WO2016111003A1 - Heat storage unit and refrigeration cycle device - Google Patents

Heat storage unit and refrigeration cycle device Download PDF

Info

Publication number
WO2016111003A1
WO2016111003A1 PCT/JP2015/050476 JP2015050476W WO2016111003A1 WO 2016111003 A1 WO2016111003 A1 WO 2016111003A1 JP 2015050476 W JP2015050476 W JP 2015050476W WO 2016111003 A1 WO2016111003 A1 WO 2016111003A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
heat
source side
heat source
Prior art date
Application number
PCT/JP2015/050476
Other languages
French (fr)
Japanese (ja)
Inventor
和田 誠
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/050476 priority Critical patent/WO2016111003A1/en
Publication of WO2016111003A1 publication Critical patent/WO2016111003A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to a heat storage unit constituting a part of a refrigeration cycle apparatus capable of performing defrosting and heating at the same time, and a refrigeration cycle apparatus capable of performing defrosting and heating at the same time.
  • frost may adhere to the outdoor heat exchanger.
  • the heating operation is stopped and the defrosting operation for supplying a high-temperature refrigerant to the outdoor heat exchanger is performed (for example, patent) Reference 1).
  • This invention was made against the background as described above, and a heat storage unit that constitutes a part of a refrigeration cycle apparatus capable of simultaneously performing defrosting and heating, and simultaneously performing defrosting and heating. It aims at obtaining the refrigerating cycle device which can be performed.
  • a heat storage unit is a heat storage unit that constitutes a part of a refrigeration cycle apparatus that has a compressor, a load-side heat exchanger, and a heat source-side heat exchanger, and circulates a refrigerant.
  • the refrigerant of the load side heat exchanger when the first connection part connected to the refrigerant discharge side, the second connection part connected to the refrigerant suction side of the compressor, and the load side heat exchanger function as a condenser
  • a third connection portion connected to the outflow side, a fourth connection portion connected to the refrigerant inflow side of the heat source side heat exchanger when the heat source side heat exchanger functions as an evaporator, and one end connected to the first connection A refrigerant flow path connected to the first connection section and the second connection section, the other end being connected to the third connection section and the fourth connection section, a heat storage material that stores heat by exchanging heat with the refrigerant flowing through the refrigerant flow path, And a heat storage section having one end of the
  • a refrigeration cycle apparatus includes the above heat storage unit, a heat source side unit having a compressor and a heat source side heat exchanger, and a load side unit having a load side heat exchanger. is there.
  • a heat storage unit constituting a part of a refrigeration cycle apparatus capable of performing defrosting and heating at the same time, and a refrigeration cycle apparatus capable of performing defrosting and heating at the same time are obtained.
  • FIG. 1 is a diagram schematically illustrating an example of a refrigerant circuit of an air-conditioning apparatus that is a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 500 according to this embodiment is, for example, an air conditioner that performs indoor air conditioning, and includes a heat source side unit 100, a load side unit 200, and a heat storage unit 300.
  • the heat source side unit 100, the load side unit 200, and the heat storage unit 300 are connected by a refrigerant pipe, thereby forming a refrigerant circuit for circulating the refrigerant.
  • FIG. 1 is a diagram schematically illustrating an example of a refrigerant circuit of an air-conditioning apparatus that is a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 500 is, for example, an air conditioner that performs indoor air conditioning, and includes a heat source side unit 100, a load side unit 200, and a heat storage unit 300.
  • the heat source side unit 100 and the load side unit 200 are connected by one refrigerant pipe
  • the load side unit 200 and the heat storage unit 300 are connected by one refrigerant pipe
  • the heat storage unit 300 and the heat source are connected.
  • the side unit 100 is connected by three refrigerant pipes.
  • the refrigerant to be circulated in the refrigerant circuit is, for example, R-410A which is a pseudo azeotropic refrigerant mixture, but may be other types of refrigerant such as R32 or R-404A.
  • the heat source side unit 100 is, for example, an outdoor unit installed outside a room that performs air conditioning.
  • the heat source side unit 100 includes a compressor 102, a third flow path switching device 104, a heat source side heat exchanger 106, a first opening / closing device 108, a distributor 110, an accumulator 112, and a second opening / closing device 114.
  • the compressor 102 is, for example, an inverter compressor that is controlled by an inverter, and can arbitrarily change the operating frequency to change the capacity (the amount of refrigerant sent out per unit time).
  • the heat source side heat exchanger 106 performs heat exchange between the refrigerant flowing through the heat source side heat exchanger 106 and air, for example.
  • the heat source side heat exchanger 106 includes a first heat source side heat exchanger 106A and a second heat source side heat exchanger 106B.
  • the heat source side heat exchanger 106 may be configured by one heat exchanger, or may be configured by three or more heat exchangers.
  • the description may be made assuming that the heat source side heat exchanger 106 is provided.
  • a blower (not shown) that guides air to the heat source side heat exchanger 106 is installed in the vicinity of the heat source side heat exchanger 106.
  • the third flow path switching device 104 switches the flow path of the refrigerant circuit, and includes, for example, a four-way valve.
  • the third flow path switching device 104 selectively supplies the refrigerant discharged from the compressor 102 to the heat source side heat exchanger 106 or the load side heat exchanger 202, and the refrigerant sucked by the compressor 102 is supplied to the heat source side.
  • the flow path of the refrigerant circuit is switched so as to be selectively sucked from the heat exchanger 106 or the load side heat exchanger 202. In the example shown in FIG.
  • the third flow path switching device 104 includes a 3A flow path switching device 104A and a third B flow path switching device 104B, but the quantity of the third flow path switching device 104 is a heat source. It is determined according to the number of the side heat exchangers 106 and is appropriately changed according to the number of the heat source side heat exchangers 106.
  • the first switching device 108 switches communication or non-communication between the refrigerant inflow side when the heat source side heat exchanger 106 functions as an evaporator and the fourth connection portion 326 of the heat storage unit 300.
  • the 1st opening / closing device 108 is comprised with the electronic expansion valve which can adjust an opening degree, and can switch an open state and a closed state.
  • the first opening / closing device 108 can also be configured by an opening / closing device such as a solenoid valve and an expansion means such as a capillary tube. In the example shown in FIG.
  • the first switchgear 108 includes a first A switchgear 108A and a firstB switchgear 108B, but the number of first switchgears 108 is the number of heat source side heat exchangers 106. It is determined correspondingly and is appropriately changed according to the number of heat source side heat exchangers 106.
  • the distributor 110 distributes the refrigerant flowing in from the heat storage unit 300 side and supplies the refrigerant to the first A switching device 108A and the first B switching device 108B side, or the first A switching device 108A and the first B switching device 108B side.
  • the refrigerant that has flowed in from the refrigerant is merged and supplied to the heat storage unit 300 side.
  • the second switching device 114 switches communication or non-communication between the refrigerant inflow side when the heat source side heat exchanger 106 functions as an evaporator and the refrigerant discharge side of the compressor 102.
  • the second opening / closing device 114 switches between opening and closing, and is configured by, for example, an electromagnetic valve.
  • the second switchgear 114 includes a second A switchgear 114A and a secondB switchgear 114B, but the number of second switchgears 114 is the number of heat source side heat exchangers 106. It is determined correspondingly and is appropriately changed according to the number of heat source side heat exchangers 106.
  • the accumulator 112 is a container that stores excess refrigerant.
  • the load side unit 200 is, for example, an indoor unit installed in a room that performs air conditioning.
  • the load side unit 200 includes a load side heat exchanger 202 and a load side unit expansion means 204, and these components are connected by a refrigerant pipe.
  • the load side heat exchanger 202 performs heat exchange between the refrigerant flowing through the load side heat exchanger 202 and air, for example.
  • a blower (not shown) that guides air to the load side heat exchanger 202 is installed in the vicinity of the load side heat exchanger 202.
  • the load-side unit expansion means 204 is, for example, an electronic expansion valve that can adjust the opening degree, but may be configured by a capillary tube or the like.
  • the heat storage unit 300 is detachably attached between the heat source side unit 100 and the load side unit 200, for example, and is installed outside a room that performs air conditioning, for example.
  • the heat storage unit 300 may be attached to the heat source side unit 100 and the load side unit 200 so as not to be detachable.
  • the heat storage unit 300 includes a first connection part 320, a second connection part 322, a third connection part 324, and a fourth connection part 326.
  • the first connection part 320 is connected to the refrigerant discharge side of the compressor 102 of the heat source side unit 100.
  • the second connection part 322 is connected to the refrigerant suction side of the compressor 102 of the heat source side unit 100.
  • the 3rd connection part 324 is connected to the refrigerant
  • the fourth connection portion 326 is connected to the refrigerant inflow side of the heat source side unit 100 when the heat source side heat exchanger 106 functions as an evaporator.
  • the 3rd connection part 324 and the 4th connection part 326 are connected by refrigerant
  • the heat storage unit 300 includes a heat storage unit 30, a first flow path switching device 308, and a second flow path switching device 314.
  • the heat storage unit 30 includes a refrigerant flow path 40 through which the refrigerant flows, a heat storage material 34 that stores heat by exchanging heat with the refrigerant flowing through the refrigerant flow path 40, and a heat storage tank 32 that houses the heat storage material 34.
  • the first flow path switching device 308 selectively communicates the first connection part 320 or the second connection part 322 with the one end 36 of the refrigerant flow path 40.
  • the first flow path switching device 308 includes a third opening / closing device 302, a fourth opening / closing device 304, and a fifth opening / closing device 306.
  • the third opening / closing device 302, the fourth opening / closing device 304, and the fifth opening / closing device 306 switch between opening and closing, and are configured by, for example, electromagnetic valves.
  • the fourth opening / closing device 304 may be omitted.
  • the 1st flow-path switching apparatus 308 may be comprised by the three-way valve etc., for example.
  • the second flow path switching device 314 selectively connects the third connection part 324 or the fourth connection part 326 to the other end 38 of the refrigerant flow path 40.
  • the second flow path switching device 314 includes a sixth opening / closing device 310 and a seventh opening / closing device 312.
  • the sixth opening / closing device 310 is composed of an electronic expansion valve whose opening degree can be adjusted, and can switch between an open state and a closed state.
  • the sixth opening / closing device 310 may be a solenoid valve that switches between opening and closing.
  • the seventh opening / closing device 312 switches between opening and closing, and includes, for example, an electromagnetic valve.
  • the heat storage unit 300 includes a control unit 50 and a temperature detection unit 60.
  • the control unit 50 controls the refrigeration cycle apparatus 500, and includes, for example, a CPU and electronic components.
  • the temperature detection unit 60 detects an outdoor outdoor temperature in which the heat storage unit 300 and the heat source side unit 100 are installed, and includes, for example, a thermistor.
  • FIG. 2 is a schematic diagram of the heat storage unit illustrated in FIG. 1 as viewed from the front side
  • FIG. 3 is a schematic diagram of the heat storage unit illustrated in FIG. 2 as viewed from the side.
  • the refrigerant flow path 40 has a meandering shape including a plurality of straight portions and a plurality of curved portions so that heat exchange with the heat storage material 34 is efficiently performed. That is, as shown in FIGS. 2 and 3, the refrigerant flow path 40 is formed by bending or welding one pipe so as to form a plurality of rows in the front, rear, left, and right.
  • the heat storage material 34 stores heat, and includes, for example, a sensible heat type sensible heat storage material such as water, or a paraffin-based latent heat type heat storage material.
  • the heat storage tank 32 is a container that houses the heat storage material 34, and is sealed so as not to release heat stored in the heat storage material 34.
  • the heat storage tank 32 may be formed of a material having a heat insulating function so that heat can be efficiently stored in the heat storage material 34.
  • the first flow path switching device 308 and the second flow path switching device 314 are installed outside the heat storage tank 32, but the first flow path switching device 308 and the second flow path switching device are installed.
  • the switching device 314 may be installed inside the heat storage tank 32.
  • the diameter of the refrigerant flow path 40, the length of the refrigerant flow path 40, the size of the heat storage tank 32, the type of the heat storage material 34, the amount of the heat storage material 34, and the like are, for example, the horsepower (capacity) of the heat source side unit 100, etc. Determined accordingly. That is, the above specifications are determined so that the heat storage unit 30 can defrost frost adhering to the heat source side heat exchanger 106 of the heat source side unit 100.
  • the electrical component box 33 is a container that houses the control unit 50, the temperature detection unit 60, and the like, and is installed outside the heat storage tank 32 in which the heat storage material 34 is stored.
  • FIG. 4 is a diagram for explaining the operation in the cooling operation mode of the air conditioning apparatus shown in FIG. 1
  • FIG. 5 is a diagram for explaining the operation in the heating operation mode of the air conditioning apparatus shown in FIG. 6 is a diagram for explaining the operation in the heat storage operation mode of the air-conditioning apparatus shown in FIG. 1
  • FIG. 7 is a diagram for explaining the operation in the on-defrost operation mode of the air-conditioning apparatus shown in FIG. 8 is a diagram for explaining the operation in the reverse defrost operation mode of the air conditioning apparatus shown in FIG. 1
  • FIG. 9 is for explaining the state of the switching device in each operation mode of the air conditioning apparatus shown in FIG. It is a figure to do.
  • the heating operation mode shown in FIG. 5 corresponds to the “first operation mode” of the present invention.
  • the cooling operation mode of the refrigeration cycle apparatus 500 will be described with reference to FIG.
  • the first opening / closing device 108 is set to “open”.
  • the second opening / closing device 114, the third opening / closing device 302, the fourth opening / closing device 304, the fifth opening / closing device 306, the sixth opening / closing device 310, and the seventh opening / closing device 312 are set to “closed”.
  • the third flow path switching device 104 causes the refrigerant discharge side of the compressor 102 and the heat source side heat exchanger 106 to communicate with each other, and causes the refrigerant suction side of the compressor 102 to communicate with the load side heat exchanger 202. Is set to
  • the refrigerant that has been heated to high pressure by the compressor 102 of the heat source side unit 100 flows to the heat source side heat exchanger 106 via the third flow path switching device 104.
  • the refrigerant exchanged and condensed by the heat source side heat exchanger 106 flows out of the heat source side unit 100 via the first opening / closing device 108 and the distributor 110.
  • the refrigerant that has flowed out of the heat source side unit 100 flows into the heat storage unit 300 from the fourth connection portion 326 of the heat storage unit 300 and flows out of the third connection portion 324.
  • the refrigerant that has flowed out of the heat storage unit 300 flows into the load-side unit 200, is expanded by the load-side unit expansion means 204, and is heat-exchanged by the load-side heat exchanger 202.
  • the refrigerant that has exchanged heat and evaporated in the load side heat exchanger 202 flows out of the load side unit 200 and flows into the heat source side unit 100.
  • the refrigerant flowing into the heat source side unit 100 is sucked into the compressor 102 via the third flow path switching device 104 and the accumulator 112, and is compressed again.
  • the heating operation mode of the refrigeration cycle apparatus 500 will be described with reference to FIG.
  • the first opening / closing device 108 is set to “open”.
  • the second opening / closing device 114, the third opening / closing device 302, the fourth opening / closing device 304, the fifth opening / closing device 306, the sixth opening / closing device 310, and the seventh opening / closing device 312 are set to “closed”.
  • the third flow switching device 104 communicates the refrigerant discharge side of the compressor 102 and the load side heat exchanger 202 and communicates the refrigerant suction side of the compressor 102 and the heat source side heat exchanger 106. Is set to
  • the refrigerant that has been heated to high temperature and high pressure by the compressor 102 of the heat source side unit 100 flows out of the heat source side unit 100 via the third flow path switching device 104.
  • the refrigerant that has flowed out of the heat source side unit 100 flows into the load side unit 200 and flows into the load side heat exchanger 202.
  • the refrigerant that has been heat-exchanged and condensed by the load-side heat exchanger 202 flows out of the load-side unit 200 via the load-side unit expansion means 204.
  • the refrigerant that has flowed out of the load side unit 200 flows into the heat storage unit 300 from the third connection portion 324 of the heat storage unit 300 and flows out of the fourth connection portion 326.
  • the refrigerant flowing out of the heat storage unit 300 flows into the heat source side unit 100 and is expanded by the first opening / closing device 108 having a function of expanding the refrigerant.
  • the refrigerant expanded by the first opening / closing device 108 is heat-exchanged by the heat source side heat exchanger 106 and evaporated.
  • the refrigerant evaporated in the heat source side heat exchanger 106 is sucked into the compressor 102 via the third flow path switching device 104 and the accumulator 112 and compressed again.
  • the heat storage operation mode of the refrigeration cycle apparatus 500 will be described with reference to FIG.
  • the first switchgear 108, the fourth switchgear 304, the fifth switchgear 306, and the sixth switchgear 310 are set to “open”. Is set.
  • the second opening / closing device 114, the third opening / closing device 302, and the seventh opening / closing device 312 are set to “closed”.
  • the third flow switching device 104 communicates the refrigerant discharge side of the compressor 102 and the load side heat exchanger 202, and communicates the refrigerant suction side of the compressor 102 and the heat source side heat exchanger 106. Is set.
  • the refrigerant that has been made high-temperature and high-pressure by the compressor 102 of the heat source side unit 100 flows to one refrigerant flowing to the third flow path switching device 104 side and to the heat storage unit 300 side. Branches to the other refrigerant.
  • the refrigerant that has been made high-temperature and high-pressure by the compressor 102 of the heat source side unit 100 flows to one refrigerant flowing to the third flow path switching device 104 side and to the heat storage unit 300 side. Branches to the other refrigerant.
  • the flow of the refrigerant before branching and the flow of the refrigerant after merging the branched refrigerant are indicated by bold solid arrows, and the third flow
  • the flow of one refrigerant branched to the path switching device 104 side is indicated by a thin solid line arrow, and the other refrigerant flow branched to the heat storage unit 300 side is indicated by a thin dotted arrow.
  • One refrigerant branched to the third flow path switching device 104 side flows out from the heat source side unit 100 via the third flow path switching device 104 as indicated by a thin solid line arrow.
  • One refrigerant that has flowed out of the heat source side unit 100 flows into the load side unit 200 and flows through the load side heat exchanger 202.
  • One refrigerant that has been heat-exchanged and condensed by the load-side heat exchanger 202 flows out of the load-side unit 200 via the load-side unit expansion means 204.
  • One refrigerant that has flowed out of the load side unit 200 flows into the heat storage unit 300 from the third connection portion 324 of the heat storage unit 300.
  • One refrigerant that has flowed into the heat storage unit 300 merges with the other refrigerant and flows out from the fourth connection portion 326.
  • the refrigerant flowing out from the fourth connection portion 326 flows into the heat source side unit 100 and is expanded by the first opening / closing device 108 having a function of expanding the refrigerant.
  • the refrigerant expanded by the first opening / closing device 108 is heat-exchanged by the heat source side heat exchanger 106 and evaporated.
  • the refrigerant evaporated in the heat source side heat exchanger 106 is sucked into the compressor 102 via the third flow path switching device 104 and the accumulator 112 and compressed again.
  • the other refrigerant branched to the heat storage unit 300 side flows out from the heat source side unit 100 and flows into the heat storage unit 300 from the first connection part 320 of the heat storage unit 300 as indicated by a thin dotted line arrow. .
  • the other refrigerant flowing into the heat storage unit 300 flows into the refrigerant flow path 40 from the one end 36 of the refrigerant flow path 40 through the first flow path switching device 308. That is, the other refrigerant flowing into the heat storage unit 300 flows into the refrigerant flow path 40 through the fifth opening / closing device 306 and the fourth opening / closing device 304.
  • the other refrigerant flowing into the refrigerant flow path 40 exchanges heat with the heat storage material 34 and flows out from the other end 38.
  • the other refrigerant radiates heat in the heat storage unit 30 (in other words, heats the heat storage material 34).
  • the other refrigerant that has flowed out of the refrigerant flow path 40 passes through the second flow path switching device 314 and merges with the one refrigerant. That is, the other refrigerant that has flowed out of the refrigerant flow path 40 passes through the sixth opening / closing device 310 and merges with the one refrigerant.
  • the load-side unit 200 is moved to the load-side heat exchanger 202 side.
  • the flow rate of the one refrigerant flowing and the flow rate of the other refrigerant flowing to the heat storage unit 30 side of the heat storage unit 300 can be adjusted.
  • the on-defrost operation mode of the refrigeration cycle apparatus 500 will be described with reference to FIG.
  • the second opening / closing device 114, the third opening / closing device 302, the fourth opening / closing device 304, and the seventh opening / closing device 312 are “open”.
  • the first opening / closing device 108, the fifth opening / closing device 306, and the sixth opening / closing device 310 are set to “closed”.
  • the third flow switching device 104 communicates the refrigerant discharge side of the compressor 102 and the load side heat exchanger 202 and communicates the refrigerant suction side of the compressor 102 and the heat source side heat exchanger 106. Is set to
  • the high-temperature and high-pressure refrigerant in the compressor 102 of the heat source side unit 100 is one refrigerant flowing to the second opening / closing device 114 side and the third flow path switching device 104. Branches to the other refrigerant flowing to the side.
  • FIG. 7 in order to facilitate understanding of the present invention, the flow of the refrigerant before branching and the flow of the refrigerant after joining the branched refrigerant are indicated by bold solid arrows, and the second open / close state is shown.
  • the flow of one refrigerant branched to the device 114 side is indicated by a thin solid arrow
  • the other refrigerant flow branched to the third flow path switching device 104 side is indicated by a thin dotted arrow.
  • One refrigerant branched to the second opening / closing device 114 side passes through the second opening / closing device 114 and flows through the heat source side heat exchanger 106 as indicated by a thin solid line arrow.
  • One refrigerant flowing through the heat source side heat exchanger 106 heats the heat source side heat exchanger 106 and flows out of the heat source side heat exchanger 106.
  • One refrigerant that has flowed out of the heat source side heat exchanger 106 joins the other refrigerant via the third flow path switching device 104.
  • the merged refrigerant is sucked into the compressor 102 via the accumulator 112 and compressed again.
  • the other refrigerant branched to the third flow path switching device 104 side flows out from the heat source side unit 100 via the third flow path switching device 104, as indicated by a thin dotted line arrow.
  • the other refrigerant flowing out of the heat source side unit 100 flows into the load side unit 200 and flows through the load side heat exchanger 202.
  • the other refrigerant that has been heat-exchanged and condensed by the load-side heat exchanger 202 flows out of the load-side unit 200 via the load-side unit expansion means 204.
  • the other refrigerant that has flowed out of the load side unit 200 flows into the heat storage unit 300 from the third connection portion 324 of the heat storage unit 300.
  • the other refrigerant flowing into the heat storage unit 300 flows into the heat storage unit 30 from the other end 38 of the refrigerant flow path 40 through the second flow path switching device 314. That is, the other refrigerant that has flowed into the heat storage unit 300 flows into the refrigerant flow path 40 through the seventh opening / closing device 312.
  • the other refrigerant flowing into the refrigerant flow path 40 exchanges heat with the heat storage material 34 and flows out from one end 36. That is, in the on-defrost operation mode, the other refrigerant absorbs heat from the heat storage unit 30 (in other words, cools the heat storage material 34).
  • the other refrigerant that has flowed out of the refrigerant flow path 40 flows out of the second connection portion 322 through the first flow path switching device 308. That is, the other refrigerant that has flowed out of the refrigerant flow path 40 flows out of the second connection portion 322 of the heat storage unit 300 through the third opening / closing device 302. The other refrigerant that has flowed out of the heat storage unit 300 flows into the heat source unit 100 and merges with the one refrigerant. The merged refrigerant is sucked into the compressor 102 via the accumulator 112 and compressed again.
  • the flow rate of one refrigerant flowing to the heat source side heat exchanger 106 side of the heat source side unit 100 and the load of the load side unit 200 are adjusted by adjusting the opening degree of the load side unit expansion means 204. It is possible to adjust the flow rate of the other refrigerant flowing to the side heat exchanger 202 side.
  • the reverse defrost operation mode of the refrigeration cycle apparatus 500 will be described with reference to FIG.
  • the second opening / closing device 114 is set to “open”.
  • the first opening / closing device 108, the third opening / closing device 302, the fourth opening / closing device 304, the fifth opening / closing device 306, the sixth opening / closing device 310, and the seventh opening / closing device 312 are set to “closed”.
  • the third flow path switching device 104 is set so that the refrigerant suction side of the compressor 102 and the heat source side heat exchanger 106 communicate with each other.
  • the refrigerant that has been heated to high temperature and pressure by the compressor 102 of the heat source side unit 100 flows through the heat source side heat exchanger 106 through the second opening / closing device 114.
  • the refrigerant flowing through the heat source side heat exchanger 106 superheats the heat source side heat exchanger 106 and flows out of the heat source side heat exchanger 106.
  • the refrigerant that has flowed out of the heat source side heat exchanger 106 is sucked into the compressor 102 via the third flow path switching device 104 and the accumulator 112, and is compressed again.
  • the refrigeration cycle apparatus 500 has a heating operation mode shown in FIG. 5, a heat storage operation mode shown in FIG. 6, an on-defrost operation mode shown in FIG. 7, and a reverse operation shown in FIG. Defrosting operation modes are included, and heating is performed by switching these operation modes.
  • FIG. 10 is a diagram illustrating an example of an operation during a heating operation of the air-conditioning apparatus illustrated in FIG.
  • the heating operation of the refrigeration cycle apparatus 500 starts in accordance with an instruction from the user.
  • the control unit 50 illustrated in FIG. 1 acquires an outdoor temperature h that is an outdoor temperature detected by the temperature detection unit 60.
  • the controller 50 determines whether or not the outside air temperature h is higher than the first temperature h1.
  • the first temperature h ⁇ b> 1 is a temperature at which frost is unlikely to adhere to the heat source side heat exchanger 106 that functions as an evaporator during the heating operation of the refrigeration cycle apparatus 500, and is, for example, 7 degrees.
  • step S04 when the outside air temperature h is in the first temperature range higher than the first temperature h1 in step S04, the process proceeds to step S06, and the control unit 50 performs the refrigeration cycle apparatus 500 in the heating operation mode shown in FIG. To work. Then, the process returns to step S04 in FIG.
  • step S04 if the outside air temperature h is equal to or lower than the first temperature h1, the process proceeds to step S08.
  • step S08 control unit 50 determines whether or not outside temperature h is equal to or higher than second temperature h2.
  • 2nd temperature h2 although there exists a possibility that frost may adhere to the heat source side heat exchanger 106 which functions as an evaporator at the time of heating operation of the refrigeration cycle apparatus 500, suppose that frost adhered to the heat source side heat exchanger 106 temporarily. Is a temperature at which the degree of frost adhesion is low.
  • the second temperature h2 is, for example, minus 5 degrees.
  • frost may be attached, but frost is temporarily attached to the heat source side heat exchanger 106. Even if it is, it is a temperature range with a low degree of frost adhesion. Therefore, when the outside air temperature h is in the second temperature range, the operation is performed in the order of the heat storage operation mode and the on-defrost operation mode, as described below. That is, in step S08, if the outside air temperature h is in the second temperature range that is equal to or lower than the first temperature h1 and equal to or higher than the second temperature h2, the process proceeds to step S10.
  • control unit 50 operates refrigeration cycle apparatus 500 in the heat storage operation mode shown in FIG. 6, and in step S12, operation in heat storage operation mode is performed for time t1 (minutes).
  • the heat storage material 34 is a latent heat type latent heat storage material
  • the opening degree of the load-side unit expansion means 204 is set so that the flow rate of the refrigerant to the heat storage unit 30 is substantially constant. And at least one of the opening degrees of the sixth opening / closing device 310 may be adjusted.
  • the opening degree of the load-side unit expansion means 204 so that the flow rate of the refrigerant to the heat storage unit 30 gradually decreases.
  • at least one of the opening degrees of the sixth opening / closing device 310 may be adjusted.
  • the efficiency of heat exchange between the refrigerant and the heat storage material 34 can be improved by adjusting the flow rate of the refrigerant when storing the heat in the heat storage unit 30 according to the type of the heat storage material 34.
  • step S14 After performing the operation in the heat storage operation mode in step S12 for t1 (minutes), the process proceeds to step S14, and the control unit 50 operates the refrigeration cycle apparatus 500 in the on-defrost operation mode shown in FIG.
  • the operation in the on-defrost operation mode is performed for time t2 (minutes). And it returns to step S04 shown in FIG.
  • the time t1 and the time t2 are determined according to the outside air temperature h, the configuration (specifications) of the heat storage unit 30, the horsepower of the heat source unit 100, and the like.
  • the time t1 is about 20 to 30 minutes
  • the time t2 is about 5 to 10 minutes which is shorter than the time t1.
  • the time t1 and the time t2 may be changed according to the outside air temperature h.
  • step S08 if the outside air temperature h is lower than the second temperature h2, the process proceeds to step S18.
  • the control unit 50 determines whether or not to perform reverse defrosting operation (defrosting operation). For example, the control unit 50 calculates the continuous time in which the outside air temperature h is continuously in the third temperature range, and the continuous time exceeds a predetermined time. It is done depending on whether or not.
  • step S20 when the frost formation sensor (illustration omitted) which detects the frost formation of the heat source side heat exchanger 106 is provided, defrosting is performed when the layer formation sensor detects the frost formation in step S18. It may be determined that it will be performed, and the process may proceed to step S20.
  • control unit 50 operates refrigeration cycle apparatus 500 in the reverse defrost operation mode shown in FIG. And it returns to step S04 shown in FIG. In addition, also when it determines not performing defrost operation in step S18, it returns to step S04.
  • the load-side heat exchanger 202 is condensed while defrosting the heat source-side heat exchanger 106.
  • the room can be heated by functioning as a heater. That is, in the refrigeration cycle apparatus 500 according to this embodiment, heat is stored in the heat storage unit 30 of the heat storage unit 300 in the heat storage operation mode shown in FIG. Then, in the on-defrost operation mode shown in FIG. 7, using the heat stored in the heat storage unit 30 in the heat storage operation mode, the load side heat exchanger 202 functions as a condenser, and the heat source side heat exchanger 106 Defrosting can be performed.
  • the indoor comfort can be improved while the indoor heating can be performed while the heat source side heat exchanger 106 is defrosted. Furthermore, in the refrigeration cycle apparatus 500 of this embodiment, since the room can be heated even when the heat source side heat exchanger 106 is defrosted, the integrated heating capacity is improved. .
  • the refrigeration cycle apparatus 500 when there is a risk of frost formation on the heat source side heat exchanger 106, the heat storage operation mode and the on-defrost operation mode are repeated, and the defrosting operation is periodically performed. Therefore, the risk of frost adhering to the heat source side heat exchanger 106 is reduced. As a result, according to this embodiment, since the heat exchange in the heat source side heat exchanger 106 is efficiently performed, the efficiency of the refrigeration cycle apparatus 500 is improved. Furthermore, the possibility that the compressor 102 is liquid-compressed is also suppressed.
  • the above-described refrigeration cycle apparatus 500 can be obtained by attaching the heat storage unit 300 according to this embodiment to an existing heat source side unit and load side unit.
  • the present invention is not limited to the above embodiment, and can be variously modified within the scope of the present invention. That is, the configuration of the above embodiment may be improved as appropriate, or at least a part of the configuration may be replaced with another configuration. Further, the configuration requirements that are not particularly limited with respect to the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved.
  • the refrigeration cycle apparatus 500 constituting the air conditioner has been described.
  • the refrigeration cycle apparatus 500 is another apparatus such as a hot water supply apparatus that causes the load-side heat exchanger 202 to function as a condenser. It can also be applied to.
  • heat storage section 32 heat storage tank, 33 electrical box, 34 heat storage material, 36 one end, 38 other end, 40 refrigerant flow path, 50 control section, 60 temperature detection section, 100 heat source side unit, 102 compressor, 104 third Channel switching device, 104A, 3A channel switching device, 104B, 3B channel switching device, 106 heat source side heat exchanger, 106A, first heat source side heat exchanger, 106B, second heat source side heat exchanger, 108, first opening / closing Device, 108A 1A switchgear, 108B 1B switchgear, 110 distributor, 112 accumulator, 114 second switchgear, 114A 2A switchgear, 114B 2B switchgear, 200 load side unit, 202 load side heat exchanger 204, load side unit expansion means, 300 heat storage unit, 302 third switchgear, 304 4 switchgear, 306, 5th switchgear, 308, 1st flow path switching device, 310, 6th switchgear, 312, 7th switchgear, 314, 2nd

Abstract

A heat storage unit 300 is provided with: a first connecting section 320; a second connecting section 322; a third connecting section 324; a fourth connecting section 326; a heat storage section 30 having a heat storage material 34 that stores heat by exchanging heat with a cooling medium flowing in a cooling medium flow channel 40; a first flow channel switching device 308, which is disposed on the side of one end 36 of the cooling medium flow channel 40, and selectively makes the first connecting section 320 or the second connecting section 322 communicate with the one end 36 of the cooling medium flow channel 40; and a second flow channel switching device 314, which is disposed on the side of the other end 38 of the cooling medium flow path 40, and selectively makes the third connecting section 324 or the fourth connecting section 326 communicate with the other end 38 of the cooling medium flow channel 40.

Description

蓄熱ユニットおよび冷凍サイクル装置Thermal storage unit and refrigeration cycle apparatus
 この発明は、除霜と暖房とを同時に行うことができる冷凍サイクル装置の一部を構成する蓄熱ユニット、および除霜と暖房とを同時に行うことができる冷凍サイクル装置に関するものである。 The present invention relates to a heat storage unit constituting a part of a refrigeration cycle apparatus capable of performing defrosting and heating at the same time, and a refrigeration cycle apparatus capable of performing defrosting and heating at the same time.
 空気調和機が暖房運転を行っているときに、室外熱交換器に霜が付着することがある。従来の空気調和機では、室外熱交換器に付着した霜を除霜するために、暖房運転を停止して、室外熱交換器に高温の冷媒を供給する除霜運転を行っている(例えば特許文献1参照)。 When the air conditioner is performing heating operation, frost may adhere to the outdoor heat exchanger. In the conventional air conditioner, in order to defrost the frost adhering to the outdoor heat exchanger, the heating operation is stopped and the defrosting operation for supplying a high-temperature refrigerant to the outdoor heat exchanger is performed (for example, patent) Reference 1).
特開2000-39238号公報JP 2000-39238 A
 しかしながら、特許文献1等に記載の従来の空気調和機では、暖房運転を停止して除霜運転を行うため、除霜運転中は、室内の快適性が低下している。 However, in the conventional air conditioner described in Patent Document 1 and the like, the heating operation is stopped and the defrosting operation is performed. Therefore, the indoor comfort is reduced during the defrosting operation.
 この発明は、上記のような課題を背景としてなされたものであり、除霜と暖房とを同時に行うことができる冷凍サイクル装置の一部を構成する蓄熱ユニット、および除霜と暖房とを同時に行うことができる冷凍サイクル装置を得ることを目的としている。 This invention was made against the background as described above, and a heat storage unit that constitutes a part of a refrigeration cycle apparatus capable of simultaneously performing defrosting and heating, and simultaneously performing defrosting and heating. It aims at obtaining the refrigerating cycle device which can be performed.
 この発明に係る蓄熱ユニットは、圧縮機と負荷側熱交換器と熱源側熱交換器とを有し、冷媒を循環させる冷凍サイクル装置、の一部を構成する蓄熱ユニットであって、圧縮機の冷媒吐出側に接続される第1接続部と、圧縮機の冷媒吸入側に接続される第2接続部と、負荷側熱交換器が凝縮器として機能するときの、負荷側熱交換器の冷媒流出側に接続される第3接続部と、熱源側熱交換器が蒸発器として機能するときの、熱源側熱交換器の冷媒流入側に接続される第4接続部と、一端が第1接続部および第2接続部に接続され、他端が第3接続部および第4接続部に接続された冷媒流路と、冷媒流路に流れる冷媒と熱交換して熱を蓄熱する蓄熱材と、を有する蓄熱部と、冷媒流路の一端側に設置され、冷媒流路の一端に、第1接続部または第2接続部を選択的に連通させる、第1流路切替装置と、冷媒流路の他端側に設置され、冷媒流路の他端に、第3接続部または第4接続部を選択的に連通させる、第2流路切替装置と、を備えたものである。 A heat storage unit according to the present invention is a heat storage unit that constitutes a part of a refrigeration cycle apparatus that has a compressor, a load-side heat exchanger, and a heat source-side heat exchanger, and circulates a refrigerant. The refrigerant of the load side heat exchanger when the first connection part connected to the refrigerant discharge side, the second connection part connected to the refrigerant suction side of the compressor, and the load side heat exchanger function as a condenser A third connection portion connected to the outflow side, a fourth connection portion connected to the refrigerant inflow side of the heat source side heat exchanger when the heat source side heat exchanger functions as an evaporator, and one end connected to the first connection A refrigerant flow path connected to the first connection section and the second connection section, the other end being connected to the third connection section and the fourth connection section, a heat storage material that stores heat by exchanging heat with the refrigerant flowing through the refrigerant flow path, And a heat storage section having one end of the refrigerant flow path, the first connection section or The first flow path switching device that selectively communicates the two connection parts and the other end side of the refrigerant flow path, and the third connection part or the fourth connection part is selectively connected to the other end of the refrigerant flow path. And a second flow path switching device for communication.
 また、この発明に係る冷凍サイクル装置は、上記の蓄熱ユニットと、圧縮機と熱源側熱交換器とを有する熱源側ユニットと、負荷側熱交換器を有する負荷側ユニットと、を備えたものである。 Further, a refrigeration cycle apparatus according to the present invention includes the above heat storage unit, a heat source side unit having a compressor and a heat source side heat exchanger, and a load side unit having a load side heat exchanger. is there.
 この発明によれば、除霜と暖房とを同時に行うことができる冷凍サイクル装置の一部を構成する蓄熱ユニット、および除霜と暖房とを同時に行うことができる冷凍サイクル装置が得られる。 According to the present invention, a heat storage unit constituting a part of a refrigeration cycle apparatus capable of performing defrosting and heating at the same time, and a refrigeration cycle apparatus capable of performing defrosting and heating at the same time are obtained.
この発明の実施の形態1に係る冷凍サイクル装置である空気調和装置の冷媒回路の一例を概略的に記載した図である。It is the figure which described schematically an example of the refrigerant circuit of the air conditioning apparatus which is a refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. 図1に記載の蓄熱部を正面側から見た模式図である。It is the schematic diagram which looked at the thermal storage part of FIG. 1 from the front side. 図2に記載の蓄熱部を側方側から見た模式図である。It is the schematic diagram which looked at the thermal storage part of FIG. 2 from the side. 図1に記載の空気調和装置の冷房運転モードにおける動作を説明する図である。It is a figure explaining the operation | movement in the air_conditionaing | cooling operation mode of the air conditioning apparatus of FIG. 図1に記載の空気調和装置の暖房運転モードにおける動作を説明する図である。It is a figure explaining the operation | movement in the heating operation mode of the air conditioning apparatus of FIG. 図1に記載の空気調和装置の蓄熱運転モードにおける動作を説明する図である。It is a figure explaining the operation | movement in the thermal storage operation mode of the air conditioning apparatus of FIG. 図1に記載の空気調和装置のオンデフロスト運転モードにおける動作を説明する図である。It is a figure explaining the operation | movement in the on-defrost operation mode of the air conditioning apparatus of FIG. 図1に記載の空気調和装置のリバースデフロスト運転モードにおける動作を説明する図である。It is a figure explaining the operation | movement in the reverse defrost operation mode of the air conditioning apparatus of FIG. 図1に記載の空気調和装置の各運転モードにおける開閉装置の状態を説明する図である。It is a figure explaining the state of the switchgear in each operation mode of the air conditioning apparatus of FIG. 図1に記載の空気調和装置の暖房動作時の動作の一例を説明する図である。It is a figure explaining an example of operation | movement at the time of heating operation of the air conditioning apparatus of FIG.
 以下、図面を参照して、この発明の実施の形態について説明する。なお、各図中、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。また、各図に記載の構成について、その形状、大きさおよび配置等は、この発明の範囲内で適宜変更することができる。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is omitted or simplified as appropriate. In addition, the shape, size, arrangement, and the like of the configuration described in each drawing can be changed as appropriate within the scope of the present invention.
 実施の形態1.
[冷凍サイクル装置]
 図1は、この発明の実施の形態1に係る冷凍サイクル装置である空気調和装置の冷媒回路の一例を概略的に記載した図である。この実施の形態に係る冷凍サイクル装置500は、例えば、室内の空調を行う空気調和装置であって、熱源側ユニット100と負荷側ユニット200と蓄熱ユニット300とを備えている。熱源側ユニット100と負荷側ユニット200と蓄熱ユニット300とが、冷媒配管で接続されることによって、冷媒を循環させる冷媒回路が形成される。図1の例では、熱源側ユニット100と負荷側ユニット200とが1本の冷媒配管で接続され、負荷側ユニット200と蓄熱ユニット300とが1本の冷媒配管で接続され、蓄熱ユニット300と熱源側ユニット100とが3本の冷媒配管で接続されている。なお、冷媒回路に循環させる冷媒は、例えば擬似共沸混合冷媒であるR-410Aであるが、R32またはR-404A等の他の種類の冷媒であってもよい。
Embodiment 1 FIG.
[Refrigeration cycle equipment]
FIG. 1 is a diagram schematically illustrating an example of a refrigerant circuit of an air-conditioning apparatus that is a refrigeration cycle apparatus according to Embodiment 1 of the present invention. The refrigeration cycle apparatus 500 according to this embodiment is, for example, an air conditioner that performs indoor air conditioning, and includes a heat source side unit 100, a load side unit 200, and a heat storage unit 300. The heat source side unit 100, the load side unit 200, and the heat storage unit 300 are connected by a refrigerant pipe, thereby forming a refrigerant circuit for circulating the refrigerant. In the example of FIG. 1, the heat source side unit 100 and the load side unit 200 are connected by one refrigerant pipe, the load side unit 200 and the heat storage unit 300 are connected by one refrigerant pipe, and the heat storage unit 300 and the heat source are connected. The side unit 100 is connected by three refrigerant pipes. The refrigerant to be circulated in the refrigerant circuit is, for example, R-410A which is a pseudo azeotropic refrigerant mixture, but may be other types of refrigerant such as R32 or R-404A.
[熱源側ユニット]
 熱源側ユニット100は、例えば、空調を行う部屋の室外に設置される室外機である。熱源側ユニット100は、圧縮機102、第3流路切替装置104、熱源側熱交換器106、第1開閉装置108、分配器110、アキュムレータ112、および第2開閉装置114を含み、これらの構成が冷媒配管で接続されている。圧縮機102は、例えば、インバータで制御が行われるインバータ圧縮機であり、運転周波数を任意に変化させて、容量(単位時間あたりに冷媒を送り出す量)を変化させることができる。
[Heat source side unit]
The heat source side unit 100 is, for example, an outdoor unit installed outside a room that performs air conditioning. The heat source side unit 100 includes a compressor 102, a third flow path switching device 104, a heat source side heat exchanger 106, a first opening / closing device 108, a distributor 110, an accumulator 112, and a second opening / closing device 114. Are connected by refrigerant piping. The compressor 102 is, for example, an inverter compressor that is controlled by an inverter, and can arbitrarily change the operating frequency to change the capacity (the amount of refrigerant sent out per unit time).
 熱源側熱交換器106は、例えば、熱源側熱交換器106を流れる冷媒と空気との熱交換を行わせるものである。図1に示す例では、熱源側熱交換器106は、第1熱源側熱交換器106Aと第2熱源側熱交換器106Bとを含んでいる。なお、熱源側熱交換器106は、1台の熱交換器で構成されていてもよく、3台以上の熱交換器で構成されていてもよい。以下の説明では、この実施の形態の理解を容易にするため、1台の熱源側熱交換器106を有するものとして説明を行う場合もある。例えば、熱源側熱交換器106の近傍には、熱源側熱交換器106へ空気を導く送風機(図示を省略)が設置されている。 The heat source side heat exchanger 106 performs heat exchange between the refrigerant flowing through the heat source side heat exchanger 106 and air, for example. In the example illustrated in FIG. 1, the heat source side heat exchanger 106 includes a first heat source side heat exchanger 106A and a second heat source side heat exchanger 106B. In addition, the heat source side heat exchanger 106 may be configured by one heat exchanger, or may be configured by three or more heat exchangers. In the following description, in order to facilitate understanding of this embodiment, the description may be made assuming that the heat source side heat exchanger 106 is provided. For example, a blower (not shown) that guides air to the heat source side heat exchanger 106 is installed in the vicinity of the heat source side heat exchanger 106.
 第3流路切替装置104は、冷媒回路の流路を切り替えるものであり、例えば四方弁等で構成されている。第3流路切替装置104は、圧縮機102が吐出した冷媒を、熱源側熱交換器106または負荷側熱交換器202に選択的に供給し、且つ圧縮機102が吸入する冷媒を、熱源側熱交換器106または負荷側熱交換器202から選択的に吸入するように冷媒回路の流路を切り替える。図1に示す例では、第3流路切替装置104は、第3A流路切替装置104Aと第3B流路切替装置104Bとを含んでいるが、第3流路切替装置104の数量は、熱源側熱交換器106の台数に対応して決まるものであり、熱源側熱交換器106の台数に合わせて適宜変更される。 The third flow path switching device 104 switches the flow path of the refrigerant circuit, and includes, for example, a four-way valve. The third flow path switching device 104 selectively supplies the refrigerant discharged from the compressor 102 to the heat source side heat exchanger 106 or the load side heat exchanger 202, and the refrigerant sucked by the compressor 102 is supplied to the heat source side. The flow path of the refrigerant circuit is switched so as to be selectively sucked from the heat exchanger 106 or the load side heat exchanger 202. In the example shown in FIG. 1, the third flow path switching device 104 includes a 3A flow path switching device 104A and a third B flow path switching device 104B, but the quantity of the third flow path switching device 104 is a heat source. It is determined according to the number of the side heat exchangers 106 and is appropriately changed according to the number of the heat source side heat exchangers 106.
 第1開閉装置108は、熱源側熱交換器106が蒸発器として機能するときの冷媒流入側と、蓄熱ユニット300の第4接続部326と、の連通または非連通を切り替えるものである。この実施の形態の例では、第1開閉装置108は、開度を調整することができる電子式膨張弁で構成されており、開状態と閉状態とを切り替えることができる。なお、第1開閉装置108は、電磁弁等の開閉装置と毛細管等の膨張手段とで構成されることもできる。図1に示す例では、第1開閉装置108は、第1A開閉装置108Aと第1B開閉装置108Bとを含んでいるが、第1開閉装置108の数量は、熱源側熱交換器106の台数に対応して決まるものであり、熱源側熱交換器106の台数に合わせて適宜変更される。 The first switching device 108 switches communication or non-communication between the refrigerant inflow side when the heat source side heat exchanger 106 functions as an evaporator and the fourth connection portion 326 of the heat storage unit 300. In the example of this embodiment, the 1st opening / closing device 108 is comprised with the electronic expansion valve which can adjust an opening degree, and can switch an open state and a closed state. The first opening / closing device 108 can also be configured by an opening / closing device such as a solenoid valve and an expansion means such as a capillary tube. In the example shown in FIG. 1, the first switchgear 108 includes a first A switchgear 108A and a firstB switchgear 108B, but the number of first switchgears 108 is the number of heat source side heat exchangers 106. It is determined correspondingly and is appropriately changed according to the number of heat source side heat exchangers 106.
 分配器110は、蓄熱ユニット300側から流入した冷媒を分配して、第1A開閉装置108Aおよび第1B開閉装置108Bの側に供給し、または、第1A開閉装置108Aおよび第1B開閉装置108Bの側から流入した冷媒を合流して、蓄熱ユニット300側に供給するものである。 The distributor 110 distributes the refrigerant flowing in from the heat storage unit 300 side and supplies the refrigerant to the first A switching device 108A and the first B switching device 108B side, or the first A switching device 108A and the first B switching device 108B side. The refrigerant that has flowed in from the refrigerant is merged and supplied to the heat storage unit 300 side.
 第2開閉装置114は、熱源側熱交換器106が蒸発器として機能するときの冷媒流入側と、圧縮機102の冷媒吐出側と、の連通または非連通を切り替えるものである。第2開閉装置114は、開閉を切り替えるものであり、例えば電磁弁等で構成されている。図1に示す例では、第2開閉装置114は、第2A開閉装置114Aと第2B開閉装置114Bとを含んでいるが、第2開閉装置114の数量は、熱源側熱交換器106の台数に対応して決まるものであり、熱源側熱交換器106の台数に合わせて適宜変更される。アキュムレータ112は、過剰な冷媒を貯留する容器である。 The second switching device 114 switches communication or non-communication between the refrigerant inflow side when the heat source side heat exchanger 106 functions as an evaporator and the refrigerant discharge side of the compressor 102. The second opening / closing device 114 switches between opening and closing, and is configured by, for example, an electromagnetic valve. In the example shown in FIG. 1, the second switchgear 114 includes a second A switchgear 114A and a secondB switchgear 114B, but the number of second switchgears 114 is the number of heat source side heat exchangers 106. It is determined correspondingly and is appropriately changed according to the number of heat source side heat exchangers 106. The accumulator 112 is a container that stores excess refrigerant.
[負荷側ユニット]
 負荷側ユニット200は、例えば、空調を行う部屋の室内に設置される室内機である。負荷側ユニット200は、負荷側熱交換器202および負荷側ユニット膨張手段204を含み、これらの構成が冷媒配管で接続されている。負荷側熱交換器202は、例えば、負荷側熱交換器202を流れる冷媒と空気との熱交換を行わせるものである。例えば、負荷側熱交換器202の近傍には、負荷側熱交換器202へ空気を導く送風機(図示を省略)が設置されている。負荷側ユニット膨張手段204は、例えば、開度を調整することができる電子式膨張弁であるが、毛細管等で構成されていてもよい。
[Load side unit]
The load side unit 200 is, for example, an indoor unit installed in a room that performs air conditioning. The load side unit 200 includes a load side heat exchanger 202 and a load side unit expansion means 204, and these components are connected by a refrigerant pipe. The load side heat exchanger 202 performs heat exchange between the refrigerant flowing through the load side heat exchanger 202 and air, for example. For example, a blower (not shown) that guides air to the load side heat exchanger 202 is installed in the vicinity of the load side heat exchanger 202. The load-side unit expansion means 204 is, for example, an electronic expansion valve that can adjust the opening degree, but may be configured by a capillary tube or the like.
[蓄熱ユニット]
 蓄熱ユニット300は、例えば、熱源側ユニット100と負荷側ユニット200との間に着脱自在に取り付けられるものであり、例えば空調を行う部屋の室外に設置される。なお、蓄熱ユニット300は、熱源側ユニット100および負荷側ユニット200と着脱不可に取り付けられていてもよい。蓄熱ユニット300は、第1接続部320と、第2接続部322と、第3接続部324と、第4接続部326とを有する。第1接続部320は、熱源側ユニット100の圧縮機102の冷媒吐出側に接続されている。第2接続部322は、熱源側ユニット100の圧縮機102の冷媒吸入側に接続されている。第3接続部324は、負荷側ユニット200の、負荷側熱交換器202が凝縮器として機能するときの、冷媒流出側に接続されている。第4接続部326は、熱源側ユニット100の、熱源側熱交換器106が蒸発器として機能するときの、冷媒流入側に接続されている。第3接続部324と第4接続部326とは、冷媒配管で接続されており、連通している。
[Heat storage unit]
The heat storage unit 300 is detachably attached between the heat source side unit 100 and the load side unit 200, for example, and is installed outside a room that performs air conditioning, for example. The heat storage unit 300 may be attached to the heat source side unit 100 and the load side unit 200 so as not to be detachable. The heat storage unit 300 includes a first connection part 320, a second connection part 322, a third connection part 324, and a fourth connection part 326. The first connection part 320 is connected to the refrigerant discharge side of the compressor 102 of the heat source side unit 100. The second connection part 322 is connected to the refrigerant suction side of the compressor 102 of the heat source side unit 100. The 3rd connection part 324 is connected to the refrigerant | coolant outflow side of the load side unit 200 when the load side heat exchanger 202 functions as a condenser. The fourth connection portion 326 is connected to the refrigerant inflow side of the heat source side unit 100 when the heat source side heat exchanger 106 functions as an evaporator. The 3rd connection part 324 and the 4th connection part 326 are connected by refrigerant | coolant piping, and are connected.
 また、蓄熱ユニット300は、蓄熱部30と、第1流路切替装置308と、第2流路切替装置314とを有する。蓄熱部30は、冷媒が流れる冷媒流路40と、冷媒流路40を流れる冷媒と熱交換して熱を蓄える蓄熱材34と、蓄熱材34を収容する蓄熱タンク32とを含んでいる。第1流路切替装置308は、冷媒流路40の一端36に、第1接続部320または第2接続部322を選択的に連通させるものである。この実施の形態の例では、第1流路切替装置308は、第3開閉装置302と、第4開閉装置304と、第5開閉装置306とを含んで構成されている。第3開閉装置302、第4開閉装置304、および第5開閉装置306は、開閉を切り替えるものであり、例えば電磁弁等で構成されている。なお、第4開閉装置304は、省略されていてもよい。また、第1流路切替装置308は、例えば三方弁等で構成されていてもよい。 Further, the heat storage unit 300 includes a heat storage unit 30, a first flow path switching device 308, and a second flow path switching device 314. The heat storage unit 30 includes a refrigerant flow path 40 through which the refrigerant flows, a heat storage material 34 that stores heat by exchanging heat with the refrigerant flowing through the refrigerant flow path 40, and a heat storage tank 32 that houses the heat storage material 34. The first flow path switching device 308 selectively communicates the first connection part 320 or the second connection part 322 with the one end 36 of the refrigerant flow path 40. In the example of this embodiment, the first flow path switching device 308 includes a third opening / closing device 302, a fourth opening / closing device 304, and a fifth opening / closing device 306. The third opening / closing device 302, the fourth opening / closing device 304, and the fifth opening / closing device 306 switch between opening and closing, and are configured by, for example, electromagnetic valves. Note that the fourth opening / closing device 304 may be omitted. Moreover, the 1st flow-path switching apparatus 308 may be comprised by the three-way valve etc., for example.
 第2流路切替装置314は、冷媒流路40の他端38に、第3接続部324または第4接続部326を選択的に連通させるものである。この実施の形態の例では、第2流路切替装置314は、第6開閉装置310と第7開閉装置312とを含んで構成されている。第6開閉装置310は、開度を調整することができる電子式膨張弁で構成されており、開状態と閉状態とを切り替えることができる。なお、第6開閉装置310は、開閉を切り替える電磁弁等であってもよい。第7開閉装置312は、開閉を切り替えるものであり、例えば電磁弁等で構成されている。 The second flow path switching device 314 selectively connects the third connection part 324 or the fourth connection part 326 to the other end 38 of the refrigerant flow path 40. In the example of this embodiment, the second flow path switching device 314 includes a sixth opening / closing device 310 and a seventh opening / closing device 312. The sixth opening / closing device 310 is composed of an electronic expansion valve whose opening degree can be adjusted, and can switch between an open state and a closed state. The sixth opening / closing device 310 may be a solenoid valve that switches between opening and closing. The seventh opening / closing device 312 switches between opening and closing, and includes, for example, an electromagnetic valve.
 また、蓄熱ユニット300は、制御部50および温度検出部60を有する。制御部50は、冷凍サイクル装置500の制御を行うものであり、例えば、CPUおよび電子部品等を含んで構成されている。温度検出部60は、蓄熱ユニット300および熱源側ユニット100が設置された、室外の外気温度を検出するものであり、例えば、サーミスタ等で構成されている。 Further, the heat storage unit 300 includes a control unit 50 and a temperature detection unit 60. The control unit 50 controls the refrigeration cycle apparatus 500, and includes, for example, a CPU and electronic components. The temperature detection unit 60 detects an outdoor outdoor temperature in which the heat storage unit 300 and the heat source side unit 100 are installed, and includes, for example, a thermistor.
[蓄熱部]
 図2は、図1に記載の蓄熱部を正面側から見た模式図であり、図3は、図2に記載の蓄熱部を側方側から見た模式図である。冷媒流路40は、蓄熱材34との熱交換が効率良く行われるように、複数の直線部と複数の曲部とを含む蛇行形状を有している。すなわち、冷媒流路40は、図2および図3に示すように、前後左右に複数の列を成すように、1本の配管に曲げ加工または溶接加工等を施して形成されている。蓄熱材34は、熱を蓄えるものであり、例えば、水等の顕熱タイプの顕熱蓄熱材、またはパラフィン系の潜熱タイプの潜熱蓄熱材を含んで構成されている。蓄熱タンク32は、蓄熱材34を収容する容器であり、蓄熱材34に蓄えられた熱を逃がさないように、密閉されている。蓄熱タンク32は、熱が蓄熱材34に効率良く蓄えられるように、断熱機能を有するもので形成されるとよい。なお、図1に示す例では、第1流路切替装置308および第2流路切替装置314が、蓄熱タンク32の外部に設置されているが、第1流路切替装置308および第2流路切替装置314は、蓄熱タンク32の内部に設置されていてもよい。冷媒流路40の径、冷媒流路40の長さ、蓄熱タンク32の大きさ、蓄熱材34の種類、および蓄熱材34の量等は、例えば、熱源側ユニット100の馬力(容量)等に対応して決定される。つまり、蓄熱部30は、熱源側ユニット100の熱源側熱交換器106に付着した霜を除霜することができるように、上記の仕様が決定される。電気品箱33は、制御部50および温度検出部60等を収容する容器であり、蓄熱材34が収容された蓄熱タンク32の外部に設置されている。
[Heat storage unit]
FIG. 2 is a schematic diagram of the heat storage unit illustrated in FIG. 1 as viewed from the front side, and FIG. 3 is a schematic diagram of the heat storage unit illustrated in FIG. 2 as viewed from the side. The refrigerant flow path 40 has a meandering shape including a plurality of straight portions and a plurality of curved portions so that heat exchange with the heat storage material 34 is efficiently performed. That is, as shown in FIGS. 2 and 3, the refrigerant flow path 40 is formed by bending or welding one pipe so as to form a plurality of rows in the front, rear, left, and right. The heat storage material 34 stores heat, and includes, for example, a sensible heat type sensible heat storage material such as water, or a paraffin-based latent heat type heat storage material. The heat storage tank 32 is a container that houses the heat storage material 34, and is sealed so as not to release heat stored in the heat storage material 34. The heat storage tank 32 may be formed of a material having a heat insulating function so that heat can be efficiently stored in the heat storage material 34. In the example shown in FIG. 1, the first flow path switching device 308 and the second flow path switching device 314 are installed outside the heat storage tank 32, but the first flow path switching device 308 and the second flow path switching device are installed. The switching device 314 may be installed inside the heat storage tank 32. The diameter of the refrigerant flow path 40, the length of the refrigerant flow path 40, the size of the heat storage tank 32, the type of the heat storage material 34, the amount of the heat storage material 34, and the like are, for example, the horsepower (capacity) of the heat source side unit 100, etc. Determined accordingly. That is, the above specifications are determined so that the heat storage unit 30 can defrost frost adhering to the heat source side heat exchanger 106 of the heat source side unit 100. The electrical component box 33 is a container that houses the control unit 50, the temperature detection unit 60, and the like, and is installed outside the heat storage tank 32 in which the heat storage material 34 is stored.
[冷凍サイクル装置の運転モード]
 次に、図1に記載の冷凍サイクル装置500である空気調和装置の運転モードについて説明する。図4は、図1に記載の空気調和装置の冷房運転モードにおける動作を説明する図であり、図5は、図1に記載の空気調和装置の暖房運転モードにおける動作を説明する図であり、図6は、図1に記載の空気調和装置の蓄熱運転モードにおける動作を説明する図であり、図7は、図1に記載の空気調和装置のオンデフロスト運転モードにおける動作を説明する図であり、図8は、図1に記載の空気調和装置のリバースデフロスト運転モードにおける動作を説明する図であり、図9は、図1に記載の空気調和装置の各運転モードにおける開閉装置の状態を説明する図である。なお、図5に記載の暖房運転モードは、この発明の「第1運転モード」に相当するものである。
[Operation mode of refrigeration cycle equipment]
Next, the operation mode of the air conditioner that is the refrigeration cycle apparatus 500 shown in FIG. 1 will be described. FIG. 4 is a diagram for explaining the operation in the cooling operation mode of the air conditioning apparatus shown in FIG. 1, and FIG. 5 is a diagram for explaining the operation in the heating operation mode of the air conditioning apparatus shown in FIG. 6 is a diagram for explaining the operation in the heat storage operation mode of the air-conditioning apparatus shown in FIG. 1, and FIG. 7 is a diagram for explaining the operation in the on-defrost operation mode of the air-conditioning apparatus shown in FIG. 8 is a diagram for explaining the operation in the reverse defrost operation mode of the air conditioning apparatus shown in FIG. 1, and FIG. 9 is for explaining the state of the switching device in each operation mode of the air conditioning apparatus shown in FIG. It is a figure to do. The heating operation mode shown in FIG. 5 corresponds to the “first operation mode” of the present invention.
[冷房運転モード]
 まず、図4を用いて、冷凍サイクル装置500の冷房運転モードについて説明する。冷凍サイクル装置500の冷房運転モードでは、図4および図9に示すように、第1開閉装置108は、「開」に設定されている。また、第2開閉装置114、第3開閉装置302、第4開閉装置304、第5開閉装置306、第6開閉装置310、および第7開閉装置312は、「閉」に設定されている。また、第3流路切替装置104は、圧縮機102の冷媒吐出側と熱源側熱交換器106とを連通させ、且つ圧縮機102の冷媒吸入側と負荷側熱交換器202とを連通させるように設定されている。
[Cooling operation mode]
First, the cooling operation mode of the refrigeration cycle apparatus 500 will be described with reference to FIG. In the cooling operation mode of the refrigeration cycle apparatus 500, as shown in FIGS. 4 and 9, the first opening / closing device 108 is set to “open”. The second opening / closing device 114, the third opening / closing device 302, the fourth opening / closing device 304, the fifth opening / closing device 306, the sixth opening / closing device 310, and the seventh opening / closing device 312 are set to “closed”. Further, the third flow path switching device 104 causes the refrigerant discharge side of the compressor 102 and the heat source side heat exchanger 106 to communicate with each other, and causes the refrigerant suction side of the compressor 102 to communicate with the load side heat exchanger 202. Is set to
 図4に示すように、冷房運転モードでは、熱源側ユニット100の圧縮機102で高温高圧にされた冷媒は、第3流路切替装置104を経由して、熱源側熱交換器106に流れる。熱源側熱交換器106で熱交換され凝縮した冷媒は、第1開閉装置108および分配器110を経由して、熱源側ユニット100から流出する。熱源側ユニット100から流出した冷媒は、蓄熱ユニット300の第4接続部326から蓄熱ユニット300に流入し、第3接続部324から流出する。蓄熱ユニット300から流出した冷媒は、負荷側ユニット200に流入し、負荷側ユニット膨張手段204で膨張され、負荷側熱交換器202で熱交換される。負荷側熱交換器202で熱交換され蒸発した冷媒は、負荷側ユニット200から流出し、熱源側ユニット100に流入する。熱源側ユニット100に流入した冷媒は、第3流路切替装置104およびアキュムレータ112を経由して、圧縮機102に吸入され、再び圧縮される。 As shown in FIG. 4, in the cooling operation mode, the refrigerant that has been heated to high pressure by the compressor 102 of the heat source side unit 100 flows to the heat source side heat exchanger 106 via the third flow path switching device 104. The refrigerant exchanged and condensed by the heat source side heat exchanger 106 flows out of the heat source side unit 100 via the first opening / closing device 108 and the distributor 110. The refrigerant that has flowed out of the heat source side unit 100 flows into the heat storage unit 300 from the fourth connection portion 326 of the heat storage unit 300 and flows out of the third connection portion 324. The refrigerant that has flowed out of the heat storage unit 300 flows into the load-side unit 200, is expanded by the load-side unit expansion means 204, and is heat-exchanged by the load-side heat exchanger 202. The refrigerant that has exchanged heat and evaporated in the load side heat exchanger 202 flows out of the load side unit 200 and flows into the heat source side unit 100. The refrigerant flowing into the heat source side unit 100 is sucked into the compressor 102 via the third flow path switching device 104 and the accumulator 112, and is compressed again.
[暖房運転モード]
 次に、図5を用いて、冷凍サイクル装置500の暖房運転モードについて説明する。冷凍サイクル装置500の暖房運転モードでは、図5および図9に示すように、第1開閉装置108は、「開」に設定されている。また、第2開閉装置114、第3開閉装置302、第4開閉装置304、第5開閉装置306、第6開閉装置310、および第7開閉装置312は、「閉」に設定されている。また、第3流路切替装置104は、圧縮機102の冷媒吐出側と負荷側熱交換器202とを連通させ、且つ圧縮機102の冷媒吸入側と熱源側熱交換器106とを連通させるように設定されている。
[Heating operation mode]
Next, the heating operation mode of the refrigeration cycle apparatus 500 will be described with reference to FIG. In the heating operation mode of the refrigeration cycle apparatus 500, as shown in FIGS. 5 and 9, the first opening / closing device 108 is set to “open”. The second opening / closing device 114, the third opening / closing device 302, the fourth opening / closing device 304, the fifth opening / closing device 306, the sixth opening / closing device 310, and the seventh opening / closing device 312 are set to “closed”. The third flow switching device 104 communicates the refrigerant discharge side of the compressor 102 and the load side heat exchanger 202 and communicates the refrigerant suction side of the compressor 102 and the heat source side heat exchanger 106. Is set to
 図5に示すように、暖房運転モードでは、熱源側ユニット100の圧縮機102で高温高圧にされた冷媒は、第3流路切替装置104を経由して、熱源側ユニット100から流出する。熱源側ユニット100から流出した冷媒は、負荷側ユニット200に流入し、負荷側熱交換器202に流れる。負荷側熱交換器202で熱交換され凝縮した冷媒は、負荷側ユニット膨張手段204を経由して、負荷側ユニット200から流出する。負荷側ユニット200から流出した冷媒は、蓄熱ユニット300の第3接続部324から蓄熱ユニット300に流入し、第4接続部326から流出する。蓄熱ユニット300から流出した冷媒は、熱源側ユニット100に流入し、冷媒を膨張させる機能を有する第1開閉装置108で膨張される。第1開閉装置108で膨張された冷媒は、熱源側熱交換器106で熱交換され蒸発する。熱源側熱交換器106で蒸発した冷媒は、第3流路切替装置104およびアキュムレータ112を経由して、圧縮機102に吸入され、再び圧縮される。 As shown in FIG. 5, in the heating operation mode, the refrigerant that has been heated to high temperature and high pressure by the compressor 102 of the heat source side unit 100 flows out of the heat source side unit 100 via the third flow path switching device 104. The refrigerant that has flowed out of the heat source side unit 100 flows into the load side unit 200 and flows into the load side heat exchanger 202. The refrigerant that has been heat-exchanged and condensed by the load-side heat exchanger 202 flows out of the load-side unit 200 via the load-side unit expansion means 204. The refrigerant that has flowed out of the load side unit 200 flows into the heat storage unit 300 from the third connection portion 324 of the heat storage unit 300 and flows out of the fourth connection portion 326. The refrigerant flowing out of the heat storage unit 300 flows into the heat source side unit 100 and is expanded by the first opening / closing device 108 having a function of expanding the refrigerant. The refrigerant expanded by the first opening / closing device 108 is heat-exchanged by the heat source side heat exchanger 106 and evaporated. The refrigerant evaporated in the heat source side heat exchanger 106 is sucked into the compressor 102 via the third flow path switching device 104 and the accumulator 112 and compressed again.
[蓄熱運転モード]
 次に、図6を用いて、冷凍サイクル装置500の蓄熱運転モードについて説明する。冷凍サイクル装置500の蓄熱運転モードでは、図6および図9に示すように、第1開閉装置108、第4開閉装置304、第5開閉装置306、および第6開閉装置310は、「開」に設定されている。また、第2開閉装置114、第3開閉装置302、および第7開閉装置312は、「閉」に設定されている。また、第3流路切替装置104は、圧縮機102の冷媒吐出側と負荷側熱交換器202とを連通させ、圧縮機102の冷媒吸入側と熱源側熱交換器106とを連通させるように設定されている。
[Heat storage operation mode]
Next, the heat storage operation mode of the refrigeration cycle apparatus 500 will be described with reference to FIG. In the heat storage operation mode of the refrigeration cycle apparatus 500, as shown in FIGS. 6 and 9, the first switchgear 108, the fourth switchgear 304, the fifth switchgear 306, and the sixth switchgear 310 are set to “open”. Is set. The second opening / closing device 114, the third opening / closing device 302, and the seventh opening / closing device 312 are set to “closed”. Further, the third flow switching device 104 communicates the refrigerant discharge side of the compressor 102 and the load side heat exchanger 202, and communicates the refrigerant suction side of the compressor 102 and the heat source side heat exchanger 106. Is set.
 図6に示すように、蓄熱運転モードでは、熱源側ユニット100の圧縮機102で高温高圧にされた冷媒は、第3流路切替装置104側に流れる一方の冷媒と、蓄熱ユニット300側に流れる他方の冷媒とに分岐される。なお、図6においては、この発明の理解を容易にするため、分岐される前の冷媒の流れおよび分岐された冷媒の合流後の冷媒の流れを太線の実線の矢印で記載し、第3流路切替装置104側に分岐された一方の冷媒の流れを細線の実線の矢印で記載し、蓄熱ユニット300側に分岐された他方の冷媒の流れを細線の点線の矢印で記載してある。 As shown in FIG. 6, in the heat storage operation mode, the refrigerant that has been made high-temperature and high-pressure by the compressor 102 of the heat source side unit 100 flows to one refrigerant flowing to the third flow path switching device 104 side and to the heat storage unit 300 side. Branches to the other refrigerant. In FIG. 6, in order to facilitate understanding of the present invention, the flow of the refrigerant before branching and the flow of the refrigerant after merging the branched refrigerant are indicated by bold solid arrows, and the third flow The flow of one refrigerant branched to the path switching device 104 side is indicated by a thin solid line arrow, and the other refrigerant flow branched to the heat storage unit 300 side is indicated by a thin dotted arrow.
 第3流路切替装置104側に分岐された一方の冷媒は、細線の実線の矢印で示すように、第3流路切替装置104を経由して、熱源側ユニット100から流出する。熱源側ユニット100から流出した一方の冷媒は、負荷側ユニット200に流入し、負荷側熱交換器202を流れる。負荷側熱交換器202で熱交換され凝縮した一方の冷媒は、負荷側ユニット膨張手段204を経由して、負荷側ユニット200から流出する。負荷側ユニット200から流出した一方の冷媒は、蓄熱ユニット300の第3接続部324から蓄熱ユニット300に流入する。蓄熱ユニット300に流入した一方の冷媒は、他方の冷媒と合流して、第4接続部326から流出する。第4接続部326から流出した冷媒は、熱源側ユニット100に流入し、冷媒を膨張させる機能を有する第1開閉装置108で膨張される。第1開閉装置108で膨張された冷媒は、熱源側熱交換器106で熱交換され蒸発する。熱源側熱交換器106で蒸発した冷媒は、第3流路切替装置104およびアキュムレータ112を経由して、圧縮機102に吸入され、再び圧縮される。 One refrigerant branched to the third flow path switching device 104 side flows out from the heat source side unit 100 via the third flow path switching device 104 as indicated by a thin solid line arrow. One refrigerant that has flowed out of the heat source side unit 100 flows into the load side unit 200 and flows through the load side heat exchanger 202. One refrigerant that has been heat-exchanged and condensed by the load-side heat exchanger 202 flows out of the load-side unit 200 via the load-side unit expansion means 204. One refrigerant that has flowed out of the load side unit 200 flows into the heat storage unit 300 from the third connection portion 324 of the heat storage unit 300. One refrigerant that has flowed into the heat storage unit 300 merges with the other refrigerant and flows out from the fourth connection portion 326. The refrigerant flowing out from the fourth connection portion 326 flows into the heat source side unit 100 and is expanded by the first opening / closing device 108 having a function of expanding the refrigerant. The refrigerant expanded by the first opening / closing device 108 is heat-exchanged by the heat source side heat exchanger 106 and evaporated. The refrigerant evaporated in the heat source side heat exchanger 106 is sucked into the compressor 102 via the third flow path switching device 104 and the accumulator 112 and compressed again.
 また、蓄熱ユニット300側に分岐された他方の冷媒は、細線の点線の矢印で示すように、熱源側ユニット100から流出し、蓄熱ユニット300の第1接続部320から、蓄熱ユニット300に流入する。蓄熱ユニット300に流入した他方の冷媒は、第1流路切替装置308を通って、冷媒流路40の一端36から、冷媒流路40に流入する。つまり、蓄熱ユニット300に流入した他方の冷媒は、第5開閉装置306および第4開閉装置304を通って、冷媒流路40に流入する。冷媒流路40に流入した他方の冷媒は、蓄熱材34と熱交換を行い、他端38から流出する。すなわち、蓄熱運転モードでは、他方の冷媒は、蓄熱部30で放熱する(換言すると、蓄熱材34を加熱する)。冷媒流路40から流出した他方の冷媒は、第2流路切替装置314を通って、一方の冷媒と合流する。つまり、冷媒流路40から流出した他方の冷媒は、第6開閉装置310を通って、一方の冷媒と合流する。なお、蓄熱運転モードでは、負荷側ユニット膨張手段204の開度、および第6開閉装置310の開度のうちの少なくとも一方を調整することによって、負荷側ユニット200の負荷側熱交換器202側に流れる一方の冷媒の流量と、蓄熱ユニット300の蓄熱部30側に流れる他方の冷媒の流量と、を調整することができる。 Further, the other refrigerant branched to the heat storage unit 300 side flows out from the heat source side unit 100 and flows into the heat storage unit 300 from the first connection part 320 of the heat storage unit 300 as indicated by a thin dotted line arrow. . The other refrigerant flowing into the heat storage unit 300 flows into the refrigerant flow path 40 from the one end 36 of the refrigerant flow path 40 through the first flow path switching device 308. That is, the other refrigerant flowing into the heat storage unit 300 flows into the refrigerant flow path 40 through the fifth opening / closing device 306 and the fourth opening / closing device 304. The other refrigerant flowing into the refrigerant flow path 40 exchanges heat with the heat storage material 34 and flows out from the other end 38. That is, in the heat storage operation mode, the other refrigerant radiates heat in the heat storage unit 30 (in other words, heats the heat storage material 34). The other refrigerant that has flowed out of the refrigerant flow path 40 passes through the second flow path switching device 314 and merges with the one refrigerant. That is, the other refrigerant that has flowed out of the refrigerant flow path 40 passes through the sixth opening / closing device 310 and merges with the one refrigerant. In the heat storage operation mode, by adjusting at least one of the opening degree of the load-side unit expansion means 204 and the opening degree of the sixth opening / closing device 310, the load-side unit 200 is moved to the load-side heat exchanger 202 side. The flow rate of the one refrigerant flowing and the flow rate of the other refrigerant flowing to the heat storage unit 30 side of the heat storage unit 300 can be adjusted.
[オンデフロスト運転モード]
 次に、図7を用いて、冷凍サイクル装置500のオンデフロスト運転モードについて説明する。冷凍サイクル装置500のオンデフロスト運転モードでは、図7および図9に示すように、第2開閉装置114、第3開閉装置302、第4開閉装置304、および第7開閉装置312は、「開」に設定されている。また、第1開閉装置108、第5開閉装置306、および第6開閉装置310は、「閉」に設定されている。また、第3流路切替装置104は、圧縮機102の冷媒吐出側と負荷側熱交換器202とを連通させ、且つ圧縮機102の冷媒吸入側と熱源側熱交換器106とを連通させるように設定されている。
[On-defrost operation mode]
Next, the on-defrost operation mode of the refrigeration cycle apparatus 500 will be described with reference to FIG. In the on-defrost operation mode of the refrigeration cycle apparatus 500, as shown in FIGS. 7 and 9, the second opening / closing device 114, the third opening / closing device 302, the fourth opening / closing device 304, and the seventh opening / closing device 312 are “open”. Is set to The first opening / closing device 108, the fifth opening / closing device 306, and the sixth opening / closing device 310 are set to “closed”. The third flow switching device 104 communicates the refrigerant discharge side of the compressor 102 and the load side heat exchanger 202 and communicates the refrigerant suction side of the compressor 102 and the heat source side heat exchanger 106. Is set to
 図7に示すように、オンデフロスト運転モードでは、熱源側ユニット100の圧縮機102で高温高圧にされた冷媒は、第2開閉装置114側に流れる一方の冷媒と、第3流路切替装置104側に流れる他方の冷媒とに分岐される。なお、図7においては、この発明の理解を容易にするため、分岐される前の冷媒の流れおよび分岐された冷媒の合流後の冷媒の流れを太線の実線の矢印で記載し、第2開閉装置114側に分岐された一方の冷媒の流れを細線の実線の矢印で記載し、第3流路切替装置104側に分岐された他方の冷媒の流れを細線の点線の矢印で記載してある。 As shown in FIG. 7, in the on-defrost operation mode, the high-temperature and high-pressure refrigerant in the compressor 102 of the heat source side unit 100 is one refrigerant flowing to the second opening / closing device 114 side and the third flow path switching device 104. Branches to the other refrigerant flowing to the side. In FIG. 7, in order to facilitate understanding of the present invention, the flow of the refrigerant before branching and the flow of the refrigerant after joining the branched refrigerant are indicated by bold solid arrows, and the second open / close state is shown. The flow of one refrigerant branched to the device 114 side is indicated by a thin solid arrow, and the other refrigerant flow branched to the third flow path switching device 104 side is indicated by a thin dotted arrow. .
 第2開閉装置114側に分岐された一方の冷媒は、細線の実線の矢印で示すように、第2開閉装置114を通り、熱源側熱交換器106を流れる。熱源側熱交換器106を流れる一方の冷媒は、熱源側熱交換器106を加熱して、熱源側熱交換器106から流出する。熱源側熱交換器106から流出した一方の冷媒は、第3流路切替装置104を経由して、他方の冷媒と合流する。合流した冷媒は、アキュムレータ112を経由して、圧縮機102に吸入され、再び圧縮される。 One refrigerant branched to the second opening / closing device 114 side passes through the second opening / closing device 114 and flows through the heat source side heat exchanger 106 as indicated by a thin solid line arrow. One refrigerant flowing through the heat source side heat exchanger 106 heats the heat source side heat exchanger 106 and flows out of the heat source side heat exchanger 106. One refrigerant that has flowed out of the heat source side heat exchanger 106 joins the other refrigerant via the third flow path switching device 104. The merged refrigerant is sucked into the compressor 102 via the accumulator 112 and compressed again.
 また、第3流路切替装置104側に分岐された他方の冷媒は、細線の点線の矢印で示すように、第3流路切替装置104を経由して、熱源側ユニット100から流出する。熱源側ユニット100から流出した他方の冷媒は、負荷側ユニット200に流入し、負荷側熱交換器202を流れる。負荷側熱交換器202で熱交換され凝縮した他方の冷媒は、負荷側ユニット膨張手段204を経由して、負荷側ユニット200から流出する。負荷側ユニット200から流出した他方の冷媒は、蓄熱ユニット300の第3接続部324から蓄熱ユニット300に流入する。蓄熱ユニット300に流入した他方の冷媒は、第2流路切替装置314を通って、冷媒流路40の他端38から蓄熱部30に流入する。つまり、蓄熱ユニット300に流入した他方の冷媒は、第7開閉装置312を通って、冷媒流路40に流入する。冷媒流路40に流入した他方の冷媒は、蓄熱材34と熱交換を行い、一端36から流出する。すなわち、オンデフロスト運転モードでは、他方の冷媒は、蓄熱部30から吸熱する(換言すると、蓄熱材34を冷却する)。冷媒流路40から流出した他方の冷媒は、第1流路切替装置308を通って、第2接続部322から流出する。つまり、冷媒流路40から流出した他方の冷媒は、第3開閉装置302を通って、蓄熱ユニット300の第2接続部322から流出する。蓄熱ユニット300から流出した他方の冷媒は、熱源側ユニット100に流入して、一方の冷媒と合流する。合流した冷媒は、アキュムレータ112を経由して、圧縮機102に吸入され、再び圧縮される。なお、オンデフロスト運転モードでは、負荷側ユニット膨張手段204の開度を調整することによって、熱源側ユニット100の熱源側熱交換器106側に流れる一方の冷媒の流量と、負荷側ユニット200の負荷側熱交換器202側に流れる他方の冷媒の流量と、を調整することができる。 Further, the other refrigerant branched to the third flow path switching device 104 side flows out from the heat source side unit 100 via the third flow path switching device 104, as indicated by a thin dotted line arrow. The other refrigerant flowing out of the heat source side unit 100 flows into the load side unit 200 and flows through the load side heat exchanger 202. The other refrigerant that has been heat-exchanged and condensed by the load-side heat exchanger 202 flows out of the load-side unit 200 via the load-side unit expansion means 204. The other refrigerant that has flowed out of the load side unit 200 flows into the heat storage unit 300 from the third connection portion 324 of the heat storage unit 300. The other refrigerant flowing into the heat storage unit 300 flows into the heat storage unit 30 from the other end 38 of the refrigerant flow path 40 through the second flow path switching device 314. That is, the other refrigerant that has flowed into the heat storage unit 300 flows into the refrigerant flow path 40 through the seventh opening / closing device 312. The other refrigerant flowing into the refrigerant flow path 40 exchanges heat with the heat storage material 34 and flows out from one end 36. That is, in the on-defrost operation mode, the other refrigerant absorbs heat from the heat storage unit 30 (in other words, cools the heat storage material 34). The other refrigerant that has flowed out of the refrigerant flow path 40 flows out of the second connection portion 322 through the first flow path switching device 308. That is, the other refrigerant that has flowed out of the refrigerant flow path 40 flows out of the second connection portion 322 of the heat storage unit 300 through the third opening / closing device 302. The other refrigerant that has flowed out of the heat storage unit 300 flows into the heat source unit 100 and merges with the one refrigerant. The merged refrigerant is sucked into the compressor 102 via the accumulator 112 and compressed again. In the on-defrost operation mode, the flow rate of one refrigerant flowing to the heat source side heat exchanger 106 side of the heat source side unit 100 and the load of the load side unit 200 are adjusted by adjusting the opening degree of the load side unit expansion means 204. It is possible to adjust the flow rate of the other refrigerant flowing to the side heat exchanger 202 side.
[リバースデフロスト運転モード]
 次に、図8を用いて、冷凍サイクル装置500のリバースデフロスト運転モードについて説明する。冷凍サイクル装置500のリバースデフロスト運転モードでは、図8および図9に示すように、第2開閉装置114は、「開」に設定されている。また、第1開閉装置108、第3開閉装置302、第4開閉装置304、第5開閉装置306、第6開閉装置310、および第7開閉装置312は、「閉」に設定されている。また、第3流路切替装置104は、圧縮機102の冷媒吸入側と熱源側熱交換器106とを連通させるように設定されている。
[Reverse defrost operation mode]
Next, the reverse defrost operation mode of the refrigeration cycle apparatus 500 will be described with reference to FIG. In the reverse defrost operation mode of the refrigeration cycle apparatus 500, as shown in FIGS. 8 and 9, the second opening / closing device 114 is set to “open”. The first opening / closing device 108, the third opening / closing device 302, the fourth opening / closing device 304, the fifth opening / closing device 306, the sixth opening / closing device 310, and the seventh opening / closing device 312 are set to “closed”. The third flow path switching device 104 is set so that the refrigerant suction side of the compressor 102 and the heat source side heat exchanger 106 communicate with each other.
 図8に示すように、リバースデフロスト運転モードでは、熱源側ユニット100の圧縮機102で高温高圧にされた冷媒は、第2開閉装置114を通って、熱源側熱交換器106を流れる。熱源側熱交換器106を流れる冷媒は、熱源側熱交換器106を過熱して、熱源側熱交換器106から流出する。熱源側熱交換器106から流出した冷媒は、第3流路切替装置104、アキュムレータ112を経由して、圧縮機102に吸入され、再び圧縮される。 As shown in FIG. 8, in the reverse defrost operation mode, the refrigerant that has been heated to high temperature and pressure by the compressor 102 of the heat source side unit 100 flows through the heat source side heat exchanger 106 through the second opening / closing device 114. The refrigerant flowing through the heat source side heat exchanger 106 superheats the heat source side heat exchanger 106 and flows out of the heat source side heat exchanger 106. The refrigerant that has flowed out of the heat source side heat exchanger 106 is sucked into the compressor 102 via the third flow path switching device 104 and the accumulator 112, and is compressed again.
[暖房動作]
 次に、上記のように構成された冷凍サイクル装置500の暖房動作の一例について説明する。この実施の形態の冷凍サイクル装置500は、暖房動作について、図5に記載の暖房運転モード、図6に記載の蓄熱運転モード、図7に記載のオンデフロスト運転モード、および図8に記載のリバースデフロスト運転モードを含んでおり、これらの運転モードを切り替えて暖房を行う。図10は、図1に記載の空気調和装置の暖房動作時の動作の一例を説明する図である。
[Heating operation]
Next, an example of the heating operation of the refrigeration cycle apparatus 500 configured as described above will be described. The refrigeration cycle apparatus 500 according to this embodiment has a heating operation mode shown in FIG. 5, a heat storage operation mode shown in FIG. 6, an on-defrost operation mode shown in FIG. 7, and a reverse operation shown in FIG. Defrosting operation modes are included, and heating is performed by switching these operation modes. FIG. 10 is a diagram illustrating an example of an operation during a heating operation of the air-conditioning apparatus illustrated in FIG.
 図10に示すように、例えばユーザからの指示に従って、冷凍サイクル装置500の暖房動作がスタートする。ステップS02にて、図1に記載の制御部50は、温度検出部60が検出した室外の温度である外気温度hを取得する。ステップS04にて、制御部50は、外気温度hが第1温度h1よりも高いか否かを判断する。第1温度h1は、冷凍サイクル装置500の暖房動作時に、蒸発器として機能する熱源側熱交換器106に、霜が付着するおそれが低い温度であり、例えば7度である。外気温度hが第1温度h1よりも高い温度範囲である第1温度範囲では、熱源側熱交換器106に霜が付着するおそれが低い。そこで、ステップS04にて、外気温度hが第1温度h1よりも高い第1温度範囲にあるときは、ステップS06に進み、制御部50は、図5に示す暖房運転モードで、冷凍サイクル装置500を動作させる。そして、図10のステップS04に戻る。 As shown in FIG. 10, for example, the heating operation of the refrigeration cycle apparatus 500 starts in accordance with an instruction from the user. In step S02, the control unit 50 illustrated in FIG. 1 acquires an outdoor temperature h that is an outdoor temperature detected by the temperature detection unit 60. In step S04, the controller 50 determines whether or not the outside air temperature h is higher than the first temperature h1. The first temperature h <b> 1 is a temperature at which frost is unlikely to adhere to the heat source side heat exchanger 106 that functions as an evaporator during the heating operation of the refrigeration cycle apparatus 500, and is, for example, 7 degrees. In the first temperature range in which the outside air temperature h is higher than the first temperature h1, there is a low possibility that frost will adhere to the heat source side heat exchanger 106. Therefore, when the outside air temperature h is in the first temperature range higher than the first temperature h1 in step S04, the process proceeds to step S06, and the control unit 50 performs the refrigeration cycle apparatus 500 in the heating operation mode shown in FIG. To work. Then, the process returns to step S04 in FIG.
 ステップS04にて、外気温度hが、第1温度h1以下である場合には、ステップS08に進む。ステップS08にて、制御部50は、外気温度hが、第2温度h2以上であるか否かを判断する。第2温度h2は、冷凍サイクル装置500の暖房動作時に、蒸発器として機能する熱源側熱交換器106に、霜が付着するおそれがあるが、仮に熱源側熱交換器106に霜が付着したとしても、霜の付着の程度が低い温度である。第2温度h2は、例えばマイナス5度である。外気温度hが、第1温度h1以下であり且つ第2温度h2以上である、第2温度範囲にあるときは、霜が付着するおそれがあるが、仮に熱源側熱交換器106に霜が付着したとしても、霜の付着の程度が低い温度範囲である。そこで、外気温度hが第2温度範囲にあるときは、以下に説明するように、蓄熱運転モード、オンデフロスト運転モードの順に運転を行う。すなわち、ステップS08にて、外気温度hが、第1温度h1以下であり且つ第2温度h2以上である、第2温度範囲にある場合は、ステップS10に進む。ステップS10にて、制御部50は、図6に示す蓄熱運転モードで、冷凍サイクル装置500を動作させ、ステップS12にて、蓄熱運転モードでの動作を時間t1(分)行う。なお、蓄熱材34が潜熱タイプの潜熱蓄熱材である場合は、例えば、ステップS12において、蓄熱部30への冷媒の流量が実質的に一定となるように、負荷側ユニット膨張手段204の開度、および第6開閉装置310の開度のうちの少なくとも一方を調整するとよい。また、蓄熱材34が顕熱タイプの顕熱蓄熱材である場合は、例えば、ステップS12において、蓄熱部30への冷媒の流量が徐々に少なくなるように、負荷側ユニット膨張手段204の開度、および第6開閉装置310の開度のうちの少なくとも一方を調整するとよい。このように、蓄熱材34の種類に応じて、蓄熱部30に温熱を蓄える際の、冷媒の流量を調整することによって、冷媒と蓄熱材34との熱交換の効率を向上させることができる。ステップS12で蓄熱運転モードでの動作をt1(分)行った後に、ステップS14に進み、制御部50は、図7に示すオンデフロスト運転モードで、冷凍サイクル装置500を動作させ、ステップS16にて、オンデフロスト運転モードでの動作を時間t2(分)行う。そして、図10に示すステップS04に戻る。なお、時間t1および時間t2は、外気温度h、蓄熱部30の構成(仕様)、および熱源側ユニット100の馬力等に応じて定まるものである。例えば、時間t1は20~30分程度であり、時間t2は時間t1と比較して短い5~10分程度である。時間t1および時間t2は、外気温度hに応じて変化させてもよい。 In step S04, if the outside air temperature h is equal to or lower than the first temperature h1, the process proceeds to step S08. In step S08, control unit 50 determines whether or not outside temperature h is equal to or higher than second temperature h2. As for 2nd temperature h2, although there exists a possibility that frost may adhere to the heat source side heat exchanger 106 which functions as an evaporator at the time of heating operation of the refrigeration cycle apparatus 500, suppose that frost adhered to the heat source side heat exchanger 106 temporarily. Is a temperature at which the degree of frost adhesion is low. The second temperature h2 is, for example, minus 5 degrees. When the outside air temperature h is in the second temperature range that is equal to or lower than the first temperature h1 and equal to or higher than the second temperature h2, frost may be attached, but frost is temporarily attached to the heat source side heat exchanger 106. Even if it is, it is a temperature range with a low degree of frost adhesion. Therefore, when the outside air temperature h is in the second temperature range, the operation is performed in the order of the heat storage operation mode and the on-defrost operation mode, as described below. That is, in step S08, if the outside air temperature h is in the second temperature range that is equal to or lower than the first temperature h1 and equal to or higher than the second temperature h2, the process proceeds to step S10. In step S10, control unit 50 operates refrigeration cycle apparatus 500 in the heat storage operation mode shown in FIG. 6, and in step S12, operation in heat storage operation mode is performed for time t1 (minutes). When the heat storage material 34 is a latent heat type latent heat storage material, for example, in step S12, the opening degree of the load-side unit expansion means 204 is set so that the flow rate of the refrigerant to the heat storage unit 30 is substantially constant. And at least one of the opening degrees of the sixth opening / closing device 310 may be adjusted. Further, when the heat storage material 34 is a sensible heat type sensible heat storage material, for example, in step S12, the opening degree of the load-side unit expansion means 204 so that the flow rate of the refrigerant to the heat storage unit 30 gradually decreases. And at least one of the opening degrees of the sixth opening / closing device 310 may be adjusted. As described above, the efficiency of heat exchange between the refrigerant and the heat storage material 34 can be improved by adjusting the flow rate of the refrigerant when storing the heat in the heat storage unit 30 according to the type of the heat storage material 34. After performing the operation in the heat storage operation mode in step S12 for t1 (minutes), the process proceeds to step S14, and the control unit 50 operates the refrigeration cycle apparatus 500 in the on-defrost operation mode shown in FIG. The operation in the on-defrost operation mode is performed for time t2 (minutes). And it returns to step S04 shown in FIG. The time t1 and the time t2 are determined according to the outside air temperature h, the configuration (specifications) of the heat storage unit 30, the horsepower of the heat source unit 100, and the like. For example, the time t1 is about 20 to 30 minutes, and the time t2 is about 5 to 10 minutes which is shorter than the time t1. The time t1 and the time t2 may be changed according to the outside air temperature h.
 ステップS08にて、外気温度hが、第2温度h2よりも低い場合には、ステップS18に進む。外気温度hが第2温度h2よりも低い温度範囲である第3温度範囲にあるときは、熱源側熱交換器106に霜が付着しやすく、且つ霜の付着の程度が高い。そこで、ステップS18にて、制御部50は、リバースデフロスト運転(除霜運転)を行うか否かを判断する。ステップS18での除霜運転を行うか否かの判断は、例えば、制御部50が、外気温度hが連続して第3温度範囲にある連続時間を算出し、その連続時間が所定時間を超えたか否かによって行われる。すなわち、外気温度hが所定時間連続して第3温度範囲にある場合は、除霜運転を行うと判断して、ステップS20に進み、リバースデフロスト運転を実行する。なお、熱源側熱交換器106の着霜を検出する着霜センサ(図示を省略)を備えている場合には、ステップS18にて、着層センサが着霜を検出した場合に、除霜を行うと判断して、ステップS20に進んでもよい。ステップS20にて、制御部50は、図8に示すリバースデフロスト運転モードで、冷凍サイクル装置500を動作させる。そして、図10に示すステップS04に戻る。なお、ステップS18にて、除霜運転を行わないと判断した場合も、ステップS04に戻る。 In step S08, if the outside air temperature h is lower than the second temperature h2, the process proceeds to step S18. When the outside air temperature h is in the third temperature range that is lower than the second temperature h2, frost is likely to adhere to the heat source side heat exchanger 106, and the degree of frost adhesion is high. Therefore, in step S18, the control unit 50 determines whether or not to perform reverse defrosting operation (defrosting operation). For example, the control unit 50 calculates the continuous time in which the outside air temperature h is continuously in the third temperature range, and the continuous time exceeds a predetermined time. It is done depending on whether or not. That is, when the outside air temperature h is continuously within the third temperature range for a predetermined time, it is determined that the defrosting operation is performed, the process proceeds to step S20, and the reverse defrost operation is performed. In addition, when the frost formation sensor (illustration omitted) which detects the frost formation of the heat source side heat exchanger 106 is provided, defrosting is performed when the layer formation sensor detects the frost formation in step S18. It may be determined that it will be performed, and the process may proceed to step S20. In step S20, control unit 50 operates refrigeration cycle apparatus 500 in the reverse defrost operation mode shown in FIG. And it returns to step S04 shown in FIG. In addition, also when it determines not performing defrost operation in step S18, it returns to step S04.
 上記のように、この実施の形態に係る冷凍サイクル装置500は、蓄熱ユニット300を含んで構成されているため、熱源側熱交換器106の除霜を行いつつ、負荷側熱交換器202を凝縮器として機能させて、室内の暖房を行うことができる。つまり、この実施の形態に係る冷凍サイクル装置500では、図6に示す蓄熱運転モードにて、蓄熱ユニット300の蓄熱部30に温熱を蓄熱している。そして、図7に示すオンデフロスト運転モードにて、蓄熱運転モードで蓄熱部30に蓄熱した温熱を利用して、負荷側熱交換器202を凝縮器として機能させつつ、熱源側熱交換器106の除霜を行うことができる。そのため、この実施の形態に係る冷凍サイクル装置500によれば、熱源側熱交換器106の除霜を行いながら、室内の暖房を行うことができるため、室内の快適性が向上されている。さらに、この実施の形態の冷凍サイクル装置500では、熱源側熱交換器106の除霜を行っているときであっても、室内の暖房を行うことができるため、積算暖房能力が向上されている。 As described above, since the refrigeration cycle apparatus 500 according to this embodiment includes the heat storage unit 300, the load-side heat exchanger 202 is condensed while defrosting the heat source-side heat exchanger 106. The room can be heated by functioning as a heater. That is, in the refrigeration cycle apparatus 500 according to this embodiment, heat is stored in the heat storage unit 30 of the heat storage unit 300 in the heat storage operation mode shown in FIG. Then, in the on-defrost operation mode shown in FIG. 7, using the heat stored in the heat storage unit 30 in the heat storage operation mode, the load side heat exchanger 202 functions as a condenser, and the heat source side heat exchanger 106 Defrosting can be performed. Therefore, according to the refrigeration cycle apparatus 500 according to this embodiment, the indoor comfort can be improved while the indoor heating can be performed while the heat source side heat exchanger 106 is defrosted. Furthermore, in the refrigeration cycle apparatus 500 of this embodiment, since the room can be heated even when the heat source side heat exchanger 106 is defrosted, the integrated heating capacity is improved. .
 さらに、この実施の形態に係る冷凍サイクル装置500では、熱源側熱交換器106に着霜するおそれがあるときに、蓄熱運転モードとオンデフロスト運転モードとを繰り返して、除霜運転を定期的に行うため、熱源側熱交換器106への霜の付着のおそれが低減されている。その結果、この実施の形態によれば、熱源側熱交換器106での熱交換が効率良く行われるため、冷凍サイクル装置500の効率が向上されている。さらに、圧縮機102が液圧縮するおそれも抑制されている。 Furthermore, in the refrigeration cycle apparatus 500 according to this embodiment, when there is a risk of frost formation on the heat source side heat exchanger 106, the heat storage operation mode and the on-defrost operation mode are repeated, and the defrosting operation is periodically performed. Therefore, the risk of frost adhering to the heat source side heat exchanger 106 is reduced. As a result, according to this embodiment, since the heat exchange in the heat source side heat exchanger 106 is efficiently performed, the efficiency of the refrigeration cycle apparatus 500 is improved. Furthermore, the possibility that the compressor 102 is liquid-compressed is also suppressed.
 また、この実施の形態に係る蓄熱ユニット300が、既存の熱源側ユニットおよび負荷側ユニットに、取り付けられることによって、上記の冷凍サイクル装置500を得ることができる。 Moreover, the above-described refrigeration cycle apparatus 500 can be obtained by attaching the heat storage unit 300 according to this embodiment to an existing heat source side unit and load side unit.
 この発明は、上記の実施の形態に限定されるものではなく、この発明の範囲内で種々に改変することができる。すなわち、上記の実施の形態の構成を適宜改良してもよく、また、少なくとも一部を他の構成に代替させてもよい。さらに、その配置について特に限定のない構成要件は、実施の形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。 The present invention is not limited to the above embodiment, and can be variously modified within the scope of the present invention. That is, the configuration of the above embodiment may be improved as appropriate, or at least a part of the configuration may be replaced with another configuration. Further, the configuration requirements that are not particularly limited with respect to the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved.
 例えば、上記の説明では、空気調和装置を構成する冷凍サイクル装置500についての説明を行ったが、冷凍サイクル装置500は、負荷側熱交換器202を凝縮器として機能させる給湯装置等の他の装置に適用することもできる。 For example, in the above description, the refrigeration cycle apparatus 500 constituting the air conditioner has been described. However, the refrigeration cycle apparatus 500 is another apparatus such as a hot water supply apparatus that causes the load-side heat exchanger 202 to function as a condenser. It can also be applied to.
 30 蓄熱部、32 蓄熱タンク、33 電気品箱、34 蓄熱材、36 一端、38 他端、40 冷媒流路、50 制御部、60 温度検出部、100 熱源側ユニット、102 圧縮機、104 第3流路切替装置、104A 第3A流路切替装置、104B 第3B流路切替装置、106 熱源側熱交換器、106A 第1熱源側熱交換器、106B 第2熱源側熱交換器、108 第1開閉装置、108A 第1A開閉装置、108B 第1B開閉装置、110 分配器、112 アキュムレータ、114 第2開閉装置、114A 第2A開閉装置、114B 第2B開閉装置、200 負荷側ユニット、202 負荷側熱交換器、204 負荷側ユニット膨張手段、300 蓄熱ユニット、302 第3開閉装置、304 第4開閉装置、306 第5開閉装置、308 第1流路切替装置、310 第6開閉装置、312 第7開閉装置、314 第2流路切替装置、320 第1接続部、322 第2接続部、324 第3接続部、326 第4接続部、500 冷凍サイクル装置、h 外気温度、h1 第1温度、h2 第2温度。 30 heat storage section, 32 heat storage tank, 33 electrical box, 34 heat storage material, 36 one end, 38 other end, 40 refrigerant flow path, 50 control section, 60 temperature detection section, 100 heat source side unit, 102 compressor, 104 third Channel switching device, 104A, 3A channel switching device, 104B, 3B channel switching device, 106 heat source side heat exchanger, 106A, first heat source side heat exchanger, 106B, second heat source side heat exchanger, 108, first opening / closing Device, 108A 1A switchgear, 108B 1B switchgear, 110 distributor, 112 accumulator, 114 second switchgear, 114A 2A switchgear, 114B 2B switchgear, 200 load side unit, 202 load side heat exchanger 204, load side unit expansion means, 300 heat storage unit, 302 third switchgear, 304 4 switchgear, 306, 5th switchgear, 308, 1st flow path switching device, 310, 6th switchgear, 312, 7th switchgear, 314, 2nd flow path switcher, 320, 1st connection part, 322, 2nd connection part, 324 3rd connection part, 326 4th connection part, 500 refrigeration cycle device, h outside temperature, h1 first temperature, h2 second temperature.

Claims (9)

  1.  圧縮機と負荷側熱交換器と熱源側熱交換器とを有し、冷媒を循環させる冷凍サイクル装置、の一部を構成する蓄熱ユニットであって、
     前記圧縮機の冷媒吐出側に接続される第1接続部と、
     前記圧縮機の冷媒吸入側に接続される第2接続部と、
     前記負荷側熱交換器が凝縮器として機能するときの、前記負荷側熱交換器の冷媒流出側に接続される第3接続部と、
     前記熱源側熱交換器が蒸発器として機能するときの、前記熱源側熱交換器の冷媒流入側に接続される第4接続部と、
     一端が前記第1接続部および前記第2接続部に接続され、他端が前記第3接続部および前記第4接続部に接続された冷媒流路と、前記冷媒流路に流れる冷媒と熱交換して熱を蓄熱する蓄熱材と、を有する蓄熱部と、
     前記冷媒流路の一端側に設置され、前記冷媒流路の一端に、前記第1接続部または前記第2接続部を選択的に連通させる、第1流路切替装置と、
     前記冷媒流路の他端側に設置され、前記冷媒流路の他端に、前記第3接続部または前記第4接続部を選択的に連通させる、第2流路切替装置と、を備えた、
     蓄熱ユニット。
    A heat storage unit constituting a part of a refrigeration cycle apparatus having a compressor, a load side heat exchanger, and a heat source side heat exchanger, and circulating a refrigerant,
    A first connection connected to the refrigerant discharge side of the compressor;
    A second connection portion connected to the refrigerant suction side of the compressor;
    A third connecting portion connected to a refrigerant outflow side of the load side heat exchanger when the load side heat exchanger functions as a condenser;
    A fourth connecting portion connected to the refrigerant inflow side of the heat source side heat exchanger when the heat source side heat exchanger functions as an evaporator;
    One end is connected to the first connection portion and the second connection portion, the other end is connected to the third connection portion and the fourth connection portion, and heat exchange with the refrigerant flowing in the refrigerant passage A heat storage material for storing heat, and a heat storage unit having
    A first flow path switching device that is installed on one end side of the refrigerant flow path and selectively communicates the first connection part or the second connection part with one end of the refrigerant flow path;
    A second flow path switching device that is installed on the other end side of the refrigerant flow path and selectively communicates the third connection part or the fourth connection part with the other end of the refrigerant flow path. ,
    Thermal storage unit.
  2.  前記第3接続部と前記第4接続部とが連通している、
     請求項1記載の蓄熱ユニット。
    The third connection portion and the fourth connection portion communicate with each other.
    The heat storage unit according to claim 1.
  3.  前記冷凍サイクル装置の制御を行う制御部をさらに備えた、
     請求項1または請求項2記載の蓄熱ユニット。
    A control unit for controlling the refrigeration cycle apparatus;
    The heat storage unit according to claim 1 or 2.
  4.  請求項1~請求項3の何れか1項に記載の蓄熱ユニットと、
     圧縮機と熱源側熱交換器とを有する熱源側ユニットと、
     負荷側熱交換器を有する負荷側ユニットと、を備えた、
     冷凍サイクル装置。
    The heat storage unit according to any one of claims 1 to 3,
    A heat source side unit having a compressor and a heat source side heat exchanger;
    A load-side unit having a load-side heat exchanger,
    Refrigeration cycle equipment.
  5.  前記蓄熱ユニットは、前記熱源側ユニットおよび前記負荷側ユニットに着脱自在に取り付けられている、
     請求項4記載の冷凍サイクル装置。
    The heat storage unit is detachably attached to the heat source side unit and the load side unit.
    The refrigeration cycle apparatus according to claim 4.
  6.  前記熱源側ユニットは、
     前記熱源側熱交換器が蒸発器として機能するときの冷媒流入側と、前記第4接続部と、の連通または非連通を切り替える第1開閉装置と、
     前記熱源側熱交換器が蒸発器として機能するときの冷媒流入側と、前記圧縮機の冷媒吐出側と、の連通または非連通を切り替える第2開閉装置と、をさらに有する、
     請求項4または請求項5に記載の冷凍サイクル装置。
    The heat source side unit is:
    A first opening / closing device that switches communication or non-communication between the refrigerant inflow side when the heat source side heat exchanger functions as an evaporator and the fourth connection unit;
    A second opening / closing device that switches communication or non-communication between a refrigerant inflow side when the heat source side heat exchanger functions as an evaporator and a refrigerant discharge side of the compressor;
    The refrigeration cycle apparatus according to claim 4 or 5.
  7.  前記圧縮機から吐出した冷媒を、前記負荷側熱交換器、前記熱源側熱交換器、前記圧縮機の順に循環させるとともに、前記蓄熱部、前記熱源側熱交換器、前記圧縮機の順に循環させる蓄熱運転モードと、
     前記圧縮機から吐出した冷媒を、前記負荷側熱交換器、前記蓄熱部、前記圧縮機の順に循環させるとともに、前記熱源側熱交換器、前記圧縮機の順に循環させるオンデフロスト運転モードと、を含む、
     請求項6記載の冷凍サイクル装置。
    The refrigerant discharged from the compressor is circulated in the order of the load side heat exchanger, the heat source side heat exchanger, and the compressor, and is circulated in the order of the heat storage unit, the heat source side heat exchanger, and the compressor. Thermal storage operation mode,
    An on-defrost operation mode in which the refrigerant discharged from the compressor is circulated in the order of the load side heat exchanger, the heat storage unit, and the compressor, and is circulated in the order of the heat source side heat exchanger and the compressor. Including,
    The refrigeration cycle apparatus according to claim 6.
  8.  前記蓄熱運転モード、前記オンデフロスト運転モードの順に行う運転を繰り返す、
     請求項7記載の冷凍サイクル装置。
    Repeat the operation to perform in the order of the heat storage operation mode, the on-defrost operation mode,
    The refrigeration cycle apparatus according to claim 7.
  9.  前記圧縮機から吐出した冷媒を、前記負荷側熱交換器、前記熱源側熱交換器、前記圧縮機の順に循環させる第1運転モードと、
     前記圧縮機から吐出した冷媒を、前記熱源側熱交換器、前記圧縮機の順に循環させるリバースデフロスト運転モードと、をさらに含み、
     前記熱源側熱交換器が設置された室外の室外温度を検出する温度検出部をさらに備え、
     前記室外温度が第1温度範囲にある場合に、前記第1運転モードで運転を行い、
     前記室外温度が前記第1温度範囲と比較して低い温度範囲の第2温度範囲にある場合に、前記蓄熱運転モード、前記オンデフロスト運転モードの順に運転を行う、
     請求項7記載の冷凍サイクル装置。
    A first operation mode in which the refrigerant discharged from the compressor is circulated in the order of the load side heat exchanger, the heat source side heat exchanger, and the compressor;
    Further including a reverse defrost operation mode in which the refrigerant discharged from the compressor is circulated in the order of the heat source side heat exchanger and the compressor,
    A temperature detection unit that detects an outdoor temperature outside the heat source side heat exchanger installed;
    When the outdoor temperature is in the first temperature range, the operation is performed in the first operation mode,
    When the outdoor temperature is in a second temperature range that is lower than the first temperature range, the heat storage operation mode and the on-defrost operation mode are operated in this order.
    The refrigeration cycle apparatus according to claim 7.
PCT/JP2015/050476 2015-01-09 2015-01-09 Heat storage unit and refrigeration cycle device WO2016111003A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/050476 WO2016111003A1 (en) 2015-01-09 2015-01-09 Heat storage unit and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/050476 WO2016111003A1 (en) 2015-01-09 2015-01-09 Heat storage unit and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2016111003A1 true WO2016111003A1 (en) 2016-07-14

Family

ID=56355723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050476 WO2016111003A1 (en) 2015-01-09 2015-01-09 Heat storage unit and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2016111003A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106765779A (en) * 2017-01-10 2017-05-31 美的集团武汉制冷设备有限公司 A kind of defrosting control method of air-conditioner and air-conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328673A (en) * 1989-06-23 1991-02-06 Daikin Ind Ltd Thermal accumulating type air conditioner
JP2005024144A (en) * 2003-06-30 2005-01-27 Toshiba Kyaria Kk Air conditioner
JP2006029637A (en) * 2004-07-13 2006-02-02 Mitsubishi Electric Corp Heat storage type air conditioner and its operation method
JP2010164257A (en) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp Refrigerating cycle device and method of controlling the refrigerating cycle device
JP2012007751A (en) * 2010-06-22 2012-01-12 Fujitsu General Ltd Heat pump cycle device
JP2014020679A (en) * 2012-07-19 2014-02-03 Panasonic Corp Heat storage device and air conditioner including the same
WO2014061131A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
WO2014083867A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Air-conditioning device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328673A (en) * 1989-06-23 1991-02-06 Daikin Ind Ltd Thermal accumulating type air conditioner
JP2005024144A (en) * 2003-06-30 2005-01-27 Toshiba Kyaria Kk Air conditioner
JP2006029637A (en) * 2004-07-13 2006-02-02 Mitsubishi Electric Corp Heat storage type air conditioner and its operation method
JP2010164257A (en) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp Refrigerating cycle device and method of controlling the refrigerating cycle device
JP2012007751A (en) * 2010-06-22 2012-01-12 Fujitsu General Ltd Heat pump cycle device
JP2014020679A (en) * 2012-07-19 2014-02-03 Panasonic Corp Heat storage device and air conditioner including the same
WO2014061131A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
WO2014083867A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Air-conditioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106765779A (en) * 2017-01-10 2017-05-31 美的集团武汉制冷设备有限公司 A kind of defrosting control method of air-conditioner and air-conditioner
CN106765779B (en) * 2017-01-10 2019-11-29 美的集团武汉制冷设备有限公司 A kind of defrosting control method of air conditioner and air conditioner

Similar Documents

Publication Publication Date Title
JP6022058B2 (en) Heat source side unit and refrigeration cycle apparatus
CA2615689C (en) An air conditioning heat pump with secondary compressor
WO2013046720A1 (en) Hot-water-supplying, air-conditioning system
CN107110546B (en) Air conditioning apparatus
JP5308220B2 (en) Heat pump type hot water supply / air conditioner
JP5625691B2 (en) Refrigeration equipment
JP6538290B1 (en) Air conditioner
CN111256290A (en) Heat pump air conditioner
US20150285519A1 (en) Air-conditioning apparatus
JP6545252B2 (en) Refrigeration cycle device
JP6415709B2 (en) Air conditioner and indoor unit
JP2013083439A5 (en)
JP2009145032A (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP6524670B2 (en) Air conditioner
WO2017037891A1 (en) Refrigeration cycle device
JPWO2020065791A1 (en) Air conditioning hot water supply device
JP2014081180A (en) Heat pump apparatus
WO2016111003A1 (en) Heat storage unit and refrigeration cycle device
KR101674302B1 (en) Refrigerator for Constant-Temperature System
JP2010255994A (en) Heat pump type air conditioner with hot-water supply function
JPWO2018051409A1 (en) Refrigeration cycle device
WO2016166873A1 (en) Heat pump system
JP7058717B2 (en) Heat pump system
WO2019008742A1 (en) Refrigeration cycle device
JP2014190641A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15876878

Country of ref document: EP

Kind code of ref document: A1