JPH0814434B2 - Compressor capacity control device for refrigeration equipment - Google Patents

Compressor capacity control device for refrigeration equipment

Info

Publication number
JPH0814434B2
JPH0814434B2 JP62135566A JP13556687A JPH0814434B2 JP H0814434 B2 JPH0814434 B2 JP H0814434B2 JP 62135566 A JP62135566 A JP 62135566A JP 13556687 A JP13556687 A JP 13556687A JP H0814434 B2 JPH0814434 B2 JP H0814434B2
Authority
JP
Japan
Prior art keywords
compressor
capacity
inverter
control
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62135566A
Other languages
Japanese (ja)
Other versions
JPS63297786A (en
Inventor
隆 松崎
修 田中
紀雄 鍵村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP62135566A priority Critical patent/JPH0814434B2/en
Publication of JPS63297786A publication Critical patent/JPS63297786A/en
Publication of JPH0814434B2 publication Critical patent/JPH0814434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷凍装置の圧縮機容量制御装置の改良に関
し、特に、圧縮機をインバータで容量制御する場合の過
電流トリップ防止対策に関する。
Description: TECHNICAL FIELD The present invention relates to an improvement in a compressor capacity control device for a refrigeration system, and more particularly to an overcurrent trip prevention measure when the capacity of a compressor is controlled by an inverter.

(従来の技術) 従来、冷凍装置の圧縮機容量制御装置として、例えば
特開昭59−56649号公報等に開示されるように、空気調
和機において、インバータにより容量調整される圧縮機
を備え、該圧縮機の容量を室内の空調負荷の変化等に応
じてインバータで増減制御して、空調能力を空調負荷に
良好に対応させて、室内の快適空調を行うものが知られ
ている。
(Prior Art) Conventionally, as a compressor capacity control device for a refrigeration system, as disclosed in, for example, Japanese Patent Laid-Open No. 59-56649, an air conditioner includes a compressor whose capacity is adjusted by an inverter. It is known that the capacity of the compressor is controlled to increase or decrease by an inverter according to a change in the air conditioning load in the room, and the air conditioning capacity is appropriately matched to the air conditioning load to provide comfortable air conditioning in the room.

(発明が解決しようとする課題) ところで、圧縮機の容量を増減制御する場合、その容
量の変化段数を多段階に設定すれば、冷凍能力を冷凍負
荷により良好に対応できて、冷凍性能の向上を図ること
ができ、好ましい。
(Problems to be solved by the invention) By the way, when controlling the capacity of the compressor to increase or decrease, if the number of stages of change in the capacity is set in multiple stages, the refrigerating capacity can be better responded to the refrigerating load and the refrigerating performance is improved. Can be achieved, which is preferable.

そこで、例えば2台の圧縮機を設け、一方の圧縮機を
インバータで容量制御すると共に、他方の圧縮機をアン
ロード機構で容量制御して、両圧縮機の合計容量をほぼ
目標容量値に制御することにより、比較的低価格でもっ
て圧縮機の合計容量を多段階に調整して、冷凍性能の向
上を図ることが考えられる。
Therefore, for example, two compressors are provided, the capacity of one compressor is controlled by an inverter, and the capacity of the other compressor is controlled by an unload mechanism to control the total capacity of both compressors to a target capacity value. By doing so, it is possible to adjust the total capacity of the compressor in multiple stages at a relatively low price to improve the refrigeration performance.

而して、上記の如く圧縮機の合計容量を多段階に調整
する場合、アンロード機構側の圧縮機の起動時には、第
7図に示す如く運転周波数が商用周波数に唐突に上昇す
る関係上、この時に値の大きい始動電流が流れる特性が
ある。一方、インバータ側の圧縮機の起動時では、その
運転周波数を第8図に示す如く逐次上昇させれば、いわ
ゆるソフトスタートにより電流は徐々に増大して、上記
の如き唐突な始動電流は流れない。従って、両圧縮機の
起動時には、第9図に示す如く、インバータ側圧縮機を
先に起動し、後にアンロード機構側圧縮機を起動して
も、始動電流の増大はアンロード機構側のみの増大に留
まって顕著でなく、問題は生じない。
Therefore, when the total capacity of the compressor is adjusted in multiple stages as described above, when the compressor on the unload mechanism side is started, the operating frequency suddenly rises to the commercial frequency as shown in FIG. At this time, there is a characteristic that a large starting current flows. On the other hand, at the time of starting the compressor on the inverter side, if the operating frequency is successively increased as shown in FIG. 8, the current gradually increases due to so-called soft start, and the sudden starting current as described above does not flow. . Therefore, when both compressors are started, as shown in FIG. 9, even if the inverter-side compressor is started first and the unload mechanism-side compressor is started later, the start-up current increases only on the unload mechanism side. The increase is not significant and is not a problem.

しかるに、上記アンロード機構側の圧縮機の起動時に
は、第6図(イ)に示す如く値の大きな始動電流の流通
に伴い同図(ロ)に示す如くこの時に入力電圧の降下が
生じ、このためインバータの入力電圧が不足することに
起因してその出力電流値が増大する。その結果、同図
(ハ)に一点鎖線で示す如く、インバータの出力周波数
が高い(2次電流値の大きい)場合には、上記出力電流
の増大に起因して、この瞬時にトリップに相当する上限
規制値を越えてインバータのトリップを招く懸念が生じ
る。
However, at the time of starting the compressor on the unload mechanism side, the input voltage drops at this time as shown in FIG. 6B due to the flow of the starting current having a large value as shown in FIG. 6A. Therefore, the output current value increases due to the lack of the input voltage of the inverter. As a result, when the output frequency of the inverter is high (the secondary current value is large), as indicated by the alternate long and short dash line in FIG. 5C, this instant corresponds to a trip due to the increase in the output current. There is a risk of exceeding the upper limit regulation value and causing the inverter to trip.

本発明は斯かる点に鑑みてなされたものであり、その
目的は、上記の如く2台の圧縮機を各々インバータとア
ンロード機構とで容量制御する場合、インバータ側圧縮
機の運転中にアンロード機構側の圧縮機が起動する時に
は、アンロード機構側の圧縮機の起動時での入力電圧の
低下は仕方がないとして、予めインバータの2次電流値
を低く制限することにより、アンロード機構側圧縮機の
起動時にもインバータの瞬時トリップを確実に防止し、
よつて信頼性の向上を図ると共に、インバータ側圧縮機
の運転を続行して運転範囲を拡大することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to perform unloading during operation of the inverter-side compressor when the capacity of the two compressors is controlled by the inverter and the unload mechanism as described above. When the compressor on the load mechanism side starts up, it is unavoidable to lower the input voltage at startup of the compressor on the unload mechanism side, and by limiting the secondary current value of the inverter to a low value beforehand, Even when the side compressor is started, the inverter's instantaneous trip is reliably prevented,
Therefore, in addition to improving reliability, the operation of the compressor on the inverter side is continued to expand the operation range.

(課題を解決するための手段) 上記目的を達成するため、本発明の具体的に解決手段
は、第1図に示すように、インバータ(15)により容量
調整される第1の圧縮機(1)と、アンロード機構(2
a)により容量調整される第2の圧縮機(2)と、該両
圧縮機(1),(2)の合計容量を多段階に制御するよ
う上記インバータ(15)及びアンロード機構(2a)を制
御する容量制御手段(51)とを備えた冷凍装置の圧縮機
容量制御装置を対象とする。そして、上記容量制御手段
(51)の作動制御により第1の圧縮機(1)の運転中に
第2の圧縮機(2)が起動する時、該容量制御手段(5
1)に優先し、上記第1の圧縮機(1)を低容量にして
第2の圧縮機(2)の起動直後におけるインバータ(1
5)の2次電流が所定値以下になるように該インバータ
(15)を制御し、その後、第2の圧縮機(2)を起動し
た後、両圧縮機(1),(2)の合計容量が所定値にな
るようにインバータ(15)を制御して上記容量制御手段
(51)の制御に移行させる起動時制御手段(52)を設け
る構成としたものである。
(Means for Solving the Problem) In order to achieve the above object, a concrete solving means of the present invention is, as shown in FIG. 1, a first compressor (1) whose capacity is adjusted by an inverter (15). ) And the unload mechanism (2
The second compressor (2) whose capacity is adjusted by a), and the inverter (15) and the unload mechanism (2a) so as to control the total capacity of the two compressors (1) and (2) in multiple stages. A compressor capacity control device for a refrigeration system, which includes a capacity control means (51) for controlling the. When the second compressor (2) is started during the operation of the first compressor (1) by the operation control of the capacity control means (51), the capacity control means (5)
1), prioritizing the above-mentioned first compressor (1) to a low capacity, and immediately after starting the second compressor (2), the inverter (1
The inverter (15) is controlled so that the secondary current of 5) becomes a predetermined value or less, and then the second compressor (2) is started, and then the total of both compressors (1) and (2). A starting control means (52) for controlling the inverter (15) so that the capacity becomes a predetermined value and shifting to the control of the capacity control means (51) is provided.

(作用) 以上の構成により、本発明では、冷凍運転時、第1の
圧縮機(1)が容量制御手段(51)によりインバータ
(15)で容量制御されると共に、第2の圧縮機(2)が
容量制御手段(51)によりアンロード機構(2a)で容量
制御されるので、両圧縮機(1),(2)の合計容量
が、負荷に対応する合計目標容量にほぼ一致調整され
る。
(Operation) According to the present invention, according to the present invention, the capacity of the first compressor (1) is controlled by the capacity control means (51) by the inverter (15) and the second compressor (2) is operated during the refrigerating operation. ) Is capacity-controlled by the unloading mechanism (2a) by the capacity control means (51), so that the total capacity of both compressors (1), (2) is adjusted to substantially match the total target capacity corresponding to the load. .

その場合、インパータ(15)側の第1の圧縮機(1)
の運転中において、アンロード機構(2a)側の第2の圧
縮機(2)が起動する場合には、起動時制御手段(52)
が上記容量制御手段(51)に優先して、該第2の圧縮機
(2)の起動に先だって、インバータ(15)側の第1の
圧縮機(1)の容量が低容量、例えば、一旦最低容量に
なるよう運転制御されて、インバータ(15)の2次電流
値が元々小値になる。その後、この状態でアンロード機
構(2a)側の圧縮機(2)が起動すると、入力電圧が低
下してインバータ(15)の2次電流値も増大するが、ト
リップに対応する上限規制値には至らず、インバータ
(15)側の圧縮機(1)の運転が依然として続行され
る。よって、インバータ(15)の信頼性の向上を図るこ
とができると共に、運転範囲の拡大が図れる。
In that case, the first compressor (1) on the side of the impactor (15)
When the second compressor (2) on the side of the unloading mechanism (2a) is started during the operation of, the starting control means (52)
Prior to starting the second compressor (2), the capacity of the first compressor (1) on the inverter (15) side is low, for example, once the capacity control means (51) is activated. The operation is controlled to the minimum capacity, and the secondary current value of the inverter (15) originally becomes a small value. After that, when the compressor (2) on the unload mechanism (2a) side starts in this state, the input voltage drops and the secondary current value of the inverter (15) also increases, but the upper limit regulation value corresponding to the trip is reached. The operation of the compressor (1) on the inverter (15) side is still continued. Therefore, the reliability of the inverter (15) can be improved and the operating range can be expanded.

(実施例) 以下、本発明の実施例を第2図以下の図面に基いて説
明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.

第2図は本発明をマルチ型式の空気調和機に適用した
実施例を示し、(A)は室外ユニット、(B)〜(F)
は同一内部構成の5台の室内ユイットである。上記室外
ユニット(A)の内部には、互いに並列に接続された第
1の圧縮機(1)及び第2の圧縮機(2)と、四路切換
弁(3)と、室外送風ファン(4a)を有する室外熱交換
器(4)と、膨張弁(5)とが備えられ、該各機器
(1)〜(5)は各々冷媒配管(6)…で冷媒の流通可
能に接続されている。また、上記各室内ユニット(B)
〜(F)は、各々、室内送風ファン(10a)を有する室
内熱交換器(10)と、膨張弁(11)と備え、該膨張弁
(11)は、その弁開度が電気的に増減調整できる空調能
力調整用の室内電動膨張弁で構成されていて、該各機器
(10),(11)は冷媒配管(12)…で冷媒の流通可能に
接続されている。
FIG. 2 shows an embodiment in which the present invention is applied to a multi-type air conditioner, (A) is an outdoor unit, and (B) to (F).
Are five indoor units with the same internal configuration. Inside the outdoor unit (A), a first compressor (1) and a second compressor (2) connected in parallel with each other, a four-way switching valve (3), and an outdoor blower fan (4a). ) And an expansion valve (5), and each of the devices (1) to (5) is connected to a refrigerant pipe (6) so that the refrigerant can flow therethrough. . In addition, each indoor unit (B)
To (F) each include an indoor heat exchanger (10) having an indoor blower fan (10a) and an expansion valve (11), and the expansion valve (11) is electrically increased or decreased in its valve opening degree. Each of the devices (10) and (11) is connected through a refrigerant pipe (12) so that the refrigerant can flow therethrough.

そして、上記5台の室内ユニット(B)〜(F)は、
各々冷媒配管(13)…で互いに並列に接続されて上記室
外ユニット(A)に冷媒の循環可能に接続されて冷媒循
環系統(14)が形成されていて、冷房運転時には、四路
切換弁(3)を図中破線の如く切換えて冷媒を図中破線
矢印の如く循環させることにより、各室内熱交換器(1
0)…で室内から吸熱した熱量を室外熱交換器(4)で
外気に放熱することを繰返して各室内を冷房する一方、
暖房運転時には、四路切換弁(3)を図中実線の如く切
換えて冷媒を図中実線矢印の如く循環させることによ
り、熱量の授受を上記とは逆にして、室内を暖房するよ
うにしている。
The five indoor units (B) to (F) are
Refrigerant circulation systems (14) are formed by being connected in parallel to each other by refrigerant pipes (13) and being circulated to the outdoor unit (A) so that a refrigerant circulation system (14) is formed. 3) is switched as indicated by the broken line in the figure and the refrigerant is circulated as indicated by the dashed arrow in the figure, so that each indoor heat exchanger (1
The heat quantity absorbed from the room in 0) is repeatedly radiated to the outside air in the outdoor heat exchanger (4) to cool each room, while
During the heating operation, the four-way switching valve (3) is switched as shown by the solid line in the figure to circulate the refrigerant as shown by the solid line arrow in the figure, so that the exchange of heat is reversed and the room is heated. There is.

また、上記第1の圧縮機(1)にはインバータ(15)
が接続されていて、該インバータ(15)の30%から100
%までの10%刻みの周波数設定信号の出力により、圧縮
機(1)の運転周波数を8段階に高低調整して、その容
量を複数段階(停止時を含んで9段階)に増減調整する
ようになされている。
In addition, the first compressor (1) has an inverter (15).
Is connected, and 30% to 100% of the inverter (15)
The operating frequency of the compressor (1) is adjusted in 8 steps by the output of the frequency setting signal in 10% steps up to%, and its capacity is increased or decreased in multiple steps (9 steps including stop). Has been done.

また、第2の圧縮機(2)は、第3図に詳示すよう
に、密閉ケーシング(2b)に吸入口(2c)と吐出口(2
d)とが形成され、該密閉ケーシング(2b)内には、モ
ータ(2e)により駆動軸(2f)を介して駆動されるピス
トン(2g)が配置され、該ピストン(2g)により圧送さ
れるガス(吐出ガス)を吐出ガス通路(2h)から該吐出
ガス通路(2b)に開口する吐出ガス管(2i)を介して、
上記吐出口(2d)に導くようになっている。そして、上
記吐出ガス通路(2h)の途中には、アンロード機構(2
a)が配置され、該アンロード機構(2a)は、吐出ガス
通路(2h)の隔壁(2j)に設けた開口(2k)を開閉する
弁体(21)と、該弁体(21)を開弁方向に付勢するスプ
リング(2m)と、弁体(21)の後方に圧力室(2n)とを
有する。そして、上記弁体(21)は、圧力室(2n)に連
通するパイロット圧導入通路(16)に設けたパイロット
電磁弁(17)の閉時に高圧(吐出ガス圧)が作用するこ
とにより、上記開口(2k)を弁体(21)で閉じて、吐出
ガスの全量を吐出口(2d)に導き、第2圧縮機(2)の
容量をフルロード(100%)にする一方、パイロット電
磁弁(17)の開時には低圧が作用することにより、スプ
リング(2m)の付勢力で弁体(21)を図中右方向に付勢
して開口(2k)を開き、吐出ガスの一部を該開口(2k)
を介して密閉ケーシング(2b)内下部にバイパスして、
第2圧縮機(2)の容量を50%にアンロードするもので
ある。
The second compressor (2) has a suction port (2c) and a discharge port (2) in a closed casing (2b), as shown in detail in FIG.
d) is formed, and a piston (2g) driven by a motor (2e) via a drive shaft (2f) is arranged in the closed casing (2b), and is pumped by the piston (2g). Gas (discharge gas) is discharged from the discharge gas passage (2h) to the discharge gas passage (2b) through a discharge gas pipe (2i),
It is designed to lead to the discharge port (2d). And, in the middle of the discharge gas passage (2h), the unloading mechanism (2
a) is arranged, and the unload mechanism (2a) includes a valve body (21) for opening and closing an opening (2k) provided in the partition wall (2j) of the discharge gas passage (2h), and the valve body (21). A spring (2m) that urges in the valve opening direction and a pressure chamber (2n) are provided behind the valve body (21). The valve body (21) is acted upon by high pressure (discharging gas pressure) when the pilot solenoid valve (17) provided in the pilot pressure introducing passage (16) communicating with the pressure chamber (2n) is closed. The opening (2k) is closed by the valve body (21) and the entire amount of discharge gas is guided to the discharge port (2d) to make the capacity of the second compressor (2) full load (100%), while the pilot solenoid valve When the low pressure is applied when (17) is opened, the valve (21) is urged to the right in the figure by the urging force of the spring (2m) to open the opening (2k), and a part of the discharge gas is discharged. Opening (2k)
Bypass to the lower part inside the closed casing (2b) via
It unloads the capacity of the second compressor (2) to 50%.

また、第2図において、(20)は四路切換弁(3)前
後の冷媒配管(6),(6)(吐出管と吸入管)を接続
する均圧ホットガスバイパス回路であって、該バイパス
回路(20)には、冷房運転状態での低負荷時及び室外熱
交換器(4)の除霜運転時等に開作動するホットガス電
磁弁(21)が介設されている。
Further, in FIG. 2, (20) is a pressure equalizing hot gas bypass circuit that connects the refrigerant pipes (6), (6) (the discharge pipe and the suction pipe) before and after the four-way switching valve (3), The bypass circuit (20) is provided with a hot gas solenoid valve (21) which is opened during a low load in a cooling operation state, a defrosting operation of the outdoor heat exchanger (4), and the like.

さらに、(22)は暖房運転時に吐出管となる冷媒配管
(6)に接続された暖房過負荷時バイパス回路であっ
て、該バイパス回路(22)には、補助コンデンサ(23)
及び、冷媒の高圧時に開く高圧制御弁(24)が介設され
ており、暖房過負荷時に圧縮器(1),(2)からの冷
媒を該バイパス回路(22)を介して各室内熱交換器(1
0)…をバイパスして、各室内熱交換器(10)…下流側
の冷媒配管(6)にバイパスするようにしている。
Further, (22) is a heating overload bypass circuit connected to the refrigerant pipe (6) serving as a discharge pipe during the heating operation, and the bypass circuit (22) includes an auxiliary capacitor (23).
Further, a high pressure control valve (24) which is opened when the pressure of the refrigerant is high is provided so that the refrigerant from the compressors (1) and (2) is exchanged with the indoor heat through the bypass circuit (22) when the heating is overloaded. Bowl (1
0) are bypassed, and each indoor heat exchanger (10) is bypassed to the refrigerant pipe (6) on the downstream side.

加えて、(25)は上記暖房過負荷時バイパス回路(2
2)の補助コンデンサ(23)下流側を、四路切換弁
(3)下流側の冷媒配管(6)(吸入管)に接続するリ
キッドインジェクションバイパス回路であって、該リキ
ッドインジェクションバイパス回路(25)には圧縮機
(1),(2)の作動に連動して開閉するインジェクシ
ョン用電磁弁(26)と、膨張弁(27)とが介設されてい
る。
In addition, (25) is the bypass circuit (2
A liquid injection bypass circuit for connecting the downstream side of the auxiliary condenser (23) of 2) to the refrigerant pipe (6) (intake pipe) on the downstream side of the four-way switching valve (3), the liquid injection bypass circuit (25). An electromagnetic valve (26) for injection, which opens and closes in conjunction with the operation of the compressors (1) and (2), and an expansion valve (27) are interposed in the engine.

また、(30)はレシーバ、(31)はアキュムレータ、
(32)は過冷却コイル、(33)は油分離器であって、該
油分離器(33)で分離された潤滑油は油通路(34)を介
して両圧縮機(1),(2)に戻される。
Also, (30) is the receiver, (31) is the accumulator,
(32) is a supercooling coil, (33) is an oil separator, and the lubricating oil separated by the oil separator (33) passes through an oil passage (34) to both compressors (1), (2 ).

さらに、各室内ユニット(B)〜(F)において、
(TH1)は対応する室内の空気の温度(吸込空気温度)
を検出する室温センサ、(TH2)及び(TH3)は各々冷房
運転時に蒸発器として作用する室内熱交換器(10)…前
後の冷媒温度を検出する温度センサである。また室外ユ
ニット(A)において、(TH4)は第1及び第2圧縮機
(1),(2)の冷媒吐出温度を検出する温度センサ、
(TH5)は暖房運転時に室外熱交換器(4)での冷媒の
蒸発温度を検出する蒸発温度センサ、(TH6)は第1及
び第2圧縮機(1),(2)吸入ガス温度を検出する吸
入ガス温度センサである。また、(P1)は暖房運転時に
は吐出ガス圧力を、冷房運転時には吸入ガス圧力を各々
検出する圧力センサ、(HPS)は圧縮機保護用の高圧圧
力開閉器である。
Furthermore, in each indoor unit (B)-(F),
(TH1) is the temperature of the corresponding indoor air (suction air temperature)
Room temperature sensors (TH2) and (TH3) for detecting the temperature of the indoor heat exchanger (10), which function as an evaporator during the cooling operation, are temperature sensors for detecting the temperature of the refrigerant. In the outdoor unit (A), (TH4) is a temperature sensor that detects the refrigerant discharge temperature of the first and second compressors (1) and (2),
(TH5) is an evaporation temperature sensor that detects the evaporation temperature of the refrigerant in the outdoor heat exchanger (4) during heating operation, and (TH6) is the intake gas temperature of the first and second compressors (1) and (2). It is a suction gas temperature sensor. Further, (P1) is a pressure sensor that detects the discharge gas pressure during heating operation, and the suction gas pressure during cooling operation, and (HPS) is a high-pressure pressure switch for protecting the compressor.

次に、上記第1及び第2圧縮機(1),(2)の要領
制御を冷房運転時を例に挙げて第4図の制御フローに基
いて説明する。尚、この容量制御は、室外ユニット
(A)内に備える室外制御部(図示せず)により行われ
る。
Next, the control of the first and second compressors (1) and (2) will be described based on the control flow of FIG. 4 by taking the cooling operation as an example. Note that this capacity control is performed by an outdoor control unit (not shown) provided in the outdoor unit (A).

第4図において、スタートして、ステップS1で圧力セ
ンサ(P1)により検出した吸入空気量ガス圧力を相当飽
和温度に換算して得られる冷媒温度T2、つまり蒸発温度
(暖房運転時には冷媒の凝縮温度)を検出した後、圧縮
機(1),(2)の合計容量のフィードバック制御とし
てPI制御(比例−積分制御)を行うこととし、ステップ
S2で圧縮機(1),(2)の目標合計容量L1を、上記蒸
発温度T2とその目標値T2Oとの偏差の,今回と前回の値
e(t),e(t−Δt)に基いて、蒸発温度T2がその目
標値T2Oになるよう下記式 L1=LO+Kc[e(t)−e(t−Δt) +{Δt/2Ti}{e(t)+e(t−Δt)}] LO;現在の合計容量 Kc;ゲイン(定数) Ti:積分定数 Δt;サンプリング時間 で演算する。
In FIG. 4, after starting, the refrigerant temperature T 2 obtained by converting the intake air amount gas pressure detected by the pressure sensor (P 1 ) in step S 1 into the equivalent saturation temperature, that is, the evaporation temperature (the refrigerant during heating operation, After the condensation temperature of the compressor is detected, PI control (proportional-integral control) is performed as feedback control of the total capacity of the compressors (1) and (2).
S 2 in the compressor (1), a target total volume L 1 (2), the deviation of the evaporator temperature T 2 and the target value T. 2O, current and previous values e (t), e (t- Based on Δt), the following equation L 1 = L O + Kc [e (t) −e (t−Δt) + {Δt / 2Ti} {e (t) so that the evaporation temperature T 2 becomes the target value T 2O. + E (t−Δt)}] L O ; Current total capacity Kc; Gain (constant) Ti: Integration constant Δt; Sampling time.

しかる後、ステップS3で下記の第1表の合計容量マッ
プに基いて上記合計目標容量L1に対応した圧縮機
(1),(2)の合計容量を把握して、この合計容量に
対応する下記の第2表の各圧縮機(1),(2)の実際
の容量マップに基いて第1の圧縮機(1)の容量をイン
バータ(15)で制御する共に、第2の圧縮機(2)の容
量をアンロード機構(2a)で調整する。そして、ステッ
プS4でサンプリング時間Δtの経過を待って上記ステッ
プS1に戻って、以上の動作を繰返す。
Thereafter, in step S 3 based on the total volume map of the first table below the compressor corresponding to the total target volume L 1 (1), to grasp the total amount of (2), corresponding to the total volume The capacity of the first compressor (1) is controlled by the inverter (15) based on the actual capacity maps of the compressors (1) and (2) in Table 2 below, and the second compressor is also used. Adjust the capacity of (2) with the unload mechanism (2a). Then, in step S 4 , after waiting for the elapse of the sampling time Δt, the process returns to step S 1 and the above operation is repeated.

ここに、上記第1表の合計容量マップは、圧縮機
(1),(2)の制御すべき合計容量が零値の場合と、
30%値から漸次10%づつ増大して200%に至る多段階(1
9段階)に区分されていると共に、合計目標容量L1の範
囲が容量の増大時と減少時とで区別されている。
Here, the total capacity map in Table 1 above shows that the total capacity of the compressors (1) and (2) to be controlled is zero.
Multi-step (1% gradually increasing from 30% value to 200%)
In addition to being divided into 9 stages), the range of the total target capacity L 1 is distinguished when the capacity is increasing and when it is decreasing.

また、上記第2表の各圧縮機(1),(2)の容量マ
ップは、合計容量が30%から100%までの範囲におい
て、第1の圧縮機(1)の容量が10%刻みで増大すると
共に、第2の圧縮機(2)の容量が0%(停止)を保持
する第1マップと、合計容量が80%から150%までの範
囲において、第1の圧縮機(1)の容量が上記と同様に
10%刻みで増大し、第2の圧縮機(2)の容量が50%を
保持する第2のマップと、合計容量が130%から200%ま
での範囲において、第1の圧縮機(1)の容量が10%刻
みで増大し、第2の圧縮機(2)の容量が100%を保持
する第3マップとからなる。そして、上記第1マップで
合計容量が増減し、第1の圧縮機(1)の容量が最大値
(100%)の状態で、合計容量が110%に増大すると、第
2マップに移行して、第2の圧縮機(2)の容量がアン
ロード機構(2a)で0%から50%に増大調整されると共
に、第1の圧縮機(1)の容量がインバータ(15)で10
0%から60%に減少調整され、その後は、合計容量の増
減変化に応じてこの第2マップの各容量値を取り、第1
の圧縮機(1)の容量値が最小値の30%の状態で合計容
量が80%から70%に減少する場合には、上記第1マップ
に移行して、第2の圧縮機(2)の容量が0%に調整さ
れると共に、第1の圧縮機(1)の容量がインバータ
(15)で70%に調整される。
In addition, the capacity maps of the compressors (1) and (2) in Table 2 above show that when the total capacity is in the range of 30% to 100%, the capacity of the first compressor (1) is in steps of 10%. In the first map where the capacity of the second compressor (2) increases and the capacity of the second compressor (0) keeps 0% (stop), and the total capacity of the first compressor (1) is 80% to 150%. Capacity is the same as above
In the second map where the capacity of the second compressor (2) keeps 50% and increases in 10% increments, and the total capacity ranges from 130% to 200%, the first compressor (1) The capacity of the second compressor (2) increases by 10%, and the capacity of the second compressor (2) holds 100%. Then, when the total capacity increases or decreases in the first map and the total capacity increases to 110% in the state where the capacity of the first compressor (1) is the maximum value (100%), the process moves to the second map. , The capacity of the second compressor (2) is adjusted to be increased from 0% to 50% by the unload mechanism (2a), and the capacity of the first compressor (1) is adjusted by the inverter (15) to 10%.
It is adjusted to decrease from 0% to 60%, and then each capacity value of this second map is taken according to the increase and decrease of the total capacity,
When the total capacity decreases from 80% to 70% when the capacity value of the compressor (1) is 30% of the minimum value, the second compressor (2) is moved to the first map. Is adjusted to 0% and the capacity of the first compressor (1) is adjusted to 70% by the inverter (15).

同様に、第2マップで合計容量が増減し、第1の圧縮
機(1)の容量が最大値(100%)の状態で、合計容量
が150%から160%に増大すると、第3マップに移行し
て、第2の圧縮機(2)の容量がアンロード機構(2a)
で50%から100%に増大調整されると共に、第1の圧縮
機(1)の容量がインバータ(15)で100%から60%に
減少調整される。その後は、合計容量の増減変化に応じ
てこの第3マップの各容量値を取り、第1の圧縮機
(1)の容量値が最小値の30%の状態で合計容量が130
%から120%に減少する場合には、上記第2マップに移
行して、第2の圧縮機(2)の容量が100%から50%に
減少調整されると共に、第1の圧縮機(1)の容量がイ
ンバータ(15)で70%に調整される。
Similarly, if the total capacity increases or decreases on the second map and the total capacity increases from 150% to 160% with the capacity of the first compressor (1) at the maximum value (100%), the third map will appear. After the transition, the capacity of the second compressor (2) becomes the unload mechanism (2a).
The capacity of the first compressor (1) is adjusted to be reduced from 100% to 60% by the inverter (15) while being adjusted to be increased from 50% to 100%. After that, each capacity value of this third map is taken according to the increase or decrease in the total capacity, and the total capacity is 130% when the capacity value of the first compressor (1) is 30% of the minimum value.
When the first compressor (1) is reduced from 120% to 120%, the second map is moved to adjust the capacity of the second compressor (2) from 100% to 50%. ) Capacity is adjusted to 70% by the inverter (15).

よって、上記第4図の制御フローにより、両圧縮機
(1),(2)の合計容量を上記第2表の如く合計目標
容量L1に対応した合計容量に多段階(19段階)に調整す
るよう上記インバータ(15)及びアンロード機構(2a)
を制御するようにした容量制御手段(51)を構成してい
る。
Therefore, according to the control flow of FIG. 4, the total capacity of both compressors (1) and (2) is adjusted in multiple stages (19 stages) to the total volume corresponding to the total target volume L 1 as shown in Table 2 above. Inverter (15) and unload mechanism (2a)
The capacity control means (51) is configured to control the.

而して、上記第4図の制御フローでは、そのステップ
S3中で、アンロード機構(2a)側の圧縮機(2)の起動
時には、第5図の起動時フローでの制御が行われる。つ
まり、第5図の起動時制御フローでは、ステップSS1
合計目標容量L1の変化を把握し、合計目標容量L1が100
%から110%に増大したYESの場合に限り、アンロード機
構(2a)側の圧縮機(2)の起動時と判断して、ステッ
プSS2進む。
Therefore, in the control flow of FIG.
In S 3, at the time of starting the unloading mechanism (2a) of the compressor (2), the control at startup flow of FIG. 5 is carried out. That is, in the startup control flow of FIG. 5, to grasp the change of the total target capacity L 1 in step S S1, the total target capacity L 1 100
Only when YES from 110% to 110%, it is determined that the compressor (2) on the unloading mechanism (2a) side has been started, and the process proceeds to step S S2 .

そして、このアンロード機構(2a)側の圧縮機(2)
の起動時には、ステップSS2で先ずインバータ(15)側
の第1の圧縮機(1)の容量を最低段の30%(最低容
量)に低下させるようインバータ(15)を作動制御し、
その後にステップSS3でアンロード機構(2a)側の第2
の圧縮機(2)を起動すると共に、ステップSS4で上記
第3図のパイロット電磁弁(17)を開制御して、アンロ
ード機構(2a)を作動させることにより、この第2の圧
縮機(2)の容量を50%に制御する。しかる後、ステッ
プSS5で第1の圧縮機(1)を第2表通りに60%容量に
インバータ(15)で制御して、リターンする。
And, the compressor (2) on the side of the unload mechanism (2a)
At the time of starting up, first, in step S S2 , the inverter (15) is operated and controlled so that the capacity of the first compressor (1) on the inverter (15) side is reduced to 30% of the lowest stage (minimum capacity),
After that, in step S S3 , the second unloading mechanism (2a) side
This second compressor is started by starting the compressor (2) and controlling the opening of the pilot solenoid valve (17) of FIG. 3 in step S S4 to operate the unload mechanism (2a). Control the capacity of (2) to 50%. Then, in step S S5 , the first compressor (1) is controlled by the inverter (15) to have a capacity of 60% as shown in Table 2, and the process returns.

よって、上記第5図の起動時制御フローにより、合計
目標容量L1が100%から110%に増大した時、つまり上記
容量制御手段(51)の作動制御により第1の圧縮機
(1)の100%容量の運転中に第2の圧縮機(2)が起
動する時、上記容量制御手段(51)に優先して、予め第
1の圧縮機(1)を最低段の30%容量で運転するよう上
記インバータ(15)を制御し、その後、第2の圧縮機
(2)を起動した後、両圧縮機(1),(2)の合計容
量が所定値になるようにインバータ(15)を制御して上
記容量制御手段(51)の制御に移行させる起動時制御手
段(52)を構成している。
Therefore, when the total target capacity L 1 is increased from 100% to 110% according to the startup control flow of FIG. 5, that is, the operation control of the capacity control means (51) controls the first compressor (1). When the second compressor (2) is started during the operation of 100% capacity, the first compressor (1) is preliminarily operated at the lowest stage of 30% capacity in preference to the capacity control means (51). After controlling the inverter (15) so that the second compressor (2) is started, the inverter (15) is controlled so that the total capacity of both compressors (1) and (2) becomes a predetermined value. The start-up control means (52) is configured to control the capacity and shift to the control of the capacity control means (51).

したがって、上記実施例においては、各室内ユニット
(B)〜(F)の冷房運転時、蒸発温度T2に基いて圧縮
機(1),(2)の合計目標容量L1が演算されると、こ
の目標合計容量L1に対応する容量段になるよう、第1の
圧縮機(1)の容量が容量制御手段(51)によりインバ
ータ(15)で容量制御されると共に、第2の圧縮機
(2)の容量が容量制御手段(51)によりアンロード機
構(2a)で制御されて、該圧縮機(1),(2)の合計
容量が上記合計目標容量L1に精度良く調整される。その
結果、冷媒の蒸発温度T2がその目標値T2Oに良好に収束
して、各室内が良好に冷房空調されることになる。
Therefore, in the above embodiment, when the indoor units (B) to (F) are in the cooling operation, the total target capacity L 1 of the compressors (1) and (2) is calculated based on the evaporation temperature T 2. The capacity of the first compressor (1) is controlled by the capacity control means (51) by the inverter (15) so that the capacity stage corresponds to the target total capacity L 1 , and the second compressor is also controlled. The capacity of (2) is controlled by the capacity control means (51) by the unload mechanism (2a), and the total capacity of the compressors (1) and (2) is accurately adjusted to the total target capacity L 1. . As a result, the evaporation temperature T 2 of the refrigerant converges favorably to the target value T 2O , and each room is cooled and air-conditioned well.

その際、アンロード機構(2a)側の圧縮機(2)の起
動時、つまり合計目標容量L1が100%から110%に増大し
た時には、起動時制御手段(52)が上記容量制御手段
(51)に優先して、インバータ(15)側の第1の圧縮機
(1)の容量が最低段の30%容量値に低下制御されて、
インバータ(15)の2次電流値が第6図(ハ)に実線で
示す如く、100%相当値から30%相当値に大きく低下す
る。このことにより、その後にアンロード機構(2a)側
の第2の圧縮機(2)が起動し、その始動電流が同図
(イ)の如く急に増大して、入力電圧値が同図(ロ)に
示す如くこの瞬時に低下した場合にも、インバータ(1
5)の2次電流値はそに応じて増大するものの、トリッ
プ規制の上限電流値ITには至らない。よって、同図
(ハ)に一点鎖線で示す如く、100%容量値のまま第2
圧縮機(2)を起動する場合の如く、2次電流値が上記
上限電流値ITを越えてインバータ(15)のトリップを招
くことがなく、その信頼性の向上が図られると共に、第
1の圧縮機(1)の運転を続行させて、運転範囲を拡大
することができる。
At that time, when the compressor (2) on the side of the unload mechanism (2a) is started, that is, when the total target capacity L 1 is increased from 100% to 110%, the startup control means (52) is the capacity control means (52). In preference to 51), the capacity of the first compressor (1) on the side of the inverter (15) is controlled to be reduced to the lowest 30% capacity value,
The secondary current value of the inverter (15) greatly decreases from the value corresponding to 100% to the value corresponding to 30% as shown by the solid line in FIG. As a result, the second compressor (2) on the side of the unload mechanism (2a) is subsequently started, and its starting current suddenly increases as shown in FIG. Even if this instantaneous drop occurs as shown in (b), the inverter (1
Although secondary current value of 5) increases in accordance with its, does not lead to the upper limit current value I T trip regulations. Therefore, as indicated by the alternate long and short dash line in FIG.
As in the case of starting the compressor (2), the secondary current value without causing a trip of the inverter (15) beyond the upper limit current value I T, the improvement of reliability is achieved, first The operation range of the compressor (1) can be expanded by continuing the operation of the compressor (1).

尚、上記実施例では、アンロード機構(2a)側の第2
の圧縮機(2)の起動時に、インバータ(15)側の第1
の圧縮機(1)の容量を最低段の30%値に制御したが、
その他、40%や50%等の低容量側に設定してもよく、つ
まり、インバータ(15)の2次電流値が上限電流値IT
越えない低容量に設定するものであればよい。
Incidentally, in the above embodiment, the second unit on the unload mechanism (2a) side is
Of the inverter (15) side when the compressor (2) of the
The capacity of the compressor (1) was controlled to the lowest value of 30%.
Other may be set to a smaller volume side, such as 40% or 50%, that is, as long as the secondary current of the inverter (15) is set to a low volume that does not exceed the upper limit current value I T.

また、上記実施例では、第1の圧縮機(1)の容量を
インバータ(15)で8段階に制御し、第2の圧縮機
(2)の容量をアンロード機構(2a)で2段階に制御し
て、その合計容量を19段階に制御したが、容量の制御段
数は他段階であればよい。
In the above embodiment, the capacity of the first compressor (1) is controlled by the inverter (15) in eight steps, and the capacity of the second compressor (2) is controlled by the unload mechanism (2a) in two steps. The total capacity is controlled in 19 steps, but the number of capacity control steps may be other steps.

さらに、上記実施例では、冷房運転時を例に挙げて説
明したが、暖房運転時でも同様に適用できるのは勿論の
こと、マルチ形式の空気調和機に限らず、その他、1台
の室外ユニットに対して1台の室内ユニットが対応する
通常の空気調和機や、室内及び室外ユニットを一体化し
たもの等の他の冷凍装置に対しても同様に適用できるの
は言うまでもない。
Further, in the above-described embodiment, the description has been given by taking the cooling operation as an example, but it is needless to say that the same can be applied to the heating operation, and the invention is not limited to the multi-type air conditioner, and other one outdoor unit. However, it goes without saying that the present invention can be similarly applied to a normal air conditioner to which one indoor unit corresponds, and other refrigerating apparatuses such as those in which indoor and outdoor units are integrated.

(発明の効果) 以上説明したように、本発明によれば、第1及び第2
の圧縮機を各々インバータ及びアンロード機構で容量制
御する場合、インバータ側の圧縮機の運転中にアンロー
ド機構側の圧縮機が起動する時には、予め、インバータ
側の圧縮機の容量を低容量に制御した後、第2の圧縮機
を起動するようにしたので、アンロード機構側の圧縮機
の起動時に入力電圧が低下することに起因するインバー
タの2次電流の増大に対しても、その2次電流値を小さ
く抑制して、インバータの瞬時トリップを確実に防止す
ることができ、信頼性の向上と運転範囲の拡大勝とを図
ることができる。
(Effects of the Invention) As described above, according to the present invention, the first and second
When the capacity of each compressor is controlled by the inverter and the unload mechanism, the capacity of the compressor on the inverter side should be set to a low capacity in advance when the compressor on the unload mechanism side starts while the compressor on the inverter side is operating. Since the second compressor is started after the control, even if the secondary current of the inverter is increased due to the decrease of the input voltage when the compressor on the unload mechanism side is started, The secondary current value can be suppressed to a small value to prevent an instantaneous trip of the inverter, and reliability can be improved and the operating range can be expanded.

【図面の簡単な説明】 第1図は本発明の構成を示すブロック図である。第2図
ないし第6図は本発明の実施例を示し、第2図はマルチ
型式の空気調和機に適用した冷媒配管系統図、第3図は
第2の圧縮機の具体的な内部構成を示す図、第4図は圧
縮機の容量制御を示すフローチャート図、第5図はアン
ロード機構側の圧縮機の起動時の制御を示すフローチャ
ート図、第6図は作動説明図である。また、第7図及び
第8図は各々アンロード機構側の圧縮機及びインバータ
側圧縮機の運転周波数と始動電流波形とを示す図、第9
図は両圧縮機の順次起動時での合計電流波形を示す図で
ある。 (1)……第1の圧縮機、(2)……第2の圧縮機、
(2a)……アンロード機構、(21)……弁体、(2n)…
…圧力室、(14)……冷媒配管系統、(15)……インバ
ータ、(17)……パイロット電磁弁、(51)……容量制
御手段、(52)……起動時制御手段。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 6 show an embodiment of the present invention, FIG. 2 is a refrigerant piping system diagram applied to a multi-type air conditioner, and FIG. 3 is a specific internal configuration of the second compressor. FIG. 4, FIG. 4 is a flow chart showing the capacity control of the compressor, FIG. 5 is a flow chart showing the control at startup of the compressor on the unload mechanism side, and FIG. 6 is an operation explanatory view. 7 and 8 are diagrams showing the operating frequency and starting current waveform of the compressor on the unload mechanism side and the compressor on the inverter side, respectively.
The figure is a diagram showing a total current waveform when both compressors are sequentially started. (1) ... first compressor, (2) ... second compressor,
(2a) …… Unload mechanism, (21) …… Valve disc, (2n)…
… Pressure chamber, (14) …… Refrigerant piping system, (15) …… Inverter, (17) …… Pilot solenoid valve, (51) …… Capacity control means, (52) …… Startup control means.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】インバータ(15)により容量調整される第
1の圧縮機(1)と、 アンロード機構(2a)により定量調整される第2の圧縮
機(2)と、 該両圧縮機(1),(2)の合計容量を多段階に制御す
るよう上記インバータ(15)及びアンロード機構(2a)
を制御する容量制御手段(51)とを備えるとともに、 上記容量制御手段(51)の作動制御により第1の圧縮機
(1)の運転中に第2の圧縮機(2)が起動する時、該
容量制御手段(51)に優先し、上記第1の圧縮機(1)
を低容量にして第2の圧縮機(2)の起動直後における
インバータ(15)の2次電流が所定値以下になるように
該インバータ(15)を制御し、その後、第2の圧縮機
(2)を起動した後、両圧縮機(1),(2)の合計容
量が所定値になるようにインバータ(15)を制御して上
記容量制御手段(51)の制御に移行させる起動時制御手
段(52)を備えた ことを特徴とする冷凍装置の圧縮機容量制御装置。
1. A first compressor (1) whose capacity is adjusted by an inverter (15), a second compressor (2) which is quantitatively adjusted by an unloading mechanism (2a), and both compressors (1). The inverter (15) and the unload mechanism (2a) so as to control the total capacity of 1) and 2) in multiple stages.
When the second compressor (2) is started during the operation of the first compressor (1) by the operation control of the capacity control means (51), The first compressor (1) has priority over the capacity control means (51).
Is set to a low capacity to control the inverter (15) so that the secondary current of the inverter (15) immediately after the second compressor (2) is started becomes a predetermined value or less, and then the second compressor (2) After starting 2), the start-up control for controlling the inverter (15) so that the total capacity of both compressors (1), (2) becomes a predetermined value and shifting to the control of the capacity control means (51). A compressor capacity control device for a refrigeration system, comprising a means (52).
JP62135566A 1987-05-29 1987-05-29 Compressor capacity control device for refrigeration equipment Expired - Lifetime JPH0814434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62135566A JPH0814434B2 (en) 1987-05-29 1987-05-29 Compressor capacity control device for refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62135566A JPH0814434B2 (en) 1987-05-29 1987-05-29 Compressor capacity control device for refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS63297786A JPS63297786A (en) 1988-12-05
JPH0814434B2 true JPH0814434B2 (en) 1996-02-14

Family

ID=15154809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62135566A Expired - Lifetime JPH0814434B2 (en) 1987-05-29 1987-05-29 Compressor capacity control device for refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH0814434B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212872A (en) * 1988-02-19 1989-08-25 Matsushita Refrig Co Ltd Multichamber air conditioner
KR100394244B1 (en) * 2001-05-29 2003-08-09 주식회사 엘지이아이 Low load driving apparatus and method for linear compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044684B2 (en) * 1978-09-20 1985-10-04 バトラ−、マニユフアクチヤリング、カンパニ− Refrigeration compressor control device

Also Published As

Publication number Publication date
JPS63297786A (en) 1988-12-05

Similar Documents

Publication Publication Date Title
EP2075519B1 (en) Air Conditoning system
CA2086398C (en) Automatic chiller stopping sequence
JPH0814435B2 (en) Refrigerator protection device
JP2508043B2 (en) Compressor capacity control device for refrigeration equipment
JP2551238B2 (en) Operation control device for air conditioner
JPH0814434B2 (en) Compressor capacity control device for refrigeration equipment
JPH0217358A (en) Degree of overheat control device for freezing device
JPH06100395B2 (en) Refrigeration system operation controller
JPH0814432B2 (en) Refrigerator overload control device
JP3481274B2 (en) Separate type air conditioner
JP3059886B2 (en) Refrigeration equipment
JPH07122521B2 (en) Capacity control device for compressor of refrigeration equipment
JP2710698B2 (en) Multi-type air conditioner
JPH0814698A (en) Operation control device for air-conditioner
JPH0820140B2 (en) Oil recovery operation control device for air conditioner
JP2531264B2 (en) Operation control device for air conditioner
JP3214145B2 (en) Operation control device for refrigeration equipment
JPH061133B2 (en) Electric expansion valve controller for air conditioner
JPH0733931B2 (en) Electric expansion valve controller for air conditioner
JPS63180051A (en) Humid operation protective device for air conditioner
JPH0814433B2 (en) Compressor capacity control device for refrigeration equipment
JPS63172864A (en) Compressore capacity controller for refrigerator
JPH0730967B2 (en) Cooling / heating automatic switching device for air conditioner
JPH03195855A (en) Operation control device for air conditioner
JPS63176968A (en) Low-temperature protective device for air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 12