JPS6032534Y2 - Heat recovery air conditioner - Google Patents

Heat recovery air conditioner

Info

Publication number
JPS6032534Y2
JPS6032534Y2 JP6062178U JP6062178U JPS6032534Y2 JP S6032534 Y2 JPS6032534 Y2 JP S6032534Y2 JP 6062178 U JP6062178 U JP 6062178U JP 6062178 U JP6062178 U JP 6062178U JP S6032534 Y2 JPS6032534 Y2 JP S6032534Y2
Authority
JP
Japan
Prior art keywords
heat exchanger
valve
air
bypass circuit
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6062178U
Other languages
Japanese (ja)
Other versions
JPS54162963U (en
Inventor
武夫 植野
民久 原田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP6062178U priority Critical patent/JPS6032534Y2/en
Publication of JPS54162963U publication Critical patent/JPS54162963U/ja
Application granted granted Critical
Publication of JPS6032534Y2 publication Critical patent/JPS6032534Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、熱回収式空気調和装置、詳しくは水加熱用熱
交換器、水冷却用熱交換器及び凝縮器又は蒸発器として
動らく空気側熱交換器を備え、冷暖房専用運転と冷房優
先運転と暖房優先運転が行なえるようにした熱回収式空
気調和装置に関する。
[Detailed description of the invention] The present invention comprises a heat recovery type air conditioner, specifically a water heating heat exchanger, a water cooling heat exchanger, and an air side heat exchanger that operates as a condenser or an evaporator. The present invention relates to a heat recovery type air conditioner that is capable of performing cooling-only operation, cooling-priority operation, and heating-priority operation.

従来此種空気調和装置は、冷房負荷と暖房負荷との大き
さが同じの場合、空気側熱交換器を用いずに冷暖房を同
時に行なう熱回収運転を行なったり、冷房負荷より大き
いときには、前記空気側熱交換器を補助凝縮器として運
転する冷房優先運転と、前記水加熱用熱交換器を用いず
に空気側熱交換器を凝縮器として運転する冷房専用運転
とを行ない、また暖房負荷が冷房負荷より大きいときに
は、前記空気側熱交換器を補助蒸発器として運転する暖
房優先運転と、前記水冷却用熱交換器を用いずに空気側
熱交換器を蒸発器として運転する暖房専用運転とを行な
うようにしている。
Conventionally, this type of air conditioner performs a heat recovery operation that simultaneously performs cooling and heating without using an air-side heat exchanger when the cooling load and heating load are the same size, or when the cooling load is larger than the cooling load, the air conditioner A cooling-priority operation in which the side heat exchanger is operated as an auxiliary condenser, and a cooling-only operation in which the air-side heat exchanger is operated as a condenser without using the water heating heat exchanger, and a heating load is performed when the cooling load is When the load is higher than the load, a heating-priority operation in which the air-side heat exchanger is operated as an auxiliary evaporator, and a heating-only operation in which the air-side heat exchanger is operated as an evaporator without using the water cooling heat exchanger are performed. I try to do it.

又以上の如き運転において、前記空気側熱交換器を蒸発
器として用いる暖房優先又は暖房専用運転の場合、前記
空気側熱交換器がフロスするのであって、フロスト時に
は、前記した運転の外デフロスト運転も行なえるように
している。
Further, in the above operation, in the case of heating priority or heating only operation in which the air side heat exchanger is used as an evaporator, the air side heat exchanger is frosted, and when frosting is performed, defrost operation is performed in addition to the above operation. We are also making it possible to do so.

しかして、前記水加熱用熱交換器は、暖房負荷が存在し
ていて、冷暖房を同時に行なう熱回収運転の場合、必ら
す凝縮器となって温水を加熱するのであり、また前記空
気側熱交換器は、冷房負荷が暖房負荷より大きく冷房優
先運転をしている場合と、暖房負荷がなくて冷房専用運
転をしている場合及びデフロスト運転をしている場合に
は、凝縮器となるのであるが、前記水加熱用熱交換器は
、暖房負荷がなくて冷房専用運転をしている場合におい
ては使用しないし、また前記空気側熱交換器は、冷暖房
負荷が等しくバランス運転している場合においては、使
用しないのである。
Therefore, the water heating heat exchanger serves as a necessary condenser to heat the hot water when there is a heating load and heat recovery operation is performed simultaneously with cooling and heating. The exchanger functions as a condenser when the cooling load is greater than the heating load and the cooling is prioritized, when there is no heating load and the cooling is exclusively operated, and when the defrost operation is performed. However, the water heating heat exchanger is not used when there is no heating load and only cooling operation is performed, and the air side heat exchanger is not used when the cooling and heating loads are equally balanced. In this case, it is not used.

従って、これら不使用時、前記水加熱用熱交換器及び空
気側熱交換器に液冷媒が流れずに溜ることがある。
Therefore, when these are not in use, the liquid refrigerant may not flow into the water heating heat exchanger and the air side heat exchanger and may accumulate therein.

このため不使用時の冷媒貯溜量を考慮して冷媒充填量を
多くする必要があり、またたとえ冷媒充填量を多くして
も、前記貯溜量は一定でないため、冷媒の過不足が生ず
る問題があった。
For this reason, it is necessary to increase the amount of refrigerant charged by considering the amount of refrigerant stored when not in use, and even if the amount of refrigerant charged is increased, the amount stored is not constant, so there is a problem of excess or deficiency of refrigerant. there were.

そこで本考案は、以上の如き問題点に鑑み考案してもの
で、目的とする処は、冷媒充填量を少なくでき、前記し
たバランス運転又は冷房専用運転を行なう場合でも、冷
媒量の過不足のない安定した運転が行なえるようにする
ことにあり、前記水加熱用熱交換器の出口側と前記水冷
却用熱交換器の入口側との間に、前記受液器と膨張機構
とを側路する第1バイパス回路を、また前記空気側熱交
換器が凝縮器として作用するときの該熱交換器の出口側
と、前記水冷却用熱交換器の入口側との間に、前記受液
器と膨張機構とを側路する第2バイパス回路とをそれぞ
れ設け、前記第1バイパス回路に前記水加熱用熱交換器
の不使用時である冷房専用運転時開く第1電磁弁を介装
し、第2バイパス回路に前記空気側熱交換器の不使用時
である冷暖房負荷とが等しくバランス運転している時開
く第2電磁弁を介装したことを特徴とするものである。
Therefore, the present invention was devised in view of the above-mentioned problems, and the purpose is to reduce the amount of refrigerant charged, and even when performing the above-mentioned balanced operation or cooling-only operation, there is no need to worry about excess or deficiency of refrigerant. The liquid receiver and the expansion mechanism are placed on the side between the outlet side of the water heating heat exchanger and the inlet side of the water cooling heat exchanger. A first bypass circuit is provided between the outlet side of the air side heat exchanger when the air side heat exchanger acts as a condenser and the inlet side of the water cooling heat exchanger. A second bypass circuit is provided for bypassing the container and the expansion mechanism, and a first solenoid valve is interposed in the first bypass circuit, which opens during cooling-only operation when the water heating heat exchanger is not in use. The second bypass circuit is characterized by interposing a second solenoid valve that opens when the air-side heat exchanger is not in use and the air-conditioning and heating loads are equally balanced.

尚本考案において、前記バイパス回路は、水加熱用熱交
換器の出口側と水冷却用熱交換器の入口側との間、及び
空気側熱交換器の凝縮器として働らくときの出口側と水
冷却用熱交換器の入口側との間にそれぞれ設けることは
好ましいのであるが、必らすしも2回路を必要とするも
のではなく、1回路設けた場合でも、本考案の技術的範
囲に含まれるものである。
In the present invention, the bypass circuit is arranged between the outlet side of the water heating heat exchanger and the inlet side of the water cooling heat exchanger, and between the outlet side of the air side heat exchanger when it functions as a condenser. Although it is preferable to provide two circuits between the water cooling heat exchanger and the inlet side, it is not necessary to provide two circuits, and even if one circuit is provided, it does not fall within the technical scope of the present invention. It is included.

以下本考案装置の実施例を図面に基づいて説明する。Embodiments of the device of the present invention will be described below based on the drawings.

1は圧縮機、2は水加熱用熱交換器(以下単に凝縮器と
いう)、3は水冷却用熱交換器(以下単に蒸発器という
)、4は空気側熱交換器、5は受液器、6はアキュムレ
ータであって、これら機器は冷媒配管7によって各連結
されている。
1 is a compressor, 2 is a water heating heat exchanger (hereinafter simply referred to as a condenser), 3 is a water cooling heat exchanger (hereinafter simply referred to as an evaporator), 4 is an air side heat exchanger, and 5 is a liquid receiver. , 6 are accumulators, and these devices are connected by refrigerant piping 7.

前記圧縮機1は、アンローダ機構をもっており、前記凝
縮器2における温水入口温度を検出する温水入口サーモ
と、前記蒸発器3の冷水入口温度を検出する冷水人口サ
ーモとにより例えば75%、 50%、25%の能力の
3段階にその圧縮機能力が制御されるようになっている
The compressor 1 has an unloader mechanism, and a hot water inlet thermostat detects the hot water inlet temperature of the condenser 2, and a cold water inlet thermostat detects the cold water inlet temperature of the evaporator 3, for example, 75%, 50%, Its compressive power is controlled in three stages of 25% capacity.

また8は、四路切換弁、9は三方弁であって、これら四
路切換弁8及び三方弁9により、前記圧縮機1から吐出
する冷媒の流れを制御し、前記空気側熱交換器4を凝縮
器としたり、蒸発器としたり或いは冷媒を流さなかった
りするのであり、冷房専用運転、冷房優先運転、暖房専
用運転、暖房優先運転、バランス運転及びドフロスト運
転が行なえるようにするのである。
Further, 8 is a four-way switching valve, and 9 is a three-way valve, and these four-way switching valve 8 and three-way valve 9 control the flow of refrigerant discharged from the compressor 1, and the air-side heat exchanger 4 It is possible to perform cooling-only operation, cooling-priority operation, heating-only operation, heating-priority operation, balance operation, and frost operation.

前記四路切換弁8は、高圧側ポート81低圧側ポート8
2と、二つの第1及び第2切換ポート83.84との四
つのポートをもった既存の四路切換弁を用いるのであり
、また前記三方弁9は、一つの固定ポート91と、二つ
の第1及び第2制御ポート92.93とをもち、これら
制御ポート92.93の開度を調整可能に構成するので
あって、前記四路切換弁8の前記高圧側ポート81を、
前記圧縮機1の吐出口に、低圧側ポート82を、前記ア
キュムレータ6にそれぞれ接続すると共に、前記第1切
換ポート83を、前記三方弁9の固定ポート91に、第
2切換ポート84を前記凝縮器2と蒸発器との何れか一
方と選択的に接続するのであり、また前記三方弁9の第
1制御ポート92を、前記蒸発器3と凝縮器2との何れ
か一方と選択的に接続し、第2制御ポート93を前記空
気側熱交換器4に接続するのである。
The four-way switching valve 8 has a high pressure side port 81 and a low pressure side port 8.
2, and two first and second switching ports 83, 84, and the three-way valve 9 has one fixed port 91 and two first and second switching ports 83, 84. It has first and second control ports 92.93, and is configured such that the opening degrees of these control ports 92.93 can be adjusted, and the high pressure side port 81 of the four-way switching valve 8 is
The low pressure side port 82 is connected to the discharge port of the compressor 1 and the accumulator 6, the first switching port 83 is connected to the fixed port 91 of the three-way valve 9, and the second switching port 84 is connected to the condensing port 82. The first control port 92 of the three-way valve 9 is selectively connected to either the evaporator 3 or the condenser 2. Then, the second control port 93 is connected to the air side heat exchanger 4.

前記三方弁9はコントロールモータにより前記制御ポー
ト92.93の開度を0〜100%制御するもので、前
記四路切換弁8の切換により高圧ガス冷媒を前記凝縮器
2と空気側熱交換器4とに所定比率で流す高圧側制御弁
となったり、前記蒸発器3と空気側熱交換器4とで蒸発
した低圧ガス冷媒を所定比率で流す低圧側制御弁となっ
たりするものである。
The three-way valve 9 controls the opening degree of the control port 92.93 from 0 to 100% by a control motor, and the four-way switching valve 8 switches the high-pressure gas refrigerant between the condenser 2 and the air side heat exchanger. It serves as a high-pressure side control valve that allows the low-pressure gas refrigerant evaporated in the evaporator 3 and the air-side heat exchanger 4 to flow at a predetermined ratio.

しかして、高圧側制御弁として働らく場合、前記凝縮器
2への開度即ち第1制御ポート92の開度が100%〜
0%のとき、空気側熱交換器4への開度即ち第2制御ポ
ート93の開度は0〜100%となり、第1制御ポート
92の開度が100%で高圧ガス冷媒の全量が凝縮器2
に流れるとき、空気側熱交換器4には流れない。
Therefore, when working as a high pressure side control valve, the opening degree to the condenser 2, that is, the opening degree of the first control port 92 is 100% to
When it is 0%, the opening degree to the air side heat exchanger 4, that is, the opening degree of the second control port 93 is 0 to 100%, and when the opening degree of the first control port 92 is 100%, the entire amount of high-pressure gas refrigerant is condensed. Vessel 2
When the air flows to the air side heat exchanger 4, it does not flow to the air side heat exchanger 4.

また逆の場合凝縮器2に流れない。In the opposite case, it does not flow to the condenser 2.

又低圧側制御弁として働らく場合も同様で蒸発器3に通
ずる第1制御ポート92の開度が100〜0%のときに
は、空気側熱交換器4に通ずる第2制御ポート93の開
度は0〜100%となり、第1制御ポート92の開度が
100%で、低圧ガス冷媒が全量蒸発器3から流れると
き、第2制御ポート93は閉じ、空気側熱交換器4に液
冷媒が流れることはない。
Similarly, when working as a low-pressure side control valve, when the opening degree of the first control port 92 communicating with the evaporator 3 is 100 to 0%, the opening degree of the second control port 93 communicating with the air side heat exchanger 4 is 0 to 100%, the opening degree of the first control port 92 is 100%, and when the low-pressure gas refrigerant flows from the full-volume evaporator 3, the second control port 93 is closed and the liquid refrigerant flows to the air side heat exchanger 4. Never.

又以上の構成において、四路切換弁8の第2切換ポート
84を、前記凝縮器2と蒸発器3との何れか一方に選択
的に接続すると共に、三方弁の第1制御ポート92を、
前記凝縮器2と蒸発器3との何れか一方に選択的に接続
し、しかも前記第2切換ポート84と第1制御ポート9
2とは、前記凝縮器2と蒸発器3とに可逆的に接続する
のであって、この接続方法は、四つの逆止弁10a〜1
0dを組合せた四方チャツキ弁や、四路切換弁のごとき
四ポート弁10を用いるのである。
In the above configuration, the second switching port 84 of the four-way switching valve 8 is selectively connected to either the condenser 2 or the evaporator 3, and the first control port 92 of the three-way valve is connected to the second switching port 84 of the four-way switching valve 8.
selectively connected to either the condenser 2 or the evaporator 3, and the second switching port 84 and the first control port 9.
2 is reversibly connected to the condenser 2 and evaporator 3, and this connection method is based on the four check valves 10a to 1.
A four-port valve 10 such as a four-way check valve or a four-way switching valve is used.

同図において11は、前記受液器5と前記蒸発器3との
間を結ぶ液管71の途中に介装する感温膨張弁、12は
、同じく前記受液器5と空気側熱交換器4との間を結ぶ
液管であって、これら膨張弁11.12には、低圧ガス
管73及び低圧ガス管となる三方弁9と空気側熱交換器
4との連絡管74に通過する均圧回路13.14をもっ
ており、この均圧回路13.14には、これら均圧回路
13.14を連結する前記膨張弁11.12内の均圧チ
ャンバー(図示せず)に高圧液冷媒を供給し、前記膨張
弁11.12を強制的に閉じる三方電磁弁15.16を
介装している。
In the figure, 11 is a temperature-sensitive expansion valve interposed in the middle of a liquid pipe 71 connecting the liquid receiver 5 and the evaporator 3, and 12 is a heat exchanger between the liquid receiver 5 and the air side heat exchanger. These expansion valves 11 and 12 are connected to a low-pressure gas pipe 73 and an equalizer pipe 74 that connects the three-way valve 9 and the air-side heat exchanger 4, which serve as low-pressure gas pipes. The pressure equalization circuit 13.14 has a pressure equalization circuit 13.14 which supplies high pressure liquid refrigerant to a pressure equalization chamber (not shown) in the expansion valve 11.12 which connects these pressure equalization circuits 13.14. However, a three-way solenoid valve 15.16 is interposed to forcibly close the expansion valve 11.12.

又17は、前記均圧回路14と、前記液管72で、空気
側熱交換器4が凝縮器となるときの高圧液管部分との間
に介装するバイパス管であり、このバイパス管17には
前記高圧液管部分への流れのみを許るす逆止弁18と高
圧調整弁19とを介装し、前記空気側熱交換器4を凝縮
器として運転する場合高圧圧力が、前記調整弁19の設
定値より低い場合、前記バイパス管17を開いて未凝縮
ガスを受液器5に送ると共に、空気側熱交換器4内に凝
縮液を溜めてこの熱交換器14の凝縮圧力を上昇させる
のである。
Reference numeral 17 denotes a bypass pipe interposed between the pressure equalization circuit 14 and the high-pressure liquid pipe portion of the liquid pipe 72 when the air side heat exchanger 4 becomes a condenser. is equipped with a check valve 18 and a high pressure regulating valve 19 that allow flow only to the high pressure liquid pipe section, and when the air side heat exchanger 4 is operated as a condenser, the high pressure is If the value is lower than the set value of the valve 19, the bypass pipe 17 is opened to send the uncondensed gas to the receiver 5, and the condensate is stored in the air side heat exchanger 4 to reduce the condensation pressure of the heat exchanger 14. It raises it.

尚図面に示した前記高圧調整弁19は、ヘッドマスター
と称される三方弁を用い、前記高圧液部分を分断して、
二つのポート19a、19bに連結し、残り一つのポー
ト19cに前記バイパス管17を接続しており、更らに
分断した前記高圧液部分を短絡管20で、連絡している
The high pressure regulating valve 19 shown in the drawing uses a three-way valve called a head master to separate the high pressure liquid part.
It is connected to two ports 19a and 19b, and the bypass pipe 17 is connected to the remaining port 19c, and furthermore, the divided high-pressure liquid portion is connected by a short-circuit pipe 20.

従ってこの構成によると、前記凝縮圧力の上昇を緩慢に
できるし、前記短絡管20の径の選定により上昇度合の
調整も行なえるのである。
Therefore, according to this configuration, the increase in the condensing pressure can be made slow, and the degree of increase can also be adjusted by selecting the diameter of the short-circuit pipe 20.

又21は、前記凝縮器2の出口と受液器5とを連結する
液管75に介装する逆止弁であり、22は、前記空気側
熱交換器4と受液器5との間を結ぶ液管76に介装する
逆止弁である。
Further, 21 is a check valve installed in a liquid pipe 75 connecting the outlet of the condenser 2 and the liquid receiver 5, and 22 is a check valve installed between the air side heat exchanger 4 and the liquid receiver 5. This is a check valve installed in the liquid pipe 76 that connects the

尚前記液管76は、前記膨張弁12を介装した液管72
とは、並列に接続されており、前記液管72を流れる液
冷媒の流れ方向は、受液器5から前記空気側熱交換器4
の方向であり、前記液管76を流れる液冷媒の流れ方向
は、空気側熱交換器4から受液器5の方向である。
Note that the liquid pipe 76 is a liquid pipe 72 in which the expansion valve 12 is interposed.
are connected in parallel, and the flow direction of the liquid refrigerant flowing through the liquid pipe 72 is from the liquid receiver 5 to the air side heat exchanger 4.
The flow direction of the liquid refrigerant flowing through the liquid pipe 76 is from the air side heat exchanger 4 to the liquid receiver 5.

即ち前記四路切換弁8の切換えにより、前記空気側熱交
換器4が蒸発器となる暖房優先運転及び暖房専用運転に
おいては、受液器5から液冷媒か前記液管72を介して
前記空気側熱交換器4に流れ、また蒸発器となる冷房優
先運転及び冷房専用運転においては、前部熱交換器4か
ら液冷媒が前記液管76を介して受液器5に流れるので
ある。
That is, in heating-priority operation and heating-only operation in which the air-side heat exchanger 4 becomes an evaporator by switching the four-way switching valve 8, liquid refrigerant is supplied from the liquid receiver 5 through the liquid pipe 72 to the air. In cooling-priority operation and cooling-only operation, the liquid refrigerant flows to the side heat exchanger 4 and becomes an evaporator, and flows from the front heat exchanger 4 to the liquid receiver 5 via the liquid pipe 76.

又23は、前記受液器5と凝縮器2の出口との間に、前
記逆止弁21を側路するバイパス管で、途中にはデフロ
スト時開き、膨張機構として作用する電磁弁24を介装
している。
Further, 23 is a bypass pipe that bypasses the check valve 21 between the liquid receiver 5 and the outlet of the condenser 2, and a solenoid valve 24 that opens during defrosting and acts as an expansion mechanism is inserted in the middle. I am wearing it.

又25は、前記四ポート弁10と四路切換弁8の第2切
換ポート84とを結ぶ短絡管77と、前記凝縮器2の入
口側との間に設けるバイパス管で、このバイパス管25
の途中にはデフロスト時開く、電磁弁26を介装してい
る。
Further, 25 is a bypass pipe provided between a short-circuit pipe 77 connecting the four-port valve 10 and the second switching port 84 of the four-way switching valve 8 and the inlet side of the condenser 2;
A solenoid valve 26, which opens during defrosting, is interposed in the middle.

第1図に示したものは、以上の如く構成する空気調和装
置において、前記凝縮器2の出口と、前記逆止弁21と
の間に液管75と、前記蒸発器3の入口と前記膨張弁1
1との間の低圧液管78との間に、前記受液器5と膨張
弁11とを側路する第1バイパス回路27を設け、また
前記空気側熱交換器4の凝縮器として作用するときの出
口と前記逆止弁22との間の液管76と、前記低圧液管
78との間に、前記第1バイパス回路27と同様受液器
5と膨張弁11とを側路すを第1バイパス回路28をそ
れぞれ設け、第1バイパス回路27に、冷房専用運転時
開く第1電磁弁29を、また第2バイパス回路28にバ
ランス運転時開く第2電磁弁30を介装したのである。
The air conditioner shown in FIG. Valve 1
A first bypass circuit 27 that bypasses the liquid receiver 5 and the expansion valve 11 is provided between the low pressure liquid pipe 78 and the low pressure liquid pipe 78 between the air side heat exchanger 4 and the air side heat exchanger 4. Similarly to the first bypass circuit 27, a liquid receiver 5 and an expansion valve 11 are bypassed between the liquid pipe 76 between the outlet and the check valve 22 and the low pressure liquid pipe 78. A first bypass circuit 28 is provided, and the first bypass circuit 27 is provided with a first solenoid valve 29 that opens during cooling-only operation, and the second bypass circuit 28 is provided with a second solenoid valve 30 that opens during balance operation. .

尚、第1図に示したごとく2つのバイパス回路27.2
8を設けるのは、好ましいが、一方の第1又は第2バイ
パス回路27又は28のみを設けてもよい。
In addition, as shown in FIG. 1, two bypass circuits 27.2
8 is preferable, but only one of the first and second bypass circuits 27 and 28 may be provided.

また2つのバイパス回路27.28を設ける場合、各回
路27.28をそれぞれ前記低圧液管78に接続しても
よいが、第1図のごとく合流させて、前記低圧液管78
に接続させた場合回路長さの全量を短かくできるのであ
る。
Further, when two bypass circuits 27, 28 are provided, each circuit 27, 28 may be connected to the low pressure liquid pipe 78, but they may be connected to the low pressure liquid pipe 78 as shown in FIG.
When connected to , the total circuit length can be shortened.

次に以上の如く構成した装置の運転を説明する。Next, the operation of the apparatus constructed as above will be explained.

前記四路切換弁8は非通電においては第1図実線のごと
く位置し、通電されると第1図点線のごとく切換えられ
るのであって、第1図実線位置では前記三方弁9に圧縮
機1からの低圧ガス冷媒が導かれ、この三方弁が高圧側
制御弁となって、前記高圧ガス冷媒を、前記凝縮器2と
前記熱交換器4とに所定比率で流すように作用するので
あり、第1図点線位置では、前記熱交換器4を蒸発器と
し、三方弁9が高圧側制御弁となって前記蒸発器3と前
記熱交換器4とで蒸発した低圧ガス冷媒を所定比率で流
すように作用するのである。
When the four-way switching valve 8 is not energized, it is positioned as shown by the solid line in FIG. 1, and when energized, it is switched as shown by the dotted line in FIG. A low pressure gas refrigerant is introduced from the three-way valve, and this three-way valve acts as a high pressure side control valve to flow the high pressure gas refrigerant to the condenser 2 and the heat exchanger 4 at a predetermined ratio. At the dotted line position in Figure 1, the heat exchanger 4 serves as an evaporator, and the three-way valve 9 serves as a high-pressure side control valve to flow the low-pressure gas refrigerant evaporated in the evaporator 3 and the heat exchanger 4 at a predetermined ratio. This is how it works.

そして前記四路切換弁8の切換判断は、冷水入口又は温
水入口温度により能力制御をする圧縮機1の能力と、冷
水出口又は温水出口温度により第1制御ポート92の開
度を制御する三方弁9の開度との関連において行なうの
である。
The switching judgment of the four-way switching valve 8 is based on the capacity of the compressor 1, which controls the capacity based on the cold water inlet or hot water inlet temperature, and the three-way valve that controls the opening degree of the first control port 92 based on the cold water outlet or hot water outlet temperature. This is done in relation to the opening degree of 9.

即ち冷房優先運転においては、圧縮機1の能力制御を冷
水入口温度により、三方弁9の前記開度を温水入口温度
により制御し、暖房優先運転では、圧縮機1の能力制御
を温水入口温度で、三方弁9の開度制御を冷水出口温度
で行なうようにし、三方弁9の前記開度が100%で、
圧縮機1の能力が制御されたとき、つまり、冷房専用運
転において、温水出口温度が設定温度42′Cより低く
、三方弁9の開度が100%で、高圧ガス冷媒の全量が
水加熱用凝縮器2に送られているとき、冷房負荷が減少
し、冷水入口温度が設定温度10℃より低くなって圧縮
機1の能力が例えば75%に制御されるとき、前記四路
切換弁8に連通して、切換え冷房優先運転とするもので
あり、また、暖房優先運転において冷水出口温度が設定
温度10℃よりも高く三方弁9の前記温度が100%で
水冷却用蒸発器3から低圧ガス冷媒の全量を流している
とき、暖房負荷が減少し温水入口温度が設定温度42′
Cより高くなって、圧縮機1の能力が例えば75%に制
御されるとき、前記四路切換弁8の通電を遮って、冷房
優先運転に切換えるのである。
That is, in the cooling priority operation, the capacity of the compressor 1 is controlled by the cold water inlet temperature, and the opening degree of the three-way valve 9 is controlled by the hot water inlet temperature, and in the heating priority operation, the capacity of the compressor 1 is controlled by the hot water inlet temperature. , the opening degree of the three-way valve 9 is controlled based on the cold water outlet temperature, and the opening degree of the three-way valve 9 is 100%,
When the capacity of the compressor 1 is controlled, that is, in cooling-only operation, the hot water outlet temperature is lower than the set temperature of 42'C, the opening degree of the three-way valve 9 is 100%, and the entire amount of high-pressure gas refrigerant is used for water heating. When the cooling load is reduced and the chilled water inlet temperature becomes lower than the set temperature of 10° C. and the capacity of the compressor 1 is controlled to, for example, 75%, when the water is being sent to the condenser 2, the four-way switching valve 8 is In addition, in the heating priority operation, when the cold water outlet temperature is higher than the set temperature of 10° C. and the temperature of the three-way valve 9 is 100%, low pressure gas is discharged from the water cooling evaporator 3. When the full amount of refrigerant is flowing, the heating load decreases and the hot water inlet temperature reaches the set temperature of 42'
When the capacity of the compressor 1 is controlled to, for example, 75%, the power supply to the four-way selector valve 8 is interrupted and the operation is switched to cooling priority mode.

しかして起動時、冷水温度が設定温度10℃より高く、
温水温度が設定温度42℃より低い場合には、四路切換
弁8に通電することなく、第1図のごとく位置させて、
冷房優先運転で起動するのである。
However, at startup, the cold water temperature is higher than the set temperature of 10℃,
When the hot water temperature is lower than the set temperature of 42°C, the four-way switching valve 8 is not energized and is positioned as shown in Fig. 1.
It starts with priority given to cooling.

このとき冷房負荷(圧縮機入力を含む)と暖房負荷とが
等しくバランスしている場合、前記三方弁9の第1制御
ポート92の開度は100%となって、第1図太線で示
したごとく前記高圧ガス冷媒の全量が実線矢印のように
前記凝縮器2に流れて凝縮し、温水を加熱すると共に、
凝縮した液冷媒の全量が、受液器5、膨張弁11を経て
蒸発器3に入り、冷水を冷却し、四路切換弁8を介して
圧縮機1に戻る冷凍サイクルを形成するのであって、冷
房優先運転体制でのバランス運転が行なわれる。
At this time, if the cooling load (including compressor input) and heating load are equally balanced, the opening degree of the first control port 92 of the three-way valve 9 will be 100%, as shown by the thick line in Figure 1. The entire amount of the high-pressure gas refrigerant flows to the condenser 2 as shown by the solid line arrow and is condensed, heating the hot water and
The entire amount of the condensed liquid refrigerant enters the evaporator 3 via the liquid receiver 5 and the expansion valve 11, cools the cold water, and returns to the compressor 1 via the four-way switching valve 8, forming a refrigeration cycle. , balance operation is performed in a cooling-priority operation system.

このとき、前記空気側熱交換器4は、使用されないので
あって、前記電磁弁30が開き、前記熱交換器4は前記
第2バイパス回路28を介して低圧液管78に連通し、
前記熱交換器4に溜る液冷媒を点線矢印のように回収す
るのである。
At this time, the air side heat exchanger 4 is not used, the solenoid valve 30 is opened, and the heat exchanger 4 is communicated with the low pressure liquid pipe 78 via the second bypass circuit 28.
The liquid refrigerant accumulated in the heat exchanger 4 is recovered as indicated by the dotted arrow.

この回収は、液管76から行なうので、前記熱交換器4
内で蒸発が行なわれることはない。
Since this recovery is performed from the liquid pipe 76, the heat exchanger 4
No evaporation takes place inside.

従って、着霜したり結露したりすることもないのであり
、三方弁9から高圧ガス冷媒が洩れても、確実に回収で
きる。
Therefore, there is no frost formation or dew condensation, and even if the high-pressure gas refrigerant leaks from the three-way valve 9, it can be reliably recovered.

また前記回収は低圧液管78に導き、蒸発器3を介して
行なうから、液冷媒で回収しながら、液バツクの心配も
ないのである。
Furthermore, since the recovery is carried out through the low-pressure liquid pipe 78 and the evaporator 3, there is no need to worry about liquid back-up while recovering the liquid refrigerant.

次に以上の冷暖房等負荷の状態から暖房負荷が小さくな
るか又は冷房負荷が増大して温水出口温度が上昇すると
、温水出口温度その働らきで、前記三方弁9の第1制御
ポート92の開度が100%から減少し、第2制御ポー
ト93が減少分だけ開くことになり、冷房優先運転が行
なわれる。
Next, when the heating load becomes smaller or the cooling load increases and the hot water outlet temperature rises, the hot water outlet temperature causes the first control port 92 of the three-way valve 9 to open. The temperature decreases from 100%, the second control port 93 opens by the amount of the decrease, and cooling priority operation is performed.

即ち三方弁9に導かれる高圧ガス冷媒は、前記三方弁へ
開度に応じ、前記凝縮器2と前記空気側熱交換器4とに
流れ、これら凝縮器2と空気側熱交換器4とで凝縮する
のである。
That is, the high-pressure gas refrigerant guided to the three-way valve 9 flows to the condenser 2 and the air-side heat exchanger 4 depending on the degree of opening of the three-way valve, and the high-pressure gas refrigerant flows to the condenser 2 and the air-side heat exchanger 4. It condenses.

そして、以上の如く凝縮した液冷媒は、受液器5で合流
し、前記した経路を経て圧縮機1に戻るのであって、冷
水入口温度が設定温度10′C以上の場合、前記圧縮機
1はロード100%で運転される。
The liquid refrigerant condensed as described above joins in the liquid receiver 5 and returns to the compressor 1 via the above-mentioned path. is operated at 100% load.

また以上の状態が継続し、暖房負荷がなくなれば、前記
三方弁9の第1制御ポート92の開度は0%となって閉
じ、第2制御ポート93が100%開度となって第2図
太線で示したごとく高圧ガス冷媒の全量が実線矢印のよ
うに空気側熱交換器4に流れ、凝縮器2での温水加熱は
なくなって冷房専用運転が行なわれる。
If the above state continues and the heating load disappears, the opening of the first control port 92 of the three-way valve 9 becomes 0% and closes, and the second control port 93 becomes 100% and closes. As shown by the bold line in the figure, the entire amount of the high-pressure gas refrigerant flows to the air-side heat exchanger 4 as indicated by the solid arrow, and hot water heating in the condenser 2 is stopped, and cooling-only operation is performed.

この冷房専用運転時、前記凝縮器2は使用されないので
あって、前記電磁弁29が開き、前記凝縮器2は、第1
バイパス回路27を介して低圧液管78に連通し、前記
凝機器2に溜る液冷媒を点線矢印のように回収するので
ある。
During this cooling-only operation, the condenser 2 is not used, so the solenoid valve 29 is opened, and the condenser 2 is
It communicates with a low-pressure liquid pipe 78 via a bypass circuit 27, and recovers the liquid refrigerant accumulated in the condensing device 2 as shown by the dotted arrow.

この回収も前記同様液管75から行なうので、凝縮器2
で蒸発作用が生ずることはなく、従って温水が凍結した
りすることはないし、液バツクの心配もないのである。
Since this recovery is also performed from the liquid pipe 75 as described above, the condenser 2
There is no evaporation effect, so the hot water does not freeze, and there is no need to worry about liquid back-up.

又第1図に示した冷房優先運転体制での冷暖房同時運転
の状態から、前記とは逆に、温水出口温度は設定温度4
2′Cより低いのに冷房負荷が小さくなって、冷水入口
温度が設定温度10℃より低くなると、三方弁9の第2
制御ポート92の弁開度は、100%開度を維持したま
)圧縮機1の能力が制御される。
Also, from the state of simultaneous cooling and heating operation in the cooling priority operation system shown in Figure 1, contrary to the above, the hot water outlet temperature is set to 4.
If the cooling load becomes small even though the temperature is lower than 2'C, and the chilled water inlet temperature becomes lower than the set temperature of 10C, the second
The capacity of the compressor 1 is controlled while maintaining the valve opening of the control port 92 at 100%.

即ち前記運転体制における圧縮機1の能力は、冷水入口
温度により制御されるので、冷水入口温度が低く例えば
9℃となれば前記冷水入口サーモの働らきで、ロード7
5%に制御される。
That is, the capacity of the compressor 1 in the operation regime is controlled by the cold water inlet temperature, so if the cold water inlet temperature is low, for example 9°C, the cold water inlet thermostat will work to reduce the load 7.
Controlled to 5%.

従って四路切換弁8に通電され、該四路切換弁8を第1
図点線位置に切換えるのである。
Therefore, the four-way switching valve 8 is energized, and the four-way switching valve 8 is switched to the first
The camera is switched to the position shown by the dotted line in the figure.

この四路切換弁8の切換えにより、高圧ガス冷媒の全量
が四ポート弁10を介して凝縮器2に流れて凝縮し、温
水を加熱すると共に、凝縮した液冷媒は、受液器5から
、その1部は膨張弁11を経て蒸発器3に入って蒸発し
、他の1部は膨張弁12を経て空気側熱交換器4に入っ
て蒸発し、蒸発した低圧ガス冷媒は、所定比率で、前記
三方弁9から四路切換弁8を経て圧縮機1に戻る冷凍サ
イクルに切換えられ、暖房優先運転となるのである。
By switching the four-way switching valve 8, the entire amount of high-pressure gas refrigerant flows to the condenser 2 via the four-port valve 10 and is condensed, heating the hot water, and the condensed liquid refrigerant is transferred from the receiver 5 to One part passes through the expansion valve 11, enters the evaporator 3, and evaporates, and the other part passes through the expansion valve 12, enters the air-side heat exchanger 4, and evaporates.The evaporated low-pressure gas refrigerant is distributed at a predetermined ratio. Then, the cycle is switched from the three-way valve 9 to the refrigeration cycle which returns to the compressor 1 via the four-way switching valve 8, and the heating priority operation is performed.

この暖房優先運転に切換えられると、前記三方弁9は、
低圧側制御弁となり、冷水出口温度を検出する冷水出口
サーモにより開度制御が行なわれると共に、圧縮機1は
、温水入口サーモにより能力制御が行なわれることにな
る。
When switched to this heating priority operation, the three-way valve 9
The opening degree of the compressor 1 is controlled by a cold water outlet thermometer which serves as a low pressure side control valve and detects the cold water outlet temperature, and the capacity of the compressor 1 is controlled by a hot water inlet thermometer.

次に以上の状態において、冷房負荷が減少し冷水出口温
度が例えば6℃より更に低下すれば、三方弁9の第1制
御ポート92の開度は小さくなって、0%に近づくので
あり、前記開度O%で暖房専用運転となる。
Next, in the above state, if the cooling load decreases and the chilled water outlet temperature falls further below, for example, 6° C., the opening degree of the first control port 92 of the three-way valve 9 decreases and approaches 0%. When the opening degree is 0%, it will operate exclusively for heating.

即ち前記第1制御ポート92の開度O%で閉じると、第
2制御ポート93の開度100%となり、凝縮器2で凝
縮した液冷媒は、受液器5から全量が空気側熱交換器4
に導かれ、蒸発した後低圧ガス冷媒の全量が前記三方弁
9を経て四路切換弁8から圧縮機1に戻る冷凍サイクル
を形成するのである。
That is, when the first control port 92 is closed with an opening degree of 0%, the opening degree of the second control port 93 becomes 100%, and the liquid refrigerant condensed in the condenser 2 is transferred from the liquid receiver 5 to the air side heat exchanger. 4
After evaporation, the entire amount of the low-pressure gas refrigerant passes through the three-way valve 9 and returns to the compressor 1 from the four-way switching valve 8, forming a refrigeration cycle.

更らに前記した暖房優先運転において圧縮機入力を含む
冷房負荷と暖房負荷とが等しくバランスする場合は、前
記三方弁9の第1制御ポート92の開度は100%とな
って、第3図太線で示したごとく、高圧ガス冷媒は、実
線矢印のように四路切換弁8から全量が凝縮器2に流れ
て、温水を加熱すると共に、凝縮した液冷媒は、受液器
5の膨張弁11を経て全量が蒸発器3に流れて冷水を冷
却し、蒸発した低圧ガス冷媒は、全量が三方弁9を経て
四路切換弁8から圧縮機1に戻るのであって、暖房優先
運転体制でのバランス運転が行なわれるのである。
Furthermore, in the heating priority operation described above, when the cooling load including the compressor input and the heating load are equally balanced, the opening degree of the first control port 92 of the three-way valve 9 is 100%, as shown in FIG. As shown by the thick line, the entire amount of the high-pressure gas refrigerant flows from the four-way switching valve 8 to the condenser 2 as shown by the solid line arrow, heating the hot water, and the condensed liquid refrigerant flows through the expansion valve of the liquid receiver 5. 11, the entire amount flows to the evaporator 3 to cool the cold water, and the entire amount of the evaporated low-pressure gas refrigerant passes through the three-way valve 9, returns to the compressor 1 from the four-way selector valve 8, and is in a heating priority operation system. A balanced operation is carried out.

この場合も前記したバランス運転と同様電磁弁30が開
いて空気側熱交換器4に溜る液冷媒を点線矢印のように
回収するのである。
In this case as well, the electromagnetic valve 30 is opened and the liquid refrigerant accumulated in the air side heat exchanger 4 is recovered as indicated by the dotted arrow in the same manner as in the above-mentioned balance operation.

又前記した暖房優先運転と暖房専用運転とにおいて、蒸
発器として働らく空気側熱交換器4がフロストした場合
そのデフロスト運転も行なえるのであって、このデフロ
スト運転は四路切換弁8を第1図実線位置に切換え、高
圧ポート81を第1切換ポート83に連通して、高圧ガ
ス冷媒を三方弁9に流し、該三方弁9から前記高圧ガス
冷媒の全量を空気側熱交換器4に流して凝縮させ、この
凝縮潜熱でデフロストを行なう。
Furthermore, in the above-mentioned heating priority operation and heating only operation, if the air-side heat exchanger 4, which functions as an evaporator, becomes frosted, a defrost operation can also be performed. The switch is switched to the solid line position in the figure, the high pressure port 81 is communicated with the first switching port 83, the high pressure gas refrigerant is flowed to the three-way valve 9, and the entire amount of the high pressure gas refrigerant is flowed from the three-way valve 9 to the air side heat exchanger 4. This latent heat of condensation is used for defrosting.

そしてこのデフロスト時、前記電磁弁24及び26を開
き、前記熱交換器4で凝縮した液冷媒を、受液器5から
前記バイパス管23を介して水加熱用凝縮器2に流して
蒸発させ、低圧ガス冷媒を前記バイパス管25、連絡管
77から四路切換弁8を経て圧縮機1に戻すのである。
During defrosting, the electromagnetic valves 24 and 26 are opened, and the liquid refrigerant condensed in the heat exchanger 4 is allowed to flow from the receiver 5 to the water heating condenser 2 via the bypass pipe 23 and evaporated. The low-pressure gas refrigerant is returned to the compressor 1 from the bypass pipe 25 and the communication pipe 77 via the four-way switching valve 8.

このデスフロストサイクルにおいて、前記電磁弁24は
、その1間、により膨張弁とに作用するのであって、こ
の電磁弁24の容量を選定することにより、デフロスト
運転時の低圧を上げられ、従って短時間でデフロストを
終了できる。
In this defrost cycle, the solenoid valve 24 acts on the expansion valve during one period, and by selecting the capacity of this solenoid valve 24, the low pressure during the defrost operation can be increased, and therefore the low pressure can be shortened. You can finish defrosting in a matter of hours.

以上の如く本考案は、凝縮器となる水加熱用熱交換器又
は空気側熱交換器を使用しないとき、これら熱交換器を
、水冷却用熱交換器の入口と膨張機構との間の低圧液域
に連通させて冷媒回収を行なうようにしたから、使用し
ない熱交換器に冷媒が溜ることを防止でき、従ってそれ
丈冷媒充填量を少なくできるのであり、しかも前記熱交
換器を使用していないときの冷媒循環量を過不足なし一
定にできるので、安定した運転が行なえるのである。
As described above, when the water heating heat exchanger or air side heat exchanger serving as a condenser is not used, these heat exchangers are connected to the low pressure between the inlet of the water cooling heat exchanger and the expansion mechanism. Since the refrigerant is recovered by communicating with the liquid region, it is possible to prevent the refrigerant from accumulating in the heat exchanger when it is not used, and therefore the amount of refrigerant to be charged can be reduced. Since the amount of refrigerant circulating when there is no refrigerant can be kept constant without excess or deficiency, stable operation can be performed.

その上、この空気調和装置の運転を停止した時に運転パ
ターンを切換えるようにしすれば、具体的には、例えば
冷房専用運転を行っている状態で運転を停止した場合に
、この停止と同時に運転パターンを冷暖平衡運転に切換
えておくようにすれば、前記冷房専用運転時に高圧であ
った空気側熱交換器が運転停止と同時に低圧となって高
低圧の均圧が行えるのであり、つまり均圧時間を短縮で
きるのであり、この結果、停止から再起動までの時間も
短くできる効果も奏し得るのである。
Moreover, if the operation pattern is changed when the operation of the air conditioner is stopped, for example, if the operation is stopped while the air conditioner is in cooling-only operation, the operation pattern can be changed at the same time as the operation is stopped. By switching to cooling/heating equilibrium operation, the air-side heat exchanger, which was at high pressure during the cooling-only operation, becomes low pressure at the same time as the operation is stopped, and high and low pressures can be equalized. In other words, the pressure equalization time is As a result, the time from stop to restart can also be shortened.

更に低圧液域に回収するので、前記熱交換器が冷却され
ることはないのであり、しかも回収する冷媒な水冷却用
熱交換器で蒸発させられるので、液バツクの心配もない
のである。
Furthermore, since the refrigerant is recovered in a low-pressure liquid region, the heat exchanger is not cooled, and since the refrigerant to be recovered is evaporated in the water-cooling heat exchanger, there is no need to worry about liquid back-up.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案装置の一実施例を示す冷媒配管系統図、
第2,3図はその作用を説明する冷媒配管系統図である
。 1・・・・・・圧縮機、2・・・・・・水加熱用熱交換
器、3・・・・・・水冷却用熱交換器、4・・・・・・
空気側熱交換器、5・・・・・・受液器、11.12・
・・・・・膨張機構、27,28・・・・・・バイパス
回路、29・・・・・・第11!!磁弁、30・・・・
・・第2電磁弁。
FIG. 1 is a refrigerant piping system diagram showing one embodiment of the device of the present invention;
FIGS. 2 and 3 are refrigerant piping system diagrams explaining the operation. 1... Compressor, 2... Heat exchanger for water heating, 3... Heat exchanger for water cooling, 4...
Air side heat exchanger, 5...Liquid receiver, 11.12.
...Expansion mechanism, 27, 28...Bypass circuit, 29...11th! ! Magnetic valve, 30...
...Second solenoid valve.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)圧縮機、水加熱用熱交換器、水冷却用熱交換器、
空気側熱交換器及び受液器、膨張機構を備え、前記空気
側熱交換器を、凝縮器又は蒸発器として冷暖房同時運転
可能とした熱回収式空気調和装置において、前記水加熱
用熱交換器の出口側と前記水冷却用熱交換器の入口側と
の間に、前記受液器と膨張機構とを側路する第1バイパ
ス回路を、また前記空気側熱交換器が凝縮器として作用
するときの該熱交換器の出口側と、前記水冷却用熱交換
器の入口側との間に、前記受液器と膨張機構とを側路す
る第2バイパス回路をそれぞれ設け、前記第1バイパス
回路に前記水加熱用熱交換器の不使用時である冷房専用
運転時開く第1電磁弁を介装し、第2バイパス回路に前
記空気側熱交換器の不使用時である冷暖房負荷が等しく
バランス運転している時開く第2電磁弁を介装したこと
を特徴とする熱回収式空気調和装置。
(1) Compressor, water heating heat exchanger, water cooling heat exchanger,
In a heat recovery air conditioner comprising an air-side heat exchanger, a liquid receiver, and an expansion mechanism, the air-side heat exchanger can be operated as a condenser or an evaporator for simultaneous cooling and heating, wherein the water heating heat exchanger A first bypass circuit bypassing the liquid receiver and the expansion mechanism is provided between the outlet side of the water cooling heat exchanger and the inlet side of the water cooling heat exchanger, and the air side heat exchanger acts as a condenser. A second bypass circuit for bypassing the liquid receiver and the expansion mechanism is provided between the outlet side of the heat exchanger and the inlet side of the water cooling heat exchanger, and the second bypass circuit bypasses the liquid receiver and the expansion mechanism. A first solenoid valve that opens during cooling-only operation, which is when the water heating heat exchanger is not in use, is interposed in the circuit, and the second bypass circuit has an equal air-conditioning load when the air-side heat exchanger is not in use. A heat recovery type air conditioner characterized by being equipped with a second solenoid valve that opens during balanced operation.
(2)第1バイパス回路と第2バイパス回路との、水冷
却用熱交換器の入口側への接続側は該第1、第2バイパ
ス回路途中で合流させており、前記第1.第2バイパス
回路に介装した第1゜第2電磁弁は合流点より手前にあ
ることを特徴とする実用新案登録請求の範囲第1項記載
の熱回収式空気調和装置。
(2) The connection sides of the first bypass circuit and the second bypass circuit to the inlet side of the water cooling heat exchanger are joined in the middle of the first and second bypass circuits, and the first bypass circuit and the second bypass circuit are connected to the inlet side of the water cooling heat exchanger. The heat recovery type air conditioner according to claim 1, wherein the first and second solenoid valves installed in the second bypass circuit are located before the confluence point.
JP6062178U 1978-05-04 1978-05-04 Heat recovery air conditioner Expired JPS6032534Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6062178U JPS6032534Y2 (en) 1978-05-04 1978-05-04 Heat recovery air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6062178U JPS6032534Y2 (en) 1978-05-04 1978-05-04 Heat recovery air conditioner

Publications (2)

Publication Number Publication Date
JPS54162963U JPS54162963U (en) 1979-11-14
JPS6032534Y2 true JPS6032534Y2 (en) 1985-09-28

Family

ID=28961286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6062178U Expired JPS6032534Y2 (en) 1978-05-04 1978-05-04 Heat recovery air conditioner

Country Status (1)

Country Link
JP (1) JPS6032534Y2 (en)

Also Published As

Publication number Publication date
JPS54162963U (en) 1979-11-14

Similar Documents

Publication Publication Date Title
US10724776B2 (en) Exhaust heat recovery type of air-conditioning apparatus
JPH01277173A (en) Cooling system
JP3352469B2 (en) Air conditioner
JP2001280749A (en) Refrigerating device
JPS6032534Y2 (en) Heat recovery air conditioner
JP2910260B2 (en) Air conditioner and operation controller of air conditioner
JP2503660B2 (en) Heat storage type air conditioner
JP2503659B2 (en) Heat storage type air conditioner
JP3511161B2 (en) Air conditioner
JP3304866B2 (en) Thermal storage type air conditioner
JP2002277066A (en) Air conditioning equipment for vehicle
JPS592832B2 (en) Heat recovery air conditioner
JP3723413B2 (en) Air conditioner
JP2001280729A (en) Refrigerating device
JPS6032535Y2 (en) Heat recovery air conditioner
JP2508306B2 (en) Operation control device for air conditioner
JPH0528440Y2 (en)
JPS5852460Y2 (en) Refrigeration equipment
JPS6115345B2 (en)
JPS6032533Y2 (en) Heat recovery air conditioner
JPH0794927B2 (en) Air conditioner
JP2001280768A (en) Refrigerator
JP2730934B2 (en) Heat pump refrigeration system
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JPS6015084Y2 (en) Refrigeration equipment