | 2022-09-02 | Tcl空调器(中山)有限公司 | Air conditioner and defrosting method and device thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6956903B2 (en) | 2021-11-02 |
JPWO2020129246A1 (en) | 2021-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2325580B1 (en) | Refrigeration device | |
JP5790736B2 (en) | Air conditioner | |
KR20090029515A (en) | Air-conditioner of the control method | |
JP2015068610A (en) | Air conditioner | |
WO2019003306A1 (en) | Air conditioning device | |
WO2018164253A1 (en) | Air-conditioning device | |
JP4389917B2 (en) | Air conditioner | |
WO2020129246A1 (en) | Air-conditioning device and control method therefor | |
JP2006258381A (en) | Air conditioner | |
KR100625568B1 (en) | Multi type air conditioner | |
JP2018124017A (en) | Cooling system | |
JP2003232554A (en) | Air conditioner | |
JP2007101093A (en) | Air conditioner and its operation control method | |
JP2020193760A (en) | Air conditioning system | |
KR100671301B1 (en) | Air conditioner | |
WO2020174555A1 (en) | Compressor | |
WO2021156975A1 (en) | Air conditioning apparatus | |
JP3601596B2 (en) | Air conditioner | |
WO2013172196A1 (en) | Air conditioner | |
JP2007225230A (en) | Air conditioner | |
JP2008209021A (en) | Multi-air conditioner | |
JP7254103B2 (en) | air conditioning system | |
WO2023228323A1 (en) | Refrigeration cycle device | |
JP2009192197A (en) | Heat pump cycle system | |
JP7553824B2 (en) | Refrigeration equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18944111 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020561124 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18944111 Country of ref document: EP Kind code of ref document: A1 |