JP6572444B2 - vending machine - Google Patents

vending machine Download PDF

Info

Publication number
JP6572444B2
JP6572444B2 JP2016047715A JP2016047715A JP6572444B2 JP 6572444 B2 JP6572444 B2 JP 6572444B2 JP 2016047715 A JP2016047715 A JP 2016047715A JP 2016047715 A JP2016047715 A JP 2016047715A JP 6572444 B2 JP6572444 B2 JP 6572444B2
Authority
JP
Japan
Prior art keywords
internal
refrigerant
cooling
evaporator
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016047715A
Other languages
Japanese (ja)
Other versions
JP2017162318A (en
Inventor
勇人 山内
勇人 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016047715A priority Critical patent/JP6572444B2/en
Publication of JP2017162318A publication Critical patent/JP2017162318A/en
Application granted granted Critical
Publication of JP6572444B2 publication Critical patent/JP6572444B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷媒回路(ヒートポンプ)を用いて、缶飲料等の商品を加温または冷却して販売する自動販売機に関するものである。   The present invention relates to a vending machine that sells products such as canned beverages heated or cooled using a refrigerant circuit (heat pump).

近年、自動販売機に対する消費電力量削減の要求が高まってきており、消費電力量削減手段として、冷却によって生じる廃熱あるいは外気の熱を利用して商品が保管された貯蔵庫を加温するものが提案されている(例えば、特許文献1、特許文献2参照)。   In recent years, there has been an increasing demand for power consumption reduction for vending machines, and as a means for reducing power consumption, there is one that uses a waste heat generated by cooling or heat of the outside air to heat a storage room in which products are stored. It has been proposed (see, for example, Patent Document 1 and Patent Document 2).

以下、図面を参照しながら特許文献1と特許文献2に開示された従来の自動販売機を説明する。   Hereinafter, conventional vending machines disclosed in Patent Document 1 and Patent Document 2 will be described with reference to the drawings.

図19に従来の自動販売機の冷媒回路図、図20に従来の自動販売機における全室を冷却する冷却運転時の冷媒流路を示す冷媒回路図、図21に従来の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室と冷却専用室を冷却する冷却加温運転時で庫外蒸発器に冷媒を流す場合の冷媒流路を示す冷媒回路図、図22に従来の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室と冷却専用室を冷却する冷却加温運転時で庫外蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図、図23に従来の自動販売機における第1の冷却加温室を庫内凝縮器で加温する加温運転時の冷媒流路を示す冷媒回路図を示す。   FIG. 19 is a refrigerant circuit diagram of a conventional vending machine, FIG. 20 is a refrigerant circuit diagram showing a refrigerant flow path during cooling operation for cooling all the rooms in the conventional vending machine, and FIG. Refrigerant circuit showing a refrigerant flow path in the case of flowing a refrigerant through the external evaporator during a cooling and heating operation in which the cooling chamber of 1 is heated by the condenser in the cabinet and the second cooling greenhouse and the cooling exclusive chamber are cooled. 22 and 22 show that the first cooling greenhouse in the conventional vending machine is heated by the condenser inside the cabinet and the second cooling greenhouse and the cooling exclusive chamber are cooled to the outside evaporator during the cooling and heating operation. FIG. 23 is a refrigerant circuit diagram showing a refrigerant flow path when no refrigerant is flown, and FIG. 23 shows a refrigerant flow path during a heating operation in which the first cooling greenhouse in the conventional vending machine is heated by the internal condenser. A circuit diagram is shown.

従来の自動販売機は、商品を収納する商品収納庫1と商品収納庫1の下部に配置された機械室(図示せず)を有する。   A conventional vending machine has a product storage 1 for storing products and a machine room (not shown) arranged in the lower part of the product storage 1.

商品収納庫1は、庫内が、収納する商品を冷却もしくは加温する第1の冷却加温室2、収納する商品を冷却もしくは加温する第2の冷却加温室3、収納する商品を冷却する冷却専用室4に区画されている。また、それぞれの商品収納室内には商品収納棚(図示せず)が上部に吊り下げられており、商品が内部に収納されている。   The product storage 1 has a first cooling greenhouse 2 that cools or warms the stored product, a second cooling greenhouse 3 that cools or warms the stored product, and cools the stored product. It is partitioned into a cooling chamber 4. In addition, in each product storage room, a product storage shelf (not shown) is suspended at the top, and the products are stored inside.

また、機械室には、圧縮機5と、圧縮機5から吐出された冷媒を凝縮させる庫外凝縮器40と、庫外蒸発器41と、庫外凝縮器40が風上側で庫外蒸発器41が風下側になるように庫外凝縮器40と庫外蒸発器41の近傍に位置して庫外凝縮器40または庫外蒸発器41の熱交換が促進されるように送風する庫外ファン26が配置される。   In the machine room, the compressor 5, the outside condenser 40 that condenses the refrigerant discharged from the compressor 5, the outside evaporator 41, and the outside condenser 40 are located on the windward side and the outside evaporator. An outside fan that is located in the vicinity of the outside condenser 40 and the outside evaporator 41 so that 41 is on the leeward side and blows air so that heat exchange between the outside condenser 40 or the outside evaporator 41 is promoted. 26 is arranged.

第1の冷却加温室2内には、庫外凝縮器40で凝縮した冷媒を蒸発させて第1の冷却加温室2内の商品を冷却する庫内蒸発器47と、圧縮機5から吐出された冷媒を凝縮させて第1の冷却加温室2内の商品を加温する庫内凝縮器46と、庫内蒸発器47と庫内凝縮器46の近傍に配置され、庫内蒸発器47または庫内凝縮器46と熱交換した空気を第1の冷却加温室2内で循環させる庫内ファン27と、庫内凝縮器46とは別に必要に応じて第1の冷却加温室2内の商品を加温する場合に通電されて発熱する加温ヒータ30と、第1の冷却加温室2の室内温度を検出する温度センサー(図示せず)が配置される。   In the first cooling greenhouse 2, the refrigerant condensed in the outside condenser 40 is evaporated to cool the products in the first cooling greenhouse 2 and discharged from the compressor 5. The inside condenser 46 for condensing the refrigerant to heat the product in the first cooling greenhouse 2, and the inside evaporator 47 and the inside condenser 46 are arranged in the vicinity of the inside evaporator 47 or Separately from the internal fan 27 for circulating the air heat-exchanged with the internal condenser 46 in the first cooling chamber 2 and the products in the first cooling chamber 2 as required separately from the internal condenser 46 A warming heater 30 that is energized to generate heat when warming and a temperature sensor (not shown) that detects the indoor temperature of the first cooling greenhouse 2 are arranged.

第2の冷却加温室3内には、庫外凝縮器40で凝縮(庫内凝縮器46に冷媒が流れている場合は、庫内凝縮器46と庫外凝縮器40で凝縮)した冷媒を蒸発させて第2の冷却加温室3内の商品を冷却する庫内蒸発器9と、庫内蒸発器9の近傍に配置され、庫内蒸発器9と熱交換した空気を第2の冷却加温室3内で循環させる庫内ファン28と、第2の冷却加温室3内の商品を加温する場合に通電されて発熱する加温ヒータ31と、第2の冷却加
温室3の室内温度を検出する温度センサー(図示せず)が配置される。
In the second cooling greenhouse 3, the refrigerant condensed by the external condenser 40 (condensed by the internal condenser 46 and the external condenser 40 when the refrigerant is flowing in the internal condenser 46) is stored. The internal evaporator 9 that cools the product in the second cooling greenhouse 3 by evaporating, and the air that is disposed in the vicinity of the internal evaporator 9 and exchanges heat with the internal evaporator 9 is subjected to the second cooling and heating. The internal fan 28 that circulates in the greenhouse 3, the heating heater 31 that is energized to heat the product in the second cooling greenhouse 3, and the indoor temperature of the second cooling greenhouse 3 A temperature sensor (not shown) for detection is arranged.

冷却専用室4内には、庫外凝縮器40で凝縮(庫内凝縮器46に冷媒が流れている場合は、庫内凝縮器46と庫外凝縮器40で凝縮)した冷媒を蒸発させて冷却専用室4内の商品を冷却する庫内蒸発器10と、庫内蒸発器10の近傍に配置され、庫内蒸発器10と熱交換した空気を冷却専用室4内で循環させる庫内ファン29と、冷却専用室4の室内温度を検出する温度センサー(図示せず)が配置される。   In the cooling exclusive chamber 4, the refrigerant condensed by the external condenser 40 (condensed by the internal condenser 46 and the external condenser 40 when the refrigerant is flowing in the internal condenser 46) is evaporated. The internal evaporator 10 that cools the product in the cooling exclusive chamber 4 and the internal fan that is disposed in the vicinity of the internal evaporator 10 and circulates the air exchanged with the internal evaporator 10 in the exclusive cooling chamber 4. 29 and a temperature sensor (not shown) for detecting the room temperature of the cooling-only chamber 4 are arranged.

庫内蒸発器47側と庫内蒸発器9,10側に冷媒流路を分岐する分岐点と、庫内蒸発器47との間の分岐流路には、第1の冷却加温室2の冷却が必要のため庫内蒸発器47に冷媒を流す時は開放状態になっており、第1の冷却加温室2の冷却が不要のため庫内蒸発器47に冷媒を流さない時は閉塞状態になっている分岐流路開閉手段としての電磁弁51が設けられる。   The first cooling chamber 2 is cooled at a branch point where the refrigerant flow path branches to the internal evaporator 47 side and the internal evaporators 9 and 10 side and the internal evaporator 47. Therefore, when the refrigerant flows through the internal evaporator 47, it is open, and since the cooling of the first cooling greenhouse 2 is not required, it is closed when the refrigerant does not flow through the internal evaporator 47. An electromagnetic valve 51 is provided as a branch flow path opening / closing means.

また、庫内蒸発器9側と庫内蒸発器10側に冷媒流路を分岐する分岐点には、庫内蒸発器9方向への冷媒の流路と庫内蒸発器10方向への冷媒の流路を切換えたり、両方の流路を同時に閉じたりすることが可能な分岐流路開閉手段としての三方弁42が設けられる。   In addition, at the branching point where the refrigerant flow path branches into the internal evaporator 9 side and the internal evaporator 10 side, the refrigerant flow path toward the internal evaporator 9 and the refrigerant flow toward the internal evaporator 10 are provided. A three-way valve 42 is provided as a branch channel opening / closing means capable of switching the channel or closing both channels simultaneously.

電磁弁51と庫内蒸発器47との間の冷媒の流路には庫内蒸発器47に流れる冷媒を減圧する膨張機構43が設けられ、三方弁42と庫内蒸発器9との間の冷媒の流路には庫内蒸発器9に流れる冷媒を減圧する膨張機構44が設けられ、三方弁42と庫内蒸発器10との間の冷媒の流路には、三方弁42から庫内蒸発器10方向に流れる冷媒を減圧する膨張機構45が設けられる。   The refrigerant flow path between the electromagnetic valve 51 and the internal evaporator 47 is provided with an expansion mechanism 43 that depressurizes the refrigerant flowing through the internal evaporator 47, and is provided between the three-way valve 42 and the internal evaporator 9. The refrigerant flow path is provided with an expansion mechanism 44 for reducing the pressure of the refrigerant flowing into the internal evaporator 9. The refrigerant flow path between the three-way valve 42 and the internal evaporator 10 is connected to the internal passage from the three-way valve 42. An expansion mechanism 45 for reducing the pressure of the refrigerant flowing in the direction of the evaporator 10 is provided.

庫内蒸発器9の冷媒の出口側は、膨張機構45と庫内蒸発器10とを接続する冷媒の配管に接続されており、庫内蒸発器9から流出した冷媒が庫内蒸発器10に流入するように構成されている。   The refrigerant outlet side of the internal evaporator 9 is connected to a refrigerant pipe connecting the expansion mechanism 45 and the internal evaporator 10, and the refrigerant that has flowed out of the internal evaporator 9 enters the internal evaporator 10. It is configured to flow in.

圧縮機5の吐出側の冷媒配管には、庫内凝縮器46で第1の冷却加温室2内の商品を加温する時に圧縮機5から吐出された冷媒を庫内凝縮器46を経由させてから庫外凝縮器40に流し、第1の冷却加温室2内の商品を加温しない時に圧縮機5から吐出された冷媒を庫内凝縮器46を経由させずに庫外凝縮器40に流す庫内凝縮器用流路切替手段としての四方切換弁49が設けられる。   The refrigerant pipe on the discharge side of the compressor 5 causes the refrigerant discharged from the compressor 5 to pass through the internal condenser 46 when the product in the first cooling greenhouse 2 is heated by the internal condenser 46. Then, the refrigerant discharged from the compressor 5 when flowing into the external condenser 40 and not warming the product in the first cooling greenhouse 2 is not passed through the internal condenser 46 to the external condenser 40. A four-way switching valve 49 is provided as a flow path switching means for the internal condenser to flow.

第1の冷却加温室2の庫内凝縮器46の冷媒の出口側と四方切換弁49との間の冷媒配管には、庫内凝縮器46で凝縮した冷媒を減圧する膨張機構48が設けられる。   An expansion mechanism 48 for reducing the pressure of the refrigerant condensed in the internal condenser 46 is provided in the refrigerant pipe between the refrigerant outlet side of the internal condenser 46 of the first cooling greenhouse 2 and the four-way switching valve 49. .

また、機械室において、庫外蒸発器41は、庫外凝縮器40の冷媒の出口と、庫内蒸発器47側と庫内蒸発器9,10側に冷媒流路を分岐する分岐点との間の冷媒配管(庫外凝縮器40の冷媒の出口側の冷媒配管)と圧縮機5の吸い込み側配管とをバイパスするバイパス流路に設けられる。   In the machine room, the outside evaporator 41 includes a refrigerant outlet of the outside condenser 40, and a branch point that branches the refrigerant flow path to the inside evaporator 47 side and the inside evaporators 9 and 10 side. It is provided in the bypass flow path which bypasses the refrigerant | coolant piping (refrigerant piping of the exit side of the refrigerant | coolant of the condenser 40 outside a warehouse) and the suction side piping of the compressor 5 between.

庫外蒸発器41の冷媒の入り口側(バイパス流路の冷媒の入り口側)にはバイパス流路を開閉するバイパス流路開閉手段としての電磁弁52が設けられる。   An electromagnetic valve 52 as a bypass channel opening / closing means for opening and closing the bypass channel is provided on the refrigerant inlet side of the external evaporator 41 (the refrigerant inlet side of the bypass channel).

また、電磁弁52と庫外蒸発器41との間のバイパス流路には、庫内凝縮器46と庫外凝縮器40で凝縮してバイパス流路に流入した冷媒を減圧するバイパス流路膨張手段としての膨張機構53が設けられる。   In addition, in the bypass flow path between the electromagnetic valve 52 and the external evaporator 41, a bypass flow path expansion that decompresses the refrigerant condensed in the internal condenser 46 and the external condenser 40 and flowing into the bypass flow path. An expansion mechanism 53 is provided as a means.

バイパス流路開閉手段としての電磁弁52は、圧縮機5から吐出された冷媒が庫内凝縮
器46を経由して庫外凝縮器40に流れる場合にのみ開放される。
The electromagnetic valve 52 as the bypass flow path opening / closing means is opened only when the refrigerant discharged from the compressor 5 flows to the outside condenser 40 via the inside condenser 46.

庫内蒸発器47の冷媒の出口側の分岐流路と庫内蒸発器10の冷媒の出口側の分岐流路とが合流する合流点と圧縮機5の吸い込み側との間の冷媒配管と、庫内凝縮器46で凝縮した冷媒を減圧する膨張機構48と四方切換弁49との間の冷媒配管とは、電磁弁50を介して接続されている。   A refrigerant pipe between a confluence point where a branch flow path on the refrigerant outlet side of the internal evaporator 47 and a branch flow path on the refrigerant outlet side of the internal evaporator 10 merge and the suction side of the compressor 5; A refrigerant pipe between the expansion mechanism 48 for reducing the pressure of the refrigerant condensed by the internal condenser 46 and the four-way switching valve 49 is connected via an electromagnetic valve 50.

庫外凝縮器40と庫外蒸発器41は、それぞれ、互いに間隔をあけて平行に並べられた複数のフィンと、そのフィンの両側に配置されたエンドプレートとを配管が貫通する熱交換器であり、庫外凝縮器40用のエンドプレートと庫外蒸発器41用のエンドプレートとは繋がっているが、庫外凝縮器40用の配管が貫通するフィンと庫外蒸発器41用の配管が貫通するフィンとは繋がっていない。   Each of the outside condenser 40 and the outside evaporator 41 is a heat exchanger in which piping passes through a plurality of fins arranged in parallel and spaced apart from each other and end plates arranged on both sides of the fins. Yes, the end plate for the external condenser 40 and the end plate for the external evaporator 41 are connected, but the fin through which the pipe for the external condenser 40 passes and the pipe for the external evaporator 41 are connected. It is not connected to the penetrating fin.

つまり、庫外凝縮器40と庫外蒸発器41は、フィンが別々でエンドプレートを共用するように一体化した2パスの熱交換器であり、庫外ファン26が運転された場合に、庫外凝縮器40用の配管が風上側で、庫外蒸発器41用の配管が風下側になるように配置される。   That is, the external condenser 40 and the external evaporator 41 are two-pass heat exchangers that are integrated so that the fins are separate and share the end plate, and when the external fan 26 is operated, It arrange | positions so that piping for the outer condenser 40 may be on the leeward side, and piping for the outside evaporator 41 may be on the leeward side.

また、庫外凝縮器40用の配管と庫外蒸発器41用の配管は、それぞれ、配管内を冷媒が概ね上から下に向かって流れるように構成される。   The piping for the outside condenser 40 and the piping for the outside evaporator 41 are each configured such that the refrigerant flows in the piping from the top to the bottom.

ここで、一般的な自動販売機においては、第2の冷却加温室3が最も狭い部屋となる場合が多く、第2の冷却加温室3内に設置している庫内蒸発器9についても、第1の冷却加温室2内に設置している庫内蒸発器47、冷却専用室4内に設置している庫内蒸発器9よりも小型となっている。   Here, in a general vending machine, the second cooling greenhouse 3 is often the narrowest room, and the internal evaporator 9 installed in the second cooling greenhouse 3 It is smaller than the internal evaporator 47 installed in the first cooling greenhouse 2 and the internal evaporator 9 installed in the cooling chamber 4.

そのために、庫内蒸発器9単独のみでの蒸発能力を確保するためには膨張機構44を大きくして蒸発温度を大きく下げる必要があり、そうすれば圧縮機5の効率が低下し消費電力量が増大してしまう。   Therefore, in order to ensure the evaporation capability of the internal evaporator 9 alone, it is necessary to enlarge the expansion mechanism 44 to greatly lower the evaporation temperature, which reduces the efficiency of the compressor 5 and reduces the power consumption. Will increase.

そのため、庫内蒸発器9の冷媒の出口と庫内蒸発器10の冷媒の入り口とを接続し、庫内蒸発器9と庫内蒸発器10を一つの大きな蒸発器として取り扱えるようにすることにより、蒸発温度を高くして、効率を高めて消費電力量を低減できるようにしている。   Therefore, by connecting the refrigerant outlet of the internal evaporator 9 and the refrigerant inlet of the internal evaporator 10 so that the internal evaporator 9 and the internal evaporator 10 can be handled as one large evaporator. The evaporating temperature is raised to increase the efficiency and reduce the power consumption.

以上のように構成された従来の自動販売機について、以下その動作を説明する。   The operation of the conventional vending machine configured as described above will be described below.

まず、第1の冷却加温室2、第2の冷却加温室3、冷却専用室4の全室を冷却する冷却運転の場合は、図20の太線の冷媒流路を矢印の向きに冷媒が流れる運転となる。   First, in the case of a cooling operation for cooling all of the first cooling greenhouse 2, the second cooling greenhouse 3, and the cooling exclusive chamber 4, the refrigerant flows in the direction of the arrow in the thick refrigerant path of FIG. It becomes driving.

全室冷却運転の場合は、四方切換弁49を、圧縮機5の吐出配管と庫外凝縮器40とが連通し、且つ庫内凝縮器46の冷媒の入口と庫内凝縮器46の冷媒の出口が連通して閉ループとなる状態にするとともに、三方弁42は庫内蒸発器9用の膨張機構44への流路を開放し庫内蒸発器10用の膨張機構45への流路を閉塞する状態にし、電磁弁51を開放し、電磁弁52を閉塞し、圧縮機5を起動する。   In the all-chamber cooling operation, the four-way switching valve 49 is connected to the discharge pipe of the compressor 5 and the external condenser 40, and the refrigerant inlet of the internal condenser 46 and the refrigerant of the internal condenser 46 are connected. The outlet communicates with the closed loop, and the three-way valve 42 opens the flow path to the expansion mechanism 44 for the internal evaporator 9 and closes the flow path to the expansion mechanism 45 for the internal evaporator 10. The solenoid valve 51 is opened, the solenoid valve 52 is closed, and the compressor 5 is started.

圧縮機5から吐出された高温高圧のガス状の冷媒は、四方切換弁49を通過して庫外凝縮器40で冷却されて凝縮した後に、三方弁42側と電磁弁51側に分かれる。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the four-way switching valve 49 and is cooled and condensed by the external condenser 40, and then is divided into the three-way valve 42 side and the electromagnetic valve 51 side. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40.

そして、三方弁42から膨張機構44側に流れた液状の冷媒は、膨張機構44にて減圧された後に庫内蒸発器9で蒸発気化して第2の冷却加温室3を冷却する。なお、庫内蒸発器9に冷媒が流れている時には、庫内ファン28が庫内蒸発器9に送風している。   The liquid refrigerant flowing from the three-way valve 42 toward the expansion mechanism 44 is reduced in pressure by the expansion mechanism 44 and then evaporated and evaporated in the internal evaporator 9 to cool the second cooling greenhouse 3. When the refrigerant is flowing through the internal evaporator 9, the internal fan 28 blows air to the internal evaporator 9.

また、庫内蒸発器9で蒸発できなかった余剰な液冷媒は、庫内蒸発器9と直列に接続された庫内蒸発器10で蒸発して冷却専用室4も冷却する(直列冷却運転)。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。   The excess liquid refrigerant that could not be evaporated by the internal evaporator 9 is evaporated by the internal evaporator 10 connected in series with the internal evaporator 9 to cool the cooling exclusive chamber 4 (series cooling operation). . When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

その後、第2の冷却加温室3の温度が目標温度(冷却温度範囲の下限値)に達した時点で、三方弁42から膨張機構45へと冷媒が流れるように三方弁42を切り換えることにより、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却を行う(下流側単独冷却運転)。   Thereafter, when the temperature of the second cooling greenhouse 3 reaches the target temperature (the lower limit value of the cooling temperature range), the three-way valve 42 is switched so that the refrigerant flows from the three-way valve 42 to the expansion mechanism 45, Of the internal evaporator 9 and the internal evaporator 10, only the internal evaporator 10 is cooled alone (downstream independent cooling operation).

このように優先的に直列冷却運転を行うことで、余剰液冷媒によって冷却専用室4も冷却されることから下流側単独冷却運転の運転率を低下することができ、消費電力量を低減することができる。   By performing the serial cooling operation preferentially in this way, the cooling exclusive chamber 4 is also cooled by the surplus liquid refrigerant, so that the operating rate of the downstream side single cooling operation can be reduced and the power consumption can be reduced. Can do.

一方、電磁弁51から膨張機構43側に流れた液状の冷媒は、膨張機構43にて減圧された後に庫内蒸発器47で蒸発気化して第1の冷却加温室2を冷却する。なお、庫内蒸発器47に冷媒が流れている時には、庫内ファン27が庫内蒸発器47に送風している。   On the other hand, the liquid refrigerant that has flowed from the solenoid valve 51 to the expansion mechanism 43 side is decompressed by the expansion mechanism 43 and then evaporated and evaporated by the internal evaporator 47 to cool the first cooling greenhouse 2. When the refrigerant is flowing through the internal evaporator 47, the internal fan 27 blows air to the internal evaporator 47.

そして、庫内蒸発器10から流出したガス状の冷媒と庫内蒸発器47から流出したガス状の冷媒が合流して圧縮機5に戻る。   The gaseous refrigerant that has flowed out of the internal evaporator 10 and the gaseous refrigerant that has flowed out of the internal evaporator 47 join together and return to the compressor 5.

そして、制御手段(図示せず)が、第1の冷却加温室2、第2の冷却加温室3、冷却専用室4の各室内の温度が予め設定された冷却温度範囲内を維持するように、三方弁42の切換え、電磁弁51の開閉、圧縮機5と庫外ファン26と庫内ファン27,28,29の運転を制御している。   And a control means (not shown) maintains the temperature in each room | chamber interior of the 1st cooling greenhouse 2, the 2nd cooling greenhouse 3, and the cooling exclusive room 4 within the preset cooling temperature range. The switching of the three-way valve 42, the opening and closing of the electromagnetic valve 51, and the operation of the compressor 5, the external fan 26, and the internal fans 27, 28, 29 are controlled.

例えば、第1の冷却加温室2が、冷却温度範囲の下限値となる所定温度まで冷却されると、電磁弁51を閉塞すると共に庫内ファン27を停止する。そして、電磁弁51が閉塞している状態で、第1の冷却加温室2内の温度が冷却温度範囲の上限値となる所定温度まで上昇すると、電磁弁51を開放すると共に庫内ファン27を運転する。   For example, when the first cooling greenhouse 2 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the electromagnetic valve 51 is closed and the internal fan 27 is stopped. And when the temperature in the 1st cooling greenhouse 2 rises to the predetermined temperature used as the upper limit of a cooling temperature range in the state which the solenoid valve 51 has obstruct | occluded, while opening the solenoid valve 51, the internal fan 27 is made to open. drive.

もし、第1の冷却加温室2が、冷却温度範囲の下限値となる所定温度まで冷却された時に、三方弁42の両方の冷媒の出口が閉塞状態であれば、電磁弁51を閉塞すると共に圧縮機5と庫内ファン27を停止し、圧縮機5の停止中に第1の冷却加温室2内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、電磁弁51を開放すると共に圧縮機5を起動し庫内ファン27を運転する。   If the outlet of both refrigerants of the three-way valve 42 is closed when the first cooling chamber 2 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the electromagnetic valve 51 is closed. If the compressor 5 and the internal fan 27 are stopped, and the temperature in the first cooling greenhouse 2 rises to a predetermined temperature that is the upper limit value of the cooling temperature range while the compressor 5 is stopped, the solenoid valve 51 is opened. At the same time, the compressor 5 is started and the internal fan 27 is operated.

また、第2の冷却加温室3が冷却温度範囲の下限値となる所定温度まで冷却されると、膨張機構44への流路を閉塞し膨張機構45への流路を開放する状態に三方弁42を切換えて、庫内ファン28を停止する。また、圧縮機5の停止中に第2の冷却加温室3内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構44への流路を開放し膨張機構45への流路を閉鎖する状態に三方弁42を切換えて、圧縮機5を起動し、庫内ファン28を運転する。   Further, when the second cooling chamber 3 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the three-way valve is brought into a state in which the flow path to the expansion mechanism 44 is closed and the flow path to the expansion mechanism 45 is opened. 42 is switched and the internal fan 28 is stopped. If the temperature in the second cooling greenhouse 3 rises to a predetermined temperature that is the upper limit value of the cooling temperature range while the compressor 5 is stopped, the flow path to the expansion mechanism 44 is opened and the expansion mechanism 45 is connected. The three-way valve 42 is switched to a state in which the flow path is closed, the compressor 5 is started, and the internal fan 28 is operated.

また、三方弁42が膨張機構44への流路を閉塞し膨張機構45への流路を開放して、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却(下流側単独冷却運転)をしている状態で、第2の冷却加温室3内の温度が冷却温度範囲の上限値となる所定
温度まで上昇すれば、膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態に三方弁42を切り換えて、庫内ファン28を運転する。
Further, the three-way valve 42 closes the flow path to the expansion mechanism 44 and opens the flow path to the expansion mechanism 45 so that only the internal evaporator 10 out of the internal evaporator 9 and the internal evaporator 10 is cooled alone. When the temperature in the second cooling greenhouse 3 rises to a predetermined temperature that is the upper limit value of the cooling temperature range in the state where the downstream single cooling operation is performed, the flow path to the expansion mechanism 44 is opened. The internal fan 28 is operated by switching the three-way valve 42 to a state in which the flow path to the expansion mechanism 45 is closed.

また、庫内蒸発器9と庫内蒸発器10の直列冷却運転から庫内蒸発器10のみの下流側単独冷却運転への移行後に、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却された時に、電磁弁51が開放状態であれば、三方弁42の膨張機構45側の冷媒の出口を閉塞して庫内ファン29を停止し、電磁弁51が閉塞状態であれば、三方弁42の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、圧縮機5も停止する。   In addition, after the transition from the series cooling operation of the internal evaporator 9 and the internal evaporator 10 to the downstream single cooling operation of only the internal evaporator 10, the predetermined temperature at which the cooling exclusive chamber 4 becomes the lower limit value of the cooling temperature range If the solenoid valve 51 is in an open state when it is cooled down, the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 is closed to stop the internal fan 29, and if the solenoid valve 51 is in a closed state, In addition to closing the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 and stopping the internal fan 29, the compressor 5 also stops.

また、圧縮機5の停止中に冷却専用室4内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態に三方弁42を切り換えて、圧縮機5を起動し、庫内ファン29を運転する。   If the temperature in the cooling chamber 4 rises to a predetermined temperature that is the upper limit value of the cooling temperature range while the compressor 5 is stopped, the flow path to the expansion mechanism 44 is opened and the flow path to the expansion mechanism 45 is opened. The three-way valve 42 is switched to the closed state, the compressor 5 is started, and the internal fan 29 is operated.

また、三方弁42の両方の冷媒の出口が閉塞状態、電磁弁51が開放状態で、圧縮機5が運転中に、冷却専用室4内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構44への流路を開放する状態に三方弁42を切り換えて、庫内ファン29を運転する。   Further, when both the refrigerant outlets of the three-way valve 42 are closed, the electromagnetic valve 51 is open, and the compressor 5 is in operation, the temperature in the cooling chamber 4 reaches a predetermined temperature at which the upper limit of the cooling temperature range is reached. If it rises, the three-way valve 42 is switched to a state where the flow path to the expansion mechanism 44 is opened, and the internal fan 29 is operated.

なお、圧縮機5の起動時には、予め、三方弁42は膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態にし、電磁弁51を開放し、電磁弁52を閉塞する。   When the compressor 5 is started, the three-way valve 42 opens the flow path to the expansion mechanism 44 and closes the flow path to the expansion mechanism 45 in advance, opens the electromagnetic valve 51, and closes the electromagnetic valve 52. To do.

そして、圧縮機5を停止した時は、冷媒回路の高低圧をバランスさせるために、三方弁42の膨張機構44側の冷媒の出口または膨張機構45側の冷媒の出口を開放する際には、庫内凝縮器46の冷媒の出口と圧縮機5の吸い込み側(吸入側)配管とを連通させる。   And when the compressor 5 is stopped, in order to balance the high and low pressure of the refrigerant circuit, when opening the refrigerant outlet on the expansion mechanism 44 side or the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42, The refrigerant outlet of the internal condenser 46 and the suction side (suction side) piping of the compressor 5 are communicated with each other.

そして、冷媒回路の高低圧がバランスした後に、三方弁42の冷媒の出口を閉塞する。   Then, after the high and low pressures of the refrigerant circuit are balanced, the refrigerant outlet of the three-way valve 42 is closed.

このことによって、圧縮機5の停止中に冷却運転で使用しない庫内凝縮器46へと余剰な冷媒を貯留する事ができるので、冷却運転中における冷媒量過多を防止することが可能となる。また、電磁弁50を常時開放することで、四方切換弁49で冷媒が漏れることによって庫内凝縮器46へと冷媒が貯留され続けて冷媒不足状態に陥ることを防ぐことができる。   As a result, excess refrigerant can be stored in the internal condenser 46 that is not used in the cooling operation while the compressor 5 is stopped, so that it is possible to prevent an excessive amount of refrigerant during the cooling operation. Further, by always opening the electromagnetic valve 50, it is possible to prevent the refrigerant from being continuously stored in the internal condenser 46 due to the leakage of the refrigerant through the four-way switching valve 49 and falling into a refrigerant shortage state.

なお、第1の冷却加温室2を加温運転から冷却運転に切換えた時や高外気温度でのイニシャルプルダウン時など、庫内の温度が高く、大きな冷凍能力を必要とする場合においては、圧縮機5の運転・停止にかかわらず常に電磁弁50を開放して、庫内凝縮器46の冷媒の出口と圧縮機5の吸い込み側(吸入側)配管とを連通すれば、全冷媒を冷却運転に利用できるので、大きな冷凍能力を得る事ができ、プルダウン時間を短縮することが可能となる。   When the first cooling greenhouse 2 is switched from the heating operation to the cooling operation or at the initial pull-down at a high outside air temperature, when the inside temperature is high and a large refrigerating capacity is required, the compression is performed. Regardless of whether the machine 5 is operated or stopped, the solenoid valve 50 is always opened so that the refrigerant outlet of the internal condenser 46 and the suction side (suction side) pipe of the compressor 5 communicate with each other. Therefore, a large refrigeration capacity can be obtained and the pull-down time can be shortened.

次に、第1の冷却加温室2を加温し、第2の冷却加温室3、冷却専用室4を冷却する冷却加温運転の場合は、大まかに説明すると、第1の冷却加温室2の庫内温度が所定の庫内上限温度(加熱終了温度)に達するまで、または、圧縮機5の吐出圧力が所定の圧縮機過負荷圧力に達するまでは、バイパス流路の電磁弁52を開放した図21の太線の冷媒流路を矢印の向きに冷媒が流れる。   Next, in the case of the cooling and heating operation in which the first cooling greenhouse 2 is heated and the second cooling greenhouse 3 and the cooling exclusive chamber 4 are cooled, the first cooling greenhouse 2 will be roughly described. Until the internal chamber temperature reaches a predetermined internal upper limit temperature (heating end temperature) or until the discharge pressure of the compressor 5 reaches the predetermined compressor overload pressure, the solenoid valve 52 of the bypass flow path is opened. The refrigerant flows in the direction of the arrow through the thick refrigerant passage in FIG.

その後、もし、圧縮機5の吐出圧力が所定の圧縮機過負荷圧力に達した場合は、バイパス流路の電磁弁52を閉塞して、冷媒が、図22の太線の冷媒流路を矢印の向きに流れるようにする。   Thereafter, if the discharge pressure of the compressor 5 reaches a predetermined compressor overload pressure, the solenoid valve 52 of the bypass flow path is closed, and the refrigerant passes through the thick refrigerant path of the arrow in FIG. Make it flow in the direction.

圧縮機5の吐出圧力が所定の圧縮機過負荷圧力に達したことにより、バイパス流路の電磁弁52を閉塞した後、圧縮機5の吐出圧力が圧縮機過負荷圧力より低い所定の圧縮機通常圧力(再開放圧力)に低下すれば、バイパス流路の電磁弁52を開放して、再び、冷媒が、図21の太線の冷媒流路を矢印の向きに流れるようにする。   After the discharge pressure of the compressor 5 has reached a predetermined compressor overload pressure, the electromagnetic valve 52 in the bypass flow path is closed, and then the predetermined compressor whose discharge pressure of the compressor 5 is lower than the compressor overload pressure. When the pressure is reduced to the normal pressure (reopen pressure), the solenoid valve 52 of the bypass flow path is opened so that the refrigerant flows again in the direction of the arrow in the thick refrigerant path of FIG.

詳細に説明すると、第1の冷却加温室2を加温し、第2の冷却加温室3、冷却専用室4を冷却する冷却加温運転を開始する場合は、図21に示すように、四方切換弁49を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通し、且つ庫内凝縮器46の冷媒の出口と庫外凝縮器40とが連通する状態にするとともに、三方弁42は膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態にし、電磁弁51を閉塞し、電磁弁52を開放し、圧縮機5を起動する。   More specifically, when starting the cooling and heating operation for heating the first cooling greenhouse 2 and cooling the second cooling greenhouse 3 and the cooling exclusive chamber 4, as shown in FIG. The switching valve 49 is in a state where the discharge pipe of the compressor 5 communicates with the refrigerant inlet of the internal condenser 46, and the refrigerant outlet of the internal condenser 46 communicates with the external condenser 40. The three-way valve 42 opens the flow path to the expansion mechanism 44 and closes the flow path to the expansion mechanism 45, closes the electromagnetic valve 51, opens the electromagnetic valve 52, and starts the compressor 5.

圧縮機5から吐出された高温高圧のガス状の冷媒は、四方切換弁49を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。なお、庫内凝縮器46に冷媒が流れている時には、庫内ファン27が庫内凝縮器46に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the four-way switching valve 49 and then travels to the internal condenser 46 and is partially condensed by the internal condenser 46. The inside of the first cooling greenhouse 2 is heated by releasing heat to the air around the condenser 46. When the refrigerant is flowing through the internal condenser 46, the internal fan 27 blows air to the internal condenser 46.

そして、庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に四方切換弁49を通過して庫外凝縮器40にて更に凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。   The refrigerant exiting the internal condenser 46 is decompressed by the expansion mechanism 48, passes through the four-way switching valve 49, and is further condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40.

庫外凝縮器40から流出した冷媒は、三方弁42から庫内蒸発器9用の膨張機構44側に流れるものと、バイパス流路に分岐して電磁弁52から膨張機構53側に流れるものとに分かれる。   The refrigerant that has flowed out of the external condenser 40 flows from the three-way valve 42 to the expansion mechanism 44 side for the internal evaporator 9, and the refrigerant that branches to the bypass flow path and flows from the electromagnetic valve 52 to the expansion mechanism 53 side. Divided into

三方弁42から庫内蒸発器9用の膨張機構44側に流れた冷媒は、膨張機構44にて減圧された後に庫内蒸発器9で蒸発気化して第2の冷却加温室3を冷却する。なお、庫内蒸発器9に冷媒が流れている時には、庫内ファン28が庫内蒸発器9に送風している。   The refrigerant that has flowed from the three-way valve 42 toward the expansion mechanism 44 for the internal evaporator 9 is decompressed by the expansion mechanism 44 and then evaporated and evaporated in the internal evaporator 9 to cool the second cooling greenhouse 3. . When the refrigerant is flowing through the internal evaporator 9, the internal fan 28 blows air to the internal evaporator 9.

庫内蒸発器9で蒸発できなかった余剰な液冷媒は、庫内蒸発器9と直列に接続された庫内蒸発器10で蒸発して冷却専用室4も冷却する(直列冷却運転)。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。   The excess liquid refrigerant that could not be evaporated by the internal evaporator 9 is evaporated by the internal evaporator 10 connected in series with the internal evaporator 9 to cool the cooling exclusive chamber 4 (series cooling operation). When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

その後、第2の冷却加温室3の温度が目標温度(冷却温度範囲の下限値)に達した時点で庫内蒸発器10用の膨張機構45へと冷媒が流入するように三方弁42を切り換えることで、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却を行う(下流側単独冷却運転)。   Thereafter, when the temperature of the second cooling greenhouse 3 reaches the target temperature (the lower limit value of the cooling temperature range), the three-way valve 42 is switched so that the refrigerant flows into the expansion mechanism 45 for the internal evaporator 10. Thus, only the internal evaporator 10 out of the internal evaporator 9 and the internal evaporator 10 is cooled alone (downstream single cooling operation).

このように優先的に直列冷却運転を行うことで、余剰液冷媒によって冷却専用室4も冷却されることから下流側単独冷却運転の運転率を低下することができ、消費電力量を低減することができる。   By performing the serial cooling operation preferentially in this way, the cooling exclusive chamber 4 is also cooled by the surplus liquid refrigerant, so that the operating rate of the downstream side single cooling operation can be reduced and the power consumption can be reduced. Can do.

一方、バイパス流路に分岐して電磁弁52から膨張機構53側に流れた冷媒は、膨張機構53にて減圧された後に庫外蒸発器41で蒸発気化する。   On the other hand, the refrigerant branched into the bypass flow path and flowing from the electromagnetic valve 52 to the expansion mechanism 53 side is evaporated by the external evaporator 41 after being decompressed by the expansion mechanism 53.

そして、庫内蒸発器10から流出したガス状の冷媒と、庫外蒸発器41から流出したガス状の冷媒とが合流して、圧縮機5に戻る。   Then, the gaseous refrigerant that has flowed out of the internal evaporator 10 and the gaseous refrigerant that has flowed out of the external evaporator 41 merge and return to the compressor 5.

その後、もし、圧縮機5の吐出圧力が所定の圧縮機過負荷圧力に達した場合は、制御手段(図示せず)は、バイパス流路の電磁弁52を閉塞する。   Thereafter, if the discharge pressure of the compressor 5 reaches a predetermined compressor overload pressure, the control means (not shown) closes the electromagnetic valve 52 in the bypass flow path.

ここで、圧縮機5の吐出圧力検知手段としては、吐出配管上に設けて直接冷媒の圧力を測定する圧力センサ、吐出配管上に設けたサーミスタなどが挙げられる。   Here, examples of the discharge pressure detection means of the compressor 5 include a pressure sensor that is provided on the discharge pipe and directly measures the pressure of the refrigerant, a thermistor provided on the discharge pipe, and the like.

ただし、圧縮機5の吐出圧力は凝縮温度の形で熱交換器近傍の配管温度にて近似することが可能であり、また、凝縮温度のように温度が高い状態においては圧力損失による温度変化が非常に小さい(1〜2℃程度)ことから、庫内凝縮器46近傍の配管上の温度をサーミスタなどにより検知を行うことで低コストでの実現が可能となる。   However, the discharge pressure of the compressor 5 can be approximated by the piping temperature in the vicinity of the heat exchanger in the form of the condensation temperature, and in a state where the temperature is high such as the condensation temperature, the temperature change due to the pressure loss does not occur. Since it is very small (about 1 to 2 ° C.), it can be realized at low cost by detecting the temperature on the pipe in the vicinity of the internal condenser 46 with a thermistor or the like.

バイパス流路の電磁弁52が閉塞している時は、図22の太線の冷媒流路を矢印の向きに冷媒が流れる。   When the solenoid valve 52 in the bypass channel is closed, the coolant flows in the direction of the arrow through the thick coolant channel in FIG.

圧縮機5から吐出された高温高圧のガス状の冷媒は、四方切換弁49を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。なお、庫内凝縮器46に冷媒が流れている時には、庫内ファン27が庫内凝縮器46に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the four-way switching valve 49 and then travels to the internal condenser 46 and is partially condensed by the internal condenser 46. The inside of the first cooling greenhouse 2 is heated by releasing heat to the air around the condenser 46. When the refrigerant is flowing through the internal condenser 46, the internal fan 27 blows air to the internal condenser 46.

そして、庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に四方切換弁49を通過して庫外凝縮器40にて更に凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。   The refrigerant exiting the internal condenser 46 is decompressed by the expansion mechanism 48, passes through the four-way switching valve 49, and is further condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40.

庫外凝縮器40から流出した冷媒は、バイパス流路の電磁弁52が閉塞しているため、全て、三方弁42から庫内蒸発器9用の膨張機構44側に流れ、膨張機構44にて減圧された後に庫内蒸発器9で蒸発気化して第2の冷却加温室3を冷却する。なお、庫内蒸発器9に冷媒が流れている時には、庫内ファン28が庫内蒸発器9に送風している。   The refrigerant flowing out of the external condenser 40 flows from the three-way valve 42 to the expansion mechanism 44 side for the internal evaporator 9 because the solenoid valve 52 in the bypass flow path is closed. After being depressurized, the second cooling greenhouse 3 is cooled by evaporating with the internal evaporator 9. When the refrigerant is flowing through the internal evaporator 9, the internal fan 28 blows air to the internal evaporator 9.

庫内蒸発器9で蒸発できなかった余剰な液冷媒は、庫内蒸発器9と直列に接続された庫内蒸発器10で蒸発して冷却専用室4も冷却する(直列冷却運転)。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。   The excess liquid refrigerant that could not be evaporated by the internal evaporator 9 is evaporated by the internal evaporator 10 connected in series with the internal evaporator 9 to cool the cooling exclusive chamber 4 (series cooling operation). When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

その後、第2の冷却加温室3の温度が目標温度(冷却温度範囲の下限値)に達した時点で庫内蒸発器10用の膨張機構45へと冷媒が流入するように三方弁42を切り換えることで、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却を行う(下流側単独冷却運転)。   Thereafter, when the temperature of the second cooling greenhouse 3 reaches the target temperature (the lower limit value of the cooling temperature range), the three-way valve 42 is switched so that the refrigerant flows into the expansion mechanism 45 for the internal evaporator 10. Thus, only the internal evaporator 10 out of the internal evaporator 9 and the internal evaporator 10 is cooled alone (downstream single cooling operation).

このように優先的に直列冷却運転を行うことで、余剰液冷媒によって冷却専用室4も冷却されることから下流側単独冷却運転の運転率を低下することができ、消費電力量を低減することができる。   By performing the serial cooling operation preferentially in this way, the cooling exclusive chamber 4 is also cooled by the surplus liquid refrigerant, so that the operating rate of the downstream side single cooling operation can be reduced and the power consumption can be reduced. Can do.

そして、庫内蒸発器10から流出したガス状の冷媒は、圧縮機5に戻る。   The gaseous refrigerant that has flowed out of the internal evaporator 10 returns to the compressor 5.

バイパス流路の電磁弁52を閉塞した後、圧縮機5の吐出圧力が圧縮機過負荷圧力より低い所定の圧縮機通常圧力(再開放圧力)に低下すれば、閉塞していたバイパス流路の電磁弁52を開放して、冷媒が図21の太線の冷媒流路を矢印の向きに流れるようにする。   If the discharge pressure of the compressor 5 drops to a predetermined compressor normal pressure (reopen pressure) lower than the compressor overload pressure after the solenoid valve 52 of the bypass passage is closed, the bypass passage The electromagnetic valve 52 is opened so that the refrigerant flows in the direction of the arrow in the refrigerant flow path indicated by the thick line in FIG.

バイパス流路の電磁弁52を開放している場合は、電磁弁52を閉塞している場合よりも庫内凝縮器46の加温能力を高めることができる。   When the electromagnetic valve 52 of the bypass channel is opened, the heating capacity of the internal condenser 46 can be increased as compared with the case where the electromagnetic valve 52 is closed.

バイパス流路の電磁弁52を開放すると、バイパス流路に冷媒が流れるため冷媒の流路抵抗が減り、冷媒の循環量が増え、庫内蒸発器9,10の蒸発温度が上昇し、庫内凝縮器
46の凝縮温度が上昇する。よって、第1の冷却加温室2の庫内凝縮器46による加温能力が高まり、加温ヒータ30より効率のよいヒートポンプ加温(冷却加温システムによる加温)にて加温させることができる。
When the solenoid valve 52 of the bypass flow path is opened, the refrigerant flows through the bypass flow path, so that the flow resistance of the refrigerant decreases, the circulation amount of the refrigerant increases, the evaporation temperature of the internal evaporators 9 and 10 increases, The condensation temperature of the condenser 46 increases. Therefore, the heating capability by the internal condenser 46 of the 1st cooling heating greenhouse 2 increases, and it can heat by the heat pump heating (heating by a cooling heating system) more efficient than the heating heater 30. .

そして、制御手段(図示せず)が、第1の冷却加温室2の室内温度が予め設定された加温温度範囲内を維持し、第2の冷却加温室3、冷却専用室4の各室内の温度が予め設定された冷却温度範囲内を維持するように、四方切換弁49と三方弁42の切換え、及び圧縮機5と庫外ファン26と庫内ファン27,28,29の運転を制御している。   And a control means (not shown) maintains the room temperature of the 1st cooling heating chamber 2 in the preset heating temperature range, and each room | chamber interior of the 2nd cooling heating chamber 3 and the cooling exclusive room 4 is carried out. The switching of the four-way switching valve 49 and the three-way valve 42 and the operation of the compressor 5, the external fan 26, and the internal fans 27, 28, and 29 are controlled so that the temperature of the compressor is maintained within a preset cooling temperature range. doing.

例えば、第1の冷却加温室2が加温温度範囲の上限値となる所定温度(加熱終了温度)まで加温された時に、三方弁42の庫内蒸発器9用の膨張機構44への流路(出口)と庫内蒸発器10用の膨張機構45への流路(出口)のどちらかが開放状態(庫内蒸発器9と庫内蒸発器10で第2の冷却加温室3と冷却専用室4の両方の商品収納室を冷却する直列冷却運転中、または庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却で冷却専用室4を冷却する下流側単独冷却運転中)であれば、バイパス流路の電磁弁52を閉塞すると共に庫内ファン27を停止する。   For example, when the first cooling greenhouse 2 is heated to a predetermined temperature (heating end temperature) that is the upper limit value of the heating temperature range, the flow of the three-way valve 42 to the expansion mechanism 44 for the internal evaporator 9 is performed. Either the passage (exit) or the flow path (exit) to the expansion mechanism 45 for the internal evaporator 10 is in an open state (the internal cooling 9 and the internal evaporator 10 cool the second cooling chamber 3 and Downstream side for cooling the cooling exclusive chamber 4 during the serial cooling operation for cooling both the product storage chambers of the exclusive chamber 4 or by the independent cooling of the internal evaporator 9 and the internal evaporator 10 alone. If the single cooling operation is in progress), the electromagnetic valve 52 in the bypass passage is closed and the internal fan 27 is stopped.

または、電磁弁52の閉塞と庫内ファン27の停止に加えて、四方切換弁49を、圧縮機5の吐出配管と庫外凝縮器40とが連通し、且つ庫内凝縮器46の冷媒の入口と庫内凝縮器46の冷媒の出口が連通して閉ループとなる状態にする。   Alternatively, in addition to closing the electromagnetic valve 52 and stopping the internal fan 27, the four-way switching valve 49 is connected to the discharge pipe of the compressor 5 and the external condenser 40, and the refrigerant of the internal condenser 46 is communicated. The inlet and the refrigerant outlet of the internal condenser 46 communicate with each other to form a closed loop.

ここで、バイパス流路の電磁弁52を閉塞すると共に庫内ファン27を停止するが、四方切換弁49を、圧縮機5の吐出配管と庫外凝縮器40とが連通し、且つ庫内凝縮器46の冷媒の入口と庫内凝縮器46の冷媒の出口が連通して閉ループとなる状態にしない場合は、バイパス流路の電磁弁52の閉塞により、第1の冷却加温室2の庫内凝縮器46による加温能力を低下させ、庫内ファン27の停止により、第1の冷却加温室2内の空気と庫内凝縮器46との熱交換量が低下する。   Here, the electromagnetic valve 52 in the bypass flow path is closed and the internal fan 27 is stopped. However, the four-way switching valve 49 is connected to the discharge pipe of the compressor 5 and the external condenser 40, and the internal condensation is performed. In the case where the refrigerant inlet of the condenser 46 and the refrigerant outlet of the internal condenser 46 are not communicated to form a closed loop, the inside of the first cooling greenhouse 2 is closed by the closure of the electromagnetic valve 52 of the bypass flow path. By reducing the heating capacity of the condenser 46 and stopping the internal fan 27, the amount of heat exchange between the air in the first cooling greenhouse 2 and the internal condenser 46 decreases.

この場合、圧縮機5から吐出された高温高圧のガス状の冷媒の大半が、庫内凝縮器46で凝縮できず、庫外凝縮器40にて凝縮される。庫外凝縮器40にて充分に凝縮させる必要がある場合は、庫外ファン26の送風量を増やすことにより、庫外凝縮器40と外気との熱交換量を増加させる。   In this case, most of the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 cannot be condensed by the internal condenser 46 but is condensed by the external condenser 40. When it is necessary to sufficiently condense in the outside condenser 40, the amount of heat exchange between the outside condenser 40 and the outside air is increased by increasing the amount of air blown by the outside fan 26.

そして、バイパス流路の電磁弁52を閉塞すると共に庫内ファン27を停止した後に、第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すれば、再び電磁弁52を開放すると共に、庫内ファン27を運転する。   Then, after closing the electromagnetic valve 52 of the bypass channel and stopping the internal fan 27, if the temperature of the first cooling greenhouse 2 decreases to a predetermined temperature that is the lower limit value of the heating temperature range, the electromagnetic wave is again generated. The valve 52 is opened and the internal fan 27 is operated.

もし、庫内凝縮器46に圧縮機5からの冷媒が流れないように四方切換弁49を切り換えた後に、第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すれば、電磁弁52の開放と庫内ファン27の運転に加えて、再び四方切換弁49を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通し、且つ庫内凝縮器46の冷媒の出口と庫外凝縮器40とが連通する状態に戻す。   If the four-way switching valve 49 is switched so that the refrigerant from the compressor 5 does not flow into the internal condenser 46, the temperature of the first cooling greenhouse 2 reaches a predetermined temperature at which the lower limit of the heating temperature range is reached. If it falls, in addition to opening of the solenoid valve 52 and the operation of the internal fan 27, the four-way switching valve 49 is again connected to the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46, and The refrigerant outlet of the inner condenser 46 and the outside condenser 40 are returned to the communication state.

また、第2の冷却加温室3が冷却温度範囲の下限値となる所定温度まで冷却されると、庫内蒸発器9用の膨張機構44への流路(出口)を閉塞し庫内蒸発器10用の膨張機構45への流路(出口)を開放する状態に三方弁42を切換えると共に、庫内ファン28を停止する。また、圧縮機5の停止中に第2の冷却加温室3内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、庫内蒸発器9用の膨張機構44への流路(出口)を開放し膨張機構45への流路(出口)を閉鎖する状態に三方弁42を切換えて、バイパス流路の電磁弁52を閉塞して、圧縮機5を起動し、庫内ファン28を運転する。   Further, when the second cooling greenhouse 3 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the flow path (exit) to the expansion mechanism 44 for the internal evaporator 9 is closed to close the internal evaporator. The three-way valve 42 is switched to a state where the flow path (exit) to the expansion mechanism 45 for 10 is opened, and the internal fan 28 is stopped. Further, if the temperature in the second cooling greenhouse 3 rises to a predetermined temperature that is the upper limit value of the cooling temperature range while the compressor 5 is stopped, the flow path to the expansion mechanism 44 for the internal evaporator 9 ( The three-way valve 42 is switched to a state in which the outlet) is opened and the flow path (exit) to the expansion mechanism 45 is closed, the electromagnetic valve 52 in the bypass flow path is closed, the compressor 5 is started, and the internal fan 28 To drive.

また、三方弁42が庫内蒸発器9用の膨張機構44への流路(出口)を閉塞し庫内蒸発器10用の膨張機構45への流路(出口)を開放して、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却(下流側単独冷却運転)をしている状態で、第2の冷却加温室3内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、庫内蒸発器9用の膨張機構44への流路(出口)を開放し庫内蒸発器10用の膨張機構45への流路(出口)を閉塞する状態に三方弁42を切り換えると共に、庫内ファン28を運転する。   Further, the three-way valve 42 closes the flow path (exit) to the expansion mechanism 44 for the internal evaporator 9 and opens the flow path (exit) to the expansion mechanism 45 for the internal evaporator 10, The temperature in the second cooling greenhouse 3 is the upper limit of the cooling temperature range in a state where only the internal evaporator 10 of the evaporator 9 and the internal evaporator 10 is performing single cooling (downstream single cooling operation). When the temperature rises to a predetermined temperature, the flow path (exit) to the expansion mechanism 44 for the internal evaporator 9 is opened and the flow path (exit) to the expansion mechanism 45 for the internal evaporator 10 is closed. The three-way valve 42 is switched to the state and the internal fan 28 is operated.

また、庫内蒸発器9と庫内蒸発器10の直列冷却運転から庫内蒸発器10のみの下流側単独冷却運転への移行後に、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却された時に、四方切換弁49が、圧縮機5の吐出配管と庫外凝縮器40とが連通し、且つ庫内凝縮器46の冷媒の入口と庫内凝縮器46の冷媒の出口が連通して閉ループとなる状態(第1の冷却加温室2の加温が不要で、庫内凝縮器46に圧縮機5から吐出された冷媒が流れていない状態)であれば、三方弁42の庫内蒸発器10用の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、圧縮機5を停止する。   In addition, after the transition from the series cooling operation of the internal evaporator 9 and the internal evaporator 10 to the downstream single cooling operation of only the internal evaporator 10, the predetermined temperature at which the cooling exclusive chamber 4 becomes the lower limit value of the cooling temperature range The four-way switching valve 49 communicates with the discharge pipe of the compressor 5 and the external condenser 40, and the refrigerant inlet of the internal condenser 46 and the refrigerant outlet of the internal condenser 46 are If it is in a closed loop state (the heating of the first cooling greenhouse 2 is unnecessary and the refrigerant discharged from the compressor 5 does not flow into the internal condenser 46), the three-way valve 42 In addition to closing the refrigerant outlet on the expansion mechanism 45 side for the internal evaporator 10 and stopping the internal fan 29, the compressor 5 is stopped.

また、庫内蒸発器9と庫内蒸発器10の直列冷却運転から庫内蒸発器10のみの下流側単独冷却運転への移行後に、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却された時に、四方切換弁49が、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通し、且つ庫内凝縮器46の冷媒の出口と庫外凝縮器40とが連通する状態(第1の冷却加温室2の加温が必要で、庫内凝縮器46に圧縮機5から吐出された冷媒が流れている状態)であれば、三方弁42の庫内蒸発器10用の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、バイパス流路の電磁弁52を開放して、図23に示す状態にすることにより、庫内凝縮器46による第1の冷却加温室2の加温を継続する。   In addition, after the transition from the series cooling operation of the internal evaporator 9 and the internal evaporator 10 to the downstream single cooling operation of only the internal evaporator 10, the predetermined temperature at which the cooling exclusive chamber 4 becomes the lower limit value of the cooling temperature range The four-way switching valve 49 communicates with the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46, and the refrigerant outlet of the internal condenser 46 and the external condenser 40 Is in a state where the first cooling chamber 2 is heated and the refrigerant discharged from the compressor 5 is flowing into the internal condenser 46, the internal evaporation of the three-way valve 42 In addition to closing the outlet of the refrigerant on the expansion mechanism 45 side of the container 10 and stopping the internal fan 29, the electromagnetic valve 52 of the bypass flow path is opened to the state shown in FIG. The heating of the first cooling greenhouse 2 by 46 is continued.

加温ヒータ30は、ヒートポンプ運転が出来ないような極低温時やイニシャルプルアップのような加温負荷が大きい場合に加温するための補助的なものであり、通常加温においては、効率の良いヒートポンプ加温を行うように設計、制御されている。   The heating heater 30 is an auxiliary device for heating at a very low temperature at which heat pump operation cannot be performed, or when a heating load such as an initial pull-up is large. Designed and controlled for good heat pump heating.

次に、第1の冷却加温室2を加温するのみの加温運転の場合は、図23の太線の冷媒流路を矢印の向きに冷媒が流れる運転となる。   Next, in the case of the heating operation in which only the first cooling greenhouse 2 is heated, the operation is such that the refrigerant flows in the direction indicated by the arrow through the thick refrigerant passage in FIG.

第1の冷却加温室2を加温するのみの加温運転の場合は、四方切換弁49を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通し、且つ庫内凝縮器46の冷媒の出口と庫外凝縮器40とが連通する状態にするとともに、庫内蒸発器47用の膨張機構43に冷媒が流れないように電磁弁51を閉塞し、三方弁42の庫内蒸発器9用の膨張機構44への流路(出口)と庫内蒸発器10用の膨張機構45への流路(出口)の全ての流路(出口)を閉塞し、バイパス流路の電磁弁52を開放し、圧縮機5を起動し、庫外ファン26と庫内ファン27を運転する。   In the case of the heating operation in which only the first cooling greenhouse 2 is heated, the four-way switching valve 49 communicates with the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46, and the inside The refrigerant outlet of the condenser 46 and the external condenser 40 are in communication with each other, the electromagnetic valve 51 is closed so that the refrigerant does not flow into the expansion mechanism 43 for the internal evaporator 47, and the three-way valve 42 All the flow paths (outlets) of the flow path (exit) to the expansion mechanism 44 for the internal evaporator 9 and the flow path (exit) to the expansion mechanism 45 for the internal evaporator 10 are closed, and the bypass flow path The solenoid valve 52 is opened, the compressor 5 is started, and the external fan 26 and the internal fan 27 are operated.

圧縮機5から吐出された高温高圧のガス状の冷媒は、四方切換弁49を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に四方切換弁49を通過して庫外凝縮器40にて更に凝縮する。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the four-way switching valve 49 and then travels to the internal condenser 46 and is partially condensed by the internal condenser 46. The inside of the first cooling greenhouse 2 is heated by releasing heat to the air around the condenser 46. The refrigerant exiting the internal condenser 46 is decompressed by the expansion mechanism 48, passes through the four-way switching valve 49, and is further condensed by the external condenser 40.

庫外凝縮器40から流出した冷媒は、三方弁42の2つの出口と電磁弁51が閉塞され電磁弁52が開放されているため、庫内蒸発器9,10,47には流れず、全て、バイパス流路側に流れる。   The refrigerant flowing out of the external condenser 40 does not flow to the internal evaporators 9, 10, 47 because the two outlets of the three-way valve 42 and the electromagnetic valve 51 are closed and the electromagnetic valve 52 is opened. , Flows to the bypass channel side.

そして、バイパス流路の電磁弁52を通過し、膨張機構53にて減圧された後に庫外蒸発器41にて蒸発気化し、圧縮機5へと還流する。   Then, it passes through the electromagnetic valve 52 in the bypass flow path, is decompressed by the expansion mechanism 53, evaporates in the external evaporator 41, and returns to the compressor 5.

そして、第1の冷却加温室2が、加温温度範囲の上限値となる所定温度まで加温されると、制御手段(図示せず)が、圧縮機5と庫外ファン26と庫内ファン27を停止し、圧縮機5と庫外ファン26と庫内ファン27が停止中に第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すると、制御手段(図示せず)が、圧縮機5と庫外ファン26と庫内ファン27を運転する。   And if the 1st cooling greenhouse 2 is heated to the predetermined temperature used as the upper limit of a heating temperature range, a control means (not shown) will be the compressor 5, the external fan 26, and an internal fan. When the compressor 5, the outside fan 26, and the inside fan 27 are stopped, the temperature of the first cooling greenhouse 2 decreases to a predetermined temperature that is the lower limit value of the heating temperature range. (Not shown) operates the compressor 5, the external fan 26, and the internal fan 27.

上記のように、第1の冷却加温室2を加温する場合に、電磁弁52の開閉と、三方弁42の庫内蒸発器9用の膨張機構44への流路(出口)と庫内蒸発器10用の膨張機構45への流路(出口)の開閉を制御して、庫内蒸発器9,10と庫外蒸発器41のいずれかで冷媒を蒸発させることによって、第1の冷却加温室2を加温するために必要な熱源を庫内蒸発器9,10もしくは庫外蒸発器41から選択することができるので、第2の冷却加温室3、冷却専用室4の負荷状態に関係なく、圧縮機5の運転を継続して第1の冷却加温室2を加温することが可能となり、冷却室の負荷が低下する低外気温時においてもヒートポンプ加温運転をすることによる消費電力量削減を図ることができる。   As described above, when the first cooling greenhouse 2 is heated, the electromagnetic valve 52 is opened and closed, and the flow path (exit) to the expansion mechanism 44 for the internal evaporator 9 of the three-way valve 42 and the interior The first cooling is performed by controlling the opening and closing of the flow path (exit) to the expansion mechanism 45 for the evaporator 10 and evaporating the refrigerant in either the internal evaporators 9 and 10 or the external evaporator 41. Since a heat source necessary for heating the heating chamber 2 can be selected from the internal evaporators 9 and 10 or the external evaporator 41, the load state of the second cooling greenhouse 3 and the cooling exclusive chamber 4 can be changed. Regardless, it is possible to continue the operation of the compressor 5 to heat the first cooling greenhouse 2 and to consume the heat pump heating operation even at a low outside temperature where the load on the cooling chamber decreases. Electric power consumption can be reduced.

さらに、庫内凝縮器46の冷媒の出口側と庫外凝縮器40との間(庫内凝縮器46の冷媒の出口側と四方切換弁49との間)の配管上に膨張機構48を設けることで庫内凝縮温度と庫外凝縮温度に差をつけることができ、低外気時において庫外凝縮器40の凝縮温度や凝縮圧力が下がった場合でも、庫内凝縮器46は高い凝縮温度を維持することができ、第1の冷却加温室2を効率よく加温する事ができるので、冬場に低外気温となる地域でも効率の高い加温運転を実施できる。   Further, an expansion mechanism 48 is provided on a pipe between the refrigerant outlet side of the internal condenser 46 and the external condenser 40 (between the refrigerant outlet side of the internal condenser 46 and the four-way switching valve 49). This makes it possible to make a difference between the internal condensation temperature and the external condensation temperature. Even when the condensation temperature or the condensation pressure of the external condenser 40 decreases in the low outside air, the internal condenser 46 has a high condensation temperature. Since the first cooling greenhouse 2 can be efficiently heated, a highly efficient heating operation can be performed even in an area where the outdoor temperature is low in winter.

また、庫内凝縮器46の冷媒の出口側と庫外凝縮器40との間(庫内凝縮器46の冷媒の出口側と四方切換弁49との間)の配管上に膨張機構48を設けると、冷媒密度が低下するので冷媒量を削減することができる。冷媒量を削減することによって凝縮器を2個使用する冷却加温運転と凝縮器を1個使用する冷却運転とで生じる最適冷媒量差を減少することができるとともに、可燃性冷媒を用いた際の漏洩時におけるリスク軽減にもつなげることができる。   Further, an expansion mechanism 48 is provided on a pipe between the refrigerant outlet side of the internal condenser 46 and the external condenser 40 (between the refrigerant outlet side of the internal condenser 46 and the four-way switching valve 49). Since the refrigerant density is reduced, the amount of refrigerant can be reduced. By reducing the amount of refrigerant, it is possible to reduce the optimum refrigerant amount difference between the cooling and heating operation using two condensers and the cooling operation using one condenser, and when using a flammable refrigerant Can be used to reduce the risk of leakage.

膨張機構48にキャピラリチューブを用いることで、膨張機構としての役割と庫内凝縮器46、四方切換弁49とを接続する配管としての役割を兼用することができるので、膨張弁などを用いた場合と比較して、さらに冷媒量を削減することが可能となる。また、膨張機構43,44,45,53についても、キャピラリチューブを用いることができる。   When a capillary tube is used for the expansion mechanism 48, the expansion mechanism and the internal condenser 46 and the four-way switching valve 49 can be combined, so that an expansion valve or the like is used. As a result, the amount of refrigerant can be further reduced. In addition, capillary tubes can be used for the expansion mechanisms 43, 44, 45, and 53.

また、庫内(ヒートポンプ加温運転をする第1の冷却加温室2)、庫外(機械室)ともに凝縮器と蒸発器とを個別に配置することで、各々1つの熱交換器を凝縮器、蒸発器として使い分けるのと比較して、蒸発器出口と圧縮機吸入配管とを接続した配管上に設けた電磁弁を廃止することができ、圧力損失による効率低下を防止することができる。また、凝縮器と蒸発器それぞれで最適仕様とすることができるのでより効率の高い運転をすることが可能となる。   In addition, a condenser and an evaporator are separately arranged inside the chamber (first cooling greenhouse 2 that performs heat pump heating operation) and outside the chamber (machine room), so that each one heat exchanger is a condenser. Compared to the proper use as an evaporator, the solenoid valve provided on the pipe connecting the evaporator outlet and the compressor suction pipe can be eliminated, and the efficiency reduction due to pressure loss can be prevented. In addition, since it is possible to obtain optimum specifications for each of the condenser and the evaporator, it is possible to operate more efficiently.

さらに、庫外凝縮器40の下流側で庫内蒸発器9,10もしくは庫外蒸発器41を選択する形で運転モードを切り替えることで、冷却加温運転、加温運転のどちらにおいても庫内凝縮器46で凝縮された冷媒が再度、庫外凝縮器40で凝縮され、冷却加温運転と加温運転とで凝縮器の配管容積が同一になり、最適冷媒量を同一にすることが可能となる。   Furthermore, by switching the operation mode in the form of selecting the internal evaporators 9 and 10 or the external evaporator 41 on the downstream side of the external condenser 40, the inside of the internal storage can be performed in both the cooling and heating operation. The refrigerant condensed in the condenser 46 is condensed again in the external condenser 40, and the condenser piping volume is the same in the cooling and heating operation and the heating operation, so that the optimum refrigerant amount can be made the same. It becomes.

加温運転の場合は、商品収納庫下部の機械室に設置した庫外蒸発器41にて冷媒が蒸発
気化して周囲空気を冷却することになるために、周囲空気の湿度が高い状態においては庫外蒸発器41内の配管が結露もしくは着霜し、結露水が機械室から自動販売機外へと滴下する恐れがあるが、この場合においても庫外凝縮器40と庫外蒸発器41とをフィンを共用した一体型熱交換器とし、さらに常に庫外凝縮器40にて放熱して凝縮する配管構成とすることで庫外凝縮器40と庫外蒸発器41との間で熱交換することができ、そのことにより庫外蒸発器41により周囲空気を冷却する熱量を緩和することができると共に庫外凝縮器40からの放熱によって一体型熱交換器のフィンを暖めることで結露水を蒸発させることができるので結露水の自販機庫外への滴下を防ぐことができる。
In the case of the heating operation, the refrigerant evaporates and cools the ambient air in the external evaporator 41 installed in the machine room at the lower part of the product storage, so that the ambient air is in a high humidity state. There is a risk of condensation or frost forming on the piping inside the outside evaporator 41, and the condensed water may drip from the machine room to the outside of the vending machine. Even in this case, the outside condenser 40 and the outside evaporator 41 Heat is exchanged between the external condenser 40 and the external evaporator 41 by adopting a pipe configuration in which the fin is used as an integrated heat exchanger and the heat is always radiated and condensed by the external condenser 40. As a result, the amount of heat that cools the ambient air can be reduced by the outside evaporator 41, and the condensed water is evaporated by warming the fins of the integrated heat exchanger by heat radiation from the outside condenser 40. Self-sales of condensed water It is possible to prevent the dropping of the refrigerator outside.

この際に、庫外凝縮器40の配管を庫外ファン26が運転した時に風上側になるように配置することで、より庫外凝縮器40と庫外蒸発器41との熱交換を高めることができ、より結露を抑制することが可能となる。   At this time, the heat exchange between the external condenser 40 and the external evaporator 41 is further enhanced by arranging the piping of the external condenser 40 so that it is located on the windward side when the external fan 26 is operated. It is possible to suppress condensation.

さらに、庫外蒸発器41の中で最も温度が低下する入口を一体型熱交換器の上部に配置することで結露水がフィンをつたって滴下する距離が長くなるので滴下途中で蒸発しやすく、より滴下しにくくなる。さらに、一体型熱交換器の下部に滴下した結露水を受ける皿を配置することでさらに自動販売機庫外への滴下を防ぐことができる。   Furthermore, since the distance at which the condensed water drops through the fins by placing the inlet where the temperature decreases most in the external evaporator 41 at the upper part of the integrated heat exchanger, it is easy to evaporate during the dropping, It becomes more difficult to dripping. Furthermore, it is possible to further prevent dripping outside the vending machine by arranging a tray that receives the condensed water dripped at the bottom of the integrated heat exchanger.

また、庫内凝縮器46内を冷媒が通過しない冷却運転においては四方切換弁49内で高圧となる圧縮機5の吐出配管側から低圧側となる庫内凝縮器46側へと冷媒が漏洩することで庫内凝縮器46へと冷媒や冷凍機油が滞留し続けて冷却能力不足や圧縮機の故障などが生じる原因となるが、庫内凝縮器46と低圧側配管とを接続する配管上に電磁弁50を設けており、電磁弁50を開放することで庫内凝縮器46へと滞留した冷媒やオイルを低圧となる圧縮機5の吸入配管へと回収することができ、冷却能力不足や圧縮機5の故障を防止することができる。   In the cooling operation in which the refrigerant does not pass through the internal condenser 46, the refrigerant leaks from the discharge pipe side of the compressor 5, which has a high pressure within the four-way switching valve 49, to the internal condenser 46 side, which is the low pressure side. This causes refrigerant and refrigeration oil to stay in the internal condenser 46, resulting in insufficient cooling capacity and failure of the compressor, but on the pipe connecting the internal condenser 46 and the low-pressure side pipe. An electromagnetic valve 50 is provided, and by opening the electromagnetic valve 50, the refrigerant and oil accumulated in the internal condenser 46 can be recovered to the suction pipe of the compressor 5 at a low pressure, and the cooling capacity is insufficient. A failure of the compressor 5 can be prevented.

また、電磁弁50を開放することで庫内凝縮器46の配管内圧力も圧縮機5の吸入圧力と同一になる。そのことによって四方切換弁49内での高低圧差を確保することができ、四方切換弁49内での冷媒の漏洩を防止することも可能となる。   Further, by opening the electromagnetic valve 50, the pressure in the piping of the internal condenser 46 becomes the same as the suction pressure of the compressor 5. As a result, a high / low pressure difference in the four-way switching valve 49 can be ensured, and leakage of refrigerant in the four-way switching valve 49 can be prevented.

なお、四方切換弁49における冷媒の漏れ量は通常時は非常に少ないので、電磁弁50を常に開放するのでなく、圧縮機5の起動中に定期的に所定の時間開放するとしても同様の効果を得ることができる。そのことによって電磁弁50電力量を最低限に抑制することも可能となる。   Note that the amount of refrigerant leakage in the four-way switching valve 49 is very small in normal times, so that the same effect can be obtained even if the solenoid valve 50 is not always opened, but is regularly opened for a predetermined time during the start-up of the compressor 5. Can be obtained. As a result, the electric energy of the electromagnetic valve 50 can be suppressed to the minimum.

さらに、四方切換弁49に異常があり、四方切換弁49の漏れ量が通常よりも多い場合を検知して、電磁弁50の開放時間を変更させる制御があると漏れ量が多くなる異常時においても対応することが可能となる。   Further, when there is an abnormality in the four-way switching valve 49 and the amount of leakage of the four-way switching valve 49 is larger than usual, and there is a control to change the opening time of the solenoid valve 50, the leakage amount increases. Can also be supported.

庫内凝縮器46と圧縮機5の吸入配管とを接続することで滞留冷媒の回収を行ったが、接続する配管は圧縮機5の吸入圧力と同一となる場所であればどこでもよく、具体的には膨張機構43、44、45、53より下流であれば良い。   The accumulated refrigerant was recovered by connecting the internal condenser 46 and the suction pipe of the compressor 5. However, the pipe to be connected may be anywhere as long as it is the same as the suction pressure of the compressor 5. However, it may be downstream of the expansion mechanisms 43, 44, 45, 53.

ただし、商品収納庫内で接続すると商品収納庫内に電磁弁50を設けることとなり、スペースが必要となることから商品収納スペースが狭くなる可能性があることと、商品収納庫を冷却している場合は電磁弁50に通電することで熱負荷となることから圧縮機5の吸入配管近傍に接続するのが最も効率良く冷媒回収を行うことができる。   However, if the connection is made in the product storage, the solenoid valve 50 is provided in the product storage, and space is required, so the product storage space may be reduced, and the product storage is cooled. In this case, since the solenoid valve 50 is energized to generate a heat load, the refrigerant can be most efficiently recovered by connecting it to the vicinity of the suction pipe of the compressor 5.

庫外凝縮器40の配管を一体型熱交換器の下部に配置し、庫外蒸発器41の配管を一体型熱交換器の上部に配置した場合は、上部の庫外蒸発器41において発生しフィンを伝っ
て滴下する結露水を下部の庫外凝縮器40近傍で蒸発することで、結露水の滴下を防止することができる。
When the piping of the external condenser 40 is arranged in the lower part of the integrated heat exchanger and the piping of the external evaporator 41 is arranged in the upper part of the integrated heat exchanger, it is generated in the upper external evaporator 41. By evaporating the condensed water dripping along the fin in the vicinity of the lower external condenser 40, it is possible to prevent the condensed water from dripping.

圧縮機5については、第1の冷却加温室2、第2の冷却加温室3、冷却専用室4の冷却負荷または第1の冷却加温室2の加温負荷が大きく、所定温度範囲に冷却または加温するのに時間がかかる場合に能力を上げる能力可変型の圧縮機も使用できる。   As for the compressor 5, the cooling load of the first cooling greenhouse 2, the second cooling greenhouse 3, the cooling exclusive chamber 4 or the heating load of the first cooling greenhouse 2 is large and is cooled to a predetermined temperature range. A variable capacity compressor can be used to increase the capacity when it takes time to heat.

同様に、庫外ファン26と庫内ファン27,28,29についても、必要に応じて送風量を増減できるファンも使用できる。   Similarly, as the outside fan 26 and the inside fans 27, 28, and 29, fans that can increase or decrease the amount of air flow as needed can be used.

また、庫外ファン26と庫内ファン27,28,29の運転と停止のタイミングは、必要に応じて、圧縮機5の動作や、対応する熱交換器の冷媒の流れの状態の変化のタイミングからずらすことも可能であり、可燃性冷媒を用いている場合は、圧縮機5の停止時に庫外ファン26を所定能力で運転しても良い。   The operation and stop timings of the external fan 26 and the internal fans 27, 28, and 29 are the timing of the operation of the compressor 5 and the change in the state of the refrigerant flow in the corresponding heat exchanger, if necessary. When the combustible refrigerant is used, the outside fan 26 may be operated with a predetermined capacity when the compressor 5 is stopped.

特開2013−84073号公報JP2013-84073A 特開2006−89209号公報JP 2006-89209 A

上記従来の自動販売機は、第1の冷却加温室2を加温する場合に、庫内蒸発器9,10と庫外蒸発器41のいずれかで冷媒を蒸発させることによって、第1の冷却加温室2を加温するために必要な熱源を庫内蒸発器9,10もしくは庫外蒸発器41から選択して、第2の冷却加温室3、冷却専用室4の負荷状態に関係なく、圧縮機5の運転を継続して第1の冷却加温室2を加温することが可能となり、冷却室の負荷が低下する低外気温時においてもヒートポンプ加温運転をすることによる消費電力量削減を図ることができるというものであるが、まだ、冷却室の負荷が低下する低外気温時において第1の冷却加温室2を加温する場合に、ヒートポンプ加温運転で対応できないことがあり、更なる消費電力量削減が望まれていた。   In the conventional vending machine, when the first cooling greenhouse 2 is heated, the first cooling is performed by evaporating the refrigerant in any of the internal evaporators 9 and 10 and the external evaporator 41. The heat source necessary for heating the heating chamber 2 is selected from the internal evaporators 9 and 10 or the external evaporator 41, regardless of the load state of the second cooling greenhouse 3 or the cooling exclusive chamber 4, It is possible to continue the operation of the compressor 5 to heat the first cooling greenhouse 2 and reduce the power consumption by performing the heat pump heating operation even at a low outside temperature where the load on the cooling chamber decreases. However, when the first cooling greenhouse 2 is heated at a low outside air temperature at which the load on the cooling chamber decreases, it may not be possible to cope with the heat pump heating operation. Further reduction of power consumption has been desired.

本発明は、冷却室の負荷が低下する低外気温時においてヒートポンプ加温能力を高めてヒートポンプ加温運転によって消費電力量を更に削減することを目的としている。   An object of the present invention is to further increase the heat pump heating capability at a low outside air temperature at which the load on the cooling chamber decreases and further reduce the amount of power consumption by the heat pump heating operation.

上記目的を達成するために、本発明の自動販売機は、圧縮機と、前記圧縮機から吐出された冷媒を凝縮させる庫外凝縮器と、複数の商品収納室に設置され前記庫外凝縮器で凝縮した冷媒を蒸発させて商品収納室内の商品を冷却する庫内蒸発器と、複数の前記庫内蒸発器に冷媒流路を分岐する分岐点と複数の前記庫内蒸発器との間の分岐流路を開閉する分岐流路開閉手段と、複数の商品収納室のうちで冷媒の凝縮熱を利用して商品収納室内の商品を加温する商品収納室に設置された庫内凝縮器と、前記庫内凝縮器で商品収納室内の商品を加温する時に前記圧縮機から吐出された冷媒を、前記庫内凝縮器を経由させてから前記庫外凝縮器に流し、前記庫内凝縮器で商品収納室内の商品を加温しない時に前記圧縮機から吐出された冷媒を、前記庫内凝縮器を経由させずに前記庫外凝縮器に流す庫内凝縮器用流路切替手段と、前記庫外凝縮器と前記分岐流路開閉手段との間の冷媒配管と前記圧縮機の吸い込み側配管とをバイパスするバイパス流路に設けられた庫外蒸発器と、前記庫外蒸発器の流入側で前記バイパス流路を開閉するバイパス流路開閉手段と、前記バイパス流路開閉手段と前記庫外蒸発器との間の前記バイパス流路に設けられ前記庫内凝縮器と前記庫外凝縮器で凝縮し前記バイパス流路に流入した冷媒を減圧するバイパス流路膨張手段と、
複数の商品収納室のうちで前記庫内凝縮器が設置されていない少なくとも1つの商品収納室に設置され前記庫外凝縮器で凝縮した冷媒を蒸発させて商品収納室内の商品を前記庫内蒸発器よりも高い温度で冷却する庫内弱冷蒸発器と、前記庫内弱冷蒸発器に冷媒流路を分岐する分岐点と前記庫内弱冷蒸発器との間の分岐流路を開閉する弱冷分岐流路開閉手段と、前記弱冷分岐流路開閉手段と前記庫内弱冷蒸発器との間の流路に前記庫内弱冷蒸発器に流入する冷媒によって前記庫内弱冷蒸発器の温度が冷却商品の凍結する温度以下にならないように冷媒を減圧する弱冷分岐流路膨張手段と、を有している。
In order to achieve the above object, a vending machine according to the present invention includes a compressor, an external condenser for condensing the refrigerant discharged from the compressor, and the external condenser installed in a plurality of product storage rooms. Between the internal evaporator that evaporates the refrigerant condensed in the product and cools the product in the product storage chamber, the branch point that branches the refrigerant flow path to the multiple internal evaporators, and the multiple internal evaporators A branch flow path opening / closing means for opening and closing the branch flow path, and an in-compartment condenser installed in the product storage chamber for heating the product in the product storage chamber using the heat of condensation of the refrigerant among the plurality of product storage chambers; When the product in the product storage chamber is heated by the internal condenser, the refrigerant discharged from the compressor passes through the internal condenser and then flows to the external condenser, and the internal condenser When the product in the product storage chamber is not heated, the refrigerant discharged from the compressor is In-condenser flow path switching means that flows to the external condenser without passing through the condenser, refrigerant piping between the external condenser and the branch flow path opening / closing means, and suction side piping of the compressor A bypass flow path opening and closing means for opening and closing the bypass flow path on the inflow side of the external storage evaporator, the bypass flow path opening and closing means and the external storage A bypass passage expansion means provided in the bypass passage between the evaporator and the decompression means for decompressing the refrigerant that has been condensed by the internal condenser and the external condenser and has flowed into the bypass passage;
Among the plurality of product storage chambers, the refrigerant installed in at least one product storage chamber in which the internal condenser is not installed is evaporated to evaporate the refrigerant condensed in the external condenser to evaporate the products in the product storage chamber. A cold evaporator in the refrigerator that cools at a temperature higher than the temperature of the refrigerator, and a branch passage that opens and closes the branch passage that branches the refrigerant flow passage to the cold evaporator in the refrigerator and the cold evaporator in the refrigerator. Weak cold evaporating by means of a refrigerant flowing into the internal cold evaporator in the cold cold flow path opening / closing means and a flow path between the weak cold branch flow opening / closing means and the internal cold evaporator Weakly branched flow path expansion means for reducing the pressure of the refrigerant so that the temperature of the vessel does not fall below the freezing temperature of the cooled product.

これによって、冷却室の負荷が低下する低外気温時において、庫内凝縮器を有する商品収納室で庫内凝縮器により加温するが、他の商品収納室の庫内蒸発器に冷媒を流せない場合でも、庫内弱冷蒸発器と庫外蒸発器のどちらか一方または両方に冷媒を流す冷媒流路にすることにより、圧縮機の運転を継続でき、庫内凝縮器のヒートポンプ加温能力を高めて、効率の良いヒートポンプ加温運転によって消費電力量を更に削減することができる。   As a result, at a low outside temperature when the load on the cooling chamber is reduced, the product storage room having the internal condenser is heated by the internal condenser, but the refrigerant can flow to the internal evaporator in the other product storage room. Even if it is not, the operation of the compressor can be continued by using the refrigerant flow path that allows the refrigerant to flow to one or both of the internal cold evaporator and external evaporator, and the heat pump heating capacity of the internal condenser The amount of power consumption can be further reduced by an efficient heat pump heating operation.

本発明の自動販売機は、冷却室の負荷が低下する低外気温時において、庫内凝縮器を有する商品収納室で庫内凝縮器により加温するが、他の商品収納室の庫内蒸発器に冷媒を流せない場合でも、庫内弱冷蒸発器と庫外蒸発器のどちらか一方または両方に冷媒を流す冷媒流路にすることにより、圧縮機の運転を継続でき、庫内凝縮器のヒートポンプ加温能力を高めて、効率の良いヒートポンプ加温運転によって消費電力量を更に削減することができる。   The vending machine according to the present invention heats by the internal condenser in the product storage room having the internal condenser at the time of low outside air temperature where the load on the cooling room is reduced, but evaporates in the other product storage rooms. Even if the refrigerant cannot flow through the compressor, the operation of the compressor can be continued by using the refrigerant flow path that allows the refrigerant to flow through one or both of the internal cold evaporator and the external evaporator. The heat pump heating capacity can be increased, and the power consumption can be further reduced by the efficient heat pump heating operation.

本発明の実施の形態1の自動販売機の冷媒回路図FIG. 3 is a refrigerant circuit diagram of the vending machine according to the first embodiment of the present invention. 本発明の実施の形態1の自動販売機における第1の冷却加温室のみ冷却する冷却運転時の冷媒回路図The refrigerant circuit figure at the time of the cooling operation which cools only the 1st cooling greenhouse in the vending machine of Embodiment 1 of this invention 本発明の実施の形態1の自動販売機における第2の冷却加温室と冷却専用室とを冷却する冷却運転時の冷媒回路図Refrigerant circuit diagram during cooling operation for cooling the second cooling greenhouse and the cooling exclusive room in the vending machine according to the first embodiment of the present invention. 本発明の実施の形態1の自動販売機における冷却専用室のみ冷却する冷却運転時の冷媒回路図Refrigerant circuit diagram during cooling operation for cooling only the cooling-only room in the vending machine according to Embodiment 1 of the present invention 本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室と冷却専用室を冷却する冷却加温運転時で庫内弱冷蒸発器と庫外蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図In the vending machine according to the first embodiment of the present invention, the first cooling greenhouse is heated by the internal condenser, and the second cooling greenhouse and the cooling exclusive chamber are cooled. Refrigerant circuit diagram showing the refrigerant flow path when the refrigerant does not flow through the evaporator and the outside evaporator 本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し冷却専用室を冷却する冷却加温運転時で庫内弱冷蒸発器と庫外蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図In the vending machine according to Embodiment 1 of the present invention, the first cold-heating greenhouse is heated by the internal condenser to cool the cooling-dedicated room, and the low-temperature evaporator and the external evaporator are used in the cooling / heating operation. Refrigerant circuit diagram showing the refrigerant flow path when no refrigerant flows through 本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室と冷却専用室を冷却する冷却加温運転時で庫外蒸発器に冷媒を流し庫内弱冷蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図In the vending machine according to Embodiment 1 of the present invention, the first cooling greenhouse is heated by the internal condenser to cool the second cooling greenhouse and the cooling exclusive chamber, and the outside evaporator is used during the cooling and heating operation. Refrigerant circuit diagram showing the refrigerant flow path when the refrigerant is allowed to flow and the refrigerant is not allowed to flow into the cold evaporator 本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し冷却専用室を冷却する冷却加温運転時で庫外蒸発器に冷媒を流し庫内弱冷蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図In the vending machine according to Embodiment 1 of the present invention, the first cooling greenhouse is heated by the internal condenser to cool the cooling exclusive chamber, and the refrigerant is poured into the external evaporator during the cooling and heating operation. Refrigerant circuit diagram showing the refrigerant flow path when no refrigerant flows through the cold evaporator 本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温する加温運転時で庫外蒸発器に冷媒を流し庫内弱冷蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図In the vending machine according to Embodiment 1 of the present invention, during the heating operation in which the first cooling greenhouse is heated by the internal condenser, the refrigerant is allowed to flow through the external evaporator and the internal cold cooling evaporator is allowed to flow. Refrigerant circuit diagram showing refrigerant flow path when no 本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温する加温運転時で庫内弱冷蒸発器と庫外蒸発器に冷媒を流す場合の冷媒流路を示す冷媒回路図Refrigerant in the case where the first cold-heated greenhouse in the vending machine according to the first embodiment of the present invention is heated by the internal condenser during the heating operation, and the refrigerant is allowed to flow through the internal cold evaporator and the external evaporator. Refrigerant circuit diagram showing the flow path 本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温する加温運転時で庫内弱冷蒸発器に冷媒を流し庫外蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図In the vending machine according to Embodiment 1 of the present invention, during the heating operation in which the first cooling greenhouse is heated by the internal condenser, the refrigerant is allowed to flow in the internal cold evaporator and the refrigerant is allowed to flow in the external evaporator. Refrigerant circuit diagram showing refrigerant flow path when no 本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室を加温ヒータで加温し冷却専用室を冷却する冷却加温運転時で庫内弱冷蒸発器と庫外蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図Cooling and heating in which the first cooling greenhouse in the vending machine according to the first embodiment of the present invention is heated by the internal condenser, the second cooling greenhouse is heated by the heating heater, and the cooling exclusive chamber is cooled. Refrigerant circuit diagram showing the refrigerant flow path when the refrigerant does not flow to the cold storage evaporator and the external evaporator during operation 本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室を加温ヒータで加温し冷却専用室を冷却する冷却加温運転時で庫外蒸発器に冷媒を流し庫内弱冷蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図Cooling and heating in which the first cooling greenhouse in the vending machine according to the first embodiment of the present invention is heated by the internal condenser, the second cooling greenhouse is heated by the heating heater, and the cooling exclusive chamber is cooled. Refrigerant circuit diagram showing the refrigerant flow path when the refrigerant flows through the external evaporator during operation and the refrigerant does not flow through the internal cold evaporator 本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室を加温ヒータで加温する加温運転時で庫外蒸発器に冷媒を流し庫内弱冷蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図In the vending machine according to Embodiment 1 of the present invention, the first cooling greenhouse is heated by the internal condenser and the second cooling greenhouse is heated by the heating heater. Refrigerant circuit diagram showing the refrigerant flow path when the refrigerant is allowed to flow and the refrigerant is not allowed to flow into the cold evaporator 本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室を加温ヒータで加温する加温運転時で庫内弱冷蒸発器と庫外蒸発器に冷媒を流す場合の冷媒流路を示す冷媒回路図In the vending machine according to Embodiment 1 of the present invention, the first cooling greenhouse is heated by the internal condenser and the second cooling greenhouse is heated by the heating heater, and the interior is slightly cooled. Refrigerant circuit diagram showing the refrigerant flow path when the refrigerant flows through the evaporator and the external evaporator 本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室を加温ヒータで加温する加温運転時で庫内弱冷蒸発器に冷媒を流し庫外蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図In the vending machine according to Embodiment 1 of the present invention, the first cooling greenhouse is heated by the internal condenser and the second cooling greenhouse is heated by the heating heater, and the interior is slightly cooled. Refrigerant circuit diagram showing the refrigerant flow path when the refrigerant flows through the evaporator and the refrigerant does not flow through the outside evaporator 本発明の実施の形態1の自動販売機における第1の冷却加温室を加温ヒータで加温し第2の冷却加温室と冷却専用室を冷却する冷却加温運転時で庫内弱冷蒸発器と庫外蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図In the vending machine according to Embodiment 1 of the present invention, the first cooling greenhouse is heated by a heating heater, and the second cooling greenhouse and the cooling exclusive chamber are cooled. Refrigerant circuit diagram showing the refrigerant flow path when the refrigerant does not flow to the evaporator and the outside evaporator 本発明の実施の形態1の自動販売機における第1の冷却加温室を加温ヒータで加温し冷却専用室を冷却する冷却加温運転時で庫内弱冷蒸発器と庫外蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図In the cooling / heating operation in which the first cooling greenhouse in the vending machine according to the first embodiment of the present invention is heated by the heating heater to cool the cooling exclusive chamber, Refrigerant circuit diagram showing the refrigerant flow path when no refrigerant flows 従来の自動販売機の冷媒回路図Refrigerant circuit diagram of a conventional vending machine 従来の自動販売機における全室を冷却する冷却運転時の冷媒流路を示す冷媒回路図Refrigerant circuit diagram showing refrigerant flow path during cooling operation for cooling all rooms in a conventional vending machine 従来の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室と冷却専用室を冷却する冷却加温運転時で庫外蒸発器に冷媒を流す場合の冷媒流路を示す冷媒回路図In the case of flowing the refrigerant through the external evaporator during the cooling and heating operation in which the first cooling greenhouse in the conventional vending machine is heated by the internal condenser and the second cooling greenhouse and the cooling exclusive chamber are cooled. Refrigerant circuit diagram showing the refrigerant flow path 従来の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室と冷却専用室を冷却する冷却加温運転時で庫外蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図When the first cooling greenhouse in a conventional vending machine is heated by a condenser in the cabinet and the second cooling greenhouse and the cooling exclusive chamber are cooled and the refrigerant is not supplied to the outside evaporator during the cooling and heating operation. Refrigerant circuit diagram showing the refrigerant flow path 従来の自動販売機における第1の冷却加温室を庫内凝縮器で加温する加温運転時の冷媒流路を示す冷媒回路図Refrigerant circuit diagram showing the refrigerant flow path during the heating operation in which the first cooling greenhouse in the conventional vending machine is heated by the internal condenser.

第1の発明は、圧縮機と、前記圧縮機から吐出された冷媒を凝縮させる庫外凝縮器と、複数の商品収納室に設置され前記庫外凝縮器で凝縮した冷媒を蒸発させて商品収納室内の商品を冷却する庫内蒸発器と、複数の前記庫内蒸発器に冷媒流路を分岐する分岐点と複数の前記庫内蒸発器との間の分岐流路を開閉する分岐流路開閉手段と、複数の商品収納室のうちで冷媒の凝縮熱を利用して商品収納室内の商品を加温する商品収納室に設置された庫内凝縮器と、前記庫内凝縮器で商品収納室内の商品を加温する時に前記圧縮機から吐出された冷媒を、前記庫内凝縮器を経由させてから前記庫外凝縮器に流し、前記庫内凝縮器で商品収納室内の商品を加温しない時に前記圧縮機から吐出された冷媒を、前記庫内凝縮器を経由させずに前記庫外凝縮器に流す庫内凝縮器用流路切替手段と、前記庫外凝縮器と前記分岐流路開閉手段との間の冷媒配管と前記圧縮機の吸い込み側配管とをバイパスするバイパス流路に設けられた庫外蒸発器と、前記庫外蒸発器の流入側で前記バイパス流路を開閉するバイパス流路開閉手段と、前記バイパス流路開閉手段と前記庫外蒸発器との間の前記バイパス流路に設けられ前記庫内凝縮器と前記庫外凝縮器で凝縮し前記バイパス流路に流入した冷媒を減圧するバイパス流路膨張手段と、複数の商品収納室のうちで前記庫内凝
縮器が設置されていない少なくとも1つの商品収納室に設置され前記庫外凝縮器で凝縮した冷媒を蒸発させて商品収納室内の商品を前記庫内蒸発器よりも高い温度で冷却する庫内弱冷蒸発器と、前記庫内弱冷蒸発器に冷媒流路を分岐する分岐点と前記庫内弱冷蒸発器との間の分岐流路を開閉する弱冷分岐流路開閉手段と、前記弱冷分岐流路開閉手段と前記庫内弱冷蒸発器との間の流路に前記庫内弱冷蒸発器に流入する冷媒によって前記庫内弱冷蒸発器の温度が冷却商品の凍結する温度以下にならないように冷媒を減圧する弱冷分岐流路膨張手段と、を有する自動販売機である。
According to a first aspect of the present invention, a compressor, an outside-condenser that condenses the refrigerant discharged from the compressor, and a product stored by evaporating the refrigerant that is installed in a plurality of product storage chambers and condensed by the outside-condenser An internal evaporator that cools indoor products, and a branch flow path opening and closing that opens and closes the branch flow path between the plurality of internal evaporators and a branch point that branches the refrigerant flow path to the multiple internal evaporators Means, a condensing unit installed in the product storing room for heating the product in the product storing room using the heat of condensation of the refrigerant among the plurality of product storing rooms, When the product is heated, the refrigerant discharged from the compressor passes through the internal condenser and then flows to the external condenser, and the internal condenser does not heat the product in the commodity storage chamber. Sometimes the refrigerant discharged from the compressor does not pass through the internal condenser and the external condenser The external condenser provided in the bypass flow path for bypassing the internal condenser flow path switching means, the refrigerant pipe between the external condenser and the branch flow path opening / closing means, and the suction side pipe of the compressor Provided in the bypass channel between the evaporator, the bypass channel opening and closing means for opening and closing the bypass channel on the inflow side of the outside evaporator, and between the bypass channel opening and closing unit and the outside evaporator Bypass passage expansion means for reducing the pressure of the refrigerant condensed by the internal condenser and the external condenser and flowing into the bypass passage, and the internal condenser is not installed among a plurality of product storage chambers An internal cold storage evaporator that evaporates a refrigerant that is installed in at least one product storage room and condenses in the external condenser to cool the product in the product storage room at a temperature higher than that of the internal evaporator; Dividing the refrigerant flow path into the inner cold evaporator A weakly branched flow path opening / closing means for opening and closing a branch flow path between the point and the internal cold evaporator, and a flow path between the weak cold branch flow path opening / closing means and the internal cold evaporator And a weakly branched branch passage expansion means for decompressing the refrigerant so that the temperature of the cold evaporator in the refrigerator does not become below the freezing temperature of the cooled product due to the refrigerant flowing into the cold evaporator in the refrigerator. It is a vending machine.

上記構成により、冷却室の負荷が低下する低外気温時において、庫内凝縮器を有する商品収納室で庫内凝縮器により加温するが、他の商品収納室の庫内蒸発器に冷媒を流せない場合でも、庫内弱冷蒸発器と庫外蒸発器のどちらか一方または両方に冷媒を流す冷媒流路にすることにより、圧縮機の運転を継続でき、庫内凝縮器のヒートポンプ加温能力を高めて、効率の良いヒートポンプ加温運転によって消費電力量を更に削減することができる。   With the above configuration, at the time of low outside air temperature when the load on the cooling chamber is reduced, the product storage room having the internal condenser is heated by the internal condenser, but the refrigerant is supplied to the internal evaporators of the other product storage rooms. Even if it is not possible to flow, the compressor operation can be continued by setting the refrigerant flow path to flow the refrigerant to one or both of the internal cold evaporator and the external evaporator, and the heat pump heating of the internal condenser The power consumption can be further reduced by increasing the capacity and efficient heat pump heating operation.

また、前記弱冷分岐流路開閉手段と前記庫内弱冷蒸発器との間の流路に、前記庫内弱冷蒸発器に流入する冷媒によって前記庫内弱冷蒸発器の温度が冷却商品が凍結する温度以下にならないように冷媒を減圧する弱冷分岐流路膨張手段を有するものであり、庫内弱冷蒸発器に流入する冷媒によって庫内弱冷蒸発器の温度が冷却商品が凍結する温度以下にならないので、庫内弱冷蒸発器が設置された商品収納室内の冷却商品を庫内蒸発器で冷却していない時に、庫内弱冷蒸発器に冷媒を流して庫内凝縮器で加温することができる。   Further, the temperature of the internal cold evaporator is cooled by the refrigerant flowing into the internal cold evaporator in the flow path between the weak cold branch opening / closing means and the internal cold evaporator. It has weak branching channel expansion means for decompressing the refrigerant so that the temperature does not fall below the freezing temperature, and the temperature of the cold evaporator in the refrigerator is frozen by the refrigerant flowing into the cold evaporator in the refrigerator. When the cooling product in the product storage room where the internal cold evaporator is installed is not cooled by the internal evaporator, the refrigerant is passed through the internal cold evaporator to cool the internal condenser. Can be heated.

第2の発明は、特に第1の発明における、前記弱冷分岐流路膨張手段にキャピラリチューブを用いたものであり、弱冷分岐流路膨張手段に電子膨張弁を用いた場合よりも構成が簡単でコストを低減できる。   In the second invention, a capillary tube is used as the weak cooling branch passage expansion means in the first invention, and the configuration is more than that when an electronic expansion valve is used as the weak cooling branch passage expansion means. Easy and cost saving.

以下、本発明の自動販売機の実施の形態について、図面を参照しながら説明するが、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of a vending machine according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1の自動販売機の冷媒回路図である。図2は、本発明の実施の形態1の自動販売機における第1の冷却加温室のみ冷却する冷却運転時の冷媒回路図である。図3は、本発明の実施の形態1の自動販売機における第2の冷却加温室と冷却専用室とを冷却する冷却運転時の冷媒回路図である。図4は、本発明の実施の形態1の自動販売機における冷却専用室のみ冷却する冷却運転時の冷媒回路図である。
(Embodiment 1)
FIG. 1 is a refrigerant circuit diagram of a vending machine according to Embodiment 1 of the present invention. FIG. 2 is a refrigerant circuit diagram during a cooling operation for cooling only the first cooling greenhouse in the vending machine according to the first embodiment of the present invention. FIG. 3 is a refrigerant circuit diagram during cooling operation for cooling the second cooling greenhouse and the cooling exclusive chamber in the vending machine according to the first embodiment of the present invention. FIG. 4 is a refrigerant circuit diagram during a cooling operation for cooling only the cooling-dedicated room in the vending machine according to the first embodiment of the present invention.

図5は、本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室と冷却専用室を冷却する冷却加温運転時で庫内弱冷蒸発器と庫外蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図である。図6は、本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し冷却専用室を冷却する冷却加温運転時で庫内弱冷蒸発器と庫外蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図である。   FIG. 5 shows a cooling and heating operation in which the first cooling greenhouse in the vending machine according to the first embodiment of the present invention is heated by the internal condenser to cool the second cooling greenhouse and the cooling exclusive chamber. It is a refrigerant circuit diagram which shows the refrigerant | coolant flow path in the case of not flowing a refrigerant | coolant to the inside cold-cooling evaporator and the outside evaporator. FIG. 6 shows a low-temperature evaporator in the refrigerator during the cooling and heating operation in which the first cooling greenhouse in the vending machine according to Embodiment 1 of the present invention is heated by the internal condenser and the cooling exclusive chamber is cooled. It is a refrigerant circuit diagram which shows the refrigerant | coolant flow path in case a refrigerant | coolant is not flowed to an external evaporator.

図7は、本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室と冷却専用室を冷却する冷却加温運転時で庫外蒸発器に冷媒を流し庫内弱冷蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図である。図8は、本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し冷却専用室を冷却する冷却加温運転時で庫外蒸発器に冷媒を流し庫内弱冷蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図である。図9は、本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温する加温運転時で庫外蒸発器に冷媒を流し庫内弱冷蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図である。   FIG. 7 shows a cooling and heating operation in which the first cooling greenhouse in the vending machine according to the first embodiment of the present invention is heated by the internal condenser to cool the second cooling greenhouse and the cooling exclusive chamber. It is a refrigerant circuit diagram which shows a refrigerant | coolant flow path in the case of flowing a refrigerant | coolant to an external evaporator and not flowing a refrigerant | coolant to the inside cold evaporator. FIG. 8 shows the refrigerant in the external evaporator during the cooling and heating operation in which the first cooling greenhouse in the vending machine according to Embodiment 1 of the present invention is heated by the internal condenser and the cooling exclusive chamber is cooled. It is a refrigerant circuit diagram which shows the refrigerant | coolant flow path in the case of not flowing a refrigerant | coolant in the sink cold evaporator. FIG. 9 shows a low-cooling evaporator inside the refrigerator by flowing a refrigerant through the external evaporator during the heating operation in which the first cooling greenhouse in the vending machine according to Embodiment 1 of the present invention is heated by the internal condenser. It is a refrigerant circuit figure which shows the refrigerant | coolant flow path when not flowing a refrigerant | coolant in FIG.

図10は、本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温する加温運転時で庫内弱冷蒸発器と庫外蒸発器に冷媒を流す場合の冷媒流路を示す冷媒回路図である。図11は、本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温する加温運転時で庫内弱冷蒸発器に冷媒を流し庫外蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図である。   FIG. 10 shows the refrigerant in the cold storage evaporator and the external evaporator during the heating operation in which the first cooling greenhouse in the vending machine according to Embodiment 1 of the present invention is heated by the internal condenser. It is a refrigerant circuit diagram which shows the refrigerant | coolant flow path in the case of flowing. FIG. 11 shows an external evaporator in which a refrigerant is poured into the cold storage evaporator during the heating operation in which the first cooling greenhouse in the vending machine according to Embodiment 1 of the present invention is heated by the internal condenser. It is a refrigerant circuit figure which shows the refrigerant | coolant flow path when not flowing a refrigerant | coolant in FIG.

図12は、本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室を加温ヒータで加温し冷却専用室を冷却する冷却加温運転時で庫内弱冷蒸発器と庫外蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図である。   FIG. 12 shows the first cooling greenhouse in the vending machine according to the first embodiment of the present invention, which is heated by the internal condenser, and the second cooling greenhouse is heated by the heating heater, thereby cooling the cooling exclusive chamber. It is a refrigerant circuit diagram which shows the refrigerant | coolant flow path in the case of not flowing a refrigerant | coolant to the inside cold-cooling evaporator and the outside evaporator at the time of the cooling heating operation to perform.

図13は、本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室を加温ヒータで加温し冷却専用室を冷却する冷却加温運転時で庫外蒸発器に冷媒を流し庫内弱冷蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図である。図14は、本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室を加温ヒータで加温する加温運転時で庫外蒸発器に冷媒を流し庫内弱冷蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図である。   FIG. 13 shows the first cooling greenhouse in the vending machine according to the first embodiment of the present invention, which is heated by the internal condenser, the second cooling greenhouse is heated by the heating heater, and the cooling exclusive chamber is cooled. It is a refrigerant circuit diagram which shows a refrigerant | coolant flow path in the case of making a refrigerant | coolant flow into an external evaporator and not flowing a refrigerant | coolant into a cold-cooled evaporator in a store | warehouse | chamber at the time of the cooling heating operation to perform. FIG. 14 shows a heating operation in which the first cooling greenhouse in the vending machine according to the first embodiment of the present invention is heated by the internal condenser and the second cooling greenhouse is heated by the heating heater. It is a refrigerant circuit diagram which shows a refrigerant | coolant flow path in the case of flowing a refrigerant | coolant to an external evaporator and not flowing a refrigerant | coolant to the inside cold evaporator.

図15は、本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室を加温ヒータで加温する加温運転時で庫内弱冷蒸発器と庫外蒸発器に冷媒を流す場合の冷媒流路を示す冷媒回路図である。図16は、本発明の実施の形態1の自動販売機における第1の冷却加温室を庫内凝縮器で加温し第2の冷却加温室を加温ヒータで加温する加温運転時で庫内弱冷蒸発器に冷媒を流し庫外蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図である。   FIG. 15 shows a heating operation in which the first cooling greenhouse in the vending machine according to the first embodiment of the present invention is heated by the internal condenser and the second cooling greenhouse is heated by the heating heater. It is a refrigerant circuit diagram which shows the refrigerant | coolant flow path in the case of flowing a refrigerant | coolant to an inside cold-cooled evaporator and an outside evaporator. FIG. 16 shows a heating operation in which the first cooling greenhouse in the vending machine according to the first embodiment of the present invention is heated by the internal condenser and the second cooling greenhouse is heated by the heating heater. It is a refrigerant circuit diagram which shows a refrigerant | coolant flow path in the case of flowing a refrigerant | coolant in a warehouse cold-cooled evaporator, and not flowing a refrigerant | coolant to an external evaporator.

図17は、本発明の実施の形態1の自動販売機における第1の冷却加温室を加温ヒータで加温し第2の冷却加温室と冷却専用室を冷却する冷却加温運転時で庫内弱冷蒸発器と庫外蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図である。図18は、本発明の実施の形態1の自動販売機における第1の冷却加温室を加温ヒータで加温し冷却専用室を冷却する冷却加温運転時で庫内弱冷蒸発器と庫外蒸発器に冷媒を流さない場合の冷媒流路を示す冷媒回路図である。   FIG. 17 shows the storage at the time of the cooling and heating operation in which the first cooling greenhouse in the vending machine according to the first embodiment of the present invention is heated by the heating heater to cool the second cooling greenhouse and the cooling exclusive chamber. It is a refrigerant circuit diagram which shows the refrigerant | coolant flow path in the case of not flowing a refrigerant | coolant to an internal weak-cooling evaporator and an external evaporator. FIG. 18 shows a low-temperature evaporator and a refrigerator in a cooling and heating operation in which the first cooling greenhouse in the vending machine according to the first embodiment of the present invention is heated by a heating heater and the cooling exclusive chamber is cooled. It is a refrigerant circuit figure which shows the refrigerant | coolant flow path when not flowing a refrigerant | coolant to an outer evaporator.

図1に示すように、本実施の形態1の自動販売機は、商品を収納する商品収納庫1と商品収納庫1の下部に配置された機械室(図示せず)を有する。   As shown in FIG. 1, the vending machine according to the first embodiment includes a product storage 1 for storing products and a machine room (not shown) disposed in the lower part of the product storage 1.

商品収納庫1は、庫内が、収納する商品を冷却もしくは加温する第1の冷却加温室2、収納する商品を冷却もしくは加温する第2の冷却加温室3、収納する商品を冷却する冷却専用室4に区画されている。また、それぞれの商品収納室内には商品収納棚(図示せず)が上部に吊り下げられており、商品が内部に収納されている。   The product storage 1 has a first cooling greenhouse 2 that cools or warms the stored product, a second cooling greenhouse 3 that cools or warms the stored product, and cools the stored product. It is partitioned into a cooling chamber 4. In addition, in each product storage room, a product storage shelf (not shown) is suspended at the top, and the products are stored inside.

また、機械室には、圧縮機5と、圧縮機5から吐出された冷媒を凝縮させる庫外凝縮器40と、庫外蒸発器41と、庫外凝縮器40が風上側で庫外蒸発器41が風下側になるように庫外凝縮器40と庫外蒸発器41の近傍に位置して庫外凝縮器40または庫外蒸発器41の熱交換が促進されるように送風する庫外ファン26が配置される。   In the machine room, the compressor 5, the outside condenser 40 that condenses the refrigerant discharged from the compressor 5, the outside evaporator 41, and the outside condenser 40 are located on the windward side and the outside evaporator. An outside fan that is located in the vicinity of the outside condenser 40 and the outside evaporator 41 so that 41 is on the leeward side and blows air so that heat exchange between the outside condenser 40 or the outside evaporator 41 is promoted. 26 is arranged.

第1の冷却加温室2内には、庫外凝縮器40で凝縮した冷媒を蒸発させて第1の冷却加温室2内の商品を冷却する庫内蒸発器47と、圧縮機5から吐出された冷媒を凝縮させて第1の冷却加温室2内の商品を加温する庫内凝縮器46と、庫内蒸発器47と庫内凝縮器46の近傍に配置され、庫内蒸発器47または庫内凝縮器46と熱交換した空気を第1の冷却加温室2内で循環させる庫内ファン27と、庫内凝縮器46とは別に必要に応じて第
1の冷却加温室2内の商品を加温する場合に通電されて発熱する加温ヒータ30と、第1の冷却加温室2の室内温度を検出する温度センサー(図示せず)が配置される。
In the first cooling greenhouse 2, the refrigerant condensed in the outside condenser 40 is evaporated to cool the products in the first cooling greenhouse 2 and discharged from the compressor 5. The inside condenser 46 for condensing the refrigerant to heat the product in the first cooling greenhouse 2, and the inside evaporator 47 and the inside condenser 46 are arranged in the vicinity of the inside evaporator 47 or Separately from the internal fan 27 for circulating the air heat-exchanged with the internal condenser 46 in the first cooling chamber 2 and the products in the first cooling chamber 2 as required separately from the internal condenser 46 A warming heater 30 that is energized to generate heat when warming and a temperature sensor (not shown) that detects the indoor temperature of the first cooling greenhouse 2 are arranged.

第2の冷却加温室3内には、庫外凝縮器40で凝縮(庫内凝縮器46に冷媒が流れている場合は、庫内凝縮器46と庫外凝縮器40で凝縮)した冷媒を蒸発させて第2の冷却加温室3内の商品を冷却する庫内蒸発器9と、庫内蒸発器9の近傍に配置され、庫内蒸発器9と熱交換した空気を第2の冷却加温室3内で循環させる庫内ファン28と、第2の冷却加温室3内の商品を加温する場合に通電されて発熱する加温ヒータ31と、第2の冷却加温室3の室内温度を検出する温度センサー(図示せず)が配置される。   In the second cooling greenhouse 3, the refrigerant condensed by the external condenser 40 (condensed by the internal condenser 46 and the external condenser 40 when the refrigerant is flowing in the internal condenser 46) is stored. The internal evaporator 9 that cools the product in the second cooling greenhouse 3 by evaporating, and the air that is disposed in the vicinity of the internal evaporator 9 and exchanges heat with the internal evaporator 9 is subjected to the second cooling and heating. The internal fan 28 that circulates in the greenhouse 3, the heating heater 31 that is energized to heat the product in the second cooling greenhouse 3, and the indoor temperature of the second cooling greenhouse 3 A temperature sensor (not shown) for detection is arranged.

冷却専用室4内には、庫外凝縮器40で凝縮(庫内凝縮器46に冷媒が流れている場合は、庫内凝縮器46と庫外凝縮器40で凝縮)した冷媒を蒸発させて冷却専用室4内の商品を冷却する庫内蒸発器10と、庫外凝縮器40で凝縮(庫内凝縮器46に冷媒が流れている場合は、庫内凝縮器46と庫外凝縮器40で凝縮)した冷媒を蒸発させて冷却専用室4内の商品を庫内蒸発器10よりも高い温度で冷却する庫内弱冷蒸発器54と、庫内蒸発器10と庫内弱冷蒸発器54の近傍に配置され、庫内蒸発器10または庫内弱冷蒸発器54と熱交換した空気を冷却専用室4内で循環させる庫内ファン29と、冷却専用室4の室内温度を検出する温度センサー(図示せず)が配置される。   In the cooling exclusive chamber 4, the refrigerant condensed by the external condenser 40 (condensed by the internal condenser 46 and the external condenser 40 when the refrigerant is flowing in the internal condenser 46) is evaporated. Condensation in the internal evaporator 10 that cools the product in the cooling exclusive chamber 4 and the external condenser 40 (in the case where the refrigerant flows through the internal condenser 46, the internal condenser 46 and the external condenser 40 The internal cold-cooled evaporator 54 that cools the refrigerant in the cooling-only chamber 4 at a higher temperature than the internal evaporator 10, and the internal evaporator 10 and the internal cold evaporator 54, the internal fan 29 that circulates the air exchanged with the internal evaporator 10 or the internal cold evaporator 54 in the exclusive cooling chamber 4, and the indoor temperature of the exclusive cooling chamber 4 is detected. A temperature sensor (not shown) is arranged.

庫内蒸発器47側と庫内蒸発器9,10側に冷媒流路を分岐する分岐点と、庫内蒸発器47との間の分岐流路には、第1の冷却加温室2の冷却が必要のため庫内蒸発器47に冷媒を流す時は開放状態になっており、第1の冷却加温室2の冷却が不要のため庫内蒸発器47に冷媒を流さない時は閉塞状態になっている分岐流路開閉手段としての電磁弁51が設けられる。   The first cooling chamber 2 is cooled at a branch point where the refrigerant flow path branches to the internal evaporator 47 side and the internal evaporators 9 and 10 side and the internal evaporator 47. Therefore, when the refrigerant flows through the internal evaporator 47, it is open, and since the cooling of the first cooling greenhouse 2 is not required, it is closed when the refrigerant does not flow through the internal evaporator 47. An electromagnetic valve 51 is provided as a branch flow path opening / closing means.

また、庫内蒸発器9側と庫内蒸発器10側に冷媒流路を分岐する分岐点には、庫内蒸発器9方向への冷媒の流路と庫内蒸発器10方向への冷媒の流路を切換えたり、両方の流路を同時に閉じたりすることが可能な分岐流路開閉手段としての三方弁42が設けられる。   In addition, at the branching point where the refrigerant flow path branches into the internal evaporator 9 side and the internal evaporator 10 side, the refrigerant flow path toward the internal evaporator 9 and the refrigerant flow toward the internal evaporator 10 are provided. A three-way valve 42 is provided as a branch channel opening / closing means capable of switching the channel or closing both channels simultaneously.

電磁弁51と庫内蒸発器47との間の冷媒の流路には庫内蒸発器47に流れる冷媒を減圧する膨張機構43が設けられ、三方弁42と庫内蒸発器9との間の冷媒の流路には庫内蒸発器9に流れる冷媒を減圧する膨張機構44が設けられ、三方弁42と庫内蒸発器10との間の冷媒の流路には、三方弁42から庫内蒸発器10方向に流れる冷媒を減圧する膨張機構45が設けられる。   The refrigerant flow path between the electromagnetic valve 51 and the internal evaporator 47 is provided with an expansion mechanism 43 that depressurizes the refrigerant flowing through the internal evaporator 47, and is provided between the three-way valve 42 and the internal evaporator 9. The refrigerant flow path is provided with an expansion mechanism 44 for reducing the pressure of the refrigerant flowing into the internal evaporator 9. The refrigerant flow path between the three-way valve 42 and the internal evaporator 10 is connected to the internal passage from the three-way valve 42. An expansion mechanism 45 for reducing the pressure of the refrigerant flowing in the direction of the evaporator 10 is provided.

庫内蒸発器9の冷媒の出口側は、膨張機構45と庫内蒸発器10とを接続する冷媒の配管に接続されており、庫内蒸発器9から流出した冷媒が庫内蒸発器10に流入するように構成されている。   The refrigerant outlet side of the internal evaporator 9 is connected to a refrigerant pipe connecting the expansion mechanism 45 and the internal evaporator 10, and the refrigerant that has flowed out of the internal evaporator 9 enters the internal evaporator 10. It is configured to flow in.

圧縮機5の吐出側の冷媒配管には、庫内凝縮器46で第1の冷却加温室2内の商品を加温する時に圧縮機5から吐出された冷媒を庫内凝縮器46を経由させてから庫外凝縮器40に流し、第1の冷却加温室2内の商品を加温しない時に圧縮機5から吐出された冷媒を庫内凝縮器46を経由させずに庫外凝縮器40に流す庫内凝縮器用流路切替手段としての三方弁57が設けられる。   The refrigerant pipe on the discharge side of the compressor 5 causes the refrigerant discharged from the compressor 5 to pass through the internal condenser 46 when the product in the first cooling greenhouse 2 is heated by the internal condenser 46. Then, the refrigerant discharged from the compressor 5 when flowing into the external condenser 40 and not warming the product in the first cooling greenhouse 2 is not passed through the internal condenser 46 to the external condenser 40. A three-way valve 57 is provided as a flow path switching means for the internal condenser to flow.

第1の冷却加温室2の庫内凝縮器46の冷媒の出口側は、庫内凝縮器46で凝縮した冷媒を減圧する膨張機構48と逆止弁58とを介して、三方弁57と庫外凝縮器40とを接続する冷媒配管に接続されている。   The refrigerant outlet side of the internal condenser 46 of the first cooling greenhouse 2 is connected to the three-way valve 57 and the internal storage via an expansion mechanism 48 that decompresses the refrigerant condensed in the internal condenser 46 and a check valve 58. The refrigerant pipe is connected to the outer condenser 40.

この逆止弁58は、庫内凝縮器46から流出した冷媒が膨張機構48で減圧されて逆止
弁58を介して庫外凝縮器40に流れるように配置される。言い換えると、圧縮機5から吐出された冷媒が庫内凝縮器46に流れずに庫外凝縮器40に流れる状態の三方弁57から流出した冷媒が、逆止弁58を通過しないように、逆止弁58が配置される。
The check valve 58 is arranged so that the refrigerant flowing out of the internal condenser 46 is decompressed by the expansion mechanism 48 and flows to the external condenser 40 via the check valve 58. In other words, the refrigerant discharged from the three-way valve 57 in a state where the refrigerant discharged from the compressor 5 does not flow into the internal condenser 46 but flows into the external condenser 40 is reversed so as not to pass through the check valve 58. A stop valve 58 is arranged.

また、機械室において、庫外蒸発器41は、庫外凝縮器40の冷媒の出口と、庫内蒸発器47側と庫内蒸発器9,10側に冷媒流路を分岐する分岐点との間の冷媒配管(庫外凝縮器40の冷媒の出口側の冷媒配管)と圧縮機5の吸い込み側配管とをバイパスするバイパス流路に設けられる。   In the machine room, the outside evaporator 41 includes a refrigerant outlet of the outside condenser 40, and a branch point that branches the refrigerant flow path to the inside evaporator 47 side and the inside evaporators 9 and 10 side. It is provided in the bypass flow path which bypasses the refrigerant | coolant piping (refrigerant piping of the exit side of the refrigerant | coolant of the condenser 40 outside a warehouse) and the suction side piping of the compressor 5 between.

庫外蒸発器41の冷媒の入り口側(バイパス流路の冷媒の入り口側)にはバイパス流路を開閉するバイパス流路開閉手段としての電磁弁52が設けられる。   An electromagnetic valve 52 as a bypass channel opening / closing means for opening and closing the bypass channel is provided on the refrigerant inlet side of the external evaporator 41 (the refrigerant inlet side of the bypass channel).

また、電磁弁52と庫外蒸発器41との間のバイパス流路には、庫内凝縮器46と庫外凝縮器40で凝縮してバイパス流路に流入した冷媒を減圧するバイパス流路膨張手段としての膨張機構53が設けられる。   In addition, in the bypass flow path between the electromagnetic valve 52 and the external evaporator 41, a bypass flow path expansion that decompresses the refrigerant condensed in the internal condenser 46 and the external condenser 40 and flowing into the bypass flow path. An expansion mechanism 53 is provided as a means.

バイパス流路開閉手段としての電磁弁52は、圧縮機5から吐出された冷媒が庫内凝縮器46を経由して庫外凝縮器40に流れる場合にのみ開放される。   The electromagnetic valve 52 as the bypass flow path opening / closing means is opened only when the refrigerant discharged from the compressor 5 flows to the outside condenser 40 via the inside condenser 46.

庫内弱冷蒸発器54の冷媒の入口側は、庫内弱冷蒸発器54に冷媒流路を分岐する分岐点と庫内弱冷蒸発器54との間の分岐流路を開閉する弱冷分岐流路開閉手段としての電磁弁56と、電磁弁56と庫内弱冷蒸発器54との間の流路に配置されて庫内弱冷蒸発器54に流入する冷媒によって庫内弱冷蒸発器54の温度が冷却商品が凍結する温度以下にならないように冷媒を減圧する弱冷分岐流路膨張手段としての膨張機構55とを介して、電磁弁52よりも冷媒の上流側のバイパス流路に接続されている。   The inlet side of the refrigerant in the internal cold evaporator 54 is weakly cooled to open and close the branch flow path between the branch point where the refrigerant flow path branches into the internal cold evaporator 54 and the internal cold evaporator 54. Cold cooling in the chamber is performed by the electromagnetic valve 56 serving as the branch channel opening / closing means, and the refrigerant that is disposed in the flow path between the electromagnetic valve 56 and the cold cooling evaporator 54 in the chamber and flows into the cold cooling evaporator 54 in the chamber. The bypass channel on the upstream side of the refrigerant with respect to the solenoid valve 52 through the expansion mechanism 55 as the weakly-cooled branch channel expansion means for reducing the pressure of the refrigerant so that the temperature of the vessel 54 does not fall below the temperature at which the cooled product freezes. It is connected to the.

なお、庫内弱冷蒸発器54を流れる分岐流路の上流端は、電磁弁52よりも冷媒の上流側のバイパス流路に接続せずに、庫外凝縮器40よりも冷媒の下流側で三方弁42よりも冷媒の上流側の冷媒流路に接続しても構わない。   It should be noted that the upstream end of the branch flow path that flows through the internal cold evaporator 54 is not connected to the bypass flow path upstream of the refrigerant with respect to the solenoid valve 52, but on the downstream side of the refrigerant with respect to the external condenser 40. You may connect to the refrigerant | coolant flow path upstream of a refrigerant | coolant rather than the three-way valve 42. FIG.

庫内弱冷蒸発器54の冷媒の出口側は、庫内蒸発器47の冷媒の出口側の分岐流路と庫内蒸発器10の冷媒の出口側の分岐流路とが合流する合流点と圧縮機5の吸い込み側との間の冷媒配管に接続されている。   The refrigerant outlet side of the internal cold evaporator 54 has a junction point where the refrigerant outlet side branch flow path of the internal evaporator 47 and the refrigerant outlet side branch flow path of the internal evaporator 10 merge. The refrigerant pipe between the suction side of the compressor 5 is connected.

庫内弱冷蒸発器54から流出した冷媒と庫内蒸発器47から流出した冷媒と庫内蒸発器10から流出した冷媒は、気液分離器59でガス冷媒と液冷媒とに分離されて、気液分離器59で液冷媒と分離されたガス冷媒が圧縮機5に吸い込まれる。   The refrigerant that has flowed out of the internal cold evaporator 54, the refrigerant that has flowed out of the internal evaporator 47, and the refrigerant that has flowed out of the internal evaporator 10 are separated into gas refrigerant and liquid refrigerant by the gas-liquid separator 59, The gas refrigerant separated from the liquid refrigerant by the gas-liquid separator 59 is sucked into the compressor 5.

図面では、庫外蒸発器41の冷媒の出口側(バイパス流路の下流端)が気液分離器59よりも冷媒の下流側に接続されているが、庫外蒸発器41の冷媒の出口側(バイパス流路の下流端)を気液分離器59よりも冷媒の上流側に接続しても構わない。   In the drawing, the refrigerant outlet side (downstream end of the bypass flow path) of the external evaporator 41 is connected to the refrigerant downstream side of the gas-liquid separator 59, but the refrigerant outlet side of the external evaporator 41 is shown. You may connect (the downstream end of a bypass flow path) to the upstream of a refrigerant | coolant rather than the gas-liquid separator 59. FIG.

庫外凝縮器40と庫外蒸発器41は、それぞれ、互いに間隔をあけて平行に並べられた複数のフィンと、そのフィンの両側に配置されたエンドプレートとを配管が貫通する熱交換器であり、庫外凝縮器40用のエンドプレートと庫外蒸発器41用のエンドプレートとは繋がっているが、庫外凝縮器40用の配管が貫通するフィンと庫外蒸発器41用の配管が貫通するフィンとは繋がっていない。   Each of the outside condenser 40 and the outside evaporator 41 is a heat exchanger in which piping passes through a plurality of fins arranged in parallel and spaced apart from each other and end plates arranged on both sides of the fins. Yes, the end plate for the external condenser 40 and the end plate for the external evaporator 41 are connected, but the fin through which the pipe for the external condenser 40 passes and the pipe for the external evaporator 41 are connected. It is not connected to the penetrating fin.

つまり、庫外凝縮器40と庫外蒸発器41は、フィンが別々でエンドプレートを共用するように一体化した2パスの熱交換器であり、庫外ファン26が運転された場合に、庫外
凝縮器40用の配管が風上側で、庫外蒸発器41用の配管が風下側になるように配置される。
That is, the external condenser 40 and the external evaporator 41 are two-pass heat exchangers that are integrated so that the fins are separate and share the end plate, and when the external fan 26 is operated, It arrange | positions so that piping for the outer condenser 40 may be on the leeward side, and piping for the outside evaporator 41 may be on the leeward side.

また、庫外凝縮器40用の配管と庫外蒸発器41用の配管は、それぞれ、配管内を冷媒が概ね上から下に向かって流れるように構成される。   The piping for the outside condenser 40 and the piping for the outside evaporator 41 are each configured such that the refrigerant flows in the piping from the top to the bottom.

ここで、一般的な自動販売機においては、第2の冷却加温室3が最も狭い部屋となる場合が多く、第2の冷却加温室3内に設置している庫内蒸発器9についても、第1の冷却加温室2内に設置している庫内蒸発器47、冷却専用室4内に設置している庫内蒸発器9よりも小型となっている。   Here, in a general vending machine, the second cooling greenhouse 3 is often the narrowest room, and the internal evaporator 9 installed in the second cooling greenhouse 3 It is smaller than the internal evaporator 47 installed in the first cooling greenhouse 2 and the internal evaporator 9 installed in the cooling chamber 4.

そのために、庫内蒸発器9単独のみでの蒸発能力を確保するためには膨張機構44を大きくして蒸発温度を大きく下げる必要があり、そうすれば圧縮機5の効率が低下し消費電力量が増大してしまう。   Therefore, in order to ensure the evaporation capability of the internal evaporator 9 alone, it is necessary to enlarge the expansion mechanism 44 to greatly lower the evaporation temperature, which reduces the efficiency of the compressor 5 and reduces the power consumption. Will increase.

そのため、庫内蒸発器9の冷媒の出口と庫内蒸発器10の冷媒の入り口とを接続し、庫内蒸発器9と庫内蒸発器10を一つの大きな蒸発器として取り扱えるようにすることにより、蒸発温度を高くして、効率を高めて消費電力量を低減できるようにしている。   Therefore, by connecting the refrigerant outlet of the internal evaporator 9 and the refrigerant inlet of the internal evaporator 10 so that the internal evaporator 9 and the internal evaporator 10 can be handled as one large evaporator. The evaporating temperature is raised to increase the efficiency and reduce the power consumption.

以上のように構成された本実施の形態の自動販売機について、以下、その動作を説明する。   The operation of the vending machine of the present embodiment configured as described above will be described below.

まず、第1の冷却加温室2のみ冷却する冷却運転の場合は、図2の太線の冷媒流路を矢印の向きに冷媒が流れる運転となる。   First, in the case of the cooling operation in which only the first cooling greenhouse 2 is cooled, the refrigerant flows in the direction of the arrow through the thick refrigerant path in FIG.

第1の冷却加温室2のみ冷却する冷却運転の場合は、三方弁57を、圧縮機5の吐出配管と庫外凝縮器40とが連通する状態にするとともに、三方弁42は庫内蒸発器9用の膨張機構44への流路と庫内蒸発器10用の膨張機構45への流路を閉塞する状態にし、電磁弁51を開放し、電磁弁52と電磁弁56を閉塞し、圧縮機5を起動する。圧縮機5の運転・停止にかかわらず常に電磁弁50を開放する。   In the cooling operation in which only the first cooling greenhouse 2 is cooled, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 and the external condenser 40 are in communication with each other, and the three-way valve 42 is an internal evaporator. 9 and the flow path to the expansion mechanism 45 for the internal evaporator 10 are closed, the electromagnetic valve 51 is opened, the electromagnetic valve 52 and the electromagnetic valve 56 are closed, and the compression is performed. The machine 5 is activated. Regardless of whether the compressor 5 is operated or stopped, the solenoid valve 50 is always opened.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過して庫外凝縮器40で冷却されて凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。庫外凝縮器40で凝縮した冷媒は、電磁弁51から膨張機構43側に流れ、膨張機構43にて減圧された後に庫内蒸発器47で蒸発気化して第1の冷却加温室2を冷却する。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and is cooled and condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40. The refrigerant condensed in the outside condenser 40 flows from the electromagnetic valve 51 to the expansion mechanism 43 side, and after being depressurized by the expansion mechanism 43, is evaporated and vaporized by the internal evaporator 47 to cool the first cooling greenhouse 2. To do.

なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。庫内蒸発器47に冷媒が流れている時には、庫内ファン27が庫内蒸発器47に送風している。   In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40. When the refrigerant is flowing through the internal evaporator 47, the internal fan 27 blows air to the internal evaporator 47.

そして、庫内蒸発器47から流出した冷媒は、気液分離器59でガス冷媒と液冷媒とに分離されて、気液分離器59で液冷媒と分離されたガス冷媒が圧縮機5に吸い込まれる。   The refrigerant flowing out of the internal evaporator 47 is separated into gas refrigerant and liquid refrigerant by the gas-liquid separator 59, and the gas refrigerant separated from the liquid refrigerant by the gas-liquid separator 59 is sucked into the compressor 5. It is.

第1の冷却加温室2が冷却温度範囲の下限値となる所定温度まで冷却されると、電磁弁51を閉塞すると共に圧縮機5と庫内ファン27を停止し、圧縮機5の停止中に第1の冷却加温室2内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、電磁弁51を開放すると共に圧縮機5を起動し庫内ファン27を運転する。   When the first cooling chamber 2 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the electromagnetic valve 51 is closed, the compressor 5 and the internal fan 27 are stopped, and the compressor 5 is stopped. If the temperature in the 1st cooling greenhouse 2 rises to the predetermined temperature used as the upper limit of a cooling temperature range, while opening the solenoid valve 51, the compressor 5 will be started and the internal fan 27 will be drive | operated.

そして、圧縮機5を停止した時は、冷媒回路の高低圧をバランスさせるために、三方弁
42を開放して、庫内凝縮器46の冷媒の出口と圧縮機5の吸い込み側(吸入側)配管とを連通させる。
When the compressor 5 is stopped, in order to balance the high and low pressures of the refrigerant circuit, the three-way valve 42 is opened, the refrigerant outlet of the internal condenser 46 and the suction side (suction side) of the compressor 5. Communicate with piping.

電磁弁50を常時開放することによって、圧縮機5の停止中に冷却運転で使用しない庫内凝縮器46へと余剰な冷媒を貯留する事ができるので、冷却運転中における冷媒量過多を防止することが可能となる。また、圧縮機5が停止するたびに毎回、電磁弁50を開放することで、三方弁57で冷媒が漏れることによって庫内凝縮器46へと冷媒が貯留され続けて冷媒不足状態に陥ることを防ぐことができる。   By always opening the solenoid valve 50, excess refrigerant can be stored in the internal condenser 46 that is not used in the cooling operation while the compressor 5 is stopped, so that an excessive amount of refrigerant can be prevented during the cooling operation. It becomes possible. Further, every time the compressor 5 stops, the electromagnetic valve 50 is opened, and the refrigerant leaks at the three-way valve 57, so that the refrigerant is continuously stored in the internal condenser 46 and falls into a refrigerant shortage state. Can be prevented.

なお、第1の冷却加温室2を加温運転から冷却運転に切換えた時や高外気温度でのイニシャルプルダウン時など、庫内の温度が高く、大きな冷凍能力を必要とする場合においては、圧縮機5の運転・停止にかかわらず常に電磁弁50を開放して、庫内凝縮器46の冷媒の出口と圧縮機5の吸い込み側(吸入側)配管とを連通すれば、全冷媒を冷却運転に利用できるので、大きな冷凍能力を得る事ができ、プルダウン時間を短縮することが可能となる。   When the first cooling greenhouse 2 is switched from the heating operation to the cooling operation or at the initial pull-down at a high outside air temperature, when the inside temperature is high and a large refrigerating capacity is required, the compression is performed. Regardless of whether the machine 5 is operated or stopped, the solenoid valve 50 is always opened so that the refrigerant outlet of the internal condenser 46 and the suction side (suction side) pipe of the compressor 5 communicate with each other. Therefore, a large refrigeration capacity can be obtained and the pull-down time can be shortened.

次に、第2の冷却加温室3と冷却専用室4を冷却する冷却運転の場合は、図3の太線の冷媒流路を矢印の向きに冷媒が流れる運転となる。   Next, in the case of the cooling operation for cooling the second cooling greenhouse 3 and the cooling exclusive chamber 4, the operation is such that the refrigerant flows in the direction of the arrow through the thick refrigerant passage in FIG.

第2の冷却加温室3と冷却専用室4を冷却する冷却運転の場合は、三方弁57を、圧縮機5の吐出配管と庫外凝縮器40とが連通する状態にするとともに、三方弁42は庫内蒸発器9用の膨張機構44への流路を開放し庫内蒸発器10用の膨張機構45への流路を閉塞する状態にし、電磁弁51と電磁弁52と電磁弁56を閉塞し、圧縮機5を起動する。圧縮機5の運転・停止にかかわらず常に電磁弁50を開放する。   In the cooling operation for cooling the second cooling greenhouse 3 and the cooling exclusive chamber 4, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 and the external condenser 40 are in communication with each other, and the three-way valve 42. Opens the flow path to the expansion mechanism 44 for the internal evaporator 9 and closes the flow path to the expansion mechanism 45 for the internal evaporator 10, and the electromagnetic valve 51, the electromagnetic valve 52, and the electromagnetic valve 56 are closed. The compressor 5 is closed and the compressor 5 is started. Regardless of whether the compressor 5 is operated or stopped, the solenoid valve 50 is always opened.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過して庫外凝縮器40で冷却されて凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。庫外凝縮器40で凝縮した冷媒は、三方弁42から膨張機構44側に流れ、膨張機構44にて減圧された後に庫内蒸発器9で蒸発気化して第2の冷却加温室3を冷却する。なお、庫内蒸発器9に冷媒が流れている時には、庫内ファン28が庫内蒸発器9に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and is cooled and condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40. The refrigerant condensed in the outside condenser 40 flows from the three-way valve 42 to the expansion mechanism 44 side, and after being decompressed by the expansion mechanism 44, the refrigerant is evaporated and evaporated in the internal evaporator 9 to cool the second cooling greenhouse 3. To do. When the refrigerant is flowing through the internal evaporator 9, the internal fan 28 blows air to the internal evaporator 9.

また、庫内蒸発器9で蒸発できなかった余剰な液冷媒は、庫内蒸発器9と直列に接続された庫内蒸発器10で蒸発して冷却専用室4も冷却する(直列冷却運転)。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。   The excess liquid refrigerant that could not be evaporated by the internal evaporator 9 is evaporated by the internal evaporator 10 connected in series with the internal evaporator 9 to cool the cooling exclusive chamber 4 (series cooling operation). . When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

その後、第2の冷却加温室3の温度が目標温度(冷却温度範囲の下限値)に達した時点で、三方弁42から膨張機構45へと冷媒が流れるように三方弁42を切り換えて、図4の太線の冷媒流路を矢印の向きに冷媒が流れる運転にすることで、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却を行う(下流側単独冷却運転)。   Thereafter, when the temperature of the second cooling greenhouse 3 reaches the target temperature (the lower limit value of the cooling temperature range), the three-way valve 42 is switched so that the refrigerant flows from the three-way valve 42 to the expansion mechanism 45. By performing the operation in which the refrigerant flow in the thick line 4 flows in the direction of the arrow, only the internal evaporator 10 out of the internal evaporator 9 and the internal evaporator 10 is cooled alone (downstream single cooling). operation).

このように優先的に直列冷却運転を行うことで、余剰液冷媒によって冷却専用室4も冷却されることから下流側単独冷却運転の運転率を低下することができ、消費電力量を低減することができる。   By performing the serial cooling operation preferentially in this way, the cooling exclusive chamber 4 is also cooled by the surplus liquid refrigerant, so that the operating rate of the downstream side single cooling operation can be reduced and the power consumption can be reduced. Can do.

そして、庫内蒸発器10から流出した冷媒は、気液分離器59でガス冷媒と液冷媒とに分離されて、気液分離器59で液冷媒と分離されたガス冷媒が圧縮機5に吸い込まれる。   The refrigerant flowing out of the internal evaporator 10 is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator 59, and the gas refrigerant separated from the liquid refrigerant by the gas-liquid separator 59 is sucked into the compressor 5. It is.

そして、制御手段(図示せず)が、第2の冷却加温室3と冷却専用室4の各室内の温度が予め設定された冷却温度範囲内を維持するように、三方弁42の切換え、圧縮機5と庫
外ファン26と庫内ファン28,29の運転を制御している。
Then, the control means (not shown) switches and compresses the three-way valve 42 so that the temperature in each of the second cooling greenhouse 3 and the cooling exclusive chamber 4 is maintained within a preset cooling temperature range. The operation of the machine 5, the outside fan 26, and the inside fans 28 and 29 is controlled.

また、第2の冷却加温室3が冷却温度範囲の下限値となる所定温度まで冷却されると、膨張機構44への流路を閉塞し膨張機構45への流路を開放する状態に三方弁42を切換えて、庫内ファン28を停止する。また、圧縮機5の停止中に第2の冷却加温室3内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構44への流路を開放し膨張機構45への流路を閉鎖する状態に三方弁42を切換えて、圧縮機5を起動し、庫内ファン28を運転する。   Further, when the second cooling chamber 3 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the three-way valve is brought into a state in which the flow path to the expansion mechanism 44 is closed and the flow path to the expansion mechanism 45 is opened. 42 is switched and the internal fan 28 is stopped. If the temperature in the second cooling greenhouse 3 rises to a predetermined temperature that is the upper limit value of the cooling temperature range while the compressor 5 is stopped, the flow path to the expansion mechanism 44 is opened and the expansion mechanism 45 is connected. The three-way valve 42 is switched to a state in which the flow path is closed, the compressor 5 is started, and the internal fan 28 is operated.

また、三方弁42が膨張機構44への流路を閉塞し膨張機構45への流路を開放して、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却(下流側単独冷却運転)をしている状態で、第2の冷却加温室3内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態に三方弁42を切り換えて、庫内ファン28を運転する。   Further, the three-way valve 42 closes the flow path to the expansion mechanism 44 and opens the flow path to the expansion mechanism 45 so that only the internal evaporator 10 out of the internal evaporator 9 and the internal evaporator 10 is cooled alone. When the temperature in the second cooling greenhouse 3 rises to a predetermined temperature that is the upper limit value of the cooling temperature range in the state where the downstream single cooling operation is performed, the flow path to the expansion mechanism 44 is opened. The internal fan 28 is operated by switching the three-way valve 42 to a state in which the flow path to the expansion mechanism 45 is closed.

また、庫内蒸発器9と庫内蒸発器10の直列冷却運転から庫内蒸発器10のみの下流側単独冷却運転への移行後に、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却されると、三方弁42の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、圧縮機5も停止する。   In addition, after the transition from the series cooling operation of the internal evaporator 9 and the internal evaporator 10 to the downstream single cooling operation of only the internal evaporator 10, the predetermined temperature at which the cooling exclusive chamber 4 becomes the lower limit value of the cooling temperature range When the cooling is performed, the compressor 5 is stopped in addition to closing the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 and stopping the internal fan 29.

また、圧縮機5の停止中に冷却専用室4内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態に三方弁42を切り換えて、圧縮機5を起動し、庫内ファン29を運転する。   If the temperature in the cooling chamber 4 rises to a predetermined temperature that is the upper limit value of the cooling temperature range while the compressor 5 is stopped, the flow path to the expansion mechanism 44 is opened and the flow path to the expansion mechanism 45 is opened. The three-way valve 42 is switched to the closed state, the compressor 5 is started, and the internal fan 29 is operated.

なお、圧縮機5の起動時には、予め、三方弁42は膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態にし、電磁弁51と電磁弁52と電磁弁56とを閉塞する。   When the compressor 5 is started, the three-way valve 42 opens the flow path to the expansion mechanism 44 and closes the flow path to the expansion mechanism 45 in advance, and the electromagnetic valve 51, the electromagnetic valve 52, and the electromagnetic valve 56 Occlude.

そして、圧縮機5を停止した時は、冷媒回路の高低圧をバランスさせるために、三方弁42の膨張機構44側の冷媒の出口または膨張機構45側の冷媒の出口を開放して、庫内凝縮器46の冷媒の出口と圧縮機5の吸い込み側(吸入側)配管とを連通させる。   When the compressor 5 is stopped, the refrigerant outlet on the expansion mechanism 44 side or the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 is opened to balance the high and low pressures of the refrigerant circuit. The refrigerant outlet of the condenser 46 and the suction side (suction side) piping of the compressor 5 are communicated with each other.

そして、冷媒回路の高低圧がバランスした後に、三方弁42の膨張機構44側の冷媒の出口または膨張機構45側の冷媒の出口を閉塞する。   Then, after the high and low pressures of the refrigerant circuit are balanced, the refrigerant outlet on the expansion mechanism 44 side of the three-way valve 42 or the refrigerant outlet on the expansion mechanism 45 side is closed.

このことによって、圧縮機5の停止中に冷却運転で使用しない庫内凝縮器46へと余剰な冷媒を貯留する事ができるので、冷却運転中における冷媒量過多を防止することが可能となる。また、三方弁57で冷媒が漏れることによって庫内凝縮器46へと冷媒が貯留され続けて冷媒不足状態に陥ることを防ぐことができる。   As a result, excess refrigerant can be stored in the internal condenser 46 that is not used in the cooling operation while the compressor 5 is stopped, so that it is possible to prevent an excessive amount of refrigerant during the cooling operation. Further, it is possible to prevent the refrigerant from being stored in the internal condenser 46 due to the leakage of the refrigerant through the three-way valve 57 and falling into a refrigerant shortage state.

なお、第2の冷却加温室3を加温ヒータ31による加温運転から冷却運転に切換えた時や高外気温度でのイニシャルプルダウン時など、庫内の温度が高く、大きな冷凍能力を必要とする場合においては、圧縮機5の運転・停止にかかわらず常に電磁弁50を開放して、庫内凝縮器46の冷媒の出口と圧縮機5の吸い込み側(吸入側)配管とを連通すれば、全冷媒を冷却運転に利用できるので、大きな冷凍能力を得る事ができ、プルダウン時間を短縮することが可能となる。   In addition, when the second cooling greenhouse 3 is switched from the heating operation by the heating heater 31 to the cooling operation, or at the initial pull-down at a high outside air temperature, the temperature in the warehouse is high and a large refrigerating capacity is required. In this case, if the solenoid valve 50 is always opened regardless of the operation / stop of the compressor 5 and the refrigerant outlet of the internal condenser 46 and the suction side (suction side) piping of the compressor 5 are communicated, Since all the refrigerants can be used for the cooling operation, a large refrigerating capacity can be obtained and the pull-down time can be shortened.

次に、冷却専用室4のみ冷却する冷却運転の場合は、図4の太線の冷媒流路を矢印の向きに冷媒が流れる運転となる。   Next, in the case of the cooling operation in which only the cooling exclusive chamber 4 is cooled, the operation is such that the refrigerant flows in the direction of the arrow through the thick refrigerant passage in FIG.

冷却専用室4のみ冷却する冷却運転の場合は、三方弁57を、圧縮機5の吐出配管と庫外凝縮器40とが連通する状態にするとともに、三方弁42は庫内蒸発器9用の膨張機構44への流路を閉塞し庫内蒸発器10用の膨張機構45への流路を開放する状態にし、電磁弁51と電磁弁52と電磁弁56を閉塞し、圧縮機5を起動する。圧縮機5の運転・停止にかかわらず常に電磁弁50を開放する。   In the cooling operation in which only the cooling exclusive chamber 4 is cooled, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 and the external condenser 40 communicate with each other, and the three-way valve 42 is provided for the internal evaporator 9. The flow path to the expansion mechanism 44 is closed, the flow path to the expansion mechanism 45 for the internal evaporator 10 is opened, the electromagnetic valve 51, the electromagnetic valve 52, and the electromagnetic valve 56 are closed, and the compressor 5 is started. To do. Regardless of whether the compressor 5 is operated or stopped, the solenoid valve 50 is always opened.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過して庫外凝縮器40で冷却されて凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。庫外凝縮器40で凝縮した冷媒は、三方弁42から膨張機構45側に流れ、膨張機構45にて減圧された後に庫内蒸発器10で蒸発気化して冷却専用室4を冷却する。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and is cooled and condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40. The refrigerant condensed in the outside condenser 40 flows from the three-way valve 42 to the expansion mechanism 45 side, and after being depressurized by the expansion mechanism 45, the refrigerant evaporates and cools in the internal evaporator 10 to cool the cooling dedicated chamber 4. When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

そして、庫内蒸発器10から流出した冷媒は、気液分離器59でガス冷媒と液冷媒とに分離されて、気液分離器59で液冷媒と分離されたガス冷媒が圧縮機5に吸い込まれる。   The refrigerant flowing out of the internal evaporator 10 is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator 59, and the gas refrigerant separated from the liquid refrigerant by the gas-liquid separator 59 is sucked into the compressor 5. It is.

そして、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却されると、三方弁42の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、圧縮機5も停止する。   When the exclusive cooling chamber 4 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the compressor 5 is closed in addition to closing the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 and stopping the internal fan 29. Also stop.

また、圧縮機5の停止中に冷却専用室4内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構45への流路を開放する状態に三方弁42を切り換えて、圧縮機5を起動し、庫内ファン29を運転する。   Further, when the temperature in the exclusive cooling chamber 4 rises to a predetermined temperature that is the upper limit value of the cooling temperature range while the compressor 5 is stopped, the three-way valve 42 is switched to a state in which the flow path to the expansion mechanism 45 is opened. Then, the compressor 5 is started and the internal fan 29 is operated.

なお、圧縮機5の起動時には、予め、電磁弁51と電磁弁52と電磁弁56とを閉塞している。   When the compressor 5 is started, the solenoid valve 51, the solenoid valve 52, and the solenoid valve 56 are closed in advance.

そして、圧縮機5を停止した時は、冷媒回路の高低圧をバランスさせるために、三方弁42の膨張機構45側の冷媒の出口を開放して、庫内凝縮器46の冷媒の出口と圧縮機5の吸い込み側(吸入側)配管とを連通させる。   When the compressor 5 is stopped, in order to balance the high and low pressure of the refrigerant circuit, the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 is opened, and the refrigerant outlet of the internal condenser 46 is compressed. The suction side (suction side) piping of the machine 5 is communicated.

そして、冷媒回路の高低圧がバランスした後に、三方弁42の膨張機構45側の冷媒の出口を閉塞する。   Then, after the high and low pressures of the refrigerant circuit are balanced, the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 is closed.

このことによって、圧縮機5の停止中に冷却運転で使用しない庫内凝縮器46へと余剰な冷媒を貯留する事ができるので、冷却運転中における冷媒量過多を防止することが可能となる。また、三方弁57で冷媒が漏れることによって庫内凝縮器46へと冷媒が貯留され続けて冷媒不足状態に陥ることを防ぐことができる。   As a result, excess refrigerant can be stored in the internal condenser 46 that is not used in the cooling operation while the compressor 5 is stopped, so that it is possible to prevent an excessive amount of refrigerant during the cooling operation. Further, it is possible to prevent the refrigerant from being stored in the internal condenser 46 due to the leakage of the refrigerant through the three-way valve 57 and falling into a refrigerant shortage state.

なお、高外気温度でのイニシャルプルダウン時など、庫内の温度が高く、大きな冷凍能力を必要とする場合においては、圧縮機5の運転・停止にかかわらず常に電磁弁50を開放して、庫内凝縮器46の冷媒の出口と圧縮機5の吸い込み側(吸入側)配管とを連通すれば、全冷媒を冷却運転に利用できるので、大きな冷凍能力を得る事ができ、プルダウン時間を短縮することが可能となる。   When the internal temperature is high and a large refrigeration capacity is required, such as during initial pull-down at a high outside air temperature, the solenoid valve 50 is always opened regardless of whether the compressor 5 is operated or stopped. If the refrigerant outlet of the inner condenser 46 and the suction side (suction side) piping of the compressor 5 are connected, all the refrigerant can be used for the cooling operation, so that a large refrigeration capacity can be obtained and the pull-down time is shortened. It becomes possible.

次に、第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3と冷却専用室4を冷却する冷却加温運転の場合は、図5の太線の冷媒流路を矢印の向きに冷媒が流れる運転となる。   Next, in the case of the cooling and heating operation in which the first cooling greenhouse 2 is heated by the internal condenser 46 and the second cooling greenhouse 3 and the cooling exclusive chamber 4 are cooled, the thick line refrigerant in FIG. The operation is such that the refrigerant flows through the flow path in the direction of the arrow.

第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3と冷却専用室4を
冷却する冷却加温運転の場合は、三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態にするとともに、三方弁42は膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態にし、電磁弁51と電磁弁52と電磁弁56を閉塞し、圧縮機5を起動する。
In the case of the cooling and heating operation in which the first cooling greenhouse 2 is heated by the internal condenser 46 and the second cooling greenhouse 3 and the cooling exclusive chamber 4 are cooled, the three-way valve 57 is connected to the compressor 5. The discharge pipe and the refrigerant inlet of the internal condenser 46 are in communication with each other, and the three-way valve 42 opens the flow path to the expansion mechanism 44 and closes the flow path to the expansion mechanism 45, 51, the solenoid valve 52, and the solenoid valve 56 are closed, and the compressor 5 is started.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。なお、庫内凝縮器46に冷媒が流れている時には、庫内ファン27が庫内凝縮器46に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and then goes to the internal condenser 46, where it is partially condensed by the internal condenser 46, and in this case, the internal condensation is performed. The inside of the first cooling greenhouse 2 is heated by radiating heat to the air around the vessel 46. When the refrigerant is flowing through the internal condenser 46, the internal fan 27 blows air to the internal condenser 46.

そして、庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に逆止弁58を通過して庫外凝縮器40にてさらに凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。   Then, the refrigerant exiting the internal condenser 46 is decompressed by the expansion mechanism 48, passes through the check valve 58, and is further condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40.

庫外凝縮器40から流出した冷媒は、電磁弁51と電磁弁52と電磁弁56が閉塞されているため、全て、三方弁42側に流れる。   The refrigerant that has flowed out of the outside condenser 40 flows to the three-way valve 42 side because the solenoid valve 51, the solenoid valve 52, and the solenoid valve 56 are closed.

そして、三方弁42から膨張機構44側に流れた液状の冷媒は、膨張機構44にて減圧された後に庫内蒸発器9で蒸発気化して第2の冷却加温室3を冷却する。なお、庫内蒸発器9に冷媒が流れている時には、庫内ファン28が庫内蒸発器9に送風している。   The liquid refrigerant flowing from the three-way valve 42 toward the expansion mechanism 44 is reduced in pressure by the expansion mechanism 44 and then evaporated and evaporated in the internal evaporator 9 to cool the second cooling greenhouse 3. When the refrigerant is flowing through the internal evaporator 9, the internal fan 28 blows air to the internal evaporator 9.

庫内蒸発器9で蒸発できなかった余剰な液冷媒は、庫内蒸発器9と直列に接続された庫内蒸発器10で蒸発して冷却専用室4も冷却する(直列冷却運転)。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。   The excess liquid refrigerant that could not be evaporated by the internal evaporator 9 is evaporated by the internal evaporator 10 connected in series with the internal evaporator 9 to cool the cooling exclusive chamber 4 (series cooling operation). When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

その後、第2の冷却加温室3の温度が目標温度(冷却温度範囲の下限値)に達した時点で膨張機構45へと冷媒が流入するように三方弁42を切り換えることで、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却を行う(下流側単独冷却運転)。   Thereafter, the internal evaporator is switched by switching the three-way valve 42 so that the refrigerant flows into the expansion mechanism 45 when the temperature of the second cooling greenhouse 3 reaches the target temperature (the lower limit value of the cooling temperature range). 9 and the internal evaporator 10 alone are cooled alone (downstream single cooling operation).

このように優先的に直列冷却運転を行うことで、余剰液冷媒によって冷却専用室4も冷却されることから下流側単独冷却運転の運転率を低下することができ、消費電力量を低減することができる。   By performing the serial cooling operation preferentially in this way, the cooling exclusive chamber 4 is also cooled by the surplus liquid refrigerant, so that the operating rate of the downstream side single cooling operation can be reduced and the power consumption can be reduced. Can do.

そして、庫内蒸発器10から流出した冷媒は、気液分離器59でガス冷媒と液冷媒とに分離されて、気液分離器59で液冷媒と分離されたガス冷媒が圧縮機5に吸い込まれる。   The refrigerant flowing out of the internal evaporator 10 is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator 59, and the gas refrigerant separated from the liquid refrigerant by the gas-liquid separator 59 is sucked into the compressor 5. It is.

そして、制御手段(図示せず)が、第1の冷却加温室2の室内温度が予め設定された加温温度範囲内を維持し、第2の冷却加温室3と冷却専用室4の各室内の温度が予め設定された冷却温度範囲内を維持するように、三方弁57と三方弁42の切換え、及び圧縮機5と庫外ファン26と庫内ファン27,28,29の運転を制御している。   And a control means (not shown) maintains the room temperature of the 1st cooling heating chamber 2 in the preset heating temperature range, and each room | chamber interior of the 2nd cooling heating chamber 3 and the cooling exclusive room 4 is carried out. The three-way valve 57 and the three-way valve 42 are switched, and the operation of the compressor 5, the external fan 26, and the internal fans 27, 28, and 29 is controlled so that the temperature of the internal combustion engine is maintained within a preset cooling temperature range. ing.

例えば、第1の冷却加温室2が加温温度範囲の上限値となる所定温度まで加温された時に、三方弁42のどちらかの冷媒の出口が開放状態(庫内蒸発器9と庫内蒸発器10で第2の冷却加温室3と冷却専用室4の両方の商品収納室を冷却する直列冷却運転中、または庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却で冷却専用室4を冷却する下流側単独冷却運転中)であれば、庫内ファン27を停止する。または、図3または図4のように、三方弁57を、圧縮機5の吐出配管と庫外凝縮器40とが連通する状態にすると共に、庫内ファン27を停止する。   For example, when the first cooling greenhouse 2 is heated to a predetermined temperature that is the upper limit value of the heating temperature range, the refrigerant outlet of either of the three-way valves 42 is in an open state (the internal evaporator 9 and the internal chamber 9). During the series cooling operation in which the product storage chambers of both the second cooling greenhouse 3 and the cooling exclusive chamber 4 are cooled by the evaporator 10, or only the internal evaporator 10 out of the internal evaporator 9 and the internal evaporator 10. In this case, the internal fan 27 is stopped. Alternatively, as shown in FIG. 3 or FIG. 4, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 communicates with the outside condenser 40 and the inside fan 27 is stopped.

三方弁57を切り換えずに庫内ファン27を停止した後に、第1の冷却加温室2の温度
が加温温度範囲の下限値となる所定温度まで低下すれば、庫内ファン27を運転する。
After the internal fan 27 is stopped without switching the three-way valve 57, the internal fan 27 is operated if the temperature of the first cooling greenhouse 2 decreases to a predetermined temperature that is the lower limit value of the heating temperature range.

図3または図4のように、庫内凝縮器46に圧縮機5からの冷媒が流れないように三方弁57を切り換えた後に、第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すれば、図5のように、再び三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態に戻すと共に、庫内ファン27を運転する。   As shown in FIG. 3 or 4, after switching the three-way valve 57 so that the refrigerant from the compressor 5 does not flow into the internal condenser 46, the temperature of the first cooling greenhouse 2 is the lower limit of the heating temperature range. When the temperature drops to a predetermined temperature, the three-way valve 57 is returned to the state in which the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 communicate with each other as shown in FIG. Drive 27.

また、図5に示す、第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3と冷却専用室4を冷却する冷却加温運転をしている時に、第2の冷却加温室3が冷却温度範囲の下限値となる所定温度まで冷却されると、図6のように、膨張機構44への流路を閉塞し膨張機構45への流路を開放する状態に三方弁42を切換えると共に、庫内ファン28を停止する。   In addition, when the first cooling greenhouse 2 shown in FIG. 5 is heated by the internal condenser 46 and the second cooling greenhouse 3 and the cooling exclusive chamber 4 are cooled and heated, When the second cooling greenhouse 3 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the flow path to the expansion mechanism 44 is closed and the flow path to the expansion mechanism 45 is opened as shown in FIG. The three-way valve 42 is switched to the state and the internal fan 28 is stopped.

また、図6の状態で、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却されたことにより圧縮機5を停止し、圧縮機5の停止中に第2の冷却加温室3内の温度が冷却温度範囲の上限値となる所定温度まで上昇した場合は、図5のように、膨張機構44への流路を開放し膨張機構45への流路を閉鎖する状態に三方弁42を切換えて、圧縮機5を起動し、庫内ファン28を運転する。   Further, in the state of FIG. 6, the compressor 5 is stopped when the cooling-only chamber 4 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, and the second cooling chamber 3 is stopped while the compressor 5 is stopped. When the internal temperature rises to a predetermined temperature that is the upper limit value of the cooling temperature range, the three-way valve is opened so that the flow path to the expansion mechanism 44 is opened and the flow path to the expansion mechanism 45 is closed as shown in FIG. 42 is switched, the compressor 5 is started, and the internal fan 28 is operated.

また、図6のように、三方弁42が膨張機構44への流路を閉塞し膨張機構45への流路を開放して、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却(下流側単独冷却運転)をしている状態で、第2の冷却加温室3内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、図5のように、膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態に三方弁42を切り換えると共に、庫内ファン28を運転する。   Further, as shown in FIG. 6, the three-way valve 42 closes the flow path to the expansion mechanism 44 and opens the flow path to the expansion mechanism 45, and the internal evaporation of the internal evaporator 9 and the internal evaporator 10. If the temperature in the second cooling greenhouse 3 rises to a predetermined temperature that is the upper limit value of the cooling temperature range in the state where only the cooler 10 is being cooled alone (downstream single cooling operation), as shown in FIG. In addition, the three-way valve 42 is switched to a state where the flow path to the expansion mechanism 44 is opened and the flow path to the expansion mechanism 45 is closed, and the internal fan 28 is operated.

また、図6のように、庫内蒸発器9と庫内蒸発器10の直列冷却運転から庫内蒸発器10のみの下流側単独冷却運転への移行後に、第1の冷却加温室2内の温度が加温温度範囲の上限値となる所定温度まで上昇すれば、図4のように、三方弁57が、圧縮機5の吐出配管と庫外凝縮器40とが連通する状態(庫内凝縮器46に圧縮機5から吐出された冷媒が流れない状態)になると共に、庫内ファン27が停止し、さらに、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却された場合は、三方弁42の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、圧縮機5を停止する。   Further, as shown in FIG. 6, after the transition from the series cooling operation of the internal evaporator 9 and the internal evaporator 10 to the downstream single cooling operation of only the internal evaporator 10, When the temperature rises to a predetermined temperature that is the upper limit value of the warming temperature range, the three-way valve 57 is in a state where the discharge pipe of the compressor 5 and the external condenser 40 communicate with each other as shown in FIG. The refrigerant discharged from the compressor 5 does not flow into the compressor 46), the internal fan 27 is stopped, and the cooling-only chamber 4 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range. Stops the compressor 5 in addition to closing the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 and stopping the internal fan 29.

また、図5の状態から図6のように、庫内蒸発器9と庫内蒸発器10の直列冷却運転から庫内蒸発器10のみの下流側単独冷却運転への移行後に、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却された場合は、三方弁42の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、バイパス流路の電磁弁52と電磁弁56のどちらか一方または両方を開放して、図9〜図11のいずれかに示す状態にして、庫外蒸発器41と庫内弱冷蒸発器54のどちらか一方または両方で吸熱することにより、庫内凝縮器46による第1の冷却加温室2の加温を継続する。   Further, as shown in FIG. 6 from the state of FIG. 5, after the transition from the serial cooling operation of the internal evaporator 9 and the internal evaporator 10 to the downstream single cooling operation of only the internal evaporator 10, the cooling exclusive chamber 4 Is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, in addition to closing the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 and stopping the internal fan 29, Either one or both of the electromagnetic valves 56 are opened, and the state shown in any of FIGS. 9 to 11 is obtained, and heat is absorbed by one or both of the outside evaporator 41 and the inside cold evaporator 54. Thus, the heating of the first cooling greenhouse 2 by the internal condenser 46 is continued.

このとき、電磁弁52と電磁弁56の両方を開放して、図10に示す、庫外蒸発器41と庫内弱冷蒸発器54の両方で吸熱する状態にした場合は、電磁弁52と電磁弁56の片方のみを開放して庫外蒸発器41と庫内弱冷蒸発器54のどちらか一方で吸熱する図9または図11に示す状態にした場合よりも、庫内凝縮器46による第1の冷却加温室2の加温能力が高くなる。   At this time, when both the solenoid valve 52 and the solenoid valve 56 are opened and the heat is absorbed by both the outside evaporator 41 and the inside cold evaporator 54 shown in FIG. Compared to the state shown in FIG. 9 or FIG. 11 in which only one of the solenoid valves 56 is opened and heat is absorbed by either the outside evaporator 41 or the inside cold evaporator 54, the inside condenser 46 is used. The heating capability of the 1st cooling greenhouse 2 becomes high.

なお、第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3と冷却専用室4を冷却する冷却加温運転する時に、バイパス流路の電磁弁52を開放して図7に示す
庫外蒸発器41で吸熱する状態にすると、バイパス流路の電磁弁52を開放せずに図5に示す状態にした場合よりも、庫外蒸発器41で吸熱する分、庫内凝縮器46による第1の冷却加温室2の加温能力が高くなる。
When the first cooling greenhouse 2 is heated by the internal condenser 46 and the cooling and heating operation is performed to cool the second cooling greenhouse 3 and the cooling exclusive chamber 4, the electromagnetic valve 52 of the bypass channel is set. When the external evaporator 41 shown in FIG. 7 is opened and absorbs heat, the external evaporator 41 absorbs heat more than the state shown in FIG. 5 without opening the electromagnetic valve 52 of the bypass channel. The heating capacity of the first cooling greenhouse 2 by the internal condenser 46 is increased.

また、第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3と冷却専用室4のうち冷却専用室4だけを冷却する冷却加温運転する時に、バイパス流路の電磁弁52を開放して図8に示す庫外蒸発器41で吸熱する状態にすると、バイパス流路の電磁弁52を開放せずに図6に示す状態にした場合よりも、庫外蒸発器41で吸熱する分、庫内凝縮器46による第1の冷却加温室2の加温能力が高くなる。   In addition, when the first cooling greenhouse 2 is heated by the internal condenser 46 and the cooling heating operation for cooling only the cooling dedicated chamber 4 out of the second cooling greenhouse 3 and the cooling dedicated chamber 4 is performed, a bypass is performed. When the electromagnetic valve 52 in the flow path is opened and heat is absorbed by the external evaporator 41 shown in FIG. 8, the storage is made more than in the state shown in FIG. 6 without opening the electromagnetic valve 52 in the bypass flow path. The amount of heat absorbed by the outer evaporator 41 increases the heating capacity of the first cooling greenhouse 2 by the internal condenser 46.

なお、第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3と冷却専用室4を冷却する冷却加温運転を開始する場合において、第1の冷却加温室2の庫内温度が所定の庫内上限温度(加熱終了温度)に達するまで、または、圧縮機5の吐出圧力が所定の圧縮機過負荷圧力に達するまでは、バイパス流路の電磁弁52を開放して図7の太線の冷媒流路を矢印の向きに冷媒が流れるようにして冷却加温運転を開始しても構わない。   When the first cooling greenhouse 2 is heated by the internal condenser 46 and the cooling and heating operation for cooling the second cooling greenhouse 3 and the cooling exclusive chamber 4 is started, the first cooling heating chamber 2 is started. Until the internal temperature of the greenhouse 2 reaches a predetermined internal upper limit temperature (heating end temperature), or until the discharge pressure of the compressor 5 reaches a predetermined compressor overload pressure, the solenoid valve 52 in the bypass passage The cooling and heating operation may be started so that the refrigerant flows in the direction of the arrow in the thick refrigerant passage in FIG.

その場合は、圧縮機5の吐出圧力が所定の圧縮機過負荷圧力に達した場合は、バイパス流路の電磁弁52を閉塞して、冷媒が、図5の太線の冷媒流路を矢印の向きに流れるようにする。   In that case, when the discharge pressure of the compressor 5 reaches a predetermined compressor overload pressure, the solenoid valve 52 of the bypass flow path is closed, and the refrigerant passes through the thick refrigerant path of the arrow in FIG. Make it flow in the direction.

バイパス流路の電磁弁52を開放して図7の太線の冷媒流路を矢印の向きに冷媒が流れるようにして冷却加温運転を開始して、圧縮機5の吐出圧力が所定の圧縮機過負荷圧力に達したことにより、バイパス流路の電磁弁52を閉塞して図5の太線の冷媒流路を矢印の向きに流れるようにした後、圧縮機5の吐出圧力が圧縮機過負荷圧力より低い所定の圧縮機通常圧力(再開放圧力)に低下すれば、バイパス流路の電磁弁52を開放して、再び、冷媒が、図7の太線の冷媒流路を矢印の向きに流れるようにする。   The solenoid valve 52 of the bypass flow path is opened and the cooling and heating operation is started so that the refrigerant flows in the direction of the arrow in the thick refrigerant flow path of FIG. 7, and the discharge pressure of the compressor 5 is a predetermined compressor. When the overload pressure is reached, the solenoid valve 52 of the bypass flow path is closed so that the refrigerant flow path shown by the thick line in FIG. 5 flows in the direction of the arrow, and then the discharge pressure of the compressor 5 changes to the compressor overload. If the pressure is reduced to a predetermined compressor normal pressure (reopen pressure) lower than the pressure, the electromagnetic valve 52 of the bypass flow path is opened, and the refrigerant again flows in the direction of the arrow through the thick refrigerant path of FIG. Like that.

詳細に説明すると、第1の冷却加温室2を加温し、第2の冷却加温室3と冷却専用室4を冷却する冷却加温運転を開始する場合は、図7に示すように、三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態にするとともに、三方弁42は膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態にし、電磁弁51と電磁弁56を閉塞し、電磁弁52を開放し、圧縮機5を起動する。   More specifically, when starting the cooling and heating operation for heating the first cooling greenhouse 2 and cooling the second cooling greenhouse 3 and the cooling exclusive chamber 4, as shown in FIG. The valve 57 is in a state where the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 communicate with each other, and the three-way valve 42 opens the flow path to the expansion mechanism 44 and opens the flow path to the expansion mechanism 45. Is closed, the electromagnetic valve 51 and the electromagnetic valve 56 are closed, the electromagnetic valve 52 is opened, and the compressor 5 is started.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。なお、庫内凝縮器46に冷媒が流れている時には、庫内ファン27が庫内凝縮器46に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and then goes to the internal condenser 46, where it is partially condensed by the internal condenser 46, and in this case, the internal condensation is performed. The inside of the first cooling greenhouse 2 is heated by radiating heat to the air around the vessel 46. When the refrigerant is flowing through the internal condenser 46, the internal fan 27 blows air to the internal condenser 46.

そして、庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に逆止弁58を通過して庫外凝縮器40にて更に凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。   The refrigerant exiting the internal condenser 46 is depressurized by the expansion mechanism 48, passes through the check valve 58, and is further condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40.

庫外凝縮器40から流出した冷媒は、三方弁42から庫内蒸発器9用の膨張機構44側に流れるものと、バイパス流路に分岐して電磁弁52から膨張機構53側に流れるものとに分かれる。   The refrigerant that has flowed out of the external condenser 40 flows from the three-way valve 42 to the expansion mechanism 44 side for the internal evaporator 9, and the refrigerant that branches to the bypass flow path and flows from the electromagnetic valve 52 to the expansion mechanism 53 side. Divided into

三方弁42から庫内蒸発器9用の膨張機構44側に流れた冷媒は、膨張機構44にて減圧された後に庫内蒸発器9で蒸発気化して第2の冷却加温室3を冷却する。なお、庫内蒸発器9に冷媒が流れている時には、庫内ファン28が庫内蒸発器9に送風している。   The refrigerant that has flowed from the three-way valve 42 toward the expansion mechanism 44 for the internal evaporator 9 is decompressed by the expansion mechanism 44 and then evaporated and evaporated in the internal evaporator 9 to cool the second cooling greenhouse 3. . When the refrigerant is flowing through the internal evaporator 9, the internal fan 28 blows air to the internal evaporator 9.

庫内蒸発器9で蒸発できなかった余剰な液冷媒は、庫内蒸発器9と直列に接続された庫内蒸発器10で蒸発して冷却専用室4も冷却する(直列冷却運転)。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。   The excess liquid refrigerant that could not be evaporated by the internal evaporator 9 is evaporated by the internal evaporator 10 connected in series with the internal evaporator 9 to cool the cooling exclusive chamber 4 (series cooling operation). When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

その後、第2の冷却加温室3の温度が目標温度(冷却温度範囲の下限値)に達した時点で庫内蒸発器10用の膨張機構45へと冷媒が流入するように三方弁42を切り換えることで、図8に示すように、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却を行う(下流側単独冷却運転)。   Thereafter, when the temperature of the second cooling greenhouse 3 reaches the target temperature (the lower limit value of the cooling temperature range), the three-way valve 42 is switched so that the refrigerant flows into the expansion mechanism 45 for the internal evaporator 10. Thus, as shown in FIG. 8, only the internal evaporator 10 out of the internal evaporator 9 and the internal evaporator 10 is individually cooled (downstream side independent cooling operation).

このように優先的に直列冷却運転を行うことで、余剰液冷媒によって冷却専用室4も冷却されることから下流側単独冷却運転の運転率を低下することができ、消費電力量を低減することができる。   By performing the serial cooling operation preferentially in this way, the cooling exclusive chamber 4 is also cooled by the surplus liquid refrigerant, so that the operating rate of the downstream side single cooling operation can be reduced and the power consumption can be reduced. Can do.

一方、バイパス流路に分岐して電磁弁52から膨張機構53側に流れた冷媒は、膨張機構53にて減圧された後に庫外蒸発器41で蒸発気化する。   On the other hand, the refrigerant branched into the bypass flow path and flowing from the electromagnetic valve 52 to the expansion mechanism 53 side is evaporated by the external evaporator 41 after being decompressed by the expansion mechanism 53.

そして、庫内蒸発器10から流出したガス状の冷媒と、庫外蒸発器41から流出したガス状の冷媒とが合流して、圧縮機5に戻る。   Then, the gaseous refrigerant that has flowed out of the internal evaporator 10 and the gaseous refrigerant that has flowed out of the external evaporator 41 merge and return to the compressor 5.

その後、もし、圧縮機5の吐出圧力が所定の圧縮機過負荷圧力に達した場合は、バイパス流路の電磁弁52を閉塞する。   Thereafter, if the discharge pressure of the compressor 5 reaches a predetermined compressor overload pressure, the solenoid valve 52 of the bypass flow path is closed.

ここで、圧縮機5の吐出圧力検知手段としては、吐出配管上に設けて直接冷媒の圧力を測定する圧力センサ、吐出配管上に設けたサーミスタなどが挙げられる。   Here, examples of the discharge pressure detection means of the compressor 5 include a pressure sensor that is provided on the discharge pipe and directly measures the pressure of the refrigerant, a thermistor provided on the discharge pipe, and the like.

ただし、圧縮機5の吐出圧力は凝縮温度の形で熱交換器近傍の配管温度にて近似することが可能であり、また、凝縮温度のように温度が高い状態においては圧力損失による温度変化が非常に小さい(1〜2℃程度)ことから、庫内凝縮器46近傍の配管上の温度をサーミスタなどにより検知を行うことで低コストでの実現が可能となる。   However, the discharge pressure of the compressor 5 can be approximated by the piping temperature in the vicinity of the heat exchanger in the form of the condensation temperature, and in a state where the temperature is high such as the condensation temperature, the temperature change due to the pressure loss does not occur. Since it is very small (about 1 to 2 ° C.), it can be realized at low cost by detecting the temperature on the pipe in the vicinity of the internal condenser 46 with a thermistor or the like.

バイパス流路の電磁弁52が閉塞している時は、図5の太線の冷媒流路を矢印の向きに冷媒が流れる。   When the solenoid valve 52 in the bypass channel is closed, the coolant flows in the direction of the arrow through the thick coolant channel in FIG.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。なお、庫内凝縮器46に冷媒が流れている時には、庫内ファン27が庫内凝縮器46に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and then goes to the internal condenser 46, where it is partially condensed by the internal condenser 46, and in this case, the internal condensation is performed. The inside of the first cooling greenhouse 2 is heated by radiating heat to the air around the vessel 46. When the refrigerant is flowing through the internal condenser 46, the internal fan 27 blows air to the internal condenser 46.

そして、庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に逆止弁58を通過して庫外凝縮器40にて更に凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。   The refrigerant exiting the internal condenser 46 is depressurized by the expansion mechanism 48, passes through the check valve 58, and is further condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40.

庫外凝縮器40から流出した冷媒は、バイパス流路の電磁弁52が閉塞しているため、全て、三方弁42から庫内蒸発器9用の膨張機構44側に流れ、膨張機構44にて減圧された後に庫内蒸発器9で蒸発気化して第2の冷却加温室3を冷却する。なお、庫内蒸発器9に冷媒が流れている時には、庫内ファン28が庫内蒸発器9に送風している。   The refrigerant flowing out of the external condenser 40 flows from the three-way valve 42 to the expansion mechanism 44 side for the internal evaporator 9 because the solenoid valve 52 in the bypass flow path is closed. After being depressurized, the second cooling greenhouse 3 is cooled by evaporating with the internal evaporator 9. When the refrigerant is flowing through the internal evaporator 9, the internal fan 28 blows air to the internal evaporator 9.

庫内蒸発器9で蒸発できなかった余剰な液冷媒は、庫内蒸発器9と直列に接続された庫内蒸発器10で蒸発して冷却専用室4も冷却する(直列冷却運転)。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。   The excess liquid refrigerant that could not be evaporated by the internal evaporator 9 is evaporated by the internal evaporator 10 connected in series with the internal evaporator 9 to cool the cooling exclusive chamber 4 (series cooling operation). When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

その後、第2の冷却加温室3の温度が目標温度(冷却温度範囲の下限値)に達した時点で庫内蒸発器10用の膨張機構45へと冷媒が流入するように三方弁42を切り換えることで、図6に示すように庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却を行う(下流側単独冷却運転)。   Thereafter, when the temperature of the second cooling greenhouse 3 reaches the target temperature (the lower limit value of the cooling temperature range), the three-way valve 42 is switched so that the refrigerant flows into the expansion mechanism 45 for the internal evaporator 10. Thus, as shown in FIG. 6, only the internal evaporator 10 out of the internal evaporator 9 and the internal evaporator 10 is individually cooled (downstream side independent cooling operation).

このように優先的に直列冷却運転を行うことで、余剰液冷媒によって冷却専用室4も冷却されることから下流側単独冷却運転の運転率を低下することができ、消費電力量を低減することができる。   By performing the serial cooling operation preferentially in this way, the cooling exclusive chamber 4 is also cooled by the surplus liquid refrigerant, so that the operating rate of the downstream side single cooling operation can be reduced and the power consumption can be reduced. Can do.

そして、庫内蒸発器10から流出したガス状の冷媒は、圧縮機5に戻る。   The gaseous refrigerant that has flowed out of the internal evaporator 10 returns to the compressor 5.

バイパス流路の電磁弁52を閉塞した後、圧縮機5の吐出圧力が圧縮機過負荷圧力より低い所定の圧縮機通常圧力(再開放圧力)に低下すれば、閉塞していたバイパス流路の電磁弁52を開放して、冷媒が図7の太線の冷媒流路を矢印の向きに流れるようにする。   If the discharge pressure of the compressor 5 drops to a predetermined compressor normal pressure (reopen pressure) lower than the compressor overload pressure after the solenoid valve 52 of the bypass passage is closed, the bypass passage The electromagnetic valve 52 is opened so that the refrigerant flows in the direction of the arrow in the thick refrigerant path of FIG.

バイパス流路の電磁弁52を開放している場合は、電磁弁52を閉塞している場合よりも庫内凝縮器46の加温能力を高めることができる。   When the electromagnetic valve 52 of the bypass channel is opened, the heating capacity of the internal condenser 46 can be increased as compared with the case where the electromagnetic valve 52 is closed.

バイパス流路の電磁弁52を開放すると、バイパス流路に冷媒が流れるため冷媒の流路抵抗が減り、冷媒の循環量が増え、庫内蒸発器9,10の蒸発温度が上昇し、庫内凝縮器46の凝縮温度が上昇する。よって、第1の冷却加温室2の庫内凝縮器46による加温能力が高まり、加温ヒータ30より効率のよいヒートポンプ加温(冷却加温システムによる加温)にて加温させることができる。   When the solenoid valve 52 of the bypass flow path is opened, the refrigerant flows through the bypass flow path, so that the flow resistance of the refrigerant decreases, the circulation amount of the refrigerant increases, the evaporation temperature of the internal evaporators 9 and 10 increases, The condensation temperature of the condenser 46 increases. Therefore, the heating capability by the internal condenser 46 of the 1st cooling heating greenhouse 2 increases, and it can heat by the heat pump heating (heating by a cooling heating system) more efficient than the heating heater 30. .

そして、制御手段(図示せず)が、第1の冷却加温室2の室内温度が予め設定された加温温度範囲内を維持し、第2の冷却加温室3と冷却専用室4の各室内の温度が予め設定された冷却温度範囲内を維持するように、三方弁57と三方弁42の切換え、及び圧縮機5と庫外ファン26と庫内ファン27,28,29の運転を制御している。   And a control means (not shown) maintains the room temperature of the 1st cooling heating chamber 2 in the preset heating temperature range, and each room | chamber interior of the 2nd cooling heating chamber 3 and the cooling exclusive room 4 is carried out. The three-way valve 57 and the three-way valve 42 are switched, and the operation of the compressor 5, the external fan 26, and the internal fans 27, 28, and 29 is controlled so that the temperature of the internal combustion engine is maintained within a preset cooling temperature range. ing.

例えば、第1の冷却加温室2が加温温度範囲の上限値となる所定温度(加熱終了温度)まで加温された時に、三方弁42の庫内蒸発器9用の膨張機構44への流路(出口)と庫内蒸発器10用の膨張機構45への流路(出口)のどちらかが開放状態(庫内蒸発器9と庫内蒸発器10で第2の冷却加温室3と冷却専用室4の両方の商品収納室を冷却する直列冷却運転中、または庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却で冷却専用室4を冷却する下流側単独冷却運転中)であれば、バイパス流路の電磁弁52を閉塞すると共に庫内ファン27を停止する。   For example, when the first cooling greenhouse 2 is heated to a predetermined temperature (heating end temperature) that is the upper limit value of the heating temperature range, the flow of the three-way valve 42 to the expansion mechanism 44 for the internal evaporator 9 is performed. Either the passage (exit) or the flow path (exit) to the expansion mechanism 45 for the internal evaporator 10 is in an open state (the internal cooling 9 and the internal evaporator 10 cool the second cooling chamber 3 and Downstream side for cooling the cooling exclusive chamber 4 during the serial cooling operation for cooling both the product storage chambers of the exclusive chamber 4 or by the independent cooling of the internal evaporator 9 and the internal evaporator 10 alone. If the single cooling operation is in progress), the electromagnetic valve 52 in the bypass passage is closed and the internal fan 27 is stopped.

または、電磁弁52の閉塞と庫内ファン27の停止に加えて、図3に示すように、三方弁57を、圧縮機5の吐出配管と庫外凝縮器40とが連通する状態にする。   Alternatively, in addition to closing the electromagnetic valve 52 and stopping the internal fan 27, as shown in FIG. 3, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 and the external condenser 40 communicate with each other.

ここで、バイパス流路の電磁弁52を閉塞すると共に庫内ファン27を停止するが、三方弁57を、圧縮機5の吐出配管と庫外凝縮器40とが連通する状態にしない場合は、バイパス流路の電磁弁52の閉塞により、第1の冷却加温室2の庫内凝縮器46による加温能力を低下させ、庫内ファン27の停止により、第1の冷却加温室2内の空気と庫内凝縮器46との熱交換量が低下する。   Here, the electromagnetic valve 52 of the bypass flow path is closed and the internal fan 27 is stopped, but when the three-way valve 57 is not in a state where the discharge pipe of the compressor 5 and the external condenser 40 are in communication with each other, By closing the solenoid valve 52 in the bypass flow path, the heating capacity of the first condenser room 2 by the internal condenser 46 is reduced, and when the internal fan 27 is stopped, the air in the first compartment 2 is cooled. And the amount of heat exchange between the refrigerator 46 and the internal condenser 46 are reduced.

この場合、圧縮機5から吐出された高温高圧のガス状の冷媒の大半が、庫内凝縮器46で凝縮できず、庫外凝縮器40にて凝縮される。庫外凝縮器40にて充分に凝縮させる必要がある場合は、庫外ファン26の送風量を増やすことにより、庫外凝縮器40と外気と
の熱交換量を増加させる。
In this case, most of the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 cannot be condensed by the internal condenser 46 but is condensed by the external condenser 40. When it is necessary to sufficiently condense in the outside condenser 40, the amount of heat exchange between the outside condenser 40 and the outside air is increased by increasing the amount of air blown by the outside fan 26.

そして、バイパス流路の電磁弁52を閉塞すると共に庫内ファン27を停止した後に、第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すれば、再び電磁弁52を開放すると共に、庫内ファン27を運転する。   Then, after closing the electromagnetic valve 52 of the bypass channel and stopping the internal fan 27, if the temperature of the first cooling greenhouse 2 decreases to a predetermined temperature that is the lower limit value of the heating temperature range, the electromagnetic wave is again generated. The valve 52 is opened and the internal fan 27 is operated.

もし、図3に示すように、庫内凝縮器46に圧縮機5からの冷媒が流れないように三方弁57を切り換えた後に、第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すれば、電磁弁52の開放と庫内ファン27の運転に加えて、再び三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態(図7に示す状態)に戻す。   As shown in FIG. 3, after switching the three-way valve 57 so that the refrigerant from the compressor 5 does not flow into the internal condenser 46, the temperature of the first cooling greenhouse 2 is the lower limit of the warming temperature range. If the temperature drops to a predetermined temperature, the three-way valve 57 is again connected to the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 in addition to the opening of the electromagnetic valve 52 and the operation of the internal fan 27. The communication state is returned to the state (shown in FIG. 7).

また、図3に示す状態において、第2の冷却加温室3が冷却温度範囲の下限値となる所定温度まで冷却されると、図4に示すように、庫内蒸発器9用の膨張機構44への流路(出口)を閉塞し庫内蒸発器10用の膨張機構45への流路(出口)を開放する状態に三方弁42を切換えると共に、庫内ファン28を停止する。また、圧縮機5の停止中に第2の冷却加温室3内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、庫内蒸発器9用の膨張機構44への流路(出口)を開放し膨張機構45への流路(出口)を閉鎖する状態に三方弁42を切換えて、バイパス流路の電磁弁52を閉塞して、圧縮機5を起動し、庫内ファン28を運転する。   In the state shown in FIG. 3, when the second cooling greenhouse 3 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, as shown in FIG. 4, the expansion mechanism 44 for the internal evaporator 9. The three-way valve 42 is switched to a state in which the flow path (exit) to the inlet is closed and the flow path (exit) to the expansion mechanism 45 for the internal evaporator 10 is opened, and the internal fan 28 is stopped. Further, if the temperature in the second cooling greenhouse 3 rises to a predetermined temperature that is the upper limit value of the cooling temperature range while the compressor 5 is stopped, the flow path to the expansion mechanism 44 for the internal evaporator 9 ( The three-way valve 42 is switched to a state in which the outlet) is opened and the flow path (exit) to the expansion mechanism 45 is closed, the electromagnetic valve 52 in the bypass flow path is closed, the compressor 5 is started, and the internal fan 28 To drive.

また、図4に示すように、三方弁42が庫内蒸発器9用の膨張機構44への流路(出口)を閉塞し庫内蒸発器10用の膨張機構45への流路(出口)を開放して、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却(下流側単独冷却運転)をしている状態で、第2の冷却加温室3内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、図3に示すように庫内蒸発器9用の膨張機構44への流路(出口)を開放し庫内蒸発器10用の膨張機構45への流路(出口)を閉塞する状態に三方弁42を切り換えると共に、庫内ファン28を運転する。   Further, as shown in FIG. 4, the three-way valve 42 blocks the flow path (exit) to the expansion mechanism 44 for the internal evaporator 9, and the flow path (exit) to the expansion mechanism 45 for the internal evaporator 10. In the second cooling chamber 3 in the state where only the internal evaporator 10 of the internal evaporator 9 and the internal evaporator 10 is cooled alone (downstream single cooling operation). When the temperature rises to a predetermined temperature that is the upper limit value of the cooling temperature range, the flow path (exit) to the expansion mechanism 44 for the internal evaporator 9 is opened as shown in FIG. The three-way valve 42 is switched to a state in which the flow path (exit) to the expansion mechanism 45 is closed, and the internal fan 28 is operated.

また、図4に示すように、庫内蒸発器9と庫内蒸発器10の直列冷却運転から庫内蒸発器10のみの下流側単独冷却運転への移行後に、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却されると、三方弁42の庫内蒸発器10用の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、圧縮機5を停止する。   Further, as shown in FIG. 4, after the transition from the series cooling operation of the internal evaporator 9 and the internal evaporator 10 to the downstream single cooling operation of only the internal evaporator 10, the cooling dedicated chamber 4 is in the cooling temperature range. When the temperature is cooled to a predetermined temperature that is the lower limit value of the compressor, the three-way valve 42 stops the compressor 5 in addition to closing the refrigerant outlet on the expansion mechanism 45 side for the internal evaporator 10 and stopping the internal fan 29. .

また、図6に示すように、庫内蒸発器9と庫内蒸発器10の直列冷却運転から庫内蒸発器10のみの下流側単独冷却運転への移行後に、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却された時に、三方弁57が、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態(第1の冷却加温室2の加温が必要で、庫内凝縮器46に圧縮機5から吐出された冷媒が流れている状態)であれば、三方弁42の庫内蒸発器10用の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、バイパス流路の電磁弁52と電磁弁56のどちらか一方または両方を開放して、図9〜図11のいずれかに示す状態にして、庫外蒸発器41と庫内弱冷蒸発器54のどちらか一方または両方で吸熱することにより、庫内凝縮器46による第1の冷却加温室2の加温を継続する。   Further, as shown in FIG. 6, after the transition from the series cooling operation of the internal evaporator 9 and the internal evaporator 10 to the downstream single cooling operation of only the internal evaporator 10, the cooling dedicated chamber 4 is in the cooling temperature range. The three-way valve 57 is in a state where the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 are in communication with each other (the heating of the first cooling greenhouse 2). Is necessary and the refrigerant discharged from the compressor 5 flows into the internal condenser 46), the refrigerant outlet on the side of the expansion mechanism 45 for the internal evaporator 10 of the three-way valve 42 is blocked. In addition to the stop of the internal fan 29, either or both of the electromagnetic valve 52 and the electromagnetic valve 56 of the bypass flow path are opened, and the state shown in any of FIGS. By absorbing heat in either or both of the cold evaporator 54 and the cold condenser 54 in the warehouse, Continuing the first warming of the cooling heating chamber 2 by 6.

このとき、電磁弁52と電磁弁56の両方を開放して、図10に示す、庫外蒸発器41と庫内弱冷蒸発器54の両方で吸熱する状態にした場合は、電磁弁52と電磁弁56の片方のみを開放して庫外蒸発器41と庫内弱冷蒸発器54のどちらか一方で吸熱する図9または図11に示す状態にした場合よりも、庫内凝縮器46による第1の冷却加温室2の加温能力が高くなる。   At this time, when both the solenoid valve 52 and the solenoid valve 56 are opened and the heat is absorbed by both the outside evaporator 41 and the inside cold evaporator 54 shown in FIG. Compared to the state shown in FIG. 9 or FIG. 11 in which only one of the solenoid valves 56 is opened and heat is absorbed by either the outside evaporator 41 or the inside cold evaporator 54, the inside condenser 46 is used. The heating capability of the 1st cooling greenhouse 2 becomes high.

次に、第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3と冷却専用室4のうちで冷却専用室4のみ冷却する冷却加温運転の場合は、図6の太線の冷媒流路を矢印の向きに冷媒が流れる運転となる。   Next, in the case of the cooling and heating operation in which the first cooling greenhouse 2 is heated by the internal condenser 46 and only the cooling exclusive chamber 4 is cooled among the second cooling greenhouse 3 and the exclusive cooling chamber 4. 6 is an operation in which the refrigerant flows in the direction of the arrow through the thick refrigerant passage in FIG.

第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3と冷却専用室4のうちで冷却専用室4のみ冷却する冷却加温運転の場合は、三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態にするとともに、三方弁42は庫内蒸発器9用の膨張機構44への流路を閉塞し、庫内蒸発器10用の膨張機構45への流路を開放する状態にし、電磁弁51と電磁弁52と電磁弁56を閉塞し、圧縮機5を起動する。   In the case of the cooling and heating operation in which the first cooling greenhouse 2 is heated by the internal condenser 46 and only the cooling exclusive chamber 4 is cooled out of the second cooling greenhouse 3 and the cooling exclusive chamber 4, a three-way valve 57, the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 communicate with each other, and the three-way valve 42 closes the flow path to the expansion mechanism 44 for the internal evaporator 9; The flow path to the expansion mechanism 45 for the internal evaporator 10 is opened, the electromagnetic valve 51, the electromagnetic valve 52, and the electromagnetic valve 56 are closed, and the compressor 5 is started.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。なお、庫内凝縮器46に冷媒が流れている時には、庫内ファン27が庫内凝縮器46に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and then goes to the internal condenser 46, where it is partially condensed by the internal condenser 46, and in this case, the internal condensation is performed. The inside of the first cooling greenhouse 2 is heated by radiating heat to the air around the vessel 46. When the refrigerant is flowing through the internal condenser 46, the internal fan 27 blows air to the internal condenser 46.

そして、庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に逆止弁58を通過して庫外凝縮器40にてさらに凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。   Then, the refrigerant exiting the internal condenser 46 is decompressed by the expansion mechanism 48, passes through the check valve 58, and is further condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40.

庫外凝縮器40から流出した冷媒は、電磁弁51と電磁弁52と電磁弁56が閉塞されているため、全て、三方弁42側に流れる。三方弁42に流れた冷媒は、三方弁42から膨張機構45側に流れ、膨張機構45にて減圧された後に庫内蒸発器10で蒸発気化して冷却専用室4を冷却する。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。   The refrigerant that has flowed out of the outside condenser 40 flows to the three-way valve 42 side because the solenoid valve 51, the solenoid valve 52, and the solenoid valve 56 are closed. The refrigerant that has flowed to the three-way valve 42 flows from the three-way valve 42 toward the expansion mechanism 45, and is decompressed by the expansion mechanism 45, and then evaporated and evaporated in the internal evaporator 10 to cool the cooling dedicated chamber 4. When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

そして、庫内蒸発器10から流出した冷媒は、気液分離器59でガス冷媒と液冷媒とに分離されて、気液分離器59で液冷媒と分離されたガス冷媒が圧縮機5に吸い込まれる。   The refrigerant flowing out of the internal evaporator 10 is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator 59, and the gas refrigerant separated from the liquid refrigerant by the gas-liquid separator 59 is sucked into the compressor 5. It is.

そして、制御手段(図示せず)が、第1の冷却加温室2の室内温度が予め設定された加温温度範囲内を維持し、冷却専用室4の室内温度が予め設定された冷却温度範囲内を維持するように、三方弁57と三方弁42の切換え、及び圧縮機5と庫外ファン26と庫内ファン27,29の運転を制御している。   And a control means (not shown) maintains the indoor temperature of the 1st cooling greenhouse 2 in the preset heating temperature range, and the indoor temperature of the cooling exclusive room 4 is the preset cooling temperature range. The switching of the three-way valve 57 and the three-way valve 42 and the operation of the compressor 5, the external fan 26, and the internal fans 27 and 29 are controlled so as to maintain the inside.

例えば、第1の冷却加温室2が加温温度範囲の上限値となる所定温度まで加温された時に、庫内蒸発器10で冷却専用室4を冷却中であれば、庫内ファン27を停止する。または、図4のように、三方弁57を、圧縮機5の吐出配管と庫外凝縮器40とが連通する状態にすると共に、庫内ファン27を停止する。   For example, if the cooling chamber 4 is being cooled by the internal evaporator 10 when the first cooling greenhouse 2 is heated to a predetermined temperature that is the upper limit value of the heating temperature range, the internal fan 27 is turned on. Stop. Alternatively, as shown in FIG. 4, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 and the external condenser 40 communicate with each other, and the internal fan 27 is stopped.

三方弁57を切り換えずに庫内ファン27を停止した後に、第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すれば、庫内ファン27を運転する。   After the internal fan 27 is stopped without switching the three-way valve 57, the internal fan 27 is operated if the temperature of the first cooling greenhouse 2 decreases to a predetermined temperature that is the lower limit value of the heating temperature range.

図4のように、庫内凝縮器46に圧縮機5からの冷媒が流れないように三方弁57を切り換えた後に、第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すれば、図6のように、再び三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態に戻すと共に、庫内ファン27を運転する。   As shown in FIG. 4, after switching the three-way valve 57 so that the refrigerant from the compressor 5 does not flow into the internal condenser 46, the temperature of the first cooling greenhouse 2 becomes the lower limit value of the heating temperature range. When the temperature falls to the predetermined temperature, the three-way valve 57 is returned to the state where the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 communicate with each other as shown in FIG. To do.

また、図6に示す、第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3と冷却専用室4のうちで冷却専用室4のみ冷却する冷却加温運転をしている時に、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却された場合は、三方弁42の膨
張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、バイパス流路の電磁弁52と電磁弁56のどちらか一方または両方を開放して、図9〜図11のいずれかに示す状態にして、庫外蒸発器41と庫内弱冷蒸発器54のどちらか一方または両方で吸熱することにより、庫内凝縮器46による第1の冷却加温室2の加温を継続する。
Moreover, the cooling heating which heats the 1st cooling greenhouse 2 shown in FIG. 6 with the condenser 46 in a store | warehouse | chamber, and cools only the cooling exclusive chamber 4 among the 2nd cooling exclusive greenhouse 3 and the cooling exclusive chamber 4 is carried out. When the cooling exclusive chamber 4 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range during operation, the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 is closed and the internal fan 29 is stopped. In addition, either one or both of the electromagnetic valve 52 and the electromagnetic valve 56 in the bypass flow path are opened to the state shown in any of FIGS. Heating of the first cooling greenhouse 2 by the internal condenser 46 is continued by absorbing heat in one or both of the containers 54.

このとき、電磁弁52と電磁弁56の両方を開放して、図10に示す、庫外蒸発器41と庫内弱冷蒸発器54の両方で吸熱する状態にした場合は、電磁弁52と電磁弁56の片方のみを開放して庫外蒸発器41と庫内弱冷蒸発器54のどちらか一方で吸熱する図9または図11に示す状態にした場合よりも、庫内凝縮器46による第1の冷却加温室2の加温能力が高くなる。   At this time, when both the solenoid valve 52 and the solenoid valve 56 are opened and the heat is absorbed by both the outside evaporator 41 and the inside cold evaporator 54 shown in FIG. Compared to the state shown in FIG. 9 or FIG. 11 in which only one of the solenoid valves 56 is opened and heat is absorbed by either the outside evaporator 41 or the inside cold evaporator 54, the inside condenser 46 is used. The heating capability of the 1st cooling greenhouse 2 becomes high.

なお、第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3と冷却専用室4のうち冷却専用室4だけを冷却する冷却加温運転する時に、バイパス流路の電磁弁52を開放して図8に示す庫外蒸発器41で吸熱する状態にすると、バイパス流路の電磁弁52を開放せずに図6に示す状態にした場合よりも、庫外蒸発器41で吸熱する分、庫内凝縮器46による第1の冷却加温室2の加温能力が高くなる。   In addition, when the 1st cooling greenhouse 2 is heated with the internal condenser 46, and the cooling heating operation which cools only the cooling exclusive chamber 4 among the 2nd cooling greenhouse 3 and the cooling exclusive chamber 4 is bypassed. When the electromagnetic valve 52 in the flow path is opened and heat is absorbed by the external evaporator 41 shown in FIG. 8, the storage is made more than in the state shown in FIG. 6 without opening the electromagnetic valve 52 in the bypass flow path. The amount of heat absorbed by the outer evaporator 41 increases the heating capacity of the first cooling greenhouse 2 by the internal condenser 46.

なお、第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3と冷却専用室4のうち冷却専用室4だけを冷却する冷却加温運転を開始する場合において、第1の冷却加温室2の庫内温度が所定の庫内上限温度(加熱終了温度)に達するまで、または、圧縮機5の吐出圧力が所定の圧縮機過負荷圧力に達するまでは、バイパス流路の電磁弁52を開放して図8の太線の冷媒流路を矢印の向きに冷媒が流れるようにして冷却加温運転を開始しても構わない。   In addition, when the 1st cooling greenhouse 2 is heated with the internal condenser 46, and the cooling heating operation which cools only the cooling exclusive room 4 among the 2nd cooling warming room 3 and the exclusive cooling room 4 is started. In the above, until the internal temperature of the first cooling chamber 2 reaches a predetermined internal upper limit temperature (heating end temperature) or until the discharge pressure of the compressor 5 reaches a predetermined compressor overload pressure, The cooling and heating operation may be started by opening the electromagnetic valve 52 of the bypass flow path so that the refrigerant flows in the direction of the arrow in the thick refrigerant flow path of FIG.

その場合は、圧縮機5の吐出圧力が所定の圧縮機過負荷圧力に達した場合は、バイパス流路の電磁弁52を閉塞して、冷媒が、図6の太線の冷媒流路を矢印の向きに流れるようにする。   In that case, when the discharge pressure of the compressor 5 reaches a predetermined compressor overload pressure, the solenoid valve 52 of the bypass flow path is closed, and the refrigerant passes through the thick refrigerant line of FIG. Make it flow in the direction.

バイパス流路の電磁弁52を開放して図8の太線の冷媒流路を矢印の向きに冷媒が流れるようにして冷却加温運転を開始して、圧縮機5の吐出圧力が所定の圧縮機過負荷圧力に達したことにより、バイパス流路の電磁弁52を閉塞して図6の太線の冷媒流路を矢印の向きに流れるようにした後、圧縮機5の吐出圧力が圧縮機過負荷圧力より低い所定の圧縮機通常圧力(再開放圧力)に低下すれば、バイパス流路の電磁弁52を開放して、再び、冷媒が、図8の太線の冷媒流路を矢印の向きに流れるようにする。   The solenoid valve 52 of the bypass flow path is opened and the cooling and heating operation is started so that the refrigerant flows in the direction of the arrow in the thick refrigerant flow path of FIG. 8, and the discharge pressure of the compressor 5 is set to a predetermined compressor. When the overload pressure is reached, the solenoid valve 52 in the bypass flow path is closed to flow in the thick refrigerant path in FIG. 6 in the direction of the arrow, and then the discharge pressure of the compressor 5 becomes the compressor overload. If the pressure is reduced to a predetermined compressor normal pressure (reopen pressure) lower than the pressure, the electromagnetic valve 52 of the bypass flow path is opened, and the refrigerant flows again in the direction of the arrow through the thick refrigerant path of FIG. Like that.

詳細に説明すると、第1の冷却加温室2を加温し、第2の冷却加温室3と冷却専用室4のうちで冷却専用室4のみ冷却する冷却加温運転を開始する場合は、図8に示すように、三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態にするとともに、三方弁42は膨張機構44への流路を閉塞し膨張機構45への流路を開放する状態にし、電磁弁51と電磁弁56を閉塞し、電磁弁52を開放し、圧縮機5を起動する。   More specifically, when starting the cooling and heating operation in which the first cooling greenhouse 2 is heated and only the cooling exclusive chamber 4 is cooled out of the second cooling exclusive greenhouse 3 and the exclusive cooling chamber 4, As shown in FIG. 8, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 communicate with each other, and the three-way valve 42 blocks the flow path to the expansion mechanism 44. The flow path to the expansion mechanism 45 is opened, the electromagnetic valve 51 and the electromagnetic valve 56 are closed, the electromagnetic valve 52 is opened, and the compressor 5 is started.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。なお、庫内凝縮器46に冷媒が流れている時には、庫内ファン27が庫内凝縮器46に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and then goes to the internal condenser 46, where it is partially condensed by the internal condenser 46, and in this case, the internal condensation is performed. The inside of the first cooling greenhouse 2 is heated by radiating heat to the air around the vessel 46. When the refrigerant is flowing through the internal condenser 46, the internal fan 27 blows air to the internal condenser 46.

そして、庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に逆止弁58を通過して庫外凝縮器40にて更に凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。   The refrigerant exiting the internal condenser 46 is depressurized by the expansion mechanism 48, passes through the check valve 58, and is further condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40.

庫外凝縮器40から流出した冷媒は、三方弁42から庫内蒸発器10用の膨張機構45側に流れるものと、バイパス流路に分岐して電磁弁52から膨張機構53側に流れるものとに分かれる。   The refrigerant that has flowed out of the external condenser 40 flows from the three-way valve 42 to the expansion mechanism 45 side for the internal evaporator 10, and the refrigerant that branches to the bypass flow path and flows from the electromagnetic valve 52 to the expansion mechanism 53 side. Divided into

三方弁42から庫内蒸発器10用の膨張機構45側に流れた冷媒は、膨張機構45にて減圧された後に庫内蒸発器10で蒸発気化して冷却専用室4を冷却する(下流側単独冷却運転)。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。   The refrigerant that has flowed from the three-way valve 42 toward the expansion mechanism 45 for the internal evaporator 10 is decompressed by the expansion mechanism 45 and then evaporated and evaporated in the internal evaporator 10 to cool the cooling dedicated chamber 4 (downstream side). Single cooling operation). When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

一方、バイパス流路に分岐して電磁弁52から膨張機構53側に流れた冷媒は、膨張機構53にて減圧された後に庫外蒸発器41で蒸発気化する。   On the other hand, the refrigerant branched into the bypass flow path and flowing from the electromagnetic valve 52 to the expansion mechanism 53 side is evaporated by the external evaporator 41 after being decompressed by the expansion mechanism 53.

そして、庫内蒸発器10から流出したガス状の冷媒と、庫外蒸発器41から流出したガス状の冷媒とが合流して、圧縮機5に戻る。   Then, the gaseous refrigerant that has flowed out of the internal evaporator 10 and the gaseous refrigerant that has flowed out of the external evaporator 41 merge and return to the compressor 5.

その後、もし、圧縮機5の吐出圧力が所定の圧縮機過負荷圧力に達した場合は、バイパス流路の電磁弁52を閉塞する。   Thereafter, if the discharge pressure of the compressor 5 reaches a predetermined compressor overload pressure, the solenoid valve 52 of the bypass flow path is closed.

ここで、圧縮機5の吐出圧力検知手段としては、吐出配管上に設けて直接冷媒の圧力を測定する圧力センサ、吐出配管上に設けたサーミスタなどが挙げられる。   Here, examples of the discharge pressure detection means of the compressor 5 include a pressure sensor that is provided on the discharge pipe and directly measures the pressure of the refrigerant, a thermistor provided on the discharge pipe, and the like.

ただし、圧縮機5の吐出圧力は凝縮温度の形で熱交換器近傍の配管温度にて近似することが可能であり、また、凝縮温度のように温度が高い状態においては圧力損失による温度変化が非常に小さい(1〜2℃程度)ことから、庫内凝縮器46近傍の配管上の温度をサーミスタなどにより検知を行うことで低コストでの実現が可能となる。   However, the discharge pressure of the compressor 5 can be approximated by the piping temperature in the vicinity of the heat exchanger in the form of the condensation temperature, and in a state where the temperature is high such as the condensation temperature, the temperature change due to the pressure loss does not occur. Since it is very small (about 1 to 2 ° C.), it can be realized at low cost by detecting the temperature on the pipe in the vicinity of the internal condenser 46 with a thermistor or the like.

バイパス流路の電磁弁52が閉塞している時は、図6の太線の冷媒流路を矢印の向きに冷媒が流れる。   When the solenoid valve 52 in the bypass channel is closed, the coolant flows in the direction of the arrow through the thick coolant channel in FIG.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。なお、庫内凝縮器46に冷媒が流れている時には、庫内ファン27が庫内凝縮器46に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and then goes to the internal condenser 46, where it is partially condensed by the internal condenser 46, and in this case, the internal condensation is performed. The inside of the first cooling greenhouse 2 is heated by radiating heat to the air around the vessel 46. When the refrigerant is flowing through the internal condenser 46, the internal fan 27 blows air to the internal condenser 46.

そして、庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に逆止弁58を通過して庫外凝縮器40にて更に凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。   The refrigerant exiting the internal condenser 46 is depressurized by the expansion mechanism 48, passes through the check valve 58, and is further condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40.

庫外凝縮器40から流出した冷媒は、バイパス流路の電磁弁52が閉塞しているため、全て、三方弁42から庫内蒸発器10用の膨張機構45側に流れ、膨張機構45にて減圧された後に庫内蒸発器10で蒸発気化して冷却専用室4を冷却する(直列冷却運転)。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。   The refrigerant that has flowed out of the external condenser 40 flows from the three-way valve 42 to the expansion mechanism 45 side of the internal evaporator 10 because the solenoid valve 52 of the bypass flow path is closed. After the pressure is reduced, the internal vaporizer 10 evaporates and cools the cooling chamber 4 (series cooling operation). When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

そして、庫内蒸発器10から流出したガス状の冷媒は、圧縮機5に戻る。   The gaseous refrigerant that has flowed out of the internal evaporator 10 returns to the compressor 5.

バイパス流路の電磁弁52を閉塞した後、圧縮機5の吐出圧力が圧縮機過負荷圧力より低い所定の圧縮機通常圧力(再開放圧力)に低下すれば、閉塞していたバイパス流路の電磁弁52を開放して、冷媒が図8の太線の冷媒流路を矢印の向きに流れるようにする。   If the discharge pressure of the compressor 5 drops to a predetermined compressor normal pressure (reopen pressure) lower than the compressor overload pressure after the solenoid valve 52 of the bypass passage is closed, the bypass passage The electromagnetic valve 52 is opened so that the refrigerant flows in the direction of the arrow in the thick refrigerant path of FIG.

バイパス流路の電磁弁52を開放している場合は、電磁弁52を閉塞している場合よりも庫内凝縮器46の加温能力を高めることができる。   When the electromagnetic valve 52 of the bypass channel is opened, the heating capacity of the internal condenser 46 can be increased as compared with the case where the electromagnetic valve 52 is closed.

バイパス流路の電磁弁52を開放すると、バイパス流路に冷媒が流れるため冷媒の流路抵抗が減り、冷媒の循環量が増え、庫内蒸発器10の蒸発温度が上昇し、庫内凝縮器46の凝縮温度が上昇する。よって、第1の冷却加温室2の庫内凝縮器46による加温能力が高まり、加温ヒータ30より効率のよいヒートポンプ加温(冷却加温システムによる加温)にて加温させることができる。   When the solenoid valve 52 of the bypass flow path is opened, the refrigerant flows through the bypass flow path, so that the flow resistance of the refrigerant decreases, the circulation amount of the refrigerant increases, the evaporation temperature of the internal evaporator 10 increases, and the internal condenser The condensation temperature of 46 increases. Therefore, the heating capability by the internal condenser 46 of the 1st cooling heating greenhouse 2 increases, and it can heat by the heat pump heating (heating by a cooling heating system) more efficient than the heating heater 30. .

そして、制御手段(図示せず)が、第1の冷却加温室2の室内温度が予め設定された加温温度範囲内を維持し、冷却専用室4の室内温度が予め設定された冷却温度範囲内を維持するように、三方弁57と三方弁42の切換え、及び圧縮機5と庫外ファン26と庫内ファン27,29の運転を制御している。   And a control means (not shown) maintains the indoor temperature of the 1st cooling greenhouse 2 in the preset heating temperature range, and the indoor temperature of the cooling exclusive room 4 is the preset cooling temperature range. The switching of the three-way valve 57 and the three-way valve 42 and the operation of the compressor 5, the external fan 26, and the internal fans 27 and 29 are controlled so as to maintain the inside.

例えば、第1の冷却加温室2が加温温度範囲の上限値となる所定温度(加熱終了温度)まで加温された時に、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却で冷却専用室4を冷却する下流側単独冷却運転中であれば、バイパス流路の電磁弁52を閉塞すると共に庫内ファン27を停止する。   For example, when the first cooling greenhouse 2 is heated to a predetermined temperature (heating end temperature) that is the upper limit value of the heating temperature range, the internal evaporator 9 and the internal evaporator 10 are the internal evaporator. If the downstream single cooling operation for cooling the cooling exclusive chamber 4 with only 10 single cooling is in progress, the electromagnetic valve 52 in the bypass flow path is closed and the internal fan 27 is stopped.

または、電磁弁52の閉塞と庫内ファン27の停止に加えて、図4に示すように、三方弁57を、圧縮機5の吐出配管と庫外凝縮器40とが連通する状態にする。   Alternatively, in addition to closing the electromagnetic valve 52 and stopping the internal fan 27, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 and the external condenser 40 communicate with each other as shown in FIG.

ここで、バイパス流路の電磁弁52を閉塞すると共に庫内ファン27を停止するが、三方弁57を、圧縮機5の吐出配管と庫外凝縮器40とが連通する状態にしない場合は、バイパス流路の電磁弁52の閉塞により、第1の冷却加温室2の庫内凝縮器46による加温能力を低下させ、庫内ファン27の停止により、第1の冷却加温室2内の空気と庫内凝縮器46との熱交換量が低下する。   Here, the electromagnetic valve 52 of the bypass flow path is closed and the internal fan 27 is stopped, but when the three-way valve 57 is not in a state where the discharge pipe of the compressor 5 and the external condenser 40 are in communication with each other, By closing the solenoid valve 52 in the bypass flow path, the heating capacity of the first condenser room 2 by the internal condenser 46 is reduced, and when the internal fan 27 is stopped, the air in the first compartment 2 is cooled. And the amount of heat exchange between the refrigerator 46 and the internal condenser 46 are reduced.

この場合、圧縮機5から吐出された高温高圧のガス状の冷媒の大半が、庫内凝縮器46で凝縮できず、庫外凝縮器40にて凝縮される。庫外凝縮器40にて充分に凝縮させる必要がある場合は、庫外ファン26の送風量を増やすことにより、庫外凝縮器40と外気との熱交換量を増加させる。   In this case, most of the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 cannot be condensed by the internal condenser 46 but is condensed by the external condenser 40. When it is necessary to sufficiently condense in the outside condenser 40, the amount of heat exchange between the outside condenser 40 and the outside air is increased by increasing the amount of air blown by the outside fan 26.

そして、バイパス流路の電磁弁52を閉塞すると共に庫内ファン27を停止した後に、第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すれば、再び電磁弁52を開放すると共に、庫内ファン27を運転する。   Then, after closing the electromagnetic valve 52 of the bypass channel and stopping the internal fan 27, if the temperature of the first cooling greenhouse 2 decreases to a predetermined temperature that is the lower limit value of the heating temperature range, the electromagnetic wave is again generated. The valve 52 is opened and the internal fan 27 is operated.

もし、図4に示すように、庫内凝縮器46に圧縮機5からの冷媒が流れないように三方弁57を切り換えた後に、第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すれば、電磁弁52の開放と庫内ファン27の運転に加えて、再び三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態(図8に示す状態)に戻す。   As shown in FIG. 4, after switching the three-way valve 57 so that the refrigerant from the compressor 5 does not flow into the internal condenser 46, the temperature of the first cooling greenhouse 2 is the lower limit of the heating temperature range. If the temperature drops to a predetermined temperature, the three-way valve 57 is again connected to the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 in addition to the opening of the electromagnetic valve 52 and the operation of the internal fan 27. The communication state (state shown in FIG. 8) is restored.

また、図4に示す状態において、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却されると、三方弁42の庫内蒸発器10用の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、圧縮機5を停止する。   In the state shown in FIG. 4, when the cooling chamber 4 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the refrigerant outlet on the expansion mechanism 45 side of the internal evaporator 10 of the three-way valve 42 In addition to closing and stopping the internal fan 29, the compressor 5 is stopped.

また、図6に示す状態において、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却された時に、第1の冷却加温室2の加温が必要(第1の冷却加温室2の庫内温度
が所定の庫内上限温度(加熱終了温度)未満)であれば、三方弁42の庫内蒸発器10用の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、バイパス流路の電磁弁52と電磁弁56のどちらか一方または両方を開放して、図9〜図11のいずれかに示す状態にして、庫外蒸発器41と庫内弱冷蒸発器54のどちらか一方または両方で吸熱することにより、庫内凝縮器46による第1の冷却加温室2の加温を継続する。
Further, in the state shown in FIG. 6, when the cooling exclusive chamber 4 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the first cooling greenhouse 2 needs to be heated (the first cooling heating chamber 2). If the internal chamber temperature is less than the predetermined internal upper limit temperature (heating end temperature), the refrigerant outlet on the side of the expansion mechanism 45 for the internal evaporator 10 of the three-way valve 42 is closed and the internal fan 29 is stopped. In addition, either one or both of the electromagnetic valve 52 and the electromagnetic valve 56 in the bypass flow path are opened to the state shown in any of FIGS. Heating of the first cooling greenhouse 2 by the internal condenser 46 is continued by absorbing heat in one or both of the containers 54.

このとき、電磁弁52と電磁弁56の両方を開放して、図10に示す、庫外蒸発器41と庫内弱冷蒸発器54の両方で吸熱する状態にした場合は、電磁弁52と電磁弁56の片方のみを開放して庫外蒸発器41と庫内弱冷蒸発器54のどちらか一方で吸熱する図9または図11に示す状態にした場合よりも、庫内凝縮器46による第1の冷却加温室2の加温能力が高くなる。   At this time, when both the solenoid valve 52 and the solenoid valve 56 are opened and the heat is absorbed by both the outside evaporator 41 and the inside cold evaporator 54 shown in FIG. Compared to the state shown in FIG. 9 or FIG. 11 in which only one of the solenoid valves 56 is opened and heat is absorbed by either the outside evaporator 41 or the inside cold evaporator 54, the inside condenser 46 is used. The heating capability of the 1st cooling greenhouse 2 becomes high.

次に、第1の冷却加温室2を庫内凝縮器46で加温するが、第2の冷却加温室3と冷却専用室4のどちらにおいても冷却しない加温運転(第1の冷却加温室2を加温するのみの加温運転)の場合は、図9〜図11のいずれかに示す状態にする。   Next, the first cooling greenhouse 2 is heated by the internal condenser 46, but the heating operation (first cooling greenhouse) in which neither the second cooling greenhouse 3 nor the cooling exclusive chamber 4 is cooled. In the case of the heating operation only for heating 2), the state shown in any of FIGS.

このとき、電磁弁52と電磁弁56の両方を開放して、図10に示す、庫外蒸発器41と庫内弱冷蒸発器54の両方で吸熱する状態にした場合は、電磁弁52と電磁弁56の片方のみを開放して庫外蒸発器41と庫内弱冷蒸発器54のどちらか一方で吸熱する図9または図11に示す状態にした場合よりも、庫内凝縮器46による第1の冷却加温室2の加温能力が高くなる。   At this time, when both the solenoid valve 52 and the solenoid valve 56 are opened and the heat is absorbed by both the outside evaporator 41 and the inside cold evaporator 54 shown in FIG. Compared to the state shown in FIG. 9 or FIG. 11 in which only one of the solenoid valves 56 is opened and heat is absorbed by either the outside evaporator 41 or the inside cold evaporator 54, the inside condenser 46 is used. The heating capability of the 1st cooling greenhouse 2 becomes high.

図9の太線の冷媒流路を矢印の向きに冷媒が流れる運転の場合は、三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態にするとともに、庫内蒸発器47用の膨張機構43に冷媒が流れないように電磁弁51を閉塞し、三方弁42の庫内蒸発器9用の膨張機構44への流路(出口)と庫内蒸発器10用の膨張機構45への流路(出口)の全ての流路(出口)を閉塞し、バイパス流路の電磁弁52を開放し、電磁弁56を閉塞して、圧縮機5を起動し、庫外ファン26と庫内ファン27を運転する。   In the case of the operation in which the refrigerant flows in the direction of the arrow in the thick refrigerant passage in FIG. 9, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 communicate with each other. The electromagnetic valve 51 is closed so that the refrigerant does not flow into the expansion mechanism 43 for the internal evaporator 47, and the flow path (exit) of the three-way valve 42 to the expansion mechanism 44 for the internal evaporator 9 and the internal evaporation. All the flow paths (outlets) of the flow path (exit) to the expansion mechanism 45 for the container 10 are closed, the electromagnetic valve 52 of the bypass flow path is opened, the electromagnetic valve 56 is closed, and the compressor 5 is started. Then, the outside fan 26 and the inside fan 27 are operated.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に逆止弁58を通過して庫外凝縮器40にて更に凝縮する。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and then goes to the internal condenser 46, where it is partially condensed by the internal condenser 46, and in this case, the internal condensation is performed. The inside of the first cooling greenhouse 2 is heated by radiating heat to the air around the vessel 46. The refrigerant that has exited the internal condenser 46 is decompressed by the expansion mechanism 48, passes through the check valve 58, and is further condensed by the external condenser 40.

庫外凝縮器40から流出した冷媒は、三方弁42の2つの出口と電磁弁51と電磁弁56が閉塞され電磁弁52が開放されているため、庫内蒸発器9,10,47と庫内弱冷蒸発器54には流れず、全て、バイパス流路側に流れる。   The refrigerant that has flowed out of the outside condenser 40 has the two outlets of the three-way valve 42, the electromagnetic valve 51 and the electromagnetic valve 56 closed, and the electromagnetic valve 52 is opened. They do not flow into the inner weak evaporator 54 but all flow toward the bypass flow path.

そして、バイパス流路の電磁弁52を通過し、膨張機構53にて減圧された後に庫外蒸発器41にて蒸発気化し、圧縮機5へと還流する。   Then, it passes through the electromagnetic valve 52 in the bypass flow path, is decompressed by the expansion mechanism 53, evaporates in the external evaporator 41, and returns to the compressor 5.

そして、第1の冷却加温室2が、加温温度範囲の上限値となる所定温度まで加温されると、制御手段(図示せず)が、圧縮機5と庫外ファン26と庫内ファン27を停止し、圧縮機5と庫外ファン26と庫内ファン27が停止中に第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すると、制御手段(図示せず)が、圧縮機5と庫外ファン26と庫内ファン27を運転する。   And if the 1st cooling greenhouse 2 is heated to the predetermined temperature used as the upper limit of a heating temperature range, a control means (not shown) will be the compressor 5, the external fan 26, and an internal fan. When the compressor 5, the outside fan 26, and the inside fan 27 are stopped, the temperature of the first cooling greenhouse 2 decreases to a predetermined temperature that is the lower limit value of the heating temperature range. (Not shown) operates the compressor 5, the external fan 26, and the internal fan 27.

図10の太線の冷媒流路を矢印の向きに冷媒が流れる運転の場合は、三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態にするとともに、庫内
蒸発器47用の膨張機構43に冷媒が流れないように電磁弁51を閉塞し、三方弁42の庫内蒸発器9用の膨張機構44への流路(出口)と庫内蒸発器10用の膨張機構45への流路(出口)の全ての流路(出口)を閉塞し、バイパス流路の電磁弁52と電磁弁56を開放して、圧縮機5を起動し、庫外ファン26と庫内ファン27を運転する。
In the case of the operation in which the refrigerant flows in the direction of the arrow in the thick refrigerant passage in FIG. 10, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 communicate with each other. The electromagnetic valve 51 is closed so that the refrigerant does not flow into the expansion mechanism 43 for the internal evaporator 47, and the flow path (exit) of the three-way valve 42 to the expansion mechanism 44 for the internal evaporator 9 and the internal evaporation. All the flow paths (outlets) of the flow path (exit) to the expansion mechanism 45 for the container 10 are closed, the electromagnetic valves 52 and 56 of the bypass flow paths are opened, the compressor 5 is started, The external fan 26 and the internal fan 27 are operated.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に逆止弁58を通過して庫外凝縮器40にて更に凝縮する。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and then goes to the internal condenser 46, where it is partially condensed by the internal condenser 46, and in this case, the internal condensation is performed. The inside of the first cooling greenhouse 2 is heated by radiating heat to the air around the vessel 46. The refrigerant that has exited the internal condenser 46 is decompressed by the expansion mechanism 48, passes through the check valve 58, and is further condensed by the external condenser 40.

庫外凝縮器40から流出した冷媒は、三方弁42の2つの出口と電磁弁51が閉塞され電磁弁52と電磁弁56が開放されているため、庫内蒸発器9,10,47には流れず、全て、バイパス流路側に流れる。   The refrigerant that has flowed out of the outside condenser 40 has the two outlets of the three-way valve 42 and the electromagnetic valve 51 closed, and the electromagnetic valve 52 and the electromagnetic valve 56 are opened. It does not flow but all flows to the bypass flow path side.

そして、バイパス流路に流れた冷媒の一部は電磁弁52を通過し、膨張機構53にて減圧された後に庫外蒸発器41にて蒸発気化し、圧縮機5へと還流する。また、バイパス流路に流れた冷媒の残りは電磁弁56を通過し、膨張機構55にて減圧された後に庫内弱冷蒸発器54にて蒸発気化し、気液分離器59を通って圧縮機5へと還流する。   A part of the refrigerant flowing in the bypass flow path passes through the electromagnetic valve 52, is decompressed by the expansion mechanism 53, evaporates and evaporates in the external evaporator 41, and returns to the compressor 5. Further, the remaining refrigerant flowing in the bypass flow path passes through the electromagnetic valve 56, is depressurized by the expansion mechanism 55, evaporates and vaporizes in the internal cold evaporator 54, and is compressed through the gas-liquid separator 59. Reflux to machine 5.

そして、第1の冷却加温室2が、加温温度範囲の上限値となる所定温度まで加温されると、制御手段(図示せず)が、圧縮機5と庫外ファン26と庫内ファン27を停止し、圧縮機5と庫外ファン26と庫内ファン27が停止中に第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すると、制御手段(図示せず)が、圧縮機5と庫外ファン26と庫内ファン27を運転する。   And if the 1st cooling greenhouse 2 is heated to the predetermined temperature used as the upper limit of a heating temperature range, a control means (not shown) will be the compressor 5, the external fan 26, and an internal fan. When the compressor 5, the outside fan 26, and the inside fan 27 are stopped, the temperature of the first cooling greenhouse 2 decreases to a predetermined temperature that is the lower limit value of the heating temperature range. (Not shown) operates the compressor 5, the external fan 26, and the internal fan 27.

図11の太線の冷媒流路を矢印の向きに冷媒が流れる運転の場合は、三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態にするとともに、庫内蒸発器47用の膨張機構43に冷媒が流れないように電磁弁51を閉塞し、三方弁42の庫内蒸発器9用の膨張機構44への流路(出口)と庫内蒸発器10用の膨張機構45への流路(出口)の全ての流路(出口)を閉塞し、バイパス流路の電磁弁52を閉塞し電磁弁56を開放して、圧縮機5を起動し、庫外ファン26と庫内ファン27を運転する。   In the case of the operation in which the refrigerant flows in the direction of the arrow in the thick refrigerant passage in FIG. 11, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 communicate with each other. The electromagnetic valve 51 is closed so that the refrigerant does not flow into the expansion mechanism 43 for the internal evaporator 47, and the flow path (exit) of the three-way valve 42 to the expansion mechanism 44 for the internal evaporator 9 and the internal evaporation. All the flow paths (outlets) of the flow path (exit) to the expansion mechanism 45 for the container 10 are closed, the electromagnetic valve 52 of the bypass flow path is closed, the electromagnetic valve 56 is opened, and the compressor 5 is started. The outside fan 26 and the inside fan 27 are operated.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に逆止弁58を通過して庫外凝縮器40にて更に凝縮する。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and then goes to the internal condenser 46, where it is partially condensed by the internal condenser 46, and in this case, the internal condensation is performed. The inside of the first cooling greenhouse 2 is heated by radiating heat to the air around the vessel 46. The refrigerant that has exited the internal condenser 46 is decompressed by the expansion mechanism 48, passes through the check valve 58, and is further condensed by the external condenser 40.

庫外凝縮器40から流出した冷媒は、三方弁42の2つの出口と電磁弁51と電磁弁52が閉塞され電磁弁56が開放されているため、庫内蒸発器9,10,47と庫外蒸発器41には流れず、バイパス流路から電磁弁56を通過し、膨張機構55にて減圧された後に庫内弱冷蒸発器54にて蒸発気化し、気液分離器59を通って圧縮機5へと還流する。   The refrigerant that has flowed out of the outside condenser 40 has two outlets of the three-way valve 42, the electromagnetic valve 51 and the electromagnetic valve 52 closed, and the electromagnetic valve 56 is opened. It does not flow to the outer evaporator 41, passes through the electromagnetic valve 56 from the bypass flow path, is depressurized by the expansion mechanism 55, evaporates and vaporizes in the internal cold evaporator 54, and passes through the gas-liquid separator 59. Reflux to the compressor 5.

そして、第1の冷却加温室2が、加温温度範囲の上限値となる所定温度まで加温されると、制御手段(図示せず)が、圧縮機5と庫外ファン26と庫内ファン27を停止し、圧縮機5と庫外ファン26と庫内ファン27が停止中に第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すると、制御手段(図示せず)が、圧縮機5と庫外ファン26と庫内ファン27を運転する。   And if the 1st cooling greenhouse 2 is heated to the predetermined temperature used as the upper limit of a heating temperature range, a control means (not shown) will be the compressor 5, the external fan 26, and an internal fan. When the compressor 5, the outside fan 26, and the inside fan 27 are stopped, the temperature of the first cooling greenhouse 2 decreases to a predetermined temperature that is the lower limit value of the heating temperature range. (Not shown) operates the compressor 5, the external fan 26, and the internal fan 27.

次に、第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3を加温ヒータ31で加温し、冷却専用室4を冷却する冷却加温運転の場合は、図12の太線の冷媒流路を矢印の向きに冷媒が流れ、加温ヒータ31に通電する運転となる。   Next, the first cooling greenhouse 2 is heated by the internal condenser 46, the second cooling greenhouse 3 is heated by the heating heater 31, and the cooling exclusive heating chamber 4 is cooled. In this case, the refrigerant flows in the direction of the arrow in the thick refrigerant passage in FIG. 12 and the heating heater 31 is energized.

第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3を加温ヒータ31で加温し、冷却専用室4を冷却する冷却加温運転の場合は、三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態にするとともに、三方弁42は庫内蒸発器9用の膨張機構44への流路を閉塞し、庫内蒸発器10用の膨張機構45への流路を開放する状態にし、電磁弁51と電磁弁52と電磁弁56を閉塞し、圧縮機5を起動する。また、加温ヒータ31に通電する。   In the case of the cooling and heating operation in which the first cooling greenhouse 2 is heated by the internal condenser 46, the second cooling greenhouse 3 is heated by the heating heater 31, and the cooling exclusive chamber 4 is cooled. The three-way valve 57 is brought into communication between the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46, and the three-way valve 42 blocks the flow path to the expansion mechanism 44 for the internal evaporator 9. Then, the flow path to the expansion mechanism 45 for the internal evaporator 10 is opened, the electromagnetic valve 51, the electromagnetic valve 52, and the electromagnetic valve 56 are closed, and the compressor 5 is started. Further, the heating heater 31 is energized.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。なお、庫内凝縮器46に冷媒が流れている時には、庫内ファン27が庫内凝縮器46に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and then goes to the internal condenser 46, where it is partially condensed by the internal condenser 46, and in this case, the internal condensation is performed. The inside of the first cooling greenhouse 2 is heated by radiating heat to the air around the vessel 46. When the refrigerant is flowing through the internal condenser 46, the internal fan 27 blows air to the internal condenser 46.

そして、庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に逆止弁58を通過して庫外凝縮器40にてさらに凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。   Then, the refrigerant exiting the internal condenser 46 is decompressed by the expansion mechanism 48, passes through the check valve 58, and is further condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40.

庫外凝縮器40から流出した冷媒は、電磁弁51と電磁弁52と電磁弁56が閉塞されているため、全て、三方弁42側に流れる。三方弁42に流れた冷媒は、三方弁42から膨張機構45側に流れ、膨張機構45にて減圧された後に庫内蒸発器10で蒸発気化して冷却専用室4を冷却する。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。   The refrigerant that has flowed out of the outside condenser 40 flows to the three-way valve 42 side because the solenoid valve 51, the solenoid valve 52, and the solenoid valve 56 are closed. The refrigerant that has flowed to the three-way valve 42 flows from the three-way valve 42 toward the expansion mechanism 45, and is decompressed by the expansion mechanism 45, and then evaporated and evaporated in the internal evaporator 10 to cool the cooling dedicated chamber 4. When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

そして、庫内蒸発器10から流出した冷媒は、気液分離器59でガス冷媒と液冷媒とに分離されて、気液分離器59で液冷媒と分離されたガス冷媒が圧縮機5に吸い込まれる。   The refrigerant flowing out of the internal evaporator 10 is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator 59, and the gas refrigerant separated from the liquid refrigerant by the gas-liquid separator 59 is sucked into the compressor 5. It is.

また、加温ヒータ31に通電している時は、加温ヒータ31が第2の冷却加温室3内を加温し、庫内ファン28が加温ヒータ31に送風している。   Further, when the warming heater 31 is energized, the warming heater 31 warms the inside of the second cooling greenhouse 3 and the internal fan 28 blows air to the warming heater 31.

そして、制御手段(図示せず)が、第1の冷却加温室2と第2の冷却加温室3の室内温度が予め設定された加温温度範囲内を維持し、冷却専用室4の室内温度が予め設定された冷却温度範囲内を維持するように、三方弁57と三方弁42の切換え、及び圧縮機5と庫外ファン26と庫内ファン27,28,29の運転と加温ヒータ31の通電を制御している。   And a control means (not shown) maintains the indoor temperature of the 1st cooling greenhouse 2 and the 2nd cooling greenhouse 3 in the preset heating temperature range, and the indoor temperature of the cooling exclusive room 4 is set. Are switched between the three-way valve 57 and the three-way valve 42 and the compressor 5, the external fan 26, the internal fans 27, 28 and 29 are operated, and the heating heater 31. Is controlled.

例えば、第1の冷却加温室2が加温温度範囲の上限値となる所定温度まで加温された時に、庫内蒸発器10で冷却専用室4を冷却中であれば、庫内ファン27を停止する。または、三方弁57を、圧縮機5の吐出配管と庫外凝縮器40とが連通する状態にすると共に、庫内ファン27を停止する。   For example, if the cooling chamber 4 is being cooled by the internal evaporator 10 when the first cooling greenhouse 2 is heated to a predetermined temperature that is the upper limit value of the heating temperature range, the internal fan 27 is turned on. Stop. Alternatively, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 and the external condenser 40 communicate with each other, and the internal fan 27 is stopped.

三方弁57を切り換えずに庫内ファン27を停止した後に、第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すれば、庫内ファン27を運転する。   After the internal fan 27 is stopped without switching the three-way valve 57, the internal fan 27 is operated if the temperature of the first cooling greenhouse 2 decreases to a predetermined temperature that is the lower limit value of the heating temperature range.

図12に示す状態から、庫内凝縮器46に圧縮機5からの冷媒が流れないように三方弁57を切り換えた後に、第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すれば、図12のように、再び三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態に戻すと共に、庫内ファン27を運転する。   After the three-way valve 57 is switched so that the refrigerant from the compressor 5 does not flow into the internal condenser 46 from the state shown in FIG. 12, the temperature of the first cooling greenhouse 2 becomes the lower limit value of the heating temperature range. 12, the three-way valve 57 is again returned to the state in which the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 communicate with each other as shown in FIG. drive.

また、図12に示す、第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3を加温ヒータ31で加温し、冷却専用室4を冷却する冷却加温運転をしている時に、第2の冷却加温室3が加温温度範囲の上限値となる所定温度まで加温されると、第2の冷却加温室3の温度が加温温度範囲の下限値となる所定温度まで低下するまで、加温ヒータ31の通電を停止する。   Further, as shown in FIG. 12, the first cooling greenhouse 2 is heated by the internal condenser 46, the second cooling greenhouse 3 is heated by the heating heater 31, and the cooling exclusive chamber 4 is cooled. When the second cooling greenhouse 3 is heated to a predetermined temperature that is the upper limit value of the heating temperature range during the heating operation, the temperature of the second cooling greenhouse 3 is within the heating temperature range. The energization of the heater 31 is stopped until the temperature reaches a predetermined temperature that is the lower limit.

また、図12に示す、第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3を加温ヒータ31で加温し、冷却専用室4を冷却する冷却加温運転をしている時に、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却された場合は、三方弁42の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、バイパス流路の電磁弁52と電磁弁56のどちらか一方または両方を開放して、庫外蒸発器41と庫内弱冷蒸発器54のどちらか一方または両方で吸熱することにより、庫内凝縮器46による第1の冷却加温室2の加温を継続する。   Further, as shown in FIG. 12, the first cooling greenhouse 2 is heated by the internal condenser 46, the second cooling greenhouse 3 is heated by the heating heater 31, and the cooling exclusive chamber 4 is cooled. When the cooling exclusive chamber 4 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range during the heating operation, the refrigerant outlet is closed on the expansion mechanism 45 side of the three-way valve 42 and the internal fan 29 In addition to stopping the operation, either one or both of the solenoid valve 52 and the solenoid valve 56 in the bypass flow path are opened, and heat is absorbed by one or both of the outside evaporator 41 and the inside cold evaporator 54. Thus, the heating of the first cooling greenhouse 2 by the internal condenser 46 is continued.

このとき、電磁弁52と電磁弁56の両方を開放して、庫外蒸発器41と庫内弱冷蒸発器54の両方で吸熱する状態にした場合は、電磁弁52と電磁弁56の片方のみを開放して庫外蒸発器41と庫内弱冷蒸発器54のどちらか一方で吸熱する状態にした場合よりも、庫内凝縮器46による第1の冷却加温室2の加温能力が高くなる。   At this time, when both the electromagnetic valve 52 and the electromagnetic valve 56 are opened and heat is absorbed by both the external evaporator 41 and the internal cold evaporator 54, one of the electromagnetic valve 52 and the electromagnetic valve 56 is used. The heating capacity of the first cooling greenhouse 2 by the in-compartment condenser 46 is higher than that in the case where only one of the outside evaporator 41 and the in-compartment weakly-cooled evaporator 54 absorbs heat. Get higher.

なお、第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3を加温ヒータ31で加温し、冷却専用室4を冷却する冷却加温運転する時に、バイパス流路の電磁弁52を開放して図13に示す庫外蒸発器41で吸熱する状態にすると、バイパス流路の電磁弁52を開放せずに図12に示す状態にした場合よりも、庫外蒸発器41で吸熱する分、庫内凝縮器46による第1の冷却加温室2の加温能力が高くなる。   The first cooling greenhouse 2 is heated by the internal condenser 46, the second cooling greenhouse 3 is heated by the heating heater 31, and the cooling heating operation for cooling the cooling exclusive chamber 4 is performed. When the electromagnetic valve 52 in the bypass flow path is opened and heat is absorbed by the outside evaporator 41 shown in FIG. 13, the electromagnetic valve 52 in the bypass flow path is not opened and the state shown in FIG. As the heat is absorbed by the outside evaporator 41, the heating capacity of the first cooling greenhouse 2 by the inside condenser 46 is increased.

なお、第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3を加温ヒータ31で加温し、冷却専用室4を冷却する冷却加温運転を開始する場合において、第1の冷却加温室2の庫内温度が所定の庫内上限温度(加熱終了温度)に達するまで、または、圧縮機5の吐出圧力が所定の圧縮機過負荷圧力に達するまでは、バイパス流路の電磁弁52を開放して図13の太線の冷媒流路を矢印の向きに冷媒が流れるようにして冷却加温運転を開始しても構わない。   The first cooling greenhouse 2 is heated by the internal condenser 46, the second cooling greenhouse 3 is heated by the heating heater 31, and the cooling and heating operation for cooling the cooling exclusive chamber 4 is started. In this case, until the internal temperature of the first cooling greenhouse 2 reaches a predetermined internal upper limit temperature (heating end temperature) or until the discharge pressure of the compressor 5 reaches a predetermined compressor overload pressure. The cooling and heating operation may be started by opening the electromagnetic valve 52 in the bypass flow path so that the refrigerant flows in the direction of the arrow in the thick refrigerant path in FIG.

その場合は、圧縮機5の吐出圧力が所定の圧縮機過負荷圧力に達した場合は、バイパス流路の電磁弁52を閉塞して、冷媒が、図12の太線の冷媒流路を矢印の向きに流れるようにする。   In that case, when the discharge pressure of the compressor 5 reaches a predetermined compressor overload pressure, the solenoid valve 52 of the bypass flow path is closed, and the refrigerant passes through the thick refrigerant path of FIG. Make it flow in the direction.

バイパス流路の電磁弁52を開放して図13の太線の冷媒流路を矢印の向きに冷媒が流れるようにして冷却加温運転を開始して、圧縮機5の吐出圧力が所定の圧縮機過負荷圧力に達したことにより、バイパス流路の電磁弁52を閉塞して図12の太線の冷媒流路を矢印の向きに流れるようにした後、圧縮機5の吐出圧力が圧縮機過負荷圧力より低い所定の圧縮機通常圧力(再開放圧力)に低下すれば、バイパス流路の電磁弁52を開放して、再び、冷媒が、図13の太線の冷媒流路を矢印の向きに流れるようにする。   The electromagnetic valve 52 of the bypass flow path is opened, and the cooling and heating operation is started so that the refrigerant flows in the direction of the arrow in the thick refrigerant flow path of FIG. 13, and the discharge pressure of the compressor 5 is a predetermined compressor. When the overload pressure is reached, the solenoid valve 52 of the bypass flow path is closed and the refrigerant flow path shown in FIG. 12 flows in the direction of the arrow, and then the discharge pressure of the compressor 5 is changed to the compressor overload. If the pressure is reduced to a predetermined compressor normal pressure (reopen pressure) lower than the pressure, the electromagnetic valve 52 of the bypass flow path is opened, and the refrigerant again flows in the direction of the arrow through the thick refrigerant path of FIG. Like that.

詳細に説明すると、第1の冷却加温室2を加温し、第2の冷却加温室3を加温ヒータ31で加温し、冷却専用室4を冷却する冷却加温運転を開始する場合は、図13に示すように、三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態にするとともに、三方弁42は膨張機構44への流路を閉塞し膨張機構45への流路を開放する状態にし、電磁弁51と電磁弁56を閉塞し、電磁弁52を開放し、圧縮機5を起動する。さらに、加温ヒータ31に通電する。なお、加温ヒータ31に通電している時に
は、庫内ファン28が加温ヒータ31に送風している。
More specifically, when the first cooling / heating chamber 2 is heated, the second cooling / heating chamber 3 is heated by the heating heater 31, and the cooling / heating operation for cooling the cooling chamber 4 is started. As shown in FIG. 13, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 communicate with each other, and the three-way valve 42 provides a flow path to the expansion mechanism 44. The electromagnetic valve 51 and the electromagnetic valve 56 are closed, the electromagnetic valve 52 is opened, and the compressor 5 is started. Further, the heating heater 31 is energized. Note that, when the heating heater 31 is energized, the internal fan 28 blows air to the heating heater 31.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。なお、庫内凝縮器46に冷媒が流れている時には、庫内ファン27が庫内凝縮器46に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and then goes to the internal condenser 46, where it is partially condensed by the internal condenser 46, and in this case, the internal condensation is performed. The inside of the first cooling greenhouse 2 is heated by radiating heat to the air around the vessel 46. When the refrigerant is flowing through the internal condenser 46, the internal fan 27 blows air to the internal condenser 46.

そして、庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に逆止弁58を通過して庫外凝縮器40にて更に凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。   The refrigerant exiting the internal condenser 46 is depressurized by the expansion mechanism 48, passes through the check valve 58, and is further condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40.

庫外凝縮器40から流出した冷媒は、三方弁42から庫内蒸発器10用の膨張機構45側に流れるものと、バイパス流路に分岐して電磁弁52から膨張機構53側に流れるものとに分かれる。   The refrigerant that has flowed out of the external condenser 40 flows from the three-way valve 42 to the expansion mechanism 45 side for the internal evaporator 10, and the refrigerant that branches to the bypass flow path and flows from the electromagnetic valve 52 to the expansion mechanism 53 side. Divided into

三方弁42から庫内蒸発器10用の膨張機構45側に流れた冷媒は、膨張機構45にて減圧された後に庫内蒸発器10で蒸発気化して冷却専用室4を冷却する(下流側単独冷却運転)。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。   The refrigerant that has flowed from the three-way valve 42 toward the expansion mechanism 45 for the internal evaporator 10 is decompressed by the expansion mechanism 45 and then evaporated and evaporated in the internal evaporator 10 to cool the cooling dedicated chamber 4 (downstream side). Single cooling operation). When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

一方、バイパス流路に分岐して電磁弁52から膨張機構53側に流れた冷媒は、膨張機構53にて減圧された後に庫外蒸発器41で蒸発気化する。   On the other hand, the refrigerant branched into the bypass flow path and flowing from the electromagnetic valve 52 to the expansion mechanism 53 side is evaporated by the external evaporator 41 after being decompressed by the expansion mechanism 53.

そして、庫内蒸発器10から流出したガス状の冷媒と、庫外蒸発器41から流出したガス状の冷媒とが合流して、圧縮機5に戻る。   Then, the gaseous refrigerant that has flowed out of the internal evaporator 10 and the gaseous refrigerant that has flowed out of the external evaporator 41 merge and return to the compressor 5.

その後、もし、圧縮機5の吐出圧力が所定の圧縮機過負荷圧力に達した場合は、バイパス流路の電磁弁52を閉塞する。   Thereafter, if the discharge pressure of the compressor 5 reaches a predetermined compressor overload pressure, the solenoid valve 52 of the bypass flow path is closed.

ここで、圧縮機5の吐出圧力検知手段としては、吐出配管上に設けて直接冷媒の圧力を測定する圧力センサ、吐出配管上に設けたサーミスタなどが挙げられる。   Here, examples of the discharge pressure detection means of the compressor 5 include a pressure sensor that is provided on the discharge pipe and directly measures the pressure of the refrigerant, a thermistor provided on the discharge pipe, and the like.

ただし、圧縮機5の吐出圧力は凝縮温度の形で熱交換器近傍の配管温度にて近似することが可能であり、また、凝縮温度のように温度が高い状態においては圧力損失による温度変化が非常に小さい(1〜2℃程度)ことから、庫内凝縮器46近傍の配管上の温度をサーミスタなどにより検知を行うことで低コストでの実現が可能となる。   However, the discharge pressure of the compressor 5 can be approximated by the piping temperature in the vicinity of the heat exchanger in the form of the condensation temperature, and in a state where the temperature is high such as the condensation temperature, the temperature change due to the pressure loss does not occur. Since it is very small (about 1 to 2 ° C.), it can be realized at low cost by detecting the temperature on the pipe in the vicinity of the internal condenser 46 with a thermistor or the like.

バイパス流路の電磁弁52が閉塞している時は、図12の太線の冷媒流路を矢印の向きに冷媒が流れる。   When the solenoid valve 52 in the bypass channel is closed, the coolant flows in the direction of the arrow through the thick coolant channel in FIG.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。なお、庫内凝縮器46に冷媒が流れている時には、庫内ファン27が庫内凝縮器46に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and then goes to the internal condenser 46, where it is partially condensed by the internal condenser 46, and in this case, the internal condensation is performed. The inside of the first cooling greenhouse 2 is heated by radiating heat to the air around the vessel 46. When the refrigerant is flowing through the internal condenser 46, the internal fan 27 blows air to the internal condenser 46.

そして、庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に逆止弁58を通過して庫外凝縮器40にて更に凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。   The refrigerant exiting the internal condenser 46 is depressurized by the expansion mechanism 48, passes through the check valve 58, and is further condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40.

庫外凝縮器40から流出した冷媒は、バイパス流路の電磁弁52が閉塞しているため、
全て、三方弁42から庫内蒸発器10用の膨張機構45側に流れ、膨張機構45にて減圧された後に庫内蒸発器10で蒸発気化して冷却専用室4を冷却する(直列冷却運転)。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。
Since the refrigerant that has flowed out of the external condenser 40 is closed by the solenoid valve 52 of the bypass flow path,
All flow from the three-way valve 42 to the expansion mechanism 45 side of the internal evaporator 10, and after the pressure is reduced by the expansion mechanism 45, the internal evaporator 10 evaporates and cools the cooling exclusive chamber 4 (series cooling operation). ). When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

そして、庫内蒸発器10から流出したガス状の冷媒は、圧縮機5に戻る。   The gaseous refrigerant that has flowed out of the internal evaporator 10 returns to the compressor 5.

バイパス流路の電磁弁52を閉塞した後、圧縮機5の吐出圧力が圧縮機過負荷圧力より低い所定の圧縮機通常圧力(再開放圧力)に低下すれば、閉塞していたバイパス流路の電磁弁52を開放して、冷媒が図13の太線の冷媒流路を矢印の向きに流れるようにする。   If the discharge pressure of the compressor 5 drops to a predetermined compressor normal pressure (reopen pressure) lower than the compressor overload pressure after the solenoid valve 52 of the bypass passage is closed, the bypass passage The solenoid valve 52 is opened so that the refrigerant flows in the direction of the arrow in the refrigerant flow path indicated by the thick line in FIG.

バイパス流路の電磁弁52を開放している場合は、電磁弁52を閉塞している場合よりも庫内凝縮器46の加温能力を高めることができる。   When the electromagnetic valve 52 of the bypass channel is opened, the heating capacity of the internal condenser 46 can be increased as compared with the case where the electromagnetic valve 52 is closed.

バイパス流路の電磁弁52を開放すると、バイパス流路に冷媒が流れるため冷媒の流路抵抗が減り、冷媒の循環量が増え、庫内蒸発器10の蒸発温度が上昇し、庫内凝縮器46の凝縮温度が上昇する。よって、第1の冷却加温室2の庫内凝縮器46による加温能力が高まり、加温ヒータ30より効率のよいヒートポンプ加温(冷却加温システムによる加温)にて加温させることができる。   When the solenoid valve 52 of the bypass flow path is opened, the refrigerant flows through the bypass flow path, so that the flow resistance of the refrigerant decreases, the circulation amount of the refrigerant increases, the evaporation temperature of the internal evaporator 10 increases, and the internal condenser The condensation temperature of 46 increases. Therefore, the heating capability by the internal condenser 46 of the 1st cooling heating greenhouse 2 increases, and it can heat by the heat pump heating (heating by a cooling heating system) more efficient than the heating heater 30. .

そして、制御手段(図示せず)が、第1の冷却加温室2と第2の冷却加温室3の室内温度が予め設定された加温温度範囲内を維持し、冷却専用室4の室内温度が予め設定された冷却温度範囲内を維持するように、三方弁57と三方弁42の切換え、及び圧縮機5と庫外ファン26と庫内ファン27,28,29の運転と加温ヒータ31の通電を制御している。   And a control means (not shown) maintains the indoor temperature of the 1st cooling greenhouse 2 and the 2nd cooling greenhouse 3 in the preset heating temperature range, and the indoor temperature of the cooling exclusive room 4 is set. Are switched between the three-way valve 57 and the three-way valve 42 and the compressor 5, the external fan 26, the internal fans 27, 28 and 29 are operated, and the heating heater 31. Is controlled.

例えば、第1の冷却加温室2が加温温度範囲の上限値となる所定温度(加熱終了温度)まで加温された時に、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却で冷却専用室4を冷却する下流側単独冷却運転中であれば、バイパス流路の電磁弁52を閉塞すると共に庫内ファン27を停止する。   For example, when the first cooling greenhouse 2 is heated to a predetermined temperature (heating end temperature) that is the upper limit value of the heating temperature range, the internal evaporator 9 and the internal evaporator 10 are the internal evaporator. If the downstream single cooling operation for cooling the cooling exclusive chamber 4 with only 10 single cooling is in progress, the electromagnetic valve 52 in the bypass flow path is closed and the internal fan 27 is stopped.

または、電磁弁52の閉塞と庫内ファン27の停止に加えて、三方弁57を、圧縮機5の吐出配管と庫外凝縮器40とが連通する状態にする。   Alternatively, in addition to closing the electromagnetic valve 52 and stopping the internal fan 27, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 and the external condenser 40 are in communication.

ここで、バイパス流路の電磁弁52を閉塞すると共に庫内ファン27を停止するが、三方弁57を、圧縮機5の吐出配管と庫外凝縮器40とが連通する状態にしない場合は、バイパス流路の電磁弁52の閉塞により、第1の冷却加温室2の庫内凝縮器46による加温能力を低下させ、庫内ファン27の停止により、第1の冷却加温室2内の空気と庫内凝縮器46との熱交換量が低下する。   Here, the electromagnetic valve 52 of the bypass flow path is closed and the internal fan 27 is stopped, but when the three-way valve 57 is not in a state where the discharge pipe of the compressor 5 and the external condenser 40 are in communication with each other, By closing the solenoid valve 52 in the bypass flow path, the heating capacity of the first condenser room 2 by the internal condenser 46 is reduced, and when the internal fan 27 is stopped, the air in the first compartment 2 is cooled. And the amount of heat exchange between the refrigerator 46 and the internal condenser 46 are reduced.

この場合、圧縮機5から吐出された高温高圧のガス状の冷媒の大半が、庫内凝縮器46で凝縮できず、庫外凝縮器40にて凝縮される。庫外凝縮器40にて充分に凝縮させる必要がある場合は、庫外ファン26の送風量を増やすことにより、庫外凝縮器40と外気との熱交換量を増加させる。   In this case, most of the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 cannot be condensed by the internal condenser 46 but is condensed by the external condenser 40. When it is necessary to sufficiently condense in the outside condenser 40, the amount of heat exchange between the outside condenser 40 and the outside air is increased by increasing the amount of air blown by the outside fan 26.

そして、バイパス流路の電磁弁52を閉塞すると共に庫内ファン27を停止した後に、第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すれば、再び電磁弁52を開放すると共に、庫内ファン27を運転する。   Then, after closing the electromagnetic valve 52 of the bypass channel and stopping the internal fan 27, if the temperature of the first cooling greenhouse 2 decreases to a predetermined temperature that is the lower limit value of the heating temperature range, the electromagnetic wave is again generated. The valve 52 is opened and the internal fan 27 is operated.

もし、庫内凝縮器46に圧縮機5からの冷媒が流れないように三方弁57を切り換えた
後に、第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すれば、電磁弁52の開放と庫内ファン27の運転に加えて、再び三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態(図13に示す状態)に戻す。
If the three-way valve 57 is switched so that the refrigerant from the compressor 5 does not flow into the internal condenser 46, the temperature of the first cooling greenhouse 2 decreases to a predetermined temperature that is the lower limit value of the heating temperature range. Then, in addition to the opening of the electromagnetic valve 52 and the operation of the internal fan 27, the three-way valve 57 is again connected to the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 (see FIG. 13). Return to the state shown).

また、圧縮機5の吐出配管と庫外凝縮器40とが連通する状態において、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却されると、三方弁42の庫内蒸発器10用の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、圧縮機5を停止する。   Further, in the state where the discharge pipe of the compressor 5 and the external condenser 40 communicate with each other, when the cooling exclusive chamber 4 is cooled to a predetermined temperature which is the lower limit value of the cooling temperature range, the internal evaporator of the three-way valve 42 is used. In addition to closing the refrigerant outlet on the expansion mechanism 45 side for 10 and stopping the internal fan 29, the compressor 5 is stopped.

また、図12に示す状態において、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却された時に、第1の冷却加温室2の加温が必要(第1の冷却加温室2の庫内温度が所定の庫内上限温度(加熱終了温度)未満)であれば、三方弁42の庫内蒸発器10用の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、バイパス流路の電磁弁52と電磁弁56のどちらか一方または両方を開放して、図14〜図16のいずれかに示す状態にして、庫外蒸発器41と庫内弱冷蒸発器54のどちらか一方または両方で吸熱することにより、庫内凝縮器46による第1の冷却加温室2の加温を継続する。   Further, in the state shown in FIG. 12, when the cooling exclusive chamber 4 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the first cooling greenhouse 2 needs to be heated (the first cooling heating chamber 2). If the internal chamber temperature is less than the predetermined internal upper limit temperature (heating end temperature), the refrigerant outlet on the side of the expansion mechanism 45 for the internal evaporator 10 of the three-way valve 42 is closed and the internal fan 29 is stopped. In addition, either one or both of the electromagnetic valve 52 and the electromagnetic valve 56 in the bypass flow path are opened to the state shown in any of FIGS. Heating of the first cooling greenhouse 2 by the internal condenser 46 is continued by absorbing heat in one or both of the containers 54.

このとき、電磁弁52と電磁弁56の両方を開放して、図15に示す、庫外蒸発器41と庫内弱冷蒸発器54の両方で吸熱する状態にした場合は、電磁弁52と電磁弁56の片方のみを開放して庫外蒸発器41と庫内弱冷蒸発器54のどちらか一方で吸熱する図14または図16に示す状態にした場合よりも、庫内凝縮器46による第1の冷却加温室2の加温能力が高くなる。   At this time, when both the electromagnetic valve 52 and the electromagnetic valve 56 are opened and the heat is absorbed by both the external evaporator 41 and the internal cold evaporator 54 shown in FIG. Compared to the state shown in FIG. 14 or FIG. 16 in which only one of the solenoid valves 56 is opened and the outside evaporator 41 or the inside cold evaporator 54 absorbs heat, the inside condenser 46 is used. The heating capability of the 1st cooling greenhouse 2 becomes high.

次に、第1の冷却加温室2を庫内凝縮器46で加温し、第2の冷却加温室3を加温ヒータ31で加温するが、冷却専用室4を冷却しない加温運転の場合は、図14〜図16のいずれかに示す状態にする。   Next, the first cooling greenhouse 2 is heated by the internal condenser 46, and the second cooling greenhouse 3 is heated by the heating heater 31, but the cooling exclusive chamber 4 is not cooled. In this case, the state shown in any of FIGS.

このとき、電磁弁52と電磁弁56の両方を開放して、図15に示す、庫外蒸発器41と庫内弱冷蒸発器54の両方で吸熱する状態にした場合は、電磁弁52と電磁弁56の片方のみを開放して庫外蒸発器41と庫内弱冷蒸発器54のどちらか一方で吸熱する図14または図16に示す状態にした場合よりも、庫内凝縮器46による第1の冷却加温室2の加温能力が高くなる。   At this time, when both the electromagnetic valve 52 and the electromagnetic valve 56 are opened and the heat is absorbed by both the external evaporator 41 and the internal cold evaporator 54 shown in FIG. Compared to the state shown in FIG. 14 or FIG. 16 in which only one of the solenoid valves 56 is opened and the outside evaporator 41 or the inside cold evaporator 54 absorbs heat, the inside condenser 46 is used. The heating capability of the 1st cooling greenhouse 2 becomes high.

図14の太線の冷媒流路を矢印の向きに冷媒が流れる運転の場合は、三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態にするとともに、庫内蒸発器47用の膨張機構43に冷媒が流れないように電磁弁51を閉塞し、三方弁42の庫内蒸発器9用の膨張機構44への流路(出口)と庫内蒸発器10用の膨張機構45への流路(出口)の全ての流路(出口)を閉塞し、バイパス流路の電磁弁52を開放し、電磁弁56を閉塞して、圧縮機5を起動し、加温ヒータ31に通電し、庫外ファン26と庫内ファン27,28を運転する。   In the case of the operation in which the refrigerant flows in the direction of the arrow in the thick refrigerant flow path of FIG. 14, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 communicate with each other. The electromagnetic valve 51 is closed so that the refrigerant does not flow into the expansion mechanism 43 for the internal evaporator 47, and the flow path (exit) of the three-way valve 42 to the expansion mechanism 44 for the internal evaporator 9 and the internal evaporation. All the flow paths (outlets) of the flow path (exit) to the expansion mechanism 45 for the container 10 are closed, the electromagnetic valve 52 of the bypass flow path is opened, the electromagnetic valve 56 is closed, and the compressor 5 is started. Then, the heating heater 31 is energized, and the outside fan 26 and the inside fans 27 and 28 are operated.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に逆止弁58を通過して庫外凝縮器40にて更に凝縮する。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and then goes to the internal condenser 46, where it is partially condensed by the internal condenser 46, and in this case, the internal condensation is performed. The inside of the first cooling greenhouse 2 is heated by radiating heat to the air around the vessel 46. The refrigerant that has exited the internal condenser 46 is decompressed by the expansion mechanism 48, passes through the check valve 58, and is further condensed by the external condenser 40.

庫外凝縮器40から流出した冷媒は、三方弁42の2つの出口と電磁弁51と電磁弁56が閉塞され電磁弁52が開放されているため、庫内蒸発器9,10,47と庫内弱冷蒸発器54には流れず、全て、バイパス流路側に流れる。   The refrigerant that has flowed out of the outside condenser 40 has the two outlets of the three-way valve 42, the electromagnetic valve 51 and the electromagnetic valve 56 closed, and the electromagnetic valve 52 is opened. They do not flow into the inner weak evaporator 54 but all flow toward the bypass flow path.

そして、バイパス流路の電磁弁52を通過し、膨張機構53にて減圧された後に庫外蒸発器41にて蒸発気化し、圧縮機5へと還流する。   Then, it passes through the electromagnetic valve 52 in the bypass flow path, is decompressed by the expansion mechanism 53, evaporates in the external evaporator 41, and returns to the compressor 5.

そして、第1の冷却加温室2が、加温温度範囲の上限値となる所定温度まで加温されると、制御手段(図示せず)が、圧縮機5と庫外ファン26と庫内ファン27を停止し、圧縮機5と庫外ファン26と庫内ファン27が停止中に第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すると、制御手段(図示せず)が、圧縮機5と庫外ファン26と庫内ファン27を運転する。   And if the 1st cooling greenhouse 2 is heated to the predetermined temperature used as the upper limit of a heating temperature range, a control means (not shown) will be the compressor 5, the external fan 26, and an internal fan. When the compressor 5, the outside fan 26, and the inside fan 27 are stopped, the temperature of the first cooling greenhouse 2 decreases to a predetermined temperature that is the lower limit value of the heating temperature range. (Not shown) operates the compressor 5, the external fan 26, and the internal fan 27.

また、第2の冷却加温室3が、加温温度範囲の上限値となる所定温度まで加温されると、制御手段(図示せず)が、加温ヒータ31の通電を停止し、加温ヒータ31の通電の停止している時に、第2の冷却加温室3の温度が加温温度範囲の下限値となる所定温度まで低下すると、制御手段(図示せず)が、再び、加温ヒータ31に通電する。   Further, when the second cooling greenhouse 3 is heated to a predetermined temperature that is the upper limit value of the heating temperature range, the control means (not shown) stops energization of the heating heater 31 and warms up. When the heater 31 is not energized, when the temperature of the second cooling greenhouse 3 is lowered to a predetermined temperature that is the lower limit value of the heating temperature range, the control means (not shown) again turns on the heating heater. 31 is energized.

図15の太線の冷媒流路を矢印の向きに冷媒が流れる運転の場合は、三方弁57を、圧縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態にするとともに、庫内蒸発器47用の膨張機構43に冷媒が流れないように電磁弁51を閉塞し、三方弁42の庫内蒸発器9用の膨張機構44への流路(出口)と庫内蒸発器10用の膨張機構45への流路(出口)の全ての流路(出口)を閉塞し、バイパス流路の電磁弁52と電磁弁56を開放して、圧縮機5を起動し、加温ヒータ31に通電し、庫外ファン26と庫内ファン27,28を運転する。   In the case of the operation in which the refrigerant flows in the direction of the arrow in the thick refrigerant passage in FIG. 15, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 communicate with each other. The electromagnetic valve 51 is closed so that the refrigerant does not flow into the expansion mechanism 43 for the internal evaporator 47, and the flow path (exit) of the three-way valve 42 to the expansion mechanism 44 for the internal evaporator 9 and the internal evaporation. All the flow paths (outlets) of the flow path (exit) to the expansion mechanism 45 for the container 10 are closed, the electromagnetic valves 52 and 56 of the bypass flow paths are opened, the compressor 5 is started, The heater 31 is energized, and the external fan 26 and internal fans 27 and 28 are operated.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に逆止弁58を通過して庫外凝縮器40にて更に凝縮する。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and then goes to the internal condenser 46, where it is partially condensed by the internal condenser 46, and in this case, the internal condensation is performed. The inside of the first cooling greenhouse 2 is heated by radiating heat to the air around the vessel 46. The refrigerant that has exited the internal condenser 46 is decompressed by the expansion mechanism 48, passes through the check valve 58, and is further condensed by the external condenser 40.

庫外凝縮器40から流出した冷媒は、三方弁42の2つの出口と電磁弁51が閉塞され電磁弁52と電磁弁56が開放されているため、庫内蒸発器9,10,47には流れず、全て、バイパス流路側に流れる。   The refrigerant that has flowed out of the outside condenser 40 has the two outlets of the three-way valve 42 and the electromagnetic valve 51 closed, and the electromagnetic valve 52 and the electromagnetic valve 56 are opened. It does not flow but all flows to the bypass flow path side.

そして、バイパス流路に流れた冷媒の一部は電磁弁52を通過し、膨張機構53にて減圧された後に庫外蒸発器41にて蒸発気化し、圧縮機5へと還流する。また、バイパス流路に流れた冷媒の残りは電磁弁56を通過し、膨張機構55にて減圧された後に庫内弱冷蒸発器54にて蒸発気化し、気液分離器59を通って圧縮機5へと還流する。   A part of the refrigerant flowing in the bypass flow path passes through the electromagnetic valve 52, is decompressed by the expansion mechanism 53, evaporates and evaporates in the external evaporator 41, and returns to the compressor 5. Further, the remaining refrigerant flowing in the bypass flow path passes through the electromagnetic valve 56, is depressurized by the expansion mechanism 55, evaporates and vaporizes in the internal cold evaporator 54, and is compressed through the gas-liquid separator 59. Reflux to machine 5.

そして、第1の冷却加温室2が、加温温度範囲の上限値となる所定温度まで加温されると、制御手段(図示せず)が、圧縮機5と庫外ファン26と庫内ファン27を停止し、圧縮機5と庫外ファン26と庫内ファン27が停止中に第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すると、制御手段(図示せず)が、圧縮機5と庫外ファン26と庫内ファン27を運転する。   And if the 1st cooling greenhouse 2 is heated to the predetermined temperature used as the upper limit of a heating temperature range, a control means (not shown) will be the compressor 5, the external fan 26, and an internal fan. When the compressor 5, the outside fan 26, and the inside fan 27 are stopped, the temperature of the first cooling greenhouse 2 decreases to a predetermined temperature that is the lower limit value of the heating temperature range. (Not shown) operates the compressor 5, the external fan 26, and the internal fan 27.

また、第2の冷却加温室3が、加温温度範囲の上限値となる所定温度まで加温されると、制御手段(図示せず)が、加温ヒータ31の通電を停止し、加温ヒータ31の通電の停止している時に、第2の冷却加温室3の温度が加温温度範囲の下限値となる所定温度まで低下すると、制御手段(図示せず)が、再び、加温ヒータ31に通電する。   Further, when the second cooling greenhouse 3 is heated to a predetermined temperature that is the upper limit value of the heating temperature range, the control means (not shown) stops energization of the heating heater 31 and warms up. When the heater 31 is not energized, when the temperature of the second cooling greenhouse 3 is lowered to a predetermined temperature that is the lower limit value of the heating temperature range, the control means (not shown) again turns on the heating heater. 31 is energized.

図16の太線の冷媒流路を矢印の向きに冷媒が流れる運転の場合は、三方弁57を、圧
縮機5の吐出配管と庫内凝縮器46の冷媒の入口とが連通する状態にするとともに、庫内蒸発器47用の膨張機構43に冷媒が流れないように電磁弁51を閉塞し、三方弁42の庫内蒸発器9用の膨張機構44への流路(出口)と庫内蒸発器10用の膨張機構45への流路(出口)の全ての流路(出口)を閉塞し、バイパス流路の電磁弁52を閉塞し電磁弁56を開放して、圧縮機5を起動し、加温ヒータ31に通電し、庫外ファン26と庫内ファン27,28を運転する。
In the case of the operation in which the refrigerant flows in the direction of the arrow in the thick line refrigerant flow path of FIG. 16, the three-way valve 57 is brought into a state where the discharge pipe of the compressor 5 and the refrigerant inlet of the internal condenser 46 communicate with each other. The electromagnetic valve 51 is closed so that the refrigerant does not flow into the expansion mechanism 43 for the internal evaporator 47, and the flow path (exit) of the three-way valve 42 to the expansion mechanism 44 for the internal evaporator 9 and the internal evaporation. All the flow paths (outlets) of the flow path (exit) to the expansion mechanism 45 for the container 10 are closed, the electromagnetic valve 52 of the bypass flow path is closed, the electromagnetic valve 56 is opened, and the compressor 5 is started. Then, the heating heater 31 is energized, and the outside fan 26 and the inside fans 27 and 28 are operated.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過した後に庫内凝縮器46へと向かい、庫内凝縮器46にて一部凝縮し、その際に庫内凝縮器46の周囲の空気へと放熱することで第1の冷却加温室2内を加温する。庫内凝縮器46を出た冷媒は膨張機構48にて減圧された後に逆止弁58を通過して庫外凝縮器40にて更に凝縮する。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and then goes to the internal condenser 46, where it is partially condensed by the internal condenser 46, and in this case, the internal condensation is performed. The inside of the first cooling greenhouse 2 is heated by radiating heat to the air around the vessel 46. The refrigerant that has exited the internal condenser 46 is decompressed by the expansion mechanism 48, passes through the check valve 58, and is further condensed by the external condenser 40.

庫外凝縮器40から流出した冷媒は、三方弁42の2つの出口と電磁弁51と電磁弁52が閉塞され電磁弁56が開放されているため、庫内蒸発器9,10,47と庫外蒸発器41には流れず、バイパス流路から電磁弁56を通過し、膨張機構55にて減圧された後に庫内弱冷蒸発器54にて蒸発気化し、気液分離器59を通って圧縮機5へと還流する。   The refrigerant that has flowed out of the outside condenser 40 has two outlets of the three-way valve 42, the electromagnetic valve 51 and the electromagnetic valve 52 closed, and the electromagnetic valve 56 is opened. It does not flow to the outer evaporator 41, passes through the electromagnetic valve 56 from the bypass flow path, is depressurized by the expansion mechanism 55, evaporates and vaporizes in the internal cold evaporator 54, and passes through the gas-liquid separator 59. Reflux to the compressor 5.

そして、第1の冷却加温室2が、加温温度範囲の上限値となる所定温度まで加温されると、制御手段(図示せず)が、圧縮機5と庫外ファン26と庫内ファン27を停止し、圧縮機5と庫外ファン26と庫内ファン27が停止中に第1の冷却加温室2の温度が加温温度範囲の下限値となる所定温度まで低下すると、制御手段(図示せず)が、圧縮機5と庫外ファン26と庫内ファン27を運転する。   And if the 1st cooling greenhouse 2 is heated to the predetermined temperature used as the upper limit of a heating temperature range, a control means (not shown) will be the compressor 5, the external fan 26, and an internal fan. When the compressor 5, the outside fan 26, and the inside fan 27 are stopped, the temperature of the first cooling greenhouse 2 decreases to a predetermined temperature that is the lower limit value of the heating temperature range. (Not shown) operates the compressor 5, the external fan 26, and the internal fan 27.

また、第2の冷却加温室3が、加温温度範囲の上限値となる所定温度まで加温されると、制御手段(図示せず)が、加温ヒータ31の通電を停止し、加温ヒータ31の通電の停止している時に、第2の冷却加温室3の温度が加温温度範囲の下限値となる所定温度まで低下すると、制御手段(図示せず)が、再び、加温ヒータ31に通電する。   Further, when the second cooling greenhouse 3 is heated to a predetermined temperature that is the upper limit value of the heating temperature range, the control means (not shown) stops energization of the heating heater 31 and warms up. When the heater 31 is not energized, when the temperature of the second cooling greenhouse 3 is lowered to a predetermined temperature that is the lower limit value of the heating temperature range, the control means (not shown) again turns on the heating heater. 31 is energized.

次に、第1の冷却加温室2を加温ヒータ30で加温し、第2の冷却加温室3と冷却専用室4を冷却する冷却運転の場合は、図17の太線の冷媒流路を矢印の向きに冷媒が流れる運転となる。   Next, in the cooling operation in which the first cooling greenhouse 2 is heated by the heating heater 30 and the second cooling greenhouse 3 and the cooling exclusive chamber 4 are cooled, the thick-line refrigerant flow path in FIG. The refrigerant flows in the direction of the arrow.

第1の冷却加温室2を加温ヒータ30で加温し、第2の冷却加温室3と冷却専用室4を冷却する冷却運転の場合は、三方弁57を、圧縮機5の吐出配管と庫外凝縮器40とが連通する状態にするとともに、三方弁42は庫内蒸発器9用の膨張機構44への流路を開放し庫内蒸発器10用の膨張機構45への流路を閉塞する状態にし、電磁弁51と電磁弁52と電磁弁56を閉塞し、圧縮機5を起動する。さらに、加温ヒータ30に通電する。なお、加温ヒータ30に通電している時は、庫内ファン27が庫内蒸発器47に送風している。   In the cooling operation in which the first cooling greenhouse 2 is heated by the heater 30 and the second cooling greenhouse 3 and the cooling exclusive chamber 4 are cooled, the three-way valve 57 is connected to the discharge pipe of the compressor 5. The three-way valve 42 opens the flow path to the expansion mechanism 44 for the internal evaporator 9 and opens the flow path to the expansion mechanism 45 for the internal evaporator 10. The electromagnetic valve 51, the electromagnetic valve 52, and the electromagnetic valve 56 are closed, and the compressor 5 is started. Further, the heating heater 30 is energized. In addition, when the heating heater 30 is energized, the internal fan 27 blows air to the internal evaporator 47.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過して庫外凝縮器40で冷却されて凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。庫外凝縮器40で凝縮した冷媒は、三方弁42から膨張機構44側に流れ、膨張機構44にて減圧された後に庫内蒸発器9で蒸発気化して第2の冷却加温室3を冷却する。なお、庫内蒸発器9に冷媒が流れている時には、庫内ファン28が庫内蒸発器9に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and is cooled and condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40. The refrigerant condensed in the outside condenser 40 flows from the three-way valve 42 to the expansion mechanism 44 side, and after being decompressed by the expansion mechanism 44, the refrigerant is evaporated and evaporated in the internal evaporator 9 to cool the second cooling greenhouse 3. To do. When the refrigerant is flowing through the internal evaporator 9, the internal fan 28 blows air to the internal evaporator 9.

また、庫内蒸発器9で蒸発できなかった余剰な液冷媒は、庫内蒸発器9と直列に接続された庫内蒸発器10で蒸発して冷却専用室4も冷却する(直列冷却運転)。なお、庫内蒸
発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。
The excess liquid refrigerant that could not be evaporated by the internal evaporator 9 is evaporated by the internal evaporator 10 connected in series with the internal evaporator 9 to cool the cooling exclusive chamber 4 (series cooling operation). . When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

その後、第2の冷却加温室3の温度が目標温度(冷却温度範囲の下限値)に達した時点で、三方弁42から膨張機構45へと冷媒が流れるように三方弁42を切り換えて、図18の太線の冷媒流路を矢印の向きに冷媒が流れる運転にすることで、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却を行う(下流側単独冷却運転)。   Thereafter, when the temperature of the second cooling greenhouse 3 reaches the target temperature (the lower limit value of the cooling temperature range), the three-way valve 42 is switched so that the refrigerant flows from the three-way valve 42 to the expansion mechanism 45. By performing an operation in which the refrigerant flows through the 18 thick line refrigerant flow in the direction of the arrow, only the internal evaporator 10 of the internal evaporator 9 and the internal evaporator 10 is cooled alone (downstream independent cooling). operation).

このように優先的に直列冷却運転を行うことで、余剰液冷媒によって冷却専用室4も冷却されることから下流側単独冷却運転の運転率を低下することができ、消費電力量を低減することができる。   By performing the serial cooling operation preferentially in this way, the cooling exclusive chamber 4 is also cooled by the surplus liquid refrigerant, so that the operating rate of the downstream side single cooling operation can be reduced and the power consumption can be reduced. Can do.

そして、庫内蒸発器10から流出した冷媒は、気液分離器59でガス冷媒と液冷媒とに分離されて、気液分離器59で液冷媒と分離されたガス冷媒が圧縮機5に吸い込まれる。   The refrigerant flowing out of the internal evaporator 10 is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator 59, and the gas refrigerant separated from the liquid refrigerant by the gas-liquid separator 59 is sucked into the compressor 5. It is.

そして、制御手段(図示せず)が、第2の冷却加温室3と冷却専用室4の各室内の温度が予め設定された冷却温度範囲内を維持するように、三方弁42の切換え、圧縮機5と庫外ファン26と庫内ファン28,29の運転を制御している。また、第1の冷却加温室2の室内温度が予め設定された加温温度範囲内を維持するように、加温ヒータ30の通電を制御している。   Then, the control means (not shown) switches and compresses the three-way valve 42 so that the temperature in each of the second cooling greenhouse 3 and the cooling exclusive chamber 4 is maintained within a preset cooling temperature range. The operation of the machine 5, the outside fan 26, and the inside fans 28 and 29 is controlled. In addition, the energization of the heating heater 30 is controlled so that the room temperature of the first cooling greenhouse 2 is maintained within a preset heating temperature range.

また、第2の冷却加温室3が冷却温度範囲の下限値となる所定温度まで冷却されると、膨張機構44への流路を閉塞し膨張機構45への流路を開放する状態に三方弁42を切換えて、庫内ファン28を停止する。また、圧縮機5の停止中に第2の冷却加温室3内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構44への流路を開放し膨張機構45への流路を閉鎖する状態に三方弁42を切換えて、圧縮機5を起動し、庫内ファン28を運転する。   Further, when the second cooling chamber 3 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the three-way valve is brought into a state in which the flow path to the expansion mechanism 44 is closed and the flow path to the expansion mechanism 45 is opened. 42 is switched and the internal fan 28 is stopped. If the temperature in the second cooling greenhouse 3 rises to a predetermined temperature that is the upper limit value of the cooling temperature range while the compressor 5 is stopped, the flow path to the expansion mechanism 44 is opened and the expansion mechanism 45 is connected. The three-way valve 42 is switched to a state in which the flow path is closed, the compressor 5 is started, and the internal fan 28 is operated.

また、三方弁42が膨張機構44への流路を閉塞し膨張機構45への流路を開放して、庫内蒸発器9と庫内蒸発器10のうち庫内蒸発器10のみの単独冷却(下流側単独冷却運転)をしている状態で、第2の冷却加温室3内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態に三方弁42を切り換えて、庫内ファン28を運転する。   Further, the three-way valve 42 closes the flow path to the expansion mechanism 44 and opens the flow path to the expansion mechanism 45 so that only the internal evaporator 10 out of the internal evaporator 9 and the internal evaporator 10 is cooled alone. When the temperature in the second cooling greenhouse 3 rises to a predetermined temperature that is the upper limit value of the cooling temperature range in the state where the downstream single cooling operation is performed, the flow path to the expansion mechanism 44 is opened. The internal fan 28 is operated by switching the three-way valve 42 to a state in which the flow path to the expansion mechanism 45 is closed.

また、庫内蒸発器9と庫内蒸発器10の直列冷却運転から庫内蒸発器10のみの下流側単独冷却運転への移行後に、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却されると、三方弁42の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、圧縮機5も停止する。   In addition, after the transition from the series cooling operation of the internal evaporator 9 and the internal evaporator 10 to the downstream single cooling operation of only the internal evaporator 10, the predetermined temperature at which the cooling exclusive chamber 4 becomes the lower limit value of the cooling temperature range When the cooling is performed, the compressor 5 is stopped in addition to closing the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 and stopping the internal fan 29.

また、圧縮機5の停止中に冷却専用室4内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態に三方弁42を切り換えて、圧縮機5を起動し、庫内ファン29を運転する。   If the temperature in the cooling chamber 4 rises to a predetermined temperature that is the upper limit value of the cooling temperature range while the compressor 5 is stopped, the flow path to the expansion mechanism 44 is opened and the flow path to the expansion mechanism 45 is opened. The three-way valve 42 is switched to the closed state, the compressor 5 is started, and the internal fan 29 is operated.

なお、圧縮機5の起動時には、予め、三方弁42は膨張機構44への流路を開放し膨張機構45への流路を閉塞する状態にし、電磁弁51と電磁弁52と電磁弁56とを閉塞する。   When the compressor 5 is started, the three-way valve 42 opens the flow path to the expansion mechanism 44 and closes the flow path to the expansion mechanism 45 in advance, and the electromagnetic valve 51, the electromagnetic valve 52, and the electromagnetic valve 56 Occlude.

そして、圧縮機5を停止した時は、冷媒回路の高低圧をバランスさせるために、三方弁42の膨張機構44側の冷媒の出口または膨張機構45側の冷媒の出口を開放して、庫内凝縮器46の冷媒の出口と圧縮機5の吸い込み側(吸入側)配管とを連通させる。   When the compressor 5 is stopped, the refrigerant outlet on the expansion mechanism 44 side or the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 is opened to balance the high and low pressures of the refrigerant circuit. The refrigerant outlet of the condenser 46 and the suction side (suction side) piping of the compressor 5 are communicated with each other.

そして、冷媒回路の高低圧がバランスした後に、三方弁42の膨張機構44側の冷媒の出口または膨張機構45側の冷媒の出口を閉塞する。   Then, after the high and low pressures of the refrigerant circuit are balanced, the refrigerant outlet on the expansion mechanism 44 side of the three-way valve 42 or the refrigerant outlet on the expansion mechanism 45 side is closed.

このことによって、圧縮機5の停止中に冷却運転で使用しない庫内凝縮器46へと余剰な冷媒を貯留する事ができるので、冷却運転中における冷媒量過多を防止することが可能となる。また、三方弁57で冷媒が漏れることによって庫内凝縮器46へと冷媒が貯留され続けて冷媒不足状態に陥ることを防ぐことができる。   As a result, excess refrigerant can be stored in the internal condenser 46 that is not used in the cooling operation while the compressor 5 is stopped, so that it is possible to prevent an excessive amount of refrigerant during the cooling operation. Further, it is possible to prevent the refrigerant from being stored in the internal condenser 46 due to the leakage of the refrigerant through the three-way valve 57 and falling into a refrigerant shortage state.

なお、第2の冷却加温室3を加温ヒータ31による加温運転から冷却運転に切換えた時や高外気温度でのイニシャルプルダウン時など、庫内の温度が高く、大きな冷凍能力を必要とする場合においては、圧縮機5の運転・停止にかかわらず常に電磁弁50を開放して、庫内凝縮器46の冷媒の出口と圧縮機5の吸い込み側(吸入側)配管とを連通すれば、全冷媒を冷却運転に利用できるので、大きな冷凍能力を得る事ができ、プルダウン時間を短縮することが可能となる。   In addition, when the second cooling greenhouse 3 is switched from the heating operation by the heating heater 31 to the cooling operation, or at the initial pull-down at a high outside air temperature, the temperature in the warehouse is high and a large refrigerating capacity is required. In this case, if the solenoid valve 50 is always opened regardless of the operation / stop of the compressor 5 and the refrigerant outlet of the internal condenser 46 and the suction side (suction side) piping of the compressor 5 are communicated, Since all the refrigerants can be used for the cooling operation, a large refrigerating capacity can be obtained and the pull-down time can be shortened.

次に、第1の冷却加温室2を加温ヒータ30で加温し、冷却専用室4を冷却する冷却運転の場合は、図18の太線の冷媒流路を矢印の向きに冷媒が流れる運転となる。   Next, in the case of the cooling operation in which the first cooling greenhouse 2 is heated by the heating heater 30 and the cooling exclusive chamber 4 is cooled, the operation in which the refrigerant flows in the direction of the arrow in the thick refrigerant path in FIG. It becomes.

第1の冷却加温室2を加温ヒータ30で加温し、冷却専用室4を冷却する冷却運転の場合は、三方弁57を、圧縮機5の吐出配管と庫外凝縮器40とが連通する状態にするとともに、三方弁42は庫内蒸発器9用の膨張機構44への流路を閉塞し庫内蒸発器10用の膨張機構45への流路を開放する状態にし、電磁弁51と電磁弁52と電磁弁56を閉塞し、圧縮機5を起動する。さらに、加温ヒータ30に通電する。なお、加温ヒータ30に通電している時は、庫内ファン27が庫内蒸発器47に送風している。   In the case of the cooling operation in which the first cooling greenhouse 2 is heated by the heating heater 30 and the cooling exclusive chamber 4 is cooled, the three-way valve 57 is connected to the discharge pipe of the compressor 5 and the external condenser 40. In addition, the three-way valve 42 closes the flow path to the expansion mechanism 44 for the internal evaporator 9 and opens the flow path to the expansion mechanism 45 for the internal evaporator 10. Then, the solenoid valve 52 and the solenoid valve 56 are closed, and the compressor 5 is started. Further, the heating heater 30 is energized. In addition, when the heating heater 30 is energized, the internal fan 27 blows air to the internal evaporator 47.

制御手段(図示せず)は、第1の冷却加温室2の室内温度が予め設定された加温温度範囲内を維持するように、加温ヒータ30の通電を制御している。   The control means (not shown) controls energization of the heating heater 30 so that the room temperature of the first cooling greenhouse 2 is maintained within a preset heating temperature range.

圧縮機5から吐出された高温高圧のガス状の冷媒は、三方弁57を通過して庫外凝縮器40で冷却されて凝縮する。なお、庫外凝縮器40に冷媒が流れている時には、庫外ファン26が庫外凝縮器40に送風している。庫外凝縮器40で凝縮した冷媒は、三方弁42から膨張機構45側に流れ、膨張機構45にて減圧された後に庫内蒸発器10で蒸発気化して冷却専用室4を冷却する。なお、庫内蒸発器10に冷媒が流れている時には、庫内ファン29が庫内蒸発器10に送風している。   The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the three-way valve 57 and is cooled and condensed by the external condenser 40. In addition, when the refrigerant is flowing through the external condenser 40, the external fan 26 blows air to the external condenser 40. The refrigerant condensed in the outside condenser 40 flows from the three-way valve 42 to the expansion mechanism 45 side, and after being depressurized by the expansion mechanism 45, the refrigerant evaporates and cools in the internal evaporator 10 to cool the cooling dedicated chamber 4. When the refrigerant is flowing through the internal evaporator 10, the internal fan 29 blows air to the internal evaporator 10.

そして、庫内蒸発器10から流出した冷媒は、気液分離器59でガス冷媒と液冷媒とに分離されて、気液分離器59で液冷媒と分離されたガス冷媒が圧縮機5に吸い込まれる。   The refrigerant flowing out of the internal evaporator 10 is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator 59, and the gas refrigerant separated from the liquid refrigerant by the gas-liquid separator 59 is sucked into the compressor 5. It is.

そして、冷却専用室4が冷却温度範囲の下限値となる所定温度まで冷却されると、三方弁42の膨張機構45側の冷媒の出口の閉塞と庫内ファン29の停止に加え、圧縮機5も停止する。   When the exclusive cooling chamber 4 is cooled to a predetermined temperature that is the lower limit value of the cooling temperature range, the compressor 5 is closed in addition to closing the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 and stopping the internal fan 29. Also stop.

また、圧縮機5の停止中に冷却専用室4内の温度が冷却温度範囲の上限値となる所定温度まで上昇すれば、膨張機構45への流路を開放する状態に三方弁42を切り換えて、圧縮機5を起動し、庫内ファン29を運転する。   Further, when the temperature in the exclusive cooling chamber 4 rises to a predetermined temperature that is the upper limit value of the cooling temperature range while the compressor 5 is stopped, the three-way valve 42 is switched to a state in which the flow path to the expansion mechanism 45 is opened. Then, the compressor 5 is started and the internal fan 29 is operated.

なお、圧縮機5の起動時には、予め、電磁弁51と電磁弁52と電磁弁56とを閉塞している。   When the compressor 5 is started, the solenoid valve 51, the solenoid valve 52, and the solenoid valve 56 are closed in advance.

そして、圧縮機5を停止した時は、冷媒回路の高低圧をバランスさせるために、三方弁
42の膨張機構45側の冷媒の出口を開放して、庫内凝縮器46の冷媒の出口と圧縮機5の吸い込み側(吸入側)配管とを連通させる。
When the compressor 5 is stopped, in order to balance the high and low pressure of the refrigerant circuit, the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 is opened, and the refrigerant outlet of the internal condenser 46 is compressed. The suction side (suction side) piping of the machine 5 is communicated.

そして、冷媒回路の高低圧がバランスした後に、三方弁42の膨張機構45側の冷媒の出口を閉塞する。   Then, after the high and low pressures of the refrigerant circuit are balanced, the refrigerant outlet on the expansion mechanism 45 side of the three-way valve 42 is closed.

このことによって、圧縮機5の停止中に冷却運転で使用しない庫内凝縮器46へと余剰な冷媒を貯留する事ができるので、冷却運転中における冷媒量過多を防止することが可能となる。また、三方弁57で冷媒が漏れることによって庫内凝縮器46へと冷媒が貯留され続けて冷媒不足状態に陥ることを防ぐことができる。   As a result, excess refrigerant can be stored in the internal condenser 46 that is not used in the cooling operation while the compressor 5 is stopped, so that it is possible to prevent an excessive amount of refrigerant during the cooling operation. Further, it is possible to prevent the refrigerant from being stored in the internal condenser 46 due to the leakage of the refrigerant through the three-way valve 57 and falling into a refrigerant shortage state.

なお、高外気温度でのイニシャルプルダウン時など、庫内の温度が高く、大きな冷凍能力を必要とする場合においては、圧縮機5の運転・停止にかかわらず常に電磁弁50を開放して、庫内凝縮器46の冷媒の出口と圧縮機5の吸い込み側(吸入側)配管とを連通すれば、全冷媒を冷却運転に利用できるので、大きな冷凍能力を得る事ができ、プルダウン時間を短縮することが可能となる。   When the internal temperature is high and a large refrigeration capacity is required, such as during initial pull-down at a high outside air temperature, the solenoid valve 50 is always opened regardless of whether the compressor 5 is operated or stopped. If the refrigerant outlet of the inner condenser 46 and the suction side (suction side) piping of the compressor 5 are connected, all the refrigerant can be used for the cooling operation, so that a large refrigeration capacity can be obtained and the pull-down time is shortened. It becomes possible.

以上説明したように本実施の形態の自動販売機は、圧縮機5と、圧縮機5から吐出された冷媒を凝縮させる庫外凝縮器40と、複数の商品収納室(第1の冷却加温室2、第2の冷却加温室3、冷却専用室4)に設置され庫外凝縮器40で凝縮した冷媒を蒸発させて商品収納室(第1の冷却加温室2、第2の冷却加温室3、冷却専用室4)内の商品を冷却する庫内蒸発器9,10,47と、複数の庫内蒸発器9,10,47に冷媒流路を分岐する分岐点と複数の前記庫内蒸発器との間の分岐流路を開閉する分岐流路開閉手段(三方弁42と電磁弁51)と、複数の商品収納室(第1の冷却加温室2、第2の冷却加温室3、冷却専用室4)のうちで冷媒の凝縮熱を利用して商品収納室(第1の冷却加温室2)内の商品を加温する商品収納室(第1の冷却加温室2)に設置された庫内凝縮器46と、庫内凝縮器46で商品収納室(第1の冷却加温室2)内の商品を加温する時に圧縮機5から吐出された冷媒を庫内凝縮器46を経由させてから庫外凝縮器40に流し庫内凝縮器46で商品収納室(第1の冷却加温室2)内の商品を加温しない時に圧縮機5から吐出された冷媒を庫内凝縮器46を経由させずに庫外凝縮器40に流す庫内凝縮器用流路切替手段(三方弁57)と、庫外凝縮器40と分岐流路開閉手段(三方弁42と電磁弁51)との間の冷媒配管と圧縮機5の吸い込み側配管とをバイパスするバイパス流路に設けられた庫外蒸発器41と、庫外蒸発器41の流入側でバイパス流路を開閉するバイパス流路開閉手段(電磁弁52)と、バイパス流路開閉手段(電磁弁52)と庫外蒸発器41との間のバイパス流路に設けられ庫内凝縮器46と庫外凝縮器40で凝縮しバイパス流路に流入した冷媒を減圧するバイパス流路膨張手段(膨張機構53)と、複数の商品収納室(第1の冷却加温室2、第2の冷却加温室3、冷却専用室4)のうちで庫内凝縮器46が設置されていない少なくとも1つの商品収納室(冷却専用室4)に設置され庫外凝縮器40で凝縮した冷媒を蒸発させて商品収納室(冷却専用室4)内の商品を庫内蒸発器10よりも高い温度で冷却する庫内弱冷蒸発器54と、庫内弱冷蒸発器54に冷媒流路を分岐する分岐点と庫内弱冷蒸発器54との間の分岐流路を開閉する弱冷分岐流路開閉手段(電磁弁56)と、を有する自動販売機である。   As described above, the vending machine of the present embodiment includes the compressor 5, the external condenser 40 that condenses the refrigerant discharged from the compressor 5, and a plurality of product storage rooms (first cooling chambers). 2, the refrigerant | coolant which was installed in the 2nd cooling greenhouse 3 and the cooling exclusive room 4), and was condensed with the condenser 40 outside a store | warehouse | chamber is evaporated, and the goods storage room (the 1st cooling greenhouse 2 and the 2nd cooling greenhouse 3) , The internal evaporators 9, 10, 47 for cooling the product in the cooling chamber 4), the branch points for branching the refrigerant flow path to the multiple internal evaporators 9, 10, 47, and the multiple internal evaporators Branch channel opening / closing means (three-way valve 42 and electromagnetic valve 51) for opening and closing the branch channel between the container and a plurality of product storage chambers (first cooling greenhouse 2, second cooling greenhouse 3, cooling) Product storage chamber (first chamber) for heating products in the product storage chamber (first cooling greenhouse 2) using the heat of condensation of the refrigerant in the dedicated chamber 4) The internal condenser 46 installed in the cooling greenhouse 2) and the refrigerant discharged from the compressor 5 when warming the goods in the product storage room (first cooling greenhouse 2) with the internal condenser 46 Is discharged from the compressor 5 when the product in the product storage chamber (first cooling greenhouse 2) is not heated by the internal condenser 46 after passing through the internal condenser 46 and flowing to the external condenser 40. In-condenser condenser channel switching means (three-way valve 57) for flowing the refrigerant to the outside condenser 40 without passing through the inside condenser 46, and the outside condenser 40 and branch channel opening / closing means (three-way valve 42). And the solenoid valve 51) and the bypass passage provided on the bypass passage bypassing the refrigerant piping and the suction side piping of the compressor 5, and the bypass passage on the inflow side of the outside evaporator 41 Bypass channel opening / closing means (electromagnetic valve 52) for opening and closing, bypass channel opening / closing means (electromagnetic valve 52) and outside of the chamber A bypass channel expansion means (expansion mechanism 53) provided in a bypass channel between the generator 41 and depressurizing the refrigerant condensed in the internal condenser 46 and the external condenser 40 and flowing into the bypass channel; Of the product storage chambers (first cooling chamber 2, second cooling chamber 3, and cooling chamber 4) at least one product storage chamber (cooling chamber 4) in which the internal condenser 46 is not installed. The internal cold-cooled evaporator 54 that evaporates the refrigerant that has been condensed in the external condenser 40 and cools the product in the product storage chamber (cooling exclusive chamber 4) at a higher temperature than the internal evaporator 10; A weakly-branching channel opening / closing means (solenoid valve 56) for opening and closing a branching channel between the branching point for branching the refrigerant channel to the inside-cooling evaporator 54 and the inside-cooling evaporator 54; Vending machine.

上記構成により、冷却室の負荷が低下する低外気温時において、庫内凝縮器46を有する商品収納室(第1の冷却加温室2)で庫内凝縮器46により加温するが、他の商品収納室(第2の冷却加温室3、冷却専用室4)の庫内蒸発器9,10に冷媒を流せない場合でも、庫内弱冷蒸発器54と庫外蒸発器41のどちらか一方または両方に冷媒を流す冷媒流路にすることにより、圧縮機5の運転を継続でき、庫内凝縮器46のヒートポンプ加温能力を高めて、効率の良いヒートポンプ加温運転によって消費電力量を更に削減することができる。   With the above configuration, at the time of low outside air temperature at which the load on the cooling chamber decreases, the product storage room (first cooling greenhouse 2) having the internal condenser 46 is heated by the internal condenser 46. Even in the case where the refrigerant cannot flow through the internal evaporators 9 and 10 in the product storage room (the second cooling greenhouse 3 and the cooling exclusive room 4), either the internal cold evaporator 54 or the external evaporator 41 is used. Alternatively, by using the refrigerant flow path for flowing the refrigerant to both, the operation of the compressor 5 can be continued, the heat pump heating capacity of the internal condenser 46 is increased, and the power consumption is further increased by the efficient heat pump heating operation. Can be reduced.

また、弱冷分岐流路開閉手段(電磁弁56)と庫内弱冷蒸発器54との間の流路に、庫内弱冷蒸発器54に流入する冷媒によって庫内弱冷蒸発器54の温度が冷却商品が凍結する温度以下にならないように冷媒を減圧する弱冷分岐流路膨張手段(膨張機構55)を有するので、庫内弱冷蒸発器54に流入する冷媒によって庫内弱冷蒸発器54の温度が冷却商品が凍結する温度以下にならないので、庫内弱冷蒸発器54が設置された商品収納室(冷却専用室4)内の冷却商品を庫内蒸発器10で冷却していない時に、庫内弱冷蒸発器54に冷媒を流して庫内凝縮器46で加温することができる。   In addition, the refrigerant that flows into the internal cold evaporator 54 is connected to the flow path between the weak cold branch passage opening / closing means (electromagnetic valve 56) and the internal cold evaporator 54 by the refrigerant flowing into the internal cold evaporator 54. Since it has a weakly branched flow path expansion means (expansion mechanism 55) for reducing the pressure of the refrigerant so that the temperature does not fall below the temperature at which the cooled product freezes, the internal cold air evaporation is caused by the refrigerant flowing into the internal cold evaporator 54. Since the temperature of the vessel 54 does not become lower than the temperature at which the cooled product is frozen, the cooled product in the product storage room (cooling dedicated chamber 4) in which the cool evaporator 54 is installed is cooled by the internal evaporator 10. When there is not, the refrigerant can be flowed through the internal cold evaporator 54 and heated by the internal condenser 46.

また、本実施の形態の自動販売機においては、第1の冷却加温室2を庫内凝縮器46で加温する場合に、電磁弁52と電磁弁56の開閉と、三方弁42の庫内蒸発器9用の膨張機構44への流路(出口)と庫内蒸発器10用の膨張機構45への流路(出口)の開閉を制御して、庫内蒸発器9,10と庫外蒸発器41と庫内弱冷蒸発器54のいずれかで冷媒を蒸発させることによって、第1の冷却加温室2を加温するために必要な熱源を庫内蒸発器9,10、庫外蒸発器41、庫内弱冷蒸発器54から選択することができるので、第2の冷却加温室3、冷却専用室4の負荷状態に関係なく、圧縮機5の運転を継続して第1の冷却加温室2を加温することが可能となり、冷却室の負荷が低下する低外気温時においてもヒートポンプ加温運転をすることによる消費電力量削減を図ることができる。   In the vending machine of the present embodiment, when the first cooling greenhouse 2 is heated by the internal condenser 46, the electromagnetic valve 52 and the electromagnetic valve 56 are opened and closed, and the three-way valve 42 is internal. By controlling the opening and closing of the flow path (exit) to the expansion mechanism 44 for the evaporator 9 and the flow path (exit) to the expansion mechanism 45 for the internal evaporator 10, the internal evaporators 9, 10 and the outside of the storage By evaporating the refrigerant in either the evaporator 41 or the interior cold evaporator 54, the heat sources necessary for heating the first cooling greenhouse 2 are the interior evaporators 9 and 10 and the exterior evaporation. The compressor 41 and the low-temperature evaporator 54 can be selected, so that the operation of the compressor 5 is continued regardless of the load state of the second cooling greenhouse 3 and the cooling exclusive chamber 4 to perform the first cooling. It becomes possible to heat the heating chamber 2, and the heat pump heating operation is performed even at a low outside temperature where the load on the cooling chamber decreases. It can be reduced power consumption by the.

さらに、庫内凝縮器46の冷媒の出口側と庫外凝縮器40との間(庫内凝縮器46の冷媒の出口側と逆止弁58との間)の配管上に膨張機構48を設けることで庫内凝縮温度と庫外凝縮温度に差をつけることができ、低外気時において庫外凝縮器40の凝縮温度や凝縮圧力が下がった場合でも、庫内凝縮器46は高い凝縮温度を維持することができ、第1の冷却加温室2を効率よく加温する事ができるので、冬場に低外気温となる地域でも効率の高い加温運転を実施できる。   Further, an expansion mechanism 48 is provided on the pipe between the refrigerant outlet side of the internal condenser 46 and the external condenser 40 (between the refrigerant outlet side of the internal condenser 46 and the check valve 58). This makes it possible to make a difference between the internal condensation temperature and the external condensation temperature. Even when the condensation temperature or the condensation pressure of the external condenser 40 decreases in the low outside air, the internal condenser 46 has a high condensation temperature. Since the first cooling greenhouse 2 can be efficiently heated, a highly efficient heating operation can be performed even in an area where the outdoor temperature is low in winter.

また、庫内凝縮器46の冷媒の出口側と庫外凝縮器40との間(庫内凝縮器46の冷媒の出口側と逆止弁58との間)の配管上に膨張機構48を設けると、冷媒密度が低下するので冷媒量を削減することができる。冷媒量を削減することによって凝縮器を2個使用する冷却加温運転と凝縮器を1個使用する冷却運転とで生じる最適冷媒量差を減少することができるとともに、可燃性冷媒を用いた際の漏洩時におけるリスク軽減にもつなげることができる。   Further, an expansion mechanism 48 is provided on a pipe between the refrigerant outlet side of the internal condenser 46 and the external condenser 40 (between the refrigerant outlet side of the internal condenser 46 and the check valve 58). Since the refrigerant density is reduced, the amount of refrigerant can be reduced. By reducing the amount of refrigerant, it is possible to reduce the optimum refrigerant amount difference between the cooling and heating operation using two condensers and the cooling operation using one condenser, and when using a flammable refrigerant Can be used to reduce the risk of leakage.

膨張機構48にキャピラリチューブを用いることで、膨張機構としての役割と庫内凝縮器46と逆止弁58とを接続する配管としての役割を兼用することができるので、膨張弁などを用いた場合と比較して、さらに冷媒量を削減することが可能となる。また、膨張機構43,44,45,53,55についても、キャピラリチューブを用いることができる。   By using a capillary tube for the expansion mechanism 48, it is possible to combine the role as the expansion mechanism and the role of piping connecting the internal condenser 46 and the check valve 58. Therefore, when an expansion valve or the like is used As a result, the amount of refrigerant can be further reduced. In addition, capillary tubes can be used for the expansion mechanisms 43, 44, 45, 53, and 55.

さらに、庫外凝縮器40の下流側で庫内蒸発器9,10、庫外蒸発器41、庫内弱冷蒸発器54を選択する形で運転モードを切り替えることで、冷却加温運転、加温運転のどちらにおいても庫内凝縮器46で凝縮された冷媒が再度、庫外凝縮器40で凝縮され、冷却加温運転と加温運転とで凝縮器の配管容積が同一になり、最適冷媒量を同一にすることが可能となる。   Further, by switching the operation mode by selecting the internal evaporators 9 and 10, the external evaporator 41, and the internal cold evaporator 54 on the downstream side of the external condenser 40, the cooling and heating operation and the heating are performed. In either temperature operation, the refrigerant condensed by the internal condenser 46 is condensed again by the external condenser 40, and the condenser piping volume becomes the same in the cooling and heating operation and the optimal refrigerant. It becomes possible to make the quantity the same.

庫外蒸発器41に冷媒を流す加温運転の場合は、商品収納庫下部の機械室に設置した庫外蒸発器41にて冷媒が蒸発気化して周囲空気を冷却することになるために、周囲空気の湿度が高い状態においては庫外蒸発器41内の配管が結露もしくは着霜し、結露水が機械室から自動販売機外へと滴下する恐れがあるが、この場合においても庫外凝縮器40と庫外蒸発器41とをフィンを共用した一体型熱交換器とし、さらに常に庫外凝縮器40にて
放熱して凝縮する配管構成とすることで庫外凝縮器40と庫外蒸発器41との間で熱交換することができ、そのことにより庫外蒸発器41により周囲空気を冷却する熱量を緩和することができると共に庫外凝縮器40からの放熱によって一体型熱交換器のフィンを暖めることで結露水を蒸発させることができるので結露水の自販機庫外への滴下を防ぐことができる。
In the case of a heating operation in which the refrigerant flows into the outside evaporator 41, the refrigerant evaporates and cools the ambient air in the outside evaporator 41 installed in the machine room below the product storage, In a state where the humidity of the ambient air is high, the piping in the outside evaporator 41 may condense or frost, and the condensed water may drip from the machine room to the outside of the vending machine. The external condenser 40 and the external evaporator 41 are integrated heat exchangers that share fins, and the external condenser 40 and the external evaporator are provided with a piping configuration that always dissipates heat and condenses in the external condenser 40. Heat can be exchanged between the condenser 41 and the amount of heat that cools the ambient air by the outside evaporator 41 can be reduced. The condensation water can be evaporated by warming the fins. It is possible to prevent the dropping of the vending machine outside-compartment of condensation water because it is.

この際に、庫外凝縮器40の配管を庫外ファン26が運転した時に風上側になるように配置することで、より庫外凝縮器40と庫外蒸発器41との熱交換を高めることができ、より結露を抑制することが可能となる。   At this time, the heat exchange between the external condenser 40 and the external evaporator 41 is further enhanced by arranging the piping of the external condenser 40 so that it is located on the windward side when the external fan 26 is operated. It is possible to suppress condensation.

さらに、庫外蒸発器41の中で最も温度が低下する入口を一体型熱交換器の上部に配置することで結露水がフィンをつたって滴下する距離が長くなるので滴下途中で蒸発しやすく、より滴下しにくくなる。さらに、一体型熱交換器の下部に滴下した結露水を受ける皿を配置することでさらに自動販売機庫外への滴下を防ぐことができる。   Furthermore, since the distance at which the condensed water drops through the fins by placing the inlet where the temperature decreases most in the external evaporator 41 at the upper part of the integrated heat exchanger, it is easy to evaporate during the dropping, It becomes more difficult to dripping. Furthermore, it is possible to further prevent dripping outside the vending machine by arranging a tray that receives the condensed water dripped at the bottom of the integrated heat exchanger.

また、庫内凝縮器46内を冷媒が通過しない冷却運転においては三方弁57内で高圧となる圧縮機5の吐出配管側から低圧側となる庫内凝縮器46側へと冷媒が漏洩することで庫内凝縮器46へと冷媒や冷凍機油が滞留し続けて冷却能力不足や圧縮機5の故障などが生じる原因となるが、庫内凝縮器46と低圧側配管とを接続する配管上に電磁弁50を設けており、電磁弁50を開放することで庫内凝縮器46へと滞留した冷媒やオイルを低圧となる圧縮機5の吸入配管へと回収することができ、冷却能力不足や圧縮機5の故障を防止することができる。   In the cooling operation in which the refrigerant does not pass through the internal condenser 46, the refrigerant leaks from the discharge pipe side of the compressor 5, which has a high pressure in the three-way valve 57, to the internal condenser 46 side, which is the low pressure side. However, the refrigerant and refrigerating machine oil continue to stay in the internal condenser 46 and cause a cooling capacity deficiency and a failure of the compressor 5. However, on the pipe connecting the internal condenser 46 and the low-pressure side pipe, An electromagnetic valve 50 is provided, and by opening the electromagnetic valve 50, the refrigerant and oil accumulated in the internal condenser 46 can be recovered to the suction pipe of the compressor 5 at a low pressure, and the cooling capacity is insufficient. A failure of the compressor 5 can be prevented.

また、電磁弁50を開放することで庫内凝縮器46の配管内圧力も圧縮機5の吸入圧力と同一になる。そのことによって三方弁57内での高低圧差を確保することができ、三方弁57内での冷媒の漏洩を防止することも可能となる。   Further, by opening the electromagnetic valve 50, the pressure in the piping of the internal condenser 46 becomes the same as the suction pressure of the compressor 5. As a result, a high / low pressure difference in the three-way valve 57 can be secured, and leakage of the refrigerant in the three-way valve 57 can be prevented.

なお、三方弁57における冷媒の漏れ量は通常時は非常に少ないので、電磁弁50を常に開放するのでなく、圧縮機5の起動中に定期的に所定の時間開放するとしても同様の効果を得ることができる。そのことによって電磁弁50電力量を最低限に抑制することも可能となる。   Note that the amount of refrigerant leakage in the three-way valve 57 is very small in normal times, so that the same effect can be obtained even if the solenoid valve 50 is not always opened, but is regularly opened for a predetermined time during the start-up of the compressor 5. Can be obtained. As a result, the electric energy of the electromagnetic valve 50 can be suppressed to the minimum.

さらに、三方弁57に異常があり、三方弁57の漏れ量が通常よりも多い場合を検知して、電磁弁50の開放時間を変更させる制御があると漏れ量が多くなる異常時においても対応することが可能となる。   Furthermore, if there is an abnormality in the three-way valve 57 and the amount of leakage of the three-way valve 57 is larger than usual, and there is a control to change the opening time of the solenoid valve 50, it is possible to cope with an abnormality when the leakage amount increases. It becomes possible to do.

庫内凝縮器46と圧縮機5の吸入配管とを接続することで滞留冷媒の回収を行ったが、接続する配管は圧縮機5の吸入圧力と同一となる場所であればどこでもよく、具体的には膨張機構43,44,45,53,55より下流であれば良い。   The accumulated refrigerant was recovered by connecting the internal condenser 46 and the suction pipe of the compressor 5. However, the pipe to be connected may be anywhere as long as it is the same as the suction pressure of the compressor 5. However, it may be downstream of the expansion mechanisms 43, 44, 45, 53, 55.

ただし、商品収納庫内で接続すると商品収納庫内に電磁弁50を設けることとなり、スペースが必要となることから商品収納スペースが狭くなる可能性があることと、商品収納庫を冷却している場合は電磁弁50に通電することで熱負荷となることから圧縮機5の吸入配管近傍に接続するのが最も効率良く冷媒回収を行うことができる。   However, if the connection is made in the product storage, the solenoid valve 50 is provided in the product storage, and space is required, so the product storage space may be reduced, and the product storage is cooled. In this case, since the solenoid valve 50 is energized to generate a heat load, the refrigerant can be most efficiently recovered by connecting it to the vicinity of the suction pipe of the compressor 5.

庫外凝縮器40の配管を一体型熱交換器の下部に配置し、庫外蒸発器41の配管を一体型熱交換器の上部に配置した場合は、上部の庫外蒸発器41において発生しフィンを伝って滴下する結露水を下部の庫外凝縮器40近傍で蒸発することで、結露水の滴下を防止することができる。   When the piping of the external condenser 40 is arranged in the lower part of the integrated heat exchanger and the piping of the external evaporator 41 is arranged in the upper part of the integrated heat exchanger, it is generated in the upper external evaporator 41. By evaporating the condensed water dripping along the fin in the vicinity of the lower external condenser 40, it is possible to prevent the condensed water from dripping.

圧縮機5については、第1の冷却加温室2、第2の冷却加温室3、冷却専用室4の冷却負荷または第1の冷却加温室2の加温負荷が大きく、所定温度範囲に冷却または加温するのに時間がかかる場合に能力を上げる能力可変型の圧縮機も使用できる。   As for the compressor 5, the cooling load of the first cooling greenhouse 2, the second cooling greenhouse 3, the cooling exclusive chamber 4 or the heating load of the first cooling greenhouse 2 is large and is cooled to a predetermined temperature range. A variable capacity compressor can be used to increase the capacity when it takes time to heat.

同様に、庫外ファン26と庫内ファン27,28,29についても、必要に応じて送風量を増減できるファンも使用できる。   Similarly, as the outside fan 26 and the inside fans 27, 28, and 29, fans that can increase or decrease the amount of air flow as needed can be used.

また、庫外ファン26と庫内ファン27,28,29の運転と停止のタイミングは、必要に応じて、圧縮機5の動作や、対応する熱交換器の冷媒の流れの状態の変化のタイミングからずらすことも可能であり、可燃性冷媒を用いている場合は、圧縮機5の停止時に庫外ファン26を所定能力で運転しても良い。   The operation and stop timings of the external fan 26 and the internal fans 27, 28, and 29 are the timing of the operation of the compressor 5 and the change in the state of the refrigerant flow in the corresponding heat exchanger, if necessary. When the combustible refrigerant is used, the outside fan 26 may be operated with a predetermined capacity when the compressor 5 is stopped.

以上のように、本発明は、庫内凝縮器を有する商品収納室で庫内凝縮器により加温する場合に、他の商品収納室の運転状態に関係なく、効率の良いヒートポンプ加温を行うことができ、省エネを図ることができるので、自動販売機に限らず、複数の室に対して、圧縮機が一つの冷媒回路(ヒートポンプ)を用いて冷却加温を行う機器にも適用できる。   As described above, the present invention performs efficient heat pump heating regardless of the operation state of the other product storage chambers when the product storage chamber is heated in the product storage chamber having the internal condenser. Therefore, the present invention can be applied not only to vending machines but also to devices in which a compressor uses a single refrigerant circuit (heat pump) to cool and heat a plurality of chambers.

1 商品収納庫
2 第1の冷却加温室(商品収納室)
3 第2の冷却加温室(商品収納室)
4 冷却専用室(商品収納室)
5 圧縮機
9 庫内蒸発器
10 庫内蒸発器
26 庫外ファン
27 庫内ファン
28 庫内ファン
29 庫内ファン
30 加温ヒータ
31 加温ヒータ
40 庫外凝縮器
41 庫外蒸発器
42 三方弁(分岐流路開閉手段)
43 膨張機構
44 膨張機構
45 膨張機構
46 庫内凝縮器
47 庫内蒸発器
48 膨張機構
49 四方切換弁(庫内凝縮器用流路切替手段)
50 電磁弁
51 電磁弁(分岐流路開閉手段)
52 電磁弁(バイパス流路開閉手段)
53 膨張機構(バイパス流路膨張手段)
54 庫内弱冷蒸発器
55 膨張機構(弱冷分岐流路膨張手段)
56 電磁弁(弱冷分岐流路開閉手段)
57 三方弁(庫内凝縮器用流路切替手段)
58 逆止弁
59 気液分離器
1 Product Storage 2 First Cooling Greenhouse (Product Storage Room)
3 Second cooling chamber (product storage room)
4 Cooling room (product storage room)
5 compressor 9 internal evaporator 10 internal evaporator 26 external fan 27 internal fan 28 internal fan 29 internal fan 30 warming heater 31 warming heater 40 external condenser 41 external evaporator 42 three-way valve 42 three-way valve (Branch channel opening / closing means)
43 Expansion Mechanism 44 Expansion Mechanism 45 Expansion Mechanism 46 Internal Condenser 47 Internal Evaporator 48 Expansion Mechanism 49 Four-way Switching Valve (Internal Condenser Channel Switching Unit)
50 Solenoid valve 51 Solenoid valve (branch flow path opening / closing means)
52 Solenoid valve (Bypass channel opening / closing means)
53 Expansion mechanism (Bypass channel expansion means)
54 Weak cold evaporator 55 Expansion mechanism (weak cooling branch flow path expansion means)
56 Solenoid valve (lightly cooling branch channel opening / closing means)
57 Three-way valve (flow path switching means for condenser in cabinet)
58 Check valve 59 Gas-liquid separator

Claims (2)

圧縮機と、前記圧縮機から吐出された冷媒を凝縮させる庫外凝縮器と、複数の商品収納室に設置され前記庫外凝縮器で凝縮した冷媒を蒸発させて商品収納室内の商品を冷却する庫内蒸発器と、複数の前記庫内蒸発器に冷媒流路を分岐する分岐点と複数の前記庫内蒸発器との間の分岐流路を開閉する分岐流路開閉手段と、複数の商品収納室のうちで冷媒の凝縮熱を利用して商品収納室内の商品を加温する商品収納室に設置された庫内凝縮器と、前記庫内凝縮器で商品収納室内の商品を加温する時に前記圧縮機から吐出された冷媒を、前記庫内凝縮器を経由させてから前記庫外凝縮器に流し、前記庫内凝縮器で商品収納室内の商品を加温しない時に前記圧縮機から吐出された冷媒を、前記庫内凝縮器を経由させずに前記庫外凝縮器に流す庫内凝縮器用流路切替手段と、前記庫外凝縮器と前記分岐流路開閉手段との間の冷媒配管と前記圧縮機の吸い込み側配管とをバイパスするバイパス流路に設けられた庫外蒸発器と、前記庫外蒸発器の流入側で前記バイパス流路を開閉するバイパス流路開閉手段と、前記バイパス流路開閉手段と前記庫外蒸発器との間の前記バイパス流路に設けられ前記庫内凝縮器と前記庫外凝縮器で凝縮し前記バイパス流路に流入した冷媒を減圧するバイパス流路膨張手段と、複数の商品収納室のうちで前記庫内凝縮器が設置されていない少なくとも1つの商品収納室に設置され前記庫外凝縮器で凝縮した冷媒を蒸発させて商品収納室内の商品を前記庫内蒸発器よりも高い温度で冷却する庫内弱冷蒸発器と、前記庫内弱冷蒸発器に冷媒流路を分岐する分岐点と前記庫内弱冷蒸発器との間の分岐流路を開閉する弱冷分岐流路開閉手段と、前記弱冷分岐流路開閉手段と前記庫内弱冷蒸発器との間の流路に前記庫内弱冷蒸発器に流入する冷媒によって前記庫内弱冷蒸発器の温度が冷却商品の凍結する温度以下にならないように冷媒を減圧する弱冷分岐流路膨張手段と、を有する自動販売機。 A compressor, an outside-condenser that condenses the refrigerant discharged from the compressor, and a refrigerant that is installed in a plurality of product storage rooms and that is condensed by the outside-condenser cools the product in the product storage room Intra-compartment evaporator, branch passage opening / closing means for opening / closing branch passages between the plurality of in-compartment evaporators and a branch point for branching the refrigerant passage to the plurality of in-compartment evaporators, and a plurality of commodities A condensing unit installed in the product storage room that heats the product in the product storage room using the condensation heat of the refrigerant in the storage room, and a product in the product storage room is heated by the internal condenser. Sometimes the refrigerant discharged from the compressor passes through the internal condenser and then flows to the external condenser, and is discharged from the compressor when the internal condenser does not heat the product in the product storage chamber. The inside condensate that flows the cooled refrigerant to the outside condenser without passing through the inside condenser An external evaporator provided in a bypass flow path for bypassing the flow path switching means, the refrigerant pipe between the external condenser and the branch flow path opening / closing means and the suction side pipe of the compressor; A bypass flow path opening / closing means for opening and closing the bypass flow path on the inflow side of the external evaporator, and the internal condensation provided in the bypass flow path between the bypass flow path opening / closing means and the external evaporator A bypass passage expansion means for decompressing the refrigerant condensed in the container and the external condenser and flowing into the bypass passage, and at least one product in which the internal condenser is not installed among a plurality of product storage chambers An internal cold storage evaporator that evaporates the refrigerant that is installed in the storage chamber and condenses in the external condenser to cool the product in the product storage room at a temperature higher than the internal evaporator, and the internal cold storage evaporation Branch point for branching the refrigerant flow path to the vessel and the inside of the chamber Weak cooling channel open / close means for opening and closing the branch channel between the cold evaporator, and the internal cold cooling in the channel between the weak cooling channel opening / closing means and the internal cold evaporator A vending machine having weak cold branch passage expansion means for depressurizing the refrigerant so that the temperature of the cold-cooled evaporator in the warehouse does not fall below the temperature at which the cooled product freezes due to the refrigerant flowing into the evaporator. 前記弱冷分岐流路膨張手段は、キャピラリチューブである請求項1に記載の自動販売機。 The vending machine according to claim 1, wherein the weakly-cooled branch channel expansion means is a capillary tube.
JP2016047715A 2016-03-11 2016-03-11 vending machine Expired - Fee Related JP6572444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016047715A JP6572444B2 (en) 2016-03-11 2016-03-11 vending machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016047715A JP6572444B2 (en) 2016-03-11 2016-03-11 vending machine

Publications (2)

Publication Number Publication Date
JP2017162318A JP2017162318A (en) 2017-09-14
JP6572444B2 true JP6572444B2 (en) 2019-09-11

Family

ID=59853174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016047715A Expired - Fee Related JP6572444B2 (en) 2016-03-11 2016-03-11 vending machine

Country Status (1)

Country Link
JP (1) JP6572444B2 (en)

Also Published As

Publication number Publication date
JP2017162318A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP5585003B2 (en) Refrigeration equipment
CN203323456U (en) Heat pump device
KR101155497B1 (en) Heat pump type speed heating apparatus
JP4317793B2 (en) Cooling system
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP2014231921A (en) Refrigeration device, and defrosting method of load cooler
JP2012123786A (en) Automatic vending machine
ES2807850T3 (en) Compressor capacity switching procedure
JP2013089209A (en) Automatic vending machine
JP2013190906A (en) Automatic vending machine
JP2007100987A (en) Refrigerating system
JP2017161159A (en) Outdoor uni of air conditioner
WO2012002248A1 (en) Refrigeration apparatus
JP5901775B2 (en) Refrigeration equipment
JP5903577B2 (en) Refrigeration equipment
JP6572444B2 (en) vending machine
JP2009293887A (en) Refrigerating device
JP2008102941A (en) Vending machine
JP2013084073A (en) Automatic vending machine
JP2010044678A (en) Vending machine
JP2007232255A (en) Cooling apparatus and vending machine
JP5375333B2 (en) vending machine
JP5418037B2 (en) vending machine
JP2012230656A (en) Automatic dispenser
JP5176874B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190715

R151 Written notification of patent or utility model registration

Ref document number: 6572444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees