JPH04236075A - Air-conditioning machine - Google Patents

Air-conditioning machine

Info

Publication number
JPH04236075A
JPH04236075A JP408191A JP408191A JPH04236075A JP H04236075 A JPH04236075 A JP H04236075A JP 408191 A JP408191 A JP 408191A JP 408191 A JP408191 A JP 408191A JP H04236075 A JPH04236075 A JP H04236075A
Authority
JP
Japan
Prior art keywords
heat exchanger
valve
refrigerant
compressor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP408191A
Other languages
Japanese (ja)
Other versions
JP2667741B2 (en
Inventor
Satoshi Takahashi
諭史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP408191A priority Critical patent/JP2667741B2/en
Publication of JPH04236075A publication Critical patent/JPH04236075A/en
Application granted granted Critical
Publication of JP2667741B2 publication Critical patent/JP2667741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To effect heating operation and defrosting operation simultaneously with a big capacity by a method wherein the discharging side of a compressor is branched and one side is connected to an indoor heat exchanger through a four-way switching valve while the other side is connected to an outdoor side heat exchanger to utilize the accumulated heat of a heat accumulating tank. CONSTITUTION:Upon heating operation, an opening and closing valve 18 is closed and high- temperature refrigerant from a compressor 13 heats heat accumulating material by a heat exchanger 14 and, thereafter, all of the refrigerant flows into the compressor 13 through a four-way valve 15, an indoor side heat exchanger 16, an expansion valve 20, an outdoor side heat exchanger 19 and the four-way valve 15. Upon defrosting operation, the four-way valve 15 maintains the heating operation, the expansion valve 20 is fully opened, the opening and closing valve 18 is opened and the refrigerant absorbs heat from the heat accumulating material in the heat exchanger 14 while the refrigerant is branched into a first flow, passing through a pressure reducing device 17, and a second flow, passing through the four-way valve 15. The second flow passes through the four-way valve 15, the indoor side heat exchanger 16 and the pressure reducing device 21 and absorbs heat from the heat accumulating material in the heat exchanger 22, then, passes through a non-return valve 23 so as to be joined with the first flow and, thereafter, flows into the outdoor side heat exchanger 19 through the opening and closing valve 18. According to the inflow of the refrigerant, the outdoor side heat exchanger 19 is defrosted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【技術分野】本発明は、空気を熱源とするヒートポンプ
式空気調和機に関するもので、特に低外気温時に室外熱
交換器に付着した霜を蓄熱材に蓄えられた熱を利用して
暖房運転を持続しながら融解する空気調和機に関するも
のである。
[Technical Field] The present invention relates to a heat pump type air conditioner that uses air as a heat source. In particular, the present invention relates to a heat pump type air conditioner that uses air as a heat source. In particular, the present invention relates to a heat pump type air conditioner that uses heat stored in a heat storage material to remove frost that adheres to an outdoor heat exchanger at low outside temperatures. This relates to an air conditioner that melts continuously.

【0002】0002

【従来技術】空気熱源ヒ−トポンプ式空気調和機では、
外気低温時暖房運転をすると室外熱交換器表面に霜が付
着し暖房能力の低下をきたす。このため、適宜霜の除去
(除霜)を行う必要がある。この除霜は、四方弁を切り
換えて行う逆サイクル除霜方式から、最近では、除霜運
転時の快適性向上のために、四方弁を切り換えず暖房運
転を維持したまま除霜を行う暖房継続除霜方式が主流と
なりつつある。更に、蓄熱機構を利用して除霜時間を短
縮すると同時に除霜中の暖房能力を増加させる方法があ
る。
[Prior art] In an air heat source heat pump type air conditioner,
If the heating operation is performed when the outside temperature is low, frost will adhere to the surface of the outdoor heat exchanger, reducing the heating capacity. Therefore, it is necessary to remove frost (defrost) as appropriate. This defrosting has changed from the reverse cycle defrosting method, which is performed by switching a four-way valve, to the continuation heating method, which defrosts while maintaining heating operation without switching the four-way valve, to improve comfort during defrosting operation. Defrosting methods are becoming mainstream. Furthermore, there is a method of shortening defrosting time and increasing heating capacity during defrosting by using a heat storage mechanism.

【0003】以下に図を参照しながら、上述の従来のヒ
ートポンプ式空気調和機について説明する。
[0003] The above-mentioned conventional heat pump type air conditioner will be explained below with reference to the drawings.

【0004】図3は従来のヒートポンプ式空気調和機の
冷媒回路図である。
FIG. 3 is a refrigerant circuit diagram of a conventional heat pump type air conditioner.

【0005】同図において、1は圧縮機、2は蓄熱器、
3は蓄熱用熱交換器、4は放熱用熱交換器、5は四方弁
、6は室内熱交換器、7は膨張弁、8は第1のバイパス
電磁弁、9は室外熱交換器、10は第2のバイパス電磁
弁、11は減圧用キャピラリチューブ、12は蓄熱材を
収容した蓄熱槽であって、この蓄熱槽12に上記蓄熱用
熱交換器3及び放熱用熱交換器4が収納されている。 動作について説明すると、暖房運転中は第1のバイパス
電磁弁8は閉じ、第2のバイパス電磁弁10は開いてい
る。従って、圧縮機1から吐出された高温冷媒が蓄熱用
熱交換器3を通過することによって蓄熱材12が加熱さ
れ蓄熱が行われる。蓄熱槽12を通過した冷媒は、四方
弁5、室内熱交換器6、膨張弁7、室外熱交換器9、四
方弁5、第2のバイパス電磁弁10、圧縮機1吸入側の
順に流れ、室内を暖房する。
In the figure, 1 is a compressor, 2 is a heat storage device,
3 is a heat exchanger for heat storage, 4 is a heat exchanger for heat radiation, 5 is a four-way valve, 6 is an indoor heat exchanger, 7 is an expansion valve, 8 is a first bypass solenoid valve, 9 is an outdoor heat exchanger, 10 1 is a second bypass solenoid valve, 11 is a capillary tube for pressure reduction, and 12 is a heat storage tank containing a heat storage material, and the heat storage heat exchanger 3 and the heat radiation heat exchanger 4 are housed in this heat storage tank 12 ing. To explain the operation, during heating operation, the first bypass solenoid valve 8 is closed and the second bypass solenoid valve 10 is open. Therefore, when the high temperature refrigerant discharged from the compressor 1 passes through the heat storage heat exchanger 3, the heat storage material 12 is heated and heat storage is performed. The refrigerant that has passed through the heat storage tank 12 flows in the following order: the four-way valve 5, the indoor heat exchanger 6, the expansion valve 7, the outdoor heat exchanger 9, the four-way valve 5, the second bypass solenoid valve 10, and the suction side of the compressor 1. Heat the room.

【0006】除霜運転時には、第1のバイパス電磁弁8
が開き、第2のバイパス電磁弁は閉じると共に、四方切
換弁5は暖房回路の状態を維持する。従って、圧縮機1
から吐出された冷媒は、蓄熱用熱交換器3、四方弁5、
室内熱交換器6、第1のバイパス電磁弁8、室外熱交換
器9、四方弁5を通り、第2のバイパス電磁弁10が閉
成されているため減圧用キャピラリチューブ11、放熱
用熱交換器4、圧縮機1の順に流れる。このとき冷媒は
室内熱交換器6及び室外熱交換器9で凝縮するから室内
を暖房しながら室外側熱交換器を除霜する。放熱用熱交
換器4では上記蓄熱された蓄熱材12から吸熱して蒸発
し、蓄熱材12に蓄えられた熱を回収する。
During defrosting operation, the first bypass solenoid valve 8
opens, the second bypass solenoid valve closes, and the four-way switching valve 5 maintains the state of the heating circuit. Therefore, compressor 1
The refrigerant discharged from the heat storage heat exchanger 3, the four-way valve 5,
It passes through the indoor heat exchanger 6, the first bypass solenoid valve 8, the outdoor heat exchanger 9, and the four-way valve 5, and since the second bypass solenoid valve 10 is closed, the decompression capillary tube 11 and the heat radiation heat exchange It flows in the order of container 4 and compressor 1. At this time, the refrigerant is condensed in the indoor heat exchanger 6 and the outdoor heat exchanger 9, so that the outdoor heat exchanger is defrosted while heating the room. The heat exchanger 4 for heat radiation absorbs heat from the heat storage material 12 and evaporates it, thereby recovering the heat stored in the heat storage material 12.

【0007】[0007]

【発明が解決しようとする問題点】上記のような構成の
空気調和機では以下のような問題があった。
[Problems to be Solved by the Invention] The air conditioner configured as described above has the following problems.

【0008】すなわち、暖房運転時に室外側熱交換器9
に着霜が生じると、該室外側熱交換器9には0℃以下の
霜が付着しているため、室外側熱交換器9において冷媒
が凝縮する時の圧力(凝縮圧力)は霜の温度に相当する
飽和圧力となる。
That is, during heating operation, the outdoor heat exchanger 9
When frost forms on the outdoor heat exchanger 9, since frost of 0°C or less is attached to the outdoor heat exchanger 9, the pressure when the refrigerant condenses in the outdoor heat exchanger 9 (condensation pressure) is equal to the temperature of the frost. The saturation pressure corresponds to .

【0009】したがって、第1のバイパス電磁弁8での
冷媒圧力損失が十分小さいものであれば室内熱交換器6
内部の冷媒も同じ圧力となる。このため除霜時の暖房能
力は極めて小さいものしか得られない。
Therefore, if the refrigerant pressure loss at the first bypass solenoid valve 8 is sufficiently small, the indoor heat exchanger 6
The internal refrigerant also has the same pressure. For this reason, only a very small heating capacity can be obtained during defrosting.

【0010】また、暖房能力を増すため、第1のバイパ
ス電磁弁8での圧力損失を増加させて室内熱交換器6内
部の圧力を上げた設定にすると、冷媒は室内熱交換器6
ですべて凝縮し、室外熱交換器熱交換器9には液割合の
多い気液2相状態の冷媒が流入する。したがって、冷媒
の凝縮に依存するところの除霜能力は極めて小さいもの
となり、除霜時間が長引くことは避けられない。
Furthermore, in order to increase the heating capacity, if the pressure loss at the first bypass solenoid valve 8 is increased and the pressure inside the indoor heat exchanger 6 is increased, the refrigerant is transferred to the indoor heat exchanger 6.
All of the refrigerant is condensed in the outdoor heat exchanger heat exchanger 9, and a gas-liquid two-phase refrigerant with a high liquid ratio flows into the outdoor heat exchanger heat exchanger 9. Therefore, the defrosting ability, which depends on the condensation of the refrigerant, becomes extremely small, and it is inevitable that the defrosting time will be prolonged.

【0011】このように、従来の構成では除霜中の暖房
能力と除霜能力を調和させた運転が困難であった。
[0011] As described above, with the conventional configuration, it is difficult to perform an operation that harmonizes the heating capacity and the defrosting capacity during defrosting.

【0012】0012

【問題を解決するための手段】上記問題を解決するため
に本発明に係るヒートポンプ式空気調和機では、圧縮機
の吐出側に第1の熱交換器を接続し、この第1の熱交換
器の吐出側を分岐して、一方を上記四方切換弁を介して
上記室内側熱交換器に接続し、他方を所定の減圧値に設
定された第1の減圧装置及び通路を開閉する開閉弁を介
して室外側熱交換器に接続し、上記室内側熱交換器は、
吐出側を上記膨張弁を介して上記室外側熱交換器に接続
し、上記室外側熱交換器は、吐出側を上記四方切換弁を
介して上記圧縮機の吸入側に接続し、上記膨張弁は、吐
出側を上記開閉弁の吐出側と上記室外側熱交換器との間
に接続し、上記室内側熱交換器と上記膨張弁との間の通
路と、上記第1の減圧装置と上記開閉弁との間の通路と
の間に、所定の減圧値に設定された第2の減圧装置と第
2の熱交換器と第2の熱交換器側からの冷媒の流通を可
能とする逆止弁とを直列に接続した回路を設け、第1の
熱交換器及び第2の熱交換器を蓄熱材を収容した蓄熱槽
に収納し、上記開閉弁を暖房運転時に閉成し除霜運転時
に開成する開閉弁制御手段を設けると共に、上記膨張弁
を暖房運転時に適宜開度にて制御し除霜運転時に全閉す
る膨張弁制御手段を設けている。
[Means for Solving the Problems] In order to solve the above problems, in the heat pump type air conditioner according to the present invention, a first heat exchanger is connected to the discharge side of the compressor. The discharge side of the is branched, one side is connected to the indoor heat exchanger via the four-way switching valve, and the other side is connected to a first pressure reducing device set to a predetermined pressure reduction value and an on-off valve for opening and closing the passage. The indoor heat exchanger is connected to the outdoor heat exchanger through
A discharge side is connected to the outdoor heat exchanger via the expansion valve, and the outdoor heat exchanger has a discharge side connected to the suction side of the compressor via the four-way switching valve, and the outdoor heat exchanger has a discharge side connected to the suction side of the compressor via the four-way switching valve. has a discharge side connected between the discharge side of the on-off valve and the outdoor heat exchanger, and a passage between the indoor heat exchanger and the expansion valve, the first pressure reducing device and the above. A second pressure reducing device set to a predetermined pressure reducing value and a second heat exchanger are provided between the passageway between the on-off valve and the second heat exchanger, and a reverse passageway that allows refrigerant to flow from the second heat exchanger side. A circuit is provided in which a stop valve is connected in series, the first heat exchanger and the second heat exchanger are housed in a heat storage tank containing a heat storage material, and the on-off valve is closed during heating operation to perform defrosting operation. In addition to providing an opening/closing valve control means that opens the expansion valve at certain times, the expansion valve control means controls the opening degree of the expansion valve appropriately during heating operation and fully closes the expansion valve during defrosting operation.

【0013】[0013]

【作用】本発明は上記のような構成であるから、暖房運
転時には、開閉弁が閉鎖されると共に、膨張弁が適宜開
度に制御される。
[Operation] Since the present invention is constructed as described above, during heating operation, the opening/closing valve is closed and the expansion valve is controlled to an appropriate opening degree.

【0014】この状態で暖房運転を行えば、圧縮機から
吐出された高温高圧冷媒は、第1の熱交換器を通過する
ことによって蓄熱槽の蓄熱材に蓄熱した後、すべての冷
媒が四方切換弁を介して室内側熱交換器に流入する。こ
れによって暖房が行われる。室内側熱交換器を通過した
冷媒は凝縮し、膨張弁を通過することによって適宜減圧
される。減圧された冷媒は室外側熱交換器を通過するこ
とによって蒸発し、四方切換弁を介して圧縮機の吸入側
に流入する。
If heating operation is performed in this state, the high-temperature, high-pressure refrigerant discharged from the compressor passes through the first heat exchanger and stores heat in the heat storage material of the heat storage tank. It flows into the indoor heat exchanger via the valve. This provides heating. The refrigerant that has passed through the indoor heat exchanger is condensed, and the pressure is appropriately reduced by passing through the expansion valve. The depressurized refrigerant evaporates by passing through the outdoor heat exchanger, and flows into the suction side of the compressor via the four-way switching valve.

【0015】このように暖房運転を行って、室外側熱交
換器に着霜が生じたことが検知されると、除霜運転が行
われることになる。
[0015] When the heating operation is performed in this way and it is detected that frost has formed on the outdoor heat exchanger, the defrosting operation is performed.

【0016】この除霜運転時には上記開閉弁が開成する
。従って、この状態で除霜運転を行えば、圧縮機から吐
出された高温高圧冷媒は第1の熱交換器を通過した後、
分岐して、一方は四方切換弁を介して室内側熱交換器に
流入する。他方は、第1の減圧装置で減圧されて開閉弁
を通って室外側熱交換器に流入する。これによって、室
内側熱交換器では暖房が行われながら、室外側熱交換器
に圧縮機の吐出冷媒が流入することによって除霜が行わ
れる。
During this defrosting operation, the on-off valve is opened. Therefore, if defrosting operation is performed in this state, the high temperature and high pressure refrigerant discharged from the compressor passes through the first heat exchanger, and then
One branch flows into the indoor heat exchanger via a four-way switching valve. The other pressure is reduced by the first pressure reducing device and flows into the outdoor heat exchanger through the on-off valve. As a result, while heating is performed in the indoor heat exchanger, defrosting is performed by the refrigerant discharged from the compressor flowing into the outdoor heat exchanger.

【0017】分岐した一方の室内側熱交換器を通過した
冷媒は、膨張弁が全閉されているため、第2の減圧装置
を介して第2の熱交換器を通過し、上記第1の減圧装置
を通過する冷媒と合流する。この冷媒は第2の熱交換器
を通過する際に、蓄熱材の熱を吸収して高温となり上記
冷媒と合流することになる。合流した高温の冷媒は上記
のように室外側熱交換器に流入することによって、効率
良く除霜が行われる。暖房用の冷媒と、除霜用の冷媒と
の比率は、第1の減圧装置と第2の減圧装置との減圧比
によって適宜決定される。
Since the expansion valve is fully closed, the refrigerant that has passed through one of the branched indoor heat exchangers passes through the second heat exchanger via the second pressure reducing device, and is then transferred to the first heat exchanger. It joins the refrigerant passing through the pressure reducing device. When this refrigerant passes through the second heat exchanger, it absorbs the heat of the heat storage material, becomes high in temperature, and merges with the refrigerant. By flowing the combined high-temperature refrigerant into the outdoor heat exchanger as described above, defrosting is efficiently performed. The ratio of the refrigerant for heating and the refrigerant for defrosting is appropriately determined by the pressure reduction ratio of the first pressure reduction device and the second pressure reduction device.

【0018】以上のようにして、暖房運転時に蓄熱材に
蓄えた熱を利用して、圧縮機の吐出冷媒を室内側熱交換
器と室外側熱交換器とに分岐してそれぞれ流入させるこ
とによって、暖房運転を維持しながら除霜を行う。
As described above, by utilizing the heat stored in the heat storage material during heating operation, the refrigerant discharged from the compressor is divided into the indoor heat exchanger and the outdoor heat exchanger and allowed to flow into each of them. , defrost while maintaining heating operation.

【0019】[0019]

【実施例】以下に、本発明に係るヒートポンプ式空気調
和機の一実施例について図を参照して詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the heat pump air conditioner according to the present invention will be described in detail below with reference to the drawings.

【0020】図1は本発明に係るヒートポンプ式空気調
和機の一実施例を表す冷媒回路である。同図において、
13は圧縮機、14は第1の熱交換器であって、この圧
縮機13の吐出側に上記第1の熱交換器14が接続され
ている。この第1の熱交換器14の吐出側は二方に分岐
されている。分岐された一方は、四方切換弁15を介し
て室内側熱交換器16に接続されている。また分岐され
た他方は、所定の減圧値に設定された第1の減圧装置1
7及び通路を開閉する開閉弁18を介して室外側熱交換
器19に接続されている。
FIG. 1 shows a refrigerant circuit representing an embodiment of a heat pump type air conditioner according to the present invention. In the same figure,
13 is a compressor, 14 is a first heat exchanger, and the first heat exchanger 14 is connected to the discharge side of the compressor 13. The discharge side of this first heat exchanger 14 is branched into two directions. One branched end is connected to an indoor heat exchanger 16 via a four-way switching valve 15 . The other branch is a first pressure reducing device 1 set to a predetermined pressure reducing value.
7 and an on-off valve 18 that opens and closes the passage, it is connected to an outdoor heat exchanger 19.

【0021】上記室内側熱交換器16は、吐出側を膨張
弁20を介して上記室外側熱交換器19に接続している
。上記室外側熱交換器19は、吐出側を上記四方切換弁
15を介して上記圧縮機13の吸入側に接続している。 上記膨張弁20は、吐出側を上記開閉弁18の吐出側と
上記室外側熱交換器19との間に接続している。
The indoor heat exchanger 16 has its discharge side connected to the outdoor heat exchanger 19 via an expansion valve 20. The outdoor heat exchanger 19 has a discharge side connected to the suction side of the compressor 13 via the four-way switching valve 15 . The expansion valve 20 has a discharge side connected between the discharge side of the on-off valve 18 and the outdoor heat exchanger 19.

【0022】上記室内側熱交換器16と上記膨張弁20
との間の通路と、上記第1の減圧装置17と上記開閉弁
18との間の通路との間には、所定の減圧値に設定され
た第2の減圧装置21と第2の熱交換器22と第2の熱
交換器22側からの冷媒の流通を可能とする逆止弁23
とを直列に接続した回路24を設けている。
The indoor heat exchanger 16 and the expansion valve 20
and a passage between the first pressure reducing device 17 and the on-off valve 18, a second pressure reducing device 21 set to a predetermined pressure reducing value and a second heat exchanger are provided. A check valve 23 that allows refrigerant to flow from the heat exchanger 22 and the second heat exchanger 22 side.
A circuit 24 is provided in which these are connected in series.

【0023】上記第1の熱交換器14及び第2の熱交換
器22は蓄熱材を収容した蓄熱槽25に収納されている
。この蓄熱槽に収容される蓄熱材としては、ポリエチレ
ングリコール、パラフィン、酢酸ナトリウム3水塩など
を用いることができる。上記第1の熱交換器14及び第
2の熱交換器22は蓄熱槽25内でそれぞれ熱交換でき
るように設置されている。
The first heat exchanger 14 and the second heat exchanger 22 are housed in a heat storage tank 25 containing a heat storage material. As the heat storage material accommodated in this heat storage tank, polyethylene glycol, paraffin, sodium acetate trihydrate, etc. can be used. The first heat exchanger 14 and the second heat exchanger 22 are installed in a heat storage tank 25 so that they can exchange heat, respectively.

【0024】また、図示しないが、上記開閉弁18には
、該開閉弁18を暖房運転時に閉成し除霜運転時に開成
する開閉弁制御手段が設けられている。また上記膨張弁
20には、該膨張弁20を暖房運転時に適宜開度にて制
御し除霜運転時に全閉する膨張弁制御手段が設けられて
いる。
Although not shown, the on-off valve 18 is provided with on-off valve control means that closes the on-off valve 18 during heating operation and opens it during defrosting operation. Further, the expansion valve 20 is provided with an expansion valve control means that appropriately controls the opening degree of the expansion valve 20 during the heating operation and fully closes the expansion valve 20 during the defrosting operation.

【0025】上記構成の空気調和機の動作について説明
する。
[0025] The operation of the air conditioner having the above configuration will be explained.

【0026】まず、暖房運転時には開閉弁18は閉じて
いる。したがって、圧縮機13から吐出された高温の冷
媒は第1の熱交換器14で蓄熱材を加熱した後、すべて
が四方弁15を介して室内熱交換器24を通過し、放熱
によって暖房を行う。室内熱交換器24を通過した冷媒
は、膨張弁20を通過して室外側熱交換器19に流入し
、該室外側熱交換器19にて蒸発し、外気より吸熱する
。蒸発した冷媒は、四方切換弁15を介して圧縮機13
の吸入側に流入する。外気を吸熱した冷媒は、再度圧縮
機13にて圧縮されて、吸熱した一部を蓄熱材に蓄熱す
る。
First, during heating operation, the on-off valve 18 is closed. Therefore, after the high-temperature refrigerant discharged from the compressor 13 heats the heat storage material in the first heat exchanger 14, it all passes through the indoor heat exchanger 24 via the four-way valve 15, and performs heating by heat radiation. . The refrigerant that has passed through the indoor heat exchanger 24 passes through the expansion valve 20 and flows into the outdoor heat exchanger 19, where it evaporates and absorbs heat from the outside air. The evaporated refrigerant is transferred to the compressor 13 via the four-way switching valve 15.
flows into the suction side of the The refrigerant that has absorbed heat from the outside air is compressed again by the compressor 13, and a part of the heat absorbed is stored in the heat storage material.

【0027】尚、この暖房運転時においては、開閉弁1
8は閉じているので上記回路24には冷媒は流れない。
[0027] During this heating operation, the on-off valve 1
Since the circuit 8 is closed, no refrigerant flows into the circuit 24.

【0028】このようにして、暖房運転を行っていると
きに、室外側熱交換器19に着霜したことが検知される
と、あるいは時間的に除霜を行う時になると、除霜運転
に切り換えられる。
In this way, when it is detected that frost has formed on the outdoor heat exchanger 19 during heating operation, or when it becomes time to perform defrosting, the system switches to defrosting operation. It will be done.

【0029】除霜運転時には、四方切換弁15は暖房運
転の状態を維持し、膨張弁20が全閉となると共に開閉
弁18が開放する。
During the defrosting operation, the four-way switching valve 15 maintains the heating operation state, and the expansion valve 20 is fully closed and the on-off valve 18 is opened.

【0030】したがって、圧縮機13から吐出された冷
媒は、第1の熱交換器14を通って暖房運転時に蓄熱さ
れている蓄熱材から吸熱して高温となった後、第1の減
圧装置17を通る第1の流れと、四方切換弁15を通る
第2の流れに分かれる。
Therefore, the refrigerant discharged from the compressor 13 passes through the first heat exchanger 14 and becomes high temperature by absorbing heat from the heat storage material stored during heating operation, and then passes through the first pressure reducing device 17. The first flow passes through the four-way switching valve 15, and the second flow passes through the four-way switching valve 15.

【0031】第2の流れは、四方切換弁15を通って室
内熱交換器16で放熱,凝縮した後、第2の減圧装置2
1を通って第2の熱交換器22で蓄熱材32から吸熱し
高温となる。この高温となった冷媒は、逆止弁29を通
り第1の減圧装置17を通ってきた上記第1の流れと合
流して開閉弁18を通過し室外熱交換器19に流入する
。この高温冷媒の室外側熱交換器19への流入により室
外側熱交換器19に着霜した霜は融解し除霜が行われる
ことになる。
The second flow passes through the four-way switching valve 15, radiates heat and condenses in the indoor heat exchanger 16, and then passes through the second pressure reducing device 2.
1, the second heat exchanger 22 absorbs heat from the heat storage material 32, and the temperature becomes high. This high-temperature refrigerant passes through the check valve 29, joins with the first flow that has passed through the first pressure reducing device 17, passes through the on-off valve 18, and flows into the outdoor heat exchanger 19. As this high-temperature refrigerant flows into the outdoor heat exchanger 19, the frost formed on the outdoor heat exchanger 19 is melted, and defrosting is performed.

【0032】室外側熱交換器19を通過した冷媒は、四
方切換弁15を通って圧縮機21に戻ることになる。こ
のようにして、圧縮機13を吐出した冷媒を、暖房用と
除霜用に分岐して流すことにより、暖房運転を継続しな
がら除霜を行う。
The refrigerant that has passed through the outdoor heat exchanger 19 returns to the compressor 21 through the four-way switching valve 15. In this way, by branching the refrigerant discharged from the compressor 13 into heating and defrosting, defrosting is performed while continuing the heating operation.

【0033】なお、この暖房用の冷媒と除霜用の冷媒と
の比率は、上記第1の減圧装置17と第2の減圧装置2
1との減圧比によって決定され、この比率はその空気調
和機に応じて適宜設計的に選択される。
Note that the ratio of the heating refrigerant to the defrosting refrigerant is the same as that of the first pressure reducing device 17 and the second pressure reducing device 2.
1, and this ratio is appropriately designed and selected depending on the air conditioner.

【0034】また、逆止弁23は暖房運転時に圧縮機1
3から吐出された冷媒が第1の減圧装置17を通って第
2の熱交換器22に流入するのを阻止するために設けら
れているものである。
[0034] Also, the check valve 23 closes the compressor 1 during heating operation.
This is provided to prevent the refrigerant discharged from 3 from flowing into the second heat exchanger 22 through the first pressure reducing device 17.

【0035】図2は本実施例の除霜運転時の冷媒の状態
をモリエル線図で表したものであり、同図中符号A〜H
は、第1図に示した同符号の位置に対応させている。圧
縮機13から吐出された冷媒(A)は第1の熱交換器1
4で加熱されBの状態となり、上記第1の減圧装置17
,開閉弁18を介して室外側熱交換器19に流入する除
霜用の第1の流れと、四方切換弁15を介して室内側熱
交換器16に流入する暖房用の第2の流れに分岐する。
FIG. 2 is a Mollier diagram showing the state of the refrigerant during the defrosting operation of this embodiment, and the symbols A to H in the figure are
correspond to the positions with the same symbols shown in FIG. The refrigerant (A) discharged from the compressor 13 is transferred to the first heat exchanger 1
4 and becomes the state B, and the first pressure reducing device 17
, a first flow for defrosting that flows into the outdoor heat exchanger 19 via the on-off valve 18, and a second flow for heating that flows into the indoor heat exchanger 16 via the four-way switching valve 15. Branch out.

【0036】当該除霜用の第1の流れQは第1の減圧装
置17を通ってCの状態となる。
The first flow Q for defrosting passes through the first pressure reducing device 17 and reaches the state C.

【0037】当該暖房用の第2の流れqは室内熱交換器
16を通って凝縮放熱しDの状態となった後、第2の減
圧装置21を通って状態Eとなり、第2の熱交換器22
で加熱されて逆止弁23を通りFの状態となる。逆止弁
23を通過した状態Fの冷媒は、上記状態Cの第1の流
れQと混合されてさらにエンタルピを増しGの状態とな
る。この状態Gとなった冷媒は、開閉弁18を通って室
外熱交換器19に流入し、一部が凝縮放熱することによ
って霜を融解しHの状態となって圧縮機13へ戻る。
The second flow q for heating passes through the indoor heat exchanger 16, condenses and radiates heat, reaches state D, passes through the second pressure reducing device 21, becomes state E, and enters the second heat exchanger. Vessel 22
is heated and passes through the check valve 23 to reach the F state. The refrigerant in state F that has passed through the check valve 23 is mixed with the first flow Q in state C, further increasing its enthalpy, and becomes in state G. The refrigerant in this state G flows into the outdoor heat exchanger 19 through the on-off valve 18, where a portion of the refrigerant condenses and radiates heat to melt the frost and return to the state H, to the compressor 13.

【0038】この時の第1の流れQと第2の流れqの比
率は、第1の減圧装置17と第2の減圧装置21との流
路抵抗の比率で決定される。したがって、全体の流量(
Q+q)は両者の流路抵抗の値で決まるから、除霜能力
を大きくする場合は第1の減圧装置17の流路抵抗の方
をを小さくし、暖房能力を大きくする場合には第2の減
圧装置21の流路抵抗の方をを小さく設定すれば良い。 また全体の冷媒流量を調節するには、第1、第2の減圧
装置17,21の流路抵抗の設定の他、開閉弁18の流
路抵抗を所要の値とすることもできる。
The ratio of the first flow Q and the second flow q at this time is determined by the ratio of the flow path resistances of the first pressure reducing device 17 and the second pressure reducing device 21. Therefore, the total flow rate (
Q+q) is determined by the value of the flow path resistance of both, so when increasing the defrosting capacity, the flow path resistance of the first pressure reducing device 17 should be made smaller, and when increasing the heating capacity, the second pressure reducing device 17 should be made smaller. The flow path resistance of the pressure reducing device 21 may be set to be smaller. In order to adjust the overall refrigerant flow rate, in addition to setting the flow path resistance of the first and second pressure reducing devices 17 and 21, the flow path resistance of the on-off valve 18 can also be set to a required value.

【0039】上記のような回路構成であれば、低圧側が
4Kg/cm2G以上となる上、圧縮機13が吸入する
冷媒は湿り状態となるため密度が大きく、したがって冷
媒循環量も大きい。このため、高圧側圧力は13〜15
Kg/cm2Gとなり、室内側熱交換器16へ流入する
冷媒は温度も高く(35〜38℃)、冷媒循環量も多い
ため大きな暖房能力が得られる。また、第1の熱交換器
14及び第2の熱交換器22での蓄熱材からの吸熱も、
冷媒循環量が多いため、単位時間当たりの吸熱量が多く
、短時間で大きな吸熱が可能である。室外側熱交換器1
9に流入する冷媒は、第1の熱交換器14から流入する
ものがあるため、従来よりもエンタルピが高く、かつ循
環量が多いため、除霜能力も大きなものが得られる。
With the circuit configuration as described above, the low pressure side is 4 kg/cm2G or more, and the refrigerant sucked by the compressor 13 is wet, so its density is high, and therefore the amount of refrigerant circulation is also large. Therefore, the pressure on the high pressure side is 13 to 15
Kg/cm2G, the temperature of the refrigerant flowing into the indoor heat exchanger 16 is high (35 to 38°C), and the amount of refrigerant circulation is large, so a large heating capacity can be obtained. In addition, heat absorption from the heat storage material in the first heat exchanger 14 and the second heat exchanger 22 also
Since the amount of refrigerant circulated is large, the amount of heat absorbed per unit time is large, and a large amount of heat can be absorbed in a short period of time. Outdoor heat exchanger 1
Since some of the refrigerant flowing into the refrigerant 9 flows from the first heat exchanger 14, the enthalpy is higher than that of the conventional one, and the amount of circulation is large, so that a large defrosting ability can be obtained.

【0040】以上のように、本実施例によれば大きな能
力で暖房運転を維持しながら短時間で除霜できるよう、
暖房能力と除霜能力の調和を図ることが可能である。
As described above, according to this embodiment, it is possible to defrost in a short time while maintaining heating operation with high capacity.
It is possible to achieve harmony between heating capacity and defrosting capacity.

【0041】なお、上記実施例では第1の熱交換器14
に常に圧縮機13からの吐出冷媒を流す構成で説明した
が、これに限定されるものではなく、例えば第1の熱交
換器14と並列に第2の開閉弁を設け、この第2の開閉
弁を適宜切り換えて吐出冷媒による蓄熱を制御するよう
にしても良い。また上記実施例では除霜時、膨張弁20
を全閉としたが、これに代えてキャピラリチューブと電
磁弁の組み合わせとしても良い。
[0041] In the above embodiment, the first heat exchanger 14
Although the configuration has been described in which the refrigerant discharged from the compressor 13 always flows, the configuration is not limited to this. For example, a second on-off valve may be provided in parallel with the first heat exchanger 14, and the second on-off valve may The heat storage by the discharged refrigerant may be controlled by appropriately switching the valve. Furthermore, in the above embodiment, when defrosting, the expansion valve 20
is fully closed, but a combination of a capillary tube and a solenoid valve may be used instead.

【0042】[0042]

【発明の効果】以上の説明で明らかなように、本発明の
式空気調和機によれば、暖房運転と除霜運転とを相互に
調和しながら両者の運転を同時に行うことができる。こ
の場合、暖房運転時に蓄熱材に蓄えた熱を利用して圧縮
機を吐出された冷媒を加熱しながら室外側熱交換器と室
内側熱交換器とにそれぞれ冷媒を流入させるようにした
ので、大きな能力で暖房運転ができると共に、短時間で
除霜を行うことができる。
As is clear from the above description, according to the air conditioner of the present invention, heating operation and defrosting operation can be performed simultaneously while harmonizing each other. In this case, the heat stored in the heat storage material during heating operation is used to heat the refrigerant discharged from the compressor while allowing the refrigerant to flow into the outdoor heat exchanger and the indoor heat exchanger, respectively. Not only can heating operation be performed with a large capacity, but also defrosting can be performed in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明実施例のの冷媒回路図、FIG. 1 is a refrigerant circuit diagram according to an embodiment of the present invention;

【図2】本実施
例での除霜時の冷媒状態を表すモリエル線図、
[Fig. 2] Mollier diagram showing the refrigerant state during defrosting in this embodiment,

【図3】従来の冷媒回路図。FIG. 3 is a conventional refrigerant circuit diagram.

【符号の説明】[Explanation of symbols]

13    圧縮機、 14    第1の熱交換器、 15    四方切換弁、 16    室内熱交換器、 20    膨張弁、 19    室外熱交換器 17    第1の減圧装置、 22    第2の熱交換器 23    逆止弁、 18    開閉弁、 21    第2の減圧装置、 25    蓄熱槽、 13 Compressor, 14 First heat exchanger, 15 Four-way switching valve, 16 Indoor heat exchanger, 20 Expansion valve, 19 Outdoor heat exchanger 17 First pressure reducing device, 22 Second heat exchanger 23 Check valve, 18 On-off valve, 21 Second pressure reducing device, 25 Heat storage tank,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、室外側熱交換器、室内側熱交換器
、膨張弁、四方切換弁を備えたヒートポンプ式サイクル
を具備するものにおいて、圧縮機の吐出側に第1の熱交
換器を接続し、この第1の熱交換器の吐出側を分岐して
、一方を上記四方切換弁を介して上記室内側熱交換器に
接続し、他方を所定の減圧値に設定された第1の減圧装
置及び通路を開閉する開閉弁を介して室外側熱交換器に
接続し、上記室内側熱交換器は、吐出側を上記膨張弁を
介して上記室外側熱交換器に接続し、上記室外側熱交換
器は、吐出側を上記四方切換弁を介して上記圧縮機の吸
入側に接続し、上記膨張弁は、吐出側を上記開閉弁の吐
出側と上記室外側熱交換器との間に接続し、上記室内側
熱交換器と上記膨張弁との間の通路と、上記第1の減圧
装置と上記開閉弁との間の通路との間に、所定の減圧値
に設定された第2の減圧装置と第2の熱交換器と第2の
熱交換器側からの冷媒の流通を可能とする逆止弁とを直
列に接続した回路を設け、第1の熱交換器及び第2の熱
交換器を蓄熱材を収容した蓄熱槽に収納し、上記開閉弁
を暖房運転時に閉成し除霜運転時に開成する開閉弁制御
手段を設けると共に、上記膨張弁を暖房運転時に適宜開
度にて制御し除霜運転時に全閉する膨張弁制御手段を設
けたことを特徴とする空気調和機。
Claim 1: A heat pump cycle equipped with a compressor, an outdoor heat exchanger, an indoor heat exchanger, an expansion valve, and a four-way switching valve, wherein a first heat exchanger is provided on the discharge side of the compressor. and the discharge side of this first heat exchanger is branched, one side is connected to the indoor heat exchanger via the four-way switching valve, and the other side is connected to the first heat exchanger set to a predetermined pressure reduction value. The indoor heat exchanger is connected to the outdoor heat exchanger via the pressure reducing device and the on-off valve that opens and closes the passage, and the indoor heat exchanger has its discharge side connected to the outdoor heat exchanger via the expansion valve. The outdoor heat exchanger has a discharge side connected to the suction side of the compressor via the four-way switching valve, and the expansion valve has a discharge side connected to the outlet side of the on-off valve and the outdoor heat exchanger. connected between the passageway between the indoor heat exchanger and the expansion valve, and the passageway between the first pressure reduction device and the opening/closing valve, the pressure reduction value being set to a predetermined pressure reduction value. A circuit is provided in which a second pressure reducing device, a second heat exchanger, and a check valve that allows refrigerant to flow from the second heat exchanger side are connected in series, and the first heat exchanger and the second heat exchanger are connected in series. The second heat exchanger is housed in a heat storage tank containing a heat storage material, and an on-off valve control means is provided to close the on-off valve during heating operation and open it during defrosting operation, and to open the expansion valve as appropriate during heating operation. An air conditioner characterized in that it is provided with an expansion valve control means that is fully closed during defrosting operation.
JP408191A 1991-01-18 1991-01-18 Air conditioner Expired - Fee Related JP2667741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP408191A JP2667741B2 (en) 1991-01-18 1991-01-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP408191A JP2667741B2 (en) 1991-01-18 1991-01-18 Air conditioner

Publications (2)

Publication Number Publication Date
JPH04236075A true JPH04236075A (en) 1992-08-25
JP2667741B2 JP2667741B2 (en) 1997-10-27

Family

ID=11574838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP408191A Expired - Fee Related JP2667741B2 (en) 1991-01-18 1991-01-18 Air conditioner

Country Status (1)

Country Link
JP (1) JP2667741B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015161743A1 (en) * 2014-04-22 2015-10-29 珠海格力电器股份有限公司 Air-conditioning system with defrosting function
WO2015188656A1 (en) * 2014-06-12 2015-12-17 珠海格力电器股份有限公司 Two-stage compression air conditioning system and control method thereof
CN105402965A (en) * 2015-12-25 2016-03-16 珠海格力电器股份有限公司 Refrigerating system and water chilling unit with refrigerating system
CN106403344A (en) * 2016-10-26 2017-02-15 广东高而美制冷设备有限公司 Multi-temperature-area regulation and control refrigeration and heat storage system and work manner
CN109387075A (en) * 2018-09-29 2019-02-26 珠海格力电器股份有限公司 Heat pump system and heat pump drying device
JP2022057100A (en) * 2020-09-30 2022-04-11 日立ジョンソンコントロールズ空調株式会社 Air conditioner and management device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175354B (en) * 2011-12-26 2016-03-02 珠海格力电器股份有限公司 Accumulation of heat phase transformation defroster
CN103375840A (en) * 2012-04-13 2013-10-30 珠海格力电器股份有限公司 Air conditioner system and defrosting method thereof
EP3757434A4 (en) * 2018-02-23 2021-01-27 Mitsubishi Electric Corporation Flow path switching valve and air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015161743A1 (en) * 2014-04-22 2015-10-29 珠海格力电器股份有限公司 Air-conditioning system with defrosting function
WO2015188656A1 (en) * 2014-06-12 2015-12-17 珠海格力电器股份有限公司 Two-stage compression air conditioning system and control method thereof
CN105402965A (en) * 2015-12-25 2016-03-16 珠海格力电器股份有限公司 Refrigerating system and water chilling unit with refrigerating system
CN106403344A (en) * 2016-10-26 2017-02-15 广东高而美制冷设备有限公司 Multi-temperature-area regulation and control refrigeration and heat storage system and work manner
CN109387075A (en) * 2018-09-29 2019-02-26 珠海格力电器股份有限公司 Heat pump system and heat pump drying device
JP2022057100A (en) * 2020-09-30 2022-04-11 日立ジョンソンコントロールズ空調株式会社 Air conditioner and management device

Also Published As

Publication number Publication date
JP2667741B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
US5165250A (en) Air conditioning system with thermal storage cycle control
JPH04236075A (en) Air-conditioning machine
JPH01118080A (en) Heat pump type air conditioner
JP2000291985A (en) Air conditioner
JP2002107012A (en) Air conditioner
JPS5885043A (en) Operation control apparatus for cold insulation type air conditioner
JPS59208363A (en) Heat accumulation type air conditioner
JP2504416B2 (en) Refrigeration cycle
JPH035680A (en) Air conditioner
KR100591323B1 (en) Heat pump type air conditioner
JPS5885047A (en) Ventilation control device for cold insulating type air conditioner
JP3004773B2 (en) Air conditioner
JPH0611204A (en) Heat pump type air conditioner
JPH0730978B2 (en) Heat pump device
JPS5971963A (en) Heat pump type refrigeration cycle
JPH08320172A (en) Air conditioner
JPH0431505Y2 (en)
JPH03255864A (en) Heat pump type air conditioner
JPH0723826B2 (en) Heat pump
JP2001033126A (en) Air conditioner
JPH0776646B2 (en) Air conditioner / water heater
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPS63108173A (en) Defrostation method of heat pump type air conditioner
JPH0429345Y2 (en)
JPS6032533Y2 (en) Heat recovery air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees