JPS6045345B2 - Heat recovery air conditioner - Google Patents

Heat recovery air conditioner

Info

Publication number
JPS6045345B2
JPS6045345B2 JP8323779A JP8323779A JPS6045345B2 JP S6045345 B2 JPS6045345 B2 JP S6045345B2 JP 8323779 A JP8323779 A JP 8323779A JP 8323779 A JP8323779 A JP 8323779A JP S6045345 B2 JPS6045345 B2 JP S6045345B2
Authority
JP
Japan
Prior art keywords
control
heat exchanger
evaporator
boat
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8323779A
Other languages
Japanese (ja)
Other versions
JPS567955A (en
Inventor
武夫 植野
民久 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP8323779A priority Critical patent/JPS6045345B2/en
Publication of JPS567955A publication Critical patent/JPS567955A/en
Publication of JPS6045345B2 publication Critical patent/JPS6045345B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は熱回収式空気調和装置、詳しくは圧縮機、水
加熱用凝縮器、水冷却用蒸発器及び凝縮器又は蒸発器と
して働らく空気側熱交換器を備え、冷暖房を同時に行な
えるようにした熱回収式空気調和装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a heat recovery air conditioner, in particular, comprising a compressor, a water heating condenser, a water cooling evaporator, and an air-side heat exchanger functioning as a condenser or an evaporator, This invention relates to a heat recovery type air conditioner that can perform heating and cooling at the same time.

従来、此程空気調和装置において、一つの固定ポート
と二つの第1及び第2制御ポートとの三つのポートをも
つた三方弁を用い、該三方弁の第1制御ポートを前記蒸
発器に接続し、また前記第2制御ポートを前記熱交換器
に接続して、冷暖房を同時に行なう熱回収運転の他、冷
房負荷が暖房負荷より大きいときには、前記熱交換器を
補助凝縮器として運転する冷房優先の熱回収運転及び暖
房負荷が冷房負荷より大きいときには、前記熱交換器を
補助蒸発器として運転する暖房優先の熱回収運転を行な
えるようにしている。
Conventionally, in an air conditioner, a three-way valve having three ports, one fixed port and two first and second control ports, is used, and the first control port of the three-way valve is connected to the evaporator. Furthermore, in addition to the heat recovery operation in which the second control port is connected to the heat exchanger to simultaneously perform cooling and heating, there is also a cooling priority operation in which the heat exchanger is operated as an auxiliary condenser when the cooling load is greater than the heating load. When the heating load is larger than the cooling load, the heat exchanger is operated as an auxiliary evaporator to perform a heat recovery operation giving priority to heating.

所が以上の運転モードのうち、前記空気側熱交換器を
補助蒸発器として用いる暖房優先の熱回収運転を行なう
とき、冷房負荷がなくて前記空気側熱交換器に、100
%冷媒が流れている場合には問題はないが、冷房負荷が
あつて、前記空気側熱交換器と水冷却用蒸発器とに分流
している場合、特に前記空気側熱交換器への冷媒流量が
少ないと、冷媒流速も遅くなり、その結果冷凍サイクル
系内に混入させ、冷媒とともに循環させている循滑油が
、運ばれなくなり、時間経過とともに前記熱交換器内に
蓄積されてしまい、油不足が生ずる問題があつた。
Among the above operation modes, when performing a heating-priority heat recovery operation in which the air-side heat exchanger is used as an auxiliary evaporator, there is no cooling load and the air-side heat exchanger is
There is no problem when the refrigerant is flowing, but when there is a cooling load and the flow is divided between the air side heat exchanger and the water cooling evaporator, the refrigerant flow to the air side heat exchanger is particularly bad. When the flow rate is low, the refrigerant flow rate is also slow, and as a result, the circulating oil that is mixed into the refrigeration cycle system and circulated together with the refrigerant is no longer transported and accumulates in the heat exchanger over time. There was a problem of oil shortage.

そこで本発明は以上の如き問題を解決すべく発明した
もので、特別な機構を設けることなく簡単・な構成で、
前記した暖房優先の熱回収運転時における油溜りを解消
すべく成したのである。
Therefore, the present invention was invented to solve the above problems, and has a simple structure without any special mechanism.
This was done to eliminate the oil stagnation during the heat recovery operation that prioritizes heating.

即ち本発明は、前記熱交換器に油溜りが生するのは、
冷媒流量が少なく、冷媒流速が遅くなることに原因があ
り、また前記油溜りは、時間経過と・ともに生ずること
に着目し、暖房優先の熱回収運転において、前記した三
方弁の第1及び第2制御ポートが、水冷却用蒸発器と空
気側熱交換器とにそれぜれ連通しているとき、いの時間
を測定して、一定時間経過後、即を油溜りが生じて、油
不足が生ずる時間(例えば1時間)の経過後、前記第1
制御ボートを閉じ、冷媒の全量を一定時間(例えば1紛
)、前記熱交換器に流し、該熱交換器に蓄積されている
油を回するごとくしたのである。
That is, in the present invention, oil pools are formed in the heat exchanger because:
Focusing on the fact that the cause is a low refrigerant flow rate and a slow refrigerant flow rate, and that the oil stagnation occurs over time, in heat recovery operation that prioritizes heating, the first and second three-way valves are When the two control ports are connected to the water cooling evaporator and the air side heat exchanger, measure the time, and after a certain period of time, an oil stagnation occurs and the oil is insufficient. After a period of time (for example, 1 hour) during which
The control boat was closed and the entire amount of refrigerant was allowed to flow through the heat exchanger for a certain period of time (for example, one drop) to circulate the oil accumulated in the heat exchanger.

即ち、本発明は、前記三方弁9の第1及び第2制御ボー
ト92,93が前記蒸発器3と前記熱交換器4とにそれ
ぞれ連通している両制御ボート開状態を検出したとき作
動する検出具20を設けると共に、該検出具20の作動
により計時を開始し、一定時間後前記三方弁9に対して
前記第1制御ボート92を閉成する指令を発し、かつ所
定時間該指令を維持する冷媒流通制御回路Aを備えたこ
とを特徴とするものである。
That is, the present invention operates when the first and second control boats 92 and 93 of the three-way valve 9 detect that both control boats are open, which are in communication with the evaporator 3 and the heat exchanger 4, respectively. A detection device 20 is provided, time measurement is started by the operation of the detection device 20, and after a certain period of time, a command is issued to the three-way valve 9 to close the first control boat 92, and the command is maintained for a certain period of time. The present invention is characterized in that it includes a refrigerant flow control circuit A.

以下本発明装置の実施例を図面に基づいて説明する。Embodiments of the device of the present invention will be described below based on the drawings.

1は圧縮機、2は水加熱用凝縮器、3は水冷却用蒸発器
、4は空気側熱交換器、5は受液器、6はアキュムレー
ターであつて、これら機器は冷媒配管7によて、各連絡
されている。
1 is a compressor, 2 is a condenser for water heating, 3 is an evaporator for water cooling, 4 is an air side heat exchanger, 5 is a liquid receiver, and 6 is an accumulator, and these devices are connected to refrigerant piping 7. So, each has been contacted.

前記圧縮機1は、アンローダ機構をもつており、前記凝
縮器2における温水入口温度を検出する温水入口サーモ
Th2と、前記蒸発器3の冷水入口温度を検出する冷水
入口サーモ′1111とにより例えば75%、50%、
25%能力の3段階にその圧縮機能力が制御さるように
なつている。
The compressor 1 has an unloader mechanism, and has a hot water inlet thermometer Th2 that detects the hot water inlet temperature of the condenser 2, and a cold water inlet thermometer '1111 that detects the cold water inlet temperature of the evaporator 3. %, 50%,
Its compressive power is controlled in three stages of 25% capacity.

また8は四路切換弁、9は三方弁であつて、これら四路
切換弁8及び三方弁9により、前記圧縮機1から吐出す
る冷媒の流れを制御し、前記空気.側熱交換器4を凝縮
器としたり、蒸発器としたり或いは冷媒を流さなかつた
りするのであり、冷房専用運転、冷房優先運転、暖房専
用運転、暖房優先運転、冷暖房同時運転及びデフロスト
運転が行なえるようにするのである。
Further, 8 is a four-way switching valve, and 9 is a three-way valve.The four-way switching valve 8 and the three-way valve 9 control the flow of refrigerant discharged from the compressor 1, and the flow of the refrigerant discharged from the compressor 1 is controlled by the four-way switching valve 8 and the three-way valve 9. The side heat exchanger 4 can be used as a condenser, an evaporator, or no refrigerant flows, and can perform cooling-only operation, cooling-priority operation, heating-only operation, heating-priority operation, simultaneous heating and cooling operation, and defrost operation. So do it.

前記四路切換弁8は、高圧側ボート81、低圧側ボート
82と、二つの第1及び第2切換ボート83,84との
四つのボートをもつた既存の四路切換弁を用いるのであ
り、また前記三方弁9は、一つの固定ボート91と、二
つの第1及び第2制御御ボート92,93とをもち、こ
れら制御ボート92,93の開度を調整可能に構成する
のであつて、前記四路切換弁9の前記高圧側ボート81
を、前記圧縮機1の吐出口に、低圧側ボート82を、前
記アキュムレータ6にそれぞれ接続すると共に、前記第
1切換ボート83を、前記三方弁9の固定ボート91に
、第2切換ボート84を前記凝縮器2と蒸発器3との何
れか一方と選択的に接続するのであり、また前記三方弁
9の第1制御ボート92を、前記蒸発器3と凝縮器2と
の何れか一方と選択的に接続し、第2制御ボート93を
前記空気側熱交換器4に接続するのである。
The four-way switching valve 8 uses an existing four-way switching valve having four boats: a high-pressure side boat 81, a low-pressure side boat 82, and two first and second switching boats 83 and 84. Further, the three-way valve 9 has one fixed boat 91 and two first and second control boats 92, 93, and is configured to be able to adjust the opening degrees of these control boats 92, 93. The high pressure side boat 81 of the four-way switching valve 9
are connected to the discharge port of the compressor 1, a low-pressure side boat 82, and the accumulator 6, respectively, and the first switching boat 83 is connected to the fixed boat 91 of the three-way valve 9, and the second switching boat 84 is connected to the discharge port of the compressor 1. The first control boat 92 of the three-way valve 9 is selectively connected to either the condenser 2 or the evaporator 3, and the first control boat 92 of the three-way valve 9 is selected as either the evaporator 3 or the condenser 2. The second control boat 93 is connected to the air side heat exchanger 4.

前記三方弁9は、コントロールモータにより前)記制御
ボート92,93の開度を0〜100%制御するもので
、前記四路切換弁8の切換えにより高圧ガス冷媒を前記
凝縮器2と空気側熱交換器4とに所定比率で流す高圧側
制御弁となつたり、前記蒸発器3と空気側熱交換器4と
で蒸発した低圧ガ・ス冷媒を所定比率で流す低圧側制御
弁となつたりするものである。
The three-way valve 9 controls the opening degree of the control boats 92 and 93 from 0 to 100% using a control motor, and switches the high-pressure gas refrigerant between the condenser 2 and the air side by switching the four-way switching valve 8. It serves as a high-pressure side control valve that allows the low-pressure gas refrigerant evaporated between the evaporator 3 and the air-side heat exchanger 4 to flow at a predetermined ratio. It is something to do.

しかして高圧側制御弁として働らく場合、前記凝縮器2
への開度即ち第1制御ボート92の開度が100%〜0
%のとき、空気側熱交換器4への開度即ち第2制御ボー
ト93の開度は0〜100%となり、第1制御ボート9
2の開度が100%で高圧ガス冷媒の全量が凝縮器2に
流れるとき、空気側熱交換器4には流れない。
Therefore, when working as a high pressure side control valve, the condenser 2
That is, the opening degree of the first control boat 92 is between 100% and 0.
%, the opening degree to the air side heat exchanger 4, that is, the opening degree of the second control boat 93 is 0 to 100%, and the opening degree to the first control boat 9 is 0 to 100%.
When the opening degree of 2 is 100% and the entire amount of high-pressure gas refrigerant flows to the condenser 2, it does not flow to the air side heat exchanger 4.

また逆の場合凝縮器2には流れない。又低圧側制御弁と
して働らく場合も同様で蒸発器3に通する第1制御ボー
ト92の開度が100〜0%のときには、空気側熱交換
器4に通する第2制御ボート93の開度はO〜100%
となり、第1制御ボート92の開度が100%で、低圧
ガス冷媒が全量蒸発器3から流れるとき、第2制御ボー
ト93は閉じ、空気側熱交換器4に液冷媒が流れること
はない。
In the opposite case, it does not flow to the condenser 2. The same applies to the case where it functions as a low-pressure side control valve. When the opening degree of the first control boat 92 passing through the evaporator 3 is 100 to 0%, the opening degree of the second control boat 93 passing through the air side heat exchanger 4 is the same. Degree is O~100%
Therefore, when the opening degree of the first control boat 92 is 100% and low-pressure gas refrigerant flows from the full-volume evaporator 3, the second control boat 93 is closed and no liquid refrigerant flows into the air-side heat exchanger 4.

又以上の構成において、四路切換弁8の第2切換ボート
84を、前記凝縮器2と蒸発器3との何れか一方に選択
的に接続すると共に、三方弁の第1制御ボート92を、
前記凝縮器2と蒸発器3との何れか一方に選択的に接続
し、しかも前記第2切換ボート84と第1制御ボート9
2とは、前記凝縮器2と蒸発器3とに可逆的に接続する
のであつて、この接続方法は、四つの逆止弁10a〜1
0dを組合せた四方チヤツキ弁や、図示していないが四
路切換弁のごとき四ボート弁を用いるのである。
In the above configuration, the second switching boat 84 of the four-way switching valve 8 is selectively connected to either the condenser 2 or the evaporator 3, and the first control boat 92 of the three-way valve is connected to
selectively connected to either the condenser 2 or the evaporator 3, and the second switching boat 84 and the first control boat 9
2 is reversibly connected to the condenser 2 and evaporator 3, and this connection method is based on the four check valves 10a to 1.
A four-way switch valve in combination with 0d or a four-boat valve such as a four-way switching valve (not shown) is used.

尚図において11は、前記受液器5と前記蒸発器3との
間を結ぶ液管71の途中に介装する感温膨張弁、12は
、同じく前記受液器5と空気側熱交換器4との間を結ぶ
液管72の途中に介装する感温膨張弁であり、また13
,14は逆止弁である。
In the figure, 11 is a temperature-sensitive expansion valve interposed in the middle of the liquid pipe 71 connecting the liquid receiver 5 and the evaporator 3, and 12 is the air side heat exchanger between the liquid receiver 5 and the air side heat exchanger. It is a temperature-sensitive expansion valve interposed in the middle of the liquid pipe 72 connecting between 13 and 13.
, 14 are check valves.

又前記四路切換弁8は、そのコイルが通電されていない
と第1図実線位置に位置して冷凍サイクルを冷房優先運
転とし、通電さると第2照実線位置に切換えて、暖房優
先運転とするのであつて、起動時、冷水温度が設定温度
より高く温水温度も設定温度より低い場合には、前記冷
水入口サーモTlll及び温水入口サーモTh2により
制御され、かつ前記コイルと接続するリレーR1励磁さ
れず、従つて前記四路切換弁8は、第1図実線位置に位
置し、冷房優先運転となるようになつている。
Furthermore, when the coil is not energized, the four-way switching valve 8 is located at the solid line position in FIG. 1, putting the refrigeration cycle in cooling priority operation, and when energized, it is switched to the second solid line position, and heating priority operation is performed. At startup, if the cold water temperature is higher than the set temperature and the hot water temperature is lower than the set temperature, the relay R1, which is controlled by the cold water inlet thermo Tll and the hot water inlet thermo Th2, and connected to the coil is energized. Therefore, the four-way switching valve 8 is located at the position shown by the solid line in FIG. 1, so that cooling is given priority.

そして、この冷房優先運転において、温水出口温度が設
定温度より低いのに、冷水入口温度が設定温度より低く
なると、前記リレーR1が励磁され、前記四路切換弁8
は第2図実線位置に切換えられ、暖房優先運転となる。
又、前記三方弁9の開度制御は、冷房優先運転において
は、前記温水出口サーモ′1114を用い、温水出口温
度により行なうと共に暖房優先運転においては、冷水出
口サーモTh3を用い、冷水出口温度により行なうので
ある。
In this cooling priority operation, when the cold water inlet temperature becomes lower than the set temperature even though the hot water outlet temperature is lower than the set temperature, the relay R1 is energized and the four-way switching valve 8
is switched to the position shown by the solid line in Figure 2, giving priority to heating operation.
The opening degree of the three-way valve 9 is controlled by the hot water outlet temperature using the hot water outlet thermometer '1114 in the cooling priority operation, and by using the cold water outlet thermometer Th3 in the heating priority operation. I will do it.

そして、前記圧縮機1の能力制御は、冷房優先運転にお
いては、冷水入口サーモThlを用い冷水入口温度によ
り行ない、暖房優先運転においては温水入口サーモTh
2を用い温水入口温度により行なうのである。しかして
以上の構成において、前記三方弁9の第1及び第2制御
ボート92,93が前記蒸発器3と前記熱交換器4とに
それぞれ連通している両制御ボート開状態を検出したと
き作動する検出具20を設けると共に、該検出具20の
作動により計時を開始し、一定時間前後前記三方弁9に
対して前記第1制御ボート92を閉成する指令を発し、
かつ所定時間該指令を維持する冷媒流通制御回路Aとを
設け、暖房優先運転において、前記三方弁9の第1及び
第2制御ボート92,93が、前記蒸発器3と前記熱交
換器4とにそれぞれ連通しているとき、前記検出具20
を作動させ、前記制御回路Aによソー定時間後、前記第
1制御ボート92を閉じて、前記凝縮器2からの冷媒を
全量を所定時間前記熱交換器に流通させるようにしたの
である。
Capacity control of the compressor 1 is performed by the cold water inlet temperature using the cold water inlet thermometer Thl in the cooling priority operation, and by the hot water inlet thermometer Th in the heating priority operation.
2 and the hot water inlet temperature. However, in the above configuration, when the first and second control boats 92 and 93 of the three-way valve 9 detect the open state of both control boats communicating with the evaporator 3 and the heat exchanger 4, respectively, the operation is performed. A detecting device 20 is provided, and the detecting device 20 starts measuring time by operating the detecting device 20, and issues a command to the three-way valve 9 to close the first control boat 92 before and after a certain period of time;
and a refrigerant flow control circuit A that maintains the command for a predetermined period of time, and in the heating priority operation, the first and second control boats 92 and 93 of the three-way valve 9 control the evaporator 3 and the heat exchanger 4. When the detection device 20 is in communication with the
was activated, and after a predetermined period of time had passed by the control circuit A, the first control boat 92 was closed to allow the entire amount of refrigerant from the condenser 2 to flow through the heat exchanger for a predetermined period of time.

前記検出具20は、第3図のごとく、二つのリミットス
イッチ20A,20Wを用い、前記三方弁9の第1の制
御ボート92が開度100%で、第2制御ボート93が
開度0%のときには、前記リミットスイッチ20Wを開
動作させ、また第1制御ボート92が開度0%で第2制
御ボート93が開度100%のときに前記リミットスイ
ッチ20Aを開動作させるようにし、前記第1及び第2
制御ボート92,93がともに開度0%以上のとき閉動
作させるようにしている。
As shown in FIG. 3, the detection device 20 uses two limit switches 20A and 20W, and the first control boat 92 of the three-way valve 9 has an opening of 100%, and the second control boat 93 has an opening of 0%. At this time, the limit switch 20W is opened, and the limit switch 20A is opened when the first control boat 92 has an opening of 0% and the second control boat 93 has an opening of 100%. 1st and 2nd
The closing operation is performed when both the control boats 92 and 93 have an opening degree of 0% or more.

尚前記検出具20は1つのリミットスイッチを用い、第
2制御ボート93の開度がある設定範囲に位置するとき
閉動作するごとくしてもよいし、また二つのリミットス
イッチ20A,20Wを用いる場合も、第1及び第2制
御ボート92,93の開度範囲を設定し、この範囲内で
閉動作するごとくしてもよい。そして以上の如く設ける
リミットスイッチ20A,20Wは、第3図のごとくそ
の接点を直列に接続し、この直列回路に、前記四路切換
弁8のコイルを通電制御するリレーR1の常開接点と、
前記冷媒流通制御回路Aの一部を構成するタイマーリレ
ーR2とを直列に接続するのである。前記制御回路Aは
、主として、前記三方弁9の各ボート92,93が、継
続して、前記蒸発器3、熱交換器4に共に連通している
時間を計測し動作するタイマーT1、該タイマーT1の
動作で前記三方弁9の第2制御ボート93を全開にする
、換言すると、第1制御ボート92を全閉するリレーR
3、このリレーR3を所定時間励磁するためのタイマー
T2からなるものであり、以下、この制御回路Aについ
て詳述する。
The detection device 20 may use one limit switch and close when the opening of the second control boat 93 is within a certain set range, or when two limit switches 20A and 20W are used. Alternatively, the opening degree range of the first and second control boats 92 and 93 may be set, and the closing operation may be performed within this range. The limit switches 20A and 20W provided as above have their contacts connected in series as shown in FIG.
The timer relay R2, which constitutes a part of the refrigerant flow control circuit A, is connected in series. The control circuit A mainly includes a timer T1 that operates by measuring the time during which the boats 92 and 93 of the three-way valve 9 are continuously communicating with the evaporator 3 and the heat exchanger 4; Relay R fully opens the second control boat 93 of the three-way valve 9 by the operation of T1, in other words, fully closes the first control boat 92.
3. It consists of a timer T2 for energizing this relay R3 for a predetermined period of time.This control circuit A will be described in detail below.

前記タイマーT1は、前記空気側熱交換器4に油溜りが
生じて油不足が生ずる時間(例えば1時間)を設定する
もので、前記タイマーリレーR2弐常開接点と後記する
リレーR3の自己保持用常開接点との並列回路に、後記
するタイマーT2の常閉接点T2−1を介して直列に接
続する。
The timer T1 is used to set the time (for example, 1 hour) during which an oil pool occurs in the air-side heat exchanger 4 and oil shortage occurs, and is used to maintain the self-holding of the timer relay R2 normally open contact and the relay R3, which will be described later. It is connected in series to the parallel circuit with the normally open contact for the timer T2 via the normally closed contact T2-1 of the timer T2, which will be described later.

前記リレーR3は、前記タイマーT1のカウントj終了
により閉じる接点T1−1と直列に接続しており、前記
リミットスイッチ20A,20Wが閉じ、タイーR2を
励磁して、タイマーT1を作動させた後、1時間経過後
前記リレーR,を励磁するもので、このリレーR,の励
磁により、前記三方弁9のコントロールモータを作動さ
せ、前記第1制御ボート92を閉じ、第2制御ボート9
3の開度を100%とするものである。また前記タイマ
ーT2は、前記リレーR,の励磁時間、換言すると、前
記第1制御ボート92を閉じ、第2制御ボート9の開度
を100%とする時間を制御するもので、前記リレーR
3を並列に接続している。
The relay R3 is connected in series with the contact T1-1 that closes when the count j of the timer T1 ends, and after the limit switches 20A and 20W are closed and the tie R2 is energized and the timer T1 is activated, After one hour has elapsed, the relay R is energized, and the energization of the relay R operates the control motor of the three-way valve 9, closes the first control boat 92, and closes the second control boat 9.
The opening degree of No. 3 is 100%. Further, the timer T2 controls the excitation time of the relay R, in other words, the time for closing the first control boat 92 and setting the opening degree of the second control boat 9 to 100%.
3 are connected in parallel.

しかし前記リレーR1が励磁され四路切換弁8を、第1
図実線位置から第2図実線のごとく切換えて暖房優先運
転しているとき、冷房負荷が少なく、三方弁9の第1及
び第2制御ボート92,93がともに、第2図のごとく
前記蒸発器3及び前記熱交換器4に連通すると、前記リ
ミットスイッチ20A,20Wが閉動作し、前記リレー
R1の励磁による常開接点の閉動作とにより、前記タイ
マーリレーRBが励磁され、タイマーT1が作動を開始
する。
However, the relay R1 is energized and the four-way selector valve 8 is switched to the first
When switching from the solid line position in the figure to the solid line in Figure 2 to perform heating priority operation, the cooling load is small and both the first and second control boats 92 and 93 of the three-way valve 9 are connected to the evaporator as shown in Figure 2. 3 and the heat exchanger 4, the limit switches 20A and 20W are closed, and the normally open contacts are closed by the excitation of the relay R1, so that the timer relay RB is energized and the timer T1 is activated. Start.

そしてこのタイマーT1の作動開始後一定時間(1時間
)経過すると、前記接点T1−1が閉じ、リレーR3が
励磁され、前記三方弁9のコントロールモータを動作さ
せ第4図のごとく、前記第2制御ボート93の開度を1
00%とするのである。
When a certain period of time (one hour) has elapsed after the timer T1 started operating, the contact T1-1 closes, the relay R3 is energized, and the control motor of the three-way valve 9 is operated, as shown in FIG. The opening degree of the control boat 93 is set to 1
It is set as 00%.

このとき、前記リミットスイッチ20Aは開動作するこ
とになるが前記リレーR3の励磁により常開接点が閉じ
、自己保持回路が形成されるので、前記三方弁9の動作
により、リミットスイッチ20Aが開動作しても前記レ
ーR3は励磁されたま)となる。そしてこのソーR3の
励磁と同時に前記タイマーT2が作動を開始し、この作
動開始後1定時間(例えば1扮)経過すると、前記接点
T2−1,T1一1が開き、前記自己保持回路を開路し
、前記リレーR3を消磁して、前記三方弁9を復帰動作
させるのである。
At this time, the limit switch 20A will open, but the normally open contact will close due to the excitation of the relay R3, forming a self-holding circuit, so the limit switch 20A will open due to the operation of the three-way valve 9. Even if the ray R3 is energized, the ray R3 remains energized. Simultaneously with the excitation of the saw R3, the timer T2 starts operating, and when one fixed period of time (for example, one cycle) has elapsed after the start of this operation, the contacts T2-1 and T1-1 open, opening the self-holding circuit. Then, the relay R3 is demagnetized and the three-way valve 9 is operated to return.

またこの復帰動作後、前記三方弁9の第1及び第2制御
ボート92,93がともに開いているとき、前記リミッ
トスイッチ20A,20Wは、閉動作し、再びタイマー
リレーR2が励磁され、前記した動作を繰返すのである
Further, after this return operation, when both the first and second control boats 92, 93 of the three-way valve 9 are open, the limit switches 20A, 20W are closed, and the timer relay R2 is energized again, as described above. Repeat the action.

以上の如く、三方弁9の第1及び第2制御ボート92,
93がともに開いていて、前記空気側熱交換器4に、冷
媒が流れているとき、この流量が少なく、前記熱交換器
4の潤滑油が蓄積さることがあつても、一定時間ごとに
、冷媒の全量を流通させるので、蓄積された油は、確実
に回収されるのである。
As described above, the first and second control boats 92 of the three-way valve 9,
93 are both open and refrigerant is flowing into the air side heat exchanger 4, even if this flow rate is small and the lubricating oil in the heat exchanger 4 may accumulate, at regular intervals, Since the entire amount of refrigerant is circulated, the accumulated oil is reliably recovered.

尚、この回収時、前記蒸発器3に冷媒は流れないが、そ
もそもこの場合冷房負荷が少なくて、冷媒の1部を前記
熱交換器4に迂回させているのであるから、前記回収時
間内に冷房運転が行なわれノなくとも、冷房に支障を与
えることは少ない。
Although the refrigerant does not flow into the evaporator 3 during this recovery, since the cooling load is small in this case and a part of the refrigerant is detoured to the heat exchanger 4, the refrigerant does not flow into the evaporator 3 within the recovery time. Even if the cooling operation is not performed, there is little problem in cooling the air conditioner.

しかも、潤滑油の回収運転中は、冷房能力発揮できない
ため、通常運転に復帰すると、冷水入口サーモTll3
により自動的に第1制御ボート92の開度が大きくなつ
て、蒸発器3の潤滑油の回収運転も・可能となるのであ
る。以上の如く本発明によると、冷房負荷が少なく暖房
優先運転としていて、三方弁の第1及び第2制御ボート
が水冷却用蒸発器と空気側熱交換器とに連通して前記蒸
発器と熱交換器から圧縮機に冷・媒を収入するごとく運
転しているとき、前記空気側熱交換器に流れる冷媒量が
少なく、前記熱交換器に冷媒中に混入する油が蓄積され
ることがあつても、前記運転を一定時間行なつた後、強
制的に、冷媒の全量を前記熱交換器に一定時間流通する
ので、前記熱交換器内に蓄積される油は確実に回収でき
るのであつて、油不足が生することを解消できるのであ
る。
Moreover, during the lubricating oil recovery operation, the cooling capacity cannot be demonstrated, so when normal operation is resumed, the cold water inlet thermostat Tll3
This automatically increases the opening degree of the first control boat 92 and enables the lubricating oil recovery operation of the evaporator 3. As described above, according to the present invention, the cooling load is small and heating is prioritized, and the first and second control boats of the three-way valve communicate with the water cooling evaporator and the air-side heat exchanger to When the compressor is being operated so that refrigerant is supplied from the exchanger to the compressor, the amount of refrigerant flowing to the air-side heat exchanger is small, and oil mixed in the refrigerant may accumulate in the heat exchanger. However, after the operation has been carried out for a certain period of time, the entire amount of refrigerant is forced to flow through the heat exchanger for a certain period of time, so that the oil accumulated in the heat exchanger can be reliably recovered. , it is possible to eliminate the problem caused by oil shortage.

しかも本発明によると、前記油の回収を行なうための特
別な機構は必要なく、簡単な構成で行なえるのである。
図面の簡単な説明第1図は本発明装置の一実施例を示す
冷房優先運転の冷媒配管系統図、第2図は同じく暖房優
先運転の冷媒配管系統図、第3図は要部の電気回路図、
第4図は第2図の状態から油回収に制御した状態の冷媒
配管系統図である。
Furthermore, according to the present invention, there is no need for a special mechanism for recovering the oil, and the oil recovery can be accomplished with a simple configuration.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a refrigerant piping system diagram for cooling priority operation showing an embodiment of the device of the present invention, Fig. 2 is a refrigerant piping system diagram for heating priority operation, and Fig. 3 is a main electrical circuit. figure,
FIG. 4 is a refrigerant piping system diagram in a state in which oil recovery is controlled from the state in FIG. 2.

1・・・・・・圧縮機、2・・・・・・水加熱用凝縮器
、3・・・水冷却用蒸発器、4・・・・・・空気側熱交
換器、9・・・三方弁、20・・・・・・検出具、91
・・・・・固定ボート、92・・・・・・第1制御ボー
ト、93・・・・・・第2制御ボート、Tl,T2・・
・・・タイマー、A・・・・・・冷媒流通制御回路。
1...Compressor, 2...Condenser for water heating, 3...Evaporator for water cooling, 4...Air side heat exchanger, 9... Three-way valve, 20...Detection tool, 91
...Fixed boat, 92...First control boat, 93...Second control boat, Tl, T2...
...Timer, A...Refrigerant flow control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機1、水加熱用凝縮器2、水冷却用蒸発器3、
空気側熱交換器4、一つの固定ポート91と二つの第1
及び第2制御ポート92、93とをもつ三方弁9を備え
、この三方弁9の第1制御ポート92を前記蒸発器3に
接続し、第2制御ポート93を、前記熱交換器4に接続
して成る熱回収式空気調和装置において、前記三方弁9
の第1及び第2制御ポート92、93が前記蒸発器3と
前記熱交換器4とにそれぞれ連通している両制御ポート
開状態を検出したとき作動する検出具20を設けると共
に、該検出具20の作動により計時を開始し、一定時間
後後前記三方弁9に対して前記第1制御ポート92を閉
成する指令を発し、かつ所定時間該指令を維持する冷媒
流通制御回路Aを備えたことを特徴とする熱回収式空気
調和装置。
1 Compressor 1, water heating condenser 2, water cooling evaporator 3,
Air side heat exchanger 4, one fixed port 91 and two first
and second control ports 92 and 93, the first control port 92 of the three-way valve 9 is connected to the evaporator 3, and the second control port 93 is connected to the heat exchanger 4. In the heat recovery type air conditioner, the three-way valve 9
A detection device 20 is provided which operates when the first and second control ports 92 and 93 of the evaporator 3 and the heat exchanger 4 are connected to the evaporator 3 and the heat exchanger 4, respectively. The refrigerant flow control circuit A includes a refrigerant flow control circuit A that starts timing by the operation of 20, issues a command to the three-way valve 9 to close the first control port 92 after a certain period of time, and maintains the command for a predetermined period of time. A heat recovery type air conditioner characterized by:
JP8323779A 1979-06-30 1979-06-30 Heat recovery air conditioner Expired JPS6045345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8323779A JPS6045345B2 (en) 1979-06-30 1979-06-30 Heat recovery air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8323779A JPS6045345B2 (en) 1979-06-30 1979-06-30 Heat recovery air conditioner

Publications (2)

Publication Number Publication Date
JPS567955A JPS567955A (en) 1981-01-27
JPS6045345B2 true JPS6045345B2 (en) 1985-10-08

Family

ID=13796709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8323779A Expired JPS6045345B2 (en) 1979-06-30 1979-06-30 Heat recovery air conditioner

Country Status (1)

Country Link
JP (1) JPS6045345B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102086A1 (en) * 2003-05-15 2004-11-25 Daikin Industries, Ltd. Refrigerator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4411870B2 (en) 2003-06-13 2010-02-10 ダイキン工業株式会社 Refrigeration equipment
EP2085721A1 (en) * 2008-02-04 2009-08-05 Mobile Comfort Holding Multi-energy thermodynamic device with simultaneous production of hot water, warm water, cold water and electricity
FR2927159A1 (en) * 2008-02-04 2009-08-07 Mobile Comfort Holding Soc Par MULTIPURPOSE THERMODYNAMIC DEVICE FOR HEATING AND AIR CONDITIONING

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102086A1 (en) * 2003-05-15 2004-11-25 Daikin Industries, Ltd. Refrigerator
CN100340827C (en) * 2003-05-15 2007-10-03 大金工业株式会社 Refrigerator
US7426837B2 (en) 2003-05-15 2008-09-23 Daikin Industries, Ltd. Refrigerator

Also Published As

Publication number Publication date
JPS567955A (en) 1981-01-27

Similar Documents

Publication Publication Date Title
CN101233375B (en) Method for preventing spill start in heat pump and controller
JPS6045345B2 (en) Heat recovery air conditioner
JPS63213765A (en) Refrigerator
JP3343916B2 (en) Refrigeration equipment
JPS5856529Y2 (en) Refrigeration equipment
JPH06123527A (en) Refrigerating cycle of deep freezing refrigerating unit
JPH0333991B2 (en)
JPH0217370A (en) Operation control device for air conditioning device
JPH08285393A (en) Air conditioner for multi-room
JP2569796B2 (en) Thermal storage type air conditioner
JP3099574B2 (en) Air conditioner pressure equalizer
JPH0522761Y2 (en)
JPS5950023B2 (en) water heater
JPS6221889Y2 (en)
JPS6346350B2 (en)
JPH0772647B2 (en) Pressure equalizer for air conditioner
JPH01179876A (en) Refrigerating device
JPS5971963A (en) Heat pump type refrigeration cycle
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPS62213654A (en) Heat pump type refrigeration cycle
JPS62129660A (en) Method of controlling refrigerant in refrigerator
JPS6032534Y2 (en) Heat recovery air conditioner
JPH03286979A (en) Defrosting apparatus of air conditioner
JPS5926221B2 (en) Heat recovery air conditioner
JPS6340763Y2 (en)