JP3481274B2 - Separate type air conditioner - Google Patents

Separate type air conditioner

Info

Publication number
JP3481274B2
JP3481274B2 JP24301393A JP24301393A JP3481274B2 JP 3481274 B2 JP3481274 B2 JP 3481274B2 JP 24301393 A JP24301393 A JP 24301393A JP 24301393 A JP24301393 A JP 24301393A JP 3481274 B2 JP3481274 B2 JP 3481274B2
Authority
JP
Japan
Prior art keywords
compressor
heat exchanger
air conditioner
type air
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24301393A
Other languages
Japanese (ja)
Other versions
JPH0798159A (en
Inventor
晴之 児玉
英行 尾形
哲央 山下
邦弘 乾
洋邦 鈴木
一展 岡崎
宗 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24301393A priority Critical patent/JP3481274B2/en
Publication of JPH0798159A publication Critical patent/JPH0798159A/en
Application granted granted Critical
Publication of JP3481274B2 publication Critical patent/JP3481274B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、分離型の空気調和機
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separation type air conditioner.

【0002】[0002]

【従来の技術】図5は、例えば特公昭53−13249
号公報に示された従来の分離型空気調和機の冷媒回路図
である。冷房時、圧縮機1、吐出配管5、四方弁16、
室外熱交換器2、逆止弁14、ストレイナー15、減圧
装置4、逆止弁11、室内熱交換器3、四方弁16、吸
入配管6、圧縮機1の順に連接し、暖房時、圧縮機1、
吐出配管5、四方弁16、室内熱交換器3、逆止弁1
2、ストレイナー15、減圧装置4、逆止弁13、室外
熱交換器2、四方弁16、吸入配管6、圧縮機1の順に
連接し、ストレイナー15の後から減圧装置4の後に、
電磁弁8、アキュムレータ9、キャピラリーチューブ
7、電磁弁10の順に連接するバイパス回路を有する。
2. Description of the Related Art FIG. 5 shows, for example, Japanese Patent Publication No. 53-13249.
FIG. 7 is a refrigerant circuit diagram of a conventional separation type air conditioner disclosed in Japanese Patent Publication No. During cooling, compressor 1, discharge pipe 5, four-way valve 16,
The outdoor heat exchanger 2, the check valve 14, the strainer 15, the pressure reducing device 4, the check valve 11, the indoor heat exchanger 3, the four-way valve 16, the suction pipe 6, and the compressor 1 are connected in this order, and when heating, compression is performed. Machine 1,
Discharge pipe 5, four-way valve 16, indoor heat exchanger 3, check valve 1
2, the strainer 15, the pressure reducing device 4, the check valve 13, the outdoor heat exchanger 2, the four-way valve 16, the suction pipe 6, the compressor 1 are connected in this order, and after the strainer 15 and after the pressure reducing device 4,
It has a bypass circuit in which the solenoid valve 8, the accumulator 9, the capillary tube 7, and the solenoid valve 10 are connected in this order.

【0003】次に、動作について説明する。圧縮機1か
ら吐出される高温高圧のガス冷媒は吐出配管5を通り四
方切換弁16に入る。冷房運転時には実線矢印で示すよ
うに四方切換弁16から室外熱交換器2(凝縮器として
働く)に入り冷却され凝縮液化した後逆止弁14、スト
レイナー15を通り減圧装置4に至る。減圧装置4によ
り減圧され湿り冷媒になった後逆止弁11を通り室内熱
交換器3(蒸発器として働く)において加熱され蒸発し
過熱ガス冷媒となって四方切換弁16を通り吸込み配管
6を経て圧縮機1に戻る。次に暖房運転時には、四方切
換弁16が切換えられ圧縮機1より吐出された高温高圧
ガス冷媒は点線矢印のように吐出配管5を通り四方切換
弁16を経たのち冷房時と逆サイクルをえがき室内熱交
換器3(凝縮器として働く)に入り冷却され凝縮し逆止
弁12、ストレイナー15、減圧装置4に至る。減圧装
置4にて減圧され湿り冷媒となった後逆止弁13を通り
室外熱交換器2(蒸発器として働く)で加熱され蒸発し
過熱ガス冷媒となって四方切換弁15を通り吸込配管6
を経たのち圧縮機1に戻る。このような標準的な冷凍サ
イクルに対しさらに電磁弁8、アキュムレータ9、キャ
ピラリーチューブ7、電磁弁10から成るバイパスを、
逆止弁11、12、13、14によって構成される冷
房、暖房運転時共高圧液化冷媒となる管路と、冷房、暖
房運転時共低圧湿り冷媒となる管路との間に設けられて
いる。ここで冷房運転時あるいは暖房運転時に高圧側圧
力が一定圧力以上になると圧力スイッチ等の働きで高圧
側電磁弁8は開放され低圧側電磁弁10は閉じられる。
この結果冷媒液が高圧側から迅速にアキュムレータ9に
導入され、冷凍サイクル内の冷媒量が減少し高圧側の圧
力が下がる。次に高圧側の圧力が所定値まで下がると高
圧側電磁弁8が閉止され逆に低圧側電磁弁10が開放さ
れアキュムレータ9内に溜まっていた冷媒は再び冷凍サ
イクル内に復帰して正規の冷媒量となる。なおアキュム
レータ9内の冷媒液が低圧側に戻されるとき一時的に戻
され蒸発器の能力以上となり液バックが生じないように
キャピラリーチューブ7がアキュムレータ9の後に設け
られ冷媒を徐々に戻す方式となっている。
Next, the operation will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 enters the four-way switching valve 16 through the discharge pipe 5. During the cooling operation, the four-way switching valve 16 enters the outdoor heat exchanger 2 (acting as a condenser) to be cooled and condensed and liquefied, and then passes through the check valve 14 and the strainer 15 to reach the decompression device 4. After being decompressed by the decompression device 4 to become a wet refrigerant, it is heated and evaporated in the indoor heat exchanger 3 (acting as an evaporator) through the check valve 11 to become a superheated gas refrigerant, which passes through the four-way switching valve 16 and the suction pipe 6. After that, it returns to the compressor 1. Next, during the heating operation, the four-way switching valve 16 is switched and the high-temperature high-pressure gas refrigerant discharged from the compressor 1 passes through the discharge pipe 5 through the four-way switching valve 16 as shown by a dotted arrow, and then the cycle opposite to that during cooling is completed. The heat enters the heat exchanger 3 (acting as a condenser), is cooled, condensed, and reaches the check valve 12, the strainer 15, and the pressure reducing device 4. After being decompressed by the decompression device 4 to become wet refrigerant, it passes through the check valve 13 and is heated and evaporated by the outdoor heat exchanger 2 (acting as an evaporator) to become superheated gas refrigerant and passes through the four-way switching valve 15 and suction pipe 6
After that, the compressor 1 is returned to. In addition to such a standard refrigeration cycle, a bypass consisting of a solenoid valve 8, an accumulator 9, a capillary tube 7 and a solenoid valve 10 is added.
The check valves 11, 12, 13, and 14 are provided between a pipe line that serves as a high-pressure liquefied refrigerant during cooling and heating operations and a pipe line that serves as a low-pressure wet refrigerant during both cooling and heating operations. . When the high-pressure side pressure exceeds a certain pressure during the cooling operation or the heating operation, the high-pressure side solenoid valve 8 is opened and the low-pressure side solenoid valve 10 is closed by the action of the pressure switch or the like.
As a result, the refrigerant liquid is rapidly introduced into the accumulator 9 from the high pressure side, the amount of refrigerant in the refrigeration cycle decreases, and the pressure on the high pressure side decreases. Next, when the pressure on the high-pressure side drops to a predetermined value, the high-pressure side solenoid valve 8 is closed and the low-pressure side solenoid valve 10 is opened conversely, and the refrigerant accumulated in the accumulator 9 returns to the refrigeration cycle again and becomes a normal refrigerant. It becomes the amount. It should be noted that when the refrigerant liquid in the accumulator 9 is returned to the low pressure side, the capillary tube 7 is provided after the accumulator 9 so that the refrigerant liquid is temporarily returned to a capacity higher than that of the evaporator and liquid back does not occur. ing.

【0004】[0004]

【発明が解決しようとする課題】上記のような従来の分
離型空気調和機の冷媒回路は、電磁弁2個、逆止弁4
個、キャピラリーチューブ1個、アキュムレータ1個必
要となり構造的に複雑で、高価であるという問題点があ
った。また吐出温度に対する保護制御を行っていないた
め、アキュムレータへ冷媒が溜まり冷媒循環量不足気味
になったとき吐出温度の過上昇により圧縮機が損傷する
という問題点があった。更に圧縮機起動時について特に
起動を意識した動作を行っていないが、通常、起動時に
は液バックを起こしやすくそのため圧縮機内の冷凍機油
が多量に圧縮機の外へ持ち出された圧縮機の軸焼き付け
等につながるといった問題点があった。
The refrigerant circuit of the conventional separation type air conditioner as described above has two solenoid valves and four check valves.
There is a problem that it is structurally complicated and expensive because it requires one piece, one capillary tube, and one accumulator. Further, since the discharge temperature protection control is not performed, there is a problem that the compressor is damaged due to the excessive rise of the discharge temperature when the refrigerant accumulates in the accumulator and the refrigerant circulation amount tends to be insufficient. Furthermore, when starting up the compressor, the operation is not particularly conscious of the start up, but normally, liquid back is liable to occur at the time of starting up, so a large amount of refrigerating machine oil in the compressor is taken out of the compressor and the shaft is burned. There was a problem that led to.

【0005】この発明は、上記のような問題点を解決す
るためになされたもので、安価に高圧上昇対策ができる
分離型空気調和機を得る事を目的とする。
The present invention has been made in order to solve the above problems, and an object thereof is to obtain a separation type air conditioner capable of taking measures against a high pressure rise at low cost.

【0006】また、吐出温度の過上昇を抑える事ができ
る分離型空気調和機を得る事を目的とする。
Another object of the present invention is to obtain a separation type air conditioner capable of suppressing an excessive rise in discharge temperature.

【0007】また、圧縮機起動時に冷凍機油が圧縮機外
に持ちだされず。圧縮機の損傷を防ぐことができる分離
型空気調和機を得る事を目的とする。
Further, refrigerating machine oil is not taken out of the compressor when the compressor is started. It is an object of the present invention to obtain a separation type air conditioner that can prevent damage to a compressor.

【0008】[0008]

【課題を解決するための手段】請求項1の分離型空気調
和機は、圧縮機、四方弁、室外熱交換器、減圧装置、及
び室内熱交換器を順次接続した冷凍サイクルを用いて冷
暖房運転を行う分離型空気調和機において、前記圧縮機
の吐出側に設けられた吐出配管温度センサーと、前記圧
縮機の吸入側に設けられた吸入配管温度センサーと、前
記室外熱交換器と減圧装置の間と前記圧縮機の吸入側に
接続され、蒸発温度を疑似的に生成する回路に設けられ
た蒸発温度センサーと、前記吐出配管温が所定値を越え
るまで前記圧縮機の上限運転周波数を制限する手段と、
を備え、分離型空気調和機が運転中と判断された場合、
目標圧縮機運転周波数及び目標の吐出温度を決定し、前
記吐出配管温度センサーで検知した吐出温度が前記目標
の吐出温度より低い場合、前記圧縮機運転周波数の上限
値を制限し、前記吐出配管温度センサーで検知した吐出
温度が前記目標の吐出温度より高い場合、前記吸入配管
温度センサーと前記蒸発温度センサーの出力によりスー
パーヒートを検知し、目標のスーパーヒートになるよう
に前記減圧装置を制御することを特徴とする
A separate type air conditioner according to a first aspect of the present invention is an air conditioner that uses a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger are sequentially connected. In the separation type air conditioner for performing the discharge pipe temperature sensor provided on the discharge side of the compressor, the suction pipe temperature sensor provided on the suction side of the compressor, the outdoor heat exchanger and the decompression device. And an intake temperature sensor provided in a circuit that artificially generates an evaporation temperature, and limits the upper limit operating frequency of the compressor until the discharge pipe temperature exceeds a predetermined value. Means and
When it is determined that the separation type air conditioner is in operation,
Determine the target compressor operating frequency and target discharge temperature, and
The discharge temperature detected by the discharge pipe temperature sensor is the target.
If the discharge temperature is lower than
Discharge detected by the discharge pipe temperature sensor with a limited value
If the temperature is higher than the target discharge temperature, the suction pipe
With the output of the temperature sensor and the evaporation temperature sensor,
Detects perheat and becomes the target superheat
And controlling the decompression device .

【0009】請求項2の分離型空気調和機は、請求項1
記載の分離型空気調和機において、圧縮機、四方弁、室
外熱交換器、減圧装置、及び室内熱交換器を順次接続し
た冷凍サイクルを用いて冷暖房運転を行う分離型空気調
和機において、前記圧縮機の吐出側に設けられた高圧ス
イッチが作動した場合に、前記圧縮機の運転周波数を下
げると共に、前記減圧装置を開く手段を備えたものであ
る。
[0009] according to claim 2 separate type air conditioner, according to claim 1
In the separation-type air conditioner described, a compressor, a four-way valve, an outdoor heat exchanger, a decompressor, and a separation-type air conditioner that performs cooling and heating operation using a refrigeration cycle in which an indoor heat exchanger is sequentially connected, When the high pressure switch provided on the discharge side of the machine is operated, the operating frequency of the compressor is lowered and the decompression device is opened.

【0010】請求項3の分離型空気調和機は、請求項1
記載の分離型空気調和機において、圧縮機、四方弁、室
外熱交換器、減圧装置、及び室内熱交換器を順次接続し
た冷凍サイクルを用いて冷暖房運転を行う分離型空気調
和機において、前記室内熱交換器に設けられた配管温度
センサーの値が所定値を越えた場合に、前記圧縮機の運
転周波数を下げると共に、前記減圧装置を開く手段を備
えたものである。
The separate type air conditioner of claim 3 is the same as that of claim 1.
In the separation type air conditioner described, a compressor, a four-way valve, an outdoor heat exchanger, a decompression device, and a separation type air conditioner that performs cooling and heating operation using a refrigeration cycle in which an indoor heat exchanger is sequentially connected, When the value of the pipe temperature sensor provided in the heat exchanger exceeds a predetermined value, the operating frequency of the compressor is lowered and the decompression device is opened.

【0011】請求項4の分離型空気調和機は、請求項1
記載の分離型空気調和機において、圧縮機、四方弁、室
外熱交換器、減圧装置、及び室内熱交換器を順次接続し
た冷凍サイクルを用いて冷暖房運転を行う分離型空気調
和機において、前記圧縮機の吐出側に設けられた吐出配
管温度センサーの値が所定値を越えた場合に、前記圧縮
機の運転周波数を下げると共に、前記減圧装置を開く手
段を備えたものである。
A separate type air conditioner according to a fourth aspect is the first aspect.
In the separation-type air conditioner described, a compressor, a four-way valve, an outdoor heat exchanger, a decompressor, and a separation-type air conditioner that performs cooling and heating operation using a refrigeration cycle in which an indoor heat exchanger is sequentially connected, When the value of the discharge pipe temperature sensor provided on the discharge side of the machine exceeds a predetermined value, the operating frequency of the compressor is lowered and the decompression device is opened.

【0012】[0012]

【作用】請求項1の分離型空気調和機は、吐出温度が所
定値を越えるまで圧縮機運転周波数の上限を制限し、吐
出温度が所定値を越えてから圧縮機の運転周波数を上げ
ることにより圧縮機からの冷凍機油の持ち出しを防ぐ。
In the separation type air conditioner according to claim 1, the upper limit of the compressor operating frequency is limited until the discharge temperature exceeds a predetermined value, and the operating frequency of the compressor is increased after the discharge temperature exceeds the predetermined value. Prevents refrigeration oil from being taken out of the compressor.

【0013】請求項2の分離型空気調和機は、吐出温度
が所定値を越えるまで圧縮機運転周波数の上限を制限
し、吐出温度が所定値を越えてから圧縮機の運転周波数
を上げることにより圧縮機からの冷凍機油の持ち出しを
防ぐと共に、高圧過上昇を高圧スイッチが検知し圧縮機
の保護が必要なとき、減圧手段を開き、圧縮機の運転周
波数を落として高圧側圧力を落とすことができる。
In the separation type air conditioner of claim 2, the discharge temperature is
Limits the upper limit of compressor operating frequency until exceeds the specified value
However, after the discharge temperature exceeds the specified value, the operating frequency of the compressor
Lifting the refrigerating machine oil from the compressor
In addition to the prevention, when the high pressure switch detects the high pressure excessive rise and the protection of the compressor is required, the pressure reducing means can be opened to reduce the operating frequency of the compressor to reduce the high pressure side pressure.

【0014】請求項3の分離型空気調和機は、吐出温度
が所定値を越えるまで圧縮機運転周波数の上限を制限
し、吐出温度が所定値を越えてから圧縮機の運転周波数
を上げることにより圧縮機からの冷凍機油の持ち出しを
防ぐと共に、高圧過上昇を室内管温センサーが検知し圧
縮機の保護が必要なとき、減圧手段を開き、圧縮機の運
転周波数を落として高圧側圧力を落とすことができる。
In the separation type air conditioner of claim 3, the discharge temperature is
Limits the upper limit of compressor operating frequency until exceeds the specified value
However, after the discharge temperature exceeds the specified value, the operating frequency of the compressor
Lifting the refrigerating machine oil from the compressor
In addition to preventing, when the indoor pipe temperature sensor detects an excessive rise in high pressure and the protection of the compressor is required, the pressure reducing means can be opened to reduce the operating frequency of the compressor to reduce the pressure on the high pressure side.

【0015】請求項4の分離型空気調和機は、吐出温度
が所定値を越えるまで圧縮機運転周波数の上限を制限
し、吐出温度が所定値を越えてから圧縮機の運転周波数
を上げることにより圧縮機からの冷凍機油の持ち出しを
防ぐと共に、吐出温度が上昇し圧縮機の保護が必要なと
き、減圧手段を開き、圧縮機の運転周波数を落として高
圧側圧力を落とすことができる。
According to another aspect of the separation type air conditioner, the discharge temperature is
Limits the upper limit of compressor operating frequency until exceeds the specified value
However, after the discharge temperature exceeds the specified value, the operating frequency of the compressor
Lifting the refrigerating machine oil from the compressor
In addition to the prevention, when the discharge temperature rises and the compressor needs to be protected, the pressure reducing means can be opened to lower the operating frequency of the compressor to lower the high pressure side pressure.

【0016】[0016]

【実施例】【Example】

実施例1.以下、この発明の実施例1について説明す
る。図1はこの実施例の分離型空気調和機の冷凍サイク
ルを示すものである。圧縮機1から吐出される高温高圧
のガス冷媒は吐出配管5を通り四方切換弁16に入る。
冷房運転時には実線で示すように四方切換弁16から室
外熱交換器2(凝縮器として働く)に入り冷却され凝縮
液化した後電子膨張弁18に至る。電子膨張弁18によ
り減圧され湿り蒸気になった後室内熱交換器3(蒸発器
として働く)において加熱され蒸発し過熱ガス冷媒とな
って四方切換弁16を通り、吸入配管6を経て圧縮機1
に戻る。次に暖房時には、四方切換弁16が切り換えら
れ圧縮機1より吐出された高温高圧のガス冷媒は点線の
ように吐出配管5、四方切換弁16を通り室内熱交換器
3(凝縮器として働く)に入り冷却され凝縮し電子膨張
弁18に至る。電子膨張弁18にて減圧され湿り冷媒と
なったあと室外熱交換器2(蒸発器として働く)で加熱
され蒸発し過熱ガス冷媒となって四方切換弁16を通り
吸入配管6を経たのち圧縮機1に戻る。高圧スイッチ1
7は吐出圧力がある規定の値以上のときONし、別の規
定の値未満のときOFFするもので、キャピラリーチュ
ーブ7は蒸発器の蒸発温度を疑似的に生成するものであ
る。
Example 1. The first embodiment of the present invention will be described below. FIG. 1 shows a refrigeration cycle of the separation type air conditioner of this embodiment. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 enters the four-way switching valve 16 through the discharge pipe 5.
During the cooling operation, as shown by the solid line, the four-way switching valve 16 enters the outdoor heat exchanger 2 (acting as a condenser) to be cooled and condensed and liquefied before reaching the electronic expansion valve 18. After being decompressed by the electronic expansion valve 18 to become moist steam, it is heated and evaporated in the indoor heat exchanger 3 (acting as an evaporator) to become a superheated gas refrigerant, which passes through the four-way switching valve 16 and the suction pipe 6 and the compressor 1
Return to. Next, at the time of heating, the four-way switching valve 16 is switched and the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the discharge pipe 5 and the four-way switching valve 16 as shown by the dotted line, and the indoor heat exchanger 3 (works as a condenser). Then, it is cooled, condensed, and reaches the electronic expansion valve 18. After being decompressed by the electronic expansion valve 18 to become a wet refrigerant, it is heated and evaporated by the outdoor heat exchanger 2 (acting as an evaporator) to become a superheated gas refrigerant, passing through the four-way switching valve 16 and passing through the suction pipe 6, and then the compressor. Return to 1. High voltage switch 1
7 is turned on when the discharge pressure is equal to or higher than a predetermined value, and is turned off when the discharge pressure is lower than another specified value. The capillary tube 7 artificially generates the evaporation temperature of the evaporator.

【0017】図1中の吐出温度サーミスタ19は圧縮機
1から吐出される吐出ガスの吐出温度を検知するための
ものであり、吸入温度サーミスタ20は圧縮機1に吸入
される冷媒の吸入温度を検知するためのものであり、室
内熱交換器温度サーミスタ21は暖房運転時の凝縮温度
を検知するためのものであり、蒸発温度サーミスタ22
はキャピラリーチューブ7により疑似的に生成された蒸
発温度を検知するためのものである。
The discharge temperature thermistor 19 in FIG. 1 is for detecting the discharge temperature of the discharge gas discharged from the compressor 1, and the suction temperature thermistor 20 is the suction temperature of the refrigerant sucked into the compressor 1. The indoor heat exchanger temperature thermistor 21 is for detecting, and the evaporation temperature thermistor 22 is for detecting the condensation temperature during the heating operation.
Is for detecting the evaporation temperature artificially generated by the capillary tube 7.

【0018】次に、実施例1の動作について説明する。
図2はこの実施例の制御フローを示したもので、分離型
空気調和機が運転中、ステップ101において高圧スイ
ッチがONであるかOFFであるかを判定し、ONであ
るとき(ステップ102)に進み電子式膨張弁18をA
パルス開き、ステップ103に進み圧縮機運転周波数を
a Hz低下させステップ104に進む。ステップ10
1において高圧スイッチがOFFであるときは、ステッ
プ102、103を行わずステップ104に進む。ステ
ップ104において室内熱交換器温度サーミスタ21で
検知した室内熱交換器温度がある規定の値(x)以上と
判断したとき、ステップ105において電子膨張弁18
をBパルス開きステップ106において圧縮機運転周波
数をb Hz低下させ一回の制御を終了する。ステップ
104において室内熱交換器温度サーミスタ21で検知
した室内熱交換器温度がある規定の値(x)未満と判断
したときは、ステップ105、106を行わず一回の制
御を終了する。本制御はT秒間間隔で繰り返し行うもの
である。
Next, the operation of the first embodiment will be described.
FIG. 2 shows a control flow of this embodiment. When the separation type air conditioner is in operation, it is judged at step 101 whether the high pressure switch is ON or OFF, and when it is ON (step 102). Proceed to the electronic expansion valve 18 A
The pulse is opened, and the routine proceeds to step 103, where the compressor operating frequency is reduced by a Hz and the routine proceeds to step 104. Step 10
If the high-voltage switch is OFF in step 1, step 102 and step 103 are skipped and step 104 is proceeded to. When it is determined in step 104 that the indoor heat exchanger temperature detected by the indoor heat exchanger temperature thermistor 21 is equal to or higher than a predetermined value (x), the electronic expansion valve 18 is determined in step 105.
In step 106 for opening the B pulse, the compressor operating frequency is reduced by b Hz, and one control is ended. When it is determined in step 104 that the indoor heat exchanger temperature detected by the indoor heat exchanger temperature thermistor 21 is less than a specified value (x), steps 105 and 106 are not performed and one control is terminated. This control is repeatedly performed at intervals of T seconds.

【0019】以上のように、実施例1、空気調和機にお
いて、高圧側圧力、室内熱交換器温度、吐出温度が上昇
し保護を必要とした時、膨張弁を開き、圧縮機運転周波
数を落とすことにより安価に圧縮機の保護を行うことが
出来る。
As described above, in the air conditioner of the first embodiment, when the pressure on the high pressure side, the temperature of the indoor heat exchanger, and the discharge temperature rise and protection is required, the expansion valve is opened and the compressor operating frequency is lowered. This makes it possible to protect the compressor at low cost.

【0020】実施例2.次に、実施例2について説明す
る。図3は実施例2の制御フローを示したもので、分離
型空気調和機が運転中、ステップ201において吐出温
度サーミスタ19で検知した吐出温度がある規定の値
(y)以上と判断したとき、ステップ202において電
子膨張弁18をCパルス開き、ステップ203に進む。
ステップ203において圧縮機運転周波数をcHz低下
させて一回の制御を終了する。ステップ201において
吐出温度サーミスタ19で検知した吐出温度がある規定
の値(y)未満と判断したとき、ステップ202、20
3を行わず一回の制御を終了する。本制御はT秒間間隔
で繰り返し行うものである。
Example 2. Next, a second embodiment will be described. FIG. 3 shows a control flow of the second embodiment. When the separation type air conditioner is in operation and it is judged in step 201 that the discharge temperature detected by the discharge temperature thermistor 19 is equal to or higher than a predetermined value (y), In step 202, the electronic expansion valve 18 is opened by C pulse, and the process proceeds to step 203.
In step 203, the operating frequency of the compressor is lowered by cHz, and one control is ended. When it is determined in step 201 that the discharge temperature detected by the discharge temperature thermistor 19 is less than a specified value (y), steps 202 and 20.
3 is not performed and one control is ended. This control is repeatedly performed at intervals of T seconds.

【0021】以上のように、実施例2によれば、空気調
和機において、高圧側圧力、室内熱交換器温度、吐出温
度が上昇し保護を必要とした時、膨張弁を開き、圧縮機
運転周波数を落とすことにより安価に圧縮機の保護を行
うことが出来る。
As described above, according to the second embodiment, in the air conditioner, when the pressure on the high pressure side, the temperature of the indoor heat exchanger, and the discharge temperature rise and protection is required, the expansion valve is opened to operate the compressor. By lowering the frequency, the compressor can be protected at low cost.

【0022】実施例3.次に、実施例3について説明す
る。図4は実施例3の制御フローを示したもので、ステ
ップ301において分離型空気調和機が運転中であるか
停止しているかを判断し、停止しているときは、ステッ
プ311において電子膨張弁18を全開にし制御を終了
する。ステップ301において分離型空気調和機が運転
中であると判断したとき、ステップ302において目標
圧縮機運転周波数及び目標の吐出温度(Td trg)
を決定し、ステップ303へ進む。ステップ303で吐
出温度を検知したのち、ステップ304においてステッ
プ303で検知した吐出温度(Td)が目標の吐出温度
Tdtrgより高いか低いかを判断する。Td trg
>Tdのとき、ステップ307において圧縮機運転周波
数の上限値をA Hzに制限しステップ308に進み、
Td trg<Tdのとき、ステップ306においてス
ーパーヒートを検知し、ステップ306において目標と
するスーパーヒートであるかを判定し、目標スーパーヒ
ートでないとき、ステップ310で目標スーパーヒート
との差により電子膨張弁開度に補正を加え制御を終了す
る。ステップ306において目標スーパーヒートと判断
されたときはステップ308に進む。ステップ308に
おいて目標吐出温度であるかを判断し目標吐出温度であ
るときは電子膨張弁18の開度を補正せずに制御を終了
し目標温度でないときは、ステップ309へ進み目標温
度との差に応じて電子膨張弁18の開度を補正して制御
を終了する。
Example 3. Next, a third embodiment will be described. FIG. 4 shows a control flow of the third embodiment. In step 301, it is determined whether the separation type air conditioner is in operation or stopped, and if it is stopped, in step 311 the electronic expansion valve is operated. 18 is fully opened to end the control. When it is determined in step 301 that the separation type air conditioner is in operation, the target compressor operating frequency and the target discharge temperature (Td trg) are determined in step 302.
Is determined and the process proceeds to step 303. After detecting the discharge temperature in step 303, it is determined in step 304 whether the discharge temperature (Td) detected in step 303 is higher or lower than the target discharge temperature Tdtrg. Td trg
When> Td, in step 307, the upper limit of the compressor operating frequency is limited to A Hz, and the process proceeds to step 308.
When Td trg <Td, the superheat is detected in step 306, and it is determined in step 306 whether it is the target superheat. If it is not the target superheat, in step 310 the electronic expansion valve is determined by the difference from the target superheat. The control is ended by correcting the opening. When it is determined in step 306 that it is the target superheat, the process proceeds to step 308. If it is the target discharge temperature in step 308, and if it is the target discharge temperature, the control is ended without correcting the opening degree of the electronic expansion valve, and if it is not the target temperature, the process proceeds to step 309 and the difference from the target temperature. The opening degree of the electronic expansion valve 18 is corrected according to the above, and the control ends.

【0023】以上のように、実施例3によれば吐出温度
が上昇するまで圧縮機の上限運転周波数を制限すること
により圧縮機内の潤滑油の持ち出しを抑え圧縮機の信頼
性を高めることが出来る。
As described above, according to the third embodiment, by limiting the upper limit operating frequency of the compressor until the discharge temperature rises, it is possible to suppress the carry-out of lubricating oil in the compressor and improve the reliability of the compressor. .

【0024】[0024]

【発明の効果】請求項1の分離型空気調和機は、圧縮
機、四方弁、室外熱交換器、減圧装置、及び室内熱交換
器を順次接続した冷凍サイクルを用いて冷暖房運転を行
う分離型空気調和機において、前記圧縮機の吐出側に設
けられた吐出配管温度センサーと、前記圧縮機の吸入側
に設けられた吸入配管温度センサーと、前記室外熱交換
器と減圧装置の間と前記圧縮機の吸入側に接続され、蒸
発温度を疑似的に生成する回路に設けられた蒸発温度セ
ンサーと、前記吐出配管温が所定値を越えるまで前記圧
縮機の上限運転周波数を制限する手段と、を備え、分離
型空気調和機が運転中と判断された場合、目標圧縮機運
転周波数及び目標の吐出温度を決定し、前記吐出配管温
度センサーで検知した吐出温度が前記目標の吐出温度よ
り低い場合、前記圧縮機運転周波数の上限値を制限し、
前記吐出配管温度センサーで検知した吐出温度が前記目
標の吐出温度より高い場合、前記吸入配管温度センサー
と前記蒸発温度センサーの出力によりスーパーヒートを
検知し、目標のスーパーヒートになるように前記減圧装
置を制御する構成にしたので、吐出温度が所定値を越え
るまで圧縮機運転周波数の上限を制限し、吐出温度が所
定値を越えてから圧縮機の運転周波数を上げることによ
り圧縮機からの冷凍機油の持ち出しを抑え圧縮機の信頼
性を高めることができる。
The separated type air conditioner of claim 1 is a separated type air conditioner that performs cooling / heating operation using a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger are sequentially connected. In an air conditioner, a discharge pipe temperature sensor provided on the discharge side of the compressor, a suction pipe temperature sensor provided on the suction side of the compressor, between the outdoor heat exchanger and a decompression device, and the compression unit. An evaporative temperature sensor connected to the suction side of the compressor and provided in a circuit that artificially generates an evaporative temperature, and means for limiting the upper limit operating frequency of the compressor until the discharge pipe temperature exceeds a predetermined value. Preparation , separation
If it is determined that the type air conditioner is in operation, the target compressor operation
Determine the rotation frequency and target discharge temperature, and check the discharge pipe temperature.
The discharge temperature detected by the temperature sensor is higher than the target discharge temperature.
If it is too low, limit the upper limit of the compressor operating frequency,
The discharge temperature detected by the discharge pipe temperature sensor is
If the discharge temperature is higher than the mark, the suction pipe temperature sensor
And the superheat from the output of the evaporation temperature sensor
The decompression device is detected so that it becomes the target superheat.
Since the configuration is controlled, the upper limit of the compressor operating frequency is limited until the discharge temperature exceeds a predetermined value, and the compressor operating frequency is increased after the discharge temperature exceeds the predetermined value to freeze the compressor. It is possible to suppress the taking-out of machine oil and improve the reliability of the compressor.

【0025】請求項2の分離型空気調和機は、請求項1
記載の分離型空気調和機において、圧縮機、四方弁、室
外熱交換器、減圧装置、及び室内熱交換器を順次接続し
た冷凍サイクルを用いて冷暖房運転を行う分離型空気調
和機において、前記圧縮機の吐出側に設けられた高圧ス
イッチが作動した場合に、前記圧縮機の運転周波数を下
げると共に、前記減圧装置を開く手段を備えた構成にし
たので、吐出温度が所定値を越えるまで圧縮機運転周波
数の上限を制限し、吐出温度が所定値を越えてから圧縮
機の運転周波数を上げることにより圧縮機からの冷凍機
油の持ち出しを抑え圧縮機の信頼性を高めることができ
ると共に、高圧過上昇を高圧スイッチが検知し圧縮機の
保護が必要なとき、減圧手段を開き、圧縮機の運転周波
数を落として高圧側圧力を落とすことができ、安価に圧
縮機の保護ができる。
[0025] according to claim 2 separate type air conditioner, according to claim 1
In the separation-type air conditioner described, a compressor, a four-way valve, an outdoor heat exchanger, a decompressor, and a separation-type air conditioner that performs cooling and heating operation using a refrigeration cycle in which an indoor heat exchanger is sequentially connected, When the high pressure switch provided on the discharge side of the machine is operated, the operating frequency of the compressor is lowered and the decompression device is opened, so that the discharge temperature exceeds a predetermined value. Operating frequency
Limit the upper limit of the number and compress after the discharge temperature exceeds the specified value
Refrigerator from compressor by increasing the operating frequency of the machine
You can suppress the oil carry-out and increase the reliability of the compressor.
In addition, when the high pressure switch detects an excessive high pressure and the compressor needs to be protected, the pressure reducing means can be opened to lower the operating frequency of the compressor to reduce the pressure on the high pressure side. it can.

【0026】請求項3の分離型空気調和機は、請求項1
記載の分離型空気調和機において、圧縮機、四方弁、室
外熱交換器、減圧装置、及び室内熱交換器を順次接続し
た冷凍サイクルを用いて冷暖房運転を行う分離型空気調
和機において、前記室内熱交換器に設けられた配管温度
センサーの値が所定値を越えた場合に、前記圧縮機の運
転周波数を下げると共に、前記減圧装置を開く手段を備
えた構成にしたので、吐出温度が所定値を越えるまで圧
縮機運転周波数の上限を制限し、吐出温度が所定値を越
えてから圧縮機の運転周波数を上げることにより圧縮機
からの冷凍機油の持ち出しを抑え圧縮機の信頼性を高め
ることができると共に、高圧過上昇を室内管温センサー
が検知し圧縮機の保護が必要なとき、減圧手段を開き、
圧縮機の運転周波数を落として高圧側圧力を落とすこと
ができ、安価に圧縮機の保護ができる。
The separate type air conditioner of claim 3 is the same as that of claim 1.
In the separation type air conditioner described, a compressor, a four-way valve, an outdoor heat exchanger, a decompression device, and a separation type air conditioner that performs cooling and heating operation using a refrigeration cycle in which an indoor heat exchanger is sequentially connected, When the value of the pipe temperature sensor provided in the heat exchanger exceeds a predetermined value, the operating frequency of the compressor is lowered and the decompression device is provided with a means for opening the discharge temperature. Pressure to exceed
The upper limit of the compressor operating frequency is limited, and the discharge temperature exceeds the specified value.
After that, increase the operating frequency of the compressor
Prevents refrigerating machine oil from being taken out of the machine and increases the reliability of the compressor.
It is possible to open the decompression means when the indoor pipe temperature sensor detects an excessive rise in high pressure and it is necessary to protect the compressor.
The operating frequency of the compressor can be reduced to reduce the pressure on the high pressure side, and the compressor can be protected at low cost.

【0027】請求項4の分離型空気調和機は、請求項1
記載の分離型空気調和機において、圧縮機、四方弁、室
外熱交換器、減圧装置、及び室内熱交換器を順次接続し
た冷凍サイクルを用いて冷暖房運転を行う分離型空気調
和機において、前記圧縮機の吐出側に設けられた吐出配
管温度センサーの値が所定値を越えた場合に、前記圧縮
機の運転周波数を下げると共に、前記減圧装置を開く手
段を備えた構成にしたので、吐出温度が所定値を越える
まで圧縮機運転周波数の上限を制限し、吐出温度が所定
値を越えてから圧縮機の運転周波数を上げることにより
圧縮機からの冷凍機油の持ち出しを抑え圧縮機の信頼性
を高めることができると共に、吐出温度が上昇し圧縮機
の保護が必要なとき、減圧手段を開き、圧縮機の運転周
波数を落として高圧側圧力を落とすことができ、安価に
圧縮機の保護ができる。
A separate type air conditioner according to a fourth aspect is the first aspect.
In the separation-type air conditioner described, a compressor, a four-way valve, an outdoor heat exchanger, a decompressor, and a separation-type air conditioner that performs cooling and heating operation using a refrigeration cycle in which an indoor heat exchanger is sequentially connected, When the value of the discharge pipe temperature sensor provided on the discharge side of the machine exceeds a predetermined value, the operating frequency of the compressor is lowered and the decompression device is provided with a means for opening the discharge temperature. Exceeds a specified value
The upper limit of the compressor operating frequency is limited to the specified discharge temperature
By increasing the operating frequency of the compressor after exceeding the value
Compressor reliability is suppressed by preventing refrigeration oil from being taken out of the compressor.
When the discharge temperature rises and it is necessary to protect the compressor , it is possible to open the pressure reducing means and reduce the operating frequency of the compressor to reduce the pressure on the high-pressure side. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1〜3による分離型空気調和
機の冷凍サイクル図である。
FIG. 1 is a refrigeration cycle diagram of a separation type air conditioner according to Examples 1 to 3 of the present invention.

【図2】その実施例1による制御フローチャート図であ
る。
FIG. 2 is a control flowchart according to the first embodiment.

【図3】その実施例2による制御フローチャート図であ
る。
FIG. 3 is a control flowchart according to the second embodiment.

【図4】その実施例3による制御フローチャート図であ
る。
FIG. 4 is a control flowchart according to the third embodiment.

【図5】従来の分離型空気調和機の冷凍サイクル図であ
る。
FIG. 5 is a refrigeration cycle diagram of a conventional separation type air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 室内側熱交換器 3 室外側熱交換器 4 減圧装置 5 吐出配管 6 吸入配管 7 キャピラリーチューブ 8 高圧側電磁弁 9 アキュムレータ 10 低圧側電磁弁 11、12、13、14 逆止弁 15 ストレイナー 16 四方切換弁 17 高圧スイッチ 18 電子膨張弁 1 compressor 2 Indoor heat exchanger 3 Outdoor heat exchanger 4 decompression device 5 discharge piping 6 suction pipe 7 Capillary tube 8 High pressure side solenoid valve 9 Accumulator 10 Low pressure solenoid valve 11, 12, 13, 14 Check valve 15 strainers 16 four-way switching valve 17 High voltage switch 18 Electronic expansion valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 哲央 静岡市小鹿三丁目18番1号 三菱電機エ ンジニアリング株式会社 名古屋事業所 静岡支所内 (72)発明者 乾 邦弘 静岡市小鹿三丁目18番1号 三菱電機エ ンジニアリング株式会社 名古屋事業所 静岡支所内 (72)発明者 鈴木 洋邦 静岡市小鹿三丁目18番1号 三菱電機エ ンジニアリング株式会社 名古屋事業所 静岡支所内 (72)発明者 岡崎 一展 静岡市小鹿三丁目18番1号 三菱電機エ ンジニアリング株式会社 名古屋事業所 静岡支所内 (72)発明者 平岡 宗 静岡市小鹿三丁目18番1号 三菱電機エ ンジニアリング株式会社 名古屋事業所 静岡支所内 (56)参考文献 特開 昭64−41770(JP,A) 特開 昭63−290355(JP,A) 特開 平3−102141(JP,A) 特開 平3−51667(JP,A) 特開 平2−263054(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 371 F25B 1/00 101 F25B 1/00 304 F25B 1/00 341 F24F 11/02 102 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuo Yamashita 3-18-1, Oga, Shizuoka-shi Mitsubishi Electric Engineering Co., Ltd. Nagoya Office Shizuoka Branch (72) Inventor Kunihiro Inui 3--18, Oka, Shizuoka No. 1 Mitsubishi Electric Engineering Co., Ltd. Nagoya Office Shizuoka Branch (72) Inventor Hirokuni Suzuki 3-18-1 Oga, Shizuoka City Mitsubishi Electric Engineering Co., Ltd. Nagoya Office Shizuoka Branch (72) Inventor Okazaki Hajime 3-18-1, Oga, Shizuoka-shi Mitsubishi Electric Engineering Co., Ltd. Nagoya office Shizuoka branch (72) Inventor Mune Hiraoka 3--18-1, Oka, Shizuoka Mitsubishi Electric Engineering Co., Ltd. Nagoya business Shizuoka Branch (56) Reference JP-A-64-41770 (JP, A) JP-A-63-29035 5 (JP, A) JP-A-3-102141 (JP, A) JP-A-3-51667 (JP, A) JP-A-2-263054 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 1/00 371 F25B 1/00 101 F25B 1/00 304 F25B 1/00 341 F24F 11/02 102

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、四方弁、室外熱交換器、減圧装
置、及び室内熱交換器を順次接続した冷凍サイクルを用
いて冷暖房運転を行う分離型空気調和機において、前記
圧縮機の吐出側に設けられた吐出配管温度センサーと、
前記圧縮機の吸入側に設けられた吸入配管温度センサー
と、前記室外熱交換器と減圧装置の間と前記圧縮機の吸
入側に接続され、蒸発温度を疑似的に生成する回路に設
けられた蒸発温度センサーと、を備え、分離型空気調和
機が運転中と判断された場合、目標圧縮機運転周波数及
び目標の吐出温度を決定し、前記吐出配管温度センサー
で検知した吐出温度が前記目標の吐出温度より低い場
合、前記圧縮機運転周波数の上限値を制限し、前記吐出
配管温度センサーで検知した吐出温度が前記目標の吐出
温度より高い場合、前記吸入配管温度センサーと前記蒸
発温度センサーの出力によりスーパーヒートを検知し、
目標のスーパーヒートになるように前記減圧装置を制御
することを特徴とする分離型空気調和機。
1. A separation type air conditioner that performs cooling and heating operation using a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a decompression device, and an indoor heat exchanger are sequentially connected, in the discharge side of the compressor. Discharge pipe temperature sensor provided in
A suction pipe temperature sensor provided on the suction side of the compressor, a connection between the outdoor heat exchanger and the decompression device, and the suction side of the compressor were provided and provided in a circuit that artificially generates an evaporation temperature. Equipped with evaporation temperature sensor , separate air conditioning
If it is determined that the compressor is in operation, the target compressor operating frequency and
And the target discharge temperature, and the discharge pipe temperature sensor
If the discharge temperature detected in is lower than the target discharge temperature,
If the upper limit of the compressor operating frequency is limited,
The discharge temperature detected by the pipe temperature sensor is the target discharge
If the temperature is higher than the temperature, the suction pipe temperature sensor and the steam
Superheat is detected by the output of the temperature sensor,
Control the decompressor to achieve the target superheat
A separate type air conditioner characterized by:
【請求項2】 圧縮機、四方弁、室外熱交換器、減圧装
置、及び室内熱交換器を順次接続した冷凍サイクルを用
いて冷暖房運転を行う分離型空気調和機において、前記
圧縮機の吐出側に設けられた高圧スイッチが作動した場
合に、前記圧縮機の運転周波数を下げると共に、前記減
圧装置を開く手段を備えたことを特徴とする請求項1に
記載の分離型空気調和機。
2. A separation type air conditioner that performs cooling and heating operation using a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a decompression device, and an indoor heat exchanger are sequentially connected, the discharge side of the compressor. when the high pressure switch provided is activated to, the lower the operation frequency of the compressor, to claim 1, further comprising a means for opening the pressure reducing device
Separated air conditioner described .
【請求項3】 圧縮機、四方弁、室外熱交換器、減圧装
置、及び室内熱交換器を順次接続した冷凍サイクルを用
いて冷暖房運転を行う分離型空気調和機において、前記
室内熱交換器に設けられた配管温度センサーの値が所定
値を越えた場合に、前記圧縮機の運転周波数を下げると
共に、前記減圧装置を開く手段を備えたことを特徴とす
請求項1に記載の分離型空気調和機。
3. A separation type air conditioner that performs cooling and heating operation using a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a decompression device, and an indoor heat exchanger are sequentially connected to each other. The separation type air according to claim 1 , further comprising: a means for lowering the operating frequency of the compressor and opening the decompression device when the value of the provided pipe temperature sensor exceeds a predetermined value. Harmony machine.
【請求項4】 圧縮機、四方弁、室外熱交換器、減圧装
置、及び室内熱交換器を順次接続した冷凍サイクルを用
いて冷暖房運転を行う分離型空気調和機において、前記
圧縮機の吐出側に設けられた吐出配管温度センサーの値
が所定値を越えた場合に、前記圧縮機の運転周波数を下
げると共に、前記減圧装置を開く手段を備えたことを特
徴とする請求項1に記載の分離型空気調和機。
4. A separation-type air conditioner that performs cooling and heating operation using a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger are sequentially connected, the discharge side of the compressor. 2. The separation unit according to claim 1 , further comprising means for lowering the operating frequency of the compressor and opening the decompression device when the value of the discharge pipe temperature sensor provided in the unit exceeds a predetermined value. Type air conditioner.
JP24301393A 1993-09-29 1993-09-29 Separate type air conditioner Expired - Lifetime JP3481274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24301393A JP3481274B2 (en) 1993-09-29 1993-09-29 Separate type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24301393A JP3481274B2 (en) 1993-09-29 1993-09-29 Separate type air conditioner

Publications (2)

Publication Number Publication Date
JPH0798159A JPH0798159A (en) 1995-04-11
JP3481274B2 true JP3481274B2 (en) 2003-12-22

Family

ID=17097591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24301393A Expired - Lifetime JP3481274B2 (en) 1993-09-29 1993-09-29 Separate type air conditioner

Country Status (1)

Country Link
JP (1) JP3481274B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649388B2 (en) * 2010-09-15 2015-01-07 三菱重工業株式会社 Vapor compression heat pump and control method thereof
JP5753977B2 (en) * 2011-06-13 2015-07-22 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
JP6321363B2 (en) * 2013-12-06 2018-05-09 シャープ株式会社 Air conditioner
JP2015218909A (en) * 2014-05-14 2015-12-07 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generation device including the same

Also Published As

Publication number Publication date
JPH0798159A (en) 1995-04-11

Similar Documents

Publication Publication Date Title
JP3208923B2 (en) Operation control device for air conditioner
JP2500519B2 (en) Operation control device for air conditioner
JP3750520B2 (en) Refrigeration equipment
JP3481274B2 (en) Separate type air conditioner
JP4082040B2 (en) Refrigeration equipment
JP2551238B2 (en) Operation control device for air conditioner
JPH07139857A (en) Air conditioner
JPH06100395B2 (en) Refrigeration system operation controller
JPH0814435B2 (en) Refrigerator protection device
JP2757685B2 (en) Operation control device for air conditioner
JP2504161B2 (en) Defrost operation controller for air conditioner
JPH01302072A (en) Heat pump type air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
JP2555779B2 (en) Operation control device for air conditioner
JPH02157568A (en) Refrigerant residence suppressing device for air conditioning device
JP3511708B2 (en) Operation control unit for air conditioner
JP2508043B2 (en) Compressor capacity control device for refrigeration equipment
JPH06272971A (en) Air conditioner
JPH0217370A (en) Operation control device for air conditioning device
JPH05288386A (en) Operation controller for outdoor fan in air conditioner
JP2867794B2 (en) Heating and cooling machine
JP2503785B2 (en) Operation control device for air conditioner
JPH06100396B2 (en) Refrigerator protection device
JPH0611207A (en) Operation controller of air conditioner
JPH0252956A (en) Refrigerating apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9