JP2503660B2 - Heat storage type air conditioner - Google Patents

Heat storage type air conditioner

Info

Publication number
JP2503660B2
JP2503660B2 JP16213689A JP16213689A JP2503660B2 JP 2503660 B2 JP2503660 B2 JP 2503660B2 JP 16213689 A JP16213689 A JP 16213689A JP 16213689 A JP16213689 A JP 16213689A JP 2503660 B2 JP2503660 B2 JP 2503660B2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
compressor
passage
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16213689A
Other languages
Japanese (ja)
Other versions
JPH0328673A (en
Inventor
凡敏 増井
伸廣 楠本
伸二 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP16213689A priority Critical patent/JP2503660B2/en
Publication of JPH0328673A publication Critical patent/JPH0328673A/en
Application granted granted Critical
Publication of JP2503660B2 publication Critical patent/JP2503660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、蓄熱媒体を貯留してなる蓄熱槽を備えた蓄
熱式空気調和装置に係り、特に、蓄熱の利用効率の向上
対策に関する。
Description: TECHNICAL FIELD The present invention relates to a heat storage type air conditioner provided with a heat storage tank configured to store a heat storage medium, and more particularly to a measure for improving utilization efficiency of heat storage.

(従来の技術) 従来より、特開昭61−125554号公報に開示される如
く、蓄熱可能な蓄熱媒体を貯留する蓄熱槽を備えた空気
調和装置において、蓄熱槽内の熱交換コイルと冷媒回路
とをバイパス路で接続し、冷媒回路とバイパス路との切
換を可能にするとともに、熱交換コイルで冷媒と蓄熱媒
体との熱交換を行うことにより、通常冷暖房運転、蓄冷
熱運転、蓄冷熱回収運転等をするようにしたのは公知の
技術である。
(Prior Art) Conventionally, as disclosed in Japanese Patent Laid-Open No. 61-125554, in an air conditioner including a heat storage tank that stores a heat storage medium capable of storing heat, a heat exchange coil and a refrigerant circuit in the heat storage tank. Is connected by a bypass path to enable switching between the refrigerant circuit and the bypass path, and the heat exchange coil exchanges heat between the refrigerant and the heat storage medium, thereby performing normal cooling / heating operation, cold storage operation, and cold storage heat recovery. It is a known technique to drive the vehicle.

(発明が解決しようとする課題) 上述した蓄熱式空気調和装置において、蓄熱運転や蓄
熱回収運転を行うことができるものの、運転モードが少
なく、蓄熱量や運転能力に適合した運転を行うことがで
きず、空調効率が悪いという問題があった。
(Problems to be Solved by the Invention) In the heat storage type air conditioner described above, although the heat storage operation and the heat storage recovery operation can be performed, the operation mode is small and the operation suitable for the heat storage amount and the operation capacity can be performed. However, there was a problem that the air conditioning efficiency was poor.

つまり、暖房運転時において、室内暖房とデフロスト
とを同時に行うことができないので、余剰能力を有効に
利用することができないという問題がある。また、デフ
ロスト時には室内暖房を停止しなければならず、該デフ
ロスト時に暖房による快適性が著しく損われるという問
題がある。
That is, during heating operation, room heating and defrosting cannot be performed at the same time, so there is a problem that the surplus capacity cannot be effectively used. Further, there is a problem in that the heating of the room must be stopped at the time of defrosting, and the comfort due to heating is significantly impaired at the time of defrosting.

一方、他の課題として、冷房運転時において、室内冷
房と蓄冷熱とを同時に行うことができず、冷房負荷に対
応した余剰能力を有効に利用できないという問題があ
り、また、暖房運転時においては、室内暖房と蓄暖熱と
を同時に行うことができず、冷房運転時と同時に余剰能
力を有効に利用することができないという問題がある。
On the other hand, as another problem, during cooling operation, there is a problem that indoor cooling and cold storage heat cannot be performed at the same time, and the surplus capacity corresponding to the cooling load cannot be effectively used, and during heating operation, However, there is a problem that the room heating and the stored heat cannot be performed at the same time, and the surplus capacity cannot be effectively used at the same time as the cooling operation.

本発明は、斯かる点に鑑みてなされたもので、運転モ
ードの拡大を図ることにより、運転効率の向上並びに快
適性の向上を図ることを目的とし、また、各種運転を適
切に行うことができるようにすることを目的とするもの
である。
The present invention has been made in view of the above points, and an object thereof is to improve driving efficiency and comfort by expanding a driving mode, and to appropriately perform various driving. The purpose is to be able to.

(課題を解決するための手段) 上記目的を達成するために、本発明が講じた手段は、
最も少ない切換手段等でもって暖房デフロスト同時運転
などを可能にしたものである。
(Means for Solving the Problems) In order to achieve the above-mentioned object, means taken by the present invention are
This enables simultaneous operation of heating and defrosting with the least switching means.

具体的に、第1図に示すように、請求項(1)に係る
発明が講じた手段は、先ず、圧縮機(1)、流路切換機
構(2)、熱源側熱交換器(3)、利用側減圧機構
(6)及び利用側熱交換器(7)が順次接続されて冷媒
の可逆流通可能なメイン通路(10a)が形成されると共
に、一端が圧縮機(1)の吐出側に接続された高圧通路
(10b)の他端が利用側熱交換器(7)と切換機構
(2)との間におけるメイン通路(10a)にに接続され
て冷暖房サイクルに切換え可能な主冷媒回路(10)と、
蓄熱可能な蓄熱媒体が貯留されると共に、冷媒と蓄熱媒
体との熱交換を行う蓄熱用熱交換器(12)が収納された
蓄熱槽(Y1)とを備えた蓄熱式空気調和装置を対象とし
ている。
Specifically, as shown in FIG. 1, the means taken by the invention according to claim (1) is as follows. First, the compressor (1), the flow path switching mechanism (2), and the heat source side heat exchanger (3). The use-side decompression mechanism (6) and the use-side heat exchanger (7) are sequentially connected to form a main passage (10a) through which the refrigerant can be reversibly flowed, and one end is on the discharge side of the compressor (1). The other end of the connected high-pressure passage (10b) is connected to the main passage (10a) between the utilization side heat exchanger (7) and the switching mechanism (2) and is capable of switching to a heating / cooling cycle ( 10) and
For a heat storage type air conditioner in which a heat storage medium capable of storing heat is stored and a heat storage tank (Y1) accommodating a heat storage heat exchanger (12) for exchanging heat between the refrigerant and the heat storage medium is provided. There is.

そして、上記蓄熱用熱交換器(12)の一端を上記メイ
ン通路(10a)を液ライン(9a)における両減圧機構
(4),(6)間に接続する第1バイパス路(13a)
と、該第1バイパス路(13)に介設された蓄熱用減圧機
構(14)と、上記蓄熱用熱交換器(12)の他端をメイン
通路(10a)における利用側熱交換器(7)と切換機構
(2)間で且つ高圧通路(10b)の接続部により切換機
構(2)側に接続する第2バイパス路(13b)と、該第
2バイパス路(13b)の途中に一端が分岐接続され、他
端が上記液ライン(9a)における第1バイパス路(13
a)の接続部より熱源側減圧機構(4)側に接続された
第3バイパス路(13c)とを備えている。加えて、通常
暖房運転時には、圧縮機(1)より吐出された冷媒が高
圧通路(10b)を流れ、利用側熱交換器(7)で凝縮し
た後、熱源側減圧機構(4)で減圧された、熱源側熱交
換器(3)で蒸発して圧縮機(1)に戻るように循環
し、蓄暖熱運転時には、圧縮機(1)より吐出された冷
媒がメイン通路(10a)から第2バイパス路(13b)を流
れ、蓄熱用熱交換器(12)で循環した後、第1バイパス
路(13a)を経て熱源側熱交換器(3)で蒸発し、圧縮
機(1)に戻るように循環し、蓄暖熱回収デフロスト運
転時には、圧縮機(1)より吐出された冷媒が熱源側熱
交換器(3)で凝縮した後、第1バイパス路(13a)を
流れて蓄熱用熱交換器(12)で蒸発し、第2バイパス路
(13b)を経て圧縮機(1)に戻るように循環し、通常
暖房運転と熱回収デフロスト運転とを同時に行う暖房デ
フロスト同時運転時には、圧縮機(1)より吐出された
冷媒の一部が高圧通路(10b)を流れて利用側熱交換器
(7)で凝縮する一方、上記冷媒の残部がメイン通路
(10a)を流れて熱源側熱交換器(3)で凝縮し、各凝
縮した冷媒が第1バイパス路(13a)で合流して蓄熱用
熱交換器(12)で蒸発し、第2バイパス路(13b)を経
て圧縮機(1)に戻るように循環して、上記各運転を行
うようにメイン通路(10a)、高圧通路(10b)及び第1
〜第3バイパス路(13a)〜(13c)の回路接続を切換え
る回路切換手段(51)を備えた構成としている。
A first bypass passage (13a) connecting one end of the heat storage heat exchanger (12) to the main passage (10a) between the pressure reducing mechanisms (4) and (6) in the liquid line (9a).
And a heat storage decompression mechanism (14) interposed in the first bypass passage (13), and the other end of the heat storage heat exchanger (12) at the utilization side heat exchanger (7) in the main passage (10a). ) And the switching mechanism (2) and a second bypass path (13b) connected to the switching mechanism (2) side by the connection part of the high pressure path (10b), and one end in the middle of the second bypass path (13b). It is branched and connected, and the other end is the first bypass path (13) in the liquid line (9a).
The third bypass passage (13c) is connected to the heat source side pressure reducing mechanism (4) side of the connection portion of a). In addition, during the normal heating operation, the refrigerant discharged from the compressor (1) flows through the high pressure passage (10b), is condensed in the utilization side heat exchanger (7), and is then decompressed by the heat source side decompression mechanism (4). Also, the refrigerant discharged from the compressor (1) is circulated through the heat source side heat exchanger (3) so as to be circulated so as to return to the compressor (1) and to return to the compressor (1) from the main passage (10a). After flowing through the 2 bypass path (13b) and circulating in the heat storage heat exchanger (12), it is evaporated in the heat source side heat exchanger (3) via the first bypass path (13a) and returned to the compressor (1). During the warm and heat recovery defrost operation, the refrigerant discharged from the compressor (1) is condensed in the heat source side heat exchanger (3) and then flows through the first bypass passage (13a) to store the heat for heat storage. It evaporates in the exchanger (12) and circulates back to the compressor (1) through the second bypass passage (13b), and the normal heating operation and heat recovery During the heating and defrost simultaneous operation in which the frost operation and the frost operation are simultaneously performed, a part of the refrigerant discharged from the compressor (1) flows through the high pressure passage (10b) and is condensed in the utilization side heat exchanger (7), while The rest flows through the main passage (10a) and is condensed in the heat source side heat exchanger (3), and the condensed refrigerants are combined in the first bypass passage (13a) and evaporated in the heat storage heat exchanger (12), The main passage (10a), the high pressure passage (10b) and the first bypass passage (13b) are circulated so as to return to the compressor (1) to perform the above-mentioned operations.
The circuit switching means (51) for switching the circuit connection of the third bypass paths (13a) to (13c) is provided.

また、請求項(2)に係る発明が講じた手段は、上記
請求項(1)記載の発明における回路切換手段(51)
が、冷房運転において、通常冷房運転時には、冷媒がメ
イン通路(10a)のみを流れ、熱源側熱交換器(3)で
凝縮した冷媒が利用側減圧機構(6)で減圧され、利用
側熱交換器(7)で蒸発して圧縮機(1)に戻るように
循環し、蓄冷熱運転時には、熱源側熱交換器(3)で凝
縮した冷媒が第1バイパス路(13a)を流れて蓄熱用減
圧機構(14)で減圧され、蓄熱用熱交換器(12)で蒸発
し、第2バイパス路(13b)を経て圧縮機(1)に戻る
ように循環し、通常冷房運転と蓄冷熱運転とを同時に行
う冷房蓄熱同時運転時には、熱源側熱交換器(3)で凝
縮した冷媒の一部がメイン通路(10a)を流れ熱源側熱
交換器(7)で蒸発して圧縮機(1)に戻る一方、上記
冷媒の残部が第1バイパス路(13a)を流れて蓄熱用熱
交換器(12)で蒸発し、第2バイパス路(13b)を経て
圧縮機(1)に戻るように循環し、蓄冷熱回収運転時に
は、熱源側熱交換器(3)で凝縮した冷媒が第3バイパ
ス路(13c)及び第2バイパス路(13b)を流れ、蓄熱用
熱交換器(12)で過冷却された後、第1バイパス路(13
a)を経て利用側熱交換器(7)で蒸発して圧縮機
(1)に戻るように循環し、暖房運転において、通常暖
房運転時には、圧縮機(1)より吐出された冷媒は高圧
通路(10b)を流れ、利用側熱交換器(7)で凝縮した
後、熱源側減圧機構(4)で減圧され、熱源側熱交換器
(3)で蒸発して圧縮機(1)に戻るように循環し、蓄
暖熱運転時には、圧縮機(1)より吐出された冷媒がメ
イン通路(10a)から第2バイパス路(13b)を流れ、蓄
熱用熱交換器(12)で凝縮した後、第1バイパス路(13
a)を経て熱源側熱交換器(3)で蒸発し、圧縮機
(1)に戻るように循環し、通常暖房運転と蓄暖熱運転
とを同時に行う暖房蓄熱同時運転時には、圧縮機(1)
より吐出された冷媒の一部が高圧通路(10b)を流れて
利用側熱交換器(7)で凝縮する一方、上記冷媒の残部
がメイン通路(10a)より第2バイパス路(13b)を流れ
て蓄熱用熱交換器(12)で凝縮して第1バイパス路(13
a)を流れ、各凝縮した冷媒が液ライン(9a)で合流
し、熱源側熱交換器(3)で蒸発して圧縮機(1)に戻
るように循環し、蓄暖熱回収デフロスト運転時には、圧
縮機(1)より吐出された冷媒が熱源側熱交換器(3)
で凝縮した後、第1バイパス路(13a)を流れて蓄熱用
熱交換器(12)で蒸発し、第2バイパス路(13b)を経
て圧縮機(1)に戻るように循環し、通常暖房運転と熱
回収デフロスト運転とを同時に行う暖房デフロスト同時
運転時には、圧縮機(1)より吐出された冷媒の一部が
高圧通路(10b)を流れて利用側熱交換器(7)で凝縮
する一方、上記冷媒の残部がメイン通路(10a)を流れ
て熱源側熱交換器(3)で凝縮し、各凝縮した冷媒が第
1バイパス路(13a)で合流して蓄熱用熱交換器(12)
で蒸発し、第2バイパス路(13b)を経て圧縮機(1)
に戻るように循環し、蓄冷熱蒸発暖房運転時には、圧縮
機(1)より吐出された冷媒が高圧通路(10b)を流れ
て利用側熱交換器(7)で凝縮した後、第1バイパス路
(13a)を流れて蓄熱用熱交換器(12)で蒸発し、第2
バイパス路(13b)を経て圧縮機(1)に戻るように循
環して、上記各運転を行うようにメイン通路(10a)、
高圧通路(10b)及び第1〜第3バイパス路(13a)〜
(13c)の回路接続を切換える構成としている。
The means taken by the invention according to claim (2) is the circuit switching means (51) in the invention according to claim (1).
However, in the cooling operation, during the normal cooling operation, the refrigerant flows only through the main passage (10a), and the refrigerant condensed in the heat source side heat exchanger (3) is decompressed by the use side decompression mechanism (6), so that the use side heat exchange is performed. In the cold storage heat operation, the refrigerant condensed in the heat source side heat exchanger (3) flows through the first bypass passage (13a) for heat storage by evaporating in the device (7) and returning to the compressor (1). It is decompressed by the decompression mechanism (14), evaporated in the heat storage heat exchanger (12), circulated so as to return to the compressor (1) through the second bypass passage (13b), and is used for normal cooling operation and cold storage operation. During the simultaneous cooling and heat storage simultaneous operation, some of the refrigerant condensed in the heat source side heat exchanger (3) flows through the main passage (10a) and evaporates in the heat source side heat exchanger (7) to the compressor (1). On the other hand, while returning, the remaining part of the refrigerant flows through the first bypass passage (13a) and evaporates in the heat storage heat exchanger (12). The refrigerant that circulates back to the compressor (1) via the path path (13b) and is condensed in the heat source side heat exchanger (3) during the cold storage heat recovery operation is the third bypass path (13c) and the second bypass path. (13b), after being supercooled by the heat storage heat exchanger (12), the first bypass passage (13
The refrigerant discharged from the compressor (1) during the normal heating operation circulates so as to evaporate in the utilization side heat exchanger (7) and return to the compressor (1) via a). After flowing through (10b) and condensing in the use side heat exchanger (7), it is decompressed by the heat source side decompression mechanism (4), evaporated in the heat source side heat exchanger (3) and returned to the compressor (1). During the heat storage heat operation, the refrigerant discharged from the compressor (1) flows from the main passage (10a) to the second bypass passage (13b) and is condensed in the heat storage heat exchanger (12), First bypass road (13
During the heating and heat storage simultaneous operation in which heat is evaporated in the heat source side heat exchanger (3) via a), circulates back to the compressor (1), and normal heating operation and heat storage heat operation are simultaneously performed, the compressor (1 )
A part of the discharged refrigerant flows through the high pressure passage (10b) and is condensed in the utilization side heat exchanger (7), while the remaining part of the refrigerant flows through the second bypass passage (13b) through the main passage (10a). Is condensed in the heat storage heat exchanger (12) and is condensed in the first bypass path (13
a), the condensed refrigerants join together in the liquid line (9a), evaporate in the heat source side heat exchanger (3) and circulate back to the compressor (1). The refrigerant discharged from the compressor (1) is the heat source side heat exchanger (3)
After condensing in, it flows through the first bypass path (13a), evaporates in the heat storage heat exchanger (12), and circulates back to the compressor (1) through the second bypass path (13b) for normal heating. During the heating defrost simultaneous operation in which the operation and the heat recovery defrost operation are performed at the same time, a part of the refrigerant discharged from the compressor (1) flows through the high pressure passage (10b) and is condensed in the use side heat exchanger (7). , The rest of the refrigerant flows through the main passage (10a) and is condensed in the heat source side heat exchanger (3), and the condensed refrigerants merge in the first bypass passage (13a) to accumulate heat in the heat exchanger (12).
Vaporizes in the compressor and passes through the second bypass (13b) to the compressor (1)
During the cold storage heat evaporative heating operation, the refrigerant discharged from the compressor (1) flows through the high pressure passage (10b) and is condensed in the use side heat exchanger (7), and then the first bypass passage. Flowing through (13a) and evaporating in the heat storage heat exchanger (12),
The main passage (10a) is circulated so as to return to the compressor (1) through the bypass passage (13b) to perform the above-mentioned operations.
High-pressure passage (10b) and first to third bypass passages (13a)-
The circuit connection of (13c) is switched.

また、請求項(3)に係る発明が講じた手段は、上記
請求項(1)又は(2)記載の発明において、利用側減
圧機構(6)が開度調整自在に構成される一方、凝縮圧
力相当飽和温度を検出する凝縮温度検出手段(HSP)
と、暖房デフロスト同時運転時に上記凝縮温度検出手段
(HSP)が検出した凝縮圧力相当飽和温度が予め設定さ
れた所定値以下になると利用側減圧機構(6)の開度を
小さくする開度調整手段(62)とが設けられた構成とし
ている。
Further, the means taken by the invention according to claim (3) is that in the invention according to claim (1) or (2), the use-side pressure reducing mechanism (6) is configured to be adjustable in opening degree, while condensing Condensation temperature detection means (HSP) for detecting the saturation temperature equivalent to pressure
And an opening adjusting means for decreasing the opening of the use-side pressure reducing mechanism (6) when the condensation pressure-equivalent saturation temperature detected by the condensation temperature detecting means (HSP) during the simultaneous heating defrost operation becomes equal to or lower than a preset predetermined value. (62) and are provided.

また、請求項(4)に係る発明が講じた手段は、上記
請求項(1)又は(2)記載の発明において、凝縮圧力
飽和温度を検出する凝縮温度検出手段(HSP)と、暖房
デフロスト同時運転時に凝縮温度検出手段(HSP)が検
出する凝縮圧力相当飽和温度が予め設定された所定値以
下になると利用側熱交換器(7)のファン風量を低下さ
せる風量低減手段(63)とが設けられた構成としてい
る。
Further, the means taken by the invention according to claim (4) is, in the invention according to claim (1) or (2), the condensing temperature detecting means (HSP) for detecting the condensing pressure saturation temperature and the heating defrost simultaneous. Provided is an air volume reduction means (63) for reducing the fan air volume of the utilization side heat exchanger (7) when the condensation pressure equivalent saturation temperature detected by the condensation temperature detection means (HSP) during operation falls below a preset predetermined value. It has a specific configuration.

また、請求項(5)に係る発明が講じた手段は、上記
請求項(3)記載の発明において、請求項(4)記載の
発明における風量低減手段(63)を設けた構成としてい
る。
Further, the means taken by the invention according to claim (5) is such that, in the invention according to claim (3), the air volume reducing means (63) according to the invention according to claim (4) is provided.

(作用) 上記構成により、請求項(1)に斯かる発明では、回
路切換手段(51)によって回路接続を切換え、通常暖房
運転と、蓄暖熱運転と、蓄暖熱回収デフロスト運転とを
行う他、通常暖房及びデフロストを同時に行う暖房デフ
ロスト同時運転を行い、外気条件等に対応して各運転を
行うことになる。
(Operation) With the above configuration, in the invention according to claim (1), the circuit connection is switched by the circuit switching means (51), and the normal heating operation, the stored heat storage operation, and the stored heat recovery heat defrost operation are performed. In addition, the heating and defrosting simultaneous operation is performed in which normal heating and defrosting are simultaneously performed, and each operation is performed according to the outside air condition and the like.

また、請求項(2)に係る発明では、暖房デフロスト
同時運転の他、蓄冷熱運転と、蓄冷熱回収運転とを行う
と共に、通常冷房及び蓄冷熱を同時に行う冷却蓄熱同時
運転とを行う一方、通常暖房及び蓄暖熱を同時に行う暖
房蓄熱同時運転と、通常暖房を行いつつ蓄冷熱を蓄える
蓄冷熱蒸発暖房運転とを行うことになる。
Further, in the invention according to claim (2), in addition to the heating defrost simultaneous operation, the cold storage heat operation and the cold storage heat recovery operation are performed, and at the same time, the cooling heat storage simultaneous operation is performed in which the normal cooling and the cold storage heat are simultaneously performed, A heating / heat storage simultaneous operation in which normal heating and stored heat are simultaneously performed and a cold storage heat evaporative heating operation in which cold storage is stored while performing normal heating are performed.

また、暖房デフロスト同時運転時において、請求項
(3)に係る発明では、凝縮圧力相手飽和温度が所定値
以下になると開度調整手段(62)が利用側減圧機構
(6)の開度を小さくする一方、請求項(4)に係る発
明では、風量低減手段(63)が利用側熱交換器(7)の
ファン風量を低下させ、また更に、請求項(5)に係る
発明では、利用側減圧機構(6)の開度を小さくすると
共に、ファン風量を低下させ、何れも利用側熱交換器
(7)側の能力を低下させる。
Also, in the heating defrost simultaneous operation, in the invention according to claim (3), when the condensation pressure partner saturation temperature becomes equal to or lower than a predetermined value, the opening adjustment means (62) reduces the opening of the use-side pressure reducing mechanism (6). On the other hand, in the invention according to claim (4), the air volume reducing means (63) reduces the fan air volume of the utilization side heat exchanger (7), and further, in the invention according to claim (5), the utilization side. The opening degree of the decompression mechanism (6) is reduced, and the fan air volume is reduced, both of which reduce the capacity on the utilization side heat exchanger (7) side.

(発明の効果) 従って、請求項(1)に係る発明によれば、暖房デフ
ロスト同時運転を行えるようにしたために、暖房能力を
デフロストなどに利用することができるので、余剰能力
を有効利用でき、運転効率の向上を図ることができる。
更に、デフロスト時に暖房を行うことができるので、快
適な暖房を継続して行うことができる。
(Effect of the invention) Therefore, according to the invention of claim (1), since the heating defrost simultaneous operation can be performed, the heating capacity can be used for defrosting and the like, so that the surplus capacity can be effectively used, It is possible to improve the operation efficiency.
Furthermore, since heating can be performed during defrosting, comfortable heating can be continuously performed.

また、請求項(2)に係る発明によれば、蓄冷熱運転
などの他に、冷房蓄熱同時運転及び蓄冷熱凝縮冷房運転
などを行えるようにしたために、冷房能力を全て活用す
ることができるので、冷暖房何れの運転時においても、
余剰能力を有効に利用することができ、運転効率の向上
を図ることができる。
Further, according to the invention of claim (2), since the cooling heat storage simultaneous operation and the cold storage heat condensing cooling operation can be performed in addition to the cold storage heat operation and the like, all the cooling capacity can be utilized. In any operation of heating and cooling,
The surplus capacity can be effectively used, and the operation efficiency can be improved.

また、請求項(3),(4)及び(5)に係る発明に
よれば、凝縮圧力相当飽和温度が低下すると、利用側低
圧機構(6)を絞るか、ファン風量を低下させて利用側
熱交換量を低下させるので、デフロストの能力を十分に
確保することができ、デフロスト時間を短くすることが
できることから、快適性の向上を図ることができる。
Further, according to the inventions according to claims (3), (4) and (5), when the condensation pressure-equivalent saturation temperature decreases, the use-side low-pressure mechanism (6) is throttled or the fan air flow is reduced to the use-side. Since the heat exchange amount is reduced, the defrost ability can be sufficiently ensured, and the defrost time can be shortened, so that the comfort can be improved.

また、請求項(6)及び(5)に係る発明によれば、
ファン風量を低下させるので、コールトドラフトを感じ
ることがなくなり、より快適性の向上を図ることができ
る。
According to the inventions according to claims (6) and (5),
Since the fan air volume is reduced, the cold draft is not felt and the comfort can be improved.

(実施例) 以下、本発明の実施例について、第1図以下の図面に
基づき説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.

第1図は本実施例に係る蓄熱式空気調和装置の全体構
成を示し、室外ユニット(X)に対して、複数の室内ユ
ニット(A),(B),…が接続されたいわゆるマルチ
形空気調和装置である。
FIG. 1 shows the overall configuration of the heat storage type air conditioner according to the present embodiment, in which a plurality of indoor units (A), (B), ... Are connected to an outdoor unit (X), a so-called multi-type air. It is a harmony device.

上記室外ユニット(X)において、(1)は圧縮機、
(2)は図中実線と図中破線とのごとく4方向に切換わ
る流路切換機構としての第1切換弁(3)は冷房運転時
には凝縮器として、暖房運転時には蒸発器として機能す
る熱源側熱交換器としての室外熱交換器、(4)は冷房
運転時には冷媒流量を調節し、暖房運転時には冷媒を減
圧する熱源側減圧機構として機能する室外電動膨張弁、
(5)は凝縮された液冷媒を貯溜するためのレシーバ、
(8)は吸入冷媒中の液成分を除去するためのアキュム
レータである。
In the outdoor unit (X), (1) is a compressor,
(2) is a first switching valve (3) as a flow path switching mechanism that switches in four directions as shown by a solid line and a broken line in the figure. The heat source side functions as a condenser during cooling operation and as an evaporator during heating operation. An outdoor heat exchanger as a heat exchanger, (4) an outdoor electric expansion valve that functions as a heat source-side decompression mechanism that regulates the refrigerant flow rate during cooling operation and decompresses the refrigerant during heating operation,
(5) is a receiver for storing the condensed liquid refrigerant,
(8) is an accumulator for removing the liquid component in the suction refrigerant.

一方、各室内ユニット(A),(B),…は同一構成
を有し、(6)は冷房運転時には利用側減圧機構として
機能し、暖房運転時には冷媒流量を調節する室内電動膨
張弁、(7)は冷房運転時には蒸発器として、暖房運転
時には凝縮器として機能する室内熱交換器である。
On the other hand, the indoor units (A), (B), ... Have the same configuration, and (6) functions as a use-side pressure reducing mechanism during the cooling operation, and an indoor electric expansion valve that adjusts the refrigerant flow rate during the heating operation, ( 7) is an indoor heat exchanger that functions as an evaporator during cooling operation and as a condenser during heating operation.

そして、上記各機(1)〜(8)は冷媒配管(9)に
より冷媒の可逆流通可能に順次接続されてメイン通路
(10a)が形成されると共に、該メイン通路(10a)にお
ける圧縮機(1)の吐出側と第1切換弁(2)との間に
一端が、上記室内熱交換器(7)とアキュムレータ
(8)との間に介設された3方向に切換わる第2切換弁
(11)に他端が接続されて高圧通路(10b)が形成され
ていて、室外空気との熱交換により得た熱を室内空気に
放出するヒートポンプ作用を有する主冷媒回路(10)が
構成されている。
Then, the respective machines (1) to (8) are sequentially connected by a refrigerant pipe (9) so as to be capable of reversibly circulating the refrigerant to form a main passage (10a), and a compressor (in the main passage (10a) ( A second switching valve, one end of which is disposed between the discharge side of 1) and the first switching valve (2) and which is switched between three directions provided between the indoor heat exchanger (7) and the accumulator (8). The other end is connected to (11) to form a high-pressure passage (10b), and a main refrigerant circuit (10) having a heat pump action for releasing heat obtained by heat exchange with outdoor air to indoor air is configured. ing.

また、この蓄熱式空気調和装置には上記主冷媒回路
(10)を流れる冷媒との熱交換により蓄冷熱、蓄暖熱を
し、或いはその蓄冷熱、蓄暖熱の利用をするための蓄熱
ユニット(Y)が配置されている。該蓄熱ユニット
(Y)において、(Y1)は冷熱及び暖熱の蓄熱可能な蓄
熱媒体たる水(W)を貯溜した蓄熱槽、(12)は該蓄熱
槽(Y1)内に配置され、水(W)と冷媒との熱交換を行
うための蓄熱用熱交換器であって、該蓄熱用熱交換器
(12)と主冷媒回路(10)の上記室外電動膨張弁(4)
−室内電動膨張弁(6)間の液ライン(9a)との間は、
第1バイパス路(13a)、第2バイパス路(13b)及び第
3バイパス路(13c)により、室内電動膨張弁(6)側
から順に冷媒の流通可能に接続されている。そして、上
記第1バイパス路(13a)には、水(W)に冷熱を蓄え
るときに冷媒を減圧する蓄熱用減圧機構としての蓄熱電
動膨張弁(14)が介設され、上記第2バイパス路(13
b)は、3方向に切り換わる第3切換弁(15)が介設さ
れると共に、一端が蓄熱用熱交換器(12)に、他端がメ
イン通路(10a)における第1切換弁(2)と第2切換
弁(11)との間に接続されている。更に、上記第3バイ
パス路(13c)の一端は第3切換弁(15)に、他端は上
記液ライン(9a)に接続されている。
Further, in this heat storage type air conditioner, heat storage unit for storing cold heat or warm heat by exchanging heat with the refrigerant flowing through the main refrigerant circuit (10) or utilizing the cold heat, warm heat. (Y) is arranged. In the heat storage unit (Y), (Y1) is a heat storage tank that stores water (W), which is a heat storage medium capable of storing cold heat and warm heat, and (12) is arranged in the heat storage tank (Y1). A heat storage heat exchanger for exchanging heat between W) and the refrigerant, the outdoor electric expansion valve (4) of the heat storage heat exchanger (12) and the main refrigerant circuit (10).
− Between the liquid line (9a) between the indoor electric expansion valve (6),
The first bypass passage (13a), the second bypass passage (13b), and the third bypass passage (13c) are connected so that the refrigerant can flow in order from the indoor electric expansion valve (6) side. The first bypass passage (13a) is provided with a heat storage electric expansion valve (14) as a heat storage pressure-reducing mechanism for reducing the pressure of the refrigerant when cold water is stored in the water (W). (13
In b), a third switching valve (15) that switches in three directions is provided, and one end is a heat storage heat exchanger (12) and the other end is the first switching valve (2) in the main passage (10a). ) And the second switching valve (11). Further, one end of the third bypass passage (13c) is connected to the third switching valve (15) and the other end is connected to the liquid line (9a).

一方、主冷媒回路(10)の液ライン(9a)の上記第1,
第3バイパス路(13a),(13c)との2つの接合部間に
は、冷媒の流量を可変に調節するための流量制御弁(1
6)が介設されている。
On the other hand, the first and second liquid lines (9a) of the main refrigerant circuit (10)
A flow rate control valve (1) for variably adjusting the flow rate of the refrigerant is provided between the two joints with the third bypass passages (13a) and (13c).
6) is installed.

すなわち、以上の各弁(2),(4),(6),(1
1),(14),(15),(16)の切換えもしくは開度の
調節により、各運転モードに応じて冷媒の循環経路の切
換えを行うようにした回路切換手段(51)が構成されて
いる。さらに、流量制御弁(16)及び蓄熱電動膨張弁
(14)により、蓄冷熱回収運転時における冷媒の流れを
第3バイパス路(13c)側と主冷媒回路(10)側とに分
流する分流手段(52)が構成されている。
That is, the above valves (2), (4), (6), (1
The circuit switching means (51) is configured to switch the refrigerant circulation path according to each operation mode by switching 1), (14), (15), (16) or adjusting the opening. There is. Furthermore, the flow control valve (16) and the heat storage electric expansion valve (14) divide the flow of the refrigerant during the cold heat recovery operation into the third bypass passage (13c) side and the main refrigerant circuit (10) side. (52) is configured.

また、この蓄熱式空気調和装置にはセンサ類が配置さ
れていて、(Thw)は上記蓄熱槽(Y1)の水中に配置さ
れ、水温Twを検出する水温センサ、(Thi)は液ライン
(9a)の第3バイパス路(13c)との接合部の冷房運転
時における上流側に配置された冷却入口センサ、(Th
o)は液ライン(9a)の第1バイパス路(13a)との接合
部の冷房運転時における下流側に配置された冷却出口セ
ンサ、(HSP)は圧縮機(1)の吐出側に設けられて高
圧を検出し、凝縮圧力相当飽和温度(凝縮温度Tc)を検
出する凝縮温度検出手段としての高圧センサ、(LSP)
は圧縮機(1)の吸込側に設けられて低圧を検出し、蒸
発圧力相当飽和温度(蒸発温度Te)を検出する低圧セン
サである。
Further, sensors are arranged in this heat storage type air conditioner, (Thw) is arranged in the water of the heat storage tank (Y1), a water temperature sensor for detecting the water temperature Tw, and (Thi) is a liquid line (9a ), A cooling inlet sensor disposed on the upstream side during the cooling operation of the joint portion with the third bypass passage (13c), (Th
o) is a cooling outlet sensor arranged on the downstream side of the junction of the liquid line (9a) with the first bypass passage (13a) during the cooling operation, and (HSP) is provided on the discharge side of the compressor (1). High pressure sensor as a condensing temperature detecting means for detecting the high pressure by detecting the saturated pressure (condensing temperature Tc) equivalent to the condensing pressure (LSP)
Is a low pressure sensor that is provided on the suction side of the compressor (1) to detect a low pressure and detect a saturation temperature (evaporation temperature Te) corresponding to the evaporation pressure.

ここで、この蓄熱式空気調和装置の各運転モードにお
ける回路構成並びに冷媒の循環動作について説明する。
Here, the circuit configuration and the refrigerant circulation operation in each operation mode of the heat storage type air conditioner will be described.

先ず、冷房運転より説明すると、通常冷房運転時に
は、第2図矢符に示すように、第1〜第3切換弁
(2),(11),(15)を実線の如く切換え、蓄熱電動
膨張弁(14)を閉、室外電動膨張弁(4)、室内電動膨
張弁(6)及び流量制御弁(16)を開に制御する状態で
運転され、冷媒はメイン通路(10a)のみを流れ、室外
熱交換器(3)で凝縮し、室内電動膨張弁(6)で減圧
された後、室内熱交換器(7)で蒸発して圧縮機(1)
に戻る。
First, the cooling operation will be described. During the normal cooling operation, as shown by the arrow in FIG. 2, the first to third switching valves (2), (11) and (15) are switched as indicated by the solid line, and the heat storage electric expansion is performed. The valve (14) is closed, the outdoor electric expansion valve (4), the indoor electric expansion valve (6) and the flow control valve (16) are operated to be opened, and the refrigerant flows only through the main passage (10a). After being condensed in the outdoor heat exchanger (3) and decompressed by the indoor electric expansion valve (6), it is evaporated in the indoor heat exchanger (7) and then the compressor (1)
Return to

蓄冷熱運転時には、第3図矢符に示すように、第1,第
2切換弁(12),(11)を実線に、第3切換弁(15)を
破線に切換え、室内電動膨張弁(6)を閉に、室外電動
膨張弁(4)、流量制御弁(16)及び蓄熱電動膨張弁
(14)を開に制御する状態で運転され、室外熱交換器
(3)で凝縮した冷媒は第1バイパス路(13a)を流
れ、蓄熱電動膨張弁(14)で減圧され、蓄熱用熱交換器
(12)で蒸発した後、第2バイパス路(13b)を流れて
圧縮機(1)に戻る。そして、蓄熱槽(Y1)で冷媒は水
(W)と熱交換して氷を生成し、冷熱を蓄える。
During the cold storage heat operation, as shown by the arrow in FIG. 3, the first and second switching valves (12) and (11) are switched to the solid line, and the third switching valve (15) is switched to the broken line so that the indoor electric expansion valve ( 6) is closed and the outdoor electric expansion valve (4), the flow control valve (16) and the heat storage electric expansion valve (14) are operated to be opened, and the refrigerant condensed in the outdoor heat exchanger (3) is It flows through the first bypass passage (13a), is decompressed by the heat storage electric expansion valve (14), is evaporated in the heat storage heat exchanger (12), and then flows through the second bypass passage (13b) to the compressor (1). Return. Then, in the heat storage tank (Y1), the refrigerant exchanges heat with water (W) to generate ice, and stores cold heat.

通常冷房運転と蓄冷熱運転とを同時に行う冷房蓄熱同
時運転時には、第4図矢符に示すように、第1、第2切
換弁(2),(11)を実線に、第3切換弁(15)を破線
に切換え、室外電動膨張弁(4)、流量制御弁(16)、
室内電動膨張弁(6)及び蓄熱電動膨張弁(14)を開に
制御する状態で運転され、室外熱交換器(3)で凝縮し
た液冷媒の一部はメイン通路(10a)を流れ、室内電動
膨張弁(6)で減圧されて室内熱交換器(7)で蒸発す
る一方、液冷媒の残部はメイン通路(10a)より第1バ
イパス路(13a)に流れ、蓄熱電動膨張弁(14)で減圧
されて蓄熱用交換器(12)で蒸発した後、第2バイパス
路(13b)を流れ、それぞれ蒸発した冷媒はメイン通路
(10a)で合流して圧縮機(1)に戻る。
In the simultaneous cooling and heat storage simultaneous operation in which the normal cooling operation and the cold storage operation are simultaneously performed, as shown by the arrow in FIG. 4, the first and second switching valves (2) and (11) are shown by solid lines, and the third switching valve ( 15) is switched to the broken line, the outdoor electric expansion valve (4), flow control valve (16),
The indoor electric expansion valve (6) and the heat storage electric expansion valve (14) are operated in a controlled open state, and part of the liquid refrigerant condensed in the outdoor heat exchanger (3) flows through the main passage (10a), While the pressure is reduced by the electric expansion valve (6) and evaporated in the indoor heat exchanger (7), the rest of the liquid refrigerant flows from the main passage (10a) to the first bypass passage (13a), and the heat storage electric expansion valve (14) After being decompressed by and evaporated in the heat storage exchanger (12), it flows through the second bypass passage (13b), and the evaporated refrigerants merge in the main passage (10a) and return to the compressor (1).

上記蓄冷熱運転による蓄冷熱を利用する蓄冷熱回収運
転時には、第5図矢符に示すように、第1〜第3切換弁
(2),(11),(15)を実線に切換え、流量制御弁
(16)を閉、室外電動膨張弁(4)、蓄熱電動膨張弁
(14)及び室内電動膨張弁(6)を開に制御する状態で
運転され、室外熱交換器(3)で凝縮した冷媒はメイン
通路(10a)より第3バイパス路(13c)及び第2バイパ
ス路(13b)を流れ、蓄熱用熱交換器(12)で過冷却さ
れ、第1バイパス路(13a)を流れてメイン通路(10a)
に戻り、室内電動膨張弁(6)で減圧され、室内熱交換
器(7)で蒸発して圧縮機(1)に戻る。そして、この
蓄冷熱回収運転時に、流量制御弁(16)と蓄熱電動膨張
弁(14)との開度を調整して蓄熱用熱交換器(12)を流
れる液冷媒とメイン通路(10a)を流れる液冷媒との流
量を調節し、冷却入口センサ(Thi)と冷却出口センサ
(Tho)とで検出される冷媒温度差によって過冷却度が
調節される。
During the cold storage heat recovery operation utilizing the cold storage heat by the cold storage heat operation, as shown by the arrow in FIG. 5, the first to third switching valves (2), (11) and (15) are switched to the solid line to change the flow rate. The control valve (16) is closed, the outdoor electric expansion valve (4), the heat storage electric expansion valve (14), and the indoor electric expansion valve (6) are controlled to open, and the outdoor heat exchanger (3) condenses. The refrigerant flowing from the main passage (10a) flows through the third bypass passage (13c) and the second bypass passage (13b), is supercooled by the heat storage heat exchanger (12), and flows through the first bypass passage (13a). Main passage (10a)
Then, the pressure is reduced by the indoor electric expansion valve (6), evaporated in the indoor heat exchanger (7) and returned to the compressor (1). Then, during the cold storage heat recovery operation, the opening degree of the flow control valve (16) and the heat storage electric expansion valve (14) are adjusted so that the liquid refrigerant flowing through the heat storage heat exchanger (12) and the main passage (10a) are connected. The degree of supercooling is adjusted by adjusting the flow rate with the flowing liquid refrigerant and the refrigerant temperature difference detected by the cooling inlet sensor (Thi) and the cooling outlet sensor (Tho).

次に、暖房運転について説明すると、先ず、通常暖房
運転時には、第6図矢符に示すように、1〜第3切換弁
(2),(11),(15)を破線に切換え、蓄熱電動膨張
弁(14)を閉、室内電動膨張弁(6)、流量制御弁(1
6)及び室外電動膨張弁(4)を開に制御する状態で運
転され、冷媒は圧縮機(1)より高圧通路(10b)を流
れ、室内熱交換器(7)で凝縮し、室外電動膨張弁
(4)で減圧された後、室外熱交換器(3)で蒸発し、
第1切換弁(2)を経て圧縮機(1)に戻る。
Next, the heating operation will be described. First, during the normal heating operation, as shown by the arrow in FIG. 6, the first to third switching valves (2), (11), (15) are switched to the broken lines, and the heat storage electric motor is operated. Close expansion valve (14), indoor electric expansion valve (6), flow control valve (1
6) and the outdoor electric expansion valve (4) are controlled to be open, the refrigerant flows from the compressor (1) through the high pressure passage (10b), is condensed in the indoor heat exchanger (7), and is electrically expanded outdoors. After the pressure was reduced by the valve (4), it was evaporated by the outdoor heat exchanger (3),
Return to the compressor (1) via the first switching valve (2).

蓄暖熱運転時には、第7図矢符に示すように、第1〜
第3切換弁(2),(11),(15)を破線に切換え、室
内電動膨張弁(6)を閉、蓄熱電動膨張弁(14)、流量
制御弁(16)及び室外電動膨張弁(4)を開に制御する
状態で運転され、冷媒は圧縮機(1)よりメイン通路
(10a)を流れ、第2バイパス路(13b)を経て、蓄熱用
熱交換器(12)で凝縮し、第1バイパス路(13a)を流
れてメイン通路(10a)に戻り、室外電動膨張弁(4)
で減圧されて室外熱交換器(3)で蒸発し、圧縮機
(1)に戻る。そして、蓄熱用熱交換器(12)で冷媒と
水(W)とが熱交換し、蓄熱槽(Y1)に暖熱が蓄えられ
る。
During the warm storage operation, as shown by the arrow in FIG.
The third switching valves (2), (11) and (15) are switched to broken lines, the indoor electric expansion valve (6) is closed, the heat storage electric expansion valve (14), the flow control valve (16) and the outdoor electric expansion valve ( 4) is operated in a state where it is controlled to open, the refrigerant flows from the compressor (1) through the main passage (10a), passes through the second bypass passage (13b), and is condensed in the heat storage heat exchanger (12), The outdoor electric expansion valve (4) flows through the first bypass passage (13a) and returns to the main passage (10a).
It is decompressed by and evaporated in the outdoor heat exchanger (3), and returns to the compressor (1). Then, the refrigerant and water (W) exchange heat with each other in the heat storage heat exchanger (12), and warm heat is stored in the heat storage tank (Y1).

通常暖房運転と蓄暖熱運転とを同時に行う暖房蓄熱同
時運転時には、第8図矢符に示すように、第1〜第3切
換弁(2),(11),(15)を破線に切換え、室内電動
膨張弁(6)、蓄熱電動膨張弁(14)、流量制御弁(1
6)及び室外電動膨張弁(4)を開に制御する状態に運
転され、冷媒の一部は圧縮機(1)より高圧通路(10
b)を流れて室内熱交換器(7)で凝縮する一方、残部
はメイン通路(10a)より第2バイパス路(13b)を流
れ、蓄熱用熱交換器(12)で凝縮して第1バイパス路
(13a)を流れ、それぞれ凝縮した液冷媒はメイン通路
(10a)で合流して室外電動膨張弁(4)で減圧され、
室外熱交換器(3)で蒸発して圧縮機(1)に戻る。
During the heating / heat storage simultaneous operation in which the normal heating operation and the storage / heat storage operation are simultaneously performed, the first to third switching valves (2), (11), and (15) are switched to broken lines as shown by arrows in FIG. , Indoor electric expansion valve (6), heat storage electric expansion valve (14), flow control valve (1
6) and the outdoor electric expansion valve (4) are controlled to be open, and a part of the refrigerant flows from the compressor (1) to the high pressure passage (10).
While flowing through b) and condensing in the indoor heat exchanger (7), the remainder flows from the main passage (10a) through the second bypass passage (13b), condenses in the heat storage heat exchanger (12), and then the first bypass. The liquid refrigerants that have flowed through the path (13a) and have condensed respectively are combined in the main path (10a) and are decompressed by the outdoor electric expansion valve (4),
It evaporates in the outdoor heat exchanger (3) and returns to the compressor (1).

上記蓄暖熱運転による蓄暖熱を利用してデフロストす
る蓄暖熱回収デフロスト運転時には、第9図矢符に示す
ように、第1、第2切換弁(2),(11)を実線に、第
3切換弁(15)を破線に切換え、室内電動膨張弁(6)
を閉、室外電動膨張弁(4)、流量制御弁(16)及び蓄
熱電動膨張弁(14)を開に制御する状態で運転され、冷
媒は圧縮機(1)より室外熱交換器(3)で凝縮し、第
1バイパス路(13a)を流れ、蓄熱電動膨張弁(14)で
減圧され、蓄熱用熱交換器(12)で蒸発した後、第2バ
イパス路(13b)を経て圧縮機(1)に戻る。そして、
蓄暖熱を利用して室外熱交換器(43)の除霜を行う。
During the stored heat recovery defrost operation in which the stored heat from the above stored heat operation is used to defrost, as shown by the arrow in FIG. 9, the first and second switching valves (2) and (11) are shown in solid lines. , The third switching valve (15) is switched to the broken line, and the indoor electric expansion valve (6)
Is operated and the outdoor electric expansion valve (4), the flow control valve (16) and the heat storage electric expansion valve (14) are controlled to be open, and the refrigerant is transferred from the compressor (1) to the outdoor heat exchanger (3). And then flows through the first bypass passage (13a), is decompressed by the heat storage electric expansion valve (14), evaporates in the heat storage heat exchanger (12), and then passes through the second bypass passage (13b) to the compressor ( Return to 1). And
The stored heat is used to defrost the outdoor heat exchanger (43).

通常暖房運転とデフロスト運転とを同時に行う暖房デ
フロスト同時運転時には、第10図矢符に示すように、第
1切換弁(2)を実線に、第2,第3切換弁(11),(1
5)を破線に切換え、室外電動膨張弁(4)、室内電動
膨張弁(6)、蓄熱電動膨張弁(14)及び流量制御弁
(16)を開に制御する状態で運転され、圧縮機(1)よ
り吐出された冷媒の一部は高圧通路(10b)を流れて室
内熱交換器(7)で凝縮する一方、上記冷媒の残部はメ
イン通路(10a)を流れて室外熱交換器(3)で凝縮
し、それぞれ凝縮した冷媒は第1バイパス路(13a)で
合流し、蓄熱電動膨張弁(14)で減圧されて熱用熱交換
器(12)で蒸発した後、第2バイパス路(13b)を流
れ、メイン通路(10a)を経て圧縮機(1)に戻る。そ
して、室内の暖房を行いつつ室外熱交換器(3)の除霜
を行う。
During the simultaneous heating and defrosting operation in which the normal heating operation and the defrosting operation are performed at the same time, as shown by the arrow in FIG. 10, the first switching valve (2) is shown by a solid line, and the second, third switching valves (11), (1
5) is switched to a broken line, the outdoor electric expansion valve (4), the indoor electric expansion valve (6), the heat storage electric expansion valve (14), and the flow control valve (16) are operated in the open state to control the compressor ( Part of the refrigerant discharged from 1) flows through the high-pressure passage (10b) and is condensed in the indoor heat exchanger (7), while the rest of the refrigerant flows through the main passage (10a) and the outdoor heat exchanger (3). ), And the condensed refrigerants respectively merge in the first bypass passage (13a), are decompressed by the heat storage electric expansion valve (14) and evaporated in the heat heat exchanger (12), and then the second bypass passage (13). 13b) and returns to the compressor (1) via the main passage (10a). Then, the outdoor heat exchanger (3) is defrosted while heating the room.

蓄冷熱蒸発暖房運転時には、第11図矢符に示すよう
に、第1切換弁(2)を実線に、第2,第3切換弁(1
1),(15)を破線に切換え流量制御弁(16)を閉、室
内電動膨張弁(6)及び蓄熱電動膨張弁(14)を開に制
御する状態で運転され、冷媒は圧縮機(1)より高圧通
路(10b)を流れて室内熱交換器(7)で凝縮し、第1
バイパス路(13a)を流れ、蓄熱電動膨張弁(14)で減
圧されて蓄熱用熱交換器(12)で蒸発した後、第2バイ
パス路(13b)を流れ、メイン通路(10a)を経て圧縮機
(1)に戻る。そして、暖房を行いつつ蓄冷熱を行い、
冬期の早朝等に暖房を行いながら昼間の冷房用蓄熱をし
てウォームアップ運転を行う。
During the cold storage heat evaporation heating operation, as shown by the arrow in FIG. 11, the first switching valve (2) is shown by the solid line, and the second and third switching valves (1
1) and (15) are switched to broken lines, the flow control valve (16) is closed, the indoor electric expansion valve (6) and the heat storage electric expansion valve (14) are controlled to be open, and the refrigerant is compressed by the compressor (1). ) Flow through the high pressure passage (10b) and condense in the indoor heat exchanger (7).
It flows through the bypass path (13a), is decompressed by the heat storage electric expansion valve (14) and evaporated in the heat storage heat exchanger (12), then flows through the second bypass path (13b) and is compressed through the main path (10a). Return to machine (1). And, while performing heating, it stores cold heat,
Warm-up operation is performed by storing heat for cooling in the daytime while heating in the early morning of winter.

次に、上記各運転時の運転制御のうち暖房運転時の暖
房デフロスト同時運転制御について説明する。
Next, the heating defrost simultaneous operation control during the heating operation will be described among the operation controls during the above operations.

まず、上記圧縮機(1)のモータ(MC)はコンロトー
ラ(6)に構成された容量制御手段(61)によって周波
数制御されて圧縮機(1)が容量可変に構成されてい
る。該容量制御手段(61)は低圧センサ(LSP)の出力
信号を受けて蒸発温度Teが一定値になるように圧縮機モ
ータ(MC)の周波数を制御するように構成されている。
更に、上記コンロトーラ(6)には、暖房デフロスト同
時運転時において、室内電動膨張弁(6)の開度を調整
する開度調整手段(62)と、室内ファン(図示省略)の
風量を低下させる風量低減手段(63)とが構成されてい
る。該開度調整手段(62)は、高圧センサ(HSP)が検
出する凝縮温度Tcが予め設定された第1設定値Tc1より
低下すると、室内電動膨張弁(6)の開度ステップを1
ステップ上昇して開度を小さくする一方、上記第1設定
値Tc1よりやや高い第2設定値Tc2より上昇すると、開度
ステップを1ステップ低下させて開度を大きくするよう
に構成されている。そして、上記第1及び第2設定値Tc
1,Tc2は次式に示すように固定値に設定されるか、 或いは、上記水温センサ(Thw)が検出した蓄熱槽(Y
1)内の水温Twを用いて次式に基づいて設定されてい
る。
First, the frequency of the motor (MC) of the compressor (1) is controlled by the capacity control means (61) of the controller (6), and the capacity of the compressor (1) is variable. The capacity control means (61) receives the output signal of the low pressure sensor (LSP) and controls the frequency of the compressor motor (MC) so that the evaporation temperature Te becomes a constant value.
Further, in the above-mentioned controller (6), the opening amount adjusting means (62) for adjusting the opening amount of the indoor electric expansion valve (6) and the air volume of the indoor fan (not shown) are reduced during the simultaneous heating and defrosting operation. An air volume reducing means (63) is configured. When the condensation temperature Tc detected by the high pressure sensor (HSP) falls below a preset first set value Tc 1 , the opening adjustment means (62) sets the opening step of the indoor electric expansion valve (6) to 1
While increasing the opening to decrease the opening while increasing from the second setting value Tc 2 slightly higher than the first setting value Tc 1 , the opening step is decreased by one step to increase the opening. There is. Then, the first and second set values Tc
1 , Tc 2 is set to a fixed value as shown in the following equation, or Alternatively, the heat storage tank (Y
It is set based on the following equation using the water temperature Tw in 1).

また、上記室内電動膨張弁(6)の開度ステップと開度
(pls)とは表1に示す関係に設定されている。
Further, the opening step and the opening (pls) of the indoor electric expansion valve (6) are set to have the relationship shown in Table 1.

一方、上記風量低減手段(63)は暖房デフロスト同時運
転時に室内ファン風量を低減し、L風量になるように室
内ファンを制御している。
On the other hand, the air volume reduction means (63) reduces the indoor fan air volume during the simultaneous heating and defrosting operation, and controls the indoor fan so that the air volume becomes L air volume.

そこで、上記暖房デフロスト同時運転時の制御動作に
ついて第12図に示す制御フローに基づき説明する。
Therefore, the control operation during the heating and defrosting simultaneous operation will be described based on the control flow shown in FIG.

先ず、デフロスト条件が充足されると、ステップST1
において、水温センサ(Thw)が検出した蓄熱槽(Y1)
内の水温Twが10℃以上か否かを判定し、10℃以下の場
合、蓄暖熱量が少ないので、ステップST2に移り、通常
デフロスト運転を行う一方、水温Twが10℃以上の場合、
ステップST3に移り、蓄暖熱を利用した暖房デフロスト
同時運転を開始する。続いて、ステップST4に移り、風
量低減手段(6)が室内ファン(図示省略)をL風量に
低下させて室内側の熱交換量を低下させた後、ステップ
ST5に移り、高圧センサ(HSP)が検出した凝縮温度Tcが
第1設定温度Tc1より高いか否かを判定する。そして、
この凝縮温度Tcが第1設定値Tc1より低い場合、ステッ
プST6に移り、室内電動膨張弁(6)の開度ステップi
を1ステップ大きくし(i+1)、ステップST7に移る
一方、凝縮温度Tcが第1設定値Tc1より高い場合にはス
テップST6を飛し、ステップST5よりステップST7に移
る。
First, when the defrost conditions are satisfied, step ST1
Storage tank (Y1) detected by the water temperature sensor (Thw) at
It is determined whether the water temperature Tw is 10 ° C or more, and if it is 10 ° C or less, the stored heat amount is small, so move to step ST2 and perform the normal defrost operation while the water temperature Tw is 10 ° C or more,
Moving to step ST3, the heating defrost simultaneous operation using the stored heat is started. Then, the process proceeds to step ST4, and the air volume reducing means (6) reduces the indoor fan (not shown) to the L air volume to reduce the heat exchange amount on the indoor side, and then the step
In ST5, it is determined whether the condensation temperature Tc detected by the high pressure sensor (HSP) is higher than the first set temperature Tc 1 . And
If the condensing temperature Tc is lower than the first set value Tc 1 , the process proceeds to step ST6 and the opening step i of the indoor electric expansion valve (6)
One step increased (i + 1), while proceeds to step ST7, and flying the step ST6 if the condensation temperature Tc is higher than the first set value Tc 1, the procedure proceeds to step ST7 from step ST5.

その後、このステップST7において、上記凝縮温度Tc
が第2設定値Tc2より高いか否かを判定し、該凝縮温度T
cが第2設定値Tc2より高い場合にはステップST8に移
り、室内電動膨張弁(6)の開度ステップiを1ステッ
プ小さくし(i−1)、ステップST9に移る一方、凝縮
温度Tcが第2設定値Tc2より低い場合、ステップST8を飛
し、ステップST7よりステップST9に移る。
Then, in this step ST7, the condensation temperature Tc
Is higher than the second set value Tc 2 and the condensation temperature T
When c is higher than the second set value Tc 2 , the process proceeds to step ST8, the opening step i of the indoor electric expansion valve (6) is decreased by one step (i-1), and the process proceeds to step ST9 while the condensing temperature Tc is reached. Is lower than the second set value Tc 2 , step ST8 is skipped, and the process proceeds from step ST7 to step ST9.

続いて、このステップST9において、室内電動膨張弁
(6)の開度ステップiが零以上か否かが判定され、零
以下になる場合にはステップST10に移り、開度ステップ
iを零に設定してステップST11に移る一方、零より大き
い場合にはステップST10を飛してステップST9よりステ
ップST11に移り、開度ステップiが8以上か否かが判定
される。そして、この開度ステップiが8以上になる場
合にはステップST12に移り、開度ステップiを8に設定
してステップST13に移る一方、8以下の場合にはステッ
プST12を飛してステップST11よりステップST13に移り、
デフロストが終了したか否かが判定され、終了するまで
ステップST5に戻り、上述の動作を繰り返す一方、終了
すると、ステップST14に移り、通常運転、例えば、通常
暖房運転を行うことになる。
Subsequently, in this step ST9, it is determined whether or not the opening step i of the indoor electric expansion valve (6) is 0 or more. If it is 0 or less, the process proceeds to step ST10 and the opening step i is set to 0. Then, on the other hand, if it is larger than zero, step ST10 is skipped and the process proceeds from step ST9 to step ST11 to determine whether the opening step i is 8 or more. Then, when the opening step i is 8 or more, the process proceeds to step ST12, and when the opening step i is set to 8, the process proceeds to step ST13, while when it is 8 or less, step ST12 is skipped and step ST11 Then move to step ST13,
It is determined whether or not the defrost has ended, the process returns to step ST5 until the end, and the above-described operation is repeated. On the other hand, when the defrost ends, the process moves to step ST14, and normal operation, for example, normal heating operation is performed.

つまり、上記ステップST5からステップST13までの1
サイクル毎に凝縮温度Tcが第1設定値Tc1より低いか否
か、及び第2設定値Tc2より高いか否かを判定し、開度
調整手段(62)は凝縮温度Tcが第1設定値Tc1より低い
場合、表1に示すように、開度ステップiを大きくして
開度を絞る一方、第2設定値Tc2より高くなると、開度
ステップiを小さくして開度を大きくし、1サイクル毎
に室内電動膨張弁(6)の開度を調整し、室内側の熱交
換量を制限して暖房デフロスト同時運転を行う。その
際、室内電動膨張弁(6)は開度は最大開度が開度ステ
ップiまで零までに、最小開度が開度ステップiで8ま
でに設定されている。
In other words, 1 from step ST5 to step ST13
For each cycle, it is determined whether the condensing temperature Tc is lower than the first set value Tc 1 and higher than the second set value Tc 2 , and the opening adjustment means (62) sets the condensing temperature Tc to the first set value. When it is lower than the value Tc 1 , as shown in Table 1, the opening step i is increased to reduce the opening, while when it is higher than the second set value Tc 2 , the opening step i is decreased and the opening is increased. Then, the opening degree of the indoor electric expansion valve (6) is adjusted for each cycle, the heat exchange amount on the indoor side is limited, and the heating defrost simultaneous operation is performed. At this time, the maximum opening of the indoor electric expansion valve (6) is set to zero until the opening step i, and the minimum opening is set to 8 at the opening step i.

従って、上記実施例によれば、蓄冷熱運転などの他
に、冷房蓄熱同時運転及び蓄冷熱凝縮冷房運転を行える
ようにしたために、冷房能力を全て活用することができ
るので、余剰能力を有効に利用することができる一方、
蓄暖熱回収デフロスト運転の他に、暖房デフロスト同時
運転などを行えるようにしたために、暖房能力を蓄暖熱
などに利用することができるので、余剰能力を有効利用
でき、運転効率の向上を図ることができる。更に、デフ
ロスト時に暖房を行うことができるので、快適な暖房を
継続して行うことができる。
Therefore, according to the above-described embodiment, in addition to the cold storage operation, since the cooling heat storage simultaneous operation and the cold storage heat condensation cooling operation can be performed, all the cooling capacity can be utilized, and the surplus capacity is effectively used. While available,
Since heating defrost operation and heating defrost operation can be performed at the same time in addition to the heat storage / heat recovery defrost operation, the heating capacity can be used for heat storage, etc., so that the surplus capacity can be effectively used to improve the operation efficiency. be able to. Furthermore, since heating can be performed during defrosting, comfortable heating can be continuously performed.

また、暖房デフロスト同時運転時に凝縮温度Tcが低下
すると、室内電動膨張弁(6)を絞ると共に、ファン風
量を低下させて室内側の熱交換量を少なくするので、デ
フロストの能力を十分に確保することができ、デフロト
時間を短くすることができることから、快適性の向上を
図ることができる。また、ファン風量を低下させるの
で、コールドドラフトを感じることがなくなり、より快
適性の向上を図ることができる。
Further, when the condensing temperature Tc decreases during the heating defrost simultaneous operation, the indoor electric expansion valve (6) is throttled and the fan air volume is reduced to reduce the heat exchange amount on the indoor side, so that the defrost capacity is sufficiently secured. Since it is possible to shorten the defrost time, it is possible to improve comfort. Further, since the fan air volume is reduced, the cold draft is not felt and the comfort can be further improved.

尚、本実施例において、風量低減手段(63)は暖房デ
フロスト同時運転を行うと、ファン風量を一律に低下さ
せるようにしたが、凝縮温度Tcの低下に伴って一定量低
下させるか、或いは段階的に低下させるようにしてもよ
く、その際、室内電動膨張弁(6)の開度調整に代えて
ファン風量を低下させるか、或いは開度調整と共に行う
ようにしてもよい。
In the present embodiment, the air volume reducing means (63) uniformly reduces the fan air volume when the heating and defrosting simultaneous operation is performed. The air volume of the fan may be reduced instead of adjusting the opening degree of the indoor electric expansion valve (6) or may be performed together with the opening degree adjustment.

また、第2,第3切換弁(11),(15)は2方向弁を2
つ宛用いて、回路接線を切換えるようにしてもよい。
The second and third switching valves (11) and (15) are two-way valves.
Alternatively, the circuit tangent line may be switched depending on the destination.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第12図は本発明の一実施例を示し、第1図は全
体構成を示す冷媒回路図である。第2図〜第11図は各運
転状態を示し、第2図は通常冷房運転、第3図は蓄冷熱
運転、第4図は冷房蓄熱同時運転、第5図は蓄冷熱回収
運転、第6図は通常暖房運転、第7図は蓄暖熱運転、第
8図は暖房蓄熱同時運転、第9図は蓄暖熱回収デフロス
ト運転、第10図は暖房デフロスト同時運転、第11図は蓄
冷熱蒸発暖房運転をそれぞれ示す冷媒循環回路図であ
る。第12図は暖房デフロスト同時運転の制御フロー図で
ある。 (1)…圧縮機 (2),(11),(15)…切換弁 (3)…室外熱交換器 (4)…室外電動膨張弁 (6)…室内電動膨張弁 (7)…室内熱交換器 (9a)…液ライン (10)…主冷媒回路 (10a)…メイン通路 (10b)…高圧通路 (13a)〜(13c)…バイパス路 (51)…回路切換手段 (62)…開度調整手段 (63)…風量低減手段
1 to 12 show an embodiment of the present invention, and FIG. 1 is a refrigerant circuit diagram showing the entire structure. 2 to 11 show respective operating states, FIG. 2 is a normal cooling operation, FIG. 3 is a cold heat storage operation, FIG. 4 is a cooling heat storage simultaneous operation, FIG. 5 is a cold heat recovery operation, and FIG. Fig. Is normal heating operation, Fig. 7 is heat storage heat operation, Fig. 8 is heating heat storage simultaneous operation, Fig. 9 is heat storage heat recovery defrost operation, Fig. 10 is heating defrost simultaneous operation, and Fig. 11 is cold heat storage operation. It is a refrigerant circulation circuit diagram showing each evaporation heating operation. FIG. 12 is a control flow chart of the heating defrost simultaneous operation. (1) ... Compressor (2), (11), (15) ... Switching valve (3) ... Outdoor heat exchanger (4) ... Outdoor electric expansion valve (6) ... Indoor electric expansion valve (7) ... Indoor heat Exchanger (9a) ... Liquid line (10) ... Main refrigerant circuit (10a) ... Main passage (10b) ... High pressure passage (13a) to (13c) ... Bypass passage (51) ... Circuit switching means (62) ... Opening degree Adjusting means (63): Air volume reducing means

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機(1)、流路切換機構(2)、熱源
側熱交換器(3)、熱源側減圧縮機(4)、利用側減圧
機構(6)及び利用側熱交換器(7)が順次接続されて
冷媒の可逆流通可能なメイン通路(10a)が形成される
と共に、一端が圧縮機の吐出側に接続された高圧通路
(10b)の他端が利用側熱交換器(7)と切換機構
(2)との間におけるメイン通路(10a)に接続されて
冷暖房サイクルに切換え可能な主冷媒回路(10)と、蓄
熱可能な蓄熱媒体が貯留されると共に、冷媒と蓄熱媒体
との熱交換を行う蓄熱用熱交換器(12)が収納された蓄
熱槽(Y1)とを備えた蓄熱式空気調和装置であって、 上記蓄熱用熱交換器(12)の一端を上記メイン通路(10
a)の液ライン(9a)における両減圧機構(4),
(6)間に接続する第1バイパス路(13a)と、該第1
バイパス路(13)に介設された蓄熱用減圧機構(14)
と、上記蓄熱用熱交換器(12)の他端をメイン通路(10
a)における利用側熱交換器(7)と切換機構(2)間
で且つ高圧通路(10b)の接続部より切換機構(2)側
に接続する第2バイパス路(13b)と、該第2バイパス
路(13b)の途中に一端が分岐接続され、他端が上記液
ライン(9a)における第1バイパス路(13a)の接続部
より熱源側減圧機構(4)側に接続された第3バイパス
路(13c)とを備え、 通常暖房運転時には、圧縮機(1)より吐出された冷媒
が高圧通路(10b)を流れ、利用側熱交換器(7)で凝
縮した後、熱源側減圧機構(4)で減圧され、熱源側熱
交換器(3)で蒸発して圧縮機(1)に戻るように循環
し、蓄暖熱運転時には、圧縮機(1)より吐出された冷
媒がメイン通路(10a)から第2バイパス路(13b)を流
れ、蓄熱用熱交換器(12)で凝縮した後、第1バイパス
路(13a)を経て熱源側熱交換器(3)で蒸発し、圧縮
機(1)に戻るように循環し、蓄暖熱回収デフロスト運
転時には、圧縮機(1)より吐出された冷媒が熱源側熱
交換器(3)で凝縮した後、第1バイパス路(13a)を
流れて蓄熱用熱交換器(12)で蒸発し、第2バイパス路
(13b)を経て圧縮機(1)に戻るように循環し、通常
暖房運転と熱回収デフロスト運転とを同時に行う暖房デ
フロスト同時運転時には、圧縮機(1)より吐出された
冷媒の一部が高圧通路(10b)を流れて利用側熱交換器
(7)で凝縮する一方、上記冷媒の残部がメイン通路
(10a)を流れて熱源側熱交換器(3)で凝縮し、各凝
縮した冷媒が第1バイパス路(13a)で合流して蓄熱用
熱交換器(12)で蒸発し、第2バイパス路(13b)を経
て圧縮機(1)に戻るように循環して、上記各運転を行
うようにメイン通路(10a)、高圧通路(10b)及び第1
〜第3バイパス路(13a)〜(13c)の回路接続を切換え
る回路切換手段(51)を備えていることを特徴とする蓄
熱式空気調和装置。
1. A compressor (1), a flow path switching mechanism (2), a heat source side heat exchanger (3), a heat source side decompressor (4), a use side decompression mechanism (6) and a use side heat exchanger. (7) are connected in sequence to form a main passage (10a) capable of reversibly circulating the refrigerant, and the other end of the high pressure passage (10b), one end of which is connected to the discharge side of the compressor, is the heat exchanger on the use side. A main refrigerant circuit (10) which is connected to a main passage (10a) between the switching mechanism (2) and the switching mechanism (2) and can switch to a heating / cooling cycle, a heat storage medium capable of storing heat, and a refrigerant and heat storage. A heat storage type air conditioner comprising a heat storage tank (Y1) accommodating a heat storage heat exchanger (12) for exchanging heat with a medium, wherein one end of the heat storage heat exchanger (12) is Main passage (10
Both decompression mechanisms (4) in the liquid line (9a) of a),
(6) A first bypass path (13a) connected between the first bypass path (13a) and the first bypass path (13a)
Heat storage decompression mechanism (14) installed in the bypass path (13)
And the other end of the heat storage heat exchanger (12) at the main passage (10
a second bypass passage (13b) connected between the utilization side heat exchanger (7) and the switching mechanism (2) in a) and on the switching mechanism (2) side from the connection portion of the high pressure passage (10b); A third bypass, one end of which is branched and connected in the middle of the bypass path (13b) and the other end of which is connected to the heat source side pressure reducing mechanism (4) side of the connection part of the first bypass path (13a) in the liquid line (9a). And the passage (13c), during normal heating operation, the refrigerant discharged from the compressor (1) flows through the high pressure passage (10b) and is condensed in the heat exchanger (7) on the utilization side, and then the decompression mechanism on the heat source side ( 4) The pressure is reduced, the heat source side heat exchanger (3) evaporates and circulates so as to return to the compressor (1), and during the heat storage heat operation, the refrigerant discharged from the compressor (1) is discharged from the main passage ( 10a) flows through the second bypass passage (13b), is condensed in the heat storage heat exchanger (12), and then passes through the first bypass passage (13a). The heat source side heat exchanger (3) evaporates and circulates so as to return to the compressor (1), and during the stored heat recovery defrost operation, the refrigerant discharged from the compressor (1) is the heat source side heat exchanger (3). ), Then flows through the first bypass passage (13a), evaporates in the heat storage heat exchanger (12), and circulates so as to return to the compressor (1) through the second bypass passage (13b). During the heating defrost simultaneous operation in which the heating operation and the heat recovery defrost operation are simultaneously performed, a part of the refrigerant discharged from the compressor (1) flows through the high pressure passage (10b) and is condensed in the use side heat exchanger (7). On the other hand, the rest of the refrigerant flows through the main passage (10a) and is condensed in the heat source side heat exchanger (3), and the condensed refrigerants merge in the first bypass passage (13a) to combine the heat storage heat exchanger (12). ) And then circulates so as to return to the compressor (1) through the second bypass passage (13b), and the above-mentioned respective operations Main passage (10a) to carry out, high-pressure passage (10b) and the first
~ A heat storage type air conditioner comprising circuit switching means (51) for switching the circuit connection of the third bypass paths (13a) to (13c).
【請求項2】圧縮機(1)、流路切換機構(2)、熱源
側熱交換器(3)、熱源側減圧機構(4)、利用側減圧
機構(6)及び利用側熱交換器(7)が順次接続されて
冷媒の可逆流通可能なメイン通路(10a)が形成される
と共に、一端が圧縮機(1)の吐出側に接続された高圧
通路(10b)の他端が利用側熱交換器(7)と切換機構
(2)との間におけるメイン通路(10a)に接続されて
冷暖房サイクルに切換え可能な主冷媒回路(10)と、蓄
熱可能な蓄熱媒体が貯留されると共に、冷媒と蓄熱媒体
との熱交換を行う蓄熱用熱交換器(12)が収納された蓄
熱槽(Y1)とを備えた蓄熱式空気調和装置であって、 上記蓄熱用熱交換器(12)の一端を上記メイン通路(10
a)の液ライン(9a)における両減圧機構(4),
(6)間に接続する第1バイパス路(13a)と、該第1
バイパス路(13)に介設された蓄熱用減圧機構(14)
と、上記蓄熱用熱交換器(12)の他端をメイン通路(10
a)における利用側熱交換器(7)と切換機構(2)間
で且つ高圧通路(10b)の接続部より切換機構(2)側
に接続する第2バイパス路(13b)と、該第2バイパス
路(13b)の途中に一端が分岐接続され、他端が上記液
ライン(9a)における第1バイパス路(13a)の接続部
より熱源側減圧機構(4)側に接続された第3バイパス
路(13c)とを備え、 冷房運転において、通常冷房運転時には、冷媒がメイン
通路(10a)のみを流れ、熱源側熱交換器(3)で凝縮
した冷媒が利用側減圧機構(6)で減圧され、利用側熱
交換器(7)で蒸発して圧縮機(1)に戻るように循環
し、蓄冷熱運転時には、熱源側熱交換器(3)で凝縮し
た冷媒が第1バイパス路(13a)を流れて蓄熱用減圧機
構(14)で減圧され、蓄熱用熱交換器(12)で蒸発し、
第2バイパス路(13b)を経て圧縮機(1)に戻るよう
に循環し、通常冷房運転と蓄冷熱運転とを同時に行う冷
房蓄熱同時運転時には、熱源側熱交換器(3)で凝縮し
た冷媒の一部がメイン通路(10a)を流れ熱源側熱交換
器(7)で蒸発して圧縮機(1)に戻る一方、上記冷媒
の残部が第1バイパス路(13a)を流れて蓄熱用熱交換
器(12)で蒸発し、第2バイパス路(13b)を経て圧縮
機(1)に戻るように循環し、蓄冷熱回収運転時には、
熱源側熱交換器(3)で凝縮した冷媒が第3バイパス路
(13c)及び第2バイパス路(13b)を流れ、蓄熱用熱交
換器(12)で過冷却された後、第1バイパス路(13a)
を経て利用側熱交換器(7)で蒸発して圧縮機(1)に
戻るように循環し、暖房運転において、通常暖房運転時
には、圧縮機(1)より吐出された冷媒が高圧通路(10
b)を流れ、利用側熱交換器(7)で凝縮した後、熱源
側減圧機構(4)で減圧され、熱源側熱交換器(3)で
蒸発して圧縮機(1)に戻るように循環し、蓄暖熱運転
時には、圧縮機(1)より吐出された冷媒がメイン通路
(10a)から第2バイパス路(13b)を流れ、蓄熱用熱交
換器(12)で凝縮した後、第1バイパス路(13a)を経
て熱源側熱交換器(3)で蒸発し、圧縮機(1)に戻る
ように循環し、通常暖房運転と蓄暖熱運転とを同時に行
う暖房蓄熱同時運転時には、圧縮機(1)より吐出され
た冷媒の一部が高圧通路(10b)を流れて利用側熱交換
器(7)で凝縮する一方、上記冷媒の残部がメイン通路
(10a)より第2バイパス路(13b)を流れて蓄熱用熱交
換器(12)で凝縮して第1バイパス路(13a)を流れ、
各凝縮した冷媒が液ライン(9a)で合流し、熱源側熱交
換器(3)で蒸発して圧縮機(1)に戻るように循環
し、蓄暖熱回収デフロスト運転時には、圧縮機(1)よ
り吐出された冷媒が熱源側熱交換器(3)で凝縮した
後、第1バイパス路(13a)を流れて蓄熱用熱交換器(1
2)で蒸発し、第2バイパス路(13b)を経て圧縮機
(1)に戻るように循環し、通常暖房運転と熱回収デフ
ロスト運転とを同時に行う暖房デフロスト同時運転時に
は、圧縮機(1)より吐出された冷媒の一部が高圧通路
(10b)を流れて利用側熱交換器(7)で凝縮する一
方、上記冷媒の残部がメイン通路(10a)を流れて熱源
側熱交換器(3)で凝縮し、各凝縮した冷媒が第1バイ
パス路(13a)で合流して蓄熱用熱交換器(12)で蒸発
し、第2バイパス路(13b)を経て圧縮機(1)に戻る
ように循環し、蓄冷熱蒸発暖房運転時には、圧縮機
(1)より吐出された冷媒が高圧通路(10b)を流れて
利用側熱交換器(7)で凝縮した後、第1バイパス路
(13a)を流れて蓄熱用熱交換器(12)で蒸発し、第2
バイパス路(13b)を経て圧縮機(1)に戻るように循
環して、上記各運転を行うようにメイン通路(10a)、
高圧通路(10b)及び第1〜第3バイパス路(13a)〜
(13c)の回路接続を切換える回路切換手段(51)を備
えていることを特徴とする蓄熱式空気調和装置。
2. A compressor (1), a flow path switching mechanism (2), a heat source side heat exchanger (3), a heat source side pressure reducing mechanism (4), a use side pressure reducing mechanism (6) and a use side heat exchanger ( 7) are sequentially connected to form a main passage (10a) through which the refrigerant can be reversibly distributed, and the other end of the high pressure passage (10b), one end of which is connected to the discharge side of the compressor (1), is the heat on the utilization side. A main refrigerant circuit (10) connected to the main passage (10a) between the exchanger (7) and the switching mechanism (2) and capable of switching to a heating / cooling cycle, a heat storage medium capable of storing heat, and a refrigerant are stored. A heat storage type air conditioner comprising a heat storage tank (Y1) accommodating a heat storage heat exchanger (12) for exchanging heat with a heat storage medium, wherein one end of the heat storage heat exchanger (12) The above main passage (10
Both decompression mechanisms (4) in the liquid line (9a) of a),
(6) A first bypass path (13a) connected between the first bypass path (13a) and the first bypass path (13a)
Heat storage decompression mechanism (14) installed in the bypass path (13)
And the other end of the heat storage heat exchanger (12) at the main passage (10
a second bypass passage (13b) connected between the utilization side heat exchanger (7) and the switching mechanism (2) in a) and on the switching mechanism (2) side from the connection portion of the high pressure passage (10b); A third bypass, one end of which is branched and connected in the middle of the bypass path (13b) and the other end of which is connected to the heat source side pressure reducing mechanism (4) side of the connection part of the first bypass path (13a) in the liquid line (9a). In the cooling operation, during normal cooling operation, the refrigerant flows only through the main passage (10a), and the refrigerant condensed in the heat source side heat exchanger (3) is decompressed by the use side decompression mechanism (6). The heat is circulated so as to evaporate in the utilization side heat exchanger (7) and return to the compressor (1), and during the cold storage heat operation, the refrigerant condensed in the heat source side heat exchanger (3) is the first bypass passage (13a). ), The pressure is reduced by the heat storage decompression mechanism (14), and is evaporated by the heat storage heat exchanger (12),
Refrigerant condensed in the heat source side heat exchanger (3) during the cooling heat storage simultaneous operation in which the refrigerant circulates so as to return to the compressor (1) through the second bypass path (13b) and simultaneously performs the normal cooling operation and the cold storage operation. Part of the refrigerant flows through the main passage (10a) and evaporates in the heat source side heat exchanger (7) and returns to the compressor (1), while the remaining part of the refrigerant flows through the first bypass passage (13a) to store heat. It evaporates in the exchanger (12), circulates so as to return to the compressor (1) via the second bypass passage (13b), and during the cold storage heat recovery operation,
The refrigerant condensed in the heat source side heat exchanger (3) flows through the third bypass passage (13c) and the second bypass passage (13b) and is supercooled by the heat storage heat exchanger (12), and then the first bypass passage. (13a)
The refrigerant discharged from the compressor (1) is circulated so as to evaporate in the use side heat exchanger (7) and return to the compressor (1) during normal heating operation during heating operation.
After flowing through b) and being condensed in the use side heat exchanger (7), it is decompressed by the heat source side decompression mechanism (4), evaporated in the heat source side heat exchanger (3) and returned to the compressor (1). During the warm storage operation during circulation, the refrigerant discharged from the compressor (1) flows from the main passage (10a) to the second bypass passage (13b) and is condensed in the heat storage heat exchanger (12), During the heating / heat storage simultaneous operation in which the heat is evaporated in the heat source side heat exchanger (3) via the 1 bypass path (13a) and circulated so as to return to the compressor (1), the normal heating operation and the warm storage operation are simultaneously performed, A part of the refrigerant discharged from the compressor (1) flows through the high pressure passage (10b) and is condensed in the utilization side heat exchanger (7), while the rest of the refrigerant is discharged from the main passage (10a) to the second bypass passage. (13b) and then condensed in the heat storage heat exchanger (12) to flow through the first bypass passage (13a),
The condensed refrigerants join together in the liquid line (9a), circulate so as to evaporate in the heat source side heat exchanger (3) and return to the compressor (1), and during the warm storage heat recovery defrost operation, the compressor (1 ) Is condensed in the heat source side heat exchanger (3), then flows through the first bypass passage (13a), and the heat storage heat exchanger (1
At the time of simultaneous heating / defrost simultaneous operation, the compressor (1) evaporates in 2), circulates so as to return to the compressor (1) through the second bypass path (13b), and simultaneously performs normal heating operation and heat recovery defrost operation. A part of the discharged refrigerant flows through the high pressure passage (10b) and is condensed in the utilization side heat exchanger (7), while the remaining part of the refrigerant flows through the main passage (10a) and the heat source side heat exchanger (3). ), The condensed refrigerants merge in the first bypass passage (13a), evaporate in the heat storage heat exchanger (12), and return to the compressor (1) via the second bypass passage (13b). During the cold storage heat evaporation heating operation, the refrigerant discharged from the compressor (1) flows through the high pressure passage (10b) and is condensed in the utilization side heat exchanger (7), and then the first bypass passage (13a). Flow through the heat storage heat exchanger (12) to evaporate,
The main passage (10a) is circulated so as to return to the compressor (1) through the bypass passage (13b) to perform the above-mentioned operations.
High-pressure passage (10b) and first to third bypass passages (13a)-
A heat storage type air conditioner comprising circuit switching means (51) for switching the circuit connection of (13c).
【請求項3】請求項(1)又は(2)記載の蓄熱式空気
調和装置において、利用側減圧機構(6)が開度調整自
在に構成される一方、 凝縮圧力相当飽和温度を検出する凝縮温度検出手段(HS
P)と、 暖房デフロスト同時運転時に上記凝縮温度検出手段(HS
P)が検出した凝縮圧力相当飽和温度が予め設定された
所定値以下になると利用側減圧機構(6)の開度を小さ
くする開度調整手段(62)とが設けられていることを特
徴とする蓄熱式空気調和装置。
3. The heat storage type air conditioner according to claim 1 or 2, wherein the use-side pressure reducing mechanism (6) is configured so that its opening can be adjusted, and the condensation for detecting the saturation temperature equivalent to the condensation pressure. Temperature detection means (HS
P) and the condensing temperature detection means (HS
And an opening adjustment means (62) for reducing the opening of the use-side pressure reducing mechanism (6) when the saturation temperature corresponding to the condensation pressure detected by P) becomes equal to or lower than a preset predetermined value. Heat storage type air conditioner.
【請求項4】請求項(1)又は(2)記載の蓄熱式空気
調和装置において、凝縮圧力相当飽和温度を検出する凝
縮温度検出手段(HSP)と、 暖房デフロスト同時運転時に凝縮温度検出手段(HSP)
が検出する凝縮圧力相当飽和温度が予め設定された所定
値以下になると利用側熱交換器(7)のファン風量を低
下させる風量低減手段(63)とが設けられていることを
特徴とする蓄熱式空気調和装置。
4. The heat storage type air conditioner according to claim 1, wherein a condensing temperature detecting means (HSP) for detecting a saturation temperature equivalent to a condensing pressure, and a condensing temperature detecting means during a simultaneous operation of heating defrost ( HSP)
A heat storage means characterized by being provided with an air volume reducing means (63) for reducing the fan air volume of the utilization side heat exchanger (7) when the saturation pressure corresponding to the condensation pressure detected by is equal to or lower than a preset predetermined value. Air conditioner.
【請求項5】請求項(3)記載の蓄熱式空気調和装置に
おいて、暖房デフロスト同時運転時に凝縮温度検出手段
(HSP)が検出する凝縮圧力相当飽和温度が予め設定さ
れた所定値以下になると利用側熱換器(7)のファン風
量を低下させる風量低減手段(63)が設けられているこ
とを特徴とする蓄熱式空気調和装置。
5. The heat storage type air conditioner according to claim 3, wherein the condensing pressure equivalent saturation temperature detected by the condensing temperature detecting means (HSP) during the simultaneous heating and defrosting operation is used when it becomes equal to or lower than a predetermined value. A heat storage type air conditioner, characterized in that an air volume reducing means (63) for reducing the fan air volume of the side heat exchanger (7) is provided.
JP16213689A 1989-06-23 1989-06-23 Heat storage type air conditioner Expired - Fee Related JP2503660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16213689A JP2503660B2 (en) 1989-06-23 1989-06-23 Heat storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16213689A JP2503660B2 (en) 1989-06-23 1989-06-23 Heat storage type air conditioner

Publications (2)

Publication Number Publication Date
JPH0328673A JPH0328673A (en) 1991-02-06
JP2503660B2 true JP2503660B2 (en) 1996-06-05

Family

ID=15748724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16213689A Expired - Fee Related JP2503660B2 (en) 1989-06-23 1989-06-23 Heat storage type air conditioner

Country Status (1)

Country Link
JP (1) JP2503660B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104736948B (en) * 2012-10-18 2017-03-01 大金工业株式会社 Air-conditioning device
CN104736951B (en) * 2012-10-18 2017-03-08 大金工业株式会社 Air-conditioning device
WO2015128980A1 (en) * 2014-02-27 2015-09-03 三菱電機株式会社 Refrigeration cycle device and air-conditioning device
WO2015177852A1 (en) * 2014-05-19 2015-11-26 三菱電機株式会社 Refrigeration cycle device
WO2016111003A1 (en) * 2015-01-09 2016-07-14 三菱電機株式会社 Heat storage unit and refrigeration cycle device

Also Published As

Publication number Publication date
JPH0328673A (en) 1991-02-06

Similar Documents

Publication Publication Date Title
KR101873595B1 (en) A cascade heat pump and a driving method for the same
US6883342B2 (en) Multiform gas heat pump type air conditioning system
JP4675927B2 (en) Air conditioner
JP5137933B2 (en) Air conditioner
JP2015068564A (en) Heat pump system and heat pump type water heater
JP3267187B2 (en) Heat pump water heater
JP2503660B2 (en) Heat storage type air conditioner
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
JP3324420B2 (en) Refrigeration equipment
JP2001263848A (en) Air conditioner
JP2503659B2 (en) Heat storage type air conditioner
JP6042037B2 (en) Refrigeration cycle equipment
JP3511161B2 (en) Air conditioner
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP2698179B2 (en) Air conditioning
JP2508812B2 (en) Heat storage type air conditioner
JPH0528440Y2 (en)
JPS6032535Y2 (en) Heat recovery air conditioner
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JPS6032534Y2 (en) Heat recovery air conditioner
JP2001116423A (en) Deep freezing air conditioner
JPH03164668A (en) Heat pump device
JPH02272237A (en) Heat storage type air conditioner
JP2800573B2 (en) Air conditioner
JP2002154317A (en) Vehicular air-conditioning device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees