JP2508043B2 - Compressor capacity control device for refrigeration equipment - Google Patents
Compressor capacity control device for refrigeration equipmentInfo
- Publication number
- JP2508043B2 JP2508043B2 JP62004548A JP454887A JP2508043B2 JP 2508043 B2 JP2508043 B2 JP 2508043B2 JP 62004548 A JP62004548 A JP 62004548A JP 454887 A JP454887 A JP 454887A JP 2508043 B2 JP2508043 B2 JP 2508043B2
- Authority
- JP
- Japan
- Prior art keywords
- capacity
- compressor
- total
- target
- compressors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/075—Details of compressors or related parts with parallel compressors
Landscapes
- Control Of Positive-Displacement Pumps (AREA)
- Air Conditioning Control Device (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷凍装置の圧縮機容量制御装置に関し、特
に、圧縮機の頻繁な容量変化に起因する耐久性の低下の
防止対策に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compressor capacity control device for a refrigeration system, and more particularly to measures for preventing deterioration of durability due to frequent capacity changes of the compressor.
(従来の技術) 従来、この種の冷凍装置の圧縮機容量制御装置とし
て、例えば特開昭59−56649号公報等に開示されるよう
に、空気調和機において、インバータにより容量調整さ
れる圧縮機を備え、該圧縮機の容量を室内の空調負荷の
変化等に応じてインバータで増減制御して、空調能力を
空調負荷に良好に対応させて、室内の快適空調を行うも
のが知られている。(Prior Art) Conventionally, as a compressor capacity control device for a refrigeration apparatus of this type, as disclosed in, for example, Japanese Patent Laid-Open No. 59-56649, a compressor whose capacity is adjusted by an inverter in an air conditioner. It is known to provide comfortable air conditioning in the room by controlling the capacity of the compressor with an inverter in accordance with changes in the air conditioning load in the room to appropriately adjust the air conditioning capacity to the air conditioning load. .
(発明が解決しようとする課題) ところで、圧縮機の容量を増減制御する場合、その容
量の変化段数を多段階に設定すれば、冷凍能力を冷凍負
荷により良好に対応できて、冷凍性能の向上を図ること
ができ、好ましい。(Problems to be solved by the invention) By the way, when controlling the capacity of the compressor to increase or decrease, if the number of stages of change in the capacity is set in multiple stages, the refrigerating capacity can be better responded to the refrigerating load and the refrigerating performance is improved. Can be achieved, which is preferable.
そこで、例えば2台の圧縮機を設け、一方の圧縮機を
インバータで容量制御すると共に、他方の圧縮機をアン
ロード機構で容量制御して、両圧縮機機構の合計容量を
ほぼ目標容量値に制御することにより、比較的低価格で
もって圧縮機の合計容量を多段階に調整して、冷凍性能
の向上を図ることが考えられる。Therefore, for example, two compressors are provided, the capacity of one compressor is controlled by an inverter, and the capacity of the other compressor is controlled by an unload mechanism, so that the total capacity of both compressor mechanisms becomes almost the target capacity value. By controlling the total capacity of the compressor at a relatively low price, the total capacity can be adjusted in multiple stages to improve the refrigeration performance.
しかして、このように圧縮機の合計容量を多段階に調
整する場合、一方の圧縮機はインバータで比較的細か
く,例えば10%刻みに容量調整され、他方の圧縮機はア
ンロード機構で例えば50%と100%とに比較的大きく容
量調整されるものである。このため、圧縮機の合計容量
の調整制御は、例えばアンロード機構側の圧縮機で基礎
容量値を設定し、その基礎容量値と目標容量値との容量
差にほぼ等しい容量をインバータ側の圧縮機で調整制御
して、圧縮機の合計容量を目標容量値に調整することが
行われる。Therefore, when the total capacity of the compressors is adjusted in multiple stages in this way, one of the compressors is relatively finely adjusted by the inverter, for example, the capacity is adjusted in steps of 10%, and the other compressor is, for example, 50% by the unload mechanism. The capacity is relatively adjusted to 100% and 100%. Therefore, for the adjustment control of the total capacity of the compressor, for example, the basic capacity value is set by the compressor on the unload mechanism side, and the capacity on the inverter side is set to a capacity approximately equal to the capacity difference between the basic capacity value and the target capacity value. The total capacity of the compressor is adjusted to a target capacity value by adjusting and controlling the machine.
しかるに、その場合、目標容量値が冷凍負荷の変化等
に応じて変化する場合、例えば目標容量値が40%と50%
との間で往復変動する場合には、アンロード機構側の圧
縮機が0%と50%との間の容量で作動と停止とを繰返し
て発停し、そのため該圧縮機の耐久性が低下して、その
信頼性の低下を招く欠点が生じる。However, in that case, if the target capacity value changes according to changes in the refrigeration load, for example, the target capacity value is 40% and 50%.
, The compressor on the side of the unloading mechanism repeatedly starts and stops at a capacity between 0% and 50%, which lowers the durability of the compressor. Then, there arises a drawback that the reliability is lowered.
本発明は斯かる点に鑑みてなされたものであり、その
目的は、上記の如く2台の圧縮機を各々インバータとア
ンロード機構とで容量制御する場合、アンロード機構側
の圧縮機の容量状態を可及的に長く維持しつつ2台の圧
縮機の合計容量を増減調整して、目標容量値に良好に収
束させることにより、アンロード機構側の圧縮機の発停
頻度を可及的に少なくしてその耐久性の向上を図りつ
つ、冷凍能力を多段階に調整し得て、冷凍性能の向上を
図ることにある。The present invention has been made in view of the above problems, and an object of the present invention is to reduce the capacity of a compressor on the unload mechanism side when the capacity of two compressors is controlled by an inverter and an unload mechanism as described above. By keeping the state as long as possible and increasing / decreasing the total capacity of the two compressors to make it converge to the target capacity value, the start / stop frequency of the compressor on the unload mechanism side can be adjusted as much as possible. The refrigerating capacity can be adjusted in multiple stages while improving the durability while improving the refrigerating performance.
(課題を解決するための手段) 上記目的を達成するため、本発明の具体的な解決手段
は、第1図に示すように、インバータ(15)により所定
の容量調整範囲内において複数ステップに容量調整され
る第1の圧縮機(1)と、アンロード機構(2a)により
上記第1の圧縮機(1)のステップ幅よりも大きく且つ
該第1の圧縮機(1)の上記容量調整範囲よりも小さい
ステップ幅をもって複数ステップに容量調整される第2
の圧縮機(2)とを備え、該両圧縮機(1),(2)の
合計容量を多段階に制御するようにした冷凍装置の圧縮
機容量制御装置を前提としている。そして、上記圧縮機
(1),(2)の合計目標容量(L1)を演算する目標容
量演算手段(50)と、該目標容量演算手段(50)の出力
を受け、合計目標容量(L1)に近い段階の容量に上記圧
縮機(1),(2)の合計容量を調整するよう上記イン
バータ(15)及びアンロード機構(2a)を制御する制御
手段(51)とを備えさせる。また、上記目標容量演算手
段(50)によって演算された合計目標容量(L1)の増大
時において、第1の圧縮機(1)の容量が最大値近傍未
満であるときには第1の圧縮機(1)の容量のみを順次
増大させて両圧縮機(1),(2)の合計容量を合計目
標容量(L1)に調整し、第2の圧縮機(2)の容量が最
大値未満の状態で第1の圧縮機(1)の容量が最大値近
傍まで上昇した後さらに合計目標容量(L1)が増大した
ときには、第2の圧縮機(2)の容量を1ステップだけ
増大させ、且つ第1の圧縮機(1)の容量を第2の圧縮
機(2)の1ステップ分の容量から第1の圧縮機(1)
の1ステップ分の容量を減じた分の容量だけ減少させて
両圧縮機(1),(2)の合計容量を合計目標容量(L
1)に調整する一方、合計目標容量(L1)の減少時にお
いて、第1の圧縮機(1)の容量が最小値近傍を越えて
いるときには第1の圧縮機(1)の容量のみを順次減少
させて両圧縮機(1),(2)の合計容量を合計目標容
量(L1)に調整し、両圧縮機(1),(2)が駆動して
いる状態で第1の圧縮機(1)の容量が最小値近傍まで
低下した後さらに合計目標容量(L1)が減少したときに
は、第2の圧縮機(2)の容量を1ステップだけ減少さ
せ、且つ第1の圧縮機(1)の容量を第2の圧縮機
(2)の1ステップ分の容量から第1の圧縮機(1)の
1ステップ分の容量を減じた分の容量だけ増大させて両
圧縮機(1),(2)の合計容量を合計目標容量(L1)
に調整するような構成とした。(Means for Solving the Problem) In order to achieve the above-mentioned object, a concrete solving means of the present invention is, as shown in FIG. The first compressor (1) to be adjusted and the unload mechanism (2a) make it larger than the step width of the first compressor (1) and the capacity adjustment range of the first compressor (1). Second, the capacity is adjusted to multiple steps with a smaller step width
The compressor capacity control device for a refrigerating machine is premised on which the total capacity of both compressors (1) and (2) is controlled in multiple stages. Then, the target capacity calculating means (50) for calculating the total target capacity (L1) of the compressors (1) and (2) and the output of the target capacity calculating means (50) are received, and the total target capacity (L1) is received. And a control means (51) for controlling the inverter (15) and the unload mechanism (2a) so as to adjust the total capacity of the compressors (1), (2) to a capacity at a stage close to. Further, when the total target capacity (L1) calculated by the target capacity calculating means (50) is increased and the capacity of the first compressor (1) is less than the vicinity of the maximum value, the first compressor (1 ) Is sequentially increased to adjust the total capacity of both compressors (1) and (2) to the total target capacity (L1), and the capacity of the second compressor (2) is less than the maximum value. When the total target capacity (L1) further increases after the capacity of the first compressor (1) has increased to near the maximum value, the capacity of the second compressor (2) is increased by one step, and The capacity of the first compressor (1) is calculated from the capacity of the second compressor (2) for one step.
The total capacity of both compressors (1) and (2) is reduced by the capacity of one step of
While adjusting to 1), when the total target capacity (L1) decreases, if the capacity of the first compressor (1) exceeds the vicinity of the minimum value, only the capacity of the first compressor (1) is sequentially Decrease and adjust the total capacity of both compressors (1), (2) to the total target capacity (L1), and when both compressors (1), (2) are operating, the first compressor ( When the total target capacity (L1) further decreases after the capacity of 1) is reduced to near the minimum value, the capacity of the second compressor (2) is decreased by one step, and the first compressor (1) By increasing the capacity of the first compressor (1) by subtracting the capacity of one step of the second compressor (2) from the capacity of one step of the second compressor (2). Total capacity of 2) total target capacity (L1)
The configuration is adjusted to.
(作用) 以上の構成により、本発明では、冷凍運転時、圧縮機
(1),(2)の合計目標容量(L1)が目標容量演算手
段(50)で演算されると、第1の圧縮機(1)が制御手
段(51)によりインバータ(15)で容量制御されると共
に、第2の圧縮機(2)が制御手段(51)によりアンロ
ード機構(2a)で容量制御されるので、上記合計目標容
量(L1)が細かく多段階に設定される場合にも、両圧縮
機(1),(2)の合計容量がほぼ上記目標容量(L1)
に一致調整されて、冷凍性能の向上が図られる。(Operation) According to the present invention, according to the present invention, when the total target capacity (L1) of the compressors (1) and (2) is calculated by the target capacity calculating means (50) during the refrigerating operation, the first compression is performed. Since the capacity of the machine (1) is controlled by the inverter (15) by the control means (51) and the capacity of the second compressor (2) is controlled by the unload mechanism (2a) by the control means (51), Even when the above total target capacity (L1) is finely set in multiple stages, the total capacity of both compressors (1) and (2) is approximately the above target capacity (L1).
The refrigeration performance is improved by adjusting the temperature in accordance with.
その場合、アンロード機構(2a)側の第2の圧縮機
(2)の容量は、インバータ(15)側の第1の圧縮機
(1)の容量が最大値近傍の例えば100%にならない限
り増大変化しないので、例えば合計目標容量(L1)が50
%と60%との間で変動する場合には、第1の圧縮機
(1)の容量のみが50%と60%との間で変化して、第2
の圧縮機(2)の容量は0%(停止状態)を保持してい
る。そして、例えば合計目標容量(L1)が100%から110
%に増大した場合つまり第1の圧縮機(1)の容量が10
0%になった後は、第2の圧縮機(2)の容量が例えば
アンロード機構(2a)で50%に調整されると共に、第1
の圧縮機(1)の容量がインバータ(15)で60%に調整
されて、その合計容量が110%の合計目標容量(L1)に
一致する。In that case, the capacity of the second compressor (2) on the side of the unloading mechanism (2a) does not become, for example, 100% near the maximum value of the capacity of the first compressor (1) on the side of the inverter (15). Since there is no increase or change, for example, the total target capacity (L1) is 50
% Fluctuates between 60% and 60%, only the capacity of the first compressor (1) changes between 50% and 60% and the second
The capacity of the compressor (2) is 0% (stopped state). Then, for example, the total target capacity (L1) is 100% to 110
%, That is, the capacity of the first compressor (1) is 10
After reaching 0%, the capacity of the second compressor (2) is adjusted to 50% by the unload mechanism (2a), and
The capacity of the compressor (1) is adjusted to 60% by the inverter (15), and its total capacity matches the total target capacity (L1) of 110%.
そして、合計目標容量(L1)が100%以下に低下して
も、第2の圧縮機(2)の容量は50%に保持されて、第
1の圧縮機(1)の容量の減少制御により合計容量が目
標容量(L1)に減少調整される。その後、第1の圧縮機
(1)の容量が最小値近傍の例えば30%にまで低下した
時点、つまり合計目標容量(L1)が80%の時点からさら
に70%に低下すると、第2の圧縮機(2)の容量が0%
(停止状態)に調整されると共に、第1の圧縮機(1)
の容量がインバータ(15)で70%に調整されて、合計目
標容量(L1)に一致することになる。以上、第2の圧縮
機(2)の容量が0%と50%との間で変化する場合を説
明したが、50%と100%との間で変化する場合にも上記
と同様である。Then, even if the total target capacity (L1) drops below 100%, the capacity of the second compressor (2) is maintained at 50%, and by the decrease control of the capacity of the first compressor (1). The total capacity is adjusted down to the target capacity (L1). After that, when the capacity of the first compressor (1) drops to around 30% near the minimum value, that is, when the total target capacity (L1) drops from 80% to 70%, the second compression The capacity of the machine (2) is 0%
The first compressor (1) is adjusted to (stop state)
The capacity of will be adjusted to 70% by the inverter (15) and will match the total target capacity (L1). The case where the capacity of the second compressor (2) changes between 0% and 50% has been described above, but the same applies to the case where the capacity of the second compressor (2) changes between 50% and 100%.
(実施例) 以下、本発明の実施例を第2図以下の図面に基いて説
明する。(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.
第2図は本発明をマルチ型式の空気調和機に適用した
実施例を示し、(A)は室外ユニット、(B)〜(F)
は同一内部構成の5台の室内ユニットであって、上記室
外ユニット(A)の内部には、互いに並列に接続された
第1圧縮機(1)及び第2圧縮機(2)と、四路切換弁
(3)と、室外送風ファン(4a)を有する室外熱交換器
(4)と、膨張弁(5)とが備えられ、該各機器(1)
〜(5)は各々冷媒配管(6)…で冷媒の流通可能に接
続されている。また、上記各室内ユニット(B)〜
(F)は、各々、室内送風ファン(10a)を有する室内
熱交換器(10)と、膨張弁(11)とを備え、該膨張弁
(11)は、その弁開度が電気的に増減調整できる空調能
力調整用の室内電動膨張弁で構成されていて、該各機器
(10),(11)は冷媒配管(12)…で冷媒の流通可能に
接続されている。FIG. 2 shows an embodiment in which the present invention is applied to a multi-type air conditioner, (A) is an outdoor unit, and (B) to (F).
Are five indoor units having the same internal configuration, and inside the outdoor unit (A), a first compressor (1) and a second compressor (2) connected in parallel to each other, and a four-way A switching valve (3), an outdoor heat exchanger (4) having an outdoor blower fan (4a), and an expansion valve (5) are provided, and the respective devices (1)
To (5) are connected by refrigerant pipes (6) ... so that the refrigerant can flow therethrough. In addition, each indoor unit (B) to
Each of (F) includes an indoor heat exchanger (10) having an indoor blower fan (10a) and an expansion valve (11), and the expansion valve (11) has its valve opening degree increased or decreased electrically. Each of the devices (10) and (11) is connected through a refrigerant pipe (12) so that the refrigerant can flow therethrough.
そして、上記5台の室内ユニット(B)〜(F)は、
各々冷媒配管(13)…で互いに並列に接続されて上記室
外ユニット(A)に冷媒の循環可能に接続されて冷媒循
環系統(14)が形成されていて、冷房運転時には、四路
切換弁(3)を図中破線の如く切換えて冷媒を図中破線
矢印の如く循環させることにより、各室内熱交換器(1
0)…で室内から吸熱した熱量を室外熱交換器(4)で
外気に放熱することを繰返して各室内を冷房する一方、
暖房運転時には、四路切換弁(3)を図中実線の如く切
換えて冷媒を図中実線矢印の如く循環させることによ
り、熱量の授受を上記とは逆にして、室内を暖房するよ
うにしている。The five indoor units (B) to (F) are
Refrigerant circulation systems (14) are formed by being connected in parallel to each other by refrigerant pipes (13) and being circulated to the outdoor unit (A) so that a refrigerant circulation system (14) is formed. 3) is switched as indicated by the broken line in the figure and the refrigerant is circulated as indicated by the dashed arrow in the figure, so that each indoor heat exchanger (1
The heat quantity absorbed from the room in 0) is repeatedly radiated to the outside air in the outdoor heat exchanger (4) to cool each room, while
During the heating operation, the four-way switching valve (3) is switched as shown by the solid line in the figure to circulate the refrigerant as shown by the solid line arrow in the figure, so that the exchange of heat is reversed and the room is heated. There is.
また、上記第1圧縮機(1)にはインバータ(15)が
接続されていて、該インバータ(15)の30%から10%刻
みの周波数設定信号の出力により、圧縮機(1)の運転
周波数を8ステップに高低調整して、その容量を複数ス
テップ(停止時を含んで9ステップ)に増減調整するよ
うになされている。Further, an inverter (15) is connected to the first compressor (1), and the operating frequency of the compressor (1) is output by outputting a frequency setting signal in steps of 30% to 10% of the inverter (15). Is adjusted to 8 steps, and the capacity is increased / decreased to a plurality of steps (9 steps including stop).
また、第2圧縮機(2)は、第3図に詳示すように、
密閉ケーシング(2b)に吸入口(2c)と吐出口(2d)と
が形成され、該密閉ケーシング(2b)内には、モータ
(2e)により駆動軸(2f)を介して駆動されるピストン
(2g)が配置され、該ピストン(2g)により圧送される
ガス(吐出ガス)を吐出ガス通路(2h)から該吐出ガス
通路(2b)に開口する吐出ガス管(2i)を介して、上記
吐出口(2d)に導くようになっている。そして、上記吐
出ガス通路(2h)の途中には、アンロード機構(2a)が
配置され、該アンロード機構(2a)は、吐出ガス通路
(2h)の隔壁(2i)に設けた開口(2k)を開閉する弁体
(21)と、該弁体(21)を開弁方向に付勢するスプリン
グ(2m)と、弁体(21)の後方に圧力室(2n)とを有す
る。そして、上記弁体(21)は、圧力室(2n)に連通す
るパイロット圧導入通路(16)に設けたパイロット電磁
弁(17)の閉時に高圧(吐出ガス圧)が作用することに
より、上記開口(2k)を弁体(21)で閉じて、吐出ガス
の全量を吐出口(2d)に導き、第2圧縮機(2)の容量
をフルロード(100%)にする一方、パイロット電磁弁
(17)の開時には低圧が作用することにより、スプリン
グ(2m)の付勢力で弁体(21)を図中右方向に付勢して
開口(2k)を開き、吐出ガスの一部を該開口(2k)を介
して密閉ケーシング(2b)内下部にバイパスして、第2
圧縮機(2)の容量を50%にアンロードするものであ
る。つまり、この第2圧縮機(2)は、上記第1圧縮機
(1)のステップ幅よりも大きく且つ該第1圧縮機
(1)の容量調整範囲よりも小さいステップ幅をもって
複数ステップに容量調整されるものである。Further, the second compressor (2), as shown in detail in FIG.
A suction port (2c) and a discharge port (2d) are formed in the closed casing (2b), and in the closed casing (2b), a piston (driven by a motor (2e) via a drive shaft (2f) ( 2g) is disposed and discharges gas (discharge gas) pumped by the piston (2g) from the discharge gas passage (2h) to the discharge gas passage (2b) through the discharge gas pipe (2i). It leads to the exit (2d). An unload mechanism (2a) is arranged in the middle of the discharge gas passage (2h), and the unload mechanism (2a) is provided with an opening (2k) provided in a partition (2i) of the discharge gas passage (2h). ) Is opened and closed, a spring (2m) for urging the valve body (21) in the valve opening direction, and a pressure chamber (2n) behind the valve body (21). The valve body (21) is acted upon by high pressure (discharging gas pressure) when the pilot solenoid valve (17) provided in the pilot pressure introducing passage (16) communicating with the pressure chamber (2n) is closed. The opening (2k) is closed by the valve body (21) and the entire amount of discharge gas is guided to the discharge port (2d) to make the capacity of the second compressor (2) full load (100%), while the pilot solenoid valve When the low pressure is applied when (17) is opened, the valve (21) is urged to the right in the figure by the urging force of the spring (2m) to open the opening (2k), and a part of the discharge gas is discharged. Bypass to the lower part inside the closed casing (2b) through the opening (2k)
It unloads the capacity of the compressor (2) to 50%. That is, the second compressor (2) adjusts the capacity in a plurality of steps with a step width larger than the step width of the first compressor (1) and smaller than the capacity adjustment range of the first compressor (1). It is what is done.
また、第2図において、(20)は四路切換弁(3)前
後の冷媒配管(6),(6)(吐出管と吸入管)を接続
する均圧ホットガスバイパス回路であって、該バイパス
回路(20)には、冷房運転状態での低負荷時及び室外熱
交換器(4)の除霜運転時等に開作動するホットガス電
磁弁(21)が介設されている。Further, in FIG. 2, (20) is a pressure equalizing hot gas bypass circuit that connects the refrigerant pipes (6), (6) (the discharge pipe and the suction pipe) before and after the four-way switching valve (3), The bypass circuit (20) is provided with a hot gas solenoid valve (21) which is opened during a low load in a cooling operation state, a defrosting operation of the outdoor heat exchanger (4), and the like.
さらに、(22)は暖房運転時に吐出管となる冷媒配管
(6)に接続された暖房過負荷時バイパス回路であっ
て、該バイパス回路(22)には、補助コンデンサ(23)
及び、冷媒の高圧時に開く高圧制御弁(24)が介設され
ており、暖房過負荷時に圧縮機(1),(2)からの冷
媒を該バイパス回路(22)を介して各室内熱交換器(1
0)…をバイパスして、各室内熱交換器(10)…下流側
の冷媒配管(6)にバイパスするようにしている。Further, (22) is a heating overload bypass circuit connected to the refrigerant pipe (6) serving as a discharge pipe during the heating operation, and the bypass circuit (22) includes an auxiliary capacitor (23).
Further, a high pressure control valve (24) which is opened when the pressure of the refrigerant is high is interposed, and the refrigerant from the compressors (1) and (2) is exchanged with the heat of each room through the bypass circuit (22) at the time of heating overload. Bowl (1
0) are bypassed, and each indoor heat exchanger (10) is bypassed to the refrigerant pipe (6) on the downstream side.
加えて、(25)は上記暖房過負荷時バイパス回路(2
2)の補助コンデンサ(23)下流側を、四路切換弁
(3)下流側の冷媒配管(6)(吸入管)に接続するリ
キッドインジェクションバイパス回路であって、該リキ
ッドインジェクションバイパス回路(25)には圧縮機
(1),(2)の作動に連動して開閉するインジェクシ
ョン用電磁弁(26)と、膨張弁(27)とが介設されてい
る。In addition, (25) is the bypass circuit (2
A liquid injection bypass circuit for connecting the downstream side of the auxiliary condenser (23) of 2) to the refrigerant pipe (6) (intake pipe) on the downstream side of the four-way switching valve (3), the liquid injection bypass circuit (25). An electromagnetic valve (26) for injection, which opens and closes in conjunction with the operation of the compressors (1) and (2), and an expansion valve (27) are interposed in the engine.
また、(30)はレシーバ、(31)はアキュムレータ、
(32)は過冷却コイル、(33)は油分離器であって、該
油分離器(33)で分離された潤滑油は油通路(34)を介
して両圧縮機(1),(2)に戻される。Also, (30) is the receiver, (31) is the accumulator,
(32) is a supercooling coil, (33) is an oil separator, and the lubricating oil separated by the oil separator (33) passes through an oil passage (34) to both compressors (1), (2 ).
さらに、各室内ユニット(B)〜(F)において、
(TH1)は対応する室内の空気の温度(吸込空気温度)
を検出する室温センサ、(TH2)及び(TH3)は各々冷房
運転時に蒸発器として作用する室内熱交換器(10)…前
後の冷媒温度を検出する温度センサである。また、室外
ユニット(A)において、(TH4)は第1及び第2圧縮
機(1),(2)の冷媒吐出温度を検出する温度セン
サ、(TH5)は暖房運転時に室外熱交換器(4)での冷
媒の蒸発温度を検出する蒸発温度センサ、(TH6)は第
1及び第2圧縮機(1),(2)への吸入ガス温度を検
出する吸入ガス温度センサである。また、(P1)は暖房
運転時には吐出ガス圧力を、冷房運転時には吸入ガス圧
力を各々検出する圧力センサ、(HPS)は圧縮機保護用
の高圧圧力開閉器である。Furthermore, in each indoor unit (B)-(F),
(TH1) is the temperature of the corresponding indoor air (suction air temperature)
Room temperature sensors (TH2) and (TH3) for detecting the temperature of the indoor heat exchanger (10), which function as an evaporator during the cooling operation, are temperature sensors for detecting the temperature of the refrigerant. In the outdoor unit (A), (TH4) is a temperature sensor that detects the refrigerant discharge temperature of the first and second compressors (1) and (2), and (TH5) is the outdoor heat exchanger (4) during heating operation. ) Is an evaporation temperature sensor for detecting the evaporation temperature of the refrigerant, and (TH6) is an intake gas temperature sensor for detecting the intake gas temperature to the first and second compressors (1), (2). Further, (P1) is a pressure sensor that detects the discharge gas pressure during heating operation, and the suction gas pressure during cooling operation, and (HPS) is a high-pressure pressure switch for protecting the compressor.
次に、上記第1及び第2圧縮機(1),(2)の容量
制御を冷房運転時を例に挙げて第4図の制御フローに基
いて説明する。尚、この容量制御は、室外ユニット
(A)内に備える室外制御部(図示せず)により行われ
る。Next, the capacity control of the first and second compressors (1) and (2) will be described based on the control flow of FIG. 4 by taking the cooling operation as an example. Note that this capacity control is performed by an outdoor control unit (not shown) provided in the outdoor unit (A).
第4図において、スタートして、ステップS1で圧力セ
ンサ(P1)により検出した吸入空気量ガス圧力を相当飽
和温度に換算して得られる冷媒温度T2、つまり蒸発温度
(暖房運転時には冷媒の凝縮温度)を検出した後、圧縮
機(1),(2)の合計容量のフィードバック制御とし
てP1制御(比例−積分制御)を行うこととし、ステップ
S2で圧縮機(1),(2)の目標合計容量L1を、上記蒸
発温度T2とその目標値T2oとの偏差の,今回と前回の値
e(t),e(t−Δt)に基いて、蒸発温度T2がその目
標値T2oになるよう下記式 L1=Lo+Kc{e(t)−e(t−Δt) +(Δt/2Ti)(e(t)+e(t−Δt)} Lo ;現在の合計容量 Kc ;ゲイン(定数) Ti ;積分定数 Δt;サンプリング時間 で演算する。In FIG. 4, after starting, the refrigerant temperature T2 obtained by converting the intake air amount gas pressure detected by the pressure sensor (P1) in step S1 into the equivalent saturation temperature, that is, the evaporation temperature (condensing temperature of the refrigerant during heating operation) ) Is detected, P1 control (proportional-integral control) is performed as feedback control of the total capacity of the compressors (1) and (2).
At S2, the target total capacity L1 of the compressors (1) and (2) is based on the current and previous values e (t), e (t-Δt) of the deviation between the evaporation temperature T2 and its target value T2o. Then, the following equation L1 = Lo + Kc {e (t) -e (t- [Delta] t) + ([Delta] t / 2Ti) (e (t) + e (t- [Delta] t)} Lo; so that the evaporation temperature T2 becomes the target value T2o. The current total capacity Kc; gain (constant) Ti; integration constant Δt; sampling time.
しかる後、ステップS3で第1表の合計容量マップに基
いて上記合計目標容量L1に対応した圧縮機(1),
(2)の合計容量を把持して、この合計容量に対応する
第2表の各圧縮機(1),(2)の実際の容量マップに
基いて第1の圧縮機(1)の容量をインバータ(15)で
制御すると共に、第2の圧縮機(2)の容量をアンロー
ド機構(2a)で調整する。そして、ステップS4でサンプ
リング時間Δtの経過を待って上記ステップS1に戻っ
て、以上の動作を繰返す。Then, in step S3, the compressor (1) corresponding to the above total target capacity L1 based on the total capacity map in Table 1,
Grasping the total capacity of (2), based on the actual capacity map of each compressor (1), (2) in Table 2 corresponding to this total capacity, determine the capacity of the first compressor (1). The capacity of the second compressor (2) is adjusted by the unload mechanism (2a) while being controlled by the inverter (15). Then, in step S4, after the elapse of the sampling time Δt, the process returns to step S1 and the above operation is repeated.
ここに、上記第1表の合計容量マップは、圧縮機
(1),(2)の制御すべき合計容量が零値の場合と、
30%値から漸次10%づづ増大して200%値に至る多段階
(19段階)に区分されていると共に、合計目標容量L1の
範囲が容量の増大時と減少時とで区別されている。 Here, the total capacity map in Table 1 above shows that the total capacity of the compressors (1) and (2) to be controlled is zero.
It is divided into multiple stages (19 stages) from the 30% value to the 200% value by gradually increasing by 10%, and the range of the total target capacity L1 is distinguished when the capacity is increasing and when it is decreasing.
また、上記第2表の各圧縮機(1),(2)の容量マ
ップは、合計容量が30%から100%までの範囲におい
て、第1の圧縮機(1)の容量が10%刻みで増大すると
共に、第2の圧縮機(2)の容量が0%(停止)を保持
する第1マップと、合計容量が80%から150%までの範
囲において、第1の圧縮機(1)の容量が上記と同様に
10%刻みで増大し、第2の圧縮機(2)の容量が50%を
保持する第2のマップと、合計容量が130%から200%ま
での範囲において、第1の圧縮機(1)の容量が10%刻
みで増大し、第2の圧縮機(2)の容量が100%を保持
する第3マップとからなる。そして、上記第1マップで
合計容量が増減し、第1の圧縮機(1)の容量が最大値
(100%)の状態で、合計容量が110%に増大すると、第
2マップに移行して、第2の圧縮機(2)の容量がアン
ロード機構(2a)で0%から50%に増大調整されると共
に、第1の圧縮機(1)の容量がインバータ(15)で10
0%から60%に減少調整され、その後は、合計容量の増
減変化に応じてこの第2マップの各容量値を取り、第1
の圧縮機(1)の容量値が最小値の30%の状態で合計容
量が80%から70%に減少する場合には、上記第1マップ
に移行して、第2の圧縮機(2)の容量が0%に調整さ
れると共に、第1の圧縮機(1)の容量がインバータ
(15)で70%に調整される。In addition, the capacity maps of the compressors (1) and (2) in Table 2 above show that when the total capacity is in the range of 30% to 100%, the capacity of the first compressor (1) is in steps of 10%. In the first map where the capacity of the second compressor (2) increases and the capacity of the second compressor (0) keeps 0% (stop), and the total capacity of the first compressor (1) is 80% to 150%. Capacity is the same as above
In the second map where the capacity of the second compressor (2) keeps 50% and increases in 10% increments, and the total capacity ranges from 130% to 200%, the first compressor (1) The capacity of the second compressor (2) increases by 10%, and the capacity of the second compressor (2) holds 100%. Then, when the total capacity increases or decreases in the first map and the total capacity increases to 110% in the state where the capacity of the first compressor (1) is the maximum value (100%), the process moves to the second map. , The capacity of the second compressor (2) is adjusted to be increased from 0% to 50% by the unload mechanism (2a), and the capacity of the first compressor (1) is adjusted by the inverter (15) to 10%.
It is adjusted to decrease from 0% to 60%, and then each capacity value of this second map is taken according to the increase and decrease of the total capacity,
When the total capacity decreases from 80% to 70% when the capacity value of the compressor (1) is 30% of the minimum value, the second compressor (2) is moved to the first map. Is adjusted to 0% and the capacity of the first compressor (1) is adjusted to 70% by the inverter (15).
同様に、第2マップで合計容量が増減し、第1の圧縮
機(1)の容量が最大値(100%)の状態で、合計容量
が150%から160%に増大すると、第3マップに移行し
て、第2の圧縮機(2)の容量がアンロード機構(2a)
で50%から100%に増大調整されると共に、第1の圧縮
機(1)の容量がインバータ(15)で100%から60%に
減少調整される。その後は、合計容量の増減変化に応じ
てこの第3マップの各容量値を取り、第1の圧縮機
(1)の容量値が最小値の30%の状態で合計容量が130
%から120%に減少する場合には、上記第2マップに移
行して、第2の圧縮機(2)の容量が100%から50%に
減少調整されると共に、第1の圧縮機(1)の容量がイ
ンバータ(15)で70%に調整される。Similarly, if the total capacity increases or decreases on the second map and the total capacity increases from 150% to 160% with the capacity of the first compressor (1) at the maximum value (100%), the third map will appear. After the transition, the capacity of the second compressor (2) becomes the unload mechanism (2a).
The capacity of the first compressor (1) is adjusted to be reduced from 100% to 60% by the inverter (15) while being adjusted to be increased from 50% to 100%. After that, each capacity value of this third map is taken according to the increase or decrease in the total capacity, and the total capacity is 130% when the capacity value of the first compressor (1) is 30% of the minimum value.
When the first compressor (1) is reduced from 120% to 120%, the second map is moved to adjust the capacity of the second compressor (2) from 100% to 50%. ) Capacity is adjusted to 70% by the inverter (15).
よって、上記第4図の制御フローのステップS2によ
り、蒸発温度T2が設定値(目標値T2o)になるよう、圧
縮機(1),(2)の合計目標容量L1を演算するように
した目標容量演算手段(50)を構成している。また、ス
テップS3により、上記目標容量演算手段(50)の出力を
受け、合計目標容量L1に近い段階の合計容量に圧縮機
(1),(2)を容量制御するようにした制御手段(5
1)を構成している。そして、上記制御手段(51)は、
上記第2表の各圧縮機(1),(2)の容量マップを備
えて、圧縮機(1),(2)の合計容量の増大時に、上
記第1の圧縮機(1)の容量が最大値の100%になった
後に第2の圧縮機(2)の容量を一段増大させ、逆に、
合計容量の減少時に、第1の圧縮機(1)の容量が最小
値の30%になった後に第2の圧縮機(2)の容量を一段
減少させるよう上記インバータ(15)とアンロード機構
(2a)とを相互に関連付けて制御するようにしている。Therefore, in step S2 of the control flow of FIG. 4, the target for calculating the total target capacity L1 of the compressors (1) and (2) so that the evaporation temperature T2 becomes the set value (target value T2o) It constitutes a capacity calculation means (50). Further, in step S3, the control means (5) which receives the output of the target capacity calculation means (50) and controls the capacity of the compressors (1) and (2) to a total capacity at a stage close to the total target capacity L1.
1) is composed. Then, the control means (51) is
The capacity maps of the compressors (1) and (2) shown in Table 2 are provided so that the capacity of the first compressor (1) can be increased when the total capacity of the compressors (1) and (2) increases. After reaching 100% of the maximum value, the capacity of the second compressor (2) is further increased, and conversely,
When the total capacity is decreased, the capacity of the first compressor (1) becomes 30% of the minimum value, and then the capacity of the second compressor (2) is further reduced by one step. (2a) is controlled by associating it with each other.
したがって、上記実施例においては、各室内ユニット
(B)〜(F)の冷房運転時、蒸発温度T2に基いて圧縮
機(1),(2)の合計目標容量L1が目標容量演算手段
(50)で演算される。そして、この目標合計容量L1に対
応する容量段になるよう、第1の圧縮機(1)の容量が
制御手段(51)によりインバータ(15)で容量制御され
ると共に、第2の圧縮機(2)の容量が制御手段(51)
によりアンロード機構(2a)で制御されて、この圧縮機
(1),(2)の合計容量が上記合計目標容量L1に精度
良く調整される。その結果、冷媒の蒸発温度T2がその目
標値T2oに良好に収束して、各室内が良好に冷房空調さ
れることになる。Therefore, in the above embodiment, during the cooling operation of each indoor unit (B) to (F), the total target capacity L1 of the compressors (1) and (2) is determined by the target capacity calculation means (50) based on the evaporation temperature T2. ) Is calculated. Then, the capacity of the first compressor (1) is controlled by the control means (51) by the inverter (15) so that the capacity stage corresponds to the target total capacity L1. The capacity of 2) is the control means (51)
Is controlled by the unload mechanism (2a), and the total capacity of the compressors (1) and (2) is accurately adjusted to the total target capacity L1. As a result, the evaporation temperature T2 of the refrigerant converges favorably to the target value T2o, and each room is cooled and air-conditioned well.
その場合、第2の圧縮機(2)の容量がアンロード機
構(2a)で0%と50%と100%との間で増減調整された
後は、第1の圧縮機(1)の容量が合計目標容量L1の変
化に伴いインバータ(15)で40〜90%の中間値に増減調
整されても、その値をそのまま保持し、最大値の100%
にならない限りステップは増大せず、また逆に最小値の
30%にならない限りステップは減少されないので、アン
ロード機構(2a)で調整される第2の圧縮機(2)の容
量を可及的長時間そのままの値に保持できて、その容量
の変化回数を有効に低減することができ、第2の圧縮機
(2)の耐久性,信頼性の向上を図ることができる。In that case, after the capacity of the second compressor (2) is adjusted to increase or decrease between 0%, 50% and 100% by the unloading mechanism (2a), the capacity of the first compressor (1). Even if the inverter (15) is adjusted to increase or decrease to an intermediate value of 40 to 90% due to the change of the total target capacity L1, the value is maintained as it is and 100% of the maximum value.
The steps do not increase unless
As the step is not reduced unless it reaches 30%, the capacity of the second compressor (2) adjusted by the unloading mechanism (2a) can be kept at the same value for as long as possible, and the number of times the capacity changes. Can be effectively reduced, and the durability and reliability of the second compressor (2) can be improved.
尚、上記実施例では、第1の圧縮機(1)の容量をイ
ンバータ(15)で8ステップに制御し、第2の圧縮機
(2)の容量をアンロード機構(2a)で2ステップに制
御して、その合計容量を19段階に制御したが、容量の制
御段数は多段階であればよい。また、第1の圧縮機
(1)の最大値(100%)の状態で第2の圧縮機(2)
の容量を1ステップ増大し、第1の圧縮機(1)の最小
値(30%)の状態で1ステップ減少制御したが、第1の
圧縮機(1)の最大値近傍で1ステップ増大し、最小値
近傍で1ステップ減少制御してもよいのは勿論である。In the above embodiment, the capacity of the first compressor (1) is controlled by the inverter (15) in 8 steps, and the capacity of the second compressor (2) is controlled by 2 steps by the unload mechanism (2a). The total capacity is controlled in 19 steps, but the number of capacity control steps may be multiple steps. In addition, in the state of the maximum value (100%) of the first compressor (1), the second compressor (2)
Capacity was increased by one step, and it was controlled to decrease by one step at the minimum value (30%) of the first compressor (1), but increased by one step near the maximum value of the first compressor (1). Of course, the control may be reduced by one step near the minimum value.
さらに、上記実施例では、冷房運転時を例に挙げて説
明したが、暖房運転時でも同様に適用できるのは勿論の
こと、マルチ型式の空気調和機に限らず、その他、1台
の室外ユニットに対して1台の室内ユニットが対応する
通常の空気調和機や、室内及び室外ユニットを一体化し
たもの等の他の冷凍装置に対しても同様に適用できるの
は言うまでもない。Furthermore, in the above-described embodiment, the cooling operation is described as an example, but it is needless to say that the same can be applied to the heating operation, and the invention is not limited to the multi-type air conditioner, and other one outdoor unit. However, it goes without saying that the present invention can be similarly applied to a normal air conditioner to which one indoor unit corresponds, and other refrigerating apparatuses such as those in which indoor and outdoor units are integrated.
(発明の効果) 以上説明したように、本発明によれば、第1及び第2
の圧縮機を各々インバータ及びアンロード機構で容量制
御する場合で、アンロード側の第2の圧縮機で基本容量
値を設定し、インバータ側の第1の圧縮機によって合計
容量を目標容量値に調整するものに対し、第1の圧縮機
の容量が最大値近傍のとき、及び最小値近傍のときに限
り上記第2の圧縮機の容量を増減制御したので、該第2
の圧縮機の容量をそのままの値に可及的長時間のあいだ
保持することにより、このような構成において特に課題
となるアンロード機構側の第2の圧縮機の発停が繰返さ
れる状況を抑制して、第2の圧縮機の容量変化の回数を
有効に低減することができ、該第2の圧縮機の耐久性,
信頼性の向上を図ることができる。(Effects of the Invention) As described above, according to the present invention, the first and second
When the capacity of each compressor is controlled by the inverter and the unload mechanism, the basic capacity value is set by the second compressor on the unload side, and the total capacity is set to the target capacity value by the first compressor on the inverter side. In contrast to what is adjusted, the capacity of the second compressor is controlled to increase or decrease only when the capacity of the first compressor is near the maximum value and when it is near the minimum value.
By holding the capacity of the compressor at the same value as it is for as long as possible, it is possible to suppress the situation in which the second compressor on the unload mechanism side is repeatedly started and stopped, which is a particular problem in such a configuration. The number of changes in the capacity of the second compressor can be effectively reduced, and the durability of the second compressor can be reduced.
Reliability can be improved.
第1図は本発明の構成を示すブロック図である。第2図
ないし第4図は本発明の実施例を示し、第2図はマルチ
型式の空気調和機に適用した冷媒配管系統図、第3図は
第2の圧縮機の具体的な内部構成を示す図、第4図は圧
縮機の容量制御を示すフローチャート図である。 (1)…第1の圧縮機、(2)…第2の圧縮機、(2a)
…アンロード機構、(21)…弁体、(2n)…圧力室、
(14)…冷媒配管系統、(15)…インバータ、(17)…
パイロット電磁弁、(50)…目標容量演算手段、(51)
…制御手段。FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 4 show an embodiment of the present invention, FIG. 2 is a refrigerant piping system diagram applied to a multi-type air conditioner, and FIG. 3 is a specific internal configuration of the second compressor. FIG. 4 is a flow chart showing the capacity control of the compressor. (1) ... First compressor, (2) ... Second compressor, (2a)
… Unload mechanism, (21)… Valve element, (2n)… Pressure chamber,
(14) ... Refrigerant piping system, (15) ... Inverter, (17) ...
Pilot solenoid valve, (50) ... Target capacity calculation means, (51)
… Control means.
───────────────────────────────────────────────────── フロントページの続き 審査官 岩崎 晋 (56)参考文献 特開 昭61−195231(JP,A) 特開 昭60−29553(JP,A) 特開 昭60−122868(JP,A) 実開 昭60−92059(JP,U) 実開 昭61−18236(JP,U) ─────────────────────────────────────────────────── --Continued from the front page Examiner Shin Iwasaki (56) References JP 61-195231 (JP, A) JP 60-29553 (JP, A) JP 60-122868 (JP, A) Actual Kai 60-92059 (JP, U) Actual Kai 61-18236 (JP, U)
Claims (1)
囲内において複数ステップに容量調整される第1の圧縮
機(1)と、アンロード機構(2a)により上記第1の圧
縮機(1)のステップ幅よりも大きく且つ該第1の圧縮
機(1)の上記容量調整範囲よりも小さいステップ幅を
もって複数ステップに容量調整される第2の圧縮機
(2)とを備え、該両圧縮機(1),(2)の合計容量
を多段階に制御するようにした冷凍装置の圧縮機容量制
御装置であって、 上記圧縮機(1),(2)の合計目標容量(L1)を演算
する目標容量演算手段(50)と、 該目標容量演算手段(50)の出力を受け、合計目標容量
(L1)に近い段階の容量に上記圧縮機(1),(2)の
合計容量を調整するよう上記インバータ(15)及びアン
ロード機構(2a)を制御する制御手段(51)とを備え、 該制御手段(51)は、 上記目標容量演算手段(50)によって演算された合計目
標容量(L1)の増大時において、第1の圧縮機(1)の
容量が最大値近傍未満であるときには第1の圧縮機
(1)の容量のみを順次増大させて両圧縮機(1),
(2)の合計容量を合計目標容量(L1)に調整し、第2
の圧縮機(2)の容量が最大値未満の状態で第1の圧縮
機(1)の容量が最大値近傍まで上昇した後さらに合計
目標容量(L1)が増大したときには、第2の圧縮機
(2)の容量を1ステップだけ増大させ、且つ第1の圧
縮機(1)の容量を第2の圧縮機(2)の1ステップ分
の容量から第1の圧縮機(1)の1ステップ分の容量を
減じた分の容量だけ減少させて両圧縮機(1),(2)
の合計容量を合計目標容量(L1)に調整する一方、 合計目標容量(L1)の減少時において、第1の圧縮機
(1)の容量が最小値近傍を越えているときには第1の
圧縮機(1)の容量のみを順次減少させて両圧縮機
(1),(2)の合計容量を合計目標容量(L1)に調整
し、両圧縮機(1),(2)が駆動している状態で第1
の圧縮機(1)の容量が最小値近傍まで低下した後さら
に合計目標容量(L1)が減少したときには、第2の圧縮
機(2)の容量を1ステップだけ減少させ、且つ第1の
圧縮機(1)の容量を第2の圧縮機(2)の1ステップ
分の容量から第1の圧縮機(1)の1ステップ分の容量
を減じた分の容量だけ増大させて両圧縮機(1),
(2)の合計容量を合計目標容量(L1)に調整するよう
になっていることを特徴とする冷凍装置の圧縮機容量制
御装置。1. A first compressor (1) whose capacity is adjusted in a plurality of steps within a predetermined capacity adjustment range by an inverter (15), and said first compressor (1) by an unload mechanism (2a). A second compressor (2) whose capacity is adjusted in a plurality of steps with a step width larger than the step width of the first compressor (1) and smaller than the capacity adjustment range of the first compressor (1). A compressor capacity control device for a refrigerating apparatus, wherein the total capacity of (1) and (2) is controlled in multiple stages, wherein a total target capacity (L1) of the compressors (1) and (2) is calculated. The target capacity calculating means (50) for adjusting the total capacity of the compressors (1) and (2) is adjusted to a capacity close to the total target capacity (L1) by receiving the output of the target capacity calculating means (50). To control the above inverter (15) and unload mechanism (2a). Means (51) for controlling the capacity of the first compressor (1) when the total target capacity (L1) calculated by the target capacity calculating means (50) increases. When it is less than the maximum value, both the compressors (1) are
Adjust the total capacity of (2) to the total target capacity (L1)
When the total target capacity (L1) further increases after the capacity of the first compressor (1) rises to near the maximum value while the capacity of the compressor (2) is less than the maximum value, the second compressor The capacity of (2) is increased by one step, and the capacity of the first compressor (1) is increased from the capacity of one step of the second compressor (2) to one step of the first compressor (1). Both compressors (1), (2)
While adjusting the total capacity of the first target compressor (L1) to the total target capacity (L1), and when the capacity of the first compressor (1) exceeds near the minimum value, the first compressor Only the capacity of (1) is gradually decreased to adjust the total capacity of both compressors (1) and (2) to the total target capacity (L1), and both compressors (1) and (2) are driven. First in the state
When the total target capacity (L1) further decreases after the capacity of the compressor (1) has been reduced to near the minimum value, the capacity of the second compressor (2) is decreased by one step, and the first compression The capacity of the compressor (1) is increased by the capacity of one step of the second compressor (2) minus the capacity of one step of the first compressor (1) to increase the capacity of both compressors ( 1),
A compressor capacity control device for a refrigeration system, wherein the total capacity of (2) is adjusted to a total target capacity (L1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62004548A JP2508043B2 (en) | 1987-01-12 | 1987-01-12 | Compressor capacity control device for refrigeration equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62004548A JP2508043B2 (en) | 1987-01-12 | 1987-01-12 | Compressor capacity control device for refrigeration equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63172863A JPS63172863A (en) | 1988-07-16 |
JP2508043B2 true JP2508043B2 (en) | 1996-06-19 |
Family
ID=11587103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62004548A Expired - Lifetime JP2508043B2 (en) | 1987-01-12 | 1987-01-12 | Compressor capacity control device for refrigeration equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2508043B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003021401A (en) * | 2001-07-09 | 2003-01-24 | Hitachi Chem Co Ltd | Wall-through combustion equipment |
JP4436152B2 (en) * | 2004-02-16 | 2010-03-24 | サンデン株式会社 | Air conditioner |
JP2020070995A (en) * | 2018-11-01 | 2020-05-07 | ダイキン工業株式会社 | Refrigeration device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6092059U (en) * | 1983-11-29 | 1985-06-24 | 東芝空調株式会社 | Refrigeration cycle equipment |
JPS61195231A (en) * | 1985-02-25 | 1986-08-29 | Mitsubishi Electric Corp | Refrigerator |
-
1987
- 1987-01-12 JP JP62004548A patent/JP2508043B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63172863A (en) | 1988-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3303443B2 (en) | Air conditioner | |
JPH06337174A (en) | Operation controller for air-conditioner | |
JP2508043B2 (en) | Compressor capacity control device for refrigeration equipment | |
JPH0814435B2 (en) | Refrigerator protection device | |
KR102177952B1 (en) | Air conditioner | |
JP3303689B2 (en) | Binary refrigeration equipment | |
JP3021987B2 (en) | Refrigeration equipment | |
JPH0694954B2 (en) | Refrigerator superheat control device | |
JPH06100395B2 (en) | Refrigeration system operation controller | |
JPH0814434B2 (en) | Compressor capacity control device for refrigeration equipment | |
JPH0814432B2 (en) | Refrigerator overload control device | |
JP3481274B2 (en) | Separate type air conditioner | |
JP3237206B2 (en) | Air conditioner | |
JPH07122521B2 (en) | Capacity control device for compressor of refrigeration equipment | |
JP3059886B2 (en) | Refrigeration equipment | |
JP3291886B2 (en) | Air conditioner and control method thereof | |
JPH061133B2 (en) | Electric expansion valve controller for air conditioner | |
JPH0733931B2 (en) | Electric expansion valve controller for air conditioner | |
JPH06272971A (en) | Air conditioner | |
JPS63180051A (en) | Humid operation protective device for air conditioner | |
JPH0730967B2 (en) | Cooling / heating automatic switching device for air conditioner | |
JPS63172864A (en) | Compressore capacity controller for refrigerator | |
JPS63176968A (en) | Low-temperature protective device for air conditioner | |
JPH06100396B2 (en) | Refrigerator protection device | |
JPH10253182A (en) | Binary refrigerating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |