JP2013084073A - Automatic vending machine - Google Patents

Automatic vending machine Download PDF

Info

Publication number
JP2013084073A
JP2013084073A JP2011222486A JP2011222486A JP2013084073A JP 2013084073 A JP2013084073 A JP 2013084073A JP 2011222486 A JP2011222486 A JP 2011222486A JP 2011222486 A JP2011222486 A JP 2011222486A JP 2013084073 A JP2013084073 A JP 2013084073A
Authority
JP
Japan
Prior art keywords
condenser
refrigerant
evaporator
internal
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011222486A
Other languages
Japanese (ja)
Inventor
Takahiro Inoue
隆宏 井上
Tatsuya Seo
達也 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011222486A priority Critical patent/JP2013084073A/en
Publication of JP2013084073A publication Critical patent/JP2013084073A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an automatic vending machine capable of performing efficient cooling and warming using a refrigerant circuit (heat pump).SOLUTION: When an inside condenser 46 warms articles in a first cooling/warming chamber 2, and a four-way valve 49 is switched to make a refrigerant discharged from a compressor 5 flow to an outside condenser 40 through the inside condenser 46. When a second cooling/warming chamber 3 and a cooling chamber 4 are not both cooled, a solenoid valve 52 is opened to make the refrigerant flowing out of the outside condenser 40 flow to a bypass flow passage, and the refrigerant is decompressed by an expanding mechanism 53 in the bypass flow passage, vaporized by an outside evaporator 41, and returned to the compressor 5. The outside condenser 40 and outside condenser 41 share an end plate and have a fin individually.

Description

本発明は、冷媒回路(ヒートポンプ)を用いて、缶飲料等の商品を加温または冷却して販売する自動販売機に関するものである。   The present invention relates to a vending machine that sells products such as canned beverages heated or cooled using a refrigerant circuit (heat pump).

近年、自動販売機に対する消費電力量削減の要求が高まってきており、消費電力量削減手段として、冷却によって生じる廃熱あるいは外気の熱を利用して商品が保管された貯蔵庫を加温するものが提案されている(例えば、特許文献1参照)。   In recent years, there has been an increasing demand for power consumption reduction for vending machines, and as a means for reducing power consumption, there is one that uses a waste heat generated by cooling or heat of the outside air to heat a storage room in which products are stored. It has been proposed (see, for example, Patent Document 1).

以下、図面を参照しながら特許文献1に開示された従来の自動販売機を説明する。   Hereinafter, a conventional vending machine disclosed in Patent Document 1 will be described with reference to the drawings.

図5に特許文献1に開示された従来の自動販売機における冷媒回路図を示し、図6に同自動販売機の運転モード切換時の制御フローチャートを示す。   FIG. 5 shows a refrigerant circuit diagram in the conventional vending machine disclosed in Patent Document 1, and FIG. 6 shows a control flowchart when the operation mode of the vending machine is switched.

特許文献1に開示された従来の自動販売機は、商品を収納する商品収納庫1と商品収納庫1の下部に配置された機械室(図示せず)を有する。   The conventional vending machine disclosed in Patent Document 1 has a product storage 1 for storing products and a machine room (not shown) disposed in the lower part of the product storage 1.

商品収納庫1は、庫内が、収納する商品を冷却もしくは加温する第1の冷却加温室2、収納する商品を冷却もしくは加温する第2の冷却加温室3、収納する商品を冷却する冷却専用室4に区画されている。また、それぞれの商品収納室内には商品収納棚(図示せず)が上部に吊り下げられており、商品が内部に収納されている。   The product storage 1 has a first cooling greenhouse 2 that cools or warms the stored product, a second cooling greenhouse 3 that cools or warms the stored product, and cools the stored product. It is partitioned into a cooling chamber 4. In addition, in each product storage room, a product storage shelf (not shown) is suspended at the top, and the products are stored inside.

そして、圧縮機5、庫外熱交換器6、通過する冷媒を減圧する膨張弁7、第1の冷却加温室2内に配置された庫内熱交換器8a、第2の冷却加温室3内に配置された庫内熱交換器8b、冷却専用室4内に配置された庫内蒸発器10、開閉動作を行う電磁弁11〜19、矢印の方向にのみ冷媒を通過させる逆止弁20〜25により冷媒回路を構成している。   And the compressor 5, the external heat exchanger 6, the expansion valve 7 which decompresses the refrigerant | coolant to pass, the internal heat exchanger 8a arrange | positioned in the 1st cooling greenhouse 2, and the inside of the 2nd cooling greenhouse 3 The internal heat exchanger 8b disposed in the cooling chamber, the internal evaporator 10 disposed in the cooling exclusive chamber 4, the electromagnetic valves 11 to 19 for opening and closing, and the check valve 20 for allowing the refrigerant to pass only in the direction of the arrow. 25 constitutes a refrigerant circuit.

庫外熱交換器6の近傍には庫外ファン26が設置され、各商品収納庫内の熱交換器近傍には庫内ファン27〜29が設置され、第1の冷却加温室2内と第2の冷却加温室3内にはそれぞれ加温ヒータ30,31が設置されている。   An external fan 26 is installed in the vicinity of the external heat exchanger 6, and internal fans 27 to 29 are installed in the vicinity of the heat exchanger in each product storage, and the first cooling greenhouse 2 and the first Heating heaters 30 and 31 are respectively installed in the second cooling and heating greenhouse 3.

上記のように設置された従来の自動販売機について、以下、図6をもとにその動作を説明する。なお、第1の冷却加温室2のみを加温とし、その他の室については冷却とした場合について説明する。   The operation of the conventional vending machine installed as described above will be described below with reference to FIG. A case will be described in which only the first cooling greenhouse 2 is heated and the other rooms are cooled.

従来の自動販売機は、第1の冷却加温室2を加温すると同時に第2の冷却加温室3、冷却専用室4を冷却する冷却加温運転モード(3室運転CCH、2室運転CH)と、第1の冷却加温室2の加温のみを行う加温運転モード(1室運転H)、第2の冷却加温室3、冷却専用室4の冷却のみを行う冷却運転モード(2室運転CC,1室運転C)とを、電磁弁11〜19の開閉にて切り換えて行う。   The conventional vending machine heats the first cooling greenhouse 2 and simultaneously cools the second cooling greenhouse 3 and the cooling exclusive chamber 4 (three-room operation CCH, two-chamber operation CH). And a heating operation mode (one-chamber operation H) in which only the first cooling greenhouse 2 is heated, and a cooling operation mode (two-chamber operation) in which only the second cooling / heating chamber 3 and the cooling exclusive chamber 4 are cooled. CC, one-chamber operation C) is performed by switching the solenoid valves 11-19.

ここで図6において、各商品収納庫のうち優先室を設け、加熱ON/OFF温度、優先室・非優先室の温度状態によって運転モードを切り換える制御を行っている。そうすることで冷却負荷・加温負荷に関係なく常に最適な運転モードでの運転を行うことができ、省エネルギーにつなげることができる。   Here, in FIG. 6, a priority room is provided in each product storage, and control is performed to switch the operation mode according to the heating ON / OFF temperature and the temperature state of the priority room / non-priority room. By doing so, it is possible to always perform the operation in the optimum operation mode regardless of the cooling load and the heating load, which can lead to energy saving.

また、別の冷却加温システムを用いた自動販売機として、庫外凝縮器と庫外蒸発器を一
体化した熱交換器を備えたものが提案されている(例えば、特許文献2参照)。
Further, as a vending machine using another cooling and heating system, a vending machine including a heat exchanger in which an external condenser and an external evaporator are integrated has been proposed (for example, see Patent Document 2).

これによると、商品を収納する商品収納庫を冷却する冷却システムと、商品を収納する商品収納庫を冷却または加温する冷却加温システムの2ユニットから構成され、冷却専用室用圧縮機と冷却加温切替室用圧縮機の2個使用しており、機械室に備えた熱交換器は、冷却システムの凝縮器と冷却加温システムの庫外熱交換器を一体化したものである。   According to this, it is composed of two units: a cooling system for cooling a product storage for storing products, and a cooling and heating system for cooling or heating the product storage for storing products. Two compressors for the heating switching chamber are used, and the heat exchanger provided in the machine room is an integration of the condenser of the cooling system and the external heat exchanger of the cooling heating system.

冷却システムと冷却加温システムの配管は独立したものであるが、熱交換器のフィンにより、加温時の蒸発器と冷却時の凝縮器が熱交換を行い、加温時の蒸発温度を上げることで、加温時の凝縮温度を高めることができ、加温効率向上を図ったものである。   The piping of the cooling system and the cooling and heating system are independent, but the heat exchanger fins exchange heat with the heat exchanger fins to increase the evaporation temperature during heating. Thus, the condensation temperature during heating can be increased, and the heating efficiency is improved.

特開2006−011604号公報JP 2006-011604 A 特開2006−119808号公報JP 2006-119808 A

しかしながら、特許文献1に開示された従来の構成では、庫内熱交換器、庫外熱交換器ともに、1つの熱交換器を凝縮器もしくは蒸発器と役割を入れ替えて使用する仕様となっているために、熱交換器出口を膨張弁と接続される配管と、圧縮機吸入配管と接続される配管とに分岐する必要があり、圧縮機吸入配管と接続する配管上に開閉を行う電磁弁を設けなくてはならない。   However, in the conventional configuration disclosed in Patent Document 1, both the internal heat exchanger and the external heat exchanger have a specification in which one heat exchanger is used by exchanging roles with a condenser or an evaporator. Therefore, it is necessary to branch the heat exchanger outlet into a pipe connected to the expansion valve and a pipe connected to the compressor suction pipe, and an electromagnetic valve that opens and closes the pipe connected to the compressor suction pipe. Must be provided.

そして、各熱交換器が蒸発器として作用する場合は、電磁弁を開放することになるが、電磁弁内部は通常は周囲配管よりも狭くなっており、冷媒が通過する際の圧力損失が生じ、圧縮機の効率低下の原因となる。また、電磁弁内部を広くすると、開閉を行う際のコイルの力を強化する必要があり、それに伴ってコイル通電時の消費電力量が増大してしまうといった課題がある。   When each heat exchanger acts as an evaporator, the solenoid valve is opened, but the inside of the solenoid valve is usually narrower than the surrounding piping, causing a pressure loss when the refrigerant passes. , Causing a reduction in compressor efficiency. In addition, if the inside of the solenoid valve is widened, it is necessary to strengthen the force of the coil when opening and closing, and accordingly, there is a problem that the power consumption during energization of the coil increases.

また、凝縮器と蒸発器とでは最適な仕様が異なり、凝縮器最適仕様にすると、蒸発器として使用する際に熱交換器としての能力が不足することによる冷媒の液戻りが心配され、蒸発器最適仕様にすると、凝縮器として使用する際に凝縮温度が目標とする温度まで到達できずに加温能力が低下してしまい、それぞれの運転に応じた最適仕様での運転ができないといった課題もある。   In addition, the optimal specifications differ between the condenser and the evaporator, and if the condenser is the optimal specification, there is a concern about the return of refrigerant liquid due to insufficient capacity as a heat exchanger when used as an evaporator. When the optimum specification is used, there is a problem that when the condenser is used as a condenser, the condensation temperature cannot reach the target temperature and the heating capacity is lowered, so that the operation with the optimum specification corresponding to each operation cannot be performed. .

また、特許文献2に開示された庫外凝縮器と庫外蒸発器を一体化した熱交換器を備えた冷却加温システムにおいては、庫外蒸発器で蒸発すると、庫外凝縮器の放熱能力が高くなり、庫外凝縮器の凝縮温度が下がり冷媒滞留量が増え、冷却の場合は蒸発温度の低下、冷却能力が低下する課題がある。   Moreover, in the cooling and heating system provided with the heat exchanger which integrated the outside condenser and the outside evaporator disclosed by patent document 2, if it evaporates with an outside evaporator, the heat dissipation capability of an outside condenser will be shown. However, in the case of cooling, there is a problem that the evaporation temperature is lowered and the cooling capacity is lowered.

本発明は、上記従来の課題を解決するもので、冷媒回路(ヒートポンプ)を用いて効率の良い冷却加温を行える自動販売機を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the vending machine which can perform efficient cooling and heating using a refrigerant circuit (heat pump).

上記目的を達成するために、本発明の自動販売機は、圧縮機と、前記圧縮機から吐出された冷媒を凝縮させる庫外凝縮器と、複数の商品収納室に設置され前記庫外凝縮器で凝縮した冷媒を蒸発させて商品収納室内の商品を冷却する庫内蒸発器と、複数の前記庫内蒸発器に冷媒流路を分岐する分岐点または前記分岐点と複数の前記庫内蒸発器との間の分岐流路に設けられた分岐流路開閉手段と、複数の前記商品収納室のうちで冷媒の凝縮熱を利用
して商品収納室内の商品を加温する商品収納室に設置された庫内凝縮器と、前記庫内凝縮器で商品収納室内の商品を加温する時に前記圧縮機から吐出された冷媒を前記庫内凝縮器を経由させてから前記庫外凝縮器に流し前記庫内凝縮器で商品収納室内の商品を加温しない時に前記圧縮機から吐出された冷媒を前記庫内凝縮器を経由させずに前記庫外凝縮器に流す庫内凝縮器用流路切替手段と、前記庫外凝縮器と前記分岐流路開閉手段との間の冷媒配管と前記圧縮機の吸い込み側配管とをバイパスするバイパス流路に設けられた庫外蒸発器と、前記庫外蒸発器の流入側で前記バイパス流路を開閉するバイパス流路開閉手段と、前記バイパス流路開閉手段と前記庫外蒸発器との間の前記バイパス流路に設けられ前記庫内凝縮器と前記庫外凝縮器で凝縮し前記バイパス流路に流入した冷媒を減圧するバイパス流路膨張手段とを有している。
In order to achieve the above object, a vending machine according to the present invention includes a compressor, an external condenser for condensing the refrigerant discharged from the compressor, and the external condenser installed in a plurality of product storage rooms. An internal evaporator that evaporates the refrigerant condensed in the product and cools the product in the product storage room, a branch point that branches the refrigerant flow path to the plurality of internal evaporators, or the branch point and the plurality of internal evaporators And a branch channel opening / closing means provided in the branch channel between the two and the product storage chamber for heating the product in the product storage chamber using the condensation heat of the refrigerant among the plurality of product storage chambers. And the refrigerant discharged from the compressor when the product in the product storage room is warmed by the internal condenser is passed through the internal condenser and then flowed to the external condenser. The product is discharged from the compressor when the product in the product storage room is not heated by the internal condenser. The internal condenser flow path switching means for flowing the refrigerant to the external condenser without passing through the internal condenser, the refrigerant pipe between the external condenser and the branch flow path opening / closing means, and the compression An external evaporator provided in a bypass flow path that bypasses the suction side piping of the machine, bypass flow opening and closing means for opening and closing the bypass flow path on the inflow side of the external evaporator, and opening and closing the bypass flow path A bypass passage expansion means provided in the bypass passage between the means and the outside evaporator and depressurizing the refrigerant condensed by the inside condenser and the outside condenser and flowing into the bypass passage. Have.

そして、前記庫外凝縮器と前記庫外蒸発器は、それぞれ、互いに間隔をあけて平行に並べられた複数のフィンと前記フィンの両側に配置されたエンドプレートとを配管が貫通する熱交換器であり、前記庫外凝縮器用の前記エンドプレートと前記庫外蒸発器用の前記エンドプレートとは繋がっているが、前記庫外凝縮器用の前記配管が貫通する前記フィンと前記庫外蒸発器用の前記配管が貫通する前記フィンとは繋がっていないものである。   The outside condenser and the outside evaporator are each a heat exchanger in which piping passes through a plurality of fins arranged parallel to each other at intervals, and end plates arranged on both sides of the fins. The end plate for the external condenser and the end plate for the external evaporator are connected, but the fins through which the pipe for the external condenser passes and the external evaporator It is not connected to the fin through which the pipe penetrates.

これによって、熱交換器を凝縮器と蒸発器に切り換える電磁弁が不要となり、その切換用の電磁弁による損失や電力消費増大を抑えることができる。また熱交換器を凝縮器と蒸発器で兼用せずに、それぞれ専用に設計した熱交換器で構成できるので、効率向上を図ることができる。   This eliminates the need for an electromagnetic valve for switching the heat exchanger between the condenser and the evaporator, and can suppress loss and increase in power consumption due to the switching electromagnetic valve. Further, since the heat exchanger can be constituted by a heat exchanger designed exclusively for each without using both the condenser and the evaporator, the efficiency can be improved.

また、庫内凝縮器を有する商品収納室で庫内凝縮器により加温するが、他の商品収納室の庫内蒸発器に冷媒を流せない場合でも、庫外蒸発器に冷媒を流すことで圧縮機の運転を継続でき、効率の良いヒートポンプ加温を行うことができる。   In addition, in the product storage room having the internal condenser, the product is heated by the internal condenser, but even when the refrigerant cannot flow to the internal evaporator in another product storage room, the refrigerant is allowed to flow to the external evaporator. The operation of the compressor can be continued, and efficient heat pump heating can be performed.

また、庫外凝縮器用の配管が貫通するフィンと庫外蒸発器用の配管が貫通するフィンとは繋がっていないので、庫外蒸発器に冷媒が流れて庫外蒸発器で冷媒が蒸発しても、庫外凝縮器は影響を受けずに庫内凝縮温度が変化せず、加温能力・加温効率は維持できる。   In addition, since the fin through which the pipe for the outside condenser passes and the fin through which the pipe for the outside evaporator penetrates are not connected, even if the refrigerant flows into the outside evaporator and the refrigerant evaporates in the outside evaporator The outside condenser is not affected, the inside condensation temperature does not change, and the heating capacity and heating efficiency can be maintained.

本発明の自動販売機は、熱交換器を凝縮器と蒸発器に切り換える電磁弁が不要となり、その切換用の電磁弁による損失や電力消費増大を抑えることができる。また熱交換器を凝縮器と蒸発器で兼用せずに、それぞれ専用に設計した熱交換器で構成できるので、効率向上を図ることができる。   The vending machine of the present invention does not require an electromagnetic valve for switching the heat exchanger between the condenser and the evaporator, and can suppress loss and increase in power consumption due to the switching electromagnetic valve. Further, since the heat exchanger can be constituted by a heat exchanger designed exclusively for each without using both the condenser and the evaporator, the efficiency can be improved.

また、庫内凝縮器を有する商品収納室で庫内凝縮器により加温するが、他の商品収納室の庫内蒸発器に冷媒を流せない場合でも、庫外蒸発器に冷媒を流すことで圧縮機の運転を継続でき、効率の良いヒートポンプ加温を行うことができる。   In addition, in the product storage room having the internal condenser, the product is heated by the internal condenser, but even when the refrigerant cannot flow to the internal evaporator in another product storage room, the refrigerant is allowed to flow to the external evaporator. The operation of the compressor can be continued, and efficient heat pump heating can be performed.

また、庫外凝縮器用の配管が貫通するフィンと庫外蒸発器用の配管が貫通するフィンとは繋がっていないので、庫外蒸発器に冷媒が流れて庫外蒸発器で冷媒が蒸発しても、庫外凝縮器は影響を受けずに庫内凝縮温度が変化せず、加温能力・加温効率は維持できる。   In addition, since the fin through which the pipe for the outside condenser passes and the fin through which the pipe for the outside evaporator penetrates are not connected, even if the refrigerant flows into the outside evaporator and the refrigerant evaporates in the outside evaporator The outside condenser is not affected, the inside condensation temperature does not change, and the heating capacity and heating efficiency can be maintained.

本発明の実施の形態1における自動販売機の冷媒回路図Refrigerant circuit diagram of vending machine in Embodiment 1 of the present invention 本発明の実施の形態1における自動販売機の冷却運転時の冷媒回路図Refrigerant circuit diagram during cooling operation of vending machine according to Embodiment 1 of the present invention 本発明の実施の形態1における自動販売機の冷却加温運転時の冷媒回路図Refrigerant circuit diagram at the time of cooling and heating operation of the vending machine in Embodiment 1 of the present invention 本発明の実施の形態1における自動販売機の加温運転時の冷媒回路図Refrigerant circuit diagram during heating operation of vending machine in Embodiment 1 of the present invention 従来の自動販売機の冷媒回路図Refrigerant circuit diagram of a conventional vending machine 従来の自動販売機の運転切換制御のフローチャートFlowchart of conventional vending machine operation switching control

第1の発明は、圧縮機と、前記圧縮機から吐出された冷媒を凝縮させる庫外凝縮器と、複数の商品収納室に設置され前記庫外凝縮器で凝縮した冷媒を蒸発させて商品収納室内の商品を冷却する庫内蒸発器と、複数の前記庫内蒸発器に冷媒流路を分岐する分岐点または前記分岐点と複数の前記庫内蒸発器との間の分岐流路に設けられた分岐流路開閉手段と、複数の前記商品収納室のうちで冷媒の凝縮熱を利用して商品収納室内の商品を加温する商品収納室に設置された庫内凝縮器と、前記庫内凝縮器で商品収納室内の商品を加温する時に前記圧縮機から吐出された冷媒を前記庫内凝縮器を経由させてから前記庫外凝縮器に流し前記庫内凝縮器で商品収納室内の商品を加温しない時に前記圧縮機から吐出された冷媒を前記庫内凝縮器を経由させずに前記庫外凝縮器に流す庫内凝縮器用流路切替手段と、前記庫外凝縮器と前記分岐流路開閉手段との間の冷媒配管と前記圧縮機の吸い込み側配管とをバイパスするバイパス流路に設けられた庫外蒸発器と、前記庫外蒸発器の流入側で前記バイパス流路を開閉するバイパス流路開閉手段と、前記バイパス流路開閉手段と前記庫外蒸発器との間の前記バイパス流路に設けられ前記庫内凝縮器と前記庫外凝縮器で凝縮し前記バイパス流路に流入した冷媒を減圧するバイパス流路膨張手段とを有し、前記庫外凝縮器と前記庫外蒸発器は、それぞれ、互いに間隔をあけて平行に並べられた複数のフィンと前記フィンの両側に配置されたエンドプレートとを配管が貫通する熱交換器であり、前記庫外凝縮器用の前記エンドプレートと前記庫外蒸発器用の前記エンドプレートとは繋がっているが、前記庫外凝縮器用の前記配管が貫通する前記フィンと前記庫外蒸発器用の前記配管が貫通する前記フィンとは繋がっていないことを特徴とする自動販売機である。   According to a first aspect of the present invention, a compressor, an outside-condenser that condenses the refrigerant discharged from the compressor, and a product stored by evaporating the refrigerant that is installed in a plurality of product storage chambers and condensed by the outside-condenser Provided in an internal evaporator for cooling indoor commodities, a branch point for branching a refrigerant flow path to the plurality of internal evaporators, or a branch flow path between the branch points and the plurality of internal evaporators Branch channel opening / closing means, a condensing unit installed in the product storage chamber for heating the product in the product storage chamber using the heat of condensation of the refrigerant among the plurality of product storage chambers, When the product in the product storage room is warmed by the condenser, the refrigerant discharged from the compressor passes through the internal condenser and then flows to the external condenser, and the product in the product storage room by the internal condenser. When the refrigerant is not heated, the refrigerant discharged from the compressor does not pass through the internal condenser Bypass flow path for bypassing the internal condenser flow path switching means for flowing to the external condenser, the refrigerant pipe between the external condenser and the branch flow path opening / closing means, and the suction side pipe of the compressor An external evaporator provided in the internal combustion chamber, bypass flow opening / closing means for opening and closing the bypass flow path on the inflow side of the external evaporator, and between the bypass flow opening / closing means and the external evaporator A bypass channel expansion means provided in the bypass channel and depressurizing the refrigerant that has been condensed by the internal condenser and the external condenser and flowed into the bypass flow path, and the external condenser and the external compartment Each of the evaporators is a heat exchanger in which piping passes through a plurality of fins arranged parallel to each other at intervals, and end plates arranged on both sides of the fins, and the end for the external condenser Front for plate and said external evaporator The vending machine is connected to an end plate, but is not connected to the fin through which the pipe for the external condenser penetrates and the fin through which the pipe for the external evaporator penetrates. is there.

これによって、熱交換器を凝縮器と蒸発器に切り換える電磁弁が不要となり、その切換用の電磁弁による損失や電力消費増大を抑えることができる。また熱交換器を凝縮器と蒸発器で兼用せずに、それぞれ専用に設計した熱交換器で構成できるので、効率向上を図ることができる。   This eliminates the need for an electromagnetic valve for switching the heat exchanger between the condenser and the evaporator, and can suppress loss and increase in power consumption due to the switching electromagnetic valve. Further, since the heat exchanger can be constituted by a heat exchanger designed exclusively for each without using both the condenser and the evaporator, the efficiency can be improved.

また、庫内凝縮器を有する商品収納室で庫内凝縮器により加温するが、他の商品収納室の庫内蒸発器に冷媒を流せない場合でも、庫外蒸発器に冷媒を流すことで圧縮機の運転を継続でき、効率の良いヒートポンプ加温を行うことができる。   In addition, in the product storage room having the internal condenser, the product is heated by the internal condenser, but even when the refrigerant cannot flow to the internal evaporator in another product storage room, the refrigerant is allowed to flow to the external evaporator. The operation of the compressor can be continued, and efficient heat pump heating can be performed.

また、庫外凝縮器用の配管が貫通するフィンと庫外蒸発器用の配管が貫通するフィンとは繋がっていないので、庫外蒸発器に冷媒が流れて庫外蒸発器で冷媒が蒸発しても、庫外凝縮器は影響を受けずに庫内凝縮温度が変化せず、加温能力・加温効率は維持できる。   In addition, since the fin through which the pipe for the outside condenser passes and the fin through which the pipe for the outside evaporator penetrates are not connected, even if the refrigerant flows into the outside evaporator and the refrigerant evaporates in the outside evaporator The outside condenser is not affected, the inside condensation temperature does not change, and the heating capacity and heating efficiency can be maintained.

第2の発明は、特に第1の発明において、前記庫外凝縮器用の前記配管が風上側で前記庫外蒸発器用の前記配管が風下側になるように配置されるものであり、庫外凝縮器用の配管が風上側で庫外蒸発器用の配管が風下側になるように配置されるので、庫外蒸発器は、庫外凝縮器の排熱の影響で蒸発温度の上昇による効率改善、フィンの結露防止効果も得ることができる。   According to a second aspect of the invention, in particular, in the first aspect of the invention, the pipe for the outside condenser is arranged on the windward side, and the pipe for the outside evaporator is on the leeward side. Since the piping for the container is located on the windward side and the piping for the outside evaporator is on the leeward side, the outside evaporator is designed to improve efficiency by increasing the evaporation temperature due to the exhaust heat from the outside condenser, The effect of preventing condensation can be obtained.

第3の発明は、特に第1または第2の発明において、前記バイパス流路開閉手段は、前記圧縮機から吐出された冷媒が前記庫内凝縮器を経由して前記庫外凝縮器に流れる場合にのみ開放されるものであり、蒸発温度が上がることによって庫内凝縮器の凝縮温度を上昇させ加温能力を高めることができる。   In a third aspect of the invention, particularly in the first or second aspect of the invention, the bypass flow path opening / closing means is configured such that the refrigerant discharged from the compressor flows to the external condenser via the internal condenser. Only when the evaporation temperature is increased, the condensation temperature of the internal condenser can be increased and the heating capacity can be increased.

第4の発明は、特に第1から第3のいずれかの発明において、前記庫外凝縮器用の前記配管と前記庫外蒸発器用の前記配管は、それぞれ、前記配管内を冷媒が上から下に向かって流れるように構成されるものであり、庫外蒸発器は庫外凝縮器の排熱をより受けやすく
蒸発温度の上昇による効率改善、フィンの結露防止効果も得ることができる。
According to a fourth aspect of the present invention, in particular, in any one of the first to third aspects, the piping for the external condenser and the piping for the external evaporator are respectively arranged in such a manner that the refrigerant flows from above to below in the piping. The external evaporator is more easily subjected to the exhaust heat of the external condenser, and can improve efficiency by increasing the evaporation temperature and can also prevent the condensation of the fins.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における自動販売機の冷媒回路図、図2は同実施の形態の自動販売機の冷却運転時の冷媒回路図、図3は同実施の形態の自動販売機の冷却加温運転時の冷媒回路図、図4は同実施の形態の自動販売機の加温運転時の冷媒回路図である。
(Embodiment 1)
1 is a refrigerant circuit diagram of a vending machine according to the first embodiment of the present invention, FIG. 2 is a refrigerant circuit diagram during cooling operation of the vending machine of the same embodiment, and FIG. 3 is a vending machine of the same embodiment. FIG. 4 is a refrigerant circuit diagram during the heating operation of the vending machine according to the embodiment.

図1に示すように、本実施の形態1の自動販売機は、商品を収納する商品収納庫1と商品収納庫1の下部に配置された機械室(図示せず)を有する。   As shown in FIG. 1, the vending machine according to the first embodiment includes a product storage 1 for storing products and a machine room (not shown) disposed in the lower part of the product storage 1.

商品収納庫1は、庫内が、収納する商品を冷却もしくは加温する第1の冷却加温室2、収納する商品を冷却もしくは加温する第2の冷却加温室3、収納する商品を冷却する冷却専用室4に区画されている。また、それぞれの商品収納室内には商品収納棚(図示せず)が上部に吊り下げられており、商品が内部に収納されている。   The product storage 1 has a first cooling greenhouse 2 that cools or warms the stored product, a second cooling greenhouse 3 that cools or warms the stored product, and cools the stored product. It is partitioned into a cooling chamber 4. In addition, in each product storage room, a product storage shelf (not shown) is suspended at the top, and the products are stored inside.

機械室には、圧縮機5と、圧縮機5から吐出された冷媒を凝縮させる庫外凝縮器40と、庫外蒸発器41と、庫外凝縮器40が風上側で庫外蒸発器41が風下側になるように庫外凝縮器40と庫外蒸発器41の近傍に位置して庫外凝縮器40または庫外蒸発器41の熱交換が促進されるように送風する庫外ファン26が配置される。   In the machine room, the compressor 5, the outside condenser 40 that condenses the refrigerant discharged from the compressor 5, the outside evaporator 41, and the outside condenser 40 are on the windward side, and the outside evaporator 41 is An outside fan 26 that is located in the vicinity of the outside condenser 40 and the outside evaporator 41 so as to be on the leeward side and blows air so that heat exchange between the outside condenser 40 or the outside evaporator 41 is promoted. Be placed.

第1の冷却加温室2内には、庫外凝縮器40で凝縮した冷媒を蒸発させて第1の冷却加温室2内の商品を冷却する庫内蒸発器47と、圧縮機5から吐出された冷媒を凝縮させて第1の冷却加温室2内の商品を加温する庫内凝縮器46と、庫内蒸発器47と庫内凝縮器46の近傍に配置され、庫内蒸発器47または庫内凝縮器46と熱交換した空気を第1の冷却加温室2内で循環させる庫内ファン27と、庫内凝縮器46とは別に必要に応じて第1の冷却加温室2内の商品を加温する場合に通電されて発熱する加温ヒータ30と、第1の冷却加温室2の室内温度を検出する温度センサー(図示せず)が配置される。   In the first cooling greenhouse 2, the refrigerant condensed in the outside condenser 40 is evaporated to cool the products in the first cooling greenhouse 2 and discharged from the compressor 5. The inside condenser 46 for condensing the refrigerant to heat the product in the first cooling greenhouse 2, and the inside evaporator 47 and the inside condenser 46 are arranged in the vicinity of the inside evaporator 47 or Separately from the internal fan 27 for circulating the air heat-exchanged with the internal condenser 46 in the first cooling chamber 2 and the products in the first cooling chamber 2 as required separately from the internal condenser 46 A warming heater 30 that is energized to generate heat when warming and a temperature sensor (not shown) that detects the indoor temperature of the first cooling greenhouse 2 are arranged.

第2の冷却加温室3内には、庫外凝縮器40で凝縮(庫内凝縮器46に冷媒が流れている場合は、庫内凝縮器46と庫外凝縮器40で凝縮)した冷媒を蒸発させて第2の冷却加温室3内の商品を冷却する庫内蒸発器9と、庫内蒸発器9の近傍に配置され、庫内蒸発器9と熱交換した空気を第2の冷却加温室3内で循環させる庫内ファン28と、第2の冷却加温室3内の商品を加温する場合に通電されて発熱する加温ヒータ31と、第2の冷却加温室3の室内温度を検出する温度センサー(図示せず)が配置される。   In the second cooling greenhouse 3, the refrigerant condensed by the external condenser 40 (condensed by the internal condenser 46 and the external condenser 40 when the refrigerant is flowing in the internal condenser 46) is stored. The internal evaporator 9 that cools the product in the second cooling greenhouse 3 by evaporating, and the air that is disposed in the vicinity of the internal evaporator 9 and exchanges heat with the internal evaporator 9 is subjected to the second cooling and heating. The internal fan 28 that circulates in the greenhouse 3, the heating heater 31 that is energized to heat the product in the second cooling greenhouse 3, and the indoor temperature of the second cooling greenhouse 3 A temperature sensor (not shown) for detection is arranged.

冷却専用室4内には、庫外凝縮器40で凝縮(庫内凝縮器46に冷媒が流れている場合は、庫内凝縮器46と庫外凝縮器40で凝縮)した冷媒を蒸発させて冷却専用室4内の商品を冷却する庫内蒸発器10と、庫内蒸発器10の近傍に配置され、庫内蒸発器10と熱交換した空気を冷却専用室4内で循環させる庫内ファン29と、冷却専用室4の室内温度を検出する温度センサー(図示せず)が配置される。   In the cooling exclusive chamber 4, the refrigerant condensed by the external condenser 40 (condensed by the internal condenser 46 and the external condenser 40 when the refrigerant is flowing in the internal condenser 46) is evaporated. The internal evaporator 10 that cools the product in the cooling exclusive chamber 4 and the internal fan that is disposed in the vicinity of the internal evaporator 10 and circulates the air exchanged with the internal evaporator 10 in the exclusive cooling chamber 4. 29 and a temperature sensor (not shown) for detecting the room temperature of the cooling-only chamber 4 are arranged.

庫内蒸発器47側と庫内蒸発器9,10側に冷媒流路を分岐する分岐点と、庫内蒸発器47との間の分岐流路には、第1の冷却加温室2の冷却が必要のため庫内蒸発器47に冷媒を流す時は開放状態になっており、第1の冷却加温室2の冷却が不要のため庫内蒸発器47に冷媒を流さない時は閉塞状態になっている分岐流路開閉手段としての電磁弁51が設けられる。   The first cooling chamber 2 is cooled at a branch point where the refrigerant flow path branches to the internal evaporator 47 side and the internal evaporators 9 and 10 side and the internal evaporator 47. Therefore, when the refrigerant flows through the internal evaporator 47, it is open, and since the cooling of the first cooling greenhouse 2 is not required, it is closed when the refrigerant does not flow through the internal evaporator 47. An electromagnetic valve 51 is provided as a branch flow path opening / closing means.

また、庫内蒸発器9側と庫内蒸発器10側に冷媒流路を分岐する分岐点には、庫内蒸発器9方向への冷媒の流路と庫内蒸発器10方向への冷媒の流路を切換えたり、両方の流路を同時に閉じたりすることが可能な分岐流路開閉手段としての三方弁42が設けられる。   In addition, at the branching point where the refrigerant flow path branches into the internal evaporator 9 side and the internal evaporator 10 side, the refrigerant flow path toward the internal evaporator 9 and the refrigerant flow toward the internal evaporator 10 are provided. A three-way valve 42 is provided as a branch channel opening / closing means capable of switching the channel or closing both channels simultaneously.

電磁弁51と庫内蒸発器47との間の冷媒の流路には庫内蒸発器47に流れる冷媒を減圧する膨張機構43が設けられ、三方弁42と庫内蒸発器9との間の冷媒の流路には庫内蒸発器9に流れる冷媒を減圧する膨張機構44が設けられ、三方弁42と庫内蒸発器10との間の冷媒の流路には、三方弁42から庫内蒸発器10方向に流れる冷媒を減圧する膨張機構45が設けられる。   The refrigerant flow path between the electromagnetic valve 51 and the internal evaporator 47 is provided with an expansion mechanism 43 that depressurizes the refrigerant flowing through the internal evaporator 47, and is provided between the three-way valve 42 and the internal evaporator 9. The refrigerant flow path is provided with an expansion mechanism 44 for reducing the pressure of the refrigerant flowing into the internal evaporator 9. The refrigerant flow path between the three-way valve 42 and the internal evaporator 10 is connected to the internal passage from the three-way valve 42. An expansion mechanism 45 for reducing the pressure of the refrigerant flowing in the direction of the evaporator 10 is provided.

庫内蒸発器9の冷媒の出口側は、膨張機構45と庫内蒸発器10とを接続する冷媒の配管に接続されており、庫内蒸発器9から流出した冷媒が庫内蒸発器10に流入するように構成されている。   The refrigerant outlet side of the internal evaporator 9 is connected to a refrigerant pipe connecting the expansion mechanism 45 and the internal evaporator 10, and the refrigerant that has flowed out of the internal evaporator 9 enters the internal evaporator 10. It is configured to flow in.

圧縮機5の吐出側の冷媒配管には、庫内凝縮器46で第1の冷却加温室2内の商品を加温する時に圧縮機5から吐出された冷媒を庫内凝縮器46を経由させてから庫外凝縮器40に流し、第1の冷却加温室2内の商品を加温しない時に圧縮機5から吐出された冷媒を庫内凝縮器46を経由させずに庫外凝縮器40に流す庫内凝縮器用流路切替手段としての四方切換弁49が設けられる。   The refrigerant pipe on the discharge side of the compressor 5 causes the refrigerant discharged from the compressor 5 to pass through the internal condenser 46 when the product in the first cooling greenhouse 2 is heated by the internal condenser 46. Then, the refrigerant discharged from the compressor 5 when flowing into the external condenser 40 and not warming the product in the first cooling greenhouse 2 is not passed through the internal condenser 46 to the external condenser 40. A four-way switching valve 49 is provided as a flow path switching means for the internal condenser to flow.

第1の冷却加温室2の庫内凝縮器46の冷媒の出口側と四方切換弁49との間の冷媒配管には、庫内凝縮器46で凝縮した冷媒を減圧する膨張機構48が設けられる。   An expansion mechanism 48 for reducing the pressure of the refrigerant condensed in the internal condenser 46 is provided in the refrigerant pipe between the refrigerant outlet side of the internal condenser 46 of the first cooling greenhouse 2 and the four-way switching valve 49. .

庫外蒸発器41は、庫外凝縮器40の冷媒の出口と、庫内蒸発器47側と庫内蒸発器9,10側に冷媒流路を分岐する分岐点との間の冷媒配管(庫外凝縮器40の冷媒の出口側の冷媒配管)と圧縮機5の吸い込み側配管とをバイパスするバイパス流路に設けられる。   The external evaporator 41 is a refrigerant pipe (storage) between the refrigerant outlet of the external condenser 40 and a branch point that branches the refrigerant flow path to the internal evaporator 47 side and the internal evaporators 9 and 10 side. It is provided in a bypass channel that bypasses the refrigerant outlet side refrigerant pipe of the outer condenser 40 and the suction side pipe of the compressor 5.

庫外蒸発器41の冷媒の入り口側(バイパス流路の冷媒の入り口側)にはバイパス流路を開閉するバイパス流路開閉手段としての電磁弁52が設けられる。   An electromagnetic valve 52 as a bypass channel opening / closing means for opening and closing the bypass channel is provided on the refrigerant inlet side of the external evaporator 41 (the refrigerant inlet side of the bypass channel).

また、電磁弁52と庫外蒸発器41との間のバイパス流路には、庫内凝縮器46と庫外凝縮器40で凝縮してバイパス流路に流入した冷媒を減圧するバイパス流路膨張手段としての膨張機構53が設けられる。   In addition, in the bypass flow path between the electromagnetic valve 52 and the external evaporator 41, a bypass flow path expansion that decompresses the refrigerant condensed in the internal condenser 46 and the external condenser 40 and flowing into the bypass flow path. An expansion mechanism 53 is provided as a means.

バイパス流路開閉手段としての電磁弁52は、圧縮機5から吐出された冷媒が庫内凝縮器46を経由して庫外凝縮器40に流れる場合にのみ開放される。   The electromagnetic valve 52 as the bypass flow path opening / closing means is opened only when the refrigerant discharged from the compressor 5 flows to the outside condenser 40 via the inside condenser 46.

庫内蒸発器47の冷媒の出口側の分岐流路と庫内蒸発器10の冷媒の出口側の分岐流路とが合流する合流点と圧縮機5の吸い込み側との間の冷媒配管と、庫内凝縮器46で凝縮した冷媒を減圧する膨張機構48と四方切換弁49との間の冷媒配管とは、電磁弁50を介して接続されている。   A refrigerant pipe between a confluence point where a branch flow path on the refrigerant outlet side of the internal evaporator 47 and a branch flow path on the refrigerant outlet side of the internal evaporator 10 merge and the suction side of the compressor 5; A refrigerant pipe between the expansion mechanism 48 for reducing the pressure of the refrigerant condensed by the internal condenser 46 and the four-way switching valve 49 is connected via an electromagnetic valve 50.

庫外凝縮器40と庫外蒸発器41は、それぞれ、互いに間隔をあけて平行に並べられた複数のフィンと、そのフィンの両側に配置されたエンドプレートとを配管が貫通する熱交換器であり、庫外凝縮器40用のエンドプレートと庫外蒸発器41用のエンドプレートとは繋がっているが、庫外凝縮器40用の配管が貫通するフィンと庫外蒸発器41用の配管が貫通するフィンとは繋がっていない。   Each of the outside condenser 40 and the outside evaporator 41 is a heat exchanger in which piping passes through a plurality of fins arranged in parallel and spaced apart from each other and end plates arranged on both sides of the fins. Yes, the end plate for the external condenser 40 and the end plate for the external evaporator 41 are connected, but the fin through which the pipe for the external condenser 40 passes and the pipe for the external evaporator 41 are connected. It is not connected to the penetrating fin.

つまり、庫外凝縮器40と庫外蒸発器41は、フィンが別々でエンドプレートを共用するように一体化した2パスの熱交換器であり、庫外ファン26が運転された場合に、庫外
凝縮器40用の配管が風上側で、庫外蒸発器41用の配管が風下側になるように配置される。
That is, the external condenser 40 and the external evaporator 41 are two-pass heat exchangers that are integrated so that the fins are separate and share the end plate, and when the external fan 26 is operated, It arrange | positions so that piping for the outer condenser 40 may be on the leeward side, and piping for the outside evaporator 41 may be on the leeward side.

また、庫外凝縮器40用の配管と庫外蒸発器41用の配管は、それぞれ、配管内を冷媒が概ね上から下に向かって流れるように構成される。   The piping for the outside condenser 40 and the piping for the outside evaporator 41 are each configured such that the refrigerant flows in the piping from the top to the bottom.

ここで、一般的な自動販売機においては、第2の冷却加温室3が最も狭い部屋となる場合が多く、第2の冷却加温室3内に設置している庫内蒸発器9についても、第1の冷却加温室2内に設置している庫内蒸発器47、冷却専用室4内に設置している庫内蒸発器9よりも小型となっている。   Here, in a general vending machine, the second cooling greenhouse 3 is often the narrowest room, and the internal evaporator 9 installed in the second cooling greenhouse 3 It is smaller than the internal evaporator 47 installed in the first cooling greenhouse 2 and the internal evaporator 9 installed in the cooling chamber 4.

そのために、庫内蒸発器9単独のみでの蒸発能力を確保するためには膨張機構44を大きくして蒸発温度を大きく下げる必要があり、そうすれば圧縮機5の効率が低下し消費電力量が増大してしまう。   Therefore, in order to ensure the evaporation capability of the internal evaporator 9 alone, it is necessary to enlarge the expansion mechanism 44 to greatly lower the evaporation temperature, which reduces the efficiency of the compressor 5 and reduces the power consumption. Will increase.

そのため、本実施の形態においては、庫内蒸発器9の冷媒の出口と庫内蒸発器10の冷媒の入り口とを接続し、庫内蒸発器9と庫内蒸発器10を一つの大きな蒸発器として取り扱えるようにすることにより、蒸発温度を高くして、効率を高めて消費電力量を低減できるようにしている。   Therefore, in the present embodiment, the refrigerant outlet of the internal evaporator 9 and the refrigerant inlet of the internal evaporator 10 are connected, and the internal evaporator 9 and the internal evaporator 10 are connected to one large evaporator. As a result, it is possible to increase the evaporation temperature, increase the efficiency, and reduce the power consumption.

以上のように構成された本発明の実施の形態1における自動販売機について、以下その動作を説明する。   The operation of the vending machine configured as above according to Embodiment 1 of the present invention will be described below.

まず、第1の冷却加温室2、第2の冷却加温室3、冷却専用室4の全室を冷却する冷却運転の場合は、図2の太線の冷媒流路を矢印の向きに冷媒が流れる運転となる。   First, in the case of the cooling operation for cooling all of the first cooling greenhouse 2, the second cooling greenhouse 3, and the cooling exclusive chamber 4, the refrigerant flows in the direction of the arrow in the thick refrigerant path in FIG. It becomes driving.

全室冷却運転の場合は、四方切換弁49を、圧縮機5の吐出配管と庫外凝縮器40とが連通し、且つ庫内凝縮器46の冷媒の入口と庫内凝縮器46の冷媒の出口が連通して閉ループとなる状態にするとともに、三方弁42は庫内蒸発器9用の膨張機構44への流路を開放し庫内蒸発器10用の膨張機構45への流路を閉塞する状態にし、電磁弁51を開放し、電磁弁52を閉塞し、圧縮機5を起動する。   In the all-chamber cooling operation, the four-way switching valve 49 is connected to the discharge pipe of the compressor 5 and the external condenser 40, and the refrigerant inlet of the internal condenser 46 and the refrigerant of the internal condenser 46 are connected. The outlet communicates with the closed loop, and the three-way valve 42 opens the flow path to the expansion mechanism 44 for the internal evaporator 9 and closes the flow path to the expansion mechanism 45 for the internal evaporator 10. The solenoid valve 51 is opened, the solenoid valve 52 is closed, and the compressor 5 is started.

圧縮機5から吐出された高温高圧のガス状の冷媒は、四方切換弁49を通過して庫外凝縮器40で冷却されて凝縮した後に、三方弁42側と電磁弁51側に分かれる。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the four-way switching valve 49 and is cooled and condensed by the external condenser 40, and then is divided into the three-way valve 42 side and the electromagnetic valve 51 side. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40.

そして、三方弁42から膨張機構44側に流れた液状の冷媒は、膨張機構44にて減圧された後に庫内蒸発器9で蒸発気化して第2の冷却加温室3を冷却する。なお、庫内蒸発器9に冷媒が流れている時には、庫内ファン28が庫内蒸発器9に送風している。   The liquid refrigerant flowing from the three-way valve 42 toward the expansion mechanism 44 is reduced in pressure by the expansion mechanism 44 and then evaporated and evaporated in the internal evaporator 9 to cool the second cooling greenhouse 3. When the refrigerant is flowing through the internal evaporator 9, the internal fan 28 blows air to the internal evaporator 9.

また、庫内蒸発器9で蒸発できなかった余剰な液冷媒は、庫内蒸発器9と直列に接続された庫内蒸発器10で蒸発して冷却専用室4も冷却する(直列冷却運転)。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。   The excess liquid refrigerant that could not be evaporated by the internal evaporator 9 is evaporated by the internal evaporator 10 connected in series with the internal evaporator 9 to cool the cooling exclusive chamber 4 (series cooling operation). . When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

その後、第2の冷却加温室3の温度が目標温度(冷却温度範囲の下限値)に達した時点で、三方弁42から膨張機構45へと冷媒が流れるに三方弁42を切り換えることで、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却を行う(下流側単独冷却運転)。   Thereafter, when the temperature of the second cooling greenhouse 3 reaches the target temperature (the lower limit value of the cooling temperature range), the three-way valve 42 is switched so that the refrigerant flows from the three-way valve 42 to the expansion mechanism 45. Of the internal evaporator 9 and the internal evaporator 10, only the internal evaporator 10 is cooled alone (downstream independent cooling operation).

このように優先的に直列冷却運転を行うことで、余剰液冷媒によって冷却専用室4も冷却されることから下流側単独冷却運転の運転率を低下することができ、消費電力量を低減することができる。   By performing the serial cooling operation preferentially in this way, the cooling exclusive chamber 4 is also cooled by the surplus liquid refrigerant, so that the operating rate of the downstream side single cooling operation can be reduced and the power consumption can be reduced. Can do.

一方、電磁弁51から膨張機構43側に流れた液状の冷媒は、膨張機構43にて減圧された後に庫内蒸発器47で蒸発気化して第1の冷却加温室2を冷却する。なお、庫内蒸発器47に冷媒が流れている時には、庫内ファン27が庫内蒸発器47に送風している。   On the other hand, the liquid refrigerant that has flowed from the solenoid valve 51 to the expansion mechanism 43 side is decompressed by the expansion mechanism 43 and then evaporated and evaporated by the internal evaporator 47 to cool the first cooling greenhouse 2. When the refrigerant is flowing through the internal evaporator 47, the internal fan 27 blows air to the internal evaporator 47.

そして、庫内蒸発器10から流出したガス状の冷媒と庫内蒸発器47から流出したガス状の冷媒が合流して圧縮機5に戻る。   The gaseous refrigerant that has flowed out of the internal evaporator 10 and the gaseous refrigerant that has flowed out of the internal evaporator 47 join together and return to the compressor 5.

そして、冷却加温システムの制御手段(図示せず)が、第1の冷却加温室2、第2の冷却加温室3、冷却専用室4の各室内の温度が予め設定された冷却温度範囲内を維持するように、三方弁42の切換え、電磁弁51の開閉、圧縮機5と庫外ファン26と庫内ファン27,28,29の運転を制御している。   Then, the control means (not shown) of the cooling and heating system is configured so that the temperature in each of the first cooling and heating greenhouse 2, the second cooling and heating chamber 3, and the cooling exclusive chamber 4 is within a preset cooling temperature range. Thus, the switching of the three-way valve 42, the opening and closing of the electromagnetic valve 51, and the operation of the compressor 5, the external fan 26, and the internal fans 27, 28, and 29 are controlled.

例えば、第1の冷却加温室2が冷却温度範囲の下限値となる所定温度まで冷却されると、電磁弁51を閉塞すると共に庫内ファン27を停止する。そして、電磁弁51が閉塞している状態で、第1の冷却加温室2内の温度が冷却温度範囲の上限値となる所定温度まで上昇すると、電磁弁51を開放すると共に庫内ファン27を運転する。   For example, when the first cooling chamber 2 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the electromagnetic valve 51 is closed and the internal fan 27 is stopped. And when the temperature in the 1st cooling greenhouse 2 rises to the predetermined temperature used as the upper limit of a cooling temperature range in the state which the solenoid valve 51 has obstruct | occluded, while opening the solenoid valve 51, the internal fan 27 is made to open. drive.

もし、第1の冷却加温室2が冷却温度範囲の下限値となる所定温度まで冷却された時に、三方弁42の両方の冷媒の出口が閉塞状態であれば、電磁弁51を閉塞すると共に圧縮機5と庫内ファン27を停止し、圧縮機5の停止中に第1の冷却加温室2内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、電磁弁51を開放すると共に圧縮機5を起動し庫内ファン27を運転する。   If the outlets of both refrigerants of the three-way valve 42 are closed when the first cooling greenhouse 2 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the electromagnetic valve 51 is closed and compressed. When the compressor 5 and the internal fan 27 are stopped and the temperature in the first cooling greenhouse 2 rises to a predetermined temperature that is the upper limit value of the cooling temperature range while the compressor 5 is stopped, the electromagnetic valve 51 is opened. At the same time, the compressor 5 is started and the internal fan 27 is operated.

また、第2の冷却加温室3が冷却温度範囲の下限値となる所定温度まで冷却されると、膨張機構44への流路を閉塞し膨張機構45への流路を開放する状態に三方弁42を切換えて、庫内ファン28を停止する。また、圧縮機5の停止中に第2の冷却加温室3内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構44への流路を開放し膨張機構45への流路を閉鎖する状態に三方弁42を切換えて、圧縮機5を起動し、庫内ファン28を運転する。   Further, when the second cooling chamber 3 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the three-way valve is brought into a state in which the flow path to the expansion mechanism 44 is closed and the flow path to the expansion mechanism 45 is opened. 42 is switched and the internal fan 28 is stopped. If the temperature in the second cooling greenhouse 3 rises to a predetermined temperature that is the upper limit value of the cooling temperature range while the compressor 5 is stopped, the flow path to the expansion mechanism 44 is opened and the expansion mechanism 45 is connected. The three-way valve 42 is switched to a state in which the flow path is closed, the compressor 5 is started, and the internal fan 28 is operated.

また、三方弁42が膨張機構44への流路を閉塞し膨張機構45への流路を開放して、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却(下流側単独冷却運転)をしている状態で、第2の冷却加温室3内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態に三方弁42を切り換えて、庫内ファン28を運転する。   Further, the three-way valve 42 closes the flow path to the expansion mechanism 44 and opens the flow path to the expansion mechanism 45 so that only the internal evaporator 10 out of the internal evaporator 9 and the internal evaporator 10 is cooled alone. When the temperature in the second cooling greenhouse 3 rises to a predetermined temperature that is the upper limit value of the cooling temperature range in the state where the downstream single cooling operation is performed, the flow path to the expansion mechanism 44 is opened. The internal fan 28 is operated by switching the three-way valve 42 to a state in which the flow path to the expansion mechanism 45 is closed.

また、庫内蒸発器9と庫内蒸発器10の直列冷却運転から庫内蒸発器10のみの下流側単独冷却運転への移行後に、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却された時に、電磁弁51が開放状態であれば、三方弁42の膨張機構45側の冷媒の出口を閉塞して庫内ファン29を停止し、電磁弁51が閉塞状態であれば、三方弁42の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、圧縮機5も停止する。   In addition, after the transition from the series cooling operation of the internal evaporator 9 and the internal evaporator 10 to the downstream single cooling operation of only the internal evaporator 10, the predetermined temperature at which the cooling exclusive chamber 4 becomes the lower limit value of the cooling temperature range If the solenoid valve 51 is in an open state when it is cooled down, the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 is closed to stop the internal fan 29, and if the solenoid valve 51 is in a closed state, In addition to closing the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 and stopping the internal fan 29, the compressor 5 also stops.

また、圧縮機5の停止中に冷却専用室4内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態に三方弁42を切り換えて、圧縮機5を起動し、庫内ファン29を運転する。   If the temperature in the cooling chamber 4 rises to a predetermined temperature that is the upper limit value of the cooling temperature range while the compressor 5 is stopped, the flow path to the expansion mechanism 44 is opened and the flow path to the expansion mechanism 45 is opened. The three-way valve 42 is switched to the closed state, the compressor 5 is started, and the internal fan 29 is operated.

また、三方弁42の両方の冷媒の出口が閉塞状態、電磁弁51が開放状態で、圧縮機5が運転中に、冷却専用室4内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構44への流路を開放する状態に三方弁42を切り換えて、庫内ファン29を運転する。   Further, when both the refrigerant outlets of the three-way valve 42 are closed, the electromagnetic valve 51 is open, and the compressor 5 is in operation, the temperature in the cooling chamber 4 reaches a predetermined temperature at which the upper limit of the cooling temperature range is reached. If it rises, the three-way valve 42 is switched to a state where the flow path to the expansion mechanism 44 is opened, and the internal fan 29 is operated.

なお、圧縮機5の起動時には、予め、三方弁42は膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態にし、電磁弁51を開放し、電磁弁52を閉塞する。   When the compressor 5 is started, the three-way valve 42 opens the flow path to the expansion mechanism 44 and closes the flow path to the expansion mechanism 45 in advance, opens the electromagnetic valve 51, and closes the electromagnetic valve 52. To do.

そして、圧縮機5を停止した時は、冷媒回路の高低圧をバランスさせるために、電磁弁51と、三方弁42の膨張機構44側の冷媒の出口または膨張機構45側の冷媒の出口を開放する際には、電磁弁50を開放して、庫内凝縮器46の冷媒の出口と圧縮機5の吸い込み側(吸入側)配管とを連通させる。   When the compressor 5 is stopped, the refrigerant valve 51 and the refrigerant outlet on the expansion mechanism 44 side or the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 are opened to balance the high and low pressures of the refrigerant circuit. When doing so, the solenoid valve 50 is opened, and the refrigerant outlet of the internal condenser 46 and the suction side (suction side) piping of the compressor 5 are communicated.

そして、冷媒回路の高低圧がバランスした後に、電磁弁51と、三方弁42の冷媒の出口を閉塞する際に電磁弁50も閉塞する。   Then, after the high and low pressures of the refrigerant circuit are balanced, the solenoid valve 50 is also closed when the solenoid valve 51 and the refrigerant outlet of the three-way valve 42 are closed.

このことによって、圧縮機5の停止中に冷却運転で使用しない庫内凝縮器46へと余剰な冷媒を貯留する事ができるので、冷却運転中における冷媒量過多を防止することが可能となる。また、圧縮機5が停止するたびに毎回、電磁弁50を開放することで、四方切換弁49で冷媒が漏れることによって庫内凝縮器46へと冷媒が貯留され続けて冷媒不足状態に陥ることを防ぐことができる。   As a result, excess refrigerant can be stored in the internal condenser 46 that is not used in the cooling operation while the compressor 5 is stopped, so that it is possible to prevent an excessive amount of refrigerant during the cooling operation. Further, every time the compressor 5 is stopped, the solenoid valve 50 is opened, and the refrigerant leaks at the four-way switching valve 49, so that the refrigerant is continuously stored in the internal condenser 46 and falls into a refrigerant shortage state. Can be prevented.

なお、第1の冷却加温室2を加温運転から冷却運転に切換えた時や高外気温度でのイニシャルプルダウン時など、庫内の温度が高く、大きな冷凍能力を必要とする場合においては、圧縮機5の運転・停止にかかわらず常に電磁弁50を開放して、庫内凝縮器46の冷媒の出口と圧縮機5の吸い込み側(吸入側)配管とを連通すれば、全冷媒を冷却運転に利用できるので、大きな冷凍能力を得る事ができ、プルダウン時間を短縮することが可能となる。   When the first cooling greenhouse 2 is switched from the heating operation to the cooling operation or at the initial pull-down at a high outside air temperature, when the inside temperature is high and a large refrigerating capacity is required, the compression is performed. Regardless of whether the machine 5 is operated or stopped, the solenoid valve 50 is always opened so that the refrigerant outlet of the internal condenser 46 and the suction side (suction side) pipe of the compressor 5 communicate with each other. Therefore, a large refrigeration capacity can be obtained and the pull-down time can be shortened.

次に、第1の冷却加温室2を加温し、第2の冷却加温室3、冷却専用室4を冷却する冷却加温運転の場合は、図3の太線の冷媒流路を矢印の向きに冷媒が流れる運転となる。   Next, in the case of the cooling and heating operation in which the first cooling greenhouse 2 is heated and the second cooling greenhouse 3 and the cooling exclusive chamber 4 are cooled, the thick refrigerant path in FIG. The refrigerant flows in the operation.

第1の冷却加温室2を加温し、第2の冷却加温室3、冷却専用室4を冷却する冷却加温運転の場合は、四方切換弁49を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通し、且つ庫内凝縮器46の冷媒の出口と庫外凝縮器40とが連通する状態にするとともに、三方弁42は膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態にし、電磁弁51と電磁弁52を閉塞し、圧縮機5を起動する。   In the case of the cooling and heating operation in which the first cooling greenhouse 2 is heated and the second cooling greenhouse 3 and the cooling exclusive chamber 4 are cooled, the four-way switching valve 49 is connected to the discharge pipe of the compressor 5 and the inside of the refrigerator. The refrigerant inlet of the condenser 46 communicates with the refrigerant outlet of the internal condenser 46 and the external condenser 40 communicates, and the three-way valve 42 opens the flow path to the expansion mechanism 44. Then, the flow path to the expansion mechanism 45 is closed, the electromagnetic valve 51 and the electromagnetic valve 52 are closed, and the compressor 5 is started.

圧縮機5から吐出された高温高圧のガス状の冷媒は、四方切換弁49を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。なお、庫内凝縮器46に冷媒が流れている時には、庫内ファン27が庫内凝縮器46に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the four-way switching valve 49 and then travels to the internal condenser 46 and is partially condensed by the internal condenser 46. The inside of the first cooling greenhouse 2 is heated by releasing heat to the air around the condenser 46. When the refrigerant is flowing through the internal condenser 46, the internal fan 27 blows air to the internal condenser 46.

そして、庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に四方切換弁49を通過して庫外凝縮器40にてさらに凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。   The refrigerant exiting the internal condenser 46 is decompressed by the expansion mechanism 48, passes through the four-way switching valve 49, and is further condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40.

庫外凝縮器40から流出した冷媒は、電磁弁51が閉塞されているため、全て、三方弁42側に流れる。   All the refrigerant that has flowed out of the outside condenser 40 flows toward the three-way valve 42 because the electromagnetic valve 51 is closed.

そして、三方弁42から膨張機構44側に流れた液状の冷媒は、膨張機構44にて減圧された後に庫内蒸発器9で蒸発気化して第2の冷却加温室3を冷却する。なお、庫内蒸発器9に冷媒が流れている時には、庫内ファン28が庫内蒸発器9に送風している。   The liquid refrigerant flowing from the three-way valve 42 toward the expansion mechanism 44 is reduced in pressure by the expansion mechanism 44 and then evaporated and evaporated in the internal evaporator 9 to cool the second cooling greenhouse 3. When the refrigerant is flowing through the internal evaporator 9, the internal fan 28 blows air to the internal evaporator 9.

庫内蒸発器9で蒸発できなかった余剰な液冷媒は、庫内蒸発器9と直列に接続された庫内蒸発器10で蒸発して冷却専用室4も冷却する(直列冷却運転)。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。   The excess liquid refrigerant that could not be evaporated by the internal evaporator 9 is evaporated by the internal evaporator 10 connected in series with the internal evaporator 9 to cool the cooling exclusive chamber 4 (series cooling operation). When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

その後、第2の冷却加温室3の温度が目標温度(冷却温度範囲の下限値)に達した時点で膨張機構45へと冷媒が流入するように三方弁42を切り換えることで、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却を行う(下流側単独冷却運転)。   Thereafter, the internal evaporator is switched by switching the three-way valve 42 so that the refrigerant flows into the expansion mechanism 45 when the temperature of the second cooling greenhouse 3 reaches the target temperature (the lower limit value of the cooling temperature range). 9 and the internal evaporator 10 alone are cooled alone (downstream single cooling operation).

このように優先的に直列冷却運転を行うことで、余剰液冷媒によって冷却専用室4も冷却されることから下流側単独冷却運転の運転率を低下することができ、消費電力量を低減することができる。   By performing the serial cooling operation preferentially in this way, the cooling exclusive chamber 4 is also cooled by the surplus liquid refrigerant, so that the operating rate of the downstream side single cooling operation can be reduced and the power consumption can be reduced. Can do.

そして、庫内蒸発器10から流出したガス状の冷媒は圧縮機5に戻る。   Then, the gaseous refrigerant that has flowed out of the internal evaporator 10 returns to the compressor 5.

そして、冷却加温システムの制御手段(図示せず)が、第1の冷却加温室2の室内温度が予め設定された加温温度範囲内を維持し、第2の冷却加温室3、冷却専用室4の各室内の温度が予め設定された冷却温度範囲内を維持するように、四方切換弁49と三方弁42の切換え、及び圧縮機5と庫外ファン26と庫内ファン27,28,29の運転を制御している。   And the control means (not shown) of the cooling and heating system maintains the indoor temperature of the first cooling and heating chamber 2 within the preset heating temperature range, and the second cooling and heating chamber 3, dedicated for cooling. The four-way switching valve 49 and the three-way valve 42 are switched, and the compressor 5, the outside fan 26, and the inside fans 27, 28, so as to maintain the temperature in each room of the room 4 within a preset cooling temperature range. 29 operations are controlled.

例えば、第1の冷却加温室2が加温温度範囲の上限値となる所定温度まで加温された時に、三方弁42のどちらかの冷媒の出口が開放状態(庫内蒸発器9と庫内蒸発器10で第2の冷却加温室3と冷却専用室4の両方の商品収納室を冷却する直列冷却運転中、または庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却で冷却専用室4を冷却する下流側単独冷却運転中)であれば、四方切換弁49を、圧縮機5の吐出配管と庫外凝縮器40とが連通し、且つ庫内凝縮器46の冷媒の入口と庫内凝縮器46の冷媒の出口が連通して閉ループとなる状態にすると共に、庫内ファン27を停止する。   For example, when the first cooling greenhouse 2 is heated to a predetermined temperature that is the upper limit value of the heating temperature range, the refrigerant outlet of either of the three-way valves 42 is in an open state (the internal evaporator 9 and the internal chamber 9). During the series cooling operation in which the product storage chambers of both the second cooling greenhouse 3 and the cooling exclusive chamber 4 are cooled by the evaporator 10, or only the internal evaporator 10 out of the internal evaporator 9 and the internal evaporator 10. 4), the discharge pipe of the compressor 5 and the external condenser 40 are connected to each other, and the internal condenser is connected to the four-way switching valve 49. The refrigerant inlet 46 and the refrigerant outlet of the internal condenser 46 communicate with each other to form a closed loop, and the internal fan 27 is stopped.

庫内凝縮器46に圧縮機5からの冷媒が流れないように四方切換弁49を切り換えた後に、第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すれば、再び四方切換弁49を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通し、且つ庫内凝縮器46の冷媒の出口と庫外凝縮器40とが連通する状態に戻すと共に、庫内ファン27を運転する。   After switching the four-way switching valve 49 so that the refrigerant from the compressor 5 does not flow into the internal condenser 46, the temperature of the first cooling greenhouse 2 is lowered to a predetermined temperature that is the lower limit value of the heating temperature range. For example, again, the four-way switching valve 49 communicates between the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46, and the refrigerant outlet of the internal condenser 46 communicates with the external condenser 40. While returning to the state, the internal fan 27 is operated.

また、第2の冷却加温室3が冷却温度範囲の下限値となる所定温度まで冷却されると、膨張機構44への流路を閉塞し膨張機構45への流路を開放する状態に三方弁42を切換えると共に、庫内ファン28を停止する。また、圧縮機5の停止中に第2の冷却加温室3内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構44への流路を開放し膨張機構45への流路を閉鎖する状態に三方弁42を切換えて、圧縮機5を起動し、庫内ファン28を運転する。   Further, when the second cooling chamber 3 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the three-way valve is brought into a state in which the flow path to the expansion mechanism 44 is closed and the flow path to the expansion mechanism 45 is opened. 42 is switched and the internal fan 28 is stopped. If the temperature in the second cooling greenhouse 3 rises to a predetermined temperature that is the upper limit value of the cooling temperature range while the compressor 5 is stopped, the flow path to the expansion mechanism 44 is opened and the expansion mechanism 45 is connected. The three-way valve 42 is switched to a state in which the flow path is closed, the compressor 5 is started, and the internal fan 28 is operated.

また、三方弁42が膨張機構44への流路を閉塞し膨張機構45への流路を開放して、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却(下流側単独冷却運転)をしている状態で、第2の冷却加温室3内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態に三方弁42を切り換えると共に、庫内ファン28を運転する。   Further, the three-way valve 42 closes the flow path to the expansion mechanism 44 and opens the flow path to the expansion mechanism 45 so that only the internal evaporator 10 out of the internal evaporator 9 and the internal evaporator 10 is cooled alone. When the temperature in the second cooling greenhouse 3 rises to a predetermined temperature that is the upper limit value of the cooling temperature range in the state where the downstream single cooling operation is performed, the flow path to the expansion mechanism 44 is opened. The three-way valve 42 is switched to a state in which the flow path to the expansion mechanism 45 is closed, and the internal fan 28 is operated.

また、庫内蒸発器9と庫内蒸発器10の直列冷却運転から庫内蒸発器10のみの下流側単独冷却運転への移行後に、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却された時に、四方切換弁49が、圧縮機5の吐出配管と庫外凝縮器40とが連通し、且つ庫内凝縮器46の冷媒の入口と庫内凝縮器46の冷媒の出口が連通して閉ループとなる状態(第1の冷却加温室2の加温が不要で、庫内凝縮器46に圧縮機5から吐出された冷媒が流れていない状態)であれば、三方弁42の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、圧縮機5を停止する。   In addition, after the transition from the series cooling operation of the internal evaporator 9 and the internal evaporator 10 to the downstream single cooling operation of only the internal evaporator 10, the predetermined temperature at which the cooling exclusive chamber 4 becomes the lower limit value of the cooling temperature range The four-way switching valve 49 communicates with the discharge pipe of the compressor 5 and the external condenser 40, and the refrigerant inlet of the internal condenser 46 and the refrigerant outlet of the internal condenser 46 are If it is in a closed loop state (the heating of the first cooling greenhouse 2 is unnecessary and the refrigerant discharged from the compressor 5 does not flow into the internal condenser 46), the three-way valve 42 In addition to closing the outlet of the refrigerant on the expansion mechanism 45 side and stopping the internal fan 29, the compressor 5 is stopped.

また、庫内蒸発器9と庫内蒸発器10の直列冷却運転から庫内蒸発器10のみの下流側単独冷却運転への移行後に、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却された時に、四方切換弁49が、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通し、且つ庫内凝縮器46の冷媒の出口と庫外凝縮器40とが連通する状態(第1の冷却加温室2の加温が必要で、庫内凝縮器46に圧縮機5から吐出された冷媒が流れている状態)であれば、三方弁42の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、バイパス流路の電磁弁52を開放して、図4に示す状態にすることにより、庫内凝縮器46による第1の冷却加温室2の加温を継続する。   In addition, after the transition from the series cooling operation of the internal evaporator 9 and the internal evaporator 10 to the downstream single cooling operation of only the internal evaporator 10, the predetermined temperature at which the cooling exclusive chamber 4 becomes the lower limit value of the cooling temperature range The four-way switching valve 49 communicates with the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46, and the refrigerant outlet of the internal condenser 46 and the external condenser 40 Is in a state where the first cooling chamber 2 is heated and the refrigerant discharged from the compressor 5 is flowing into the internal condenser 46, the expansion mechanism 45 of the three-way valve 42. In addition to closing the outlet of the refrigerant on the side and stopping the internal fan 29, the solenoid valve 52 of the bypass flow path is opened to the state shown in FIG. Continue to warm greenhouse 2.

なお、第1の冷却加温室2を加温し、第2の冷却加温室3、冷却専用室4を冷却する冷却加温運転する時に、電磁弁52を開放すると、電磁弁52を閉塞した場合よりも庫内凝縮器46の加温能力を高めることができる。   When the solenoid valve 52 is opened during the cooling and heating operation in which the first cooling greenhouse 2 is heated and the second cooling greenhouse 3 and the cooling exclusive chamber 4 are cooled, the solenoid valve 52 is closed. As a result, the heating capacity of the internal condenser 46 can be increased.

電磁弁52を開放すると、バイパス流路に冷媒が流れるため冷媒の流路抵抗が減り、庫内蒸発器9,10の蒸発温度が上昇し、庫内凝縮器46の凝縮温度が上昇する。よって、第1の冷却加温室2の庫内凝縮器46による加温能力が高まり、加温ヒータ30より効率のよいヒートポンプ加温(冷却加温システムによる加温)にて加温させることができる。   When the electromagnetic valve 52 is opened, the refrigerant flows through the bypass flow path, so that the flow path resistance of the refrigerant decreases, the evaporation temperature of the internal evaporators 9 and 10 increases, and the condensing temperature of the internal condenser 46 increases. Therefore, the heating capability by the internal condenser 46 of the 1st cooling heating greenhouse 2 increases, and it can heat by the heat pump heating (heating by a cooling heating system) more efficient than the heating heater 30. .

加温ヒータ30は、ヒートポンプ運転が出来ないような極低温時やイニシャルプルアップのような加温負荷が大きい場合に加温するための補助的なものであり、通常加温においては、効率の良いヒートポンプ加温を行うように設計、制御されている。   The heating heater 30 is an auxiliary device for heating at a very low temperature at which heat pump operation cannot be performed, or when a heating load such as an initial pull-up is large. Designed and controlled for good heat pump heating.

次に、第1の冷却加温室2を加温するのみの加温運転の場合は、図4の太線の冷媒流路を矢印の向きに冷媒が流れる運転となる。   Next, in the case of the heating operation in which only the first cooling greenhouse 2 is heated, the operation is such that the refrigerant flows through the thick refrigerant passage in the direction of the arrow in FIG.

第1の冷却加温室2を加温するのみの加温運転の場合は、四方切換弁49を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通し、且つ庫内凝縮器46の冷媒の出口と庫外凝縮器40とが連通する状態にするとともに、三方弁42の両方の流路を閉塞し、電磁弁51を閉塞し、電磁弁52を開放し、圧縮機5を起動し、庫外ファン26と庫内ファン27を運転する。   In the case of the heating operation in which only the first cooling greenhouse 2 is heated, the four-way switching valve 49 communicates with the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46, and the inside The refrigerant outlet of the condenser 46 and the outside condenser 40 are in communication with each other, both the flow paths of the three-way valve 42 are closed, the electromagnetic valve 51 is closed, the electromagnetic valve 52 is opened, and the compressor 5 is started and the outside fan 26 and the inside fan 27 are operated.

圧縮機5から吐出された高温高圧のガス状の冷媒は、四方切換弁49を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に四方切換弁49を通過して庫外凝縮器40にてさらに凝縮する。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the four-way switching valve 49 and then travels to the internal condenser 46 and is partially condensed by the internal condenser 46. The inside of the first cooling greenhouse 2 is heated by releasing heat to the air around the condenser 46. The refrigerant that has exited the internal condenser 46 is decompressed by the expansion mechanism 48, passes through the four-way switching valve 49, and is further condensed by the external condenser 40.

庫外凝縮器40から流出した冷媒は、電磁弁51と三方弁42の両方の流路が閉塞されているため、庫内蒸発器47,9,10には流れず、全て、バイパス流路側に流れる。   The refrigerant flowing out of the external condenser 40 does not flow to the internal evaporators 47, 9 and 10 because all the flow paths of the electromagnetic valve 51 and the three-way valve 42 are closed, and all flows to the bypass flow path side. Flowing.

そして、バイパス流路の電磁弁52を通過し、膨張機構53にて減圧された後に庫外蒸
発器41にて蒸発気化し、圧縮機5へと還流する。
Then, it passes through the electromagnetic valve 52 in the bypass flow path, is decompressed by the expansion mechanism 53, evaporates in the external evaporator 41, and returns to the compressor 5.

そして、第1の冷却加温室2が加温温度範囲の上限値となる所定温度まで加温されると、冷却加温システムの制御手段(図示せず)が、圧縮機5と庫外ファン26と庫内ファン27を停止し、圧縮機5と庫外ファン26と庫内ファン27が停止中に第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すると、冷却加温システムの制御手段(図示せず)が、圧縮機5と庫外ファン26と庫内ファン27を運転する。   When the first cooling greenhouse 2 is heated to a predetermined temperature that is the upper limit value of the heating temperature range, the control means (not shown) of the cooling and heating system causes the compressor 5 and the outside fan 26 to be heated. And the internal fan 27 is stopped, and when the compressor 5, the external fan 26, and the internal fan 27 are stopped, the temperature of the first cooling greenhouse 2 decreases to a predetermined temperature that is the lower limit value of the heating temperature range. The control means (not shown) of the cooling and heating system operates the compressor 5, the external fan 26, and the internal fan 27.

上記のように、第1の冷却加温室2を加温する場合に、電磁弁52を開閉することで第2の冷却加温室3、冷却専用室4の負荷状態に関係なく、圧縮機5の運転を継続することで第1の冷却加温室2を加温することが可能となり、冷却室の負荷が低下する低外気温時においてもヒートポンプ加温運転をすることによる消費電力量削減を図ることができる。   As described above, when the first cooling greenhouse 2 is heated, the electromagnetic valve 52 is opened and closed, regardless of the load state of the second cooling greenhouse 3 and the cooling chamber 4. By continuing the operation, the first cooling greenhouse 2 can be heated, and the power consumption can be reduced by performing the heat pump heating operation even at a low outside temperature where the load on the cooling chamber is reduced. Can do.

さらに、庫内凝縮器46と庫外凝縮器40との間の配管上に膨張機構48を設けることで庫内凝縮温度と庫外凝縮温度に差をつけることができ、低外気時において庫外凝縮器40の凝縮温度や凝縮圧力が下がった場合でも、庫内凝縮器46は高い凝縮温度を維持することができ、第1の冷却加温室2を効率よく加温する事ができるので、冬場に低外気温となる地域でも効率の高い加温運転を実施できる。   Further, by providing an expansion mechanism 48 on the pipe between the internal condenser 46 and the external condenser 40, the internal condensation temperature and the external condensation temperature can be differentiated, and the outside of the storage is kept at low outside air. Even when the condensing temperature and the condensing pressure of the condenser 40 are lowered, the internal condenser 46 can maintain a high condensing temperature and can efficiently heat the first cooling greenhouse 2. Highly efficient heating operation can be carried out even in areas where the outside air temperature is low.

また、庫内凝縮器46と庫外凝縮器40との間の配管上に膨張機構48を設けると、冷媒密度が低下するので冷媒量を削減することができる。冷媒量を削減することによって凝縮器を2個使用する冷却加温運転と凝縮器を1個使用する冷却運転とで生じる最適冷媒量差を減少することができるとともに、可燃性冷媒を用いた際の漏洩時におけるリスク軽減にもつなげることができる。   Further, if the expansion mechanism 48 is provided on the pipe between the internal condenser 46 and the external condenser 40, the refrigerant density is reduced, so that the amount of refrigerant can be reduced. By reducing the amount of refrigerant, it is possible to reduce the optimum refrigerant amount difference between the cooling and heating operation using two condensers and the cooling operation using one condenser, and when using a flammable refrigerant Can be used to reduce the risk of leakage.

なお、膨張機構48については、キャピラリーチューブを用いてもよく、キャピラリーチューブを用いることで膨張機構48と庫内凝縮器46、四方切換弁49とを接続する配管と兼用することができるので、さらに冷媒量を削減することが可能となる。   As the expansion mechanism 48, a capillary tube may be used. By using a capillary tube, the expansion mechanism 48 can be used as a pipe connecting the internal condenser 46 and the four-way switching valve 49. It becomes possible to reduce the amount of refrigerant.

また、膨張機構43,44,45,53についても、キャピラリーチューブを用いることができる。   For the expansion mechanisms 43, 44, 45, and 53, capillary tubes can be used.

また、庫内(ヒートポンプ加温運転をする第1の冷却加温室2)、庫外(機械室)ともに凝縮器と蒸発器とを個別に配置することで、各々1つの熱交換器を凝縮器、蒸発器として使い分けるのと比較して、蒸発器出口と圧縮機吸入配管とを接続した配管上に設けた電磁弁を廃止することができ、圧力損失による効率低下を防止することができる。また、凝縮器と蒸発器それぞれで最適仕様とすることができるのでより効率の高い運転をすることが可能となる。   In addition, a condenser and an evaporator are separately arranged inside the chamber (first cooling greenhouse 2 that performs heat pump heating operation) and outside the chamber (machine room), so that each one heat exchanger is a condenser. Compared to the proper use as an evaporator, the solenoid valve provided on the pipe connecting the evaporator outlet and the compressor suction pipe can be eliminated, and the efficiency reduction due to pressure loss can be prevented. In addition, since it is possible to obtain optimum specifications for each of the condenser and the evaporator, it is possible to operate more efficiently.

庫外凝縮器40と庫外蒸発器41は、フィンを分割しエンドプレートは一体化した2パスの熱交換器として、庫外ファン26が運転した際の風上側にあたる位置に庫外凝縮器40の配管を設け、風下側に庫外蒸発器41の配管を設けている。よって、加温運転の場合に庫外蒸発器41に冷媒を流しても庫外凝縮器40は風上にあり、フィンがつながっていないため庫外蒸発器41の影響で温度が下がり、凝縮能力が高くなることはない。   The outside condenser 40 and the outside evaporator 41 are two-pass heat exchangers in which fins are divided and end plates are integrated, and the outside condenser 40 is located at a position corresponding to the windward side when the outside fan 26 is operated. The piping of the outside evaporator 41 is provided on the leeward side. Therefore, even when the refrigerant flows through the external evaporator 41 in the heating operation, the external condenser 40 is on the windward side and the fins are not connected, so that the temperature decreases due to the external evaporator 41 and the condensation capacity is reduced. Will not be high.

これにより、庫内凝縮器46の凝縮温度も低下することなく、ヒートポンプ加温時の加温能力低下を防止できる。さらに、庫外の熱交換器のエンドプレートの外側は庫外ファン26による影響が受けにくいが、庫外凝縮器40と庫外蒸発器41のエンドプレートは一体化しているので、配管からの温度の熱伝導があり、庫外蒸発器41のエンドプレートの結露を防止することができる。   Thereby, the heating capability fall at the time of heat pump heating can be prevented, without also reducing the condensation temperature of the condenser 46 in a store | warehouse | chamber. Further, the outside of the end plate of the outside heat exchanger is not easily affected by the outside fan 26, but the end plates of the outside condenser 40 and the outside evaporator 41 are integrated, so the temperature from the pipe Therefore, the condensation of the end plate of the external evaporator 41 can be prevented.

また、庫外凝縮器40と庫外蒸発器41は、概ね上から下に冷媒が流れるように配管されているので、庫外蒸発器41の冷媒の入口側の温度が下がり着霜することがあるが、庫外ファン26の風下側の庫外蒸発器41は熱交換しやすく着霜も最小限とし、フィンの上部に入口部があるため、フィンの下部では熱交換効果が発揮され水たれも抑えることができる。さらに、フィンは着霜で濡れると綿埃や粉塵等の異物が着きやすくなるが、風上側に庫外凝縮器40を設けて、庫外蒸発器41はその後方に備えているので影響を受けにくくする効果もある。   Further, since the outside condenser 40 and the outside evaporator 41 are piped so that the refrigerant flows from the top to the bottom, the temperature at the refrigerant inlet side of the outside evaporator 41 may decrease and frost formation may occur. However, the outdoor evaporator 41 on the leeward side of the outdoor fan 26 is easy to exchange heat, minimizes frost formation, and has an inlet at the upper part of the fin. Can also be suppressed. In addition, when the fins get wet with frost, foreign matter such as cotton dust and dust is likely to be attached. However, since the external condenser 40 is provided on the windward side and the external evaporator 41 is provided behind the fin, it is affected. There is also an effect to make it difficult.

なお、圧縮機5については、第1の冷却加温室2、第2の冷却加温室3、冷却専用室4の冷却負荷または第1の冷却加温室2の加温負荷が大きく、所定温度範囲に冷却または加温するのに時間がかかる場合に能力を上げる能力可変型の圧縮機を用いても構わない。   In addition, about the compressor 5, the cooling load of the 1st cooling greenhouse 2, the 2nd cooling greenhouse 3 and the cooling exclusive chamber 4 or the heating load of the 1st cooling greenhouse 2 is large, and it is in a predetermined temperature range. If it takes time to cool or warm, a variable capacity compressor that increases the capacity may be used.

同様に、庫外ファン26と庫内ファン27,28,29についても、必要に応じて送風量を増減できるファンを用いても構わない。   Similarly, as the outside fan 26 and the inside fans 27, 28, and 29, a fan that can increase or decrease the air blowing amount as needed may be used.

また、庫外ファン26と庫内ファン27,28,29の運転と停止のタイミングは、必要に応じて、圧縮機5の動作や、対応する熱交換器の冷媒の流れの状態の変化のタイミングからずらしても構わず、可燃性冷媒を用いている場合は、圧縮機5の停止時に庫外ファン26を所定能力で運転しても構わない。   The operation and stop timings of the external fan 26 and the internal fans 27, 28, and 29 are the timing of the operation of the compressor 5 and the change in the state of the refrigerant flow in the corresponding heat exchanger, if necessary. When the combustible refrigerant is used, the outside fan 26 may be operated with a predetermined capacity when the compressor 5 is stopped.

以上説明したように、本実施の形態の自動販売機は、圧縮機5と、圧縮機5から吐出された冷媒を凝縮させる庫外凝縮器40と、複数の商品収納室(第1の冷却加温室2、第2の冷却加温室3、冷却専用室4)に設置され庫外凝縮器40で凝縮した冷媒を蒸発させて商品収納室(第1の冷却加温室2、第2の冷却加温室3、冷却専用室4)内の商品を冷却する庫内蒸発器47,9,10と、複数の庫内蒸発器47,9,10に冷媒流路を分岐する分岐点または分岐点と複数の庫内蒸発器47,9,10との間の分岐流路に設けられた分岐流路開閉手段(三方弁42、電磁弁51)と、複数の商品収納室(第1の冷却加温室2、第2の冷却加温室3、冷却専用室4)のうちで冷媒の凝縮熱を利用して商品収納室内の商品を加温する商品収納室(第1の冷却加温室2)に設置された庫内凝縮器46と、庫内凝縮器46で商品収納室(第1の冷却加温室2)内の商品を加温する時に圧縮機5から吐出された冷媒を庫内凝縮器46を経由させてから庫外凝縮器40に流し庫内凝縮器46で商品収納室(第1の冷却加温室2)内の商品を加温しない時に圧縮機5から吐出された冷媒を庫内凝縮器46を経由させずに庫外凝縮器40に流す庫内凝縮器用流路切替手段(四方切換弁49)と、庫外凝縮器40と分岐流路開閉手段(三方弁42、電磁弁51)との間の冷媒配管と圧縮機5の吸い込み側配管とをバイパスするバイパス流路に設けられた庫外蒸発器41と、庫外蒸発器41の流入側でバイパス流路を開閉するバイパス流路開閉手段(電磁弁52)と、バイパス流路開閉手段(電磁弁52)と庫外蒸発器41との間のバイパス流路に設けられ庫内凝縮器46と庫外凝縮器40で凝縮しバイパス流路に流入した冷媒を減圧するバイパス流路膨張手段(膨張機構53)とを有している。   As described above, the vending machine of the present embodiment includes the compressor 5, the external condenser 40 that condenses the refrigerant discharged from the compressor 5, and a plurality of product storage chambers (first cooling chambers). The refrigerant stored in the greenhouse 2, the second cooling greenhouse 3, and the cooling exclusive room 4) is evaporated by evaporating the refrigerant condensed by the external condenser 40 (the first cooling greenhouse 2, the second cooling greenhouse). 3. The internal evaporators 47, 9, 10 for cooling the product in the cooling exclusive chamber 4), and the branch points or branch points for branching the refrigerant flow paths to the multiple internal evaporators 47, 9, 10 and a plurality of Branch channel opening / closing means (three-way valve 42, electromagnetic valve 51) provided in the branch channel between the internal evaporators 47, 9, 10 and a plurality of product storage chambers (first cooling greenhouse 2, Product storage room (second cooling room 3 and cooling room 4) that uses the heat of condensation of the refrigerant to heat the product in the product storage room ( When the product in the product storage room (first cooling greenhouse 2) is heated by the in-compartment condenser 46 installed in the cooling room 2) and the in-condenser 46, the product is discharged from the compressor 5. The refrigerant passes through the internal condenser 46 and then flows to the external condenser 40, and the internal condenser 46 does not heat the commodity in the commodity storage room (first cooling greenhouse 2) from the compressor 5. In-condenser condenser flow path switching means (four-way switching valve 49) for flowing the discharged refrigerant to the external condenser 40 without passing through the internal condenser 46, and the external condenser 40 and the branch flow path opening / closing means ( The external evaporator 41 provided in the bypass flow path that bypasses the refrigerant pipe between the three-way valve 42 and the electromagnetic valve 51) and the suction side pipe of the compressor 5, and the bypass on the inflow side of the external evaporator 41 Bypass channel opening / closing means (electromagnetic valve 52) for opening and closing the channel and bypass channel opening / closing means (electromagnetic valve 52) Bypass passage expansion means (expansion mechanism 53) that is provided in a bypass passage between the external evaporator 41 and the external condenser 41 and depressurizes the refrigerant that has been condensed by the internal condenser 46 and the external condenser 40 and that has flowed into the bypass passage. And have.

そして、庫外凝縮器40と庫外蒸発器41は、それぞれ、互いに間隔をあけて平行に並べられた複数のフィンと、フィンの両側に配置されたエンドプレートとを、配管が貫通する熱交換器であり、庫外凝縮器40用のエンドプレートと庫外蒸発器41用のエンドプレートとは繋がっているが、庫外凝縮器40用の配管が貫通するフィンと庫外蒸発器41用の配管が貫通するフィンとは繋がっていない。   And the external condenser 40 and the external evaporator 41 are each heat exchange which piping penetrates the several fin arranged in parallel mutually spaced apart, and the end plate arrange | positioned at the both sides of a fin. The end plate for the outside condenser 40 and the end plate for the outside evaporator 41 are connected to each other. However, the fin through which the pipe for the outside condenser 40 passes and the outside plate for the outside evaporator 41 are connected. It is not connected to the fin that the pipe penetrates.

これによって、各熱交換器を凝縮器と蒸発器に切り換える電磁弁が不要となり、その切換用の電磁弁による損失や電力消費増大を抑えることができる。また各熱交換器を凝縮器と蒸発器で兼用せずに、それぞれ専用に設計した熱交換器で構成できるので、効率向上を
図ることができる。また、庫内凝縮器46を有する商品収納室(第1の冷却加温室2)で庫内凝縮器46により加温するが、他の商品収納室(第2の冷却加温室3、冷却専用室4)の庫内蒸発器9,10に冷媒を流せない場合でも、庫外蒸発器41に冷媒を流すことで圧縮機5の運転を継続でき、効率の良いヒートポンプ加温を行うことができる。
This eliminates the need for an electromagnetic valve for switching each heat exchanger between the condenser and the evaporator, and can suppress a loss and an increase in power consumption due to the switching electromagnetic valve. Moreover, since each heat exchanger can be comprised by the heat exchanger designed exclusively for each, without using both a condenser and an evaporator, efficiency improvement can be aimed at. In addition, the product storage room (first cooling greenhouse 2) having the internal condenser 46 is heated by the internal condenser 46, but the other product storage rooms (second cooling warming room 3, cooling dedicated room). Even when the refrigerant cannot flow through the internal evaporators 9 and 10 of 4), the operation of the compressor 5 can be continued by flowing the refrigerant through the external evaporator 41, and efficient heat pump heating can be performed.

また、庫外凝縮器40用の配管が貫通するフィンと庫外蒸発器41用の配管が貫通するフィンとは繋がっていないので、庫外蒸発器41に冷媒が流れて庫外蒸発器41で冷媒が蒸発しても、庫外凝縮器40は影響を受けずに庫内凝縮温度が変化せず加温能力・加温効率は維持できる。   In addition, since the fin through which the pipe for the outside condenser 40 passes and the fin through which the pipe for the outside evaporator 41 penetrates are not connected, the refrigerant flows into the outside evaporator 41 so that the outside evaporator 41 Even if the refrigerant evaporates, the outside condenser 40 is not affected, the inside condensation temperature does not change, and the heating capability and the heating efficiency can be maintained.

また、庫外凝縮器40用の配管が風上側で庫外蒸発器41用の配管が風下側になるように配置される(庫外凝縮器40が風上側で庫外蒸発器41が風下側になるように庫外凝縮器40と庫外蒸発器41の近傍に位置する庫外ファン26が配置される)ので、庫外蒸発器41は、庫外凝縮器40の排熱の影響で蒸発温度の上昇による効率改善、フィンの結露防止効果も得ることができる。   Further, the piping for the outside condenser 40 is arranged on the leeward side and the piping for the outside evaporator 41 is on the leeward side (the outside condenser 40 is on the leeward side and the outside evaporator 41 is on the leeward side). The external fan 26 located near the external condenser 40 and the external evaporator 41 is disposed so that the external evaporator 41 is evaporated under the influence of the exhaust heat of the external condenser 40. Efficiency improvement due to temperature rise and the effect of preventing condensation on the fins can also be obtained.

また、バイパス流路開閉手段(電磁弁52)は、圧縮機5から吐出された冷媒が庫内凝縮器46を経由して庫外凝縮器40に流れる場合にのみ開放されるものであり、蒸発温度が上がることによって庫内凝縮器46の凝縮温度を上昇させ加温能力を高めることができる。   The bypass flow path opening / closing means (solenoid valve 52) is opened only when the refrigerant discharged from the compressor 5 flows to the external condenser 40 via the internal condenser 46, and evaporates. As the temperature rises, the condensation temperature of the internal condenser 46 can be raised to increase the heating capability.

また、庫外凝縮器40用の配管と庫外蒸発器41用の配管は、それぞれ、配管内を冷媒が概ね上から下に向かって流れるように構成されるものであり、庫外蒸発器41は庫外凝縮器40の排熱をより受けやすく蒸発温度の上昇による効率改善、フィンの結露防止効果も得ることができる。   Further, the piping for the outside condenser 40 and the piping for the outside evaporator 41 are configured such that the refrigerant flows in the piping from the top to the bottom, respectively. Is more susceptible to the exhaust heat of the external condenser 40, and can also improve efficiency by raising the evaporation temperature, and can also prevent the condensation of the fins.

以上のように、本発明は、庫内凝縮器を有する商品収納室で庫内凝縮器により加温する場合に、他の商品収納室の運転状態に関係なく、効率の良いヒートポンプ加温を行うことができ、省エネを図ることができるので、自動販売機に限らず、複数の室に対して、圧縮機が一つの冷媒回路(ヒートポンプ)を用いて冷却加温を行う機器にも適用できる。   As described above, the present invention performs efficient heat pump heating regardless of the operation state of the other product storage chambers when the product storage chamber is heated in the product storage chamber having the internal condenser. Therefore, the present invention can be applied not only to vending machines but also to devices in which a compressor uses a single refrigerant circuit (heat pump) to cool and heat a plurality of chambers.

2 第1の冷却加温室(商品収納室)
3 第2の冷却加温室(商品収納室)
4 冷却専用室(商品収納室)
5 圧縮機
9 庫内蒸発器
10 庫内蒸発器
40 庫外凝縮器
41 庫外蒸発器
42 三方弁(分岐流路開閉手段)
46 庫内凝縮器
47 庫内蒸発器
49 四方切換弁(庫内凝縮器用流路切替手段)
51 電磁弁(分岐流路開閉手段)
52 電磁弁(バイパス流路開閉手段)
53 膨張機構(バイパス流路膨張手段)
2 First cooling chamber (product storage room)
3 Second cooling chamber (product storage room)
4 Cooling room (product storage room)
5 compressor 9 internal evaporator 10 internal evaporator 40 external condenser 41 external evaporator 42 three-way valve (branch flow path opening / closing means)
46 Internal condenser 47 Internal evaporator 49 Four-way selector valve (Channel switching means for internal condenser)
51 Solenoid valve (branch channel opening / closing means)
52 Solenoid valve (Bypass channel opening / closing means)
53 Expansion mechanism (Bypass channel expansion means)

Claims (4)

圧縮機と、前記圧縮機から吐出された冷媒を凝縮させる庫外凝縮器と、複数の商品収納室に設置され前記庫外凝縮器で凝縮した冷媒を蒸発させて商品収納室内の商品を冷却する庫内蒸発器と、複数の前記庫内蒸発器に冷媒流路を分岐する分岐点または前記分岐点と複数の前記庫内蒸発器との間の分岐流路に設けられた分岐流路開閉手段と、複数の前記商品収納室のうちで冷媒の凝縮熱を利用して商品収納室内の商品を加温する商品収納室に設置された庫内凝縮器と、前記庫内凝縮器で商品収納室内の商品を加温する時に前記圧縮機から吐出された冷媒を前記庫内凝縮器を経由させてから前記庫外凝縮器に流し前記庫内凝縮器で商品収納室内の商品を加温しない時に前記圧縮機から吐出された冷媒を前記庫内凝縮器を経由させずに前記庫外凝縮器に流す庫内凝縮器用流路切替手段と、前記庫外凝縮器と前記分岐流路開閉手段との間の冷媒配管と前記圧縮機の吸い込み側配管とをバイパスするバイパス流路に設けられた庫外蒸発器と、前記庫外蒸発器の流入側で前記バイパス流路を開閉するバイパス流路開閉手段と、前記バイパス流路開閉手段と前記庫外蒸発器との間の前記バイパス流路に設けられ前記庫内凝縮器と前記庫外凝縮器で凝縮し前記バイパス流路に流入した冷媒を減圧するバイパス流路膨張手段とを有し、前記庫外凝縮器と前記庫外蒸発器は、それぞれ、互いに間隔をあけて平行に並べられた複数のフィンと前記フィンの両側に配置されたエンドプレートとを配管が貫通する熱交換器であり、前記庫外凝縮器用の前記エンドプレートと前記庫外蒸発器用の前記エンドプレートとは繋がっているが、前記庫外凝縮器用の前記配管が貫通する前記フィンと前記庫外蒸発器用の前記配管が貫通する前記フィンとは繋がっていないことを特徴とする自動販売機。 A compressor, an outside-condenser that condenses the refrigerant discharged from the compressor, and a refrigerant that is installed in a plurality of product storage rooms and that is condensed by the outside-condenser cools the product in the product storage room Intra-compartment evaporator and branch passage opening / closing means provided at a branch point for branching a refrigerant passage to the plurality of in-compartment evaporators or a branch passage between the branch point and the plurality of in-compartment evaporators And an in-compartment condenser installed in the product storage room for heating the product in the product storage room using the heat of condensation of the refrigerant among the plurality of product storage rooms, When the product is heated, the refrigerant discharged from the compressor passes through the internal condenser and then flows to the external condenser, and when the internal product is not heated by the internal condenser, The refrigerant discharged from the compressor is condensed outside the warehouse without passing through the inside condenser. A storage provided in a bypass flow path for bypassing the internal condenser flow path switching means, the refrigerant pipe between the external condenser and the branch flow path opening / closing means, and the suction side piping of the compressor An outer evaporator, a bypass passage opening / closing means for opening and closing the bypass passage on the inflow side of the outside evaporator, and the bypass passage between the bypass passage opening / closing means and the outside evaporator. A bypass passage expansion means for decompressing the refrigerant that has been condensed by the internal condenser and the external condenser and flowed into the bypass passage, and the external condenser and the external evaporator are respectively A heat exchanger in which piping passes through a plurality of fins arranged parallel to each other at intervals, and end plates arranged on both sides of the fins, and the end plate for the outside condenser and the outside of the warehouse Said end play for evaporator While connected to the vending machine, characterized in that the pipe of the outside-compartment evaporator and the fins the pipes of the outside-compartment condenser penetrates is not connected to the said fins therethrough. 前記庫外凝縮器用の前記配管が風上側で前記庫外蒸発器用の前記配管が風下側になるように配置されることを特徴とする請求項1に記載の自動販売機。 2. The vending machine according to claim 1, wherein the pipe for the external condenser is arranged on the windward side and the pipe for the external evaporator is on the leeward side. 前記バイパス流路開閉手段は、前記圧縮機から吐出された冷媒が前記庫内凝縮器を経由して前記庫外凝縮器に流れる場合にのみ開放されることを特徴とする請求項1または2に記載の自動販売機。 The bypass passage opening / closing means is opened only when the refrigerant discharged from the compressor flows to the external condenser via the internal condenser. The vending machine described. 前記庫外凝縮器用の前記配管と前記庫外蒸発器用の前記配管は、それぞれ、前記配管内を冷媒が上から下に向かって流れるように構成されることを特徴とする請求項1から3の何れか1項に記載の自動販売機。 The pipe for the outside condenser and the pipe for the outside evaporator are configured so that the refrigerant flows through the pipe from the top to the bottom, respectively. The vending machine according to any one of the above.
JP2011222486A 2011-10-07 2011-10-07 Automatic vending machine Pending JP2013084073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011222486A JP2013084073A (en) 2011-10-07 2011-10-07 Automatic vending machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011222486A JP2013084073A (en) 2011-10-07 2011-10-07 Automatic vending machine

Publications (1)

Publication Number Publication Date
JP2013084073A true JP2013084073A (en) 2013-05-09

Family

ID=48529220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011222486A Pending JP2013084073A (en) 2011-10-07 2011-10-07 Automatic vending machine

Country Status (1)

Country Link
JP (1) JP2013084073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170237A (en) * 2014-03-10 2015-09-28 パナソニックIpマネジメント株式会社 Automatic vending machine
JP2015170336A (en) * 2014-03-11 2015-09-28 パナソニックIpマネジメント株式会社 Automatic vending machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170237A (en) * 2014-03-10 2015-09-28 パナソニックIpマネジメント株式会社 Automatic vending machine
JP2015170336A (en) * 2014-03-11 2015-09-28 パナソニックIpマネジメント株式会社 Automatic vending machine

Similar Documents

Publication Publication Date Title
JP5585003B2 (en) Refrigeration equipment
JP5383816B2 (en) Air conditioner
WO2013111177A1 (en) Air-conditioning unit
JP2015524545A (en) Air conditioner with additional unit for heating capacity enhancement
WO2015140951A1 (en) Air conditioner
KR20120125857A (en) Heat storaging apparatus having cascade cycle and Control process of the same
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP2016106211A (en) Air conditioner
JP2012123786A (en) Automatic vending machine
JP2013089209A (en) Automatic vending machine
JP2013190906A (en) Automatic vending machine
JP2007100987A (en) Refrigerating system
JP5157307B2 (en) vending machine
JP4155334B2 (en) vending machine
JP2017161159A (en) Outdoor uni of air conditioner
JP2013084073A (en) Automatic vending machine
JP2009293887A (en) Refrigerating device
KR102087677B1 (en) A combined refrigerating and air conditioning system
JP2009115336A (en) Refrigeration system
JP6572444B2 (en) vending machine
JP5418037B2 (en) vending machine
JP2006048635A (en) Vending machine with cooling/heating system
JP2012230656A (en) Automatic dispenser
JP5375333B2 (en) vending machine
CN216384419U (en) Four-pipe air-cooled cold and hot water unit