JP2015170237A - Automatic vending machine - Google Patents
Automatic vending machine Download PDFInfo
- Publication number
- JP2015170237A JP2015170237A JP2014045887A JP2014045887A JP2015170237A JP 2015170237 A JP2015170237 A JP 2015170237A JP 2014045887 A JP2014045887 A JP 2014045887A JP 2014045887 A JP2014045887 A JP 2014045887A JP 2015170237 A JP2015170237 A JP 2015170237A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- temperature
- cooling
- internal heat
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
Abstract
Description
本発明は、ヒートポンプサイクルを用いて缶飲料などの商品を加温または冷却する自動販売機に関するものである。 The present invention relates to a vending machine that heats or cools a product such as a can beverage using a heat pump cycle.
従来、この種の自動販売機に搭載されるヒートポンプサイクルは、例えば、図17に示したものがある(例えば、特許文献1参照)。 Conventionally, a heat pump cycle mounted on this type of vending machine is, for example, shown in FIG. 17 (see, for example, Patent Document 1).
図17に示すように、圧縮機1、庫内熱交換器2a〜2c、第1の膨張弁、庫外熱交換器4は、配管で環状に接続されてヒートポンプサイクル5を構成する。このヒートポンプサイクル5には、冷媒として二酸化炭素が封入される。また、ヒートポンプサイクル5の回路中には開閉操作を行う電磁弁6a〜6cが設けられる。 As shown in FIG. 17, the compressor 1, the internal heat exchangers 2 a to 2 c, the first expansion valve, and the external heat exchanger 4 are connected in a ring shape with piping to constitute a heat pump cycle 5. The heat pump cycle 5 is filled with carbon dioxide as a refrigerant. In the circuit of the heat pump cycle 5, electromagnetic valves 6a to 6c for performing an opening / closing operation are provided.
また、庫内熱交換器2a〜2cの近傍には庫内熱交換器2a〜2cに送風する庫内ファン7a〜7cが設置され、庫外熱交換器4の近傍には庫外熱交換器4に送風する庫外ファン8が設置されている。 Moreover, the internal fans 7a to 7c for blowing air to the internal heat exchangers 2a to 2c are installed in the vicinity of the internal heat exchangers 2a to 2c, and the external heat exchanger is adjacent to the external heat exchanger 4. An outside fan 8 for blowing air to 4 is installed.
自動販売機本体は、商品を収納する商品収納庫100と、商品収納庫100の下部に配置された機械室(図示せず)から構成される。商品収納庫100内は、収納する商品を冷却または加温する第1の冷却加温室101と、収納する商品を冷却または加温する第2の冷却加温室102と、収納する商品を冷却する冷却専用室103とに区画され、各々に庫内熱交換器2a〜2cと庫内ファン7a〜7cとを備えている。 The main body of the vending machine includes a product storage 100 that stores products, and a machine room (not shown) disposed in the lower part of the product storage 100. In the product storage 100, a first cooling greenhouse 101 that cools or warms the stored product, a second cooling greenhouse 102 that cools or warms the stored product, and cooling that cools the stored product. It is partitioned into a dedicated chamber 103, and each is provided with internal heat exchangers 2a-2c and internal fans 7a-7c.
また、圧縮機1、第1の膨張弁、庫外熱交換器4、庫外ファン8、電磁弁6a〜6cは機械室に格納されるのが一般的である。 Further, the compressor 1, the first expansion valve, the external heat exchanger 4, the external fan 8, and the electromagnetic valves 6a to 6c are generally stored in a machine room.
なお、商品は、商品収納庫100の商品収納室(第1の冷却加温室101、第2の冷却加温室102と、冷却専用室103)それぞれの上部から吊り下げられた商品収納棚(図示せず)の内部に収納されている。 It should be noted that the product is a product storage shelf (not shown) suspended from the top of each of the product storage rooms (the first cooling greenhouse 101, the second cooling greenhouse 102, and the cooling chamber 103) of the product storage 100. )).
上記のように設置された従来の自動販売機について、以下、その動作を説明する。 The operation of the conventional vending machine installed as described above will be described below.
従来の自動販売機は、第1の冷却加温室101を加温すると同時に第2の冷却加温室102と冷却専用室103の内の少なくともいずれか一方を冷却する冷却加温運転モード(3室運転CCH、2室運転CH)と、第1の冷却加温室101の加温のみを行う加温運転モード(1室運転H)、第2の冷却加温室102と冷却専用室103の内の少なくともいずれか一方の冷却のみを行う冷却運転モード(2室運転CC、1室運転C)とを電磁弁6a〜6cの開閉にて切り換えて行う。 In the conventional vending machine, the first cooling greenhouse 101 is heated, and at the same time, at least one of the second cooling greenhouse 102 and the cooling exclusive chamber 103 is cooled (three-chamber operation). CCH, two-chamber operation CH), a heating operation mode (one-chamber operation H) in which only the first cooling greenhouse 101 is heated, and at least one of the second cooling greenhouse 102 and the cooling-only chamber 103 The cooling operation mode (two-chamber operation CC and one-chamber operation C) in which only one of the coolings is performed is switched by opening / closing the electromagnetic valves 6a to 6c.
特許文献1に記載の自動販売機においては、図17に示すように、庫外熱交換器4(特許文献1内では補助熱交換器と呼称)の下流側に設けられたガスクーラ21、庫外熱交換器4の冷媒出口温度を検出する温度センサ22、ガスクーラ21をバイパスするバイパス配管23、ガスクーラ21とバイパス配管23の流路を切り替えるバイパス切替三方弁24とを備える。 In the vending machine described in Patent Document 1, as shown in FIG. 17, a gas cooler 21 provided on the downstream side of the external heat exchanger 4 (referred to as an auxiliary heat exchanger in Patent Document 1), the external A temperature sensor 22 that detects the refrigerant outlet temperature of the heat exchanger 4, a bypass pipe 23 that bypasses the gas cooler 21, and a bypass switching three-way valve 24 that switches the flow path between the gas cooler 21 and the bypass pipe 23 are provided.
そして、冷却加温運転モードで、ヒートポンプサイクル5を運転中に、温度センサ22にて検出される庫外熱交換器4の出口の冷媒温度に応じて庫外ファン8(特許文献1内で
は室外ファンと呼称)の出力を制御し、さらに、庫外熱交換器4の出口の冷媒温度が所定値(例えば、75℃)を超えたときには、バイパス切替三方弁24をガスクーラ21側へと切り替えて、ヒートポンプサイクル5を循環する冷媒がバイパス配管23側でなく、ガスクーラ21側を流れるように制御する。
Then, in the cooling and heating operation mode, during operation of the heat pump cycle 5, the outdoor fan 8 (outdoor in Patent Document 1) according to the refrigerant temperature at the outlet of the external heat exchanger 4 detected by the temperature sensor 22. When the refrigerant temperature at the outlet of the external heat exchanger 4 exceeds a predetermined value (for example, 75 ° C.), the bypass switching three-way valve 24 is switched to the gas cooler 21 side. The refrigerant circulating in the heat pump cycle 5 is controlled so as to flow not on the bypass pipe 23 side but on the gas cooler 21 side.
以上のように、庫外熱交換器4およびガスクーラ21における熱交換能力を制御することによって、高圧側で動作する庫内熱交換器2a、庫外熱交換器4、ガスクーラ21の3つの熱交換器における総熱交換量を増加させ、超臨界状態にある高圧を所定の範囲に抑制しながらも、最下流に配設されたガスクーラ21の出口温度およびエンタルピを下げることができる。 As described above, by controlling the heat exchange capacity in the external heat exchanger 4 and the gas cooler 21, the three heat exchanges of the internal heat exchanger 2a, the external heat exchanger 4, and the gas cooler 21 that operate on the high pressure side. It is possible to reduce the outlet temperature and enthalpy of the gas cooler 21 disposed at the most downstream side while increasing the total heat exchange amount in the furnace and suppressing the high pressure in the supercritical state within a predetermined range.
その結果、蒸発器として動作する庫内熱交換器2b,2cにおける冷却側のエンタルピ差が大きくなり、庫内熱交換器2b,2cの冷却能力、およびヒートポンプサイクル5の省エネルギー性を向上させることができる。 As a result, the enthalpy difference on the cooling side in the internal heat exchangers 2b and 2c operating as an evaporator increases, and the cooling capacity of the internal heat exchangers 2b and 2c and the energy saving performance of the heat pump cycle 5 can be improved. it can.
上記従来の技術は、庫外ファン8の出力、およびガスクーラ21のバイパス回路であるバイパス配管23を利用するかしないかによって超臨界状態の高圧が所定以下になるように制御するものである。 The conventional technique controls the high pressure in the supercritical state to be a predetermined value or less depending on whether or not the output of the external fan 8 and the bypass pipe 23 which is a bypass circuit of the gas cooler 21 are used.
そのため、第1の冷却加温室101の内部に配設されて放熱器として動作する庫内熱交換器2aの冷媒出口温度が高くなってしまい、庫内熱交換器2aにおける熱交換量を十分に得る事ができず、第1の冷却加温室101内の商品をヒートポンプサイクル5によって十分に加熱することができなかった。その結果、加温ヒータによる加熱を行うため、自動販売機の省エネルギー性を損なってしまうという課題があった。 Therefore, the refrigerant | coolant exit temperature of the heat exchanger 2a in a store | warehouse | chamber which is arrange | positioned inside the 1st cooling chamber 101, and operate | moves as a heat sink becomes high, and heat exchange amount in the heat exchanger 2a in a store | chamber is fully enough The product in the first cooling greenhouse 101 could not be sufficiently heated by the heat pump cycle 5. As a result, there is a problem that the energy saving performance of the vending machine is impaired because the heating by the heating heater is performed.
加えて、庫内熱交換器2b,2cの蒸発温度が成り行きになってしまうので、第2の冷却加温室102および冷却専用室103内の商品を所望の温度(約5℃)に冷却することができないとだけでなく、最悪の場合、商品が凍結破損してしまうという課題があった。 In addition, since the evaporation temperature of the internal heat exchangers 2b and 2c becomes a matter of course, the products in the second cooling greenhouse 102 and the exclusive cooling chamber 103 are cooled to a desired temperature (about 5 ° C.). In the worst case, there is a problem that the product freezes and breaks.
本発明は、上記従来の課題を解決するもので、二酸化炭素を冷媒とし、加温と冷却とを行うヒートポンプサイクルを備え、省エネルギー性に優れると共に、商品を凍結破壊などなしに所望の温度に冷却できる自動販売機を提供することを目的とする。 The present invention solves the above-described conventional problems, and includes a heat pump cycle that uses carbon dioxide as a refrigerant and performs heating and cooling, is excellent in energy saving, and cools a product to a desired temperature without freezing destruction. The purpose is to provide a vending machine that can.
上記目的を達成するために、本発明の自動販売機は、圧縮機と、商品収納庫内の複数の商品収納室のそれぞれに設けられる複数の庫内熱交換器と、前記庫内熱交換器に送風する庫内ファンと、第1減圧手段と、庫外熱交換器と、制御手段とを備え、冷媒に二酸化炭素を用い、冷媒流路の切り換えにより少なくとも1つの前記商品収納室が前記庫内熱交換器により加温可能に構成された自動販売機であって、前記制御手段は、少なくとも1つの前記商品収納室が前記庫内熱交換器により加温され残りの少なくとも1つの前記商品収納室が前記庫内熱交換器により冷却されるHC運転モードにおいて、前記商品収納室を加温する前記庫内熱交換器を流通する空気の入口温度と前記商品収納室を加温する前記庫内熱交換器の冷媒の出口温度との差が一定で冷媒サイクルの高圧側が超臨界状態になるように前記第1減圧手段の絞り量を制御すると共に、前記商品収納室を冷却する前記庫内熱交換器
の蒸発温度が所望の温度となるように制御するのである。
In order to achieve the above object, a vending machine according to the present invention includes a compressor, a plurality of in-compartment heat exchangers provided in each of a plurality of product storage rooms in the product storage, and the in-compartment heat exchanger. And a first decompression unit, an external heat exchanger, and a control unit. Carbon dioxide is used as a refrigerant, and at least one of the commodity storage chambers is switched by switching a refrigerant flow path. An automatic vending machine configured to be heated by an internal heat exchanger, wherein the control means is configured to store at least one of the product storage chambers in which at least one of the product storage chambers is heated by the internal heat exchanger. In the HC operation mode in which the chamber is cooled by the internal heat exchanger, the inlet temperature of the air flowing through the internal heat exchanger for heating the product storage chamber and the internal temperature for heating the product storage chamber The difference from the refrigerant outlet temperature of the heat exchanger The throttle amount of the first pressure reducing means is controlled so that the high pressure side of the refrigerant cycle is in a supercritical state, and the evaporation temperature of the internal heat exchanger for cooling the product storage chamber becomes a desired temperature. To control.
これによって、商品収納室の加温に用いられる庫内熱交換器における冷媒の動作圧力と共に冷媒と空気との温度差が変化して、冷媒の出口温度が空気の入口温度に対して十分に近い温度となるように作用し、加温用の庫内熱交換器の加熱能力を大きくすることができる。 As a result, the temperature difference between the refrigerant and the air changes together with the operating pressure of the refrigerant in the internal heat exchanger used for heating the product storage chamber, and the outlet temperature of the refrigerant is sufficiently close to the inlet temperature of the air. It acts so that it may become temperature, and can increase the heating capability of the internal heat exchanger for heating.
さらに、商品収納室の冷却に用いられる熱交換器における冷媒のホールド量と共に蒸発温度を変化させて、冷却用の庫内熱交換器の空気の出口温度を商品の冷却に適切な温度となるように作用する。 Further, the evaporating temperature is changed together with the refrigerant hold amount in the heat exchanger used for cooling the product storage chamber so that the air outlet temperature of the internal heat exchanger for cooling becomes an appropriate temperature for cooling the product. Act on.
これによって、二酸化炭素を冷媒とする冷凍サイクル装置で商品の加温に係る加熱能力およびエネルギー消費効率を向上させながらも、同時に適切な温度で商品を冷却できる自動販売機となる。 Thus, the refrigeration cycle apparatus using carbon dioxide as a refrigerant can improve the heating capacity and energy consumption efficiency for heating the product, and at the same time, the vending machine can cool the product at an appropriate temperature.
本発明によれば、常に冷却される商品の温度を適切な温度に保つ事が可能となり、商品の品質を損なうことなく、省エネルギー性に優れた自動販売機を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to keep the temperature of the goods cooled always at an appropriate temperature, and the vending machine excellent in energy saving property can be provided, without impairing the quality of goods.
第1の発明は、圧縮機と、商品収納庫内の複数の商品収納室のそれぞれに設けられる複数の庫内熱交換器と、前記庫内熱交換器に送風する庫内ファンと、第1減圧手段と、庫外熱交換器と、制御手段とを備え、冷媒に二酸化炭素を用い、冷媒流路の切り換えにより少なくとも1つの前記商品収納室が前記庫内熱交換器により加温可能に構成された自動販売機であって、前記制御手段は、少なくとも1つの前記商品収納室が前記庫内熱交換器により加温され残りの少なくとも1つの前記商品収納室が前記庫内熱交換器により冷却されるHC運転モードにおいて、前記商品収納室を加温する前記庫内熱交換器を流通する空気の入口温度と前記商品収納室を加温する前記庫内熱交換器の冷媒の出口温度との差が一定で冷媒サイクルの高圧側が超臨界状態になるように前記第1減圧手段の絞り量を制御すると共に、前記商品収納室を冷却する前記庫内熱交換器の蒸発温度が所望の温度となるように制御することを特徴とする自動販売機である。 According to a first aspect of the present invention, there is provided a compressor, a plurality of in-compartment heat exchangers provided in each of a plurality of product storage chambers in the product storage, an in-compartment fan for blowing air to the in-compartment heat exchanger, A decompression means, an external heat exchanger, and a control means are provided, carbon dioxide is used as a refrigerant, and at least one of the product storage chambers can be heated by the internal heat exchanger by switching the refrigerant flow path. In the vending machine, the control unit is configured to heat at least one of the product storage chambers by the internal heat exchanger and cool at least one of the remaining product storage chambers by the internal heat exchanger. In the HC operation mode, the inlet temperature of the air flowing through the internal heat exchanger for heating the product storage chamber and the outlet temperature of the refrigerant of the internal heat exchanger for heating the product storage chamber The difference is constant and the high pressure side of the refrigerant cycle is supercritical And controlling the amount of squeezing of the first pressure reducing means so that the evaporating temperature of the internal heat exchanger for cooling the product storage chamber becomes a desired temperature. It is a vending machine.
これによって、商品収納室の加温に用いられる庫内熱交換器における冷媒の動作圧力と共に冷媒と空気との温度差が変化して、冷媒の出口温度が空気の入口温度に対して十分に近い温度となるように作用し、加温用の庫内熱交換器の加熱能力を大きくすることができる。 As a result, the temperature difference between the refrigerant and the air changes together with the operating pressure of the refrigerant in the internal heat exchanger used for heating the product storage chamber, and the outlet temperature of the refrigerant is sufficiently close to the inlet temperature of the air. It acts so that it may become temperature, and can increase the heating capability of the internal heat exchanger for heating.
さらに、商品収納室の冷却に用いられる熱交換器における冷媒のホールド量と共に蒸発温度を変化させて、冷却用の庫内熱交換器の空気の出口温度を商品の冷却に適切な温度となるように作用する。 Further, the evaporating temperature is changed together with the refrigerant hold amount in the heat exchanger used for cooling the product storage chamber so that the air outlet temperature of the internal heat exchanger for cooling becomes an appropriate temperature for cooling the product. Act on.
これによって、二酸化炭素を冷媒とする冷凍サイクル装置で商品の加温に係る加熱能力およびエネルギー消費効率を向上させながらも、同時に適切な温度で商品を冷却できる自動販売機を提供することができる。 Thus, it is possible to provide a vending machine capable of cooling the product at an appropriate temperature at the same time while improving the heating capacity and energy consumption efficiency related to the heating of the product in the refrigeration cycle apparatus using carbon dioxide as a refrigerant.
第2の発明は、特に第1の発明における前記制御手段が、前記商品収納室を冷却する前記庫内熱交換器の蒸発温度が所望の温度となるように、前記庫内熱交換器に送風する庫内ファンの風量または回転数を制御するものであり、蒸発器として動作する冷却用の庫内熱交換器の蒸発温度を精度よく目標温度となるようにコントロールできるので、冷却用の商品収納室に収納される商品の温度を目標温度に保つことができる。 In the second invention, in particular, the control means in the first invention sends air to the internal heat exchanger so that the evaporation temperature of the internal heat exchanger that cools the product storage chamber becomes a desired temperature. Controls the air volume or the number of rotations of the internal fan, and the evaporating temperature of the cooling internal heat exchanger operating as an evaporator can be accurately controlled so that it reaches the target temperature. The temperature of the product stored in the room can be maintained at the target temperature.
第3の発明は、特に第1または第2の発明において、前記冷媒流路中に第2減圧手段を備え、前記第2減圧手段は前記第1減圧手段よりも下流側に直列に配置され、前記制御手段は、前記商品収納室を冷却する前記庫内熱交換器の蒸発温度が所望の温度となるように第2減圧手段の絞り量を制御するものである。 According to a third aspect of the present invention, in the first or second aspect of the invention, the refrigerant flow path further includes a second decompression unit, and the second decompression unit is arranged in series downstream of the first decompression unit, The control means controls the throttle amount of the second pressure reducing means so that the evaporation temperature of the internal heat exchanger for cooling the commodity storage chamber becomes a desired temperature.
これによって、蒸発器として動作する冷却用の庫内熱交換器の蒸発温度を精度よく目標温度となるようにコントロールできるので、冷却用の商品収納室に収納される商品の温度を目標温度に保つことができる。 As a result, the evaporating temperature of the cooling internal heat exchanger operating as an evaporator can be accurately controlled to the target temperature, so that the temperature of the product stored in the cooling product storage chamber is maintained at the target temperature. be able to.
以下、本発明の自動販売機の実施の形態について図面を参照しながら説明する。なおこの実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of a vending machine according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.
(実施の形態1)
図1は、本発明の実施の形態1における自動販売機に搭載のヒートポンプサイクルの構成を示している。
(Embodiment 1)
FIG. 1 shows a configuration of a heat pump cycle mounted on a vending machine according to Embodiment 1 of the present invention.
圧縮機1、庫内熱交換器2a〜2c、第1の膨張弁3、庫外熱交換器4は、配管で環状に接続されてヒートポンプサイクル5を構成する。このヒートポンプサイクル5には、冷媒として二酸化炭素が封入される。 The compressor 1, the internal heat exchangers 2 a to 2 c, the first expansion valve 3, and the external heat exchanger 4 are connected in a ring shape with piping to constitute a heat pump cycle 5. The heat pump cycle 5 is filled with carbon dioxide as a refrigerant.
ヒートポンプサイクル5の回路中には開閉操作を行う電磁弁6a〜6cが設けられる。また、電磁弁6a〜6cの下流側には、各庫内熱交換器2a〜2cへの分流を調整する抵抗器15a〜15cが設けられている。 In the circuit of the heat pump cycle 5, electromagnetic valves 6a to 6c for performing an opening / closing operation are provided. Moreover, the resistors 15a-15c which adjust the shunt to each indoor heat exchanger 2a-2c are provided in the downstream of the solenoid valves 6a-6c.
さらに、庫内熱交換器2a〜2cの近傍には庫内熱交換器2a〜2cに送風する庫内ファン7a〜7cが設置され、庫外熱交換器4の近傍には庫外熱交換器4に送風する庫外ファン8が設置されている。また、ヒートポンプサイクル5の高圧側の冷媒と低圧側の冷媒とを熱交換させる内部熱交換器9を備えている。 Further, in-compartment heat exchangers 2a to 2c are provided with in-compartment fans 7a to 7c for blowing air to the in-compartment heat exchangers 2a to 2c. An outside fan 8 for blowing air to 4 is installed. In addition, an internal heat exchanger 9 for exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant of the heat pump cycle 5 is provided.
本実施の形態1の自動販売機は、商品を収納する商品収納庫100と商品収納庫100の下部に配置された機械室(図示せず)を有する。商品収納庫100内は3つの区画に別れ、収納する商品を冷却もしくは加温する第1の冷却加温室101、収納する商品を冷却もしくは加温する第2の冷却加温室102、収納する商品を冷却する冷却専用室103を有する。また、それぞれの庫内には、商品収納棚(図示せず)が上部に吊り下げられており、商品が内部に収納されている。 The vending machine according to the first embodiment includes a product storage 100 for storing products and a machine room (not shown) disposed in the lower part of the product storage 100. The product storage 100 is divided into three sections, a first cooling greenhouse 101 that cools or warms the stored product, a second cooling greenhouse 102 that cools or warms the stored product, and the stored product. A cooling chamber 103 for cooling is provided. In each warehouse, a product storage shelf (not shown) is suspended at the top, and the product is stored inside.
第1の冷却加温室101内には、内部を流通する冷媒と第1の冷却加温室101内部の空気が熱交換をする庫内熱交換器2aと、庫内熱交換器2aの近傍に配置され、庫内熱交換器2aを通過するように第1の冷却加温室101内の空気を循環させる庫内ファン7aと、第1の冷却加温室101内の商品を加温する場合に通電される加温ヒータ16aと、第1の冷却加温室101の室内温度を検出する温度センサー(図示せず)が配置される。 In the 1st cooling greenhouse 101, the refrigerant | coolant which distribute | circulates the inside and the air inside the 1st cooling greenhouse 101 are arrange | positioned in the vicinity of the heat exchanger 2a in the warehouse, and the heat exchanger 2a in the warehouse. The internal fan 7a that circulates the air in the first cooling greenhouse 101 so as to pass through the internal heat exchanger 2a, and the product in the first cooling greenhouse 101 are energized. And a temperature sensor (not shown) for detecting the room temperature of the first cooling greenhouse 101 is disposed.
第2の冷却加温室102内には、内部を流通する冷媒と第2の冷却加温室102内部の空気が熱交換をする庫内熱交換器2bと、庫内熱交換器2bの近傍に配置され、庫内熱交換器2bを通過するように第2の冷却加温室102内の空気を循環させる庫内ファン7bと、第2の冷却加温室102内の商品を加温する場合に通電されて発熱する加温ヒータ16bと、第2の冷却加温室102の室内温度を検出する温度センサー(図示せず)が配置される。 In the 2nd cooling greenhouse 102, the refrigerant | coolant which distribute | circulates an inside and the air in the 2nd cooling greenhouse 102 are arrange | positioned in the vicinity of the heat exchanger 2b in the warehouse, and the heat exchanger 2b in the warehouse. The internal fan 7b that circulates the air in the second cooling greenhouse 102 so as to pass through the internal heat exchanger 2b, and the product in the second cooling greenhouse 102 are energized. A heating heater 16b that generates heat and a temperature sensor (not shown) that detects the indoor temperature of the second cooling greenhouse 102 are arranged.
冷却専用室103内には、内部を流通する冷媒と冷却専用室103内部の空気が熱交換をする庫内熱交換器2cと、庫内熱交換器2cの近傍に配置され、庫内熱交換器2cを通過するように冷却専用室103内の空気を循環させる庫内ファン7cと、冷却専用室103の室内温度を検出する温度センサー(図示せず)が配置される。 In the cooling exclusive chamber 103, the internal heat exchanger 2c for exchanging heat between the refrigerant circulating inside and the air in the exclusive cooling chamber 103 is disposed in the vicinity of the internal heat exchanger 2c, and the internal heat exchange is performed. An internal fan 7c that circulates the air in the exclusive cooling chamber 103 so as to pass through the vessel 2c and a temperature sensor (not shown) that detects the indoor temperature of the exclusive cooling chamber 103 are arranged.
第1の膨張弁3は、庫外熱交換器4の出口に設けられ、冷却加温システムの制御手段(図示せず)によって絞り量が制御される。主に、庫内熱交換器2a〜2cの少なくともいずれか1つの熱交換器が蒸発器として動作して、商品を冷却する場合に制御して動作させる。 The first expansion valve 3 is provided at the outlet of the external heat exchanger 4, and the throttle amount is controlled by the control means (not shown) of the cooling and heating system. Mainly, at least one of the in-compartment heat exchangers 2a to 2c operates as an evaporator to control and operate the product when it is cooled.
第2の膨張弁14は庫内熱交換器2aから庫外熱交換器4へ向かう回路中に設けられ、冷却制御手段の制御手段(図示せず)によって絞り量が制御される。主に、庫内熱交換器
2aが放熱器として動作して、第1の冷却加温室101内の空気を加温する場合に制御して動作させる。
The second expansion valve 14 is provided in a circuit from the internal heat exchanger 2a to the external heat exchanger 4, and the throttle amount is controlled by a control means (not shown) of the cooling control means. Mainly, the internal heat exchanger 2a operates as a radiator and is controlled and operated when the air in the first cooling greenhouse 101 is heated.
第1の三方弁10は、圧縮機1の吐出管の下流側に配置され、圧縮機1の吐出管を庫内熱交換器2aと庫外熱交換器4のいずれか一方と選択的に連通させる。 The first three-way valve 10 is arranged on the downstream side of the discharge pipe of the compressor 1, and selectively communicates the discharge pipe of the compressor 1 with either the internal heat exchanger 2 a or the external heat exchanger 4. Let
第2の三方弁11は、庫内熱交換器2aと庫外熱交換器4との間に配置され、庫内熱交換器2aを庫外熱交換器4と圧縮機1の吸入管のいずれかと選択的に連通させる。 The second three-way valve 11 is disposed between the internal heat exchanger 2 a and the external heat exchanger 4, and the internal heat exchanger 2 a is either the external heat exchanger 4 or the suction pipe of the compressor 1. Selectively communicates with
第3の三方弁12は、内部熱交換器9の高圧側出口から庫外熱交換器4へと向かう回路中に配置され、内部熱交換器9の高圧側出口を第2の膨張弁14を経て庫外熱交換器4へと向かう経路と、第2の膨張弁14を経ずに直接、庫外熱交換器4へと向かう経路とを選択的に連通させる。 The third three-way valve 12 is arranged in a circuit from the high-pressure side outlet of the internal heat exchanger 9 to the external heat exchanger 4, and the high-pressure side outlet of the internal heat exchanger 9 is connected to the second expansion valve 14. The path toward the external heat exchanger 4 and the path toward the external heat exchanger 4 directly without passing through the second expansion valve 14 are selectively communicated.
バイパス弁13は、庫外熱交換器4の出口と内部熱交換器9の低圧側入口とを繋ぐ回路上に設けられる。 The bypass valve 13 is provided on a circuit that connects the outlet of the external heat exchanger 4 and the low-pressure side inlet of the internal heat exchanger 9.
庫内熱交換器2a〜2c、および庫外熱交換器4は、フィンチューブ式の熱交換器であって、略平板状のアルミに銅管が鉛直に貫通するように構成されるのが一般的である。 The internal heat exchangers 2a to 2c and the external heat exchanger 4 are fin-tube heat exchangers, and are generally configured so that a copper tube vertically penetrates a substantially flat aluminum plate. Is.
内部熱交換器9は、二重管式の熱交換器であって、高圧側冷媒が内側流路、低圧側冷媒が外側流路を流れて互いに熱交換するように構成されるのが一般的である。 The internal heat exchanger 9 is a double-pipe heat exchanger, and is generally configured such that the high-pressure side refrigerant flows through the inner flow path and the low-pressure side refrigerant flows through the outer flow path to exchange heat with each other. It is.
以上のように構成された本実施の形態の自動販売機について、以下にその動作、作用を説明する。 About the vending machine of this Embodiment comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
本実施の形態における自動販売機は、第1の冷却加温室101を加温すると同時に第2の冷却加温室102と冷却専用室103の両方を冷却する冷却加温運転モード(3室運転CCH)と、第1の冷却加温室101を加温すると同時に第2の冷却加温室102と冷却専用室103の内の一方を冷却し他方は冷却も加温も行わない冷却加温運転モード(2室運転CH)と、第1の冷却加温室101の加温のみを行う加温運転モード(1室運転H)と、第1の冷却加温室101と第2の冷却加温室102と冷却専用室103の全室の冷却を行う冷却運転モード(3室運転CCC)と、第1の冷却加温室101と第2の冷却加温室102と冷却専用室103の内のいずれか二室の冷却のみを行う冷却運転モード(2室運転CC)と、第1の冷却加温室101と第2の冷却加温室102と冷却専用室103の内のいずれか一室の冷却のみを行う冷却運転モード(1室運転C)とを、第1の三方弁10、第2の三方弁11、第3の三方弁12および電磁弁6a〜6cの開閉にて切り換えて行う。 The vending machine according to the present embodiment heats the first cooling greenhouse 101 and simultaneously cools both the second cooling greenhouse 102 and the cooling exclusive chamber 103 (three-chamber operation CCH). In addition, the first cooling greenhouse 101 is heated, and at the same time, one of the second cooling greenhouse 102 and the cooling exclusive chamber 103 is cooled, and the other is not cooled or heated. Operation CH), a heating operation mode (one-room operation H) in which only the first cooling greenhouse 101 is heated, a first cooling greenhouse 101, a second cooling greenhouse 102, and a cooling exclusive chamber 103. Cooling operation mode (three-chamber operation CCC) for cooling all the rooms, and cooling only two of the first cooling chamber 101, the second cooling chamber 102, and the cooling chamber 103. Cooling operation mode (two-chamber operation CC) and first cooling and heating 101, the second cooling chamber 102, and the cooling operation mode (one-chamber operation C) in which only one of the cooling-only chambers 103 is cooled, the first three-way valve 10 and the second three-way valve 11. Switching is performed by opening and closing the third three-way valve 12 and the solenoid valves 6a to 6c.
まず、第1の冷却加温室101を加温し、第2の冷却加温室102および、冷却専用室103を冷却する冷却加温運転モードの場合における動作を説明する。 First, the operation in the cooling and heating operation mode in which the first cooling greenhouse 101 is heated and the second cooling greenhouse 102 and the cooling exclusive chamber 103 are cooled will be described.
第1の冷却加温室101を加温し、第2の冷却加温室102および、冷却専用室103を冷却する冷却加温運転モードの場合におけるヒートポンプサイクルの冷媒の流れは図2に示す通りである。 The flow of the refrigerant in the heat pump cycle in the cooling and heating operation mode in which the first cooling greenhouse 101 is heated and the second cooling greenhouse 102 and the cooling exclusive chamber 103 are cooled is as shown in FIG. .
第1の冷却加温室101を加温し、第2の冷却加温室102、および冷却専用室103を冷却する冷却加温運転モードの場合は、電磁弁6aを閉状態、電磁弁6b,6cを開状態とし、第1の三方弁10を、圧縮機1の吐出管と庫内熱交換器2aの入口とが連通する状態とし、第2の三方弁11を、庫内熱交換器2aの出口と内部熱交換器9の高圧側入口
とが連通する状態とし、第3の三方弁12を、内部熱交換器9の高圧側出口と庫外熱交換器4の入口とが第2の膨張弁14をバイパスして直接連通する状態とする。
In the cooling and heating operation mode in which the first cooling greenhouse 101 is heated and the second cooling greenhouse 102 and the cooling exclusive chamber 103 are cooled, the solenoid valve 6a is closed and the solenoid valves 6b and 6c are turned on. The first three-way valve 10 is in an open state, the discharge pipe of the compressor 1 is in communication with the inlet of the internal heat exchanger 2a, and the second three-way valve 11 is connected to the outlet of the internal heat exchanger 2a. And the high pressure side inlet of the internal heat exchanger 9 are in communication with each other, and the third three-way valve 12 is connected to the high pressure side outlet of the internal heat exchanger 9 and the inlet of the external heat exchanger 4 is the second expansion valve. 14 is bypassed and communicates directly.
さらに、バイパス弁13は閉状態とし、庫外熱交換器4の出口と内部熱交換器9の低圧側入口とは直接連通されていない状態とし、圧縮機1を起動させる。 Further, the bypass valve 13 is closed, the outlet of the external heat exchanger 4 and the low-pressure side inlet of the internal heat exchanger 9 are not in direct communication, and the compressor 1 is started.
圧縮機1から吐出された高温高圧の冷媒は、第1の三方弁10を通過して庫内熱交換器2aへと供給される。庫内熱交換器2aは放熱器として動作し、高温高圧(例えば、100℃の高温)の冷媒から、庫内ファン7aによって庫内熱交換器2aへと向かって送風される第1の冷却加温室101内部の空気へと放熱し、第1の冷却加温室101内を加温する。さらには、第1の冷却加温室101内に収納されている商品を加温して、中温高圧(例えば、60℃の中温)の冷媒となる。 The high-temperature and high-pressure refrigerant discharged from the compressor 1 passes through the first three-way valve 10 and is supplied to the internal heat exchanger 2a. The internal heat exchanger 2a operates as a radiator, and the first cooling unit is blown from the high-temperature and high-pressure (for example, high temperature of 100 ° C.) refrigerant toward the internal heat exchanger 2a by the internal fan 7a. The heat is dissipated to the air inside the greenhouse 101, and the inside of the first cooling greenhouse 101 is heated. Further, the product stored in the first cooling greenhouse 101 is heated to become a medium-temperature and high-pressure refrigerant (for example, a medium temperature of 60 ° C.).
一方、庫内熱交換器2aにて空気へと放熱し流出した冷媒は、第2の三方弁11を通過して内部熱交換器9の高圧側流路へと供給される。内部熱交換器9においては、高圧側冷媒から低温側冷媒へと放熱し、高圧側冷媒は温度低下し、低圧側冷媒は温度上昇する。 On the other hand, the refrigerant that radiates and flows out to the air in the internal heat exchanger 2 a passes through the second three-way valve 11 and is supplied to the high-pressure side passage of the internal heat exchanger 9. In the internal heat exchanger 9, heat is radiated from the high-pressure side refrigerant to the low-temperature side refrigerant, the temperature of the high-pressure side refrigerant is lowered, and the temperature of the low-pressure side refrigerant is raised.
その後、内部熱交換器9から流出した冷媒は、第3の三方弁12を経由して庫外熱交換器4へと供給される。庫外熱交換器4においては、中温高圧(例えば、40℃の中温)の冷媒から、庫外ファン8によって庫外熱交換器4へと向かって送風される外部の空気へと放熱し、冷媒はさらに温度低下し、低温高圧(例えば、25℃の低温)の冷媒となる。 Thereafter, the refrigerant that has flowed out of the internal heat exchanger 9 is supplied to the external heat exchanger 4 via the third three-way valve 12. In the external heat exchanger 4, heat is radiated from a medium-temperature and high-pressure (for example, medium temperature of 40 ° C.) refrigerant to external air blown by the external fan 8 toward the external heat exchanger 4, and the refrigerant Falls further, and becomes a low-temperature and high-pressure refrigerant (for example, a low temperature of 25 ° C.).
庫外熱交換器4から流出した冷媒は、第1の膨張弁3において減圧され低温低圧の二相冷媒となった後に、二方向に分岐され、各々電磁弁6b,6cを通過し、抵抗器15b,15cにおいてさらに減圧された後に、庫内熱交換器2b,2cへと各々供給される。 The refrigerant flowing out of the external heat exchanger 4 is depressurized by the first expansion valve 3 to become a low-temperature and low-pressure two-phase refrigerant, and then branched in two directions, passing through the electromagnetic valves 6b and 6c, respectively, The pressure is further reduced in 15b and 15c, and then supplied to the internal heat exchangers 2b and 2c, respectively.
庫内熱交換器2b,2cは、共に蒸発器として動作し、低温低圧(例えば、−5℃の低温)の二相冷媒は、庫内ファン7b,7cによって庫内熱交換器2b,2cへと向かって送風される第2の冷却加温室102および冷却専用室103内部の空気を冷却し、第2の冷却加温室102および冷却専用室103内を冷却する。さらには、第2の冷却加温室102および冷却専用室103内に収納されている商品を冷却する。 Both the internal heat exchangers 2b and 2c operate as an evaporator, and the low-temperature and low-pressure (for example, low temperature of −5 ° C.) two-phase refrigerant is transferred to the internal heat exchangers 2b and 2c by the internal fans 7b and 7c. The air inside the second cooling greenhouse 102 and the cooling exclusive chamber 103 that is blown toward the outside is cooled, and the inside of the second cooling greenhouse 102 and the cooling exclusive chamber 103 is cooled. Further, the products stored in the second cooling greenhouse 102 and the cooling exclusive chamber 103 are cooled.
一方、庫内熱交換器2b,2cにて空気を冷却し、一部または全部が蒸発してガス化した冷媒は、再び合流した後に内部熱交換器9の低圧側流路へと供給される。内部熱交換器9においては、低圧側冷媒は高圧側冷媒より吸熱し、過熱ガスとなって圧縮機1の吸入管より還流する。 On the other hand, after the air is cooled by the internal heat exchangers 2b and 2c and part or all of the refrigerant is gasified, the refrigerant is merged again and then supplied to the low-pressure channel of the internal heat exchanger 9. . In the internal heat exchanger 9, the low-pressure side refrigerant absorbs heat from the high-pressure side refrigerant, becomes a superheated gas, and recirculates from the suction pipe of the compressor 1.
そして、冷却加温システムの制御手段(図示せず)が、第1の冷却加温室101の室内温度が予め設定された加温温度範囲内を維持し、第2の冷却加温室102、冷却専用室103の各庫内の温度が予め設定された冷却温度範囲内を維持するように、第1の三方弁10、第2の三方弁11、第3の三方弁12の切り替え、および圧縮機1と庫内ファン2a〜2c、庫外ファン8の運転を制御している。 And the control means (not shown) of the cooling and heating system maintains the indoor temperature of the first cooling and heating greenhouse 101 within a preset heating temperature range, and the second cooling and heating chamber 102, dedicated to cooling. Switching of the first three-way valve 10, the second three-way valve 11, and the third three-way valve 12 and the compressor 1 so that the temperature in each chamber of the chamber 103 is maintained within a preset cooling temperature range. The operation of the internal fans 2a to 2c and the external fan 8 is controlled.
例えば、第1の冷却加温室101内の温度が加温温度範囲の上限値となる所定温度(例えば、58℃)まで加温された時に、電磁弁6b,6cのうちの少なくとも一方が開状態で、第1の膨張弁3から庫内熱交換器2b,2cへと向かう流路のうち少なくとも一方が開放状態であれば、第1の三方弁10を圧縮機1の吐出管と庫内熱交換器2aの入口とが連通する状態から圧縮機1の吐出管と内部熱交換器9の高圧側入口とが連通する状態へと切り替え、庫内熱交換器2aに冷媒が流れない状態にすると共に、庫内熱交換器2aに送風している庫内ファン7aの運転を停止する。 For example, when the temperature in the first cooling greenhouse 101 is heated to a predetermined temperature (for example, 58 ° C.) that is the upper limit value of the heating temperature range, at least one of the electromagnetic valves 6b and 6c is open. If at least one of the flow paths from the first expansion valve 3 to the internal heat exchangers 2b and 2c is open, the first three-way valve 10 is connected to the discharge pipe of the compressor 1 and the internal heat. Switching from the state in which the inlet of the exchanger 2a communicates to the state in which the discharge pipe of the compressor 1 and the high-pressure side inlet of the internal heat exchanger 9 communicate with each other, so that the refrigerant does not flow into the internal heat exchanger 2a. At the same time, the operation of the internal fan 7a blowing to the internal heat exchanger 2a is stopped.
このとき、第2の三方弁11は庫内熱交換器2aの出口と内部熱交換器9の高圧側入口とが連通したままにしておく。 At this time, the second three-way valve 11 keeps the outlet of the internal heat exchanger 2a and the high-pressure side inlet of the internal heat exchanger 9 in communication.
そして、庫内熱交換器2aに圧縮機1からの冷媒が流れないように第1の三方弁10を切り替えた後に、第1の冷却加温室101の温度が加温温度範囲の下限値となる所定温度(例えば、53℃)まで低下すれば、再び第1の三方弁10を、圧縮機1と庫内熱交換器2aの入口とが連通するように切り替えると共に、庫内ファン7aの運転を再開する。 And after switching the 1st three-way valve 10 so that the refrigerant | coolant from the compressor 1 may not flow into the internal heat exchanger 2a, the temperature of the 1st cooling greenhouse 101 becomes a lower limit of a heating temperature range. When the temperature drops to a predetermined temperature (for example, 53 ° C.), the first three-way valve 10 is switched again so that the compressor 1 communicates with the inlet of the internal heat exchanger 2a, and the internal fan 7a is operated. Resume.
次に、第2の冷却加温室102内の温度が冷却温度範囲の下限値となる所定温度(例えば、1℃)まで冷却されると、電磁弁6bを開状態から閉状態へと切り替えて、庫内熱交換器2bに冷媒が流れない状態にすると共に、庫内ファン7bの運転を停止する。 Next, when the temperature in the second cooling greenhouse 102 is cooled to a predetermined temperature (for example, 1 ° C.) that is the lower limit value of the cooling temperature range, the electromagnetic valve 6b is switched from the open state to the closed state, While the refrigerant does not flow into the internal heat exchanger 2b, the operation of the internal fan 7b is stopped.
そして、圧縮機1の停止中に第2の冷却加温室102内の温度が冷却温度範囲の上限値となる所定温度(例えば、5℃)まで上昇すれば、電磁弁6bを閉状態から開状態へと切り替えて、再び庫内熱交換器2bに冷媒が流れる状態にすると共に、庫内ファン7bの運転を再開する。 And if the temperature in the 2nd cooling chamber 102 rises to the predetermined temperature (for example, 5 degreeC) used as the upper limit of a cooling temperature range during the stop of the compressor 1, the solenoid valve 6b will be opened from a closed state. And the refrigerant flows again to the internal heat exchanger 2b, and the operation of the internal fan 7b is resumed.
更に、冷却専用室103内の温度が、冷却温度範囲の下限値となる所定温度(例えば、1℃)まで冷却されると、電磁弁6cを開状態から閉状態へと切り替えて、庫内熱交換器2cに冷媒が流れない状態にすると共に、庫内ファン7cの運転を停止する。 Furthermore, when the temperature in the exclusive cooling chamber 103 is cooled to a predetermined temperature (for example, 1 ° C.) that is the lower limit value of the cooling temperature range, the electromagnetic valve 6c is switched from the open state to the closed state, and the internal heat While the refrigerant does not flow into the exchanger 2c, the operation of the internal fan 7c is stopped.
このとき、第1の三方弁10が圧縮機1と内部熱交換器9の高圧側入口とを連通する状態であって、電磁弁6bが閉状態であれば、第1の冷却加温室101の加温、第2の冷却加温室102および冷却専用室103の冷却が全て停止状態となるので、圧縮機1を停止する。 At this time, if the first three-way valve 10 communicates with the compressor 1 and the high-pressure side inlet of the internal heat exchanger 9 and the electromagnetic valve 6b is closed, the first cooling chamber 101 Since the heating, the cooling of the second cooling greenhouse 102 and the cooling exclusive chamber 103 are all stopped, the compressor 1 is stopped.
第1の三方弁10が圧縮機1と庫内熱交換器2aの入口とを連通する状態であって、電磁弁6b,6cが共に閉状態であれば、第3の三方弁12を内部熱交換器9の高圧側出口と庫外熱交換器4の入口とが直接連通する状態から内部熱交換器9の高圧側出口と庫外熱交換器4の入口とが第2の膨張弁14を経て連通する状態へと切り替えると共に、バイパス弁13を開状態とし、庫内熱交換器2aが放熱器、庫外熱交換器4が蒸発器として動作するヒートポンプサイクルで第1の冷却加温室101の加温を継続する。 If the first three-way valve 10 communicates with the compressor 1 and the inlet of the internal heat exchanger 2a and both the solenoid valves 6b and 6c are closed, the third three-way valve 12 is heated to the internal heat. From the state where the high-pressure side outlet of the exchanger 9 and the inlet of the external heat exchanger 4 are in direct communication, the high-pressure side outlet of the internal heat exchanger 9 and the inlet of the external heat exchanger 4 connect the second expansion valve 14. The first cooling chamber 101 is switched by a heat pump cycle in which the bypass valve 13 is opened, the internal heat exchanger 2a operates as a radiator, and the external heat exchanger 4 operates as an evaporator. Continue heating.
圧縮機1の停止中に冷却専用室103内の温度が冷却温度範囲の上限値となる所定温度(例えば、5℃)まで上昇すれば、電磁弁6cを閉状態から開状態へと切り替えて、再び庫内熱交換器2cに冷媒が流れる状態にすると共に、庫内ファン7cの運転を再開する。 When the temperature in the exclusive cooling chamber 103 rises to a predetermined temperature (for example, 5 ° C.) that is the upper limit value of the cooling temperature range while the compressor 1 is stopped, the electromagnetic valve 6c is switched from the closed state to the open state, The refrigerant again flows into the internal heat exchanger 2c, and the operation of the internal fan 7c is resumed.
第1の冷却加温室101内に配設された加温ヒータ16aは、ヒートポンプサイクルの運転を行うことが出来ないような極低温時やイニシャルプルアップのような加温不可が大きい場合に加温するための補助的なものであり、通常加温においては、効率のよいヒートポンプサイクルによる加温を優先的に行うように設計、制御される。 The heating heater 16a disposed in the first cooling greenhouse 101 is heated at a very low temperature at which the operation of the heat pump cycle cannot be performed or when heating is impossible such as initial pull-up. In normal heating, it is designed and controlled to preferentially perform heating by an efficient heat pump cycle.
第2の冷却加温室102内に配設された加温ヒータ16bは、第2の冷却加温室102内の商品を加温する場合に運転、制御される。 The warming heater 16b disposed in the second cooling and heating greenhouse 102 is operated and controlled when warming the product in the second cooling and heating greenhouse 102.
次に、第1の冷却加温室101の加温のみを行う加温運転モードの場合における動作を説明する。 Next, the operation in the heating operation mode in which only the first cooling greenhouse 101 is heated will be described.
第1の冷却加温室101の加温のみを行う加温運転モードにおけるヒートポンプサイク
ルの冷媒の流れは図3に示す通りである。
The flow of the refrigerant in the heat pump cycle in the heating operation mode in which only the first cooling greenhouse 101 is heated is as shown in FIG.
第1の冷却加温室101の加温のみを行う加温運転モードの場合は、第1の三方弁10を、圧縮機1の吐出管と庫内熱交換器2aの入口とが連通する状態とし、第2の三方弁11を、庫内熱交換器2aの出口と内部熱交換器9の高圧側入口とが連通する状態とし、第3の三方弁12を、内部熱交換器9の高圧側出口と庫外熱交換器4の入口とが直接連通する状態から内部熱交換器9の高圧側出口と庫外熱交換器4の入口とが第2の膨張弁14を経て連通する状態とする。 In the heating operation mode in which only the first cooling greenhouse 101 is heated, the first three-way valve 10 is brought into a state where the discharge pipe of the compressor 1 and the inlet of the internal heat exchanger 2a communicate with each other. The second three-way valve 11 is in a state where the outlet of the internal heat exchanger 2a communicates with the high-pressure side inlet of the internal heat exchanger 9, and the third three-way valve 12 is connected to the high-pressure side of the internal heat exchanger 9. From the state where the outlet and the inlet of the external heat exchanger 4 are in direct communication, the state where the high-pressure side outlet of the internal heat exchanger 9 and the inlet of the external heat exchanger 4 are connected via the second expansion valve 14 is changed. .
さらに、電磁弁6b,6cは閉状態とし、庫内熱交換器2b,2cへと冷媒が流れない状態にすると共に、バイパス弁13は開状態とし、庫外熱交換器4の出口と内部熱交換器9の低圧側入口とが直接連通された状態とし、圧縮機1を起動させる。 Further, the electromagnetic valves 6b and 6c are closed to prevent refrigerant from flowing into the internal heat exchangers 2b and 2c, and the bypass valve 13 is opened to allow the outlet of the external heat exchanger 4 and the internal heat to be discharged. The compressor 1 is started with the low pressure side inlet of the exchanger 9 in direct communication.
圧縮機1から吐出された高温高圧の冷媒は、第1の三方弁10を通過して庫内熱交換器2aへと供給される。庫内熱交換器2aは放熱器として動作し、高温高圧の冷媒から、庫内ファン7aによって庫内熱交換器2aへと向かって送風される第1の冷却加温室101内部の空気へと放熱し、第1の冷却加温室101内を加温する。さらには、第1の冷却加温室101内に収納されている商品を加温する。 The high-temperature and high-pressure refrigerant discharged from the compressor 1 passes through the first three-way valve 10 and is supplied to the internal heat exchanger 2a. The internal heat exchanger 2a operates as a radiator and dissipates heat from the high-temperature and high-pressure refrigerant to the air inside the first cooling greenhouse 101 that is blown by the internal fan 7a toward the internal heat exchanger 2a. Then, the inside of the first cooling greenhouse 101 is heated. Further, the product stored in the first cooling greenhouse 101 is heated.
一方、庫内熱交換器2aにて空気へと放熱した冷媒は、第2の三方弁11を通過して内部熱交換器9の高圧側流路へと供給される。内部熱交換器9においては、高圧側冷媒から低温側冷媒へと放熱し、高圧側冷媒は温度低下し、低圧側冷媒は温度上昇する。 On the other hand, the refrigerant that has radiated heat to the air in the internal heat exchanger 2 a passes through the second three-way valve 11 and is supplied to the high-pressure channel of the internal heat exchanger 9. In the internal heat exchanger 9, heat is radiated from the high-pressure side refrigerant to the low-temperature side refrigerant, the temperature of the high-pressure side refrigerant is lowered, and the temperature of the low-pressure side refrigerant is raised.
その後、内部熱交換器9から流出した冷媒は、第3の三方弁12を経由して第2の膨張弁14へと供給され、第2の膨張弁14において減圧され低温低圧の二相冷媒となった後に、庫外熱交換器4へと供給される。 Thereafter, the refrigerant that has flowed out of the internal heat exchanger 9 is supplied to the second expansion valve 14 via the third three-way valve 12, and is depressurized in the second expansion valve 14 to be a low-temperature and low-pressure two-phase refrigerant. After that, it is supplied to the external heat exchanger 4.
庫外熱交換器4は蒸発器として動作し、低温低圧の二相冷媒は、庫外ファン8によって庫外熱交換器4へと向かって送風される外部の空気を冷却し吸熱して、一部または全部がガス化した冷媒は、バイパス弁13を通過して内部熱交換器9の低圧側流路へと供給される。内部熱交換器9においては、低圧側冷媒は高圧側冷媒より吸熱し、過熱ガスとなって圧縮機1の吸入配管へと還流する。 The external heat exchanger 4 operates as an evaporator, and the low-temperature and low-pressure two-phase refrigerant cools and absorbs external air that is blown toward the external heat exchanger 4 by the external fan 8 and absorbs heat. The refrigerant gasified in part or in whole passes through the bypass valve 13 and is supplied to the low-pressure channel of the internal heat exchanger 9. In the internal heat exchanger 9, the low-pressure side refrigerant absorbs heat from the high-pressure side refrigerant, and becomes a superheated gas and returns to the suction pipe of the compressor 1.
そして、第1の冷却加温室101の温度が加温温度範囲の上限値となる所定温度(例えば、58℃)まで加温されると、冷却加温システムの制御手段(図示せず)が、圧縮機1と庫内ファン7aと庫外ファン8とを停止し、圧縮機1と庫内ファン7aと庫外ファン8とが停止中に第1の冷却加温室101内の温度が加温温度範囲の下限値となる所定温度(例えば、53℃)まで低下すると、冷却加温システムの制御手段(図示せず)が、圧縮機1と庫内ファン7aと庫外ファン8とを再び運転する。 And if the temperature of the 1st cooling greenhouse 101 is heated up to the predetermined temperature (for example, 58 degreeC) used as the upper limit of a heating temperature range, the control means (not shown) of a cooling heating system will be, The compressor 1, the internal fan 7a, and the external fan 8 are stopped, and the temperature in the first cooling greenhouse 101 is the heating temperature while the compressor 1, the internal fan 7a, and the external fan 8 are stopped. When the temperature falls to a predetermined temperature (for example, 53 ° C.) that is the lower limit value of the range, the control means (not shown) of the cooling and heating system operates the compressor 1, the internal fan 7a, and the external fan 8 again. .
最後に、第1の冷却加温室101、第2の冷却加温室102、冷却専用室103の全室を冷却する冷却運転モードの場合における動作を説明する。 Finally, the operation in the cooling operation mode in which all of the first cooling greenhouse 101, the second cooling greenhouse 102, and the cooling exclusive chamber 103 are cooled will be described.
第1の冷却加温室101、第2の冷却加温室102、冷却専用室103の全室を冷却する冷却運転モードの場合におけるヒートポンプサイクルの冷媒の流れは図4に示す通りである。 The flow of the refrigerant in the heat pump cycle in the cooling operation mode in which all of the first cooling greenhouse 101, the second cooling greenhouse 102, and the cooling exclusive chamber 103 are cooled is as shown in FIG.
全室冷却のみを行う冷却運転モードの場合は、電磁弁6a〜6cは開状態とし、第1の三方弁10を圧縮機1の吐出管と内部熱交換器9の高圧側入口とが連通する状態とし、第2の三方弁11を庫内熱交換器2aの出口と内部熱交換器9の低圧側入口とが連通する状
態とし、第3の三方弁12を内部熱交換器9の高圧側出口と庫外熱交換器4の入口とが第2の膨張弁14を経ず直接連通する状態とする。
In the cooling operation mode in which only all-room cooling is performed, the solenoid valves 6a to 6c are opened, and the first three-way valve 10 communicates with the discharge pipe of the compressor 1 and the high-pressure side inlet of the internal heat exchanger 9. The second three-way valve 11 is in communication with the outlet of the internal heat exchanger 2a and the low-pressure inlet of the internal heat exchanger 9, and the third three-way valve 12 is connected to the high-pressure side of the internal heat exchanger 9. It is assumed that the outlet and the inlet of the external heat exchanger 4 are in direct communication without passing through the second expansion valve 14.
さらに、バイパス弁13は閉状態とし、庫外熱交換器4の出口と内部熱交換器9の低圧側入口とは直接連通されていない状態とし、圧縮機1を起動させる。 Further, the bypass valve 13 is closed, the outlet of the external heat exchanger 4 and the low-pressure side inlet of the internal heat exchanger 9 are not in direct communication, and the compressor 1 is started.
圧縮機1から吐出された高温高圧の冷媒は、第1の三方弁10を通過して内部熱交換器9の高圧側流路へと供給される。内部熱交換器9においては、低圧側冷媒と熱交換して放熱する。内部熱交換器9の高圧側出口から流出した冷媒は、第3の三方弁12を通過して庫外熱交換器4へと供給される。 The high-temperature and high-pressure refrigerant discharged from the compressor 1 passes through the first three-way valve 10 and is supplied to the high-pressure channel of the internal heat exchanger 9. The internal heat exchanger 9 radiates heat by exchanging heat with the low-pressure side refrigerant. The refrigerant that has flowed out of the high-pressure side outlet of the internal heat exchanger 9 passes through the third three-way valve 12 and is supplied to the external heat exchanger 4.
このとき、庫外熱交換器4は放熱器として動作し、冷媒から、庫外ファン8によって庫外熱交換器4へと向かって送風される外部の空気へと放熱し、冷媒はさらに温度低下し、低温高圧(例えば、25℃の低温)の冷媒となる。 At this time, the external heat exchanger 4 operates as a radiator, dissipates heat from the refrigerant to the external air blown toward the external heat exchanger 4 by the external fan 8, and the temperature of the refrigerant further decreases. Thus, the refrigerant becomes a low-temperature and high-pressure (for example, a low temperature of 25 ° C.).
一方、庫外熱交換器4にて外部の空気へと放熱した冷媒は、第1の膨張弁3にて減圧された後に、庫内熱交換器2a〜2cのそれぞれへ向かう流路へと分岐し、各々の回路中に設けられた電磁弁6a〜6c、抵抗器15a〜15cを経て、庫内熱交換器2a〜2cへと供給される。 On the other hand, the refrigerant that has dissipated heat to the outside air in the external heat exchanger 4 is depressurized by the first expansion valve 3 and then branches to flow paths toward the internal heat exchangers 2a to 2c. And it supplies to the heat exchangers 2a-2c in a store | warehouse | chamber through the solenoid valves 6a-6c and resistors 15a-15c provided in each circuit.
このとき、庫内熱交換器2a〜2cは全て蒸発器として動作し、庫内ファン7a〜7cによって各々対となる庫内熱交換器2a〜2cへと向かって送風される内部の空気を冷却し、庫内を冷却する。さらには、庫内に収納されている商品を冷却する。 At this time, all the internal heat exchangers 2a to 2c operate as an evaporator, and cool the internal air blown toward the internal heat exchangers 2a to 2c that are paired by the internal fans 7a to 7c. And cool the interior. Furthermore, the goods stored in the warehouse are cooled.
一方、庫内熱交換器2a〜2cにて空気を冷却し、一部または全部が蒸発してガス化した冷媒は、再び合流した後に内部熱交換器9の低圧側流路へと供給される。内部熱交換器9においては、低圧側冷媒は高圧側冷媒より吸熱し、過熱ガスとなって圧縮機1の吸入管より還流する。 On the other hand, after the air is cooled by the internal heat exchangers 2a to 2c, the refrigerant that is partially or wholly evaporated and gasified is re-merged and then supplied to the low-pressure side flow path of the internal heat exchanger 9. . In the internal heat exchanger 9, the low-pressure side refrigerant absorbs heat from the high-pressure side refrigerant, becomes a superheated gas, and recirculates from the suction pipe of the compressor 1.
そして、冷却加温システムの制御手段(図示せず)が、第1の冷却加温室101、第2の冷却加温室102、冷却専用室103の各庫内の温度が、予め設定された冷却温度範囲内を維持するように、第1の三方弁10、第2の三方弁11、第3の三方弁12の切り替え、および圧縮機1と庫内ファン2a〜2c、庫外ファン8の運転を制御している。 Then, the control means (not shown) of the cooling and heating system determines that the temperature in each of the first cooling and heating chamber 101, the second cooling and heating chamber 102, and the cooling exclusive chamber 103 is a preset cooling temperature. The first three-way valve 10, the second three-way valve 11, the third three-way valve 12 are switched, and the compressor 1, the internal fans 2 a to 2 c, and the external fan 8 are operated so as to maintain the range. I have control.
例えば、第1の冷却加温室101内の温度が冷却温度範囲の下限値となる所定温度(例えば、1℃)まで冷却されると、電磁弁6aを開状態から閉状態へと切り替えて、庫内熱交換器2aに冷媒が流れない状態にすると共に、庫内ファン7aの運転を停止する。 For example, when the temperature in the first cooling greenhouse 101 is cooled to a predetermined temperature (for example, 1 ° C.) that is the lower limit value of the cooling temperature range, the electromagnetic valve 6a is switched from the open state to the closed state, While the refrigerant does not flow into the internal heat exchanger 2a, the operation of the internal fan 7a is stopped.
そして、電磁弁6aを閉状態にして、庫内熱交換器2aに冷媒が流れないようにしている状態で、第1の冷却加温室101内の温度が冷却温度範囲の上限値となる所定温度(例えば、5℃)まで上昇すると、電磁弁6aを閉状態から開状態へと切り替えると共に、庫内ファン7aの運転を再開する。 And in the state which made the solenoid valve 6a a closed state and the refrigerant | coolant did not flow into the heat exchanger 2a in the store | warehouse | chamber, the temperature in the 1st cooling greenhouse 101 becomes the upper limit of a cooling temperature range When the temperature rises to (for example, 5 ° C.), the electromagnetic valve 6a is switched from the closed state to the open state, and the operation of the internal fan 7a is resumed.
もし、第1の冷却加温室101内の温度が冷却温度範囲の下限値となる所定温度(例えば、1℃)まで冷却された時に、電磁弁6b,6cが共に閉状態であって、庫内熱交換器2b,2cに冷媒が流れていない状態であれば、電磁弁6aを開状態から閉状態へと切り替えて、庫内熱交換器2aに冷媒が流れない状態にすると共に、圧縮機1と庫内ファン7aの運転を共に停止する。 If the temperature in the first cooling greenhouse 101 is cooled to a predetermined temperature (for example, 1 ° C.) that is the lower limit value of the cooling temperature range, both the solenoid valves 6b and 6c are closed, If the refrigerant is not flowing through the heat exchangers 2b and 2c, the electromagnetic valve 6a is switched from the open state to the closed state so that the refrigerant does not flow into the internal heat exchanger 2a and the compressor 1 And the operation of the internal fan 7a are stopped.
そして、圧縮機1の停止中に第1の冷却加温室101内の温度が冷却温度範囲の上限値
となる所定温度(例えば、5℃)まで上昇すれば、電磁弁6aを閉状態から開状態へと切り替えると共に、圧縮機1を再び起動し、庫内ファン7aの運転を再開する。
And if the temperature in the 1st cooling greenhouse 101 rises to the predetermined temperature (for example, 5 degreeC) used as the upper limit of a cooling temperature range during the stop of the compressor 1, the solenoid valve 6a will be opened from a closed state. And the compressor 1 is started again, and the operation of the internal fan 7a is resumed.
なお、ここでは第1の冷却加温室101内の温度が冷却温度範囲の下限値となる所定温度(例えば、1℃)まで冷却されたときに、冷却運転を停止し、その後、冷却温度範囲の上限値となる所定温度(例えば、5℃)まで上昇したときに、冷却運転を再開する動作について述べたが、第2の冷却加温室102内の温度、または冷却専用室103内の温度が冷却温度範囲の下限値となる所定温度(例えば、1℃)、または上限値となる所定温度(例えば、5℃)に達したときも同様に動作する。 Here, when the temperature in the first cooling greenhouse 101 is cooled to a predetermined temperature (for example, 1 ° C.) that is the lower limit value of the cooling temperature range, the cooling operation is stopped, and then the cooling temperature range is reached. The operation of restarting the cooling operation when the temperature reaches a predetermined upper limit value (for example, 5 ° C.) has been described. However, the temperature in the second cooling greenhouse 102 or the temperature in the cooling exclusive chamber 103 is cooled. The same operation is performed when a predetermined temperature (for example, 1 ° C.) that is the lower limit value of the temperature range or a predetermined temperature (for example, 5 ° C.) that is the upper limit value is reached.
次に、各々の運転モードにおける第1の膨張弁3および第2の膨張弁14の動作について説明する。 Next, the operation of the first expansion valve 3 and the second expansion valve 14 in each operation mode will be described.
冷却加温運転モードで冷却と加温の同時運転を行っている場合は、第1の膨張弁3をヒートポンプサイクル5の減圧手段として動作させるよう、冷却加温システムの制御手段(図示せず)が制御する。 When the cooling and heating operation is performed simultaneously in the cooling and heating operation mode, the control means (not shown) of the cooling and heating system is operated so that the first expansion valve 3 is operated as the pressure reducing means of the heat pump cycle 5. Control.
図5に、冷却と加温の同時運転を行っている場合における第1の膨張弁3の制御フローチャートを示す。 FIG. 5 shows a control flowchart of the first expansion valve 3 when simultaneous cooling and heating operations are performed.
庫内熱交換器2aの出口より流出する冷媒の出口温度Traと庫内ファン7aによって庫内熱交換器2aに向かって送風される吸い込み空気温度Taaとの冷媒出口温度差ΔTa(=Tra―Taa)が、予め設定された目標冷媒出口温度差ΔTa0となるように、第1の膨張弁3の開度を制御する。 Refrigerant outlet temperature difference ΔTa (= Tra−Taa) between the outlet temperature Tra of the refrigerant flowing out from the outlet of the internal heat exchanger 2a and the intake air temperature Taa blown toward the internal heat exchanger 2a by the internal fan 7a ) Controls the opening degree of the first expansion valve 3 so that the target refrigerant outlet temperature difference ΔTa0 is set in advance.
具体的には、冷媒出口温度差ΔTaが目標冷媒出口温度差ΔTa0よりも1K以上大きい場合は、第1の膨張弁3の開度を2パルス小さくして絞り量を大きくし、冷媒出口温度差ΔTaが目標冷媒出口温度差ΔTa0よりも1K以上小さい場合は、第1の膨張弁3の開度を2パルス大きくして絞り量を小さくする。 Specifically, when the refrigerant outlet temperature difference ΔTa is larger than the target refrigerant outlet temperature difference ΔTa0 by 1K or more, the opening degree of the first expansion valve 3 is decreased by two pulses to increase the throttle amount, and the refrigerant outlet temperature difference When ΔTa is smaller than the target refrigerant outlet temperature difference ΔTa0 by 1K or more, the opening degree of the first expansion valve 3 is increased by two pulses to reduce the throttle amount.
冷媒出口温度差ΔTaが目標冷媒出口温度差ΔTa0と±1K以内であれば、第1の膨張弁3の開度は変更しない。このような冷媒出口温度差ΔTaの比較と必要に応じた第1の膨張弁3の開度変更を30秒ごとに実施する。 If the refrigerant outlet temperature difference ΔTa is within ± 1K with the target refrigerant outlet temperature difference ΔTa0, the opening degree of the first expansion valve 3 is not changed. The comparison of the refrigerant outlet temperature difference ΔTa and the change of the opening degree of the first expansion valve 3 as necessary are performed every 30 seconds.
なお、目標温度差ΔTa0は、図6に示すように、例えば、庫内熱交換器2a内の温度と外気温度に基づいて決定され、庫内熱交換器2a内の温度が高いほど小さく、外気温度が高いほど小さく設定されるのが一般的である。 As shown in FIG. 6, the target temperature difference ΔTa0 is determined based on, for example, the temperature in the internal heat exchanger 2a and the outside air temperature, and decreases as the temperature in the internal heat exchanger 2a increases. Generally, the higher the temperature, the smaller is set.
これによって、高圧側を超臨界状態として庫内熱交換器2aの冷媒出口温度が庫内熱交換器2aに送風される空気の吸い込み温度近傍となるまで低下させ、庫内熱交換器2aにおける熱交換量を略最大化しながらも、高圧の過上昇を防止するように作用し、ヒートポンプサイクル5の加熱に係るエネルギー消費効率を向上させることができるだけなく、庫内熱交換器2aによる加熱能力を略最大化させて加温ヒータ16aによる加熱量を最大限低減して、自動販売機のエネルギー消費効率を向上させることができるという効果を奏する。 Thereby, the refrigerant outlet temperature of the internal heat exchanger 2a is lowered to the vicinity of the suction temperature of the air blown to the internal heat exchanger 2a by setting the high pressure side to a supercritical state, and the heat in the internal heat exchanger 2a is reduced. While substantially maximizing the exchange amount, it acts not only to increase the high pressure, but can not only improve the energy consumption efficiency related to the heating of the heat pump cycle 5, but also substantially reduces the heating capacity of the internal heat exchanger 2a. By maximizing the amount of heating by the heating heater 16a, the energy consumption efficiency of the vending machine can be improved.
また、冷却加温運転モードまたは加温運転モードで加温単独運転を行っている場合は、第2の膨張弁14をヒートポンプサイクル5の減圧手段として動作させるよう、冷却加温システムの制御手段(図示せず)が制御する。 In addition, when the heating / single operation is performed in the cooling / warming operation mode or the warming operation mode, the control unit of the cooling / warming system (the control unit ( (Not shown).
図7に、加温単独運転を行っている場合における第2の膨張弁14の制御フローチャートを示す。 FIG. 7 shows a control flowchart of the second expansion valve 14 in the case where the heating single operation is performed.
庫内熱交換器2aの出口より流出する冷媒の出口温度Traと庫内ファン7aによって庫内熱交換器2aに向かって送風される吸い込み空気温度Taaとの温度差ΔTa(=Tra―Taa)が、予め設定された目標温度差ΔTa1となるように、第1の膨張弁3の開度を制御する。 A temperature difference ΔTa (= Tra−Taa) between the outlet temperature Tra of the refrigerant flowing out from the outlet of the internal heat exchanger 2a and the intake air temperature Taa blown toward the internal heat exchanger 2a by the internal fan 7a Then, the opening degree of the first expansion valve 3 is controlled so that the target temperature difference ΔTa1 is set in advance.
具体的には、冷媒出口温度差ΔTaが目標冷媒出口温度差ΔTa1よりも1K以上大きい場合は、第2の膨張弁14の開度を2パルス小さくして絞り量を大きくし、冷媒出口温度差ΔTaが目標冷媒出口温度差ΔTa1よりも1K以上小さい場合は、第2の膨張弁14の開度を2パルス大きくして絞り量を小さくする。 Specifically, when the refrigerant outlet temperature difference ΔTa is larger than the target refrigerant outlet temperature difference ΔTa1 by 1K or more, the opening of the second expansion valve 14 is reduced by two pulses to increase the throttle amount, and the refrigerant outlet temperature difference When ΔTa is smaller than the target refrigerant outlet temperature difference ΔTa1 by 1K or more, the opening degree of the second expansion valve 14 is increased by two pulses to reduce the throttle amount.
冷媒出口温度差ΔTaが目標冷媒出口温度差ΔTa1と±1K以内であれば、第2の膨張弁14の開度は変更しない。このような冷媒出口温度差ΔTaの比較と必要に応じた第2の膨張弁14の開度変更を30秒ごとに実施する。 If the refrigerant outlet temperature difference ΔTa is within ± 1K with the target refrigerant outlet temperature difference ΔTa1, the opening degree of the second expansion valve 14 is not changed. The comparison of the refrigerant outlet temperature difference ΔTa and the opening change of the second expansion valve 14 as necessary are performed every 30 seconds.
なお、目標温度差ΔTa1は、図8に示すように、例えば、庫内熱交換器2a内の温度と外気温度に基づいて決定され、庫内熱交換器2a内の温度が高いほど小さく、外気温度が高いほど小さく設定されるのが一般的である。 As shown in FIG. 8, the target temperature difference ΔTa1 is determined based on, for example, the temperature in the internal heat exchanger 2a and the outside air temperature, and decreases as the temperature in the internal heat exchanger 2a increases. Generally, the higher the temperature, the smaller is set.
これによって、高圧側を超臨界状態として庫内熱交換器2aの冷媒出口温度が庫内熱交換器2aに送風される空気の吸い込み温度近傍となるまで低下させ、庫内熱交換器2aにおける熱交換量を略最大化しながらも、高圧の過上昇を防止するように作用し、ヒートポンプサイクル5の加熱に係るエネルギー消費効率を向上させることができるだけなく、庫内熱交換器2aによる加熱能力を略最大化させて加温ヒータ16aによる加熱量を最大限低減して、自動販売機のエネルギー消費効率を向上させることができるという効果を奏する。 Thereby, the refrigerant outlet temperature of the internal heat exchanger 2a is lowered to the vicinity of the suction temperature of the air blown to the internal heat exchanger 2a by setting the high pressure side to a supercritical state, and the heat in the internal heat exchanger 2a is reduced. While substantially maximizing the exchange amount, it acts not only to increase the high pressure, but can not only improve the energy consumption efficiency related to the heating of the heat pump cycle 5, but also substantially reduces the heating capacity of the internal heat exchanger 2a. By maximizing the amount of heating by the heating heater 16a, the energy consumption efficiency of the vending machine can be improved.
また、冷却加温運転モードまたは冷却運転モードで冷却単独運転を行っている場合は、第1の膨張弁3をヒートポンプサイクル5の減圧手段として動作させるよう、冷却加温システムの制御手段(図示せず)が制御する。 In addition, when the cooling single operation is performed in the cooling / heating operation mode or the cooling operation mode, the control means (not shown) of the cooling / heating system is operated so that the first expansion valve 3 is operated as the pressure reducing means of the heat pump cycle 5. Control).
図9に、冷却単独運転の場合における第1の膨張弁3の制御フローチャートを示す。 FIG. 9 shows a control flowchart of the first expansion valve 3 in the case of the cooling single operation.
庫内熱交換器2bまたは2cにおける冷媒の蒸発温度Tsatが、予め設定された目標蒸発温度Tsat0となるように、第1の膨張弁3の開度を制御する。具体的には、蒸発温度Tsatが目標蒸発温度Tsat0よりも0.5K以上大きい場合は、第1の膨張弁3の開度を2パルス小さくして絞り量を大きくし、蒸発温度Tsatが目標蒸発温度Tsat0よりも0.5K以上小さい場合は、第1の膨張弁3の開度を2パルス大きくして絞り量を小さくする。 The opening degree of the first expansion valve 3 is controlled such that the refrigerant evaporation temperature Tsat in the internal heat exchanger 2b or 2c becomes a preset target evaporation temperature Tsat0. Specifically, when the evaporation temperature Tsat is higher than the target evaporation temperature Tsat0 by 0.5K or more, the opening of the first expansion valve 3 is reduced by two pulses to increase the throttle amount, and the evaporation temperature Tsat becomes the target evaporation. When the temperature is lower than the temperature Tsat0 by 0.5K or more, the opening degree of the first expansion valve 3 is increased by 2 pulses to reduce the throttle amount.
蒸発温度Tsatが目標蒸発温度Tsat0と±0.5K以内であれば、第1の膨張弁3の開度は変更しない。このような蒸発温度Tsatの比較と必要に応じた第1の膨張弁3の開度変更を30秒ごとに実施する。 If the evaporation temperature Tsat is within ± 0.5K of the target evaporation temperature Tsat0, the opening degree of the first expansion valve 3 is not changed. Such comparison of the evaporation temperature Tsat and change of the opening of the first expansion valve 3 as necessary are performed every 30 seconds.
なお、目標蒸発温度Tsat0は、図10に示すように、例えば、庫内熱交換器2b内の温度と外気温度に基づいて決定され、庫内熱交換器2b内の温度が高いほど大きく、外気温度が高いほど小さく設定されるのが一般的である。 As shown in FIG. 10, the target evaporation temperature Tsat0 is determined based on, for example, the temperature in the internal heat exchanger 2b and the outside air temperature, and increases as the temperature in the internal heat exchanger 2b increases. Generally, the higher the temperature, the smaller is set.
このとき、ヒートポンプサイクル5の高圧側圧力(庫外熱交換器4の動作圧力)は、臨界圧力以下となるように目標蒸発温度Tsat0を設定する。 At this time, the target evaporation temperature Tsat0 is set so that the high-pressure side pressure of the heat pump cycle 5 (the operating pressure of the external heat exchanger 4) is equal to or lower than the critical pressure.
これによって、圧縮機1における圧縮比(高圧側圧力と低圧側圧力の比)が小さくなるように作用するだけでなく、庫外熱交換器4を流通する冷媒は気液二相状態となるため、気相が液相へと凝縮する相変化を利用して、庫外熱交換器4における冷媒側の熱伝達率を単相状態の場合よりも向上するように作用する。 This not only acts to reduce the compression ratio (the ratio between the high-pressure side pressure and the low-pressure side pressure) in the compressor 1, but the refrigerant flowing through the external heat exchanger 4 is in a gas-liquid two-phase state. By utilizing the phase change in which the gas phase is condensed into the liquid phase, the heat transfer coefficient on the refrigerant side in the external heat exchanger 4 acts so as to be improved as compared with the case of the single phase state.
その結果、圧縮機1に係る消費電力量を低減することによりエネルギー消費効率が向上するだけでなく、蒸発器として動作する庫外熱交換器4における熱交換量を増加させることによってもヒートポンプサイクル5に係るエネルギー消費効率を向上させることができるという効果を奏する。 As a result, not only energy consumption efficiency is improved by reducing the amount of power consumed by the compressor 1, but also by increasing the heat exchange amount in the external heat exchanger 4 operating as an evaporator, the heat pump cycle 5 The effect that the energy consumption efficiency which concerns on can be improved is produced.
冷却加温運転モードで冷却と加温の同時運転から冷却単独運転へと移行する場合は、前述の通り第1の三方弁10を切り替え、電磁弁6aを開状態にすると共に、第1の膨張弁3の開度を大きくして絞り量を少なくするように動作する。 When shifting from the simultaneous cooling and heating operation to the cooling single operation in the cooling and heating operation mode, the first three-way valve 10 is switched as described above, the electromagnetic valve 6a is opened, and the first expansion is performed. It operates to increase the opening of the valve 3 and reduce the amount of throttle.
冷却と加温の同時運転を行っている場合は、庫内熱交換器2aの加熱能力を略最大化させるために、第1の膨張弁3における絞り量を大きくして高圧を超臨界状態とし、吐出温度を上昇させて庫内熱交換器2aの冷媒入口温度を高くすると同時に、高圧を上昇させて庫内熱交換器2aの冷媒出口温度を庫内温度近傍となるまで低下させている。 When simultaneous cooling and heating operations are performed, in order to maximize the heating capacity of the internal heat exchanger 2a, the amount of throttling in the first expansion valve 3 is increased and the high pressure is set to a supercritical state. The discharge temperature is raised to raise the refrigerant inlet temperature of the internal heat exchanger 2a, and at the same time, the high pressure is raised to lower the refrigerant outlet temperature of the internal heat exchanger 2a until it becomes close to the internal temperature.
その後、冷却単独運転へと移行する場合は、庫内熱交換器2aによって第1の冷却加温室101内を加温する必要がなくなるので、第1の膨張弁3の開度を大きくして絞り量を少なくすることによって、吐出温度および高圧を低下させて圧縮機1の仕事量を減らすと同時に、庫外熱交換器4を気液二相状態で動作させることによって熱伝達率の向上を図っている。 After that, when shifting to the cooling single operation, it is not necessary to heat the inside of the first cooling greenhouse 101 by the internal heat exchanger 2a, so that the opening degree of the first expansion valve 3 is increased and throttled. By reducing the amount, the discharge temperature and high pressure are reduced to reduce the work of the compressor 1, and at the same time, the heat transfer coefficient is improved by operating the external heat exchanger 4 in a gas-liquid two-phase state. ing.
図11にこのときのヒートポンプサイクル5の動作点の変化をモリエル線上で示す。 FIG. 11 shows a change in the operating point of the heat pump cycle 5 at this time on the Mollier line.
加温運転を行う場合は、第1の冷却加温室101内の温度を加温温度範囲の下限値となる所定温度(例えば、53℃)以下に、庫内熱交換器2aの出口温度を下げることができないので、超臨界状態とすることによって、庫内熱交換器2aの加熱能力を略最大化するように作用している。 When performing the heating operation, the outlet temperature of the internal heat exchanger 2a is lowered to a temperature within the first cooling greenhouse 101 that is equal to or lower than a predetermined temperature (for example, 53 ° C.) that is the lower limit value of the heating temperature range. Since this is not possible, the supercritical state is achieved so that the heating capacity of the internal heat exchanger 2a is substantially maximized.
同時に、冷却単独運転を行う場合は、庫外熱交換器4が放熱器として動作するので、第1の膨張弁3の絞り量を小さくして高圧を臨界圧力以下としても、庫外熱交換器4の冷媒出口温度を外気温度近傍まで下げるように作用する。このとき、庫外熱交換器4を気液二相状態で動作させることによって、庫外熱交換器4における冷媒のエンタルピ差を図11に示すほどに拡大している。 At the same time, when the cooling single operation is performed, the external heat exchanger 4 operates as a radiator. Therefore, even if the throttle amount of the first expansion valve 3 is reduced and the high pressure is set below the critical pressure, the external heat exchanger 4 acts to lower the refrigerant outlet temperature to near the outside air temperature. At this time, by operating the external heat exchanger 4 in the gas-liquid two-phase state, the enthalpy difference of the refrigerant in the external heat exchanger 4 is increased as shown in FIG.
これによって、冷却と加温の同時運転時のヒートポンプサイクル5のエネルギー消費効率の略最大化と、冷却単独運転時のヒートポンプサイクル5のエネルギー消費効率の略最大化とを両立することができるという効果を奏する。 As a result, it is possible to achieve both substantially maximizing the energy consumption efficiency of the heat pump cycle 5 during simultaneous cooling and heating operation and substantially maximizing the energy consumption efficiency of the heat pump cycle 5 during single cooling operation. Play.
冷却加温運転モードで冷却単独運転から冷却と加温の同時運転へと移行する場合は、前述の通り第1の三方弁10を切り替え、電磁弁6aを閉状態にすると共に、第1の膨張弁3の開度を小さくして絞り量を多くするように動作する。 When shifting from the cooling single operation to the simultaneous cooling and heating operation in the cooling and heating operation mode, the first three-way valve 10 is switched as described above, the electromagnetic valve 6a is closed, and the first expansion is performed. The valve 3 operates to reduce the opening degree and increase the throttle amount.
冷却単独運転を行う場合は、庫内熱交換器2aによって第1の冷却加温室101内を加
温する必要がないので、第1の膨張弁3の開度を大きくして絞り量を少なくして高圧を臨界圧力以下で動作させ、吐出温度および高圧を低下させることができるので圧縮機1の仕事量を減らすと同時に、庫外熱交換器4を気液二相状態で動作させることによって熱伝達率の向上を図っている。
When performing a single cooling operation, it is not necessary to heat the inside of the first cooling greenhouse 101 by the internal heat exchanger 2a. Therefore, the opening degree of the first expansion valve 3 is increased to reduce the throttle amount. Since the discharge temperature and the high pressure can be lowered by operating the high pressure below the critical pressure, the work amount of the compressor 1 is reduced, and at the same time, the heat is generated by operating the external heat exchanger 4 in the gas-liquid two-phase state. We are trying to improve the transmission rate.
その後、冷却と加温の同時運転へと移行する場合は、庫内熱交換器2aでの加熱能力を略最大化させるために、第1の膨張弁3における絞り量を大きくして吐出温度と高圧を超臨界状態とを上昇させて、庫内熱交換器2aの冷媒入口温度を高くすると共に、高圧を上昇させて庫内熱交換器2aの冷媒出口温度を庫内温度近傍まで低下させる。 After that, when shifting to the simultaneous operation of cooling and heating, in order to substantially maximize the heating capacity in the internal heat exchanger 2a, the throttle amount in the first expansion valve 3 is increased and the discharge temperature is set. The high pressure is raised from the supercritical state to increase the refrigerant inlet temperature of the internal heat exchanger 2a, and the high pressure is increased to lower the refrigerant outlet temperature of the internal heat exchanger 2a to near the internal temperature.
これによって、冷却と加温の同時運転時のヒートポンプサイクル5のエネルギー消費効率の略最大化と、冷却単独運転時のヒートポンプサイクル5のエネルギー消費効率の略最大化とを両立することができる。 Thereby, it is possible to achieve both the maximization of the energy consumption efficiency of the heat pump cycle 5 during the simultaneous cooling and heating operation and the maximization of the energy consumption efficiency of the heat pump cycle 5 during the cooling single operation.
次に、各々の運転モードにおける庫内ファン7a〜7c、および庫外ファン8の動作について説明する。 Next, the operation of the internal fans 7a to 7c and the external fan 8 in each operation mode will be described.
庫内ファン7bは、冷却加温モードで第1の冷却加温室101内が加温され、かつ第2の冷却加温室102内が冷却される冷却と加温の同時運転状態において、蒸発器として動作する庫内熱交換器2bの蒸発温度が、冷却温度範囲の下限値となる所定温度(例えば、1℃)よりも一定温度(例えば、7K)だけ低い温度となるように制御される。 The internal fan 7b functions as an evaporator in the cooling and heating simultaneous operation state in which the inside of the first cooling greenhouse 101 is heated in the cooling and heating mode and the inside of the second cooling greenhouse 102 is cooled. The evaporating temperature of the operating internal heat exchanger 2b is controlled to be lower by a certain temperature (for example, 7K) than a predetermined temperature (for example, 1 ° C.) that is the lower limit value of the cooling temperature range.
図12に、冷却と加温の同時運転状態における庫内ファン7bの制御フローチャートを示す。 FIG. 12 shows a control flowchart of the internal fan 7b in the simultaneous operation state of cooling and heating.
庫内熱交換器2bに備えられた温度センサー(図示せず)によって庫内熱交換器2bが蒸発器として動作する場合の蒸発温度を検知し、検知した蒸発温度が目標蒸発温度よりも高ければ、庫内ファン7bの回転数を低下させ、風量を下げて蒸発温度が目標蒸発温度へと近づくように制御され、逆に、検知した蒸発温度が目標蒸発温度よりも低ければ、庫内ファン7bの回転数を増加させ、風量を上げて蒸発温度を目標蒸発温度へと近づくように制御される。 If a temperature sensor (not shown) provided in the internal heat exchanger 2b detects the evaporation temperature when the internal heat exchanger 2b operates as an evaporator, and the detected evaporation temperature is higher than the target evaporation temperature, If the rotation speed of the internal fan 7b is decreased, the air volume is decreased and the evaporation temperature approaches the target evaporation temperature, conversely, if the detected evaporation temperature is lower than the target evaporation temperature, the internal fan 7b is controlled. The number of rotations is increased, the air volume is increased, and the evaporation temperature is controlled to approach the target evaporation temperature.
これによって、蒸発器として動作する庫内熱交換器2bの蒸発温度を、高圧側の動作圧力と略独立して、第2の冷却加温室102内の商品を冷却するために適切な温度とすることができるように作用し、放熱器として動作する庫内熱交換器2aにおける熱交換量を向上させ、ヒートポンプサイクル5のエネルギー消費効率を向上させながらも、第2の冷却加温室102内の商品の温度を冷却温度範囲(例えば、1〜5℃)内に保つことができるという効果を奏する。 As a result, the evaporation temperature of the internal heat exchanger 2b operating as an evaporator is set to an appropriate temperature for cooling the product in the second cooling greenhouse 102, substantially independently of the operating pressure on the high pressure side. Product in the second cooling greenhouse 102 while improving the heat exchange amount in the internal heat exchanger 2a operating as a radiator and improving the energy consumption efficiency of the heat pump cycle 5 The temperature can be maintained within a cooling temperature range (for example, 1 to 5 ° C.).
庫内ファン7cは、冷却加温モードで第1の冷却加温室101内が加温され、かつ冷却専用室103内が冷却される冷却と加温の同時運転状態において、蒸発器として動作する庫内熱交換器2cの蒸発温度が、冷却温度範囲の下限値となる所定温度(例えば、1℃)よりも一定温度(例えば、7K)だけ低い温度となるように制御される。 The internal fan 7c is a storage that operates as an evaporator in the cooling and heating simultaneous operation state in which the inside of the first cooling greenhouse 101 is heated in the cooling and heating mode and the inside of the cooling exclusive chamber 103 is cooled. The evaporation temperature of the internal heat exchanger 2c is controlled to be a certain temperature (for example, 7K) lower than a predetermined temperature (for example, 1 ° C.) that is the lower limit value of the cooling temperature range.
図12に、冷却と加温の同時運転状態における庫内ファン7cの制御フローチャートを示す。 FIG. 12 shows a control flowchart of the internal fan 7c in the simultaneous operation state of cooling and heating.
庫内熱交換器2cに備えられた温度センサー(図示せず)によって庫内熱交換器2cが蒸発器として動作する場合の蒸発温度を検知し、検知した蒸発温度が目標蒸発温度よりも高ければ、庫内ファン7cの回転数を低下させ、風量を下げて蒸発温度が目標蒸発温度へ
と近づくように制御され、逆に、検知した蒸発温度が目標蒸発温度よりも低ければ、庫内ファン7cの回転数を増加させ、風量を上げて蒸発温度を目標蒸発温度へと近づくように制御される。
The temperature sensor (not shown) provided in the internal heat exchanger 2c detects the evaporation temperature when the internal heat exchanger 2c operates as an evaporator, and if the detected evaporation temperature is higher than the target evaporation temperature. If the rotation speed of the internal fan 7c is decreased, the air volume is decreased and the evaporation temperature approaches the target evaporation temperature, conversely, if the detected evaporation temperature is lower than the target evaporation temperature, the internal fan 7c is controlled. The number of rotations is increased, the air volume is increased, and the evaporation temperature is controlled to approach the target evaporation temperature.
これによって、蒸発器として動作する庫内熱交換器2bの蒸発温度を、高圧側の動作圧力と略独立して、冷却専用室103内の商品を冷却するために適切な温度とすることができるように作用し、さらに、放熱器として動作する庫内熱交換器2aにおける熱交換量を向上させ、ヒートポンプサイクル5のエネルギー消費効率を向上させながらも、冷却専用室103内の商品の温度を冷却温度範囲(例えば、1〜5℃)内に保つことができるという効果を奏する。 Thus, the evaporation temperature of the internal heat exchanger 2b operating as an evaporator can be set to an appropriate temperature for cooling the product in the cooling exclusive chamber 103 substantially independently of the operating pressure on the high pressure side. In addition, the amount of heat exchange in the internal heat exchanger 2a operating as a radiator is improved, and the energy consumption efficiency of the heat pump cycle 5 is improved, while the temperature of the product in the cooling exclusive chamber 103 is cooled. There exists an effect that it can maintain within a temperature range (for example, 1-5 ° C).
庫外ファン8は、冷却加温モードで第1の冷却加温室101内が加温され、かつ冷却専用室103内が冷却される冷却と加温の同時運転状態において、圧縮機の温度が過上昇しないように、圧縮機1から吐出される冷媒の温度に応じて段階的に出力を制御される。 The outside fan 8 has an excessively high temperature of the compressor in the cooling and heating mode in which the inside of the first cooling greenhouse 101 is heated and the cooling exclusive chamber 103 is cooled. The output is controlled stepwise according to the temperature of the refrigerant discharged from the compressor 1 so as not to rise.
図13に、冷却と加温の同時運転状態における庫外ファン8の制御フローチャートを示す。 FIG. 13 shows a control flowchart of the external fan 8 in the simultaneous operation state of cooling and heating.
圧縮機1の吐出配管、または圧縮機1本体に備えられた温度センサー(図示せず)によって、圧縮機1から吐出される冷媒の温度を検知し、検知した吐出温度が100℃を超えると運転を開始する。その後、さらに温度上昇が続けば、段階的に(例えば5Kごと)出力を上げるように制御される。 The temperature of the refrigerant discharged from the compressor 1 is detected by a discharge sensor of the compressor 1 or a temperature sensor (not shown) provided in the main body of the compressor 1, and the operation is performed when the detected discharge temperature exceeds 100 ° C. To start. Thereafter, if the temperature continues to rise, the output is controlled stepwise (for example, every 5K).
これによって、庫内熱交換器2aと庫外熱交換器4における放熱量の和が、増加するので、高圧を降下させて吐出温度が低下するように作用する。その結果、庫内熱交換器2aの冷媒入口温度を高く保ちながらも、庫内熱交換器2aの加熱能力を大きくしながらも、圧縮機1の温度過昇による故障を防止することができる。 As a result, the sum of the heat radiation amounts in the internal heat exchanger 2a and the external heat exchanger 4 is increased, so that the discharge temperature is lowered by lowering the high pressure. As a result, it is possible to prevent the compressor 1 from being overheated while keeping the refrigerant inlet temperature of the internal heat exchanger 2a high and increasing the heating capacity of the internal heat exchanger 2a.
(実施の形態2)
本発明の実施の形態2における自動販売機に搭載のヒートポンプサイクルの構成は、図1に示すとおりで、本発明の実施の形態1における自動販売機に搭載のヒートポンプサイクルの構成と同様であるので、構成の説明は省略する。
(Embodiment 2)
The configuration of the heat pump cycle mounted on the vending machine in the second embodiment of the present invention is as shown in FIG. 1 and is the same as the configuration of the heat pump cycle mounted on the vending machine in the first embodiment of the present invention. The description of the configuration is omitted.
以下、その動作、作用について、本発明の実施の形態1と異なる部分を説明する。 In the following, with respect to the operation and action, portions different from those of Embodiment 1 of the present invention will be described.
本発明の実施の形態2における自動販売機の運転モードは、本発明の実施の形態1における自動販売機の運転モードと同様である。 The operation mode of the vending machine in the second embodiment of the present invention is the same as the operation mode of the vending machine in the first embodiment of the present invention.
まず、第1の冷却加温室101を加温し、第2の冷却加温室102および、冷却専用室103を冷却する冷却加温運転モードの場合における動作を説明する。図14は、冷却加温運転モードにおけるヒートポンプサイクルの冷媒の流れ方向を示す回路図である。 First, the operation in the cooling and heating operation mode in which the first cooling greenhouse 101 is heated and the second cooling greenhouse 102 and the cooling exclusive chamber 103 are cooled will be described. FIG. 14 is a circuit diagram showing the flow direction of the refrigerant in the heat pump cycle in the cooling and heating operation mode.
第1の冷却加温室101を加温し、第2の冷却加温室102、および冷却専用室103を冷却する冷却加温運転モードの場合は、電磁弁6aを閉状態、電磁弁6b,6cを開状態とし、第1の三方弁10を、圧縮機1の吐出管と庫内熱交換器2aの入口とが連通する状態とし、第2の三方弁11を、庫内熱交換器2aの出口と内部熱交換器9の高圧側入口とが連通する状態とし、第3の三方弁12を、内部熱交換器9の高圧側出口と庫外熱交換器4の入口とが第2の膨張弁14を経由して連通する状態とする。 In the cooling and heating operation mode in which the first cooling greenhouse 101 is heated and the second cooling greenhouse 102 and the cooling exclusive chamber 103 are cooled, the solenoid valve 6a is closed and the solenoid valves 6b and 6c are turned on. The first three-way valve 10 is in an open state, the discharge pipe of the compressor 1 is in communication with the inlet of the internal heat exchanger 2a, and the second three-way valve 11 is connected to the outlet of the internal heat exchanger 2a. And the high pressure side inlet of the internal heat exchanger 9 are in communication with each other, and the third three-way valve 12 is connected to the high pressure side outlet of the internal heat exchanger 9 and the inlet of the external heat exchanger 4 is the second expansion valve. 14 to communicate with each other.
さらに、バイパス弁13は閉状態とし、庫外熱交換器4の出口と内部熱交換器9の低圧
側入口とは直接連通されていない状態とし、圧縮機1を起動させる。
Further, the bypass valve 13 is closed, the outlet of the external heat exchanger 4 and the low-pressure side inlet of the internal heat exchanger 9 are not in direct communication, and the compressor 1 is started.
圧縮機1から吐出された高温高圧の冷媒は、第1の三方弁10を通過して庫内熱交換器2aへと供給される。庫内熱交換器2aは、放熱器として動作し、高温高圧(例えば、100℃の高温)の冷媒から、庫内ファン7aによって庫内熱交換器2aへと向かって送風される第1の冷却加温室101内部の空気へと放熱し、第1の冷却加温室101内を加温する。さらには、第1の冷却加温室101内に収納されている商品を加温して、中温高圧(例えば、60℃の中温)の冷媒となる。 The high-temperature and high-pressure refrigerant discharged from the compressor 1 passes through the first three-way valve 10 and is supplied to the internal heat exchanger 2a. The in-compartment heat exchanger 2a operates as a radiator, and the first cooling that is blown from the high-temperature and high-pressure (for example, high temperature of 100 ° C.) refrigerant by the in-compartment fan 7a toward the in-compartment heat exchanger 2a. The heat is dissipated to the air inside the heating chamber 101, and the inside of the first cooling greenhouse 101 is heated. Further, the product stored in the first cooling greenhouse 101 is heated to become a medium-temperature and high-pressure refrigerant (for example, a medium temperature of 60 ° C.).
一方、庫内熱交換器2aにて空気へと放熱し流出した冷媒は、第2の三方弁11を通過して内部熱交換器9の高圧側流路へと供給される。内部熱交換器9においては、高圧側冷媒から低温側冷媒へと放熱し、高圧側冷媒は温度低下し、低圧側冷媒は温度上昇する。 On the other hand, the refrigerant that radiates and flows out to the air in the internal heat exchanger 2 a passes through the second three-way valve 11 and is supplied to the high-pressure side passage of the internal heat exchanger 9. In the internal heat exchanger 9, heat is radiated from the high-pressure side refrigerant to the low-temperature side refrigerant, the temperature of the high-pressure side refrigerant is lowered, and the temperature of the low-pressure side refrigerant is raised.
その後、内部熱交換器9から流出した冷媒は、第3の三方弁12を経由して第2の膨張弁14において減圧され中温中圧の冷媒となった後に、庫外熱交換器4へと供給される。 Thereafter, the refrigerant that has flowed out of the internal heat exchanger 9 is reduced in pressure by the second expansion valve 14 via the third three-way valve 12 to become a medium-temperature / medium-pressure refrigerant, and then to the external heat exchanger 4. Supplied.
庫外熱交換器4においては、中温中圧(例えば、40℃の中温)の冷媒から、庫外ファン8によって庫外熱交換器4へと向かって送風される外部の空気へと放熱し、冷媒はさらに温度低下し、低温中圧(例えば、25℃の低温)の冷媒となる。 In the external heat exchanger 4, heat is radiated from an intermediate temperature / intermediate pressure (for example, medium temperature of 40 ° C.) refrigerant to outside air that is blown by the external fan 8 toward the external heat exchanger 4, The temperature of the refrigerant further decreases, and becomes a refrigerant having a low temperature and medium pressure (for example, a low temperature of 25 ° C.).
庫外熱交換器4から流出した冷媒は、第1の膨張弁3においてさらに減圧され低温低圧の二相冷媒となった後に、二方向に分岐され、各々電磁弁6b,6cを通過し、抵抗器15b,15cにおいてさらに減圧された後に、庫内熱交換器2b,2cへと各々供給される。 The refrigerant that has flowed out of the external heat exchanger 4 is further reduced in pressure in the first expansion valve 3 to become a low-temperature and low-pressure two-phase refrigerant, and then branched in two directions, passing through the electromagnetic valves 6b and 6c, respectively, The pressure is further reduced in the units 15b and 15c, and then supplied to the internal heat exchangers 2b and 2c, respectively.
庫内熱交換器2b,2cは共に蒸発器として動作し、低温低圧(例えば、−5℃の低温)の二相冷媒は、庫内ファン7b,7cによって庫内熱交換器2b,2cへと向かって送風される第2の冷却加温室102および冷却専用室103内部の空気を冷却し、第2の冷却加温室102および冷却専用室103内を冷却する。さらには、第2の冷却加温室102および冷却専用室103内に収納されている商品を冷却する。 Both the internal heat exchangers 2b and 2c operate as an evaporator, and the low-temperature and low-pressure (for example, a low temperature of −5 ° C.) two-phase refrigerant is transferred to the internal heat exchangers 2b and 2c by the internal fans 7b and 7c. The air inside the second cooling greenhouse 102 and the cooling exclusive chamber 103 that is blown toward is cooled, and the inside of the second cooling greenhouse 102 and the cooling exclusive chamber 103 is cooled. Further, the products stored in the second cooling greenhouse 102 and the cooling exclusive chamber 103 are cooled.
一方、庫内熱交換器2b,2cにて空気を冷却し、一部または全部が蒸発してガス化した冷媒は、再び合流した後に内部熱交換器9の低圧側流路へと供給される。内部熱交換器9においては、低圧側冷媒は高圧側冷媒より吸熱し、過熱ガスとなって圧縮機1の吸入管より還流する。 On the other hand, after the air is cooled by the internal heat exchangers 2b and 2c and part or all of the refrigerant is gasified, the refrigerant is merged again and then supplied to the low-pressure channel of the internal heat exchanger 9. . In the internal heat exchanger 9, the low-pressure side refrigerant absorbs heat from the high-pressure side refrigerant, becomes a superheated gas, and recirculates from the suction pipe of the compressor 1.
そして、冷却加温システムの制御手段(図示せず)が、第1の冷却加温室101の室内温度が予め設定された加温温度範囲内を維持し、第2の冷却加温室102、冷却専用室103の各庫内の温度が予め設定された冷却温度範囲内を維持するように、第1の三方弁10、第2の三方弁11、第3の三方弁12の切り替え、および圧縮機1と庫内ファン2a〜2c、庫外ファン8の運転を制御している。 And the control means (not shown) of the cooling and heating system maintains the indoor temperature of the first cooling and heating greenhouse 101 within a preset heating temperature range, and the second cooling and heating chamber 102, dedicated to cooling. Switching of the first three-way valve 10, the second three-way valve 11, and the third three-way valve 12 and the compressor 1 so that the temperature in each chamber of the chamber 103 is maintained within a preset cooling temperature range. The operation of the internal fans 2a to 2c and the external fan 8 is controlled.
例えば、第1の冷却加温室101内の温度が加温温度範囲の上限値となる所定温度(例えば、58℃)まで加温された時に、電磁弁6b,6cのうちの少なくとも一方が開状態で、第1の膨張弁3から庫内熱交換器2b,2cへと向かう流路のうちの少なくとも一方が開放状態であれば、第1の三方弁10を圧縮機1の吐出管と庫内熱交換器2aの入口とが連通する状態から圧縮機1の吐出管と内部熱交換器9の高圧側入口とが連通する状態へと切り替え、庫内熱交換器2aに冷媒が流れない状態とし、第3の三方弁12を内部熱交換器9の高圧側出口と庫外熱交換器4の入口とが第2の膨張弁14を経由して連通する状態から第2の膨張弁14を経由せずに直接連通する状態へと切り替えると共に、庫内熱交
換器2aに送風している庫内ファン7aの運転を停止する。
For example, when the temperature in the first cooling greenhouse 101 is heated to a predetermined temperature (for example, 58 ° C.) that is the upper limit value of the heating temperature range, at least one of the electromagnetic valves 6b and 6c is open. If at least one of the flow paths from the first expansion valve 3 to the internal heat exchangers 2b and 2c is in an open state, the first three-way valve 10 is connected to the discharge pipe of the compressor 1 and the internal chamber. Switching from the state in which the inlet of the heat exchanger 2a communicates to the state in which the discharge pipe of the compressor 1 and the high-pressure side inlet of the internal heat exchanger 9 are in communication with each other so that no refrigerant flows into the internal heat exchanger 2a. The third three-way valve 12 passes through the second expansion valve 14 from the state where the high-pressure side outlet of the internal heat exchanger 9 and the inlet of the external heat exchanger 4 communicate with each other via the second expansion valve 14. Without switching to a state where it directly communicates with the internal heat exchanger 2a. To stop the operation of the emissions 7a.
このとき、第2の三方弁11は庫内熱交換器2aの出口と内部熱交換器9の高圧側入口とが連通したままにしておく。 At this time, the second three-way valve 11 keeps the outlet of the internal heat exchanger 2a and the high-pressure side inlet of the internal heat exchanger 9 in communication.
庫内熱交換器2aに圧縮機1からの冷媒が流れないように第1の三方弁10を切り替えた後に、第1の冷却加温室101の温度が、加温温度範囲の下限値となる所定温度(例えば、53℃)まで低下すれば、再び第1の三方弁10を、圧縮機1と庫内熱交換器2aの入口とが連通するように切り替え、第3の三方弁12を内部熱交換器9の高圧側出口と庫外熱交換器4の入口とが第2の膨張弁14を経由して連通するように切り替えると共に、庫内ファン7aの運転を再開する。 After the first three-way valve 10 is switched so that the refrigerant from the compressor 1 does not flow into the internal heat exchanger 2a, the temperature of the first cooling greenhouse 101 becomes a lower limit value of the heating temperature range. When the temperature drops to 53 ° C. (for example, 53 ° C.), the first three-way valve 10 is switched again so that the compressor 1 and the inlet of the internal heat exchanger 2a communicate with each other. The high-pressure side outlet of the exchanger 9 and the inlet of the external heat exchanger 4 are switched so as to communicate with each other via the second expansion valve 14, and the operation of the internal fan 7a is resumed.
次に、第2の冷却加温室102内の温度が冷却温度範囲の下限値となる所定温度(例えば、1℃)まで冷却されると、電磁弁6bを開状態から閉状態へと切り替えて、庫内熱交換器2bに冷媒が流れない状態にすると共に、庫内ファン7bの運転を停止する。 Next, when the temperature in the second cooling greenhouse 102 is cooled to a predetermined temperature (for example, 1 ° C.) that is the lower limit value of the cooling temperature range, the electromagnetic valve 6b is switched from the open state to the closed state, While the refrigerant does not flow into the internal heat exchanger 2b, the operation of the internal fan 7b is stopped.
圧縮機1の停止中に、第2の冷却加温室102内の温度が冷却温度範囲の上限値となる所定温度(例えば、5℃)まで上昇すれば、電磁弁6bを閉状態から開状態へと切り替えて、再び庫内熱交換器2bに冷媒が流れる状態にすると共に、庫内ファン7bの運転を再開する。 If the temperature in the second cooling greenhouse 102 rises to a predetermined temperature (for example, 5 ° C.) that is the upper limit value of the cooling temperature range while the compressor 1 is stopped, the electromagnetic valve 6b is changed from the closed state to the open state. And the refrigerant again flows into the internal heat exchanger 2b, and the operation of the internal fan 7b is resumed.
更に、冷却専用室103内の温度が冷却温度範囲の下限値となる所定温度(例えば、1℃)まで冷却されると、電磁弁6cを開状態から閉状態へと切り替えて、庫内熱交換器2cに冷媒が流れない状態にすると共に、庫内ファン7cの運転を停止する。 Further, when the temperature in the exclusive cooling chamber 103 is cooled to a predetermined temperature (for example, 1 ° C.) that is the lower limit value of the cooling temperature range, the electromagnetic valve 6c is switched from the open state to the closed state, and the heat exchange inside the chamber is performed. The refrigerant is not allowed to flow into the container 2c, and the operation of the internal fan 7c is stopped.
このとき、第1の三方弁10が圧縮機1と内部熱交換器9の高圧側入口とを連通する状態であって、電磁弁6bが閉状態であれば、第1の冷却加温室101の加温、第2の冷却加温室102および冷却専用室103の冷却が全て停止状態となるので、圧縮機1を停止する。 At this time, if the first three-way valve 10 communicates with the compressor 1 and the high-pressure side inlet of the internal heat exchanger 9 and the electromagnetic valve 6b is closed, the first cooling chamber 101 Since the heating, the cooling of the second cooling greenhouse 102 and the cooling exclusive chamber 103 are all stopped, the compressor 1 is stopped.
第1の三方弁10が圧縮機1と庫内熱交換器2aの入口とを連通する状態であって、電磁弁6b,6cが共に閉状態であれば、バイパス弁13を開状態とし、第2の膨張弁14の絞り量を調節して、庫内熱交換器2aが放熱器、庫外熱交換器4が蒸発器として動作するヒートポンプサイクルで第1の冷却加温室101の加温を継続する。 If the first three-way valve 10 is in communication between the compressor 1 and the inlet of the internal heat exchanger 2a, and the electromagnetic valves 6b and 6c are both closed, the bypass valve 13 is opened, The expansion amount of the expansion valve 14 is adjusted to continue heating the first cooling greenhouse 101 in a heat pump cycle in which the internal heat exchanger 2a operates as a radiator and the external heat exchanger 4 operates as an evaporator. To do.
圧縮機1の停止中に冷却専用室103内の温度が冷却温度範囲の上限値となる所定温度(例えば、5℃)まで上昇すれば、電磁弁6cを閉状態から開状態へと切り替えて、再び庫内熱交換器2cに冷媒が流れる状態にすると共に、庫内ファン7cの運転を再開する。 When the temperature in the exclusive cooling chamber 103 rises to a predetermined temperature (for example, 5 ° C.) that is the upper limit value of the cooling temperature range while the compressor 1 is stopped, the electromagnetic valve 6c is switched from the closed state to the open state, The refrigerant again flows into the internal heat exchanger 2c, and the operation of the internal fan 7c is resumed.
第1の冷却加温室101内に配設された加温ヒータ16aは、ヒートポンプサイクルの運転を行うことが出来ないような極低温時やイニシャルプルアップのような加温不可が大きい場合に加温するための補助的なものであり、通常加温においては、効率のよいヒートポンプサイクルによる加温を優先的に行うように設計、制御される。 The heating heater 16a disposed in the first cooling greenhouse 101 is heated at a very low temperature at which the operation of the heat pump cycle cannot be performed or when heating is impossible such as initial pull-up. In normal heating, it is designed and controlled to preferentially perform heating by an efficient heat pump cycle.
第2の冷却加温室102内に配設された加温ヒータ16bは、第2の冷却加温室102内の商品を加温する場合に運転、制御される。 The warming heater 16b disposed in the second cooling and heating greenhouse 102 is operated and controlled when warming the product in the second cooling and heating greenhouse 102.
次に、各々の運転モードにおける第1の膨張弁3および第2の膨張弁14の動作について説明する。 Next, the operation of the first expansion valve 3 and the second expansion valve 14 in each operation mode will be described.
冷却加温運転モードで冷却と加温の同時運転を行っている場合は、第1の膨張弁3と第2の膨張弁14の2つをヒートポンプサイクル5の減圧手段として動作させるよう、冷却加温システムの制御手段(図示せず)が制御する。 When simultaneous operation of cooling and heating is performed in the cooling and heating operation mode, cooling and heating are performed so that two of the first expansion valve 3 and the second expansion valve 14 are operated as decompression means of the heat pump cycle 5. Control means (not shown) of the temperature system controls.
図7に、冷却と加温の同時運転を行っている場合における第2の膨張弁14の制御フローチャートを示す。 FIG. 7 shows a control flowchart of the second expansion valve 14 in the case where simultaneous operation of cooling and heating is performed.
庫内熱交換器2aの出口より流出する冷媒の出口温度Traと庫内ファン7aによって庫内熱交換器2aに向かって送風される吸い込み空気温度Taaとの冷媒出口温度差ΔTa(=Tra―Taa)が、予め設定された目標冷媒出口温度差ΔTa0となるように、第1の膨張弁3の開度を制御する。 Refrigerant outlet temperature difference ΔTa (= Tra−Taa) between the outlet temperature Tra of the refrigerant flowing out from the outlet of the internal heat exchanger 2a and the intake air temperature Taa blown toward the internal heat exchanger 2a by the internal fan 7a ) Controls the opening degree of the first expansion valve 3 so that the target refrigerant outlet temperature difference ΔTa0 is set in advance.
具体的には、冷媒出口温度差ΔTaが目標冷媒出口温度差ΔTa0よりも1K以上大きい場合は、第1の膨張弁3の開度を2パルス小さくして絞り量を大きくし、冷媒出口温度差ΔTaが目標冷媒出口温度差ΔTa0よりも1K以上小さい場合は、第1の膨張弁3の開度を2パルス大きくして絞り量を小さくする。 Specifically, when the refrigerant outlet temperature difference ΔTa is larger than the target refrigerant outlet temperature difference ΔTa0 by 1K or more, the opening degree of the first expansion valve 3 is decreased by two pulses to increase the throttle amount, and the refrigerant outlet temperature difference When ΔTa is smaller than the target refrigerant outlet temperature difference ΔTa0 by 1K or more, the opening degree of the first expansion valve 3 is increased by two pulses to reduce the throttle amount.
冷媒出口温度差ΔTaが目標冷媒出口温度差ΔTa0と±1K以内であれば、第1の膨張弁3の開度は変更しない。このような冷媒出口温度差ΔTaの比較と必要に応じた第1の膨張弁3の開度変更を30秒ごとに実施する。 If the refrigerant outlet temperature difference ΔTa is within ± 1K with the target refrigerant outlet temperature difference ΔTa0, the opening degree of the first expansion valve 3 is not changed. The comparison of the refrigerant outlet temperature difference ΔTa and the change of the opening degree of the first expansion valve 3 as necessary are performed every 30 seconds.
なお、目標温度差ΔTa0は、図15に示すように、例えば、庫内熱交換器2a内の温度と外気温度に基づいて決定され、庫内熱交換器2a内の温度が高いほど小さく、外気温度が高いほど小さく設定されるのが一般的である。 As shown in FIG. 15, the target temperature difference ΔTa0 is determined based on, for example, the temperature in the internal heat exchanger 2a and the outside air temperature, and decreases as the temperature in the internal heat exchanger 2a increases. Generally, the higher the temperature, the smaller is set.
図16に、冷却単独運転の場合における第1の膨張弁3の制御フローチャートを示す。 FIG. 16 shows a control flowchart of the first expansion valve 3 in the case of the cooling single operation.
庫内熱交換器2bまたは2cにおける冷媒の蒸発温度Tsatが、予め設定された目標蒸発温度Tsat0となるように、第1の膨張弁3の開度を制御する。具体的には、蒸発温度Tsatが目標蒸発温度Tsat0よりも0.5K以上大きい場合は、第1の膨張弁3の開度を1パルス小さくして絞り量を大きくし、蒸発温度Tsatが目標蒸発温度Tsat0よりも0.5K以上小さい場合は、第1の膨張弁3の開度を1パルス大きくして絞り量を小さくする。 The opening degree of the first expansion valve 3 is controlled such that the refrigerant evaporation temperature Tsat in the internal heat exchanger 2b or 2c becomes a preset target evaporation temperature Tsat0. Specifically, when the evaporation temperature Tsat is higher than the target evaporation temperature Tsat0 by 0.5K or more, the opening amount of the first expansion valve 3 is decreased by one pulse to increase the throttle amount, and the evaporation temperature Tsat becomes the target evaporation. When the temperature is lower than the temperature Tsat0 by 0.5K or more, the opening degree of the first expansion valve 3 is increased by one pulse to reduce the throttle amount.
蒸発温度Tsatが目標蒸発温度Tsat0と±0.5K以内であれば、第1の膨張弁3の開度は変更しない。このような蒸発温度Tsatの比較と必要に応じた第1の膨張弁3の開度変更を60秒ごとに実施する。 If the evaporation temperature Tsat is within ± 0.5K of the target evaporation temperature Tsat0, the opening degree of the first expansion valve 3 is not changed. Such comparison of the evaporation temperature Tsat and change of the opening of the first expansion valve 3 as necessary are performed every 60 seconds.
なお、目標蒸発温度Tsat0は、図10に示すように、例えば、庫内熱交換器2b内の温度と外気温度に基づいて決定され、庫内熱交換器2b内の温度が高いほど大きく、外気温度が高いほど小さく設定されるのが一般的である。 As shown in FIG. 10, the target evaporation temperature Tsat0 is determined based on, for example, the temperature in the internal heat exchanger 2b and the outside air temperature, and increases as the temperature in the internal heat exchanger 2b increases. Generally, the higher the temperature, the smaller is set.
これによって、高圧側を超臨界状態として庫内熱交換器2aの冷媒出口温度が庫内熱交換器2aに送風される空気の吸い込み温度近傍となるまで低下させ、庫内熱交換器2aにおける熱交換量を略最大化し、かつ高圧の過上昇を防止しながらも、蒸発器として動作する庫内熱交換器2bの蒸発温度を高圧側の動作圧力と略独立して、第2の冷却加温室102内の商品を冷却するために適切な温度とすることができるように作用し、第2の冷却加温室102内の商品の温度を冷却温度範囲(例えば、1〜5℃)内に保ちながら、ヒートポンプサイクル5の加熱に係るエネルギー消費効率を向上させ、庫内熱交換器2aによる加熱能力を略最大化させて加温ヒータ16aによる加熱量を最大限低減して、自動販売機
のエネルギー消費効率を向上させることができるという効果を奏する。
Thereby, the refrigerant outlet temperature of the internal heat exchanger 2a is lowered to the vicinity of the suction temperature of the air blown to the internal heat exchanger 2a by setting the high pressure side to a supercritical state, and the heat in the internal heat exchanger 2a is reduced. While the amount of exchange is substantially maximized and the excessive increase in high pressure is prevented, the evaporation temperature of the internal heat exchanger 2b operating as an evaporator is substantially independent of the operating pressure on the high pressure side, and the second cooling chamber It acts so that it can be set to an appropriate temperature for cooling the product in 102, while keeping the temperature of the product in the second cooling greenhouse 102 within a cooling temperature range (for example, 1 to 5 ° C.). The energy consumption efficiency of the vending machine is improved by improving the energy consumption efficiency related to the heating of the heat pump cycle 5, substantially maximizing the heating capacity of the internal heat exchanger 2a, and reducing the heating amount by the heating heater 16a to the maximum. Increase efficiency There is an effect that it is Rukoto.
以上のように、本発明にかかる自動販売機は、冷却と加熱とを同時にヒートポンプサイクルで行う場合に、冷却室を適温に保ちながらも、高圧を適度に上昇させて加熱能力を向上させ省エネルギー性に優れているため、複数の貯蔵室を備え、それぞれの貯蔵室にて冷却と加温を切り替えて行う機器に利用することができる。 As described above, in the vending machine according to the present invention, when cooling and heating are performed simultaneously in a heat pump cycle, while maintaining the cooling chamber at an appropriate temperature, the high pressure is appropriately increased to improve the heating capacity and save energy. Therefore, it can be used for equipment that includes a plurality of storage rooms and switches between cooling and heating in each storage room.
1 圧縮機
2a〜2c 庫内熱交換器
3 第1の膨張弁(第1減圧手段)
4 庫外熱交換器
5 ヒートポンプサイクル
6a〜6c 電磁弁
7a〜7c 庫内ファン
14 第2の膨張弁(第2減圧手段)
100 商品収納庫
101 第1の冷却加温室
102 第2の冷却加温室
103 冷却専用室
DESCRIPTION OF SYMBOLS 1 Compressor 2a-2c Internal heat exchanger 3 1st expansion valve (1st pressure reduction means)
4 External heat exchanger 5 Heat pump cycle 6a to 6c Solenoid valve 7a to 7c Internal fan 14 Second expansion valve (second decompression means)
100 Commodity storage 101 First cooling chamber 102 Second cooling chamber 103 Cooling room
Claims (3)
前記制御手段は、少なくとも1つの前記商品収納室が前記庫内熱交換器により加温され残りの少なくとも1つの前記商品収納室が前記庫内熱交換器により冷却されるHC運転モードにおいて、前記商品収納室を加温する前記庫内熱交換器を流通する空気の入口温度と前記商品収納室を加温する前記庫内熱交換器の冷媒の出口温度との差が一定で冷媒サイクルの高圧側が超臨界状態になるように前記第1減圧手段の絞り量を制御すると共に、前記商品収納室を冷却する前記庫内熱交換器の蒸発温度が所望の温度となるように制御することを特徴とする自動販売機。 A compressor, a plurality of in-compartment heat exchangers provided in each of a plurality of product storage chambers in the product storage, an in-compartment fan for blowing air to the in-compartment heat exchanger, a first decompression unit, and the outside of the storage A vending machine comprising a heat exchanger and control means, wherein carbon dioxide is used as a refrigerant, and at least one of the product storage chambers can be heated by the internal heat exchanger by switching the refrigerant flow path. There,
In the HC operation mode in which at least one of the product storage chambers is heated by the internal heat exchanger and the remaining at least one of the product storage chambers is cooled by the internal heat exchanger, The difference between the inlet temperature of the air flowing through the internal heat exchanger for heating the storage chamber and the outlet temperature of the refrigerant of the internal heat exchanger for heating the product storage chamber is constant, and the high pressure side of the refrigerant cycle is The throttle amount of the first pressure reducing means is controlled so as to be in a supercritical state, and the evaporation temperature of the internal heat exchanger for cooling the product storage chamber is controlled to be a desired temperature. Vending machine.
前記制御手段は、前記商品収納室を冷却する前記庫内熱交換器の蒸発温度が所望の温度となるように第2減圧手段の絞り量を制御することを特徴とする請求項1または2に記載の自動販売機。 A second pressure reducing means is provided in the refrigerant flow path, and the second pressure reducing means is arranged in series downstream of the first pressure reducing means,
3. The control device according to claim 1, wherein the control unit controls a throttle amount of the second decompression unit so that an evaporation temperature of the internal heat exchanger that cools the commodity storage chamber becomes a desired temperature. The vending machine described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014045887A JP2015170237A (en) | 2014-03-10 | 2014-03-10 | Automatic vending machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014045887A JP2015170237A (en) | 2014-03-10 | 2014-03-10 | Automatic vending machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015170237A true JP2015170237A (en) | 2015-09-28 |
Family
ID=54202887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014045887A Pending JP2015170237A (en) | 2014-03-10 | 2014-03-10 | Automatic vending machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015170237A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006125789A (en) * | 2004-11-01 | 2006-05-18 | Fuji Electric Holdings Co Ltd | Cooling device and automatic vending machine therewith |
JP2006153349A (en) * | 2004-11-29 | 2006-06-15 | Mitsubishi Electric Corp | Refrigeration and air conditioning device, and operation control method and refrigerant quantity control method for the same |
JP2006163785A (en) * | 2004-12-07 | 2006-06-22 | Fuji Electric Holdings Co Ltd | Cooling apparatus for vending machine |
JP2013084073A (en) * | 2011-10-07 | 2013-05-09 | Panasonic Corp | Automatic vending machine |
-
2014
- 2014-03-10 JP JP2014045887A patent/JP2015170237A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006125789A (en) * | 2004-11-01 | 2006-05-18 | Fuji Electric Holdings Co Ltd | Cooling device and automatic vending machine therewith |
JP2006153349A (en) * | 2004-11-29 | 2006-06-15 | Mitsubishi Electric Corp | Refrigeration and air conditioning device, and operation control method and refrigerant quantity control method for the same |
JP2006163785A (en) * | 2004-12-07 | 2006-06-22 | Fuji Electric Holdings Co Ltd | Cooling apparatus for vending machine |
JP2013084073A (en) * | 2011-10-07 | 2013-05-09 | Panasonic Corp | Automatic vending machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8549868B2 (en) | Refrigeration cycle apparatus | |
JP4592617B2 (en) | Cooling and heating device | |
KR101192346B1 (en) | Heat pump type speed heating apparatus | |
JP2007093100A (en) | Control method of heat pump water heater, and heat pump water heater | |
JP2012123786A (en) | Automatic vending machine | |
WO2015083392A1 (en) | Heat pump device | |
JP5150300B2 (en) | Heat pump type water heater | |
JP2013190906A (en) | Automatic vending machine | |
JP5901775B2 (en) | Refrigeration equipment | |
JP2010044678A (en) | Vending machine | |
JP5629366B2 (en) | Air conditioner, operation control method of air conditioner, and cooling system | |
JP2003214682A (en) | Brine temperature control apparatus using proportional control valve | |
JP4822874B2 (en) | Cooling and heating device | |
JP2015170237A (en) | Automatic vending machine | |
JP6326621B2 (en) | vending machine | |
JP2013084073A (en) | Automatic vending machine | |
JP5375333B2 (en) | vending machine | |
JP2010014386A (en) | Refrigerating device | |
JP6155466B2 (en) | Article cooling device and vending machine equipped with the same | |
KR101212686B1 (en) | Heat pump type speed heating apparatus | |
JP2023079334A (en) | refrigerator | |
JP6572444B2 (en) | vending machine | |
JP2010014387A (en) | Refrigerating device | |
JP2017181001A (en) | Air conditioning device | |
JP2016170691A (en) | Automatic vending machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20160519 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180306 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181002 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190402 |