JP2015068564A - Heat pump system and heat pump type water heater - Google Patents

Heat pump system and heat pump type water heater Download PDF

Info

Publication number
JP2015068564A
JP2015068564A JP2013203187A JP2013203187A JP2015068564A JP 2015068564 A JP2015068564 A JP 2015068564A JP 2013203187 A JP2013203187 A JP 2013203187A JP 2013203187 A JP2013203187 A JP 2013203187A JP 2015068564 A JP2015068564 A JP 2015068564A
Authority
JP
Japan
Prior art keywords
refrigerant
stage compressor
heat
low
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013203187A
Other languages
Japanese (ja)
Other versions
JP6057871B2 (en
Inventor
峰正 大村
Minemasa Omura
峰正 大村
岡田 拓也
Takuya Okada
拓也 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013203187A priority Critical patent/JP6057871B2/en
Priority to ES14847548T priority patent/ES2708779T3/en
Priority to CN201710356938.0A priority patent/CN107270570A/en
Priority to PCT/JP2014/004029 priority patent/WO2015045247A1/en
Priority to CN201480053999.4A priority patent/CN105593610B/en
Priority to EP14847548.6A priority patent/EP3040643B1/en
Publication of JP2015068564A publication Critical patent/JP2015068564A/en
Application granted granted Critical
Publication of JP6057871B2 publication Critical patent/JP6057871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a two-stage compression type heat pump system that can easily maintain amounts of refrigerating machine oil in two compressors equally.SOLUTION: A heat pump system includes: a compression mechanism 10 that has a low stage side compressor 10a and a high stage side compressor 10b for compressing and discharging a refrigerant; a water-refrigerant heat exchanger 11 for exchanging heat between the refrigerant compressed by the compression mechanism 10 and a heat exchange target; an expansion valve 12 for decompressing and expanding the refrigerant flowing out from the water-refrigerant heat exchanger 11; a heat source side air heat exchanger 13 for exchanging heat between the refrigerant decompressed and expanded by the expansion valve 12 and the heat exchange target; an oil equalizing mechanism 20 that interconnects the low stage side compressor 10a and the high stage side compressor 10b for making refrigerant machine oil flow; and a four-way changeover valve 14 for selectively switching between a two-stage compression route for making the refrigerant flow in the low stage side compressor 10a and the high stage side compressor 10b in this order and a single-stage compression route for making the refrigerant flow in only one of the low stage side compressor 10a and the high stage side compressor 10b.

Description

本発明は、二つの独立した圧縮機を直列に連結した二段圧縮式のヒートポンプシステムに関する。   The present invention relates to a two-stage compression heat pump system in which two independent compressors are connected in series.

省エネネルギーを目的に給湯システムのヒートポンプ化が進んでいる。
この冷媒システムとして、低段側圧縮機と高段側圧縮機が直列に接続された冷媒回路を備え、その冷媒回路で冷媒を循環させる二段圧縮冷凍サイクルが知られている(例えば、特許文献1〜3)。
The hot water supply system is becoming a heat pump for the purpose of energy saving energy.
As this refrigerant system, there is known a two-stage compression refrigeration cycle that includes a refrigerant circuit in which a low-stage compressor and a high-stage compressor are connected in series, and circulates refrigerant in the refrigerant circuit (for example, Patent Documents). 1-3).

特開平5−93552号公報JP-A-5-93552 特開平6−2966号公報JP-A-6-2966 特開2009−168330号公報JP 2009-168330 A

二段圧縮冷凍サイクルを常に効率の良い状態で運転をするためには、低段側及び高段側の2つの圧縮機をそれぞれ独立した回転数で運転させる必要がある。そのために最も大きな課題となるのは,2つの圧縮機にそれぞれ含まれる冷凍機油の油面レベルの制御である。1つのハウジングの内部に低段側及び高段側の2つの圧縮機構を搭載している圧縮機と異なり、2つの独立した圧縮機を直列に連結する場合には、2つの圧縮機の間で冷凍機油の量を適切な均等なレベルに保つことが、二つの圧縮機を健全に運転するために必要である。
本発明は、この技術的課題に基づいてなされたもので、運転を停止したり、あるいは、複雑な運転操作したりすることなく、2つの圧縮機の冷凍機油の量を均等に保つのが容易な二段圧縮ヒートポンプシステムを提供することを目的とする。本発明は、加えて、この二段圧縮式ヒートポンプシステムを備える高効率なヒートポンプ給湯器を提供することを目的とする。
In order to always operate the two-stage compression refrigeration cycle in an efficient state, it is necessary to operate the two compressors on the low-stage side and the high-stage side at independent rotation speeds. Therefore, the biggest problem is the control of the oil level of the refrigeration oil contained in each of the two compressors. Unlike a compressor in which two low-stage and high-stage compression mechanisms are mounted inside a single housing, when two independent compressors are connected in series, the two compressors Keeping the amount of refrigeration oil at an appropriate even level is necessary for the healthy operation of the two compressors.
The present invention has been made on the basis of this technical problem, and it is easy to keep the amount of refrigerating machine oil of the two compressors equal without stopping the operation or performing complicated operation. An object of the present invention is to provide a two-stage compression heat pump system. In addition, an object of the present invention is to provide a highly efficient heat pump water heater provided with this two-stage compression heat pump system.

かかる目的のもと、本発明の二段圧縮式のヒートポンプシステムは、低段側圧縮機と高段側圧縮機を備え、冷媒を圧縮して吐出する圧縮機構と、高段側圧縮機の吐出側に設けられるオイルセパレータと、圧縮機構で圧縮された冷媒と熱交換対象とを熱交換する第1熱交換器と、第1熱交換器から流出する冷媒を減圧膨張させる膨張弁と、膨張弁にて減圧膨張された冷媒と熱交換対象とを熱交換する第2熱交換器と、低段側圧縮機と高段側圧縮機を繋ぎ、低段側圧縮機と高段側圧縮機の間で冷凍機油を流通させる均油経路と、オイルセパレータと高段側圧縮機の吸入側の間を繋ぐ主戻り配管と、主戻り配管と均油経路とを繋ぐ油戻り経路と、油戻り経路に設けられる油戻り用開閉弁と、冷媒を、低段側圧縮機と高段側圧縮機をこの順に流す二段圧縮経路と、低段側圧縮機と高段側圧縮機の一方だけを流す一段圧縮経路と、を選択的に切り替える冷媒経路切換え機構と、を備えることを特徴とする。
例えばヒートポンプ式の給湯器を想定すると、機器の高圧圧力は水と冷媒の熱交換器(水対冷媒熱交換器)に入ってくる水温(例えば、35〜75℃の範囲)に依存して決まるため、水温によって圧縮機の吸入側と吐出側の圧力差が大きく変わり得る。水対冷媒熱交換器の入口水温が低い状態で二段圧縮運転を行うと、低段側圧縮機と高段側圧縮機の間の差圧が小さくなる。この圧縮機間の差圧によって、戻される冷凍機油の量が決まる。そこで、本発明は、二段圧縮運転を行っている最中に、低段側圧縮機と高段側圧縮機の間の差圧が低くなると、一段圧縮運転に切り替えられるようにする。
For this purpose, the two-stage compression heat pump system of the present invention comprises a low-stage compressor and a high-stage compressor, compresses and discharges refrigerant, and discharges from the high-stage compressor. An oil separator provided on the side, a first heat exchanger that exchanges heat between the refrigerant compressed by the compression mechanism and a heat exchange target, an expansion valve that decompresses and expands the refrigerant flowing out of the first heat exchanger, and an expansion valve The second heat exchanger that exchanges heat between the refrigerant expanded under reduced pressure and the heat exchange target, and the low-stage compressor and the high-stage compressor are connected to each other between the low-stage compressor and the high-stage compressor. The oil leveling path through which the refrigeration oil flows, the main return pipe connecting the oil separator and the suction side of the high stage compressor, the oil return path connecting the main return pipe and the oil leveling path, and the oil return path. A two-stage pressure that causes the oil return on-off valve and refrigerant to flow through the low-stage compressor and the high-stage compressor in this order. And a refrigerant path switching mechanism that selectively switches between a compression path and a one-stage compression path through which only one of the low-stage compressor and the high-stage compressor flows.
For example, assuming a heat pump type water heater, the high pressure of the device is determined depending on the water temperature (for example, in the range of 35 to 75 ° C.) entering the heat exchanger of water and refrigerant (water-to-refrigerant heat exchanger). Therefore, the pressure difference between the suction side and the discharge side of the compressor can vary greatly depending on the water temperature. When the two-stage compression operation is performed in a state where the inlet water temperature of the water-to-refrigerant heat exchanger is low, the differential pressure between the low-stage compressor and the high-stage compressor is reduced. The pressure difference between the compressors determines the amount of refrigerating machine oil that is returned. Therefore, according to the present invention, when the differential pressure between the low-stage compressor and the high-stage compressor becomes low during the two-stage compression operation, the first-stage compression operation is switched.

本発明のヒートポンプシステムにおいて、二段圧縮経路が選択されている最中に、以下の条件(1)〜条件(3)のいずれかを満たすと、冷媒の経路が、一段圧縮経路に切り換えられる。
条件(1):T≦ T
;第1熱交換器の熱交換対象が水の場合に、水と冷媒の熱交換器(水熱交)に入ってくる水温, T;規定値
条件(2):(PHO−PLI) ≦ ΔPR1
LI;低段側圧縮機の吸入圧力 PHO;高段側圧縮機の吐出圧力 規定値:ΔPR1
条件(3)(PLO−PLI) ≦ ΔPR2
LI;低段側圧縮機の吸入圧力 PLO;低段側圧縮機の吐出圧力 規定値:ΔPR2
In the heat pump system of the present invention, when any of the following conditions (1) to (3) is satisfied while the two-stage compression path is selected, the refrigerant path is switched to the one-stage compression path.
Condition (1): T W ≦ T R
T W ; When the heat exchange target of the first heat exchanger is water, the water temperature entering the heat exchanger (hydrothermal exchange) of water and refrigerant, T R ; Specified value condition (2): (P HOPLI ) ≦ ΔP R1
P LI ; suction pressure of the low stage compressor P HO ; discharge pressure of the high stage compressor Specified value: ΔP R1
Condition (3) (P LO -P LI ) ≦ ΔP R2
P LI ; Low-stage compressor suction pressure P LO ; Low-stage compressor discharge pressure Specified value: ΔP R2

本発明のヒートポンプシステムにおいて、冷媒経路切換え機構が、一段圧縮経路を選択すると、油戻り用開閉弁を開くことで、オイルセパレータからの冷凍機油を、高段側圧縮機を経由することなく、油戻り経路を介して均油経路に戻すことができる。
以上の構成の油戻り経路、均油経路を設けることにより、低段側圧縮機、高段側圧縮機のそれぞれの冷凍機油の量が不足したときに油量の回復が容易にできる。
In the heat pump system of the present invention, when the refrigerant path switching mechanism selects the one-stage compression path, the oil return on / off valve is opened, so that the refrigeration oil from the oil separator can be supplied to the oil without going through the high-stage compressor. It is possible to return to the oil leveling path via the return path.
By providing the oil return path and the oil equalization path having the above-described configuration, the oil amount can be easily recovered when the amount of refrigeration oil in each of the low-stage compressor and the high-stage compressor is insufficient.

本発明のヒートポンプシステムにおいて、戻り用開閉弁の開閉、及び、均油用開閉弁の開閉は、低段側圧縮機における予測される冷凍機油の量、及び、高段側圧縮機における予測される冷凍機油の量に基づいて制御することが好ましい。
ヒートポンプシステムが備えている圧力センサ、温度センサ検知結果から求められる2つの圧縮機それぞれの油量に基づいて、適切なタイミングで冷凍機油を制御することができる。
In the heat pump system of the present invention, the opening and closing of the return on-off valve and the opening and closing of the oil equalizing on-off valve are predicted for the amount of refrigeration oil expected in the low-stage compressor and in the high-stage compressor. It is preferable to control based on the amount of refrigerating machine oil.
Refrigerating machine oil can be controlled at an appropriate timing based on the respective oil amounts of the two compressors obtained from the pressure sensor and temperature sensor detection results provided in the heat pump system.

以上説明したヒートポンプシステムの第1熱交換器を、冷媒と水とを熱交換させて水を加熱する水対冷媒熱交換器とするヒートポンプ式給湯機は、低段側圧縮機及び高段側圧縮機の冷凍機油の量が確保されるので、安定して高効率な給湯を実現できる。   The heat pump type hot water heater in which the first heat exchanger of the heat pump system described above is a water-to-refrigerant heat exchanger that heats water by exchanging heat between refrigerant and water includes a low-stage compressor and a high-stage compressor. Since the amount of refrigerating machine oil is secured, stable and highly efficient hot water supply can be realized.

本発明によれば、低段側圧縮機と高段側圧縮機の運転を停止することなく、第1電磁弁と第2電磁弁の開閉という簡易な操作だけで、低段側圧縮機と高段側圧縮機における冷凍機油の均一化を図ることができる。   According to the present invention, the low-stage compressor and the high-stage compressor can be connected to the high-stage compressor and the high-stage compressor only by a simple operation of opening and closing the first solenoid valve and the second solenoid valve without stopping the operation of the high-stage compressor. It is possible to make the refrigerating machine oil uniform in the stage side compressor.

第1実施形態に係るヒートポンプシステムの回路構成を示す図である。It is a figure which shows the circuit structure of the heat pump system which concerns on 1st Embodiment. 第1実施形態のヒートポンプシステムの動作を示す図であり、(a)は二段圧縮運転を示し、(b)は一段圧縮運転を示す。It is a figure which shows operation | movement of the heat pump system of 1st Embodiment, (a) shows two-stage compression operation, (b) shows one-stage compression operation. 図1のヒートポンプシステムの二段圧縮運転と一段圧縮運転の切り替えを、2つの電磁弁で行う回路構成を示す図である。It is a figure which shows the circuit structure which switches the two-stage compression operation and the one-stage compression operation of the heat pump system of FIG. 1 with two solenoid valves. 図1のヒートポンプシステムにオイルセパレータを二つ付け加えた回路構成を示す図である。It is a figure which shows the circuit structure which added two oil separators to the heat pump system of FIG. 第2実施形態に係るヒートポンプ式の給湯・空調機の回路構成を示す図である。It is a figure which shows the circuit structure of the heat pump type hot-water supply and air conditioner which concerns on 2nd Embodiment. 第2実施形態に係るヒートポンプ式の給湯・空調機の回路構成を示し、図5とは異なる運転モードを示している。The circuit configuration of the heat pump type hot water supply / air conditioner according to the second embodiment is shown, and an operation mode different from FIG. 5 is shown.

以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
以下、添付する図面を参照して、本発明の実施形態を説明する。
[第1実施形態]
第1実施形態に係るヒートポンプシステム1は、図1に示すように、冷媒を圧縮して吐出する低段側圧縮機10a及び高段側圧縮機10bと、高段側圧縮機10bで圧縮された冷媒と熱交換の対象となる流体とを熱交換させる第1熱交換器11と、第1熱交換器11から流出する冷媒を減圧膨張させる膨張弁(以下、単に膨張弁)12と、膨張弁12にて減圧膨張された冷媒と熱交換対象となる流体を熱交換させる第2熱交換器13と、を備え、冷媒の循環方向に沿ってこの順に直列に接続されている。本実施形態においては、第1熱交換器11は、例えば水と熱交換することで放熱する凝縮器として機能することができ、また、第2熱交換器13は、外気と熱交換することで吸熱する蒸発器として機能することができる。
ヒートポンプシステム1は、低段側圧縮機10aと高段側圧縮機10bの接続状態を以下のように切り替える四方切換え弁14を備えている。つまり、四方切換え弁14は、冷媒が低段側圧縮機10aと高段側圧縮機10bの両者を通過する二段圧縮運転(二段圧縮経路)と、冷媒が低段側圧縮機10aだけを通過するが高段側圧縮機10bを迂回する一段圧縮運転(一段圧縮経路)と、を切り替える。
また、ヒートポンプシステム1は、低段側圧縮機10aに保持される冷凍機油と高段側圧縮機10bに保持される冷凍機油の油量を均等に保つための均油機構20を備える。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[First Embodiment]
As shown in FIG. 1, the heat pump system 1 according to the first embodiment is compressed by a low-stage compressor 10a and a high-stage compressor 10b that compress and discharge a refrigerant, and a high-stage compressor 10b. A first heat exchanger 11 for exchanging heat between the refrigerant and a fluid to be heat exchanged, an expansion valve (hereinafter simply referred to as an expansion valve) 12 for decompressing and expanding the refrigerant flowing out of the first heat exchanger 11, and an expansion valve 12 and a second heat exchanger 13 for exchanging heat between the refrigerant expanded under reduced pressure and the fluid to be heat exchanged, and connected in series in this order along the circulation direction of the refrigerant. In the present embodiment, the first heat exchanger 11 can function as a condenser that radiates heat by exchanging heat with water, for example, and the second heat exchanger 13 can exchange heat with the outside air. It can function as an evaporator that absorbs heat.
The heat pump system 1 includes a four-way switching valve 14 that switches the connection state between the low-stage compressor 10a and the high-stage compressor 10b as follows. That is, the four-way switching valve 14 is configured so that the refrigerant passes through both the low-stage compressor 10a and the high-stage compressor 10b, and the refrigerant passes through only the low-stage compressor 10a. A single-stage compression operation (one-stage compression path) that passes but bypasses the high-stage compressor 10b is switched.
Further, the heat pump system 1 includes an oil leveling mechanism 20 for keeping the amount of the refrigerating machine oil held in the low stage side compressor 10a and the amount of the refrigerating machine oil held in the high stage side compressor 10b even.

ヒートポンプシステム1は、低段側圧縮機10aと高段側圧縮機10bを繋ぐ配管L1と、高段側圧縮機10bと第1熱交換器11を繋ぐ配管L2と、第1熱交換器11と第2熱交換器13を繋ぐ配管L3と、第2熱交換器13と低段側圧縮機10aを繋ぐ配管L4とを備えることで、冷媒が循環する冷媒回路を構成する。この中で、低段側圧縮機10aにとって配管L4が吸入側配管を、低段側圧縮機10aと高段側圧縮機10bを繋ぐ配管L1が中間圧配管を、高段側圧縮機10bにとって配管L2が吐出側配管を構成する。
また、ヒートポンプシステム1は、低段側圧縮機10aの吐出側(配管L1)と高段側圧縮機10bの吐出側(配管L2)を繋ぐ配管L5を備えている。前述した四方切換え弁14は、配管L5の低段側圧縮機10aの吐出側の接続端に設けられている。四方切換え弁14は、低段側圧縮機10aから吐出される冷媒を、配管L1をそのまま通って高段側圧縮機10bに吸入されるか、又は、配管L5を通り、さらに配管L2を通って第1熱交換器11に供給するかを切り換える。この切り替えにより、二段圧縮経路と一段圧縮経路)との切り替えが実現される。
なお、低段側圧縮機10aと高段側圧縮機10bを区別することなく圧縮機構10と総称することがある。
The heat pump system 1 includes a pipe L1 that connects the low-stage compressor 10a and the high-stage compressor 10b, a pipe L2 that connects the high-stage compressor 10b and the first heat exchanger 11, and the first heat exchanger 11. By providing the pipe L3 that connects the second heat exchanger 13 and the pipe L4 that connects the second heat exchanger 13 and the low-stage compressor 10a, a refrigerant circuit in which the refrigerant circulates is configured. Among these, the pipe L4 is a suction side pipe for the low stage compressor 10a, the pipe L1 connecting the low stage compressor 10a and the high stage compressor 10b is an intermediate pressure pipe, and a pipe for the high stage compressor 10b. L2 constitutes the discharge side piping.
The heat pump system 1 also includes a pipe L5 that connects the discharge side (pipe L1) of the low-stage compressor 10a and the discharge side (pipe L2) of the high-stage compressor 10b. The four-way switching valve 14 described above is provided at the connection end on the discharge side of the low-stage compressor 10a of the pipe L5. The four-way switching valve 14 allows the refrigerant discharged from the low-stage compressor 10a to be sucked into the high-stage compressor 10b through the pipe L1 as it is, or through the pipe L5 and further through the pipe L2. Whether to supply to the first heat exchanger 11 is switched. By this switching, switching between the two-stage compression path and the one-stage compression path) is realized.
The low-stage compressor 10a and the high-stage compressor 10b may be collectively referred to as the compression mechanism 10 without being distinguished.

次に、ヒートポンプシステム1は、配管L2上にオイルセパレータ26を備えている。オイルセパレータ26は、高段側圧縮機10bと油戻し配管27により直接的に接続されている。油戻し配管27は固定絞り27aを備えている。
オイルセパレータ26は、二段圧縮運転の最中には、高段側圧縮機10bから吐出される冷媒から冷凍機油を分離し、戻り配管27を介して高段側圧縮機10bに戻す。オイルセパレータ26は、一段圧縮運転の最中には、低段側圧縮機10aから吐出される冷媒から冷凍機油を分離し、油戻し配管27を介して高段側圧縮機10bに戻す。
Next, the heat pump system 1 includes an oil separator 26 on the pipe L2. The oil separator 26 is directly connected to the high stage compressor 10 b and the oil return pipe 27. The oil return pipe 27 includes a fixed throttle 27a.
During the two-stage compression operation, the oil separator 26 separates the refrigeration oil from the refrigerant discharged from the high-stage compressor 10 b and returns it to the high-stage compressor 10 b via the return pipe 27. During the one-stage compression operation, the oil separator 26 separates the refrigeration oil from the refrigerant discharged from the low-stage compressor 10 a and returns it to the high-stage compressor 10 b via the oil return pipe 27.

以下、ヒートポンプシステム1の各構成要素を順に説明する。
[圧縮機構10]
低段側圧縮機10aは、一体に構成された電動モータにより回転駆動されることにより、第2熱交換器13を通過した低温低圧の冷媒を吸入して中間圧まで圧縮し、高段側圧縮機10bに向けて吐出する。
低段側圧縮機10aに適用される圧縮機構としては、スクロール型圧縮機構や、ロータリ式圧縮機構など公知の形式の圧縮機構を適用できる。高段側圧縮機10bも同様である。
高段側圧縮機10bは、低段側圧縮機10aから吐出された冷媒を吸入して圧縮し、高温高圧の冷媒として第1熱交換器11に向けて吐出する。
Hereinafter, each component of the heat pump system 1 is demonstrated in order.
[Compression mechanism 10]
The low-stage compressor 10a is rotationally driven by an integrally configured electric motor, thereby sucking in the low-temperature and low-pressure refrigerant that has passed through the second heat exchanger 13 and compressing it to an intermediate pressure. Discharge toward the machine 10b.
As a compression mechanism applied to the low-stage compressor 10a, a known type compression mechanism such as a scroll-type compression mechanism or a rotary compression mechanism can be applied. The same applies to the high-stage compressor 10b.
The high stage compressor 10b sucks and compresses the refrigerant discharged from the low stage compressor 10a, and discharges the refrigerant toward the first heat exchanger 11 as a high-temperature and high-pressure refrigerant.

[第1熱交換器11]
第1熱交換器11は、熱交換の対象となる水、空気などの流体と高温高圧の冷媒とを熱交換させることによって当該流体を加熱する。高段側圧縮機10bから吐出された高温高圧の冷媒は、ここで冷却され凝縮される。第1熱交換器11は、公知の熱交換器を用いることができる。次に説明する第2熱交換器13も同様である。
第1熱交換器11は、熱交換の対象が空気の場合には、送風ファン11fを付設しており、送風ファン11fにより送風された空気が第1熱交換器11を通過する過程で、冷媒と熱交換される。
[First heat exchanger 11]
The 1st heat exchanger 11 heats the said fluid by carrying out heat exchange of fluids, such as water and air used as the object of heat exchange, and a high temperature / high pressure refrigerant | coolant. The high-temperature and high-pressure refrigerant discharged from the high-stage compressor 10b is cooled and condensed here. A known heat exchanger can be used as the first heat exchanger 11. The same applies to the second heat exchanger 13 described next.
When the heat exchange target is air, the first heat exchanger 11 is provided with a blower fan 11f, and in the process in which the air blown by the blower fan 11f passes through the first heat exchanger 11, And heat exchange.

[膨張弁12、第2熱交換器13]
第2熱交換器13は、膨張弁12を通過して減圧膨張された冷媒と外気(送風空気)との間で熱交換を行うものであり、この熱交換の過程で冷媒は蒸発し、外気から熱を吸収する。第2熱交換器13にも、送風ファン13fが付設されており、送風ファン13fにより送風された空気と冷媒とが熱交換されることで、低圧冷媒を蒸発させて吸熱作用を生じさせる。
膨張弁12は、例えば、ニードル状の弁体と、弁体を駆動するためのパルスモータとを備えた膨張弁を用いることができる。
[Expansion valve 12, second heat exchanger 13]
The second heat exchanger 13 exchanges heat between the refrigerant that has passed through the expansion valve 12 and is decompressed and expanded, and the outside air (blast air). During this heat exchange, the refrigerant evaporates, and the outside air Absorbs heat. The second heat exchanger 13 is also provided with a blower fan 13f, and heat exchange is performed between the air blown by the blower fan 13f and the refrigerant, thereby evaporating the low-pressure refrigerant and causing an endothermic effect.
As the expansion valve 12, for example, an expansion valve provided with a needle-like valve body and a pulse motor for driving the valve body can be used.

[均油機構20]
均油機構20は、低段側圧縮機10aと高段側圧縮機10bを繋ぐ均油配管21と、均油配管21と油戻し配管27を繋ぐバイパス配管23と、バイパス配管23に設けられる電磁弁25と、を備える。
均油機構20は、均油配管21を通じて低段側圧縮機10aと高段側圧縮機10bの間で冷凍機油を流通させる。また、均油機構20は、バイパス配管23を介して、高段側圧縮機10bの吐出側から均油配管21に冷凍機油を戻す。このバイパス配管23の機能は、一段圧縮運転が行われている際に発揮されることで、均油配管21に必要な差圧を与える。
均油配管21は、低段側圧縮機10a及び高段側圧縮機10bの各々が必要とする冷凍機油の量を示す油面を基準とすると、その基準油面の直上において低段側圧縮機10a及び高段側圧縮機10bと接続される。
[Oil leveling mechanism 20]
The oil leveling mechanism 20 includes an oil leveling pipe 21 that connects the low stage side compressor 10a and the high stage side compressor 10b, a bypass pipe 23 that connects the oil leveling pipe 21 and the oil return pipe 27, and an electromagnetic wave provided in the bypass pipe 23. And a valve 25.
The oil leveling mechanism 20 distributes the refrigerating machine oil between the low stage side compressor 10a and the high stage side compressor 10b through the oil leveling pipe 21. Further, the oil leveling mechanism 20 returns the refrigeration oil to the oil leveling pipe 21 from the discharge side of the high stage compressor 10 b via the bypass pipe 23. The function of the bypass pipe 23 is exerted when the one-stage compression operation is performed, thereby giving a necessary differential pressure to the oil leveling pipe 21.
If the oil leveling pipe 21 is based on the oil level indicating the amount of refrigerating machine oil required by each of the low stage side compressor 10a and the high stage side compressor 10b, the low stage side compressor 21 is directly above the reference oil level. 10a and the high stage compressor 10b.

[ヒートポンプシステム1の動作]
以下、ヒートポンプシステム1の動作を説明する。
ヒートポンプシステム1は、冷媒が循環し、二段圧縮運転が行われる。ただし、特定の条件を備えると、一段圧縮運転が行われる。
[Operation of heat pump system 1]
Hereinafter, the operation of the heat pump system 1 will be described.
In the heat pump system 1, the refrigerant circulates and a two-stage compression operation is performed. However, if a specific condition is provided, a one-stage compression operation is performed.

はじめに、二段圧縮運転について説明する。
二段圧縮運転のときは、図2(a)に示すように、配管L1(L11とL12)が連通するように四方切換え弁14が切換えられており、低段側圧縮機10aで中間圧まで加圧された冷媒は、配管L11、四方切換え弁14、配管L12を通って、高段側圧縮機10bに吸入される。図2(a)において、矢印は冷媒が流れる向きを示している。後述する図2(b)も同様である。
高段側圧縮機10bで高温高圧まで圧縮されてから吐出された高圧冷媒が、配管L2を通って第1熱交換器11に流入し、熱交換対象に対して放熱する。第1熱交換器11で放熱した高圧冷媒は、配管L3を通って膨張弁12を通過する過程で膨張して低圧冷媒となる。この低圧冷媒は、さらに配管L3を通って第2熱交換器13へ流入し、室外空気から吸熱して蒸発する。その後、第2熱交換器13から流出した低圧冷媒は、配管L4を通って低段側圧縮機10aへ吸入される。
First, the two-stage compression operation will be described.
At the time of the two-stage compression operation, as shown in FIG. 2 (a), the four-way switching valve 14 is switched so that the pipe L1 (L11 and L12) communicates, and the low-stage compressor 10a reaches the intermediate pressure. The pressurized refrigerant passes through the pipe L11, the four-way switching valve 14, and the pipe L12 and is sucked into the high stage compressor 10b. In FIG. 2A, the arrow indicates the direction in which the refrigerant flows. The same applies to FIG. 2B described later.
The high-pressure refrigerant discharged after being compressed to high temperature and high pressure by the high-stage compressor 10b flows into the first heat exchanger 11 through the pipe L2, and radiates heat to the heat exchange target. The high-pressure refrigerant radiated by the first heat exchanger 11 expands into a low-pressure refrigerant in the process of passing through the expansion valve 12 through the pipe L3. This low-pressure refrigerant further flows into the second heat exchanger 13 through the pipe L3, absorbs heat from the outdoor air, and evaporates. Thereafter, the low-pressure refrigerant flowing out of the second heat exchanger 13 is sucked into the low-stage compressor 10a through the pipe L4.

低段側圧縮機10aへ吸入された低圧冷媒は、圧縮されて中間圧冷媒となった後に配管L1へ吐出される。低段側圧縮機10aから配管L1へ吐出された中間圧冷媒は、高段側圧縮機10bへ吸入される。高段側圧縮機10bへ吸入された冷媒は、圧縮されて高圧冷媒となった後に配管L2へ吐出される。   The low-pressure refrigerant sucked into the low-stage compressor 10a is compressed into an intermediate-pressure refrigerant and then discharged to the pipe L1. The intermediate pressure refrigerant discharged from the low stage compressor 10a to the pipe L1 is sucked into the high stage compressor 10b. The refrigerant sucked into the high-stage compressor 10b is compressed into a high-pressure refrigerant and then discharged to the pipe L2.

ヒートポンプシステム1は、以上説明した冷媒の圧縮、凝縮、膨張及び蒸発のサイクルが繰り返される過程で、均油配管21を通じて冷凍機油を流通させることで、低段側圧縮機10aと高段側圧縮機10bの各々の油面レベルを必要な範囲に確保する。
ここで、圧縮機から吐出される冷媒に含まれる冷凍機油を圧縮機に戻す方式としては、圧縮機の吐出側に冷媒と油を分離するオイルセパレータと称される機器を配置し、分離した冷凍機油をキャピラリチューブなどの固定絞りを備える油戻し回路を経由して圧縮機の吸入側に戻す方式が一般的である。
ところが、例えばヒートポンプ式の給湯器を想定すると、機器の高圧圧力は水と冷媒の熱交換器(水対冷媒熱交換器)に入ってくる水温(例えば、35〜75℃の範囲)に依存して決まるため、水温によって圧縮機の吸入側と吐出側の圧力差が大きく変わり得る。水対冷媒熱交換器の入口水温が低い状態で二段圧縮運転を行うと、低段側圧縮機10aと高段側圧縮機10bの間の差圧が小さくなる。この圧縮機間の差圧によって、戻される冷凍機油の量が決まる。そこで、本実施形態は、二段圧縮運転を行っている最中に、低段側圧縮機10aと高段側圧縮機10bの間の差圧が低くなると、一段圧縮運転に切り替えるとともに、電磁弁25を開く。こうして、ヒートポンプシステム1は、オイルセパレータ26からバイパス配管23を介して、高段側圧縮機10bを経由することなく均油配管21に冷凍機油を戻すことで、均油機構20における差圧を常に規定値以上に保つことができる。しかも、ヒートポンプシステム1は、油戻し配管27にある固定絞り27a及び高段側圧縮機10bを経由することなく、低段側圧縮機10aに油を戻すことができるので、固定絞り27aや高段側圧縮機10bで圧力損失が生じて油戻し流量が低下するのを防げる。
The heat pump system 1 distributes the refrigeration oil through the oil equalizing pipe 21 in the process in which the above-described cycle of refrigerant compression, condensation, expansion, and evaporation is repeated, so that the low-stage compressor 10a and the high-stage compressor Each oil level of 10b is ensured within a necessary range.
Here, as a method of returning the refrigeration oil contained in the refrigerant discharged from the compressor to the compressor, a device called an oil separator that separates the refrigerant and oil is arranged on the discharge side of the compressor, and the separated refrigeration is performed. Generally, the machine oil is returned to the intake side of the compressor via an oil return circuit having a fixed throttle such as a capillary tube.
However, assuming a heat pump type water heater, for example, the high pressure of the device depends on the water temperature (for example, in the range of 35 to 75 ° C.) entering the heat exchanger of water and refrigerant (water-to-refrigerant heat exchanger). Therefore, the pressure difference between the suction side and the discharge side of the compressor can vary greatly depending on the water temperature. When the two-stage compression operation is performed in a state where the inlet water temperature of the water-to-refrigerant heat exchanger is low, the differential pressure between the low-stage compressor 10a and the high-stage compressor 10b becomes small. The pressure difference between the compressors determines the amount of refrigerating machine oil that is returned. Therefore, in the present embodiment, when the differential pressure between the low-stage compressor 10a and the high-stage compressor 10b becomes low during the two-stage compression operation, the solenoid valve is switched to the single-stage compression operation. Open 25. Thus, the heat pump system 1 always returns the differential pressure in the oil leveling mechanism 20 by returning the refrigeration oil from the oil separator 26 to the oil leveling pipe 21 via the bypass pipe 23 without passing through the high stage compressor 10b. It can be kept above the specified value. Moreover, the heat pump system 1 can return the oil to the low stage compressor 10a without going through the fixed throttle 27a and the high stage compressor 10b in the oil return pipe 27, so that the fixed throttle 27a and the high stage It is possible to prevent the oil return flow rate from being reduced due to the pressure loss in the side compressor 10b.

ヒートポンプシステム1は、二段圧縮運転を行っている最中に、以下の(1)〜(3)の条件を備えると、一段圧縮運転に切り替える。以下の条件は、いずれも、低段側圧縮機10aと高段側圧縮機10bの間の差圧が低くなることの指標である。条件(1)〜(3)の規定値T、ΔPR1及びΔPR2は、一義的に定まるものでなく、適用されるヒートポンプシステム1の各構成要素、運転条件に対応して定めることになる。なお、水温T、吸入圧力PLI、吐出圧力PLO及び吐出圧力PHOは、図示を省略するが、第1熱交換器11に付設される温度センサ、低段側圧縮機10a、高段側圧縮機10bに付設される圧力センサにより検出される。検出された情報は、図示を省略する制御部に送られる。制御部は、取得した水温T、吸入圧力PLI、吐出圧力PLO及び吐出圧力PHOに関する情報を用いて、条件(1)〜(3)を判定する。制御部は、一段圧縮運転の最中も、条件(1)〜(3)を判定し続ける。 The heat pump system 1 switches to the single-stage compression operation when the following conditions (1) to (3) are satisfied during the two-stage compression operation. Each of the following conditions is an indicator that the differential pressure between the low-stage compressor 10a and the high-stage compressor 10b is low. The prescribed values T R , ΔP R1, and ΔP R2 of the conditions (1) to (3) are not uniquely determined, and are determined corresponding to each component and operating condition of the applied heat pump system 1. . Although the water temperature T W , the suction pressure P LI , the discharge pressure P LO and the discharge pressure P HO are not shown, the temperature sensor attached to the first heat exchanger 11, the low stage compressor 10 a, the high stage It is detected by a pressure sensor attached to the side compressor 10b. The detected information is sent to a control unit (not shown). The control unit determines the conditions (1) to (3) using the acquired information about the water temperature T W , the suction pressure P LI , the discharge pressure P LO and the discharge pressure P HO . The control unit continues to determine the conditions (1) to (3) even during the one-stage compression operation.

(1)水と冷媒の熱交換器(水熱交)に入ってくる水温:T, 規定値:T
≦ T
(2)低段側圧縮機10aの吸入圧力PLI,高段側圧縮機10bの吐出圧力PHO 規定値:ΔPR1
(PHO−PLI) ≦ ΔPR1
(3)低段側圧縮機10aの吸入圧力PLI,吐出圧力PLO 規定値:ΔPR2
(PLO−PLI) ≦ ΔPR2
(1) Water temperature entering the heat exchanger (hydrothermal exchange) of water and refrigerant: T W , Specified value: T R
T W ≦ T R
(2) suction pressure P LI of the low-stage compressor 10a, the high-stage discharge pressure P HO specified value of the compressor 10b: [Delta] P R1
(P HO -P LI) ≦ ΔP R1
(3) Suction pressure P LI and discharge pressure P LO specified values of low stage compressor 10a: ΔP R2
(P LO −P LI ) ≦ ΔP R2

[二段圧縮運転 → 一段圧縮運転]
制御部は、二段圧縮運転を行っている最中に、条件(1)〜(3)のいずれかを満足すると判定すると、四方切換え弁14を図2(b)に示す一段圧縮運転の位置に切り換えるよう指示する。また、制御部40は、電磁弁25を開くように指示する。そうすると、ヒートポンプシステム1は、以下のように動作する。
低段側圧縮機10aで高圧まで圧縮されてから吐出された高圧冷媒は、配管L11、四方切換え弁14及び配管L5を通って第1熱交換器11に流入し、熱交換対象に対して放熱する。なお、ここでは、低段側圧縮機10aは、二段圧縮運転のときよりも運転能力を向上して、冷媒を高圧まで圧縮する。また、高段側圧縮機10bは運転が停止される。
第1熱交換器11で放熱した高圧冷媒は、配管L3を通って膨張弁12を通過する過程で膨張して低圧冷媒となる。この低圧冷媒は、さらに配管L3を通って第2熱交換器13へ流入し、室外空気から吸熱して蒸発する。その後、第2熱交換器13から流出した低圧冷媒は、配管L4を通って低段側圧縮機10aへ吸入される。
一段圧縮運転は、以上説明した冷媒の圧縮、凝縮、膨張及び蒸発のサイクルが繰り返される過程で、電磁弁25が開いているので、冷凍機油はバイパス配管23を通って、高段側圧縮機10bを経由することなく均油配管21に戻される。したがって、均油機構20における差圧を常に規定値以上に保つことができるので、低段側圧縮機10aと高段側圧縮機10bの間の油面をバランスよく保つことができる。
[Two-stage compression operation → One-stage compression operation]
When the control unit determines that any one of the conditions (1) to (3) is satisfied during the two-stage compression operation, the controller switches the four-way switching valve 14 to the position of the one-stage compression operation shown in FIG. To switch to. Further, the control unit 40 instructs to open the electromagnetic valve 25. Then, the heat pump system 1 operates as follows.
The high-pressure refrigerant discharged after being compressed to high pressure by the low-stage compressor 10a flows into the first heat exchanger 11 through the pipe L11, the four-way switching valve 14 and the pipe L5, and dissipates heat to the heat exchange target. To do. Here, the low-stage compressor 10a improves the operation capability compared with the two-stage compression operation, and compresses the refrigerant to a high pressure. Further, the operation of the high stage compressor 10b is stopped.
The high-pressure refrigerant radiated by the first heat exchanger 11 expands into a low-pressure refrigerant in the process of passing through the expansion valve 12 through the pipe L3. This low-pressure refrigerant further flows into the second heat exchanger 13 through the pipe L3, absorbs heat from the outdoor air, and evaporates. Thereafter, the low-pressure refrigerant flowing out of the second heat exchanger 13 is sucked into the low-stage compressor 10a through the pipe L4.
In the one-stage compression operation, the solenoid valve 25 is open in the process in which the cycle of refrigerant compression, condensation, expansion, and evaporation described above is repeated. Therefore, the refrigeration oil passes through the bypass pipe 23 and passes through the high-stage compressor 10b. Is returned to the oil equalizing pipe 21 without going through. Therefore, since the differential pressure in the oil leveling mechanism 20 can always be kept at a specified value or higher, the oil level between the low-stage compressor 10a and the high-stage compressor 10b can be kept in a good balance.

以上説明したヒートポンプシステム1は、二段圧縮運転と一段圧縮運転を切り替えるのに、四方切換え弁14を用いているが、本発明はこれに限定されない。図3に示されるように、ヒートポンプシステム2は、2つの電磁弁14a、14bを各々配管L1、L5に配置し、選択的に開閉を制御することで、二段圧縮運転と一段圧縮運転を切り替えることができる。図3に示す例の場合、電磁弁14aを開くとともに電磁弁14bを閉じると二段圧縮運転を行い、電磁弁14aを閉じるとともに電磁弁14bを開けると二段圧縮運転を行う。なお、図1と同じ要素には、図1と同じ符号を図3に付している。図4も同様である。   The heat pump system 1 described above uses the four-way switching valve 14 to switch between the two-stage compression operation and the one-stage compression operation, but the present invention is not limited to this. As shown in FIG. 3, the heat pump system 2 switches between the two-stage compression operation and the one-stage compression operation by arranging two electromagnetic valves 14 a and 14 b in the pipes L <b> 1 and L <b> 5 and selectively controlling opening and closing. be able to. In the case of the example shown in FIG. 3, when the electromagnetic valve 14a is opened and the electromagnetic valve 14b is closed, a two-stage compression operation is performed, and when the electromagnetic valve 14a is closed and the electromagnetic valve 14b is opened, a two-stage compression operation is performed. The same elements as those in FIG. 1 are denoted by the same reference numerals as those in FIG. The same applies to FIG.

図1は、オイルセパレータ26が低段側圧縮機10a及び高段側圧縮機10bの両者に対応して設けられた例を示しているが、図4に示すヒートポンプシステム4のように、低段側圧縮機10aの吐出側であって四方切換え弁14の手前に低段側圧縮機10a用のオイルセパレータ28を備えることができる。オイルセパレータ28は、油戻し配管29により均油配管21に繋げられている。
オイルセパレータ26は、二段圧縮運転及び一段圧縮運転のいずれの最中にも、低段側圧縮機10aから吐出される冷媒から冷凍機油を分離し、油戻し配管29及び均油配管21を介して低段側圧縮機10aに戻す。したがって、図4に示すヒートポンプシステム4は、低段側圧縮機10aに効率よく冷凍機油を戻すことができる。
FIG. 1 shows an example in which the oil separator 26 is provided corresponding to both the low-stage compressor 10a and the high-stage compressor 10b. However, as in the heat pump system 4 shown in FIG. An oil separator 28 for the low-stage compressor 10a can be provided on the discharge side of the side compressor 10a and before the four-way switching valve 14. The oil separator 28 is connected to the oil leveling pipe 21 by an oil return pipe 29.
The oil separator 26 separates the refrigerating machine oil from the refrigerant discharged from the low-stage compressor 10 a during both the two-stage compression operation and the one-stage compression operation, and passes through the oil return pipe 29 and the oil equalizing pipe 21. Return to the low-stage compressor 10a. Therefore, the heat pump system 4 shown in FIG. 4 can efficiently return the refrigeration oil to the low-stage compressor 10a.

[第2実施形態]
以下、第1実施形態として説明したヒートポンプシステム1を適用したヒートポンプ式の給湯・空調機100を、本発明の第2実施形態として説明する。
給湯・空調機100は、図5に示すように、ヒートポンプ系統200と、水系統300と、から構成されている。
[ヒートポンプ系統200]
ヒートポンプ系統200は、第1実施形態で説明したヒートポンプシステム1(図1)に示したオイルセパレータ26を一つだけ設けた回路を利用したものであり、室外の空気(外気)と冷媒との間で熱交換を行う。ヒートポンプ系統200は、ヒートポンプシステム1に対応する要素がある場合には、第1実施形態と同じ符号を付して、その説明を省略する。ただし、第1熱交換器11は、水対冷媒熱交換器11と読み替えるものとする。水対冷媒熱交換器11は、水系統300側の水と冷媒とを熱交換させることによって水を加熱する。また、第2熱交換器13は、熱源側空気熱交換器13と読み替えるものとする。さらに、ヒートポンプ系統200は、ヒートポンプシステム1が備えていない以下の要素を含んでいる。
[Second Embodiment]
Hereinafter, a heat pump type hot water supply / air conditioner 100 to which the heat pump system 1 described as the first embodiment is applied will be described as a second embodiment of the present invention.
As shown in FIG. 5, the hot water supply / air conditioner 100 includes a heat pump system 200 and a water system 300.
[Heat pump system 200]
The heat pump system 200 uses a circuit in which only one oil separator 26 shown in the heat pump system 1 (FIG. 1) described in the first embodiment is provided, and between the outdoor air (outside air) and the refrigerant. Perform heat exchange at. When there is an element corresponding to the heat pump system 1, the heat pump system 200 attaches the same reference numerals as those in the first embodiment, and a description thereof is omitted. However, the 1st heat exchanger 11 shall be read as the water-to-refrigerant heat exchanger 11. The water-to-refrigerant heat exchanger 11 heats water by exchanging heat between water on the water system 300 side and the refrigerant. Moreover, the 2nd heat exchanger 13 shall be read as the heat source side air heat exchanger 13. Furthermore, the heat pump system 200 includes the following elements that the heat pump system 1 does not include.

ヒートポンプ系統200は、高段側圧縮機10bの吐出側の配管L2と低段側圧縮機10aの吸入側の配管L4との間に四方切替え弁15を備えており、この四方切替え弁15により冷媒の循環方向を可逆させ、熱源側空気熱交換器13を経て水対冷媒熱交換器11へと時計回りに冷媒を循環させる冷房サイクル(デフロストサイクル)と、水対冷媒熱交換器11を経て熱源側空気熱交換器13へと反時計回りに冷媒を循環させる暖房サイクルとのいずれか一方が選択可能とされている。   The heat pump system 200 includes a four-way switching valve 15 between a discharge side pipe L2 of the high stage compressor 10b and a suction side pipe L4 of the low stage compressor 10a. The recirculation direction is reversible, the cooling cycle (defrost cycle) in which the refrigerant is circulated clockwise through the heat source side air heat exchanger 13 to the water-to-refrigerant heat exchanger 11, and the heat source through the water-to-refrigerant heat exchanger 11. Any one of the heating cycle in which the refrigerant is circulated counterclockwise to the side air heat exchanger 13 can be selected.

ヒートポンプ系統200は、熱源側空気熱交換器13、水対冷媒熱交換器11および四方切替え弁15の他に、水対冷媒熱交換器11の出口側冷媒温度をコントロールする減圧手段としての第1膨張弁12aと、冷媒を気液分離する中間圧レシーバ16aと、過冷却コイル17と、中間圧冷媒を減圧する第2膨張弁12bと、アキュムレータ18とが冷媒回路上に備えている。アキュムレータ18は、熱源側空気熱交換器13で蒸発し切れなかった液状の冷媒を分離する。
また、ヒートポンプ系統200は、中間圧レシーバ16aで分離された中間圧の冷媒ガスを高段側圧縮機10bに吸込まれる中間圧の冷媒ガス中に注入する電磁弁16b、逆止弁16c及びインジェクション管16dを備えるインジェクション回路16を備えている。
なお、電磁弁16bは、例えば、中間圧レシーバ16aの内部が液冷媒で一杯になっている起動時に、液冷媒が高段側圧縮機10bに供給されないようにするため、インジェクション回路16を閉塞する弁としての役目も担っている。
In addition to the heat source side air heat exchanger 13, the water-to-refrigerant heat exchanger 11, and the four-way switching valve 15, the heat pump system 200 is a first decompression unit that controls the outlet-side refrigerant temperature of the water-to-refrigerant heat exchanger 11. An expansion valve 12a, an intermediate pressure receiver 16a that separates the refrigerant into gas and liquid, a supercooling coil 17, a second expansion valve 12b that depressurizes the intermediate pressure refrigerant, and an accumulator 18 are provided on the refrigerant circuit. The accumulator 18 separates the liquid refrigerant that has not completely evaporated in the heat source side air heat exchanger 13.
The heat pump system 200 also includes an electromagnetic valve 16b, a check valve 16c, and an injection for injecting the intermediate-pressure refrigerant gas separated by the intermediate-pressure receiver 16a into the intermediate-pressure refrigerant gas sucked into the high-stage compressor 10b. An injection circuit 16 including a tube 16d is provided.
The electromagnetic valve 16b closes the injection circuit 16 so that the liquid refrigerant is not supplied to the high-stage compressor 10b at the start-up when the inside of the intermediate pressure receiver 16a is filled with the liquid refrigerant, for example. It also serves as a valve.

また、ヒートポンプ系統200は、均油配管21と並列にサブ配管121を備え、このサブ配管121は電磁弁122を備えている。同様に、ヒートポンプ系統200は、戻り配管27と並列にサブ配管127を備え、このサブ配管127は電磁弁128を備えている。なお、サブ配管121,127は、いずれも絞りを備えている。
サブ配管121,127は、均油配管21,戻り配管27を流れる冷凍機油の量に制限があるために、より多くの冷凍機油を流したいときに、電磁弁122,128を開く。
The heat pump system 200 includes a sub pipe 121 in parallel with the oil equalizing pipe 21, and the sub pipe 121 includes an electromagnetic valve 122. Similarly, the heat pump system 200 includes a sub pipe 127 in parallel with the return pipe 27, and the sub pipe 127 includes an electromagnetic valve 128. Note that each of the sub pipes 121 and 127 includes a throttle.
The sub pipes 121 and 127 open the solenoid valves 122 and 128 when more refrigeration oil is desired to flow because the amount of the refrigeration oil flowing through the oil leveling pipe 21 and the return pipe 27 is limited.

[水系統300]
水系統300は、ポンプ307を介して循環される水がヒートポンプ系統200に設けられている水対冷媒熱交換器11で冷媒から吸熱して温水とされ、その温水を負荷側のラジエータ(利用側熱交換器)303との間で循環させることにより、暖房用の熱源等として利用する温水循環流路301を備えている。この温水循環流路301には、流量割合を調整可能な三方切替え弁306を介して温水循環流路301から温水を導入し、その温水を蓄熱温水として蓄えることができる蓄熱タンク305が接続されている。
[Water system 300]
In the water system 300, water circulated through the pump 307 absorbs heat from the refrigerant in the water-to-refrigerant heat exchanger 11 provided in the heat pump system 200, and the hot water is converted into a load-side radiator (use side). A hot water circulation channel 301 used as a heat source for heating or the like is provided by circulating between the heat exchanger and the heat exchanger 303. Connected to the hot water circulation channel 301 is a heat storage tank 305 that can introduce hot water from the hot water circulation channel 301 via a three-way switching valve 306 that can adjust the flow rate ratio and store the hot water as heat storage hot water. Yes.

蓄熱タンク305は、水対冷媒熱交換器11で加熱された温水を、ラジエータ303に循環する温水循環流路301中に設けられている三方切替え弁306を介してその上部から蓄熱温水を取水し、必要なタイミングで温水循環流路301側に放出する。   The heat storage tank 305 takes in the hot water stored in water from the upper part of the hot water heated by the water-to-refrigerant heat exchanger 11 via a three-way switching valve 306 provided in the hot water circulation passage 301 that circulates to the radiator 303. Then, it is discharged to the hot water circulation channel 301 side at a necessary timing.

また、蓄熱タンク305には、貯湯されている蓄熱温水の熱を利用して加熱された給湯用の温水を供給するサニタリ水供給回路(図示を省略)、必要に応じて通電される電気ヒータ(図示を省略)が設けられている。   The heat storage tank 305 has a sanitary water supply circuit (not shown) for supplying hot water for hot water supply that is heated using the heat of the stored hot water, and an electric heater (not shown) that is energized as necessary. (Not shown) is provided.

以上のように構成されている水系統300は、三方切替え弁306の開閉を制御して選択切替えすることにより、ラジエータ303に温水を供給する暖房運転または蓄熱タンク305に温水を供給する蓄熱運転のいずれか一方を選択して実施し、あるいは、ラジエータ303および蓄熱タンク305の両方に温水を分割供給して温水による暖房運転及び蓄熱運転の両方を同時に実施可能な構成とされている。
また、水系統300は、蓄熱タンク305から水循環ポンプ307によって供給された加熱対象としての水が、水対冷媒熱交換器11においてヒートポンプ系統200の冷媒と熱交換することで加熱される。
The water system 300 configured as described above performs heating operation for supplying warm water to the radiator 303 or heat storage operation for supplying warm water to the heat storage tank 305 by selectively opening and closing the three-way switching valve 306. Either one is selected and implemented, or the hot water is dividedly supplied to both the radiator 303 and the heat storage tank 305 so that both the heating operation and the heat storage operation using the hot water can be performed simultaneously.
The water system 300 is heated by heat exchange of water as a heating target supplied from the heat storage tank 305 by the water circulation pump 307 with the refrigerant of the heat pump system 200 in the water-to-refrigerant heat exchanger 11.

一方、ヒートポンプ系統200において、暖房サイクルが選択されると、低温低圧のガス冷媒が圧縮機構10(低段側圧縮機10a,高段側圧縮機10b)で圧縮され、高温高圧のガス冷媒としてヒートポンプ系統200に吐出される。このガス冷媒は、図5中に実線矢印で示されるように、四方切替え弁14により水対冷媒熱交換器11に導かれて時計回りに循環される。この場合、水対冷媒熱交換器11は、水循環ポンプ307により循環される水系統300の水と高温高圧ガス冷媒とを熱交換させる熱交換器であり、冷媒の凝縮により放熱される凝縮熱が水を加熱する凝縮器として機能する。この結果、ヒートポンプ系統200を流れる高温高圧のガス冷媒は、凝縮して高温高圧の液冷媒となり、水系統300を流れる水は冷媒から吸熱して温水となる。   On the other hand, in the heat pump system 200, when the heating cycle is selected, the low-temperature and low-pressure gas refrigerant is compressed by the compression mechanism 10 (the low-stage compressor 10a and the high-stage compressor 10b), and the heat pump is used as the high-temperature and high-pressure gas refrigerant. It is discharged into the system 200. This gas refrigerant is guided to the water-to-refrigerant heat exchanger 11 by the four-way switching valve 14 and circulated in the clockwise direction, as indicated by solid arrows in FIG. In this case, the water-to-refrigerant heat exchanger 11 is a heat exchanger that exchanges heat between the water in the water system 300 circulated by the water circulation pump 307 and the high-temperature high-pressure gas refrigerant, and the heat of condensation radiated by the condensation of the refrigerant. It functions as a condenser that heats water. As a result, the high-temperature and high-pressure gas refrigerant flowing through the heat pump system 200 condenses to become a high-temperature and high-pressure liquid refrigerant, and the water flowing through the water system 300 absorbs heat from the refrigerant and becomes hot water.

水対冷媒熱交換器11で凝縮された冷媒は、全開の第1膨張弁12aを通って中間圧レシーバ16aに流入する。この中間圧レシーバ16aでは、冷媒の気液分離が行われるとともに、分離された中間圧のガス冷媒は、電磁弁16b、逆止弁16cを通って低段側圧縮機10aと高段側圧縮機10bの間の中間圧にインジェクションされる。   The refrigerant condensed in the water-to-refrigerant heat exchanger 11 flows into the intermediate pressure receiver 16a through the fully opened first expansion valve 12a. In the intermediate pressure receiver 16a, gas-liquid separation of the refrigerant is performed, and the separated gas refrigerant of the intermediate pressure passes through the electromagnetic valve 16b and the check valve 16c, and the low-stage compressor 10a and the high-stage compressor. The intermediate pressure between 10b is injected.

一方、中間圧レシーバ16aで分離された液状の冷媒は、過冷却コイル17を経由して第2膨張弁12bにより減圧され、低温低圧の気液二相の冷媒となって熱源側空気熱交換器13に導かれる。蒸発器として機能する熱源側空気熱交換器13に導入された気液二相冷媒は、外気と熱交換することにより外気から吸熱して気化する。
このように、熱源側空気熱交換器13を通過することにより、外気から吸熱して気化した低温低圧のガス冷媒は、再び四方切替え弁15を経て低段側圧縮機10aに吸引される。こうして低段側圧縮機10aに吸引された低温低圧のガス冷媒は、低段側圧縮機10aと高段側圧縮機10bで順番に圧縮されて高温高圧のガス冷媒となり、以下同様の経路を循環して気液の状態変化を繰り返す。この際、低温となる熱源側空気熱交換器13の外周面に、空気中の水分等が氷結して着霜現象が生じることがある。
On the other hand, the liquid refrigerant separated by the intermediate pressure receiver 16a is depressurized by the second expansion valve 12b via the supercooling coil 17 and becomes a low-temperature low-pressure gas-liquid two-phase refrigerant, and the heat source side air heat exchanger. 13 leads to. The gas-liquid two-phase refrigerant introduced into the heat source side air heat exchanger 13 functioning as an evaporator absorbs heat from the outside air and vaporizes by exchanging heat with the outside air.
In this way, the low-temperature and low-pressure gas refrigerant that has been vaporized by absorbing heat from the outside air by passing through the heat source side air heat exchanger 13 is again sucked into the low-stage compressor 10a through the four-way switching valve 15. The low-temperature and low-pressure gas refrigerant sucked into the low-stage compressor 10a in this way is compressed in turn by the low-stage compressor 10a and the high-stage compressor 10b to become a high-temperature and high-pressure gas refrigerant, and circulates through the same path thereafter. Repeat the change of gas-liquid state. At this time, moisture in the air may freeze on the outer peripheral surface of the heat source side air heat exchanger 13 that is at a low temperature, resulting in a frosting phenomenon.

着霜は、熱源側空気熱交換器13での冷媒と外気との熱交換を阻害し、熱交換効率を低下させるため、霜の堆積の有無を検知することにより、適当な運転時間毎にデフロスト運転を実施して霜を除去する必要がある。このデフロスト運転は、上述のヒートポンプ系統200において、四方切替え弁15を切替えて冷媒の循環方向を逆転させ、図6中の破線矢印の向きに冷媒を循環させる冷房サイクル(デフロストサイクル)に切替え、高段側圧縮機10bから吐出された高温高圧のガス冷媒を熱源側空気熱交換器13に導入し、その放熱(凝縮熱)で熱源側空気熱交換器13に付着している霜を融解することによって行われる。   The frost formation inhibits the heat exchange between the refrigerant and the outside air in the heat source side air heat exchanger 13 and lowers the heat exchange efficiency. Therefore, by detecting the presence or absence of frost accumulation, defrosting is performed every appropriate operation time. It is necessary to carry out operation to remove frost. This defrost operation is performed in the above-described heat pump system 200 by switching the four-way switching valve 15 to reverse the refrigerant circulation direction and switching to the cooling cycle (defrost cycle) in which the refrigerant is circulated in the direction of the broken line arrow in FIG. The high-temperature and high-pressure gas refrigerant discharged from the stage side compressor 10b is introduced into the heat source side air heat exchanger 13, and the frost adhering to the heat source side air heat exchanger 13 is melted by the heat radiation (condensation heat). Is done by.

このリバースサイクル方式によるデフロスト運転時には、水対冷媒熱交換器11は、蒸発器として機能し、温水循環流路301を流れる水から吸熱して冷媒を気化させ、その熱を用いて熱源側空気熱交換器13に着霜した霜を融解することとなる。この際、水温が低下しすぎると、水対冷媒熱交換器11内で水が凍結し、熱交換器破損のリスクが発生する。このため、デフロスト時、水対冷媒熱交換器11に循環される水温と共に冷媒の蒸発温度が低下しすぎないようにする必要がある。   During the defrost operation by the reverse cycle method, the water-to-refrigerant heat exchanger 11 functions as an evaporator, absorbs heat from the water flowing through the hot water circulation passage 301, vaporizes the refrigerant, and uses the heat to heat air on the heat source side. The frost that has formed on the exchanger 13 is melted. At this time, if the water temperature is too low, the water freezes in the water-to-refrigerant heat exchanger 11 and a risk of damage to the heat exchanger occurs. For this reason, at the time of defrosting, it is necessary to prevent the evaporation temperature of the refrigerant from being excessively lowered together with the water temperature circulated to the water-to-refrigerant heat exchanger 11.

以上説明した給湯・空調機100においても、第1実施形態と同様に、二段圧縮運転を行っている最中に、以下の(1)〜(3)の条件を備えると、一段圧縮運転に切り替える。この切り替えは、図2(a),(b)を参照して説明した通りである。
(1)水と冷媒の熱交換器(水熱交)に入ってくる水温:T, 規定値:T
≦ T
(2)低段側圧縮機10aの吸入圧力PLI,高段側圧縮機10bの吐出圧力PHO 規定値:ΔPR1
(PHO−PLI) ≦ ΔPR1
(3)低段側圧縮機10aの吸入圧力PLI,吐出圧力PLO 規定値:ΔPR2
(PLO−PLI) ≦ ΔPR2
In the hot water supply / air conditioner 100 described above, as in the first embodiment, when the following conditions (1) to (3) are provided during the two-stage compression operation, the one-stage compression operation is performed. Switch. This switching is as described with reference to FIGS. 2 (a) and 2 (b).
(1) Water temperature entering the heat exchanger (hydrothermal exchange) of water and refrigerant: T W , Specified value: T R
T W ≦ T R
(2) suction pressure P LI of the low-stage compressor 10a, the high-stage discharge pressure P HO specified value of the compressor 10b: [Delta] P R1
(P HO -P LI) ≦ ΔP R1
(3) Suction pressure P LI and discharge pressure P LO specified values of low stage compressor 10a: ΔP R2
(P LO −P LI ) ≦ ΔP R2

[二段圧縮運転 → 一段圧縮運転]
一段圧縮運転に切り替えられると、低段側圧縮機10aで高圧まで圧縮されてから吐出された高圧冷媒は、配管L11、四方切換え弁14及び配管L5を通って水対冷媒熱交換器11に流入し、熱交換対象に対して放熱する。なお、ここでは、低段側圧縮機10aは、二段圧縮運転のときよりも運転能力を向上して、冷媒を高圧まで圧縮する。また、高段側圧縮機10bは運転が停止される。
[Two-stage compression operation → One-stage compression operation]
When switched to the single-stage compression operation, the high-pressure refrigerant discharged after being compressed to high pressure by the low-stage compressor 10a flows into the water-to-refrigerant heat exchanger 11 through the pipe L11, the four-way switching valve 14, and the pipe L5. And radiate heat to the heat exchange target. Here, the low-stage compressor 10a improves the operation capability compared with the two-stage compression operation, and compresses the refrigerant to a high pressure. Further, the operation of the high stage compressor 10b is stopped.

以上、本発明を実施形態に基づいて説明したが、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
例えば、第1実施形態で述べた本発明における最低限の要素を除く部分は任意である。したがって、本発明を室内用熱交換器をさらに備える給湯・空調機に適用することもできるし、逆に、貯湯機能のみを備えるヒートポンプ式の給湯器に適用することもできる。
As described above, the present invention has been described based on the embodiment. However, the configuration described in the above embodiment may be selected or changed to another configuration as long as it does not depart from the gist of the present invention.
For example, the portions excluding the minimum elements in the present invention described in the first embodiment are arbitrary. Therefore, the present invention can be applied to a hot water supply / air conditioner further provided with an indoor heat exchanger, and conversely, can also be applied to a heat pump type water heater provided with only a hot water storage function.

1,2,3,4 ヒートポンプシステム
10a 低段側圧縮機
10b 高段側圧縮機
11 第1熱交換器,水対冷媒熱交換器
11f 送風ファン
12 膨張弁
12a 第1膨張弁
12b 第2膨張弁
13 第2熱交換器,熱源側空気熱交換器
13f 送風ファン
14,15 四方切換え弁
14a,14b 電磁弁
16 インジェクション回路
16a 中間圧レシーバ
16b 電磁弁
16c 逆止弁
16d インジェクション管
17 過冷却コイル
18 アキュムレータ
20 均油機構
21 均油配管
23 バイパス配管
25 電磁弁
26,28 オイルセパレータ
27,29 油戻し配管
100 給湯・空調機
121,127 サブ配管
122,128 電磁弁
200 ヒートポンプ系統
300 水系統
301 温水循環流路
303 ラジエータ
305 蓄熱タンク
306 三方切換え弁
307 水循環ポンプ
L1,L11,L12,L2,L3,L4,L5 配管
1, 2, 3, 4 Heat pump system 10a Low stage compressor 10b High stage compressor 11 First heat exchanger, water-to-refrigerant heat exchanger 11f Blower fan 12 Expansion valve 12a First expansion valve 12b Second expansion valve 13 Second heat exchanger, heat source side air heat exchanger 13f Blower fans 14, 15 Four-way switching valves 14a, 14b Solenoid valve 16 Injection circuit 16a Intermediate pressure receiver 16b Solenoid valve 16c Check valve 16d Injection pipe 17 Supercooling coil 18 Accumulator 20 Oil leveling mechanism 21 Oil leveling pipe 23 Bypass pipe 25 Solenoid valve 26, 28 Oil separator 27, 29 Oil return pipe 100 Hot water supply / air conditioner 121, 127 Sub pipe 122, 128 Solenoid valve 200 Heat pump system 300 Water system 301 Hot water circulating flow Path 303 Radiator 305 Heat storage tank 306 Three-way switching valve 30 Water circulation pump L1, L11, L12, L2, L3, L4, L5 pipe

Claims (5)

低段側圧縮機と高段側圧縮機を備え、冷媒を圧縮して吐出する圧縮機構と、
前記高段側圧縮機の吐出側に設けられるオイルセパレータと、
前記圧縮機構で圧縮された前記冷媒と熱交換対象とを熱交換する第1熱交換器と、
前記第1熱交換器から流出する前記冷媒を減圧膨張させる膨張弁と、
前記膨張弁にて減圧膨張された冷媒と熱交換対象とを熱交換する第2熱交換器と、
前記低段側圧縮機と前記高段側圧縮機を繋ぎ、前記低段側圧縮機と前記高段側圧縮機の間で冷凍機油を流通させる均油経路と、
前記オイルセパレータと前記高段側圧縮機の吸入側の間を繋ぐ主戻り配管と、
前記主戻り配管と前記均油経路とを繋ぐ油戻り経路と、
前記油戻り経路に設けられる油戻り用開閉弁と、
前記冷媒を、前記低段側圧縮機と前記高段側圧縮機をこの順に流す二段圧縮経路と、前記低段側圧縮機と前記高段側圧縮機の一方だけを流す一段圧縮経路と、を選択的に切り替える、冷媒経路切換え機構と、
を備えることを特徴とするヒートポンプシステム。
A compression mechanism that includes a low-stage compressor and a high-stage compressor, and compresses and discharges the refrigerant;
An oil separator provided on the discharge side of the high stage compressor;
A first heat exchanger that exchanges heat between the refrigerant compressed by the compression mechanism and a heat exchange target;
An expansion valve for decompressing and expanding the refrigerant flowing out of the first heat exchanger;
A second heat exchanger for exchanging heat between the refrigerant expanded under reduced pressure by the expansion valve and the heat exchange target;
An oil equalizing path that connects the low-stage compressor and the high-stage compressor, and distributes refrigeration oil between the low-stage compressor and the high-stage compressor;
A main return pipe connecting the oil separator and the suction side of the high stage compressor;
An oil return path connecting the main return pipe and the oil leveling path;
An oil return on-off valve provided in the oil return path;
A two-stage compression path for flowing the refrigerant through the low-stage compressor and the high-stage compressor in this order; a single-stage compression path for flowing only one of the low-stage compressor and the high-stage compressor; A refrigerant path switching mechanism for selectively switching,
A heat pump system comprising:
前記二段圧縮経路が選択されている最中に、以下の条件(1)〜条件(3)のいずれかを満たすと、前記冷媒の経路が、前記一段圧縮経路に切り換えられる、
請求項1に記載のヒートポンプシステム。
条件(1):T≦ T
;第1熱交換器の熱交換対象が水の場合に、水と冷媒の熱交換器(水熱交)に入ってくる水温, T;規定値
条件(2):(PHO−PLI) ≦ ΔPR1
LI;低段側圧縮機の吸入圧力 PHO;高段側圧縮機の吐出圧力 規定値:ΔPR1
条件(3)(PLO−PLI) ≦ ΔPR2
LI;低段側圧縮機の吸入圧力 PLO;低段側圧縮機の吐出圧力 規定値:ΔPR2
While the two-stage compression path is selected, if any one of the following conditions (1) to (3) is satisfied, the refrigerant path is switched to the one-stage compression path.
The heat pump system according to claim 1.
Condition (1): T W ≦ T R
T W ; When the heat exchange target of the first heat exchanger is water, the water temperature entering the heat exchanger (hydrothermal exchange) of water and refrigerant, T R ; Specified value condition (2): (P HOPLI ) ≦ ΔP R1
P LI ; suction pressure of the low stage compressor P HO ; discharge pressure of the high stage compressor Specified value: ΔP R1
Condition (3) (P LO -P LI ) ≦ ΔP R2
P LI ; Low-stage compressor suction pressure P LO ; Low-stage compressor discharge pressure Specified value: ΔP R2
前記冷媒経路切換え機構が、前記一段圧縮経路を選択すると、
前記油戻り用開閉弁を開くことで、前記オイルセパレータからの前記冷凍機油が、前記高段側圧縮機を経由することなく、前記油戻り経路を介して前記均油経路に戻される、
請求項1又は請求項2に記載のヒートポンプシステム。
When the refrigerant path switching mechanism selects the one-stage compression path,
By opening the oil return on-off valve, the refrigerating machine oil from the oil separator is returned to the oil leveling path via the oil return path without passing through the high stage compressor.
The heat pump system according to claim 1 or 2.
前記戻り用開閉弁の開閉、及び、前記均油用開閉弁の開閉は、
前記低段側圧縮機における予測される冷凍機油の量、及び、前記高段側圧縮機における予測される冷凍機油の量に基づいて制御される、
請求項1〜請求項3のいずれか一項に記載のヒートポンプシステム。
Opening and closing of the return on-off valve and opening and closing of the oil equalizing on-off valve
Controlled based on the predicted amount of refrigeration oil in the low stage compressor and the predicted amount of refrigeration oil in the high stage compressor,
The heat pump system according to any one of claims 1 to 3.
請求項1〜4のいずれか一項に記載のヒートポンプシステムの前記第1熱交換器が、冷媒と水とを熱交換させて水を加熱する水対冷媒熱交換器である、
ことを特徴とするヒートポンプ式給湯器。
The first heat exchanger of the heat pump system according to any one of claims 1 to 4 is a water-to-refrigerant heat exchanger that heats water by causing heat exchange between the refrigerant and water.
A heat pump type water heater characterized by that.
JP2013203187A 2013-09-30 2013-09-30 Heat pump system and heat pump type water heater Active JP6057871B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013203187A JP6057871B2 (en) 2013-09-30 2013-09-30 Heat pump system and heat pump type water heater
ES14847548T ES2708779T3 (en) 2013-09-30 2014-07-31 Heat pump system, and heat pump water heater
CN201710356938.0A CN107270570A (en) 2013-09-30 2014-07-31 Heat pump and heat-pump-type hot-warer supplying machine
PCT/JP2014/004029 WO2015045247A1 (en) 2013-09-30 2014-07-31 Heat pump system, and heat pump water heater
CN201480053999.4A CN105593610B (en) 2013-09-30 2014-07-31 Heat pump and heat-pump-type hot-warer supplying machine
EP14847548.6A EP3040643B1 (en) 2013-09-30 2014-07-31 Heat pump system, and heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013203187A JP6057871B2 (en) 2013-09-30 2013-09-30 Heat pump system and heat pump type water heater

Publications (2)

Publication Number Publication Date
JP2015068564A true JP2015068564A (en) 2015-04-13
JP6057871B2 JP6057871B2 (en) 2017-01-11

Family

ID=52835410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013203187A Active JP6057871B2 (en) 2013-09-30 2013-09-30 Heat pump system and heat pump type water heater

Country Status (1)

Country Link
JP (1) JP6057871B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107514830A (en) * 2016-06-18 2017-12-26 上海春至新能源科技有限公司 A kind of single multi-stage compression automatic conversion Multifunctional heat pump system
CN108131765A (en) * 2018-01-16 2018-06-08 北京四季通能源科技有限公司 A kind of monoblock type list Two-stage Heat Pump System and its control method
EP3392577A4 (en) * 2016-03-28 2018-12-26 Mitsubishi Heavy Industries Thermal Systems, Ltd. Multistage compression device, refrigeration cycle comprising same, and operation method for multistage compression device
CN109519350A (en) * 2018-11-29 2019-03-26 门立山 A kind of machine exporting energy
CN111023620A (en) * 2018-10-09 2020-04-17 山东新华能节能科技有限公司 Vortex type air source heat pump two-stage system
WO2022070615A1 (en) * 2020-09-30 2022-04-07 ダイキン工業株式会社 Compression apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324247A (en) * 2000-05-16 2001-11-22 Sanyo Electric Co Ltd Oil level detector for high pressure conveyor and air conditioning apparatus
JP2008064421A (en) * 2006-09-11 2008-03-21 Daikin Ind Ltd Refrigerating device
JP2008111585A (en) * 2006-10-30 2008-05-15 Daikin Ind Ltd Air conditioner
JP2013024447A (en) * 2011-07-19 2013-02-04 Daikin Industries Ltd Refrigerating device
JP2013139902A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Refrigeration device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324247A (en) * 2000-05-16 2001-11-22 Sanyo Electric Co Ltd Oil level detector for high pressure conveyor and air conditioning apparatus
JP2008064421A (en) * 2006-09-11 2008-03-21 Daikin Ind Ltd Refrigerating device
JP2008111585A (en) * 2006-10-30 2008-05-15 Daikin Ind Ltd Air conditioner
JP2013024447A (en) * 2011-07-19 2013-02-04 Daikin Industries Ltd Refrigerating device
JP2013139902A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Refrigeration device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3392577A4 (en) * 2016-03-28 2018-12-26 Mitsubishi Heavy Industries Thermal Systems, Ltd. Multistage compression device, refrigeration cycle comprising same, and operation method for multistage compression device
CN107514830A (en) * 2016-06-18 2017-12-26 上海春至新能源科技有限公司 A kind of single multi-stage compression automatic conversion Multifunctional heat pump system
CN108131765A (en) * 2018-01-16 2018-06-08 北京四季通能源科技有限公司 A kind of monoblock type list Two-stage Heat Pump System and its control method
CN108131765B (en) * 2018-01-16 2023-05-16 北京四季通能源科技有限公司 Integral single-stage and double-stage heat pump system and control method thereof
CN111023620A (en) * 2018-10-09 2020-04-17 山东新华能节能科技有限公司 Vortex type air source heat pump two-stage system
CN109519350A (en) * 2018-11-29 2019-03-26 门立山 A kind of machine exporting energy
WO2022070615A1 (en) * 2020-09-30 2022-04-07 ダイキン工業株式会社 Compression apparatus
JP2022057365A (en) * 2020-09-30 2022-04-11 ダイキン工業株式会社 Compressor unit
US11953246B2 (en) 2020-09-30 2024-04-09 Daikin Industries, Ltd. Compression apparatus

Also Published As

Publication number Publication date
JP6057871B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP5585003B2 (en) Refrigeration equipment
WO2015045247A1 (en) Heat pump system, and heat pump water heater
JP6057871B2 (en) Heat pump system and heat pump type water heater
KR20110118416A (en) Heat pump type speed heating apparatus
JP2010181104A (en) Heat pump type hot water-supply/air-conditioning device
WO2005033593A1 (en) Freezer
WO2013065233A1 (en) Refrigeration cycle apparatus and air conditioner provided with same
WO2007102345A1 (en) Refrigeration device
JP4123257B2 (en) Refrigeration equipment
JP2010060181A (en) Refrigeration system
JP5163161B2 (en) Auxiliary heating unit and air conditioner
CN111919073A (en) Refrigerating device
JP6926460B2 (en) Refrigerator
KR101692243B1 (en) Heat pump with cascade refrigerating cycle
JP2014149103A (en) Refrigeration cycle device
JP6042037B2 (en) Refrigeration cycle equipment
JP2004347272A (en) Refrigerating plant
JP2009115336A (en) Refrigeration system
JP4618313B2 (en) Refrigeration equipment
JP6029569B2 (en) Heat pump system and heat pump type water heater
JP5062079B2 (en) Refrigeration equipment
JP6228798B2 (en) Heat pump system and heat pump type water heater
JP2008175528A5 (en)
JP2013084073A (en) Automatic vending machine
JP6572444B2 (en) vending machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161206

R151 Written notification of patent or utility model registration

Ref document number: 6057871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350