JPH0217370A - Operation control device for air conditioning device - Google Patents

Operation control device for air conditioning device

Info

Publication number
JPH0217370A
JPH0217370A JP16745388A JP16745388A JPH0217370A JP H0217370 A JPH0217370 A JP H0217370A JP 16745388 A JP16745388 A JP 16745388A JP 16745388 A JP16745388 A JP 16745388A JP H0217370 A JPH0217370 A JP H0217370A
Authority
JP
Japan
Prior art keywords
expansion valve
compressor
opening
control means
electric expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16745388A
Other languages
Japanese (ja)
Inventor
Kozo Kuroda
黒田 耕三
Yoshito Matsuda
善人 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP16745388A priority Critical patent/JPH0217370A/en
Publication of JPH0217370A publication Critical patent/JPH0217370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To effectively prevent the oil rise of a compressor by a method wherein before a defrosting operation is completed, a motor-operated expansion valve is previously brought into a fully opened state, and after it is held at a fully opened state for a given time starting from the completion, the opening of the valve is gradually closed to a value during ordinary operation. CONSTITUTION:When it is noticed in advance by a completion advance-notice means 33 that a defrosting operation is completed shortly, a completion operation control means 35 stops control of the opening of a motor-operated expansion valve 5 effected by means of an expansion valve control means 32, and an opening is previously set to its full opening before the defrosting operation is completed. When it is detected by a completion detecting means 34 that defrost operation is completed, an electromagnetic valve 12 is closed by a valve control means 31. Simultaneously with completion of defrost operation, the motor-operated expansion valve 5 is held at a full opening state for a given time by means of the completion control means 35, and is closed to a given opening responding to a current air conditioning load. A rapid increase in refrigerant resistance is transiently prevented from occurring to a refrigerant circuit 9, and a level in an accumulator 6 is prevented from rapid lowering. This constitution enables effective prevention of the oil rise of a compressor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、正サイクルデフロスト運転を行うようにした
空気調和装置の運転制御装置に係り、特にデフロスト運
転終了時における圧縮機の油上り防止対策に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an operation control device for an air conditioner that performs a positive cycle defrost operation, and in particular, a method for preventing oil from rising in a compressor at the end of a defrost operation. Regarding.

(従来の技術) 従来より、空気調和装置の運転制御装置として、例えば
特開昭57−169567号公報に開示される如く、圧
縮機、室外熱交換器、減圧機構及び室内熱交換器を順次
接続した冷媒回路を備えた空気調和装置において、圧縮
機の吐出管と室外熱交換器の液管側とを冷媒のバイパス
可能に接続するホットガスバイパス路を設け、さらにこ
のホットガスバイパス路に電磁開閉弁を介設して、暖房
運転中の着霜時には、上記電磁開閉弁を開いて吐出ガス
の一部を室外熱交換器にバイパスさせることにより、室
外熱交換器の除霜を行ういわゆる正サイクルデフロスト
運転を行うようにしたものは公知の技術として知られて
いる。
(Prior Art) Conventionally, as an operation control device for an air conditioner, a compressor, an outdoor heat exchanger, a pressure reduction mechanism, and an indoor heat exchanger are sequentially connected, as disclosed in Japanese Patent Application Laid-open No. 57-169567, for example. In an air conditioner equipped with a refrigerant circuit, a hot gas bypass path is provided that connects the discharge pipe of the compressor and the liquid pipe side of the outdoor heat exchanger so that the refrigerant can be bypassed. A so-called positive cycle defrosts the outdoor heat exchanger by interposing a valve and opening the electromagnetic on-off valve to bypass a portion of the discharged gas to the outdoor heat exchanger when frost forms during heating operation. A defrost operation is known as a well-known technique.

(発明が解決しようとする課題) ところで、上記正サイクルデフロスト運転の場合、一般
には次のような手順で行われている。すなわち、第5図
(イ)に示すように、デフロスト運転の開始とともに、
圧縮機の運転容量(インバータ付きの場合には運転周波
数)を上昇させ(時刻t1)、時刻t、2で最大容量に
設定すると、その後所定時間最大容量で運転し、室外熱
交換器の除霜が完了すると(時刻t4)、再び運転容量
を通常の容量に戻して(時刻ts)通常の暖房運転を行
う。そのとき、上記減圧機構は通常運転時は空調負荷に
基づく所定開度に、デフロスト運転時には一定の低開度
に設定されている。なお、例えば第5図(ロ)に示すよ
うに、圧縮機の運転容量が最大の状態でかつ減圧機構は
それに応じた開度で所定時間(時刻T3まで)暖房運転
を行った後、上記ホットガスバイパス路の電磁開閉弁を
開け(第5図(ハ)参照)、デフロスト運転を開始する
ようにしてもよい。
(Problems to be Solved by the Invention) Incidentally, in the case of the above-mentioned normal cycle defrost operation, the following procedure is generally performed. That is, as shown in Figure 5 (a), with the start of defrost operation,
The operating capacity of the compressor (operating frequency if equipped with an inverter) is increased (time t1) and set to the maximum capacity at times t and 2. After that, the compressor is operated at the maximum capacity for a predetermined period of time, and the outdoor heat exchanger is defrosted. When this is completed (time t4), the operating capacity is returned to the normal capacity (time ts) and normal heating operation is performed. At this time, the pressure reducing mechanism is set to a predetermined opening degree based on the air conditioning load during normal operation, and is set to a constant low opening degree during defrost operation. For example, as shown in FIG. 5(b), after performing heating operation for a predetermined time (until time T3) with the operating capacity of the compressor at its maximum and the pressure reducing mechanism at an opening degree corresponding to the operating capacity, the above-mentioned hot The defrost operation may be started by opening the electromagnetic on-off valve of the gas bypass path (see FIG. 5(c)).

そして、デフロスト運転の終了とともに、上記電磁開閉
弁を閉じ、圧縮機の運転容量及び減圧機構を通常の暖房
運転時の状態に戻して、以後暖房運転を再び行うように
なされている。
When the defrost operation ends, the electromagnetic on-off valve is closed, the operating capacity of the compressor and the pressure reducing mechanism are returned to the normal heating operation state, and the heating operation is resumed.

しかしながら、上記のような正サイクルデフロスト運転
を行う場合、デフロスト運転から通常の暖房運転に復帰
する際に、圧縮機において一瞬油上りが生ずるという間
通があった。
However, when performing the above-described normal cycle defrost operation, there has been a problem in which oil rises momentarily in the compressor when returning from the defrost operation to normal heating operation.

その原因を考察するに、圧縮機の高圧及び低圧は圧縮機
の運転容量及び各弁の開閉または開度変化に応じて第5
図(ニ)、(ホ)に示すような変化を生ずるが、特に、
デフロスト運転の終了時に、電磁開閉弁の閉動作により
それまでのデフロスト運転というほとんど減圧のない状
態から暖房運転という所定の減圧状態に変化するので、
冷媒回路中では急激な冷媒の抵抗増加が生じることにな
る。
Considering the cause, the high and low pressures of the compressor vary depending on the operating capacity of the compressor and the opening/closing or opening degree changes of each valve.
Changes as shown in Figures (d) and (e) occur, but in particular,
At the end of the defrost operation, the closing operation of the electromagnetic on-off valve changes from the defrost operation, which had almost no pressure reduction, to the heating operation, which is a predetermined pressure reduction state.
A sudden increase in resistance of the refrigerant occurs in the refrigerant circuit.

そして、その結果、過渡的に低圧が大きく低下して(第
5図(ホ)の時刻T5参照)、−瞬圧縮機に冷媒が戻る
ためにアキュムレータの液面が低下しく第5図(へ)の
時刻T5参照)、圧縮機の油面の低下つまりいわゆる油
上りを生じるものと推測される。
As a result, the low pressure transiently decreases significantly (see time T5 in Figure 5 (e)), and - the refrigerant returns to the instantaneous compressor, causing the liquid level in the accumulator to drop. (see time T5), it is presumed that the oil level in the compressor decreases, that is, so-called oil rise occurs.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、デフロスト運転から暖房運転への復帰時における
急激な冷媒回路中の圧力変化をなくすことにより、過渡
状態における圧縮機の油上りを防止することにある。
The present invention has been made in view of the above circumstances, and its purpose is to eliminate the sudden pressure change in the refrigerant circuit when returning from defrost operation to heating operation, thereby reducing oil rise in the compressor during transient conditions. The goal is to prevent

(課題を解決するための手段) 上記目的を達成するため請求項(1)の発明の解決手段
は、第1図(点線部分を除く)に示すように、圧縮機(
1)、室外熱交換器(3)、電動膨張弁(5)、室内熱
交換器(7)およびアキュムレータ(6)を冷媒の循環
可能に接続してなる冷媒回路(9)と、上記圧縮機(1
)の吐出管(8a)と液管(8b)とを冷媒のバイパス
可能に接続するバイパス路(11)と、該バイパスM(
11)に介設された電磁開閉弁(12)と、デフロスト
運転時にのみ上記電磁開閉弁(12)が開くように制御
する開閉弁制御手段(31)と、上記電動膨張弁(5)
の開度を通常運転時には空調負荷に基づいて所定開度に
、デフロスト運転時には一定の低開度に制御する膨張弁
制御手段(32)とを備えた空気調和装置を前提とする
(Means for Solving the Problem) In order to achieve the above object, the solving means of the invention of claim (1) provides a compressor (
1), a refrigerant circuit (9) formed by connecting an outdoor heat exchanger (3), an electric expansion valve (5), an indoor heat exchanger (7), and an accumulator (6) so that refrigerant can be circulated; and the compressor. (1
) and a bypass path (11) connecting the discharge pipe (8a) and liquid pipe (8b) of the refrigerant so that the refrigerant can be bypassed;
11), an on-off valve control means (31) that controls the electromagnetic on-off valve (12) to open only during defrost operation, and an electric expansion valve (5).
The present invention is based on an air conditioner equipped with an expansion valve control means (32) that controls the opening degree of the expansion valve to a predetermined opening degree based on the air conditioning load during normal operation and to a constant low opening degree during defrost operation.

そして、空気調和装置の運転制御装置として、デフロス
ト運転の終了を予告する終了予告手段(33)と、デフ
ロスト運転の終了を検知する終了検知手段(34)と、
上記終了予告手段(33)の出力を受け、上記膨張弁制
御手段(32)による制御を強制的に停止して上記電動
膨張弁(5)の開度を予め全開に設定するとともに、上
記終了検知手段(34)の出力を受けて、デフロスト運
転終了時から電動膨張弁(5)の開度を所定時間全開に
保持したのち漸次そのときの空調負荷に応じた所定開度
に閉じていくように制御する終了運転制御手段(35)
とを設ける構成としたものである。
As an operation control device for the air conditioner, there is provided an end notice means (33) for notifying the end of the defrost operation, and an end detecting means (34) for detecting the end of the defrost operation.
Upon receiving the output of the termination notification means (33), the control by the expansion valve control means (32) is forcibly stopped, the opening degree of the electric expansion valve (5) is set to fully open in advance, and the termination is detected. In response to the output of the means (34), the electric expansion valve (5) is kept fully open for a predetermined period of time from the end of the defrost operation, and then gradually closed to a predetermined opening according to the air conditioning load at that time. Control end operation control means (35)
The configuration is such that the following is provided.

さらに、請求項(2の発明の解決手段は、第1図(点線
部分をも含む)に示すように、運転容量可変な圧縮機(
1)、室外熱交換器(3)、電動膨張弁(5)、室内熱
交換器(7)およびアキュムレータ(6)を冷媒の循環
可能に接続してなる冷媒回路(9)と、上記圧縮機(1
)の吐出管(8a)と液管(8b)とを冷媒のバイパス
可能に接続するバイパス路(11)と、該バイパス路(
11)に介設された電磁開閉弁(12)と、デフロスト
運転時にのみ上記電磁開閉弁(12)が開くように制御
する開閉弁制御手段(31)と、上記電動膨張弁(5)
の開度を通常運転時には空調負荷に基づき所定開度に、
デフロスト運転時には一定の低開度に制御する膨張弁制
御手段(32)と、圧縮機(1)の運転容量を空調負荷
に基づき所定容量に制御する容量制御手段(36)とを
備えた空気調和装置を対象とする。
Furthermore, as shown in FIG.
1), a refrigerant circuit (9) formed by connecting an outdoor heat exchanger (3), an electric expansion valve (5), an indoor heat exchanger (7), and an accumulator (6) so that refrigerant can be circulated; and the compressor. (1
) and a bypass path (11) that connects the discharge pipe (8a) and liquid pipe (8b) of the refrigerant so that the refrigerant can be bypassed;
11), an on-off valve control means (31) that controls the electromagnetic on-off valve (12) to open only during defrost operation, and an electric expansion valve (5).
During normal operation, the opening is set to a predetermined opening based on the air conditioning load.
An air conditioner equipped with an expansion valve control means (32) that controls the opening to a constant low degree during defrost operation, and a capacity control means (36) that controls the operating capacity of the compressor (1) to a predetermined capacity based on the air conditioning load. Targeting equipment.

そして、空気調和装置の運転制御装置として、デフロス
ト運転の終了を予告する終了予告手段(33)と、デフ
ロスト運転の終了を検知する終了検知手段(34)と、
上記終了予告手段(33)の出力を受け、上記膨張弁制
御手段(32)および容量制御手段(36)による制御
を強制的に停止して予め上記電動膨張弁(5)の開度を
全開にかつ圧縮機(1)の運転容量を最小に設定すると
ともに、上記終了検知手段(34)の出力を受けて、デ
フロスト運転終了時から所定時間電動膨張弁(5)の開
度を全開にかつ圧縮機(1)の運転容量を最小に保持し
た後、そのときの空調負荷に応じて電動膨張弁(5)の
開度を漸次所定開度まで閉じかつ圧縮機(1)の運転容
量を所定容量に復帰させるように制御する終了運転制御
手段(35)とを設ける構成としたものである。
As an operation control device for the air conditioner, there is provided an end notice means (33) for notifying the end of the defrost operation, and an end detecting means (34) for detecting the end of the defrost operation.
Upon receiving the output of the termination notice means (33), the control by the expansion valve control means (32) and the capacity control means (36) is forcibly stopped, and the electric expansion valve (5) is fully opened in advance. In addition, the operating capacity of the compressor (1) is set to the minimum, and in response to the output of the end detection means (34), the electric expansion valve (5) is fully opened and compressed for a predetermined period of time from the end of the defrost operation. After maintaining the operating capacity of the compressor (1) to the minimum, the electric expansion valve (5) is gradually closed to a predetermined opening according to the air conditioning load at that time, and the operating capacity of the compressor (1) is reduced to the predetermined capacity. The configuration includes a termination operation control means (35) for controlling the operation so as to return to the original condition.

(作用) 以上の構成により、請求項(1)の発明では、デフロス
ト運転の終了時、終了予告手段(33)によリゾフロス
ト運転がまもなく終了することが予告されると、終了運
転制御手段(35)により、膨張弁制御手段(32)に
よる電動膨張弁(5)の開度制御が強制的に停止させら
れて、デフロスト運転終了までに電動膨張弁(5)の開
度が予め全開になるように設定される。そして、終了検
知手段(35)によりデフロスト運転の終了時が検知さ
れると、開閉弁制御手段(31)により電磁開閉弁(1
2)が閉じられ、吐出ガスのバイパスによる正サイクル
のデフロスト運転が終了する。それと同時に、終了運転
制御手段(35)により所定時間電動膨張弁(5)の開
度が全開に保持された後、漸次そのときの空調負荷に応
じた所定開度に閉じられる。
(Function) With the above configuration, in the invention of claim (1), when the end notice means (33) warns that the reso-frost operation will soon end, when the defrost operation ends, the end operation control means (35) ), the opening degree control of the electric expansion valve (5) by the expansion valve control means (32) is forcibly stopped, so that the opening degree of the electric expansion valve (5) is fully opened before the end of the defrost operation. is set to When the end detection means (35) detects the end of the defrost operation, the on-off valve control means (31) controls the electromagnetic on-off valve (1).
2) is closed, and the normal cycle defrost operation by bypassing the discharged gas is completed. At the same time, after the electric expansion valve (5) is kept fully open for a predetermined period of time by the termination operation control means (35), it is gradually closed to a predetermined opening according to the air conditioning load at that time.

その場合、冷媒回路(9)において、それまでの冷媒の
絞りのないデフロスト運転から冷媒が所定の絞りを受け
る暖房運転に移行するが、電動膨張弁(5)が全開に保
持されているために、回路中の冷媒抵抗が小さく維持さ
れるので、過渡的に急激な冷媒抵抗の増加を招くことが
ない。また、その後、電動膨張弁(5)の開度が徐々に
閉じられて通常運転状態に移行するので、その間に急激
な冷媒の抵抗変化を生ずることもない。
In that case, in the refrigerant circuit (9), the defrost operation without throttling of the refrigerant shifts to the heating operation in which the refrigerant is subjected to a predetermined throttling, but since the electric expansion valve (5) is kept fully open, Since the refrigerant resistance in the circuit is kept small, a sudden sudden increase in refrigerant resistance does not occur. Moreover, since the opening degree of the electric expansion valve (5) is then gradually closed and the normal operating state is entered, there is no sudden change in the resistance of the refrigerant during this period.

よって、低圧の低下が抑制され、アキュムレータ(6)
の液面が急激に低下することがなく、その結果、圧縮機
(1)の油上りが有効に防止されることになる。
Therefore, a drop in low pressure is suppressed, and the accumulator (6)
As a result, the oil level in the compressor (1) is effectively prevented from rising.

また、請求項(2)の発明では、終了予告手段(33)
の出力を受けて、終了運転制御手段(35)により、膨
張弁制御手段(32)による電動膨張弁(5)の開度制
御および容量制御手段(36)による圧縮機(1)の運
転容量制御が強制的に停止させられて、デフロスト運転
の終了前に予め電動膨張弁(5)の開度が全開にかつ圧
縮機(1)の運転容量が最小に設定され、終了検知手段
(34)の出力を受けた後、所定時間そのままに保持さ
れる。そして、その後、そのときの空調負荷に応じて電
動膨張弁(5)の開度が所定開度まで漸次閉じられかつ
圧縮機(1)の運転容量が所定容量に復帰する。したが
って、上記請求項(1)の効果に加えて、圧縮機(1)
の運転容量の減少による油上がり率の抑制効果を加重的
に得ることができる。
Furthermore, in the invention of claim (2), the termination notice means (33)
In response to the output, the termination operation control means (35) controls the opening of the electric expansion valve (5) by the expansion valve control means (32) and the operating capacity of the compressor (1) by the capacity control means (36). is forcibly stopped, and before the end of the defrost operation, the opening degree of the electric expansion valve (5) is fully opened and the operating capacity of the compressor (1) is set to the minimum, and the end detection means (34) is set in advance. After receiving the output, it is held as it is for a predetermined period of time. Thereafter, the opening degree of the electric expansion valve (5) is gradually closed to a predetermined opening degree according to the air conditioning load at that time, and the operating capacity of the compressor (1) returns to the predetermined capacity. Therefore, in addition to the effect of the above claim (1), the compressor (1)
The effect of suppressing the oil flow rate can be obtained in an additive manner by reducing the operating capacity of the engine.

(実施例) 以下、本発明の実施例について、第2図〜第4図に基づ
き説明する。
(Example) Examples of the present invention will be described below with reference to FIGS. 2 to 4.

第2図は請求項(1)および(2の発明の実施例に係る
空気調和装置の全体構成を示し、1台の室外ユニット(
A)に1台の室内ユニット(B)が接続されたセパレー
ト形の構成をしている。
FIG. 2 shows the overall configuration of an air conditioner according to an embodiment of the invention of claims (1) and (2), and shows one outdoor unit (
It has a separate configuration in which one indoor unit (B) is connected to A).

上記室外ユニットにおいて、(1)は圧縮機、(2)は
冷房運転時には図中実線のごとく、暖房運転時には図中
破線のごとく切換わる四路切換弁、(3)は冷房運転時
には凝縮器、暖房運転時には蒸発器としての機能を有す
る室外熱交換器、(3a)、  (3a)は該室外熱交
換器(3)に付設された2台の室外ファン、(4)は冷
媒の減圧を行うキャピラリーチューブ、 (5)は該キ
ャピラリーチューブ(4)に並列に接続され、開度を可
変に調節される電動膨張弁、(6)は吸入ガス中の液冷
媒を分離するためのアキュムレータであって、上記キャ
ピラリーチューブ(4)及び電動膨張弁(5)により、
冷媒回路(9)の冷媒の絞り率を決定するようになされ
ている。
In the above outdoor unit, (1) is a compressor, (2) is a four-way switching valve that switches as shown in the solid line in the figure during cooling operation and as shown in the broken line in the figure during heating operation, (3) is a condenser during cooling operation, An outdoor heat exchanger (3a) functions as an evaporator during heating operation, (3a) is two outdoor fans attached to the outdoor heat exchanger (3), and (4) decompresses the refrigerant. A capillary tube, (5) is an electric expansion valve connected in parallel to the capillary tube (4) and whose opening degree is variably adjusted, and (6) is an accumulator for separating liquid refrigerant in the suction gas. , by the capillary tube (4) and the electric expansion valve (5),
The throttle ratio of the refrigerant in the refrigerant circuit (9) is determined.

また、上記室内ユニットCB)において、(7)は冷房
運転時には蒸発器、暖房運転時には凝縮器となる室内熱
交換器、(7a)〜(7d)は該室内熱交換器(7)に
付設された4台の室内ファンである。
In the indoor unit CB), (7) is an indoor heat exchanger that serves as an evaporator during cooling operation and a condenser during heating operation, and (7a) to (7d) are attached to the indoor heat exchanger (7). There are four indoor fans.

そして、上記各機器(1)〜(7)は冷媒配管(8)に
より、冷媒の循環可能に接続されていて、室外熱交換器
(3)で室外空気との熱交換により付与された熱を室内
に放出するヒートポンプ機能を有する冷媒回路(9)が
構成されている。
The above-mentioned devices (1) to (7) are connected through refrigerant piping (8) so that refrigerant can be circulated, and the outdoor heat exchanger (3) transfers the heat imparted by heat exchange with outdoor air. A refrigerant circuit (9) having a heat pump function for discharging indoors is configured.

ここに、上記圧縮機(1)は併設されたインバータ(1
0)により駆動されていて、その運転周波数の変化に応
じて圧縮機(1)の運転容量が調節されるようになされ
ている。また、圧縮機(1)の吐出管(8a)と室外熱
交換器(3)の液管(8b)側に配置された液管側ヘッ
ダー(3C)との間は、バイパス路(11)により冷媒
の流通可能に接続されていて、該バイパス路(11)に
は、その通路を開閉するための電磁開閉弁(12)が介
設されている。
Here, the compressor (1) is connected to an attached inverter (1).
The operating capacity of the compressor (1) is adjusted according to changes in the operating frequency. In addition, a bypass path (11) is provided between the discharge pipe (8a) of the compressor (1) and the liquid pipe side header (3C) arranged on the liquid pipe (8b) side of the outdoor heat exchanger (3). The bypass passage (11) is connected to allow the flow of refrigerant, and an electromagnetic on-off valve (12) for opening and closing the passage is provided.

さらに、空気調和装置にはセン九スイッチ類が配置され
ていて、(SS)は圧縮機(1)の吸入管(8C)側に
配置され、吸入管温度Tsを検出するための吸入管セン
サ、(HPSI)は吐出管(8a)に配置された高圧遮
断用第1圧力開閉器、(HPS2)は上記バイパス路(
11)に配置され、高圧HPが所定値以上になると上記
電磁弁(12)を開作動させてホットガスを液管(8b
)側にバイパスさせるための第2圧力開閉器であって、
上記各センサ1スイツチ類(SS) 、  (HPSI
) 。
Furthermore, the air conditioner is equipped with nine switches, and (SS) is arranged on the suction pipe (8C) side of the compressor (1), and includes a suction pipe sensor for detecting the suction pipe temperature Ts; (HPSI) is the first pressure switch for high pressure cutoff arranged in the discharge pipe (8a), (HPS2) is the bypass path (
11), and when the high pressure HP reaches a predetermined value or higher, the solenoid valve (12) is opened and the hot gas is transferred to the liquid pipe (8b).
) side for bypassing the second pressure switch,
Each sensor 1 switch type (SS), (HPSI
).

(HPS2)の出力は空気調和装置全体の運転制御を行
うコントロールユニット(13)に信号の入力可能に接
続されている。
The output of (HPS2) is connected to a control unit (13) that controls the operation of the entire air conditioner so that signals can be input.

なお、第2図において、(14)は圧縮機(1)に付設
された圧縮機アキュムレータ、(15)は冷媒回路(9
)中の騒音を除去するための消音器、(16)、  (
16)は室外ユニット(A)と室内ユニット(B)との
間の連絡配管に介設された手動の閉鎖弁、(17)は室
外熱交換器(3)の液管側ヘッダー(3C)から液管(
8b)に冷媒をバイパスさせるための液戻し管(8d)
中に介設された逆止弁である。
In Fig. 2, (14) is a compressor accumulator attached to the compressor (1), and (15) is a refrigerant circuit (9).
), (16), (
16) is a manual shutoff valve installed in the connecting pipe between the outdoor unit (A) and the indoor unit (B), and (17) is from the liquid pipe side header (3C) of the outdoor heat exchanger (3). Liquid pipe (
Liquid return pipe (8d) for bypassing refrigerant to 8b)
This is a check valve installed inside.

空気調和装置の暖房運転時、上記四路切換弁(2)が図
中破線側に切換わり、上記電磁開閉弁(12)が閉じた
状態で運転が行われ、吐出ガスが室内ユニット(B)に
循環して室内熱交換器(7)で室内空気との熱交換によ
り凝縮されると同時に室内空気に暖熱が付与され、電動
膨張弁(5)およびキャピラリーチューブ(4)で絞り
作用を受けて室外熱交換器(3)で蒸発して、室外熱交
換器(3)で室外空気から暖熱を付与されたのちアキュ
ムレータ(6)を経て圧縮機(1)に戻る(図中実線の
矢印参照)。また、冷房運転時には四路切換弁(2)が
図中実線のごとく切換わり、電磁開閉弁(12)が閉じ
たままで運転が行われ、上記暖房運転時とは逆の冷媒の
流れによる室内の冷房が行われる。
During heating operation of the air conditioner, the four-way switching valve (2) is switched to the side shown by the broken line in the figure, and operation is performed with the electromagnetic on-off valve (12) closed, and the discharged gas is transferred to the indoor unit (B). The air is circulated through the indoor heat exchanger (7) and condensed by heat exchange with the indoor air, at the same time giving warm heat to the indoor air, and subjected to a throttling action by the electric expansion valve (5) and capillary tube (4). The air is evaporated in the outdoor heat exchanger (3), heated by the outdoor air in the outdoor heat exchanger (3), and then returned to the compressor (1) via the accumulator (6) (as shown by the solid arrow in the figure). reference). In addition, during cooling operation, the four-way switching valve (2) switches as shown by the solid line in the figure, and the operation is performed with the electromagnetic on-off valve (12) closed, causing the indoor Cooling is performed.

そして、上記暖房運転時に室外熱交換器(3)が着霜し
た場合、図中破線矢印に示すように、冷媒回路(9)に
おける暖房運転を行いながら、圧縮機(1)から高温の
吐出ガスの一部が液管(8b)側にバイパスされ、凝縮
作用により室外熱交換器(3)に熱を付与するように循
環するデフロスト運転が行われる。そして、そのとき、
上記コントロールユニット(13)により、デフロスト
運転制御が行われる。第3図はデフロスト運転時の制御
のフローを示すフローチャート、第4図は順にそのとき
のインバータ(10)の運転周波数、電動膨張弁(5)
の開度、電磁開閉弁(12)の開閉状態、高圧、低圧、
アキュムレータ(6)の液面、圧縮機(1)の油面の各
変化をそれぞれ示す特性図であって、以下、デフロスト
運転制御について第3図および第4図に基づき説明する
If the outdoor heat exchanger (3) is frosted during the above-mentioned heating operation, high-temperature discharge gas is discharged from the compressor (1) while performing the heating operation in the refrigerant circuit (9), as shown by the broken line arrow in the figure. A part of the liquid is bypassed to the liquid pipe (8b) side, and a defrost operation is performed in which the heat is circulated so as to provide heat to the outdoor heat exchanger (3) by a condensing action. And at that time,
Defrost operation control is performed by the control unit (13). Fig. 3 is a flowchart showing the control flow during defrost operation, and Fig. 4 shows the operating frequency of the inverter (10) at that time, and the electric expansion valve (5).
opening degree, opening/closing status of the electromagnetic on-off valve (12), high pressure, low pressure,
FIG. 4 is a characteristic diagram showing changes in the liquid level of the accumulator (6) and the oil level of the compressor (1), respectively. Defrost operation control will be described below with reference to FIGS. 3 and 4. FIG.

まず、デフロストセンサ等の信号からデフロスト運転指
令が出力されると、ステップS1で、圧縮機(1)を暖
機して高圧を上昇させることによりデフロスト運転の効
率を高めるべく、インバータ(10)の運転周波数をそ
れまでの空調負荷に応じた所定容量から最大開度まで開
いて行き(第4図(イ)の時刻T+)かつ室内ファン(
7a)〜(7d)を停止させた状態でそのまま所定時間
暖房運転を行うことにより、圧縮機(1)を暖めて高圧
を上昇させる。そのとき、電動膨張弁(5)の開度はイ
ンバータ(10)の運転周波数に応じてつまり空調負荷
に応じて制御されている(第4図(ロ)の時刻T1〜時
刻T2)。そして、ステップS2で、高圧)IPが十分
上昇して所定の設定値)IP+になると(第4図(ニ)
の時刻T2)、上記第2圧力制御弁(HPSI)が作動
し、ステップS3で電磁開閉弁(12)を開いて(第4
図(ハ)の時刻T2)十分暖められたホットガスを室外
熱交換器(3)の液管側ヘッダー(3c)に直接導入す
ると同時に、ステップS4で電動膨張弁(5)を全閉に
閉じて行く(第4図(ロ)の時刻T2)。
First, when a defrost operation command is output from a signal from a defrost sensor, etc., in step S1, the inverter (10) is activated to warm up the compressor (1) and increase the high pressure to increase the efficiency of the defrost operation. The operating frequency is increased from the predetermined capacity according to the air conditioning load up to that point to the maximum opening (time T+ in Figure 4 (a)), and the indoor fan (
By performing the heating operation for a predetermined period of time with 7a) to 7d stopped, the compressor (1) is warmed and the high pressure is increased. At this time, the opening degree of the electric expansion valve (5) is controlled according to the operating frequency of the inverter (10), that is, according to the air conditioning load (time T1 to time T2 in FIG. 4(b)). Then, in step S2, when the high pressure (IP) rises sufficiently to reach a predetermined set value (IP+) (see Fig. 4 (D)).
At time T2), the second pressure control valve (HPSI) is activated, and in step S3, the electromagnetic on-off valve (12) is opened (the fourth
Time T2 in Figure (C)) Sufficiently warmed hot gas is directly introduced into the liquid pipe side header (3c) of the outdoor heat exchanger (3), and at the same time, the electric expansion valve (5) is fully closed in step S4. (time T2 in Figure 4 (b)).

すなわち、ホットガスの一部を直接室外熱交換器(3)
の液管(8b)側に導入する正サイクルデフロスト運転
を行う。
In other words, a part of the hot gas is directly transferred to the outdoor heat exchanger (3).
A forward cycle defrost operation is performed in which the liquid is introduced into the liquid pipe (8b) side.

以上の状態でデフロスト運転を行って、室外熱交換器(
3)が除霜され、上記吸入管センサ(SS)で検出され
る吸入管温度Tsが回復して所定値TsLになると、デ
フロスト運転を停止すべく予告信号を出力して、ステッ
プS6でインバータ(10)の運転周波数を最小に低下
させていく(第4図(イ)の時刻T3)と同時に、電動
膨張弁(5)を全開になるまで開いて行く (第4図(
ロ)の時刻T3)。次に、ステップS7で、吸入管温度
Tsがデフロスト運転終了温度Ts2(例えば6℃程度
)になるのを待って、ステップS8に進んで電磁開閉弁
(12)を閉じ(第4図(ハ)の時刻T4)、同時にコ
ントロールユニット(13)中のタイマー(図示せず)
のカウントを開始しておく。そして、ステップS9で所
定時間(例えば1分程度)が経過するのを待って、ステ
ップSIOに進み、そのときの空調負荷に応じて、イン
バータ(10)の運転周波数を最小値から所定値まで増
大させて行く (第4図(イ)の時刻Ts)と同時に、
電動膨張弁(5)のパルス位置をすこしずつ変えてその
開度をインバータ(10)の運転周波数に応じた所定開
度まで徐々に閉じて行く(第4図(ロ)の時刻Ts)。
Under the above conditions, perform defrost operation to connect the outdoor heat exchanger (
3) is defrosted and the suction pipe temperature Ts detected by the suction pipe sensor (SS) recovers to a predetermined value TsL, a warning signal is output to stop the defrost operation, and the inverter ( 10) to the minimum (time T3 in Fig. 4 (a)), and at the same time open the electric expansion valve (5) until it is fully open (Fig. 4 (a)).
b) time T3). Next, in step S7, wait until the suction pipe temperature Ts reaches the defrost operation end temperature Ts2 (for example, about 6°C), and then proceed to step S8 to close the electromagnetic on-off valve (12) (see Fig. 4 (c)). time T4), and at the same time a timer (not shown) in the control unit (13)
Start counting. Then, in step S9, wait for a predetermined time (for example, about 1 minute) to elapse, and then proceed to step SIO, where the operating frequency of the inverter (10) is increased from the minimum value to a predetermined value according to the air conditioning load at that time. At the same time (time Ts in Figure 4 (a)),
By changing the pulse position of the electric expansion valve (5) little by little, its opening degree is gradually closed to a predetermined opening degree depending on the operating frequency of the inverter (10) (time Ts in FIG. 4 (b)).

そして、ステップSl+で通常の暖房運転に戻って制御
を終了する。
Then, in step Sl+, the normal heating operation is resumed and the control is ended.

以上のフローにおいて、請求項(1)の発明では、ステ
ップS3およびS8により、デフロスト運転時にのみ電
磁開閉弁(12)が開くように制御する開閉弁制御手段
(31)が構成され、ステップS4およびS11により
、上記電動膨張弁(5)の開度を通常運転時には室内負
荷に基づき所定開度に、デフロスト運転時には空調負荷
に応じた一定の低開度に制御する膨張弁制御手段(32
)が構成されている。また、ステップS5により、デフ
ロスト運転の終了を予告する終了予告手段(33)が構
成され、ステップS7により、デフロスト運転の終了時
を検知する終了検知手段(34)が構成されている。さ
らに、ステップS6およびSIOにより、上記終了予告
手段(33)の出力を受け、膨張弁制御手段(32)に
よる制御を強制的に停止して予め電動膨張弁(5)の開
度を全開に設定するとともに、上記終了検知手段(34
)の出力を受けて、デフロスト運転終了時から電動膨張
弁(5)の開度を所定時間全開に保持したのち漸次その
ときの空調負荷に応じた所定開度まで閉じていくように
制御する終了運転制御手段(35)が構成されている。
In the above flow, in the invention of claim (1), steps S3 and S8 constitute an on-off valve control means (31) that controls the electromagnetic on-off valve (12) to open only during the defrost operation, and steps S4 and In S11, the expansion valve control means (32) controls the opening degree of the electric expansion valve (5) to a predetermined opening degree based on the indoor load during normal operation, and to a constant low opening degree according to the air conditioning load during defrost operation.
) is configured. Further, step S5 constitutes a termination notice means (33) for notifying the end of the defrost operation, and step S7 constitutes an end detection means (34) for detecting the end of the defrost operation. Furthermore, in step S6 and SIO, upon receiving the output of the termination notice means (33), the control by the expansion valve control means (32) is forcibly stopped and the opening degree of the electric expansion valve (5) is set in advance to be fully open. At the same time, the end detection means (34
), the opening of the electric expansion valve (5) is kept fully open for a predetermined period of time from the end of the defrost operation, and then gradually closed to a predetermined opening according to the air conditioning load at that time. An operation control means (35) is configured.

一方、請求項(2)の発明では、ステップS11により
、上記膨張弁制御手段(32)と圧縮機(1)の運転容
量を空調負荷に基づき所定容量に制御する容量制御手段
(36)とが構成され、ステップS6およびSIOによ
り、上記終了予告手段(33)の出力を受け、膨張弁制
御手段(32)および容量制御手段(36)による制御
を強制的に停止して、予め電動膨張弁(5)の開度を最
大にかつ圧縮機(1)の運転容量を最小に設定するとと
もに、終了検知手段(34)の出力を受け、所定時間時
間電動膨張弁(5)の開度を全開にかつ圧縮機(1)の
運転容量を最小に保持した後、そのときの空調負荷に応
じて、電動膨張弁(5)の開度を漸次所定開度まで閉じ
かつ圧縮機(1)の運転容量を所定容量に復帰させるよ
うに制御する終了運転制御手段(35)が構成されてい
る。なお、その他の手段の構成は、上記請求項(1)の
発明と共通である。
On the other hand, in the invention according to claim (2), in step S11, the expansion valve control means (32) and the capacity control means (36) for controlling the operating capacity of the compressor (1) to a predetermined capacity based on the air conditioning load. In step S6 and SIO, the electric expansion valve ( 5) is set to the maximum and the operating capacity of the compressor (1) is set to the minimum, and upon receiving the output of the end detection means (34), the electric expansion valve (5) is fully opened for a predetermined period of time. After the operating capacity of the compressor (1) is maintained at the minimum, the opening degree of the electric expansion valve (5) is gradually closed to a predetermined opening degree according to the air conditioning load at that time, and the operating capacity of the compressor (1) is increased. A termination operation control means (35) is configured to control the operation so as to restore the capacity to a predetermined capacity. Note that the configuration of other means is the same as the invention of claim (1) above.

したがって、上記実施例において、請求項(1)の発明
では、デフロスト運転の終了時、終了予告手段(33)
によりデフロスト運転がまもなく終了することが予告さ
れると、終了運転制御手段(35)により、膨張弁制御
手段(32)による電動膨張弁(5)の開度制御が強制
的に停止させられ、デフロスト運転終了までに電動膨張
弁(5)の開度が予め全開になるように設定される。そ
して、終了検知手段(35)によりデフロスト運転の終
了時が検知されると、開閉弁制御手段(31)により電
磁開閉弁(12)が閉じられ、ホットガスバイパスによ
る正サイクルのデフロスト運転が終了する。それと同時
に、終了運転制御手段(35)により所定時間電動膨張
弁(5)の開度が所定時間全開に保持される。
Therefore, in the above embodiment, in the invention of claim (1), at the end of the defrost operation, the end notice means (33)
When the defrost operation is predicted to end soon, the end operation control means (35) forcibly stops the opening control of the electric expansion valve (5) by the expansion valve control means (32), and the defrost operation is stopped. The opening degree of the electric expansion valve (5) is set in advance so that it becomes fully open by the end of the operation. When the end detection means (35) detects the end of the defrost operation, the on-off valve control means (31) closes the electromagnetic on-off valve (12), and the normal cycle defrost operation by hot gas bypass ends. . At the same time, the opening degree of the electric expansion valve (5) is kept fully open for a predetermined time by the end operation control means (35) for a predetermined time.

その場合、冷媒回路(9)において、それまでの冷媒の
絞りのないデフロスト運転から所定の冷媒の絞り状態に
なる暖房運転に移行するが、電動膨張弁(5)が全開に
保持されているために、回路中の冷媒抵抗が小さく維持
され、従来のもののように抵抗が急激に増大することが
ない(第4図(ホ)の時刻T4参照)。また、その後電
動膨張弁(5)の開度を徐々に絞って、暖房運転の空調
負荷つまり圧縮機(1)の運転容量に応じた開度にまで
減少させるので、その途中で過渡的に急激な冷媒抵抗の
増加を招くこともない。
In that case, the refrigerant circuit (9) shifts from the defrost operation without throttling of the refrigerant to the heating operation with a predetermined throttling of the refrigerant, but since the electric expansion valve (5) is held fully open, In addition, the refrigerant resistance in the circuit is maintained small, and the resistance does not increase suddenly unlike the conventional circuit (see time T4 in FIG. 4(e)). In addition, the opening degree of the electric expansion valve (5) is then gradually reduced to the opening degree corresponding to the air conditioning load of the heating operation, that is, the operating capacity of the compressor (1). This does not cause an increase in refrigerant resistance.

よって、低圧LPの低下が抑制され(第4図(ホ)の時
刻T4参照)、アキュムレータ(6)の液面が急激に低
下することがない(第4図(へ)の時刻T4参照)。そ
の結果、第4図(ト)に示すように、圧縮機(1)の油
上りが有効に防止されるのである。
Therefore, the decrease in the low pressure LP is suppressed (see time T4 in FIG. 4(e)), and the liquid level in the accumulator (6) does not drop suddenly (see time T4 in FIG. 4(f)). As a result, as shown in FIG. 4 (g), oil leakage in the compressor (1) is effectively prevented.

また、請求項(2の発明では、終了予告手段(33)の
出力を受けて、終了運転制御手段(35)により、膨張
弁制御手段(32)および容量制御手段(36)の制御
が強制的に停止させられて、デフロスト運転の終了前に
予め電動膨張弁(5)の開度が全開にかつインバータ(
10)の運転周波数つまり圧縮機(1)の運転容量が最
小に設定され、終了検知手段(34)の出力を受けた後
所定時間そのまま保持される。そして、所定時間経過後
、そのときの空調負荷に応じて、電動膨張弁(5)の開
度が漸次所定開度まで閉じられるとともに、圧縮機(1
)の運転容量が所定容量まで復帰する。したがって、上
記請求項(1)の効果に加えて、デフロスト運転終了時
に圧縮機(1)の運転容量の減少による油上がり率の抑
制効果を加重的に得ることができる。
Further, in the invention of claim (2), upon receiving the output of the termination notice means (33), the termination operation control means (35) forcibly controls the expansion valve control means (32) and the capacity control means (36). The electric expansion valve (5) is fully opened and the inverter (
10), the operating frequency of the compressor (1), that is, the operating capacity of the compressor (1), is set to the minimum and held as it is for a predetermined time after receiving the output of the end detection means (34). After a predetermined period of time has elapsed, the electric expansion valve (5) is gradually closed to a predetermined opening degree depending on the air conditioning load at that time, and the compressor (1
)'s operating capacity returns to the predetermined capacity. Therefore, in addition to the effect of claim (1) above, it is possible to obtain an additional effect of suppressing the oil rising rate by reducing the operating capacity of the compressor (1) at the end of the defrosting operation.

なお、上記実施例では、デフロスト運転の終了を予告、
検知するために吸入管センサを配置したが、その代りに
外気温度センサ等を利用して、その検出値の差によりデ
フロスト運転の終了を予告、検知するようにしてもよい
In addition, in the above embodiment, the end of the defrost operation is announced,
Although the suction pipe sensor is arranged for detection, an outside air temperature sensor or the like may be used instead, and the end of the defrost operation may be forewarned or detected based on the difference in the detected values.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、正
サイクルデフロスト運転を行うようにした空気調和装置
の運転制御装置おいて、デフロスト運転終了前に予め電
動膨張弁を全開にしておき、終了から所定時間全開に保
持した後、漸次通常運転の開度まで閉じていくようにし
たので、デフロスト運転から暖房運転への切換えに伴な
う回路中の冷媒抵抗の急激な増加が抑制され、圧縮機の
油上りを有効に防止することができる。
(Effects of the Invention) As explained above, according to the invention of claim (1), in the operation control device for an air conditioner that performs a positive cycle defrost operation, the electric expansion valve is activated in advance before the end of the defrost operation. The system is fully open, held fully open for a predetermined period of time, and then gradually closed to normal operation. This suppresses the increase in oil content and effectively prevents oil from rising in the compressor.

また、請求項(2)の発明によれば、容量可変な圧縮機
を配置し、デフロスト運転終了前に予め電動膨張弁を全
開にかつ圧縮機を最小容量にしておき、終了から所定時
間そのままに保持した後、電動膨張弁を漸次通常運転の
開度まで閉じていくと共に圧縮機を通常運転の容量に戻
すようにしたので、上記請求項(1)の発明の効果に加
えてさらに油上り率の抑制効果を加重的に得ることがで
きる。
Further, according to the invention of claim (2), a variable capacity compressor is arranged, and the electric expansion valve is fully opened and the compressor is set to the minimum capacity before the end of the defrost operation, and the compressor is left as it is for a predetermined time after the end of the defrost operation. After holding the electric expansion valve, the electric expansion valve is gradually closed to the opening degree for normal operation, and the compressor is returned to the capacity for normal operation, so that in addition to the effect of the invention of claim (1), the oil rise rate is further reduced. The suppressive effect can be obtained in an additive manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図である。 第2図〜第4図はいずれも請求項(1)および(2)の
発明の実施例を示し、第2図はその全体構成図、第3図
は制御のフローを示すフローチャート図、第4図(イ)
〜(ト)は順にインバータ周波数、電動膨張弁の開度、
電磁弁の開閉状態、高圧、低圧、アキュムレータ液面、
圧縮機の油面の変化を示す特性図である。第5図は従来
の制御装置における第4図相当図である。 (1)・・・圧縮機、(3)・・・室外熱交換器、(5
)・・・電動膨張弁、(6)・・・アキュムレータ、(
7)・・・室内熱交換器、(8a)・・・吐出管、(8
b)・・・液管、(9)・・・冷媒回路、(11)・・
・バイパス路、(12)・・・電磁開閉弁、(31)・
・・開閉弁制御手段、(32)・・・膨張弁制御手段、
(33)・・・終了予告手段、(34)・・・終了検知
手段、(35)・・・終了運転制御手段、(36)・・
・容量制御手段。 特許出願人    ダイキン工業株式会社代理人 弁理
士 前 1)弘 (はが2名)−・、−、,5−・第 図 I3 図 O 第 図 −−−−−−−−T−−−一一 第 図
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 4 each show an embodiment of the invention of claims (1) and (2), with FIG. 2 being an overall configuration diagram thereof, FIG. Figure (a)
-(g) are inverter frequency, electric expansion valve opening degree,
Solenoid valve open/close status, high pressure, low pressure, accumulator liquid level,
FIG. 3 is a characteristic diagram showing changes in the oil level of the compressor. FIG. 5 is a diagram corresponding to FIG. 4 in a conventional control device. (1)...Compressor, (3)...Outdoor heat exchanger, (5
)...Electric expansion valve, (6)...Accumulator, (
7)...Indoor heat exchanger, (8a)...Discharge pipe, (8
b)...Liquid pipe, (9)...Refrigerant circuit, (11)...
・Bypass path, (12)...Solenoid on-off valve, (31)・
...Opening/closing valve control means, (32)...Expansion valve control means,
(33)...Completion notice means, (34)...Completion detection means, (35)...Completion operation control means, (36)...
・Capacity control means. Patent Applicant Daikin Industries, Ltd. Agent Patent Attorney Former 1) Hiroshi (2 people) ---,-,,5--Figure I3 Figure O Figure-----------T----1 Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機(1)、室外熱交換器(3)、電動膨張弁
(5)、室内熱交換器(7)およびアキュムレータ(6
)を冷媒の循環可能に接続してなる冷媒回路(9)と、
上記圧縮機(1)の吐出管(8a)と液管(8b)とを
冷媒のバイパス可能に接続するバイパス路(11)と、
該バイパス路(11)に介設された電磁開閉弁(12)
と、デフロスト運転時にのみ上記電磁開閉弁(12)が
開くように制御する開閉弁制御手段(31)と、上記電
動膨張弁(5)の開度を通常運転時には空調負荷に基づ
いて所定開度に、デフロスト運転時には一定の低開度に
制御する膨張弁制御手段(32)とを備えた空気調和装
置において、デフロスト運転の終了を予告する終了予告
手段(33)と、デフロスト運転の終了を検知する終了
検知手段(34)と、上記終了予告手段(33)の出力
を受け、上記膨張弁制御手段(32)による制御を強制
的に停止して上記電動膨張弁(5)の開度を予め全開に
設定するとともに、上記終了検知手段(34)の出力を
受けて、デフロスト運転終了時から電動膨張弁(5)の
開度を所定時間全開に保持したのち漸次そのときの空調
負荷に応じた所定開度に閉じていくように制御する終了
運転制御手段(35)とを備えたことを特徴とする空気
調和装置の運転制御装置。
(1) Compressor (1), outdoor heat exchanger (3), electric expansion valve (5), indoor heat exchanger (7) and accumulator (6)
) connected to enable circulation of refrigerant;
a bypass path (11) connecting the discharge pipe (8a) and the liquid pipe (8b) of the compressor (1) so that refrigerant can be bypassed;
An electromagnetic on-off valve (12) interposed in the bypass path (11)
and an on-off valve control means (31) that controls the electromagnetic on-off valve (12) to open only during defrost operation, and an opening of the electric expansion valve (5) to a predetermined opening based on the air conditioning load during normal operation. In the air conditioner, the air conditioner is equipped with an expansion valve control means (32) for controlling the opening to a constant low degree during the defrost operation, and a termination notice means (33) for notifying the end of the defrost operation, and detecting the end of the defrost operation. In response to the output of the termination detection means (34) and the termination notification means (33), the control by the expansion valve control means (32) is forcibly stopped and the opening degree of the electric expansion valve (5) is adjusted in advance. At the same time, in response to the output of the end detection means (34), the electric expansion valve (5) is kept fully open for a predetermined period of time from the end of the defrost operation, and then gradually adjusted according to the air conditioning load at that time. An operation control device for an air conditioner, comprising: an end operation control means (35) for controlling the opening to close to a predetermined degree.
(2)運転容量可変な圧縮機(1)、室外熱交換器(3
)、電動膨張弁(5)、室内熱交換器(7)およびアキ
ュムレータ(6)を冷媒の循環可能に接続してなる冷媒
回路(9)と、上記圧縮機(1)の吐出管(8a)と液
管(8b)とを冷媒のバイパス可能に接続するバイパス
路(11)と、該バイパス路(11)に介設された電磁
開閉弁(12)と、デフロスト運転時にのみ上記電磁開
閉弁(12)が開くように制御する開閉弁制御手段(3
1)と、上記電動膨張弁(5)の開度を通常運転時には
空調負荷に基づき所定開度に、デフロスト運転時には一
定の低開度に制御する膨張弁制御手段(32)と、圧縮
機(1)の運転容量を空調負荷に基づき所定容量に制御
する容量制御手段(36)とを備えた空気調和装置にお
いて、デフロスト運転の終了を予告する終了予告手段(
33)と、デフロスト運転の終了を検知する終了検知手
段(34)と、上記終了予告手段(33)の出力を受け
、上記膨張弁制御手段(32)および容量制御手段(3
6)による制御を強制的に停止して予め上記電動膨張弁
(5)の開度を全開にかつ圧縮機(1)の運転容量を最
小に設定するとともに、上記終了検知手段(34)の出
力を受けて、デフロスト運転終了時から所定時間電動膨
張弁(5)の開度を全開にかつ圧縮機(1)の運転容量
を最小に保持した後、そのときの空調負荷に応じて電動
膨張弁(5)の開度を漸次所定開度まで閉じかつ圧縮機
(1)の運転容量を所定容量に復帰させるように制御す
る終了運転制御手段(35)とを備えたことを特徴とす
る空気調和装置の運転制御装置。
(2) Compressor with variable operating capacity (1), outdoor heat exchanger (3)
), a refrigerant circuit (9) formed by connecting an electric expansion valve (5), an indoor heat exchanger (7), and an accumulator (6) so that refrigerant can circulate, and a discharge pipe (8a) of the compressor (1). a bypass passage (11) connecting the liquid pipe (8b) and the liquid pipe (8b) so that the refrigerant can be bypassed; 12) is opened.
1), an expansion valve control means (32) that controls the opening of the electric expansion valve (5) to a predetermined opening based on the air conditioning load during normal operation and to a constant low opening during defrost operation, and a compressor ( In the air conditioner, the air conditioner is equipped with a capacity control means (36) for controlling the operating capacity to a predetermined capacity based on the air conditioning load.
33), a completion detection means (34) for detecting the end of the defrost operation, and an output from the completion notice means (33), and the expansion valve control means (32) and the capacity control means (3).
6) is forcibly stopped and the electric expansion valve (5) is fully opened and the operating capacity of the compressor (1) is set to the minimum, and the output of the end detection means (34) is In response to this, the electric expansion valve (5) is kept fully open for a predetermined period of time from the end of the defrost operation, and the operating capacity of the compressor (1) is maintained at the minimum. (5) to gradually close the opening to a predetermined opening and control the operating capacity of the compressor (1) to return to the predetermined capacity. Equipment operation control device.
JP16745388A 1988-07-05 1988-07-05 Operation control device for air conditioning device Pending JPH0217370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16745388A JPH0217370A (en) 1988-07-05 1988-07-05 Operation control device for air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16745388A JPH0217370A (en) 1988-07-05 1988-07-05 Operation control device for air conditioning device

Publications (1)

Publication Number Publication Date
JPH0217370A true JPH0217370A (en) 1990-01-22

Family

ID=15849972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16745388A Pending JPH0217370A (en) 1988-07-05 1988-07-05 Operation control device for air conditioning device

Country Status (1)

Country Link
JP (1) JPH0217370A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6314750B1 (en) 1999-05-13 2001-11-13 Denso Corporation Heat pump air conditioner
WO2014010482A1 (en) * 2012-07-13 2014-01-16 サンデン株式会社 Vehicle air-conditioning device
WO2014010483A1 (en) * 2012-07-13 2014-01-16 サンデン株式会社 Vehicle air-conditioning device
JP2014020730A (en) * 2012-07-23 2014-02-03 Corona Corp Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6314750B1 (en) 1999-05-13 2001-11-13 Denso Corporation Heat pump air conditioner
WO2014010482A1 (en) * 2012-07-13 2014-01-16 サンデン株式会社 Vehicle air-conditioning device
WO2014010483A1 (en) * 2012-07-13 2014-01-16 サンデン株式会社 Vehicle air-conditioning device
JP2014020632A (en) * 2012-07-13 2014-02-03 Sanden Corp Air conditioner for vehicle
JP2014020633A (en) * 2012-07-13 2014-02-03 Sanden Corp Air conditioner for vehicle
JP2014020730A (en) * 2012-07-23 2014-02-03 Corona Corp Air conditioner

Similar Documents

Publication Publication Date Title
US6141978A (en) Method and apparatus for eliminating unnecessary defrost cycles in heat pump systems
US6615597B1 (en) Refrigerator
KR20130066499A (en) Air conditioner
JP2007051805A (en) Air conditioner
JPH0529830B2 (en)
JP2003240391A (en) Air conditioner
JP2006132797A (en) Air conditioner
JPH04270876A (en) Defrosting controller for heat pump type air-conditioning machine
JP3240811B2 (en) Dual cooling system
JPH0217370A (en) Operation control device for air conditioning device
KR102288427B1 (en) Method for Defrosting of Air Conditioner for Both Cooling and Heating
JPH05264113A (en) Operation control device of air conditioner
JP3423031B2 (en) Air conditioner
JP3099574B2 (en) Air conditioner pressure equalizer
JP3407867B2 (en) Operation control method of air conditioner
JP2555779B2 (en) Operation control device for air conditioner
JPH11211186A (en) Controlling device of defrosting of air conditioner
JPH02157568A (en) Refrigerant residence suppressing device for air conditioning device
JPH0772647B2 (en) Pressure equalizer for air conditioner
JPS6045345B2 (en) Heat recovery air conditioner
JP3337264B2 (en) Air conditioner defroster
JP3214145B2 (en) Operation control device for refrigeration equipment
JP2656314B2 (en) Air conditioner
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPS62213654A (en) Heat pump type refrigeration cycle