JPH06272971A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH06272971A
JPH06272971A JP5057211A JP5721193A JPH06272971A JP H06272971 A JPH06272971 A JP H06272971A JP 5057211 A JP5057211 A JP 5057211A JP 5721193 A JP5721193 A JP 5721193A JP H06272971 A JPH06272971 A JP H06272971A
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
refrigerant
compressor
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5057211A
Other languages
Japanese (ja)
Inventor
Akio Fukushima
章雄 福嶋
Nobuyuki Miyazaki
信之 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5057211A priority Critical patent/JPH06272971A/en
Publication of JPH06272971A publication Critical patent/JPH06272971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To expand the operation range in which a cooling operation can be performed continuously by opening a by-pass solenoid valve when a sensed temperature reaches a first set temperature during a cooling operation and stopping a compressor emergently when the sensed temperature reaches a second set temperature. CONSTITUTION:During a cooling operation, when an outlet pipe temperature T of an outdoor heat exchanger 3 exceeds a first set temperature (T1: 60 deg.), a by-pass solenoid valve 10 is opened, whereby the load of a compressor 1 is reduced. When, under conditions that the valve 10 is open, the outlet pipe temperature T of the exchanger 3 exceeds a second set temperature (T2: 67 deg.C), the compressor 1 is stopped emergently to protect it. And when, under conditions that the valve 10 is opened, the outlet pipe temperature T of the exchanger 3 falls below a third set temperature, the valve 10 is closed to restore its original condition. By opening the valve 10, the range of the operation is expanded and hence even if the suction temperature of the exchanger 3 rises, the cooling operation can be continued.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、過酷な据付条件や温
度条件の下での運転範囲を拡大するためにバイパス電磁
弁の制御及び圧縮機を保護するための制御を行う空気調
和機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner for controlling a bypass solenoid valve and for controlling a compressor in order to expand an operating range under severe installation conditions and temperature conditions. Is.

【0002】[0002]

【従来の技術】空気調和機は、その据付環境や運転温度
条件に対する耐力を確保するために容量制御用のバイパ
ス経路を備えているのが一般的である。
2. Description of the Related Art Generally, an air conditioner is provided with a bypass path for capacity control in order to secure the proof strength against its installation environment and operating temperature conditions.

【0003】図9は、例えば、特開昭63−19785
3号公報に示された従来の空気調和機の冷凍サイクルを
示す図である。
FIG. 9 shows, for example, Japanese Patent Laid-Open No. 63-19785.
It is a figure which shows the refrigerating cycle of the conventional air conditioner shown by the 3rd publication.

【0004】空気調和機は、図9に示すように、フロン
等の冷媒を圧縮する圧縮機1を有しており、圧縮機1の
吐出側には、高圧、高温のガス冷媒に適した冷媒配管7
aが接続されている。そして、冷媒配管7aの他端に
は、冷房時と暖房時とでその方向を切り換える四方弁2
が接続されており、実線は冷房時、破線は暖房時を示し
ている。更に、四方弁2には、冷媒配管7bを介して冷
媒と外気との間で熱交換を行う室外熱交換器3が接続さ
れており、室外熱交換器3は、送風ファンと冷媒を通す
パイプとからなっており、冷房時は凝縮器として機能
し、かつ暖房時は蒸発器として機能するようになってい
る。
As shown in FIG. 9, the air conditioner has a compressor 1 for compressing a refrigerant such as Freon, and the discharge side of the compressor 1 is a refrigerant suitable for a high pressure and high temperature gas refrigerant. Piping 7
a is connected. At the other end of the refrigerant pipe 7a, a four-way valve 2 that switches its direction between cooling and heating
Are connected, the solid line indicates cooling, and the broken line indicates heating. Further, the four-way valve 2 is connected to an outdoor heat exchanger 3 for exchanging heat between the refrigerant and the outside air via a refrigerant pipe 7b, and the outdoor heat exchanger 3 is a pipe for passing a blower fan and the refrigerant. It functions as a condenser during cooling and as an evaporator during heating.

【0005】室外熱交換器3には、冷房時に室外熱交換
器3により液化された高圧の冷媒を絞り膨脹させる絞り
手段としてのキャピラリチューブ4aと、冷房時には冷
媒の流入を阻止する逆止弁21aとが並列に接続されて
おり、キャピラリチューブ4aと逆止弁21aとには、
冷媒配管8aを介して冷房時には開状態となりかつ暖房
時には冷媒の流入を阻止する逆止弁21bと、暖房時に
後述する室内熱交換器5により液化された高圧の冷媒を
絞り膨脹させる絞り手段としてのキャピラリチューブ4
bとが並列に接続されている。そして、キャピラリチュ
ーブ4bと逆止弁21bとには、冷媒と外気との間で熱
交換を行う室内熱交換器5が接続されており、室内熱交
換器5は、送風ファンと冷媒を通すパイプとからなって
おり、暖房時は凝縮器として機能し、かつ冷房時は蒸発
器として機能するようになっている。
The outdoor heat exchanger 3 has a capillary tube 4a as a throttle means for squeezing and expanding the high-pressure refrigerant liquefied by the outdoor heat exchanger 3, and a check valve 21a for blocking the inflow of the refrigerant during cooling. Are connected in parallel, and the capillary tube 4a and the check valve 21a are connected to each other.
A check valve 21b, which is opened during cooling through the refrigerant pipe 8a and blocks the inflow of refrigerant during heating, and a throttle means for squeezing and expanding high-pressure refrigerant liquefied by an indoor heat exchanger 5 described later during heating. Capillary tube 4
b and b are connected in parallel. An indoor heat exchanger 5 for exchanging heat between the refrigerant and the outside air is connected to the capillary tube 4b and the check valve 21b, and the indoor heat exchanger 5 includes a blower fan and a pipe through which the refrigerant passes. It functions as a condenser during heating and as an evaporator during cooling.

【0006】更に、室内熱交換器5には、冷媒配管8b
を介して四方弁2が接続されており、四方弁2には、冷
媒配管8cを介して室内熱交換器5または室外熱交換器
3により蒸発したガス冷媒を貯溜するアキュムレータ6
が接続されており、アキュムレータ6には、圧縮器1の
吸入側が冷媒配管8dを介して接続されている。
Further, the indoor heat exchanger 5 has a refrigerant pipe 8b.
The four-way valve 2 is connected through the accumulator 6 for storing the gas refrigerant evaporated by the indoor heat exchanger 5 or the outdoor heat exchanger 3 via the refrigerant pipe 8c.
Is connected, and the suction side of the compressor 1 is connected to the accumulator 6 via the refrigerant pipe 8d.

【0007】また、圧縮機1の吐出側の冷媒配管7aと
キャピラリチューブ4aと逆止弁21bとを接続する冷
媒配管8aとの間には、バイパス経路9が連通されてお
り、バイパス経路9中には、バイパス電磁弁10が配設
されている。
A bypass line 9 is connected between the refrigerant pipe 7a on the discharge side of the compressor 1 and the refrigerant pipe 8a connecting the capillary tube 4a and the check valve 21b. A bypass solenoid valve 10 is provided in the.

【0008】次に動作について説明する。Next, the operation will be described.

【0009】冷房時、圧縮機1は、アキュムレータ6よ
り低圧低温のガス冷媒を吸入し、圧縮して高圧高温のガ
ス冷媒として冷媒配管7a、四方弁2及び冷媒配管7b
を通って室外熱交換器3へ送出する。そして、室外熱交
換器3は、高圧高温のガス冷媒を外気(例えば35℃)
により冷却して液化し、高圧の液冷媒とする。
During cooling, the compressor 1 draws in a low-pressure low-temperature gas refrigerant from the accumulator 6, compresses it, and uses it as a high-pressure high-temperature gas refrigerant as a refrigerant pipe 7a, a four-way valve 2 and a refrigerant pipe 7b.
And is delivered to the outdoor heat exchanger 3. Then, the outdoor heat exchanger 3 transfers the high-pressure and high-temperature gas refrigerant to the outside air (for example, 35 ° C.).
Is cooled and liquefied to obtain a high-pressure liquid refrigerant.

【0010】それから、この液冷媒は、キャピラリチュ
ーブ4aを通過する際に膨脹して減圧されて低圧の液冷
媒となり、この低圧の液冷媒は、冷媒配管8a、逆止弁
21bを通って室内熱交換器5において蒸発してガス冷
媒となる。なお、キャピラリチューブ4bは抵抗が大き
いため、液冷媒は、逆止弁21bのみを通過する。この
際、冷媒の蒸発による温度降下により室内空気は冷却さ
れ、室内が冷房される。更に、ガス冷媒は、冷媒配管8
b、四方弁2及び冷媒配管8cを通ってアキュムレータ
6へ戻る。
Then, the liquid refrigerant expands and is depressurized when passing through the capillary tube 4a to become a low-pressure liquid refrigerant, and the low-pressure liquid refrigerant passes through the refrigerant pipe 8a and the check valve 21b to heat the indoor heat. It is evaporated in the exchanger 5 to become a gas refrigerant. Since the capillary tube 4b has a large resistance, the liquid refrigerant passes only the check valve 21b. At this time, the indoor air is cooled by the temperature drop due to the evaporation of the refrigerant, and the room is cooled. Further, the gas refrigerant is the refrigerant pipe 8
b, return to the accumulator 6 through the four-way valve 2 and the refrigerant pipe 8c.

【0011】一方、暖房時、四方弁2は、破線で示すよ
うに切り換えられる。そして、圧縮機1により圧縮され
た高圧高温のガス冷媒は、冷媒配管8bを通って室内熱
交換器5へ送出され、室内熱交換器5は高圧高温のガス
冷媒を室内空気により冷却して液化し、高圧の液冷媒と
する。すなわち、室内空気は高温のガス冷媒の熱により
暖められ、室内が暖房される。
On the other hand, during heating, the four-way valve 2 is switched as shown by the broken line. The high-pressure and high-temperature gas refrigerant compressed by the compressor 1 is sent to the indoor heat exchanger 5 through the refrigerant pipe 8b, and the indoor heat exchanger 5 liquefies the high-pressure and high-temperature gas refrigerant by cooling it with indoor air. The high-pressure liquid refrigerant. That is, the room air is warmed by the heat of the high-temperature gas refrigerant, and the room is heated.

【0012】それから、この液冷媒は、キャピラリチュ
ーブ4bを通過する際に膨脹して減圧されて低圧の液冷
媒となり、この低圧の液冷媒は、冷媒配管8a、逆止弁
21aを通って室外熱交換器3において蒸発してガス冷
媒となる。更に、ガス冷媒は、冷媒配管7b、四方弁2
及び冷媒配管8cを通ってアキュムレータ6へ戻る。
Then, this liquid refrigerant expands and is depressurized when passing through the capillary tube 4b to become a low-pressure liquid refrigerant, and this low-pressure liquid refrigerant passes through the refrigerant pipe 8a and the check valve 21a to generate outdoor heat. It is evaporated in the exchanger 3 to become a gas refrigerant. Further, the gas refrigerant is the refrigerant pipe 7b, the four-way valve 2
And it returns to the accumulator 6 through the refrigerant pipe 8c.

【0013】また、暖房時、外気は0℃以下になること
もあるので、キャピラリチューブ4b及び室外熱交換器
3に着霜することがある。このため、所定時間毎にバイ
パス電磁弁10を開放し、圧縮機1により圧縮された高
温のガス冷媒をキャピラリチューブ4b及び室外熱交換
器3に供給し、付着した霜を溶かすいわゆるホットガス
デフロストを行う。
Further, since the outside air may be 0 ° C. or less during heating, frost may be formed on the capillary tube 4b and the outdoor heat exchanger 3. Therefore, the bypass solenoid valve 10 is opened every predetermined time, the high temperature gas refrigerant compressed by the compressor 1 is supplied to the capillary tube 4b and the outdoor heat exchanger 3, and so-called hot gas defrost that melts the adhered frost is generated. To do.

【0014】更に、暖房時には、室内空気温度が上昇し
たり、室外熱交換器3のフィルターの目詰まりにより送
風ファンの風量が低下するなどして圧縮機1の吐出圧力
が高くなった場合、バイパス電磁弁10を開放し、圧縮
機1の吐出圧力が異常に上昇するのを防止する。
Further, when the indoor air temperature rises during heating or the discharge pressure of the compressor 1 increases due to a decrease in the air volume of the blower fan due to the clogging of the filter of the outdoor heat exchanger 3, the bypass The solenoid valve 10 is opened to prevent the discharge pressure of the compressor 1 from rising abnormally.

【0015】[0015]

【発明が解決しようとする課題】従来の空気調和機は、
以上のように構成されており、冷暖房時の空調負荷の減
少時、すなわち冷房時であれば低温条件側、暖房時であ
れば高温条件側の温度条件における運転範囲の拡大を提
案するものである。同様の提案は、例えば特開平1−1
47265号公報に開示されている容量制御型圧縮機を
利用した空気調和機がある。
The conventional air conditioner is
It is configured as described above, and proposes expansion of the operating range under the temperature conditions of the low temperature condition side during cooling and heating, that is, the low temperature condition side during cooling, and the high temperature condition side during heating. . A similar proposal is disclosed in, for example, Japanese Patent Laid-Open No. 1-1
There is an air conditioner using a capacity control type compressor disclosed in Japanese Patent No. 47265.

【0016】しかし、最近の空気調和機の据付環境を見
ると、空調負荷が低いときの問題よりも空調負荷が大き
い過負荷時、特に冷房運転している際に気温が高いとき
のことが問題になっている。すなわち、室外熱交換器の
設置スペース不足、据付環境の悪化により狭い空間に室
外熱交換器を設置することにより、ショートサイクルを
起こしたり、また室外熱交換器の通風が悪いために空気
の澱みを生じて、外気温度よりもかなり高い吸い込み空
気温度での運転を余儀無くされ、その結果冷房運転時に
冷媒圧力の異常な上昇、圧縮機の吐出温度の上昇を招
き、圧縮機の許容運転範囲を越えてしまうため、空気調
和機を異常停止させて本来の冷房効果を得られないこと
が多発している。
However, looking at the installation environment of recent air conditioners, the problem is that the air conditioning load is larger than the problem when the air conditioning load is low, especially when the temperature is high during cooling operation. It has become. That is, by installing an outdoor heat exchanger in a narrow space due to lack of installation space for the outdoor heat exchanger and deterioration of the installation environment, a short cycle may occur and air stagnation may occur due to poor ventilation of the outdoor heat exchanger. As a result, it is forced to operate at a suction air temperature that is considerably higher than the outside air temperature, resulting in an abnormal increase in refrigerant pressure and a rise in compressor discharge temperature during cooling operation, which exceeds the allowable operating range of the compressor. Therefore, it often happens that the air conditioner is abnormally stopped and the original cooling effect cannot be obtained.

【0017】また、冷房を最も必要とするのは、外気温
度が高い条件下であるが、上述した従来の空気調和機に
おいては外気温度が所定条件を上回る場合には、空気調
和機を一旦停止させるか、もしくは異常停止させること
により圧縮機を保護しているため、本来の冷房運転がで
きなくなるという問題点があった。
Further, cooling is most necessary under the condition that the outside air temperature is high. However, in the above-mentioned conventional air conditioner, when the outside air temperature exceeds the predetermined condition, the air conditioner is temporarily stopped. There is a problem in that the original cooling operation cannot be performed because the compressor is protected by either performing it or stopping it abnormally.

【0018】更に、このような条件下で圧縮機を一旦停
止させた場合、停止させた後の圧縮機の起動を容易にす
るための制御方法が例えば特開昭63−233255号
公報に提示されているが、この公報の制御方法も冷房が
必要なときに冷房運転を継続させるものではない。
Further, when the compressor is once stopped under such conditions, a control method for facilitating the starting of the compressor after the stop is presented in, for example, Japanese Patent Laid-Open No. 233255/1988. However, the control method of this publication does not continue the cooling operation when cooling is required.

【0019】この発明は、上記のような課題を解消する
ためになされたもので、空気調和機が冷房運転の過負荷
条件すなわち外気温度が高い条件下、室外熱交換器の据
付環境が悪く、多少のショートサイクルを起こしたり、
室外熱交換器周辺の通風が悪く空気の澱みを生じた場合
においても空気調和機を異常停止させることなく、かつ
圧縮機の故障を招くような過酷な運転を回避して、継続
的に冷房運転できる運転範囲を拡大した空気調和機を得
ることを目的とするものである。
The present invention has been made to solve the above-mentioned problems, and the installation environment of the outdoor heat exchanger is bad under the overload condition of the cooling operation of the air conditioner, that is, the condition that the outside air temperature is high. Causing some short cycles,
Even when the ventilation around the outdoor heat exchanger is bad and air stagnation occurs, the air conditioner does not stop abnormally and avoids the severe operation that causes the failure of the compressor, thus continuously performing the cooling operation. The purpose is to obtain an air conditioner with an expanded operating range.

【0020】[0020]

【課題を解決するための手段】請求項1記載の発明に係
る空気調和機は、冷媒を圧縮する圧縮機と、冷媒と外気
との間で熱交換を行う室外熱交換器と、冷媒と室内空気
との間で熱交換を行う室内熱交換器と、室外熱交換器ま
たは室内熱交換器により液化された高圧の冷媒を絞り膨
脹させる絞り手段と、圧縮機、室外熱交換器、絞り手
段、及び室内熱交換器を順次に連結する冷媒配管と、圧
縮機の吐出側高圧配管から絞り機構と室内熱交換器を連
結する冷媒配管へ接続された第1のバイパス経路と、バ
イパス経路中に配置されたバイパス電磁弁と、室外熱交
換器の出口配管に設けられた温度検出手段と、第1の設
定温度と第1の設定温度よりも高い第2の設定温度とを
予め設定し、かつ冷房運転時に前記温度検出手段の検出
温度が第1の設定温度に達した場合に前記バイパス電磁
弁を開放し、前記温度検出手段の検出温度が第2の設定
温度に達した場合に圧縮機を非常停止させる制御装置と
を備えることを特徴とするものである。
An air conditioner according to the present invention is a compressor for compressing a refrigerant, an outdoor heat exchanger for exchanging heat between the refrigerant and the outside air, and a refrigerant and a room. An indoor heat exchanger for exchanging heat with air, a throttle means for expanding the high-pressure refrigerant liquefied by the outdoor heat exchanger or the indoor heat exchanger, a compressor, an outdoor heat exchanger, a throttle means, And a refrigerant pipe that sequentially connects the indoor heat exchangers, a first bypass path that is connected from the discharge-side high-pressure pipe of the compressor to the refrigerant pipe that connects the expansion mechanism and the indoor heat exchanger, and is arranged in the bypass path. The bypass solenoid valve, the temperature detecting means provided in the outlet pipe of the outdoor heat exchanger, the first preset temperature and the second preset temperature higher than the first preset temperature, and the cooling is performed. During operation, the temperature detected by the temperature detecting means is the first set temperature. A control device for opening the bypass solenoid valve when the temperature reaches a predetermined temperature, and for making an emergency stop of the compressor when the temperature detected by the temperature detecting means reaches a second set temperature. .

【0021】請求項2記載の発明に係る空気調和機は、
冷媒を圧縮する圧縮機と、冷媒と外気との間で熱交換を
行う室外熱交換器と、冷媒と室内空気との間で熱交換を
行う室内熱交換器と、室外熱交換器または室内熱交換器
により液化された高圧の冷媒を絞り膨脹させる絞り手段
と、圧縮機、室外熱交換器、絞り手段、及び室内熱交換
器を順次に連結する冷媒配管と、圧縮機の吐出側高圧配
管から吸入側低圧冷媒配管へ接続された第2のバイパス
経路と、バイパス経路中に配置されたバイパス電磁弁
と、室外熱交換器の出口配管に設けられた温度検出手段
と、第1の設定温度と第1の設定温度よりも高い第2の
設定温度とを予め設定し、かつ冷房運転時に前記温度検
出手段の検出温度が第1の設定温度に達した場合に前記
バイパス電磁弁を開放し、前記温度検出手段の検出温度
が第2の設定温度に達した場合に圧縮機を非常停止させ
る制御装置とを備えることを特徴とするものである。
An air conditioner according to a second aspect of the invention is
A compressor that compresses the refrigerant, an outdoor heat exchanger that performs heat exchange between the refrigerant and the outside air, an indoor heat exchanger that performs heat exchange between the refrigerant and the indoor air, and an outdoor heat exchanger or indoor heat From the expansion means that restricts and expands the high-pressure refrigerant liquefied by the exchanger, the refrigerant piping that sequentially connects the compressor, the outdoor heat exchanger, the expansion means, and the indoor heat exchanger, and the high-pressure piping on the discharge side of the compressor. A second bypass path connected to the suction-side low-pressure refrigerant pipe, a bypass solenoid valve arranged in the bypass path, a temperature detecting means provided in the outlet pipe of the outdoor heat exchanger, and a first set temperature. A second preset temperature higher than the first preset temperature is preset, and the bypass solenoid valve is opened when the detected temperature of the temperature detecting means reaches the first preset temperature during the cooling operation, The temperature detected by the temperature detecting means becomes the second set temperature. It is characterized in that when a control device for emergency stop of the compressor.

【0022】請求項3記載の発明に係る空気調和機は、
冷媒を圧縮する圧縮機と、冷媒と外気との間で熱交換を
行う室外熱交換器と、冷媒と室内空気との間で熱交換を
行う室内熱交換器と、室外熱交換器または室内熱交換器
により液化された高圧の冷媒を絞り膨脹させる絞り手段
と、圧縮機、室外熱交換器、絞り手段、及び室内熱交換
器を順次に連結する冷媒配管と、圧縮機の吐出側高圧配
管から吸入側低圧冷媒配管へ接続された第2のバイパス
経路と、バイパス経路中に配置されたバイパス電磁弁
と、圧縮機の吐出冷媒温度を検出する温度検出手段と、
第1の設定温度と第1の設定温度よりも高い第2の設定
温度とを予め設定し、かつ冷房運転時に前記温度検出手
段の検出温度が第1の設定温度に達した場合に前記バイ
パス電磁弁を開放し、前記温度検出手段の検出温度が第
2の設定温度に達した場合に圧縮機を非常停止させる制
御装置とを備えることを特徴とするものである。
An air conditioner according to a third aspect of the invention is
A compressor that compresses the refrigerant, an outdoor heat exchanger that performs heat exchange between the refrigerant and the outside air, an indoor heat exchanger that performs heat exchange between the refrigerant and the indoor air, and an outdoor heat exchanger or indoor heat From the expansion means that restricts and expands the high-pressure refrigerant liquefied by the exchanger, the refrigerant piping that sequentially connects the compressor, the outdoor heat exchanger, the expansion means, and the indoor heat exchanger, and the high-pressure piping on the discharge side of the compressor. A second bypass path connected to the suction-side low-pressure refrigerant pipe; a bypass solenoid valve arranged in the bypass path; and a temperature detecting means for detecting the discharge refrigerant temperature of the compressor,
When the first set temperature and the second set temperature higher than the first set temperature are set in advance and the detected temperature of the temperature detecting means reaches the first set temperature during the cooling operation, the bypass electromagnetic And a control device for opening the valve and stopping the compressor in an emergency when the temperature detected by the temperature detecting means reaches the second set temperature.

【0023】[0023]

【作用】この発明における空気調和機は、第1の設定温
度と第1の設定温度よりも高い第2の設定温度とを予め
制御装置に設定し、冷房運転時に室外熱交換器の出口配
管に設けられた温度検出手段の検出温度が第1の設定温
度に達した場合に、バイパス電磁弁を開放し、前記温度
検出手段の検出温度が第2の設定温度に達した場合に圧
縮機を非常停止させることにより、冷房過負荷条件にお
いて圧縮機への負荷を増大させることなく運転範囲を拡
大し、冷房運転を継続することができる。
In the air conditioner according to the present invention, the first preset temperature and the second preset temperature higher than the first preset temperature are set in the control device in advance, and the outlet pipe of the outdoor heat exchanger is set in the cooling operation. When the temperature detected by the temperature detecting means provided reaches the first set temperature, the bypass solenoid valve is opened, and when the temperature detected by the temperature detecting means reaches the second set temperature, the compressor is turned off. By stopping, the operating range can be expanded and the cooling operation can be continued under the cooling overload condition without increasing the load on the compressor.

【0024】[0024]

【実施例】以下、この発明の実施例を図を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0025】(1)第1の実施例 図1は、請求項1記載の発明に係る空気調和機の冷凍サ
イクルを示す構成図である。
(1) First Embodiment FIG. 1 is a configuration diagram showing a refrigeration cycle of an air conditioner according to the invention described in claim 1.

【0026】空気調和機は、図1に示すように、フロン
等の冷媒を圧縮する圧縮機1を有しており、圧縮機1の
吐出側には、高圧、高温のガス冷媒に適した冷媒配管7
aが接続されている。そして、冷媒配管7aの他端に
は、冷房時と暖房時とでその方向を切り換える四方弁2
が接続されており、実線は冷房時、破線は暖房時を示し
ている。更に、四方弁2には、冷媒配管7bを介して冷
媒と外気との間で熱交換を行う室外熱交換器3が接続さ
れており、室外熱交換器3は、送風ファンと冷媒を通す
パイプとからなる室外ファンコイルユニットであり、冷
房時は凝縮器として機能し、かつ暖房時は蒸発器として
機能するようになっている。
As shown in FIG. 1, the air conditioner has a compressor 1 for compressing a refrigerant such as Freon, and the discharge side of the compressor 1 is a refrigerant suitable for a high pressure and high temperature gas refrigerant. Piping 7
a is connected. At the other end of the refrigerant pipe 7a, a four-way valve 2 that switches its direction between cooling and heating
Are connected, the solid line indicates cooling, and the broken line indicates heating. Further, the four-way valve 2 is connected to an outdoor heat exchanger 3 for exchanging heat between the refrigerant and the outside air via a refrigerant pipe 7b, and the outdoor heat exchanger 3 is a pipe for passing a blower fan and the refrigerant. It is an outdoor fan coil unit consisting of, and functions as a condenser during cooling and as an evaporator during heating.

【0027】室外熱交換器3には、冷房時に室外熱交換
器3により液化された高圧の冷媒を絞り膨脹させる絞り
手段としてのキャピラリチューブ4が接続されており、
キャピラリチューブ4には、冷媒配管8aを介して冷媒
と外気との間で熱交換を行う室内熱交換器5が接続され
ており、室内熱交換器5は、送風ファンと冷媒を通すパ
イプとからなる室内ファンコイルユニットであり、暖房
時は凝縮器として機能し、かつ冷房時は蒸発器として機
能するようになっている。更に、室内熱交換器5には、
冷媒配管8bを介して四方弁2が接続されており、四方
弁2には、冷媒配管8cを介して室内熱交換器5または
室外熱交換器3により蒸発したガス冷媒を貯溜するアキ
ュムレータ6が接続されており、アキュムレータ6に
は、圧縮機1の吸入側が冷媒配管8dを介して接続され
ている。
A capillary tube 4 is connected to the outdoor heat exchanger 3 as a throttle means for squeezing and expanding the high-pressure refrigerant liquefied by the outdoor heat exchanger 3 during cooling.
An indoor heat exchanger 5 for exchanging heat between the refrigerant and the outside air is connected to the capillary tube 4 via a refrigerant pipe 8a. The indoor heat exchanger 5 includes a blower fan and a pipe through which the refrigerant passes. This indoor fan coil unit functions as a condenser during heating and as an evaporator during cooling. Furthermore, in the indoor heat exchanger 5,
The four-way valve 2 is connected via a refrigerant pipe 8b, and the four-way valve 2 is connected to an accumulator 6 for storing the gas refrigerant evaporated by the indoor heat exchanger 5 or the outdoor heat exchanger 3 via a refrigerant pipe 8c. The suction side of the compressor 1 is connected to the accumulator 6 via a refrigerant pipe 8d.

【0028】また、圧縮機1の吐出側の冷媒配管7aと
キャピラリチューブ4と室内熱交換器5とを接続する冷
媒配管8aとの間には、バイパス経路9が連通されてお
り、バイパス経路9中には、バイパス電磁弁10が配設
されている。更に、バイパス電磁弁10及び圧縮機1に
は、その作動を制御する制御装置12が電気的に接続さ
れており、制御装置12には、室外熱交換器3の出口配
管に設けられた温度検出手段11が接続されている。な
お、温度検出手段11は、サーミスタ、熱電対、バイメ
タルサーモスタット、冷媒ガス圧式サーモスタット等か
ら構成されており、その種類に限定されるものではな
い。
A bypass line 9 is connected between the refrigerant pipe 7a on the discharge side of the compressor 1 and the refrigerant pipe 8a connecting the capillary tube 4 and the indoor heat exchanger 5, and the bypass line 9 is connected. A bypass solenoid valve 10 is arranged therein. Further, the bypass solenoid valve 10 and the compressor 1 are electrically connected with a control device 12 for controlling the operation thereof, and the control device 12 is provided with a temperature detection device provided in an outlet pipe of the outdoor heat exchanger 3. Means 11 are connected. The temperature detecting means 11 is composed of a thermistor, a thermocouple, a bimetal thermostat, a refrigerant gas pressure type thermostat, and the like, and is not limited to that type.

【0029】次に、本実施例の作用について説明する。Next, the operation of this embodiment will be described.

【0030】冷房時、圧縮機1は、アキュムレータ6よ
り低圧低温のガス冷媒を吸入し、圧縮して高圧高温のガ
ス冷媒として冷媒配管7a、四方弁2及び冷媒配管7b
を通って室外熱交換器3へ送出する。そして、室外熱交
換器3は、高圧高温のガス冷媒を外気(例えば35℃)
により冷却して液化し、高圧の液冷媒とする。
During cooling, the compressor 1 draws in the low-pressure low-temperature gas refrigerant from the accumulator 6, compresses it, and uses it as the high-pressure high-temperature gas refrigerant in the refrigerant pipe 7a, the four-way valve 2 and the refrigerant pipe 7b.
And is delivered to the outdoor heat exchanger 3. Then, the outdoor heat exchanger 3 transfers the high-pressure and high-temperature gas refrigerant to the outside air (for example, 35 ° C.).
Is cooled and liquefied to obtain a high-pressure liquid refrigerant.

【0031】それから、この液冷媒は、キャピラリチュ
ーブ4を通過する際に膨脹して減圧されて低圧の液冷媒
となり、この低圧の液冷媒は、冷媒配管8aを通って室
内熱交換器5において蒸発してガス冷媒となる。この
際、冷媒の蒸発による温度降下により室内空気は冷却さ
れ、室内が冷房される。更に、ガス冷媒は、冷媒配管8
b、四方弁2及び冷媒配管8cを通ってアキュムレータ
6へ戻る。
Then, this liquid refrigerant is expanded and depressurized when passing through the capillary tube 4 to become a low pressure liquid refrigerant, and this low pressure liquid refrigerant is evaporated in the indoor heat exchanger 5 through the refrigerant pipe 8a. And becomes a gas refrigerant. At this time, the indoor air is cooled by the temperature drop due to the evaporation of the refrigerant, and the room is cooled. Further, the gas refrigerant is the refrigerant pipe 8
b, return to the accumulator 6 through the four-way valve 2 and the refrigerant pipe 8c.

【0032】一方、暖房時、四方弁2は、破線で示すよ
うに切り換えられる。そして、圧縮機1により圧縮され
た高圧高温のガス冷媒は、冷媒配管8bを通って室内熱
交換器5へ送出され、室内熱交換器5は高圧高温のガス
冷媒を室内空気により冷却して液化し、高圧の液冷媒と
する。すなわち、室内空気は高温のガス冷媒の熱により
暖められ、室内が暖房される。
On the other hand, during heating, the four-way valve 2 is switched as shown by the broken line. The high-pressure and high-temperature gas refrigerant compressed by the compressor 1 is sent to the indoor heat exchanger 5 through the refrigerant pipe 8b, and the indoor heat exchanger 5 liquefies the high-pressure and high-temperature gas refrigerant by cooling it with indoor air. The high-pressure liquid refrigerant. That is, the room air is warmed by the heat of the high-temperature gas refrigerant, and the room is heated.

【0033】それから、この液冷媒は、冷媒配管8aを
通ってキャピラリチューブ4へ送られ、キャピラリチュ
ーブ4を通過する際に膨脹して減圧されて低圧の液冷媒
となり、この低圧の液冷媒は、室外熱交換器3において
蒸発してガス冷媒となる。更に、ガス冷媒は、冷媒配管
7b、四方弁2及び冷媒配管8cを通ってアキュムレー
タ6へ戻る。
Then, this liquid refrigerant is sent to the capillary tube 4 through the refrigerant pipe 8a, and when passing through the capillary tube 4, it is expanded and decompressed to become a low pressure liquid refrigerant. It evaporates in the outdoor heat exchanger 3 to become a gas refrigerant. Further, the gas refrigerant returns to the accumulator 6 through the refrigerant pipe 7b, the four-way valve 2 and the refrigerant pipe 8c.

【0034】また、室外熱交換器3では圧縮機1により
圧縮された高温のガス冷媒と外気との間で熱交換を行
い、ガス冷媒は外気に熱を放出して凝縮し、液冷媒とな
るが、室外熱交換器3周辺の通風が悪く空気の澱みを生
じると、室外熱交換器3を通過する空気温度が上昇して
熱交換が悪くなり、結果として圧縮機1の吐出圧力が上
昇し、また圧縮機1の吐出冷媒温度も異常に上昇してし
まう。また、圧縮機1は所定の吐出圧力および吐出冷媒
温度以下で運転しないと、軸受けなどの損傷に至ってし
まうため、常にこの制約圧力、温度以下で運転する必要
があり、このような条件下ではバイパス電磁弁10を開
放し、吐出圧力および吐出冷媒温度を低く抑えるように
制御装置12により制御している。
Further, in the outdoor heat exchanger 3, heat is exchanged between the high temperature gas refrigerant compressed by the compressor 1 and the outside air, and the gas refrigerant releases heat to the outside air and condenses into a liquid refrigerant. However, when ventilation around the outdoor heat exchanger 3 is poor and air stagnation occurs, the temperature of the air passing through the outdoor heat exchanger 3 rises, heat exchange deteriorates, and as a result, the discharge pressure of the compressor 1 rises. Moreover, the temperature of the refrigerant discharged from the compressor 1 also rises abnormally. Further, if the compressor 1 is not operated below a predetermined discharge pressure and discharge refrigerant temperature, the bearing or the like will be damaged. Therefore, it is necessary to always operate below this restriction pressure and temperature. The solenoid valve 10 is opened, and the control device 12 controls the discharge pressure and the discharge refrigerant temperature to be low.

【0035】即ち、冷房時に、バイパス経路9のバイパ
ス電磁弁10を開放すると、圧縮機1から吐出された冷
媒の一部がバイパス経路9を通って蒸発器としての室内
熱交換器5の入り口側に供給されるため、室内熱交換器
5の蒸発能力を低下させると共に、凝縮器としての室外
熱交換器3への循環冷媒量を低減するため、凝縮圧力即
ち吐出圧力を低く抑えることができ、結果として吐出冷
媒温度も低くすることができる。
That is, when the bypass solenoid valve 10 of the bypass path 9 is opened during cooling, part of the refrigerant discharged from the compressor 1 passes through the bypass path 9 and the inlet side of the indoor heat exchanger 5 as an evaporator. Is supplied to the indoor heat exchanger 5, the evaporation capacity of the indoor heat exchanger 5 is reduced, and the amount of circulating refrigerant to the outdoor heat exchanger 3 as a condenser is reduced, so that the condensation pressure, that is, the discharge pressure can be suppressed to a low level. As a result, the discharged refrigerant temperature can be lowered.

【0036】図2は、この発明の空気調和機の冷房過負
荷条件での限界運転特性を示すものである。運転条件と
して室内温度はいずれの場合も35℃と一定している。
運転NO.A、Bの空気調和機は室外温度即ち室外熱交
換器3の吸い込み空気温度を53.5℃としたもので、
運転NO.Aの空気調和機はバイパス電磁弁10を閉じ
た状態、運転NO.Bの空気調和機はバイパス電磁弁1
0を開放した状態での運転状態を示す。また、運転N
O.Cの空気調和機は運転NO.Bの空気調和機と同様
の状態から室外温度を上昇させたときの運転状態を示
す。運転NO.Aの空気調和機において圧縮機1の吐出
圧力は3.10MPa(約30.7kgf/cm2 G)
(Gはゲージ圧を示す)、吐出温度は119.8℃とな
っているが、この状態では既に圧縮機1の許容運転範囲
の限界にきているため、バイパス電磁弁10を開き運転
NO.Bの空気調和機と同様の状態にすることにより、
圧縮機1の吐出圧力及び吐出冷媒温度をそれぞれ2.8
6MPa(約28.2kgf/cm2 G)、103.0
℃まで低減することができる。
FIG. 2 shows the limit operating characteristics of the air conditioner of the present invention under cooling overload conditions. As an operating condition, the indoor temperature is constant at 35 ° C. in any case.
Driving NO. The air conditioners A and B have an outdoor temperature, that is, an intake air temperature of the outdoor heat exchanger 3 of 53.5 ° C.
Driving NO. In the air conditioner A, the bypass solenoid valve 10 is closed and the operation NO. B air conditioner has bypass solenoid valve 1
The operating state with 0 open is shown. In addition, driving N
O. The air conditioner of C operates with the operation No. The operating state when the outdoor temperature is raised from the same state as the air conditioner of B is shown. Driving NO. In the air conditioner A, the discharge pressure of the compressor 1 is 3.10 MPa (about 30.7 kgf / cm 2 G).
(G indicates a gauge pressure), and the discharge temperature is 119.8 ° C., but in this state the limit of the allowable operating range of the compressor 1 has already been reached, so the bypass solenoid valve 10 is opened and the operating NO. By making it in the same state as the air conditioner of B,
The discharge pressure and the discharge refrigerant temperature of the compressor 1 are set to 2.8.
6 MPa (about 28.2 kgf / cm 2 G), 103.0
It can be reduced to ° C.

【0037】圧縮機1の吐出圧力及び吐出温度の許容運
転範囲の限界値は一概に言えないが、おおむね吐出圧力
3.04MPa(約30kgf/cm2 G)、吐出温度
は120℃以下に抑えることが必要である。そして、本
実施例では、室外熱交換器3出口側配管に取り付けた温
度検出手段11により圧縮機1の許容運転範囲の限界検
知を行っており、圧縮機1の吐出圧力及び吐出温度と室
外熱交換器3の出口配管温度は所定の関係を持っている
ため、この温度により吐出圧力及び吐出温度が限界値に
あるか否かを推定することが可能である。
Although the limit values of the allowable operating range of the discharge pressure and the discharge temperature of the compressor 1 cannot be generally stated, the discharge pressure should be kept to 3.04 MPa (about 30 kgf / cm 2 G) and the discharge temperature to 120 ° C. or less. is necessary. Then, in this embodiment, the temperature detection means 11 attached to the outlet side pipe of the outdoor heat exchanger 3 detects the limit of the allowable operating range of the compressor 1, and the discharge pressure and discharge temperature of the compressor 1 and the outdoor heat. Since the outlet pipe temperature of the exchanger 3 has a predetermined relationship, it is possible to estimate whether or not the discharge pressure and the discharge temperature are at the limit values based on this temperature.

【0038】図3及び図4は、冷房運転時において、外
気温度を変化させた状態での室外熱交換器出口温度と圧
縮機出口配管温度も所定の関係を示す特性図である。図
3及び図4に示すように、外気温度の上昇と共に圧縮機
1の吐出圧力及び吐出温度が上昇すると、室外機熱交換
器3出口配管温度も所定の関係で上昇していくことが分
かる。ここでバイパス電磁弁10が閉の状態と、開の状
態では特性が連続とならないが、これは、次のような理
由による。
FIG. 3 and FIG. 4 are characteristic diagrams showing a predetermined relationship between the outdoor heat exchanger outlet temperature and the compressor outlet pipe temperature when the outdoor air temperature is changed during the cooling operation. As shown in FIGS. 3 and 4, it can be seen that when the discharge pressure and discharge temperature of the compressor 1 rise as the outside air temperature rises, the outdoor unit heat exchanger 3 outlet pipe temperature also rises in a predetermined relationship. Here, the characteristics are not continuous in the closed state and the opened state of the bypass solenoid valve 10, but this is for the following reason.

【0039】即ち、バイパス電磁弁10が開状態とな
り、圧縮機1の吐出冷媒の一部が室内熱交換器5の入り
口側にバイパスされると、室外熱交換器3に循環する冷
媒量が減少し、絞り手段としてのキャピラリチューブは
同一のため、結果的に絞り量が緩くなって、過冷却度が
低減されることとなり、室外熱交換器出口配管温度は吐
出圧力及び吐出温度の減少の割りには余り減少しない結
果となる。図2の運転NO.A、Bの運転状態を比較す
ると、バイパス電磁弁10が開くことにより吐出圧力は
3.10MPa(約30.7kgf/cm2 G)から
2.86MPa(約28.2kgf/cm2 G)まで減
少しているが、室外熱交換器出口配管温度は62.4℃
から62.8℃とほとんど変化していない。
That is, when the bypass solenoid valve 10 is opened and part of the refrigerant discharged from the compressor 1 is bypassed to the inlet side of the indoor heat exchanger 5, the amount of refrigerant circulated to the outdoor heat exchanger 3 decreases. However, since the capillary tube as the throttling means is the same, the throttling amount consequently becomes less and the degree of supercooling is reduced, and the outlet pipe temperature of the outdoor heat exchanger is proportional to the discharge pressure and the discharge temperature decrease. The result is not much reduced. The operation No. of FIG. Comparing the operating states of A and B, the discharge pressure is reduced from 3.10 MPa (about 30.7 kgf / cm 2 G) to 2.86 MPa (about 28.2 kgf / cm 2 G) by opening the bypass solenoid valve 10. However, the temperature of the outdoor heat exchanger outlet piping is 62.4 ° C.
To 62.8 ° C, which is almost unchanged.

【0040】従って、室外熱交換器出口配管温度にて制
御を行うためには、制御温度としてバイパス電磁弁10
の開閉状態により制御温度を分ける必要がある。図3及
び図4の特性よりバイパス電磁弁10が閉じている時に
吐出圧力で3.04MPa(約30kgf/cm2 G)
以下、吐出温度で120℃以下に抑えるためには、室外
熱交換器出口配管温度を概ね60℃以下にする必要があ
り、またバイパス電磁弁10が開いている時に吐出圧力
で3.04MPa(約30kgf/cm2 G)以下、吐
出温度で120℃以下に抑えるためには、室外熱交換器
出口配管温度を概ね67℃以下にする必要がある。
Therefore, in order to control the temperature at the outlet pipe of the outdoor heat exchanger, the bypass solenoid valve 10 is used as the control temperature.
It is necessary to divide the control temperature according to the open / close state of. According to the characteristics of FIGS. 3 and 4, the discharge pressure is 3.04 MPa (about 30 kgf / cm 2 G) when the bypass solenoid valve 10 is closed.
Hereinafter, in order to suppress the discharge temperature to 120 ° C. or lower, it is necessary to set the temperature of the outdoor heat exchanger outlet pipe to about 60 ° C. or lower, and when the bypass solenoid valve 10 is open, the discharge pressure is 3.04 MPa (about In order to keep the discharge temperature at 30 kgf / cm 2 G) or lower and the discharge temperature at 120 ° C. or lower, it is necessary to set the outdoor heat exchanger outlet piping temperature to about 67 ° C. or lower.

【0041】そこで、本実施例の空気調和機において
は、第1の設定温度を例えば60℃、第2の設定温度を
67℃に予め設定し、温度検出手段11の検知した室外
熱交換器出口配管温度と第1及び第2の設定温度とを比
較して、バイパス電磁弁10及び圧縮機1を制御装置1
2により制御している。
Therefore, in the air conditioner of this embodiment, the first set temperature is preset to 60 ° C. and the second set temperature is set to 67 ° C., and the outdoor heat exchanger outlet detected by the temperature detecting means 11 is detected. The bypass solenoid valve 10 and the compressor 1 are connected to the controller 1 by comparing the pipe temperature with the first and second set temperatures.
It is controlled by 2.

【0042】図5は、本実施例による空気調和機の制御
装置による冷房運転時にバイパス電磁弁の制御動作を示
すフローチャートである。以下、このフローチャートに
沿って制御装置の動作について説明する。
FIG. 5 is a flow chart showing the control operation of the bypass solenoid valve during the cooling operation by the controller of the air conditioner according to this embodiment. The operation of the control device will be described below with reference to this flowchart.

【0043】制御装置12は、空気調和機が運転状態か
否か判断し(ステップ1)、運転状態であると判断した
場合、異常モードか否かを判断する(ステップ2)。そ
して、異常モードでないと判断した場合、制御装置12
は、圧縮機1を起動し(ステップ3)、室外熱交換器3
の出口側に設けられた温度検出手段11により室外熱交
換器3の出口配管温度Tを検出する(ステップ4)。そ
れから、制御装置12は、バイパス経路9のバイパス電
磁弁10の現在の開閉状態を判定し(ステップ5)、バ
イパス電磁弁10が閉じている場合、室外熱交換器3の
出口配管温度Tと予め設定されている第1の設定温度
(T1:60℃)との比較を行い(ステップ6)、配管
温度Tが第1の設定温度T1よりも高ければバイパス電
磁弁10を開き(ステップ7)、ステップ1へ戻る。
The controller 12 determines whether the air conditioner is in an operating state (step 1), and if it is in an operating state, determines whether it is in an abnormal mode (step 2). When it is determined that the abnormal mode is not set, the control device 12
Starts the compressor 1 (step 3), and the outdoor heat exchanger 3
The outlet pipe temperature T of the outdoor heat exchanger 3 is detected by the temperature detecting means 11 provided on the outlet side of the (step 4). Then, the control device 12 determines the current open / closed state of the bypass solenoid valve 10 of the bypass path 9 (step 5), and when the bypass solenoid valve 10 is closed, the outlet pipe temperature T of the outdoor heat exchanger 3 and the outlet pipe temperature T are determined in advance. A comparison is made with the set first set temperature (T1: 60 ° C.) (step 6), and if the pipe temperature T is higher than the first set temperature T1, the bypass solenoid valve 10 is opened (step 7), Return to step 1.

【0044】また、前述ステップ5において、バイパス
電磁弁10が開いていると判断した場合、制御装置12
は、室外熱交換器3の出口配管温度Tと予め設定されて
いる第2の設定温度(T2:67℃)との比較を行い
(ステップ8)、配管温度Tが第2の設定温度T2より
も高ければ、異常モードとし(ステップ9)、圧縮機1
を停止し(ステップ10)、更にバイパス電磁弁10を
閉じ(ステップ11)、ステップ1へ戻る。なお、配管
温度Tが第2の設定温度T2よりも低いと判断した場
合、制御装置12は、配管温度Tが予め設定されている
第3の設定温度T3より低いか否か判断し、配管温度T
が第3の設定温度T3より低い場合、前述ステップ11
以降の動作を行う。更に、配管温度Tが第3の設定温度
T3より高い場合、なにも行わずにステップ1へ戻る。
If it is determined in step 5 that the bypass solenoid valve 10 is open, the controller 12
Compares the outlet pipe temperature T of the outdoor heat exchanger 3 with a preset second set temperature (T2: 67 ° C.) (step 8), and the pipe temperature T is higher than the second set temperature T2. If it is also high, the abnormal mode is set (step 9), and the compressor 1
Is stopped (step 10), the bypass solenoid valve 10 is closed (step 11), and the process returns to step 1. When it is determined that the pipe temperature T is lower than the second set temperature T2, the control device 12 determines whether the pipe temperature T is lower than a preset third set temperature T3, and the pipe temperature T T
Is lower than the third set temperature T3, the above step 11
Performs the following operations. Further, when the pipe temperature T is higher than the third set temperature T3, nothing is performed and the process returns to step 1.

【0045】一方、前述ステップ1において、空気調和
機が運転状態でないと判断した場合、制御装置12は、
ステップ10以降の動作を行う。更に、前述ステップ2
において、異常モードであると判断した場合、ステップ
9以降の動作を行う。
On the other hand, when it is determined in step 1 that the air conditioner is not in the operating state, the control device 12
The operation after step 10 is performed. Furthermore, the above-mentioned step 2
When it is determined that the abnormal mode is set in, the operation after step 9 is performed.

【0046】以上のように、冷房運転時に室外熱交換器
3の出口配管温度Tが第1の設定温度(T1:60℃)
を越えると、バイパス電磁弁10を開くことにより圧縮
機1の負荷を低減し、バイパス電磁弁10が開いた状態
で室外熱交換器3の出口配管温度Tが第2の設定温度
(T2:67℃)を越えると圧縮機1を非常停止させて
圧縮機1を保護する。また、バイパス電磁弁10が開い
た状態で室外熱交換器3の出口配管温度Tが第3の設定
温度を下回るとバイパス電磁弁10を閉じて元の状態に
戻す。これは、バイパス電磁弁10を開くと圧縮機1の
負荷を軽減することができるが、冷房能力は多少減少
し、また運転効率も悪くなるため、運転条件が緩和され
て室外熱交換器3の出口配管温度Tが所定温度以下に下
がり、バイパス電磁弁10を閉じても圧縮機1の許容運
転範囲の限界値を越えないような場合には、バイパス電
磁弁10を閉じて効率の良い運転を行うためのものであ
る。なお、第3の設定温度は第1の設定温度より所定温
度だけ低い値である。
As described above, the outlet pipe temperature T of the outdoor heat exchanger 3 during the cooling operation is the first set temperature (T1: 60 ° C.).
When the temperature exceeds the limit, the load of the compressor 1 is reduced by opening the bypass solenoid valve 10, and the outlet pipe temperature T of the outdoor heat exchanger 3 is set to the second set temperature (T2: 67 when the bypass solenoid valve 10 is opened). (° C), the compressor 1 is stopped to protect it. Further, when the outlet pipe temperature T of the outdoor heat exchanger 3 falls below the third set temperature with the bypass solenoid valve 10 open, the bypass solenoid valve 10 is closed and returned to the original state. This is because when the bypass solenoid valve 10 is opened, the load on the compressor 1 can be reduced, but the cooling capacity is slightly reduced and the operating efficiency is deteriorated. Therefore, the operating conditions are eased and the outdoor heat exchanger 3 is cooled. If the outlet pipe temperature T falls below a predetermined temperature and the bypass solenoid valve 10 is closed but the limit value of the allowable operating range of the compressor 1 is not exceeded, the bypass solenoid valve 10 is closed for efficient operation. It is for doing. The third set temperature is lower than the first set temperature by a predetermined temperature.

【0047】以上の制御による冷房運転時の運転範囲の
拡大の度合いを図2に示す実機運転データより推定して
みると、バイパス電磁弁10を閉じた運転NO.Aとバ
イパス電磁弁10を開いた運転NO.Cとでは圧縮機1
の吐出圧力がほぼ同一となっているため、このときの室
外温度の差(59.3℃−53.5℃=5.8deg)
が、バイパス電磁弁10を開くことによる運転範囲の拡
大と見なすことができ、従来装置に比べておよそ5〜6
℃だけ室外熱交換器3の吸い込み温度が上昇しても冷房
運転を継続することが可能となる。
When the degree of expansion of the operating range during the cooling operation by the above control is estimated from the actual machine operation data shown in FIG. 2, the operation NO. Operation No. A with bypass solenoid valve 10 and bypass solenoid valve 10 open. Compressor 1 with C
Since the discharge pressures of the two are almost the same, the difference in outdoor temperature at this time (59.3 ° C-53.5 ° C = 5.8 deg)
However, it can be considered that the operating range is expanded by opening the bypass solenoid valve 10, and it is about 5 to 6 as compared with the conventional device.
Even if the suction temperature of the outdoor heat exchanger 3 rises by ° C, the cooling operation can be continued.

【0048】(2)第2実施例 次に、請求項2記載の発明にかかる一実施例を図に沿っ
て説明する。図6は、第2の実施例の空気調和機の冷凍
サイクルを示す構成図である。なお、前述の図1と同一
構成部分には同一符号を付して説明を省略する。
(2) Second Embodiment Next, an embodiment according to the present invention will be described with reference to the drawings. FIG. 6 is a configuration diagram showing a refrigeration cycle of the air conditioner of the second embodiment. The same components as those in FIG. 1 described above are designated by the same reference numerals and the description thereof will be omitted.

【0049】圧縮機1の吐出側の冷媒配管7aと冷媒配
管8cとの間にバイパス経路9が接続されており、バイ
パス経路9中にはバイパス電磁弁10が配設されてい
る。なお、バイパス電磁弁10、圧縮機1、温度検出手
段11は制御装置12に接続されている。
A bypass passage 9 is connected between the refrigerant pipe 7a and the refrigerant pipe 8c on the discharge side of the compressor 1, and a bypass solenoid valve 10 is arranged in the bypass passage 9. The bypass solenoid valve 10, the compressor 1, and the temperature detecting means 11 are connected to the control device 12.

【0050】次に、本実施例の作用について説明する。Next, the operation of this embodiment will be described.

【0051】冷房時、圧縮機1は、アキュムレータ6よ
り低圧低温のガス冷媒を吸入し、圧縮して高圧高温のガ
ス冷媒として冷媒配管7a、四方弁2及び冷媒配管7b
を通って室外熱交換器3へ送出する。そして、室外熱交
換器3は、高圧高温のガス冷媒を外気(例えば35℃)
により冷却して液化し、高圧の液冷媒とする。
During cooling, the compressor 1 draws in the low-pressure low-temperature gas refrigerant from the accumulator 6, compresses it, and uses it as the high-pressure high-temperature gas refrigerant as the refrigerant pipe 7a, the four-way valve 2 and the refrigerant pipe 7b.
And is delivered to the outdoor heat exchanger 3. Then, the outdoor heat exchanger 3 transfers the high-pressure and high-temperature gas refrigerant to the outside air (for example, 35 ° C.).
Is cooled and liquefied to obtain a high-pressure liquid refrigerant.

【0052】それから、この液冷媒は、キャピラリチュ
ーブ4を通過する際に膨脹して減圧されて低圧の液冷媒
となり、この低圧の液冷媒は、冷媒配管8aを通って室
内熱交換器5において蒸発してガス冷媒となる。この
際、冷媒の蒸発による温度降下により室内空気は冷却さ
れ、室内が冷房される。更に、ガス冷媒は、冷媒配管8
b、四方弁2及び冷媒配管8cを通ってアキュムレータ
6へ戻る。
Then, this liquid refrigerant is expanded and depressurized when passing through the capillary tube 4 to become a low pressure liquid refrigerant, and this low pressure liquid refrigerant is evaporated in the indoor heat exchanger 5 through the refrigerant pipe 8a. And becomes a gas refrigerant. At this time, the indoor air is cooled by the temperature drop due to the evaporation of the refrigerant, and the room is cooled. Further, the gas refrigerant is the refrigerant pipe 8
b, return to the accumulator 6 through the four-way valve 2 and the refrigerant pipe 8c.

【0053】一方、暖房時、四方弁2は、破線で示すよ
うに切り換えられる。そして、圧縮機1により圧縮され
た高圧高温のガス冷媒は、冷媒配管8bを通って室内熱
交換器5へ送出され、室内熱交換器5は高圧高温のガス
冷媒を室内空気により冷却して液化し、高圧の液冷媒と
する。すなわち、室内空気は高温のガス冷媒の熱により
暖められ、室内が暖房される。
On the other hand, during heating, the four-way valve 2 is switched as shown by the broken line. The high-pressure and high-temperature gas refrigerant compressed by the compressor 1 is sent to the indoor heat exchanger 5 through the refrigerant pipe 8b, and the indoor heat exchanger 5 liquefies the high-pressure and high-temperature gas refrigerant by cooling it with indoor air. The high-pressure liquid refrigerant. That is, the room air is warmed by the heat of the high-temperature gas refrigerant, and the room is heated.

【0054】それから、この液冷媒は、冷媒配管8aを
通ってキャピラリチューブ4へ送られ、キャピラリチュ
ーブ4を通過する際に膨脹して減圧されて低圧の液冷媒
となり、この低圧の液冷媒は、室外熱交換器3において
蒸発してガス冷媒となる。更に、ガス冷媒は、冷媒配管
7b、四方弁2及び冷媒配管8cを通ってアキュムレー
タ6へ戻る。
Then, this liquid refrigerant is sent to the capillary tube 4 through the refrigerant pipe 8a, and when passing through the capillary tube 4, it is expanded and decompressed to become a low-pressure liquid refrigerant. This low-pressure liquid refrigerant is It evaporates in the outdoor heat exchanger 3 to become a gas refrigerant. Further, the gas refrigerant returns to the accumulator 6 through the refrigerant pipe 7b, the four-way valve 2 and the refrigerant pipe 8c.

【0055】また、外気温度が上昇したり、室外熱交換
器3の設置環境が悪くショートサイクルを起こしたり、
室外熱交換器3の周辺の通風が悪く空気の澱みを生じ、
室外熱交換器3を通過する空気温度が上昇して熱交換が
悪くなり、結果として圧縮機1の吐出圧力が上昇し、ま
た圧縮機1の吐出冷媒温度も異常に上昇した場合、バイ
パス経路9のバイパス電磁弁10を開放し、圧縮機1か
ら吐出された冷媒の吐出圧力および吐出冷媒温度を低く
抑えるように制御装置12により制御している。
Further, the temperature of the outside air rises, the environment in which the outdoor heat exchanger 3 is installed is bad, and a short cycle occurs.
Ventilation around the outdoor heat exchanger 3 is poor and air stagnation occurs,
When the temperature of the air passing through the outdoor heat exchanger 3 rises and the heat exchange deteriorates, and as a result, the discharge pressure of the compressor 1 rises and the discharge refrigerant temperature of the compressor 1 also rises abnormally, the bypass path 9 The bypass solenoid valve 10 is opened and the control device 12 controls the discharge pressure and the discharge refrigerant temperature of the refrigerant discharged from the compressor 1 to be low.

【0056】即ち、冷房時に、バイパス経路9のバイパ
ス電磁弁10を開放すると、圧縮機1から吐出された冷
媒の一部がバイパス経路9を通って圧縮機1の吸入側へ
供給されるため、メインの冷凍サイクルへ循環する冷媒
量が減少し、凝縮圧力即ち吐出圧力を低く抑えることが
でき、結果として吐出冷媒温度も低くすることができ
る。ここで、バイパス電磁弁10の開閉タイミングは当
然のことながら圧縮機1の許容運転範囲を越えないよう
に行う必要があり、第2実施例の空気調和機においても
室外熱交換器出口側配管に取り付けられた温度検出手段
11により行っている。圧縮機1の吐出圧力及び吐出温
度と室外熱交換器3の出口配管温度は所定の関係を持っ
ているため、この温度により吐出圧力及び吐出温度が限
界値にあるか否かを推定することが可能である。
That is, when the bypass solenoid valve 10 of the bypass path 9 is opened during cooling, a part of the refrigerant discharged from the compressor 1 is supplied to the suction side of the compressor 1 through the bypass path 9. The amount of the refrigerant circulated to the main refrigeration cycle is reduced, the condensing pressure, that is, the discharge pressure can be suppressed low, and as a result, the discharged refrigerant temperature can be lowered. Here, as a matter of course, the opening / closing timing of the bypass solenoid valve 10 needs to be performed so as not to exceed the allowable operating range of the compressor 1. Even in the air conditioner of the second embodiment, the outdoor heat exchanger outlet side piping is The temperature is detected by the attached temperature detecting means 11. Since the discharge pressure and discharge temperature of the compressor 1 and the outlet pipe temperature of the outdoor heat exchanger 3 have a predetermined relationship, it is possible to estimate whether or not the discharge pressure and discharge temperature are at their limit values by this temperature. It is possible.

【0057】図7及び図8は、冷房運転時において、外
気温度を変化させた状態での室外熱交換器出口温度と圧
縮機出口配管温度も所定の関係を示す特性図である。図
7及び図8に示すように、外気温度の上昇と共に圧縮機
1の吐出圧力及び吐出温度が上昇すると、室外機熱交換
器3出口配管温度も所定の関係で上昇していくことが分
かる。ここでバイパス電磁弁10が閉の状態と、開の状
態では特性が連続とならないが、これは、前述の第1実
施例と同様の理由によるものである。
FIG. 7 and FIG. 8 are characteristic diagrams showing a predetermined relationship between the outdoor heat exchanger outlet temperature and the compressor outlet pipe temperature when the outdoor air temperature is changed during the cooling operation. As shown in FIGS. 7 and 8, it can be seen that when the discharge pressure and discharge temperature of the compressor 1 rise as the outside air temperature rises, the outdoor unit heat exchanger 3 outlet pipe temperature also rises in a predetermined relationship. Here, the characteristics are not continuous in the closed state and the opened state of the bypass solenoid valve 10, but this is for the same reason as in the above-described first embodiment.

【0058】即ち、バイパス電磁弁10が開状態とな
り、圧縮機1の吐出冷媒の一部が室内熱交換器5の入り
口側にバイパスされると、室外熱交換器3に循環する冷
媒量が減少し、絞り手段としてのキャピラリチューブは
同一のため、結果的に絞り量が緩くなって、過冷却度が
低減されることとなり、室外熱交換器出口配管温度は吐
出圧力及び吐出温度の減少の割りには余り減少しない結
果となる。
That is, when the bypass solenoid valve 10 is opened and part of the refrigerant discharged from the compressor 1 is bypassed to the inlet side of the indoor heat exchanger 5, the amount of refrigerant circulated to the outdoor heat exchanger 3 is reduced. However, since the capillary tube as the throttling means is the same, the throttling amount consequently becomes less and the degree of supercooling is reduced, and the outlet pipe temperature of the outdoor heat exchanger is proportional to the discharge pressure and the discharge temperature decrease. The result is not much reduced.

【0059】従って、室外熱交換器出口配管温度にて制
御を行うためには、制御温度としてバイパス電磁弁10
の開閉状態により制御温度を分ける必要がある。図7及
び図8の特性よりバイパス電磁弁10が閉じている時に
吐出圧力で3.04MPa(約30kgf/cm2 G)
以下、吐出温度で120℃以下に抑えるためには、室外
熱交換器出口配管温度を概ね60℃以下にする必要があ
り、またバイパス電磁弁10が開いている時に吐出圧力
で3.04MPa(約30kgf/cm2 G)以下、吐
出温度で120℃以下に抑えるためには、室外熱交換器
出口配管温度を概ね65℃以下にする必要がある。
Therefore, in order to control the temperature at the outlet pipe of the outdoor heat exchanger, the bypass solenoid valve 10 is used as the control temperature.
It is necessary to divide the control temperature according to the open / close state of. According to the characteristics of FIGS. 7 and 8, the discharge pressure is 3.04 MPa (about 30 kgf / cm 2 G) when the bypass solenoid valve 10 is closed.
Hereinafter, in order to suppress the discharge temperature to 120 ° C. or lower, it is necessary to set the temperature of the outdoor heat exchanger outlet pipe to about 60 ° C. or lower, and when the bypass solenoid valve 10 is open, the discharge pressure is 3.04 MPa (about In order to control the discharge temperature to 30 kgf / cm 2 G) or less and the discharge temperature to 120 ° C. or less, it is necessary to set the outdoor heat exchanger outlet piping temperature to about 65 ° C. or less.

【0060】そこで、請求項2記載の発明の空気調和機
においては、第1の設定温度を例えば60℃、第2の設
定温度を65℃に予め設定し、温度検出手段11の検知
した室外熱交換器出口配管温度と第1及び第2の設定温
度とを比較して、バイパス電磁弁10及び圧縮機1を制
御装置12により制御している。
Therefore, in the air conditioner according to the second aspect of the present invention, the first set temperature is preset to 60 ° C. and the second set temperature is set to 65 ° C., and the outdoor heat detected by the temperature detecting means 11 is detected. The bypass solenoid valve 10 and the compressor 1 are controlled by the controller 12 by comparing the exchanger outlet pipe temperature with the first and second set temperatures.

【0061】制御装置12による冷房運転時のバイパス
電磁弁10の制御動作は、前述した図4に示すフローチ
ャートに従って行われる。請求項2記載の発明において
は第2の設定温度(T2:65℃)及び第2の設定温度
T3が請求項1記載の発明の実施例とは異なっている。
The control operation of the bypass solenoid valve 10 during the cooling operation by the controller 12 is performed according to the flow chart shown in FIG. In the invention described in claim 2, the second set temperature (T2: 65 ° C.) and the second set temperature T3 are different from the embodiment of the invention set forth in claim 1.

【0062】冷房運転時に、室外熱交換器3の出口配管
温度Tが第1の設定温度(T1:60℃)を越えると、
バイパス電磁弁10を開くことにより圧縮機1の負荷を
低減し、バイパス電磁弁10が開いた状態で室外熱交換
器3の出口配管温度Tが第2の設定温度(T2:65
℃)を越えると、圧縮機1を異常停止させる。
When the outlet pipe temperature T of the outdoor heat exchanger 3 exceeds the first set temperature (T1: 60 ° C.) during the cooling operation,
By opening the bypass solenoid valve 10, the load on the compressor 1 is reduced, and when the bypass solenoid valve 10 is opened, the outlet pipe temperature T of the outdoor heat exchanger 3 is set to the second set temperature (T2: 65).
(° C), the compressor 1 is abnormally stopped.

【0063】また、バイパス電磁弁10が開いた状態で
室外熱交換器3の出口配管温度Tが第3の設定温度を下
回ると、バイパス電磁弁10を閉じて元の常態に戻す。
これは、バイパス電磁弁10を開くと圧縮機1の負荷を
軽減することができるが、冷房能力は多少減少し、また
運転効率も悪くなるため、運転条件が緩和されて室外熱
交換器3の出口配管温度Tが所定温度以下に下がり、バ
イパス電磁弁10を閉じても圧縮機1の許容運転範囲の
限界値を越えないような場合には、バイパス電磁弁10
を閉じて効率の良い運転を行うためのものである。な
お、第3の設定温度は第1の設定温度より所定温度だけ
低い値である。
When the outlet pipe temperature T of the outdoor heat exchanger 3 falls below the third set temperature with the bypass solenoid valve 10 open, the bypass solenoid valve 10 is closed to return to the original normal state.
This is because when the bypass solenoid valve 10 is opened, the load on the compressor 1 can be reduced, but the cooling capacity is slightly reduced and the operating efficiency is deteriorated. Therefore, the operating conditions are eased and the outdoor heat exchanger 3 is cooled. If the outlet pipe temperature T falls below a predetermined temperature and the bypass solenoid valve 10 is closed but the limit value of the allowable operating range of the compressor 1 is not exceeded, the bypass solenoid valve 10
This is for closing the to enable efficient driving. The third set temperature is lower than the first set temperature by a predetermined temperature.

【0064】以上の制御により、従来装置に比べておよ
そ4〜5℃だけ室外熱交換器3の吸い込み温度が上昇し
ても冷房運転を継続することが可能となり、冷房運転時
の高温側の運転範囲を拡大し得る。
With the above control, the cooling operation can be continued even if the suction temperature of the outdoor heat exchanger 3 rises by about 4 to 5 ° C. as compared with the conventional apparatus, and the operation on the high temperature side during the cooling operation can be continued. The range can be expanded.

【0065】なお、上述実施例においては、冷房運転の
過負荷条件時に圧縮機の運転範囲拡大を図ったものであ
り、バイパス電磁弁10の開閉タイミングすなわち圧縮
機1の許容運転範囲限界の検出を室外熱交換器の出口配
管温度により行っているが、直接に圧縮機の吐出圧力ま
たは吐出冷媒温度を検出してバイパス弁を制御しても同
様に運転範囲を拡大できることはもちろんである。
In the above embodiment, the operating range of the compressor is expanded under the overload condition of the cooling operation, and the opening / closing timing of the bypass solenoid valve 10, that is, the allowable operating range limit of the compressor 1 is detected. Although it is performed by the outlet pipe temperature of the outdoor heat exchanger, it goes without saying that the operating range can be similarly expanded by directly detecting the discharge pressure or the discharge refrigerant temperature of the compressor and controlling the bypass valve.

【0066】更に、霜取り検知用もしくは室外熱交換器
用などに用いる配管温度センサーが温度検出手段11を
兼ねるようにすると、部品の増大を招かず、コストアッ
プすることなく運転範囲の拡大を図ることが可能であ
る。
Further, if the pipe temperature sensor used for defrosting detection or for the outdoor heat exchanger also serves as the temperature detecting means 11, the number of parts is not increased and the operating range can be expanded without increasing the cost. It is possible.

【0067】また、上述実施例においては、絞り手段と
してキャピラリチューブを例に取り説明したが、これに
限らず、膨脹弁でもよい。
Further, in the above-mentioned embodiment, the capillary tube is described as an example of the throttle means, but the invention is not limited to this, and an expansion valve may be used.

【0068】[0068]

【発明の効果】以上説明したように、この発明によれ
ば、第1の設定温度と第1の設定温度よりも高い第2の
設定温度とを予め制御装置に設定し、冷房運転時に温度
検出手段の検出温度が第1の設定温度に達した場合に、
バイパス電磁弁を開放し、前記温度検出手段の検出温度
が第2の設定温度に達した場合に圧縮機を非常停止させ
るように構成したので、冷房過負荷条件においても空気
調和機を異常停止させず、また圧縮機への負荷を増大さ
せず、運転範囲を拡大して、冷房運転を継続することが
できる。
As described above, according to the present invention, the first preset temperature and the second preset temperature higher than the first preset temperature are preset in the control device, and the temperature is detected during the cooling operation. When the temperature detected by the means reaches the first set temperature,
Since the bypass solenoid valve is opened and the compressor is configured to be brought to an emergency stop when the temperature detected by the temperature detecting means reaches the second set temperature, the air conditioner is abnormally stopped even under the cooling overload condition. In addition, the operation range can be expanded without increasing the load on the compressor, and the cooling operation can be continued.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる空気調和機の第1の実施例の冷
凍サイクルを示す構成図であり、特に請求項1記載の発
明に関わる。
FIG. 1 is a configuration diagram showing a refrigeration cycle of a first embodiment of an air conditioner according to the present invention, and particularly relates to the invention according to claim 1.

【図2】第1実施例の空気調和機の冷房過負荷条件での
限界運転特性を示す図である。
[Fig. 2] Fig. 2 is a diagram showing a limit operation characteristic under a cooling overload condition of the air conditioner of the first embodiment.

【図3】第1実施例の空気調和機の冷房運転時の室外熱
交換器出口配管温度と圧縮機の吐出圧力との関係を示す
特性図である。
FIG. 3 is a characteristic diagram showing a relationship between an outdoor heat exchanger outlet pipe temperature and a compressor discharge pressure during a cooling operation of the air conditioner of the first embodiment.

【図4】第1実施例の空気調和機の冷房運転時の室外熱
交換器出口配管温度と圧縮機の吐出冷媒温度との関係を
示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between an outdoor heat exchanger outlet pipe temperature and a compressor discharge refrigerant temperature during a cooling operation of the air conditioner of the first embodiment.

【図5】第1実施例の空気調和機の制御装置の制御動作
を示すフローチャートである。
FIG. 5 is a flowchart showing a control operation of the control device for the air-conditioning apparatus of the first embodiment.

【図6】本発明にかかる空気調和機の第2の実施例の冷
凍サイクルを示す構成図であり、特に請求項2記載の発
明に関わる。
FIG. 6 is a configuration diagram showing a refrigeration cycle of a second embodiment of the air conditioner according to the present invention, and particularly relates to the invention according to claim 2.

【図7】第2実施例の空気調和機の冷房運転時の室外熱
交換器出口配管温度と圧縮機の吐出圧力との関係を示す
特性図である。
FIG. 7 is a characteristic diagram showing a relationship between an outdoor heat exchanger outlet pipe temperature and a compressor discharge pressure during a cooling operation of the air conditioner of the second embodiment.

【図8】第2実施例の空気調和機の冷房運転時の室外熱
交換器出口配管温度と圧縮機の吐出冷媒温度との関係を
示す特性図である。
FIG. 8 is a characteristic diagram showing a relationship between an outdoor heat exchanger outlet pipe temperature and a compressor discharge refrigerant temperature during a cooling operation of the air conditioner of the second embodiment.

【図9】従来の空気調和機の冷凍サイクルを示す構成図
である。
FIG. 9 is a configuration diagram showing a refrigeration cycle of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 室外熱交換器 4 キャピラリチューブ 5 室内熱交換器 7a,7b,8a,8b,8c,8d 冷媒配管 9 バイパス経路 10 バイパス電磁弁 11 温度検出手段 12 制御装置 1 Compressor 3 Outdoor Heat Exchanger 4 Capillary Tube 5 Indoor Heat Exchanger 7a, 7b, 8a, 8b, 8c, 8d Refrigerant Piping 9 Bypass Path 10 Bypass Solenoid Valve 11 Temperature Detection Means 12 Controller

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年9月14日[Submission date] September 14, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】さらにバイパス回路(9)のバイパス電磁
弁(10)を開とすれば、冷房時、暖房時とも吐出冷媒
が蒸発器となる室内熱交換器(5)、および室外熱交換
器(3)の入り口に供給され、いわゆるホットガスバイ
パス運転となり、冷房時は蒸発器である室内熱交換器の
凍結を防止でき、暖房時には蒸発能力を落とすことによ
り吐出圧力を低下することができる。即ち、冷房時に
は、吸入圧力が低下して室内熱交換器が着霜しそうにな
ると、バイパス弁を開き着霜を防止する働きをする。
Further, the bypass electromagnetic wave of the bypass circuit (9)
If the valve (10) is opened, the discharged refrigerant will be discharged both during cooling and during heating.
Indoor heat exchanger (5) in which is an evaporator, and outdoor heat exchange
It is supplied to the entrance of the vessel (3) and is called hot gas bypass.
It becomes a pass operation, and when cooling, the indoor heat exchanger that is an evaporator
By preventing freezing and reducing the evaporation capacity during heating,
The discharge pressure can be reduced. That is, during cooling
The suction pressure drops and the indoor heat exchanger is likely to frost.
Then, the bypass valve is opened to prevent frost formation.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】また、暖房時には、室内空気温度が上昇し
たり、フィルターの目詰まりにより風量が低下するなど
して吐出圧力が高くなるとバイパス電磁弁を開き異常に
冷媒圧力が上昇するのを防ぐものである。
During heating, the room air temperature rises.
Or the air volume decreases due to filter clogging, etc.
When the discharge pressure becomes high, the bypass solenoid valve opens
It is intended to prevent the refrigerant pressure from rising.

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を圧縮する圧縮機と、 冷媒と外気との間で熱交換を行う室外熱交換器と、 冷媒と室内空気との間で熱交換を行う室内熱交換器と、 前記室外熱交換器または前記室内熱交換器により液化さ
れた高圧の冷媒を絞り膨脹させる絞り手段と、 前記圧縮機、前記室外熱交換器、前記絞り手段、及び前
記室内熱交換器を順次に連結する冷媒配管と、 前記圧縮機の吐出側高圧配管から絞り機構と前記室内熱
交換器を連結する冷媒配管へ接続された第1のバイパス
経路と、 前記バイパス経路中に配置されたバイパス電磁弁と、 前記室外熱交換器の出口配管に設けられた温度検出手段
と、 第1の設定温度と第1の設定温度よりも高い第2の設定
温度とを予め設定し、かつ冷房運転時に前記温度検出手
段の検出温度が第1の設定温度に達した場合に前記バイ
パス電磁弁を開放し、前記温度検出手段の検出温度が第
2の設定温度に達した場合に圧縮機を非常停止させる制
御装置と、 を備えることを特徴とする空気調和機。
1. A compressor for compressing a refrigerant, an outdoor heat exchanger for exchanging heat between the refrigerant and the outside air, an indoor heat exchanger for exchanging heat between the refrigerant and indoor air, and the outdoor unit. A throttle means for squeezing and expanding a high-pressure refrigerant liquefied by a heat exchanger or the indoor heat exchanger, and a refrigerant that sequentially connects the compressor, the outdoor heat exchanger, the throttle means, and the indoor heat exchanger. A pipe, a first bypass path connected from a high-pressure pipe on the discharge side of the compressor to a refrigerant pipe connecting the throttle mechanism and the indoor heat exchanger, a bypass solenoid valve arranged in the bypass path, The temperature detection means provided in the outlet pipe of the outdoor heat exchanger, the first set temperature and the second set temperature higher than the first set temperature are preset, and the temperature detection means of the temperature detection means is set during the cooling operation. The detected temperature has reached the first set temperature Said bypass solenoid valve is opened, the detected temperature is an air conditioner which is characterized in that and a control device for emergency stop of the compressor when it reaches the second predetermined temperature of the temperature detecting means when.
【請求項2】 冷媒を圧縮する圧縮機と、 冷媒と外気との間で熱交換を行う室外熱交換器と、 冷媒と室内空気との間で熱交換を行う室内熱交換器と、 前記室外熱交換器または室内熱交換器により液化された
高圧の冷媒を絞り膨脹させる絞り手段と、 前記圧縮機、前記室外熱交換器、前記絞り手段、及び前
記室内熱交換器を順次に連結する冷媒配管と、 前記圧縮機の吐出側高圧配管から吸入側低圧冷媒配管へ
接続された第2のバイパス経路と、 前記バイパス経路中に配置されたバイパス電磁弁と、 前記室外熱交換器の出口配管に設けられた温度検出手段
と、 第1の設定温度と第1の設定温度よりも高い第2の設定
温度とを予め設定し、かつ冷房運転時に前記温度検出手
段の検出温度が第1の設定温度に達した場合に前記バイ
パス電磁弁を開放し、前記温度検出手段の検出温度が第
2の設定温度に達した場合に圧縮機を非常停止させる制
御装置と、 を備えることを特徴とする空気調和機。
2. A compressor for compressing a refrigerant, an outdoor heat exchanger for exchanging heat between the refrigerant and the outside air, an indoor heat exchanger for exchanging heat between the refrigerant and indoor air, and the outdoor unit. A throttling means for throttling and expanding the high-pressure refrigerant liquefied by the heat exchanger or the indoor heat exchanger, and a refrigerant pipe for sequentially connecting the compressor, the outdoor heat exchanger, the throttling means, and the indoor heat exchanger. A second bypass path connected from the discharge high-pressure piping of the compressor to the suction low-pressure refrigerant piping; a bypass solenoid valve arranged in the bypass path; and an outlet piping of the outdoor heat exchanger. The preset temperature detection means, the first preset temperature and a second preset temperature higher than the first preset temperature, and the detected temperature of the temperature detector is set to the first preset temperature during the cooling operation. When it reaches, the bypass solenoid valve is opened. And, an air conditioner, characterized in that it comprises a control device for emergency stop of the compressor when the detected temperature of said temperature detecting means reaches a second predetermined temperature.
【請求項3】 冷媒を圧縮する圧縮機と、 冷媒と外気との間で熱交換を行う室外熱交換器と、 冷媒と室内空気との間で熱交換を行う室内熱交換器と、 前記室外熱交換器または室内熱交換器により液化された
高圧の冷媒を絞り膨脹させる絞り手段と、 前記圧縮機、前記室外熱交換器、前記絞り手段、及び前
記室内熱交換器を順次に連結する冷媒配管と、 前記圧縮機の吐出側高圧配管から吸入側低圧冷媒配管へ
接続された第2のバイパス経路と、 前記バイパス経路中に配置されたバイパス電磁弁と、 前記圧縮機の吐出冷媒温度を検出する温度検出手段と、 第1の設定温度と第1の設定温度よりも高い第2の設定
温度とを予め設定し、かつ冷房運転時に前記温度検出手
段の検出温度が第1の設定温度に達した場合に前記バイ
パス電磁弁を開放し、前記温度検出手段の検出温度が第
2の設定温度に達した場合に圧縮機を非常停止させる制
御装置と、 を備えることを特徴とする空気調和機。
3. A compressor for compressing a refrigerant, an outdoor heat exchanger for exchanging heat between the refrigerant and the outside air, an indoor heat exchanger for exchanging heat between the refrigerant and indoor air, and the outdoor unit. A throttling means for throttling and expanding the high-pressure refrigerant liquefied by the heat exchanger or the indoor heat exchanger, and a refrigerant pipe for sequentially connecting the compressor, the outdoor heat exchanger, the throttling means, and the indoor heat exchanger. A second bypass path connected from the discharge high-pressure piping of the compressor to the suction low-pressure refrigerant piping; a bypass solenoid valve arranged in the bypass path; and detecting the discharge refrigerant temperature of the compressor. The temperature detection means, the first set temperature and the second set temperature higher than the first set temperature are preset, and the detected temperature of the temperature detection means reaches the first set temperature during the cooling operation. If the bypass solenoid valve is opened An air conditioner characterized in that it comprises a control device for emergency stop of the compressor when the detected temperature of said temperature detecting means reaches a second predetermined temperature.
JP5057211A 1993-03-17 1993-03-17 Air conditioner Pending JPH06272971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5057211A JPH06272971A (en) 1993-03-17 1993-03-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5057211A JPH06272971A (en) 1993-03-17 1993-03-17 Air conditioner

Publications (1)

Publication Number Publication Date
JPH06272971A true JPH06272971A (en) 1994-09-27

Family

ID=13049190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5057211A Pending JPH06272971A (en) 1993-03-17 1993-03-17 Air conditioner

Country Status (1)

Country Link
JP (1) JPH06272971A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020049967A (en) * 2000-12-20 2002-06-26 황한규 Method of controlling air-conditioner used both cooling and heating
JP2002243285A (en) * 2001-02-14 2002-08-28 Daikin Ind Ltd Refrigeration unit
KR100750238B1 (en) * 2006-10-13 2007-08-17 위니아만도 주식회사 Cooling system protecting apparatus and method using temperature of suction pipe
CN103216915A (en) * 2013-04-24 2013-07-24 青岛海尔空调电子有限公司 Shutdown method of variable frequency air conditioner and variable frequency air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020049967A (en) * 2000-12-20 2002-06-26 황한규 Method of controlling air-conditioner used both cooling and heating
JP2002243285A (en) * 2001-02-14 2002-08-28 Daikin Ind Ltd Refrigeration unit
KR100750238B1 (en) * 2006-10-13 2007-08-17 위니아만도 주식회사 Cooling system protecting apparatus and method using temperature of suction pipe
CN103216915A (en) * 2013-04-24 2013-07-24 青岛海尔空调电子有限公司 Shutdown method of variable frequency air conditioner and variable frequency air conditioner
CN103216915B (en) * 2013-04-24 2015-09-02 青岛海尔空调电子有限公司 The closing method of convertible frequency air-conditioner and convertible frequency air-conditioner

Similar Documents

Publication Publication Date Title
EP2107322B1 (en) Heat pump type hot water supply outdoor apparatus
EP2083230B1 (en) Air conditioning system
US7918097B2 (en) Air conditioning system
CN111247377B (en) Refrigeration cycle device
US11598559B2 (en) Heat source-side unit and refrigeration apparatus
JP3334601B2 (en) Air conditioner with natural circulation
US11512876B2 (en) Refrigeration apparatus
JP2964705B2 (en) Air conditioner
JPH06272971A (en) Air conditioner
JPH04222341A (en) Operation controller for air conditioner
JP4063041B2 (en) Control method of multi-room air conditioner
WO2021156901A1 (en) Refrigeration cycle device
JPH04344085A (en) Defrosting operation control device for refrigerating apparatus
JP3348465B2 (en) Binary refrigeration equipment
JP3303689B2 (en) Binary refrigeration equipment
JP2008249240A (en) Condensing unit and refrigerating device comprising the same
JP2523534B2 (en) Air conditioner
JP3481274B2 (en) Separate type air conditioner
JP2822764B2 (en) Operation control device for outdoor fan of air conditioner
JPH08166183A (en) Air-conditioning equipment
JPH0634224A (en) Room heater/cooler
JP7496938B2 (en) Air Conditioning Equipment
JP7560417B2 (en) Air conditioning equipment
JP3059886B2 (en) Refrigeration equipment
JPH0432658A (en) Air conditioner