JPS5971963A - Heat pump type refrigeration cycle - Google Patents

Heat pump type refrigeration cycle

Info

Publication number
JPS5971963A
JPS5971963A JP18348582A JP18348582A JPS5971963A JP S5971963 A JPS5971963 A JP S5971963A JP 18348582 A JP18348582 A JP 18348582A JP 18348582 A JP18348582 A JP 18348582A JP S5971963 A JPS5971963 A JP S5971963A
Authority
JP
Japan
Prior art keywords
refrigeration cycle
solenoid valve
valve
way switching
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18348582A
Other languages
Japanese (ja)
Other versions
JPS6361584B2 (en
Inventor
乾 嘉雄
横藤田 光正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP18348582A priority Critical patent/JPS5971963A/en
Publication of JPS5971963A publication Critical patent/JPS5971963A/en
Publication of JPS6361584B2 publication Critical patent/JPS6361584B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はヒートポンプ式冷凍サイクルに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump type refrigeration cycle.

従来のヒートポンプ式冷凍サイクルにおいては、第1図
に示すごとく圧縮機1.四方切換弁3.室外側熱交換器
4.膨張装置5および室内側熱交換器6を順次環状に接
続し、冷房運転時には実線矢印で示すごとく圧縮機1か
らの高温高圧の冷媒ガスを室外側熱交換器4に送り、こ
こで凝縮した後膨張装置5を介して室内側熱交換器6で
蒸発させ、暖房運転時には破線矢印で示すごとく圧縮機
1からの高温高圧の冷媒ガスを逆循環させて暖房を行う
ものである。
In a conventional heat pump type refrigeration cycle, as shown in Fig. 1, a compressor 1. Four-way switching valve 3. Outdoor heat exchanger4. The expansion device 5 and the indoor heat exchanger 6 are sequentially connected in an annular manner, and during cooling operation, high-temperature, high-pressure refrigerant gas is sent from the compressor 1 to the outdoor heat exchanger 4 as shown by the solid arrow, where it is condensed. The refrigerant gas is evaporated in the indoor heat exchanger 6 via the expansion device 5, and during heating operation, high-temperature, high-pressure refrigerant gas from the compressor 1 is reversely circulated as shown by the broken line arrow to perform heating.

一般にこの種の冷凍サイクルにおいて、暖房運転時、除
霜を行う場合、四方切換弁3を切換えることにより高温
高圧の冷媒ガスを室外側熱交換器4に流し、該熱交換器
4に付着した霜と熱交換させ、霜を融解除去するように
なっているが、該四方切換弁3を切換える際、室内側熱
交換器6中にあった高圧の液冷媒が圧縮機1に逆流し、
液圧縮防止用のアキュムレーター2中に滞留してしまい
、当冷凍サイクル中を循環する冷媒量が不足するため十
分な除霜が行なえず、またこのために、除霜に多大の時
間を必要とし、その間暖房運転ができないことより、室
温の低下をまねき、快適性をそこなうという欠点があっ
た。
Generally, in this type of refrigeration cycle, when defrosting is performed during heating operation, the four-way switching valve 3 is switched to flow high-temperature, high-pressure refrigerant gas to the outdoor heat exchanger 4. However, when the four-way switching valve 3 is switched, the high-pressure liquid refrigerant in the indoor heat exchanger 6 flows back into the compressor 1.
The refrigerant accumulates in the accumulator 2 to prevent liquid compression, and the amount of refrigerant circulating through the refrigeration cycle is insufficient, making it impossible to defrost the fluid sufficiently. However, heating operation cannot be performed during this time, which leads to a drop in room temperature, which impairs comfort.

本発明は、上記欠点を除去することを目的としてなした
ものであり、除霜時の圧縮機への液戻りを防止し、効果
的な除霜を行ない除霜時間の短縮を図ったヒートポンプ
式冷凍サイクルを提供するものである。
The present invention was made with the aim of eliminating the above-mentioned drawbacks, and is a heat pump type that prevents liquid from returning to the compressor during defrosting, performs effective defrosting, and shortens defrosting time. It provides a refrigeration cycle.

以、下、本発明の一実施例を図面に基いて説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図は本発明に係るヒートポンプ式冷凍サイクルの冷
媒回路図、第3図は同冷凍サイクルにおける四方切換弁
及び第1.第2電磁弁の動作説明図、第4図ないし第6
図は本発明の他の実施例を示した冷媒回路図である。
FIG. 2 is a refrigerant circuit diagram of a heat pump type refrigeration cycle according to the present invention, and FIG. Explanatory diagram of the operation of the second solenoid valve, Figures 4 to 6
The figure is a refrigerant circuit diagram showing another embodiment of the present invention.

なお、実線矢印は冷房運転時の冷媒の流れを示し、また
破線矢印は暖房運転時の冷媒の流れを示す。
Note that solid arrows indicate the flow of refrigerant during cooling operation, and dashed arrows indicate the flow of refrigerant during heating operation.

第2図においては、11は冷媒ガスを圧縮する圧縮機、
12は液戻り防止用のアキュムレーター、13は冷房運
転と暖房運転を切換える四方切換弁、14は冷房運転時
には凝縮器、暖房運転時には蒸発器として作用する室外
側熱交換器、15は膨張弁あるいはキャピラリーチュー
ブ等の膨張装置、16は冷房運転時には蒸発器、暖房運
転時には凝縮器として作用する室内側熱交換器、17は
本実施例では室外側熱交換器出口と室内側熱交換器入口
とを連通ずるバイパス流路、該バイパス流路は、第4図
乃至第6図に他の実施例を示すが室外側熱交換器14を
含む四方切換弁13と膨張装置15を結ぷ流路中の任意
の点と、室内側熱交換器16を含む四方切換弁13と膨
張装置15を結ぶ流路中の任意の点を連通ずるバイパス
流路であれば、その場所はどこでも良い。18は上記バ
イパス流路に設けられた第1の電磁弁、19は圧縮機1
の吸入側と四方切換弁13とを結ぶ流路中に設けられた
第2の電磁弁である。
In FIG. 2, 11 is a compressor that compresses refrigerant gas;
12 is an accumulator for preventing liquid return; 13 is a four-way switching valve that switches between cooling operation and heating operation; 14 is an outdoor heat exchanger that acts as a condenser during cooling operation and as an evaporator during heating operation; 15 is an expansion valve or An expansion device such as a capillary tube, 16 an indoor heat exchanger which acts as an evaporator during cooling operation and a condenser during heating operation, and 17 an outdoor heat exchanger outlet and an indoor heat exchanger inlet in this embodiment. The bypass flow path is a flow path connecting the four-way switching valve 13 including the outdoor heat exchanger 14 and the expansion device 15, other embodiments of which are shown in FIGS. 4 to 6. The bypass flow path may be located anywhere as long as it communicates an arbitrary point with any point in the flow path connecting the four-way switching valve 13 including the indoor heat exchanger 16 and the expansion device 15. 18 is a first solenoid valve provided in the bypass flow path; 19 is a compressor 1;
This is a second electromagnetic valve provided in a flow path connecting the suction side of the four-way switching valve 13 and the four-way switching valve 13.

第3図は四方切換弁I3、第1電磁弁18及び第2電磁
弁19の動作を示したものであり、冷凍サイクル切換時
、これらの弁はこの第3図に示した如く動作する。すな
わち、先ず、第1電磁弁18が開成し、第2電磁弁19
が閉成したのち、遅延して第1電磁弁18が閉成すると
共に四方切換弁13が切換わる。さらに遅延して、第2
電磁弁19が開成する。
FIG. 3 shows the operations of the four-way switching valve I3, the first solenoid valve 18, and the second solenoid valve 19. When switching the refrigeration cycle, these valves operate as shown in FIG. That is, first, the first solenoid valve 18 is opened, and the second solenoid valve 19 is opened.
After closing, the first electromagnetic valve 18 closes with a delay, and the four-way switching valve 13 switches. After further delay, the second
Solenoid valve 19 is opened.

次に上記冷凍サイクルの動作について説明する。Next, the operation of the refrigeration cycle will be explained.

この冷凍サイクルにおいて、通常の暖房運転時には、第
1電磁弁18は常に閉成し、また第2電磁弁19は常に
開成し、第1図に示した従来サイクルの運転状態と全く
同じである。
In this refrigeration cycle, during normal heating operation, the first solenoid valve 18 is always closed and the second solenoid valve 19 is always open, which is exactly the same as the operating state of the conventional cycle shown in FIG.

今、暖房運転時、タイマーディアイサーあるいは霜付検
出装置等(図示せず)の信号により、除霜を開始するた
め、冷凍サイクルを切換える場合、先ず第1電磁弁18
を開成し、又、第2電磁弁19を閉成する。これは同時
に行なっても良い腰あるいは、若干遅延させても良い。
Now, when switching the refrigeration cycle to start defrosting in response to a signal from a timer de-icer or a frost detection device (not shown) during heating operation, first the first solenoid valve 18
is opened, and the second solenoid valve 19 is closed. This can be done at the same time or slightly delayed.

こうすることによって、室内側熱交換器16中の高温高
圧の液冷媒は圧縮機11に逆流することなく、室外側熱
交換器14中へと移動する。この移動した高温高圧の液
冷媒のもつ熱により、室外側熱交換器14に付着した霜
の一部は融解をはじめる。
By doing so, the high temperature and high pressure liquid refrigerant in the indoor heat exchanger 16 moves into the outdoor heat exchanger 14 without flowing back into the compressor 11. Due to the heat of the transferred high-temperature, high-pressure liquid refrigerant, a portion of the frost adhering to the outdoor heat exchanger 14 begins to melt.

こうして、室内側熱交換器16中の液冷媒が、室外側熱
交換器14中へ移動し終った後、第1電磁弁18を閉成
すると共に四方切換弁13を切換える。これは、室外側
熱交換器14の圧力又は温度を検出して行っても良いし
、又、第1電磁弁18の最初の開成時から時間的に制御
しても良い。
In this way, after the liquid refrigerant in the indoor heat exchanger 16 has finished moving into the outdoor heat exchanger 14, the first electromagnetic valve 18 is closed and the four-way switching valve 13 is switched. This may be done by detecting the pressure or temperature of the outdoor heat exchanger 14, or may be controlled temporally from the first opening of the first electromagnetic valve 18.

しかる後、第2電磁弁19を開成すれば、本冷凍サイク
ルは完全に逆サイクルに切換わったことになり、圧縮機
11から吐出された高温高圧冷媒ガスにより、室外側熱
交換器14の除霜が開始される。
After that, if the second solenoid valve 19 is opened, the refrigeration cycle is completely switched to a reverse cycle, and the outdoor heat exchanger 14 is removed by the high temperature and high pressure refrigerant gas discharged from the compressor 11. Frost begins.

このように本冷凍サイクルでは、冷凍サイクル切換時に
液冷媒が圧縮機11のアキュムレーター12に逆流し滞
溜することなく、凝縮器中にホールドさせるので、冷凍
サイクル切換直後から効率の良い運転が可能となるため
、効果的な除霜が可能となると共に、圧縮機11への液
戻りによる液圧縮過電流等を防止でき、信頼性を向上さ
せることができる。
In this way, in this refrigeration cycle, when the refrigeration cycle is switched, the liquid refrigerant flows back into the accumulator 12 of the compressor 11 and is held in the condenser without stagnation, so efficient operation is possible immediately after the refrigeration cycle is switched. Therefore, effective defrosting is possible, liquid compression overcurrent due to liquid returning to the compressor 11, etc. can be prevented, and reliability can be improved.

また除霜終了後、暖房運転に切換える時は、同様に、第
1電磁弁18を開成し、第2電磁弁19を閉成した後、
遅延させて、第1電磁弁18を閉成すると共に四方切換
弁13を切換え、しかる後に第2電磁弁19を開成すれ
ば良い。
Furthermore, when switching to heating operation after defrosting, similarly, after opening the first solenoid valve 18 and closing the second solenoid valve 19,
After a delay, the first solenoid valve 18 is closed and the four-way switching valve 13 is switched, and then the second solenoid valve 19 is opened.

」二連のように本発明のヒートポンプ式冷凍サイクルに
よれば、暖房運転時除霜を行なう場合、短時間で効果的
な除霜が行なえるため、室温の低下も少なく、又、室外
側熱交換器を常に霜の付着の少ない効率の良い状態で使
用できるため、効率の良い快適な空調をすることができ
る。
According to the heat pump type refrigeration cycle of the present invention, as shown in the double series, when defrosting is carried out during heating operation, effective defrosting can be carried out in a short time, so the drop in room temperature is small, and the outdoor heat is Since the exchanger can always be used in an efficient state with little frost, efficient and comfortable air conditioning can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヒートポンプ式冷凍サイクルの冷媒回路
図、第2図は本発明に係るヒートポンプ式冷凍サイクル
の冷媒回路図、第3図は同冷凍サイクルにおける四方切
換弁、第1電磁弁および第2電磁弁の動作説明図、第4
図、第5図及び第6図は本発明に係る他の実施例を示し
た冷媒回路図である。 11:圧縮機、12ニアキュムレ−ター、13:四方切
換弁、14:室外側熱交換器、15:膨張装置、16二
室内側熱交換器、17:バイパス流路、18:第1電磁
弁、19:第2電磁弁。 代理人 弁理士 福 士 愛 彦(他2名)第1図 一一一〉−■1 第3図
Fig. 1 is a refrigerant circuit diagram of a conventional heat pump refrigeration cycle, Fig. 2 is a refrigerant circuit diagram of a heat pump refrigeration cycle according to the present invention, and Fig. 3 shows a four-way switching valve, a first solenoid valve, and a 2 Operation explanatory diagram of solenoid valve, 4th
5 and 6 are refrigerant circuit diagrams showing other embodiments of the present invention. 11: compressor, 12 near-accumulator, 13: four-way switching valve, 14: outdoor heat exchanger, 15: expansion device, 16 two indoor heat exchangers, 17: bypass passage, 18: first solenoid valve, 19: Second solenoid valve. Agent Patent attorney Aihiko Fukushi (and 2 others) Figure 1 111〉-■1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、四方切換弁、室内側熱交換器、膨張装置、
室内側熱交換器を順次環状に接続し、前記室外側熱交換
器を含む四方切換弁と膨張装置を結ぶ流路中の任意の点
と、前記室内側熱交換器を含む四方切換弁と膨張装置を
結ぶ流路中の任意の点とを連通ずるバイパス流路を設け
、該バイパス流路中に第1の電磁弁を、前記圧縮機吸入
側と四方切換弁を結ぶ流路中に第2の電磁弁を設けたヒ
ートポンプ式冷凍サイクルにおいて、暖房運転から除湿
運転への冷凍サイクル切換時に、第1電磁弁開、第2電
磁弁閉→第1電磁弁閉、四方切換弁切換→第2電磁弁開
の順に制御することを特徴としたヒートポンプ式冷凍サ
イクル。
1 Compressor, four-way switching valve, indoor heat exchanger, expansion device,
The indoor heat exchangers are sequentially connected in an annular manner, and any point in the flow path connecting the four-way switching valve including the outdoor heat exchanger and the expansion device, the four-way switching valve including the indoor heat exchanger, and the expansion device are connected. A bypass flow path communicating with any point in the flow path connecting the devices is provided, a first electromagnetic valve is provided in the bypass flow path, and a second electromagnetic valve is provided in the flow path connecting the compressor suction side and the four-way switching valve. In a heat pump refrigeration cycle equipped with a solenoid valve, when switching the refrigeration cycle from heating operation to dehumidification operation, the first solenoid valve opens, the second solenoid valve closes → the first solenoid valve closes, and the four-way switching valve switches → the second solenoid valve. A heat pump type refrigeration cycle characterized by control in the order of valve opening.
JP18348582A 1982-10-18 1982-10-18 Heat pump type refrigeration cycle Granted JPS5971963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18348582A JPS5971963A (en) 1982-10-18 1982-10-18 Heat pump type refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18348582A JPS5971963A (en) 1982-10-18 1982-10-18 Heat pump type refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS5971963A true JPS5971963A (en) 1984-04-23
JPS6361584B2 JPS6361584B2 (en) 1988-11-29

Family

ID=16136632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18348582A Granted JPS5971963A (en) 1982-10-18 1982-10-18 Heat pump type refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS5971963A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010483A1 (en) * 2012-07-13 2014-01-16 サンデン株式会社 Vehicle air-conditioning device
WO2014010482A1 (en) * 2012-07-13 2014-01-16 サンデン株式会社 Vehicle air-conditioning device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219668A (en) * 1988-07-06 1990-01-23 Hitachi Ltd Compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010483A1 (en) * 2012-07-13 2014-01-16 サンデン株式会社 Vehicle air-conditioning device
WO2014010482A1 (en) * 2012-07-13 2014-01-16 サンデン株式会社 Vehicle air-conditioning device
JP2014020633A (en) * 2012-07-13 2014-02-03 Sanden Corp Air conditioner for vehicle
JP2014020632A (en) * 2012-07-13 2014-02-03 Sanden Corp Air conditioner for vehicle

Also Published As

Publication number Publication date
JPS6361584B2 (en) 1988-11-29

Similar Documents

Publication Publication Date Title
JPS5971963A (en) Heat pump type refrigeration cycle
JPH04236075A (en) Air-conditioning machine
JP3343916B2 (en) Refrigeration equipment
JPS5971962A (en) Heat pump type refrigeration cycle
JPS5981465A (en) Heat pump type refrigeration cycle
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPS62158951A (en) Heat pump type air conditioner
JPH0333993B2 (en)
JPS6346350B2 (en)
JPS5981464A (en) Heat pump type refrigeration cycle
JPH0120709B2 (en)
JPS6045345B2 (en) Heat recovery air conditioner
JPH086203Y2 (en) Air conditioner
JP2000274858A (en) Method for controlling operation of air conditioner
JPS62129660A (en) Method of controlling refrigerant in refrigerator
JPH0431505Y2 (en)
JPS60245967A (en) Air conditioner
JPS5833067A (en) Refrigerator
JPS63108173A (en) Defrostation method of heat pump type air conditioner
JPS6029562A (en) Defroster for air conditioner
JPH03255864A (en) Heat pump type air conditioner
JPS62284157A (en) Heat pump type air conditioner
JPS62266365A (en) Air conditioner
JPS59210274A (en) Air conditioner
JPS6048465A (en) Refrigerant heating air conditioner