JPH035680A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH035680A
JPH035680A JP13880289A JP13880289A JPH035680A JP H035680 A JPH035680 A JP H035680A JP 13880289 A JP13880289 A JP 13880289A JP 13880289 A JP13880289 A JP 13880289A JP H035680 A JPH035680 A JP H035680A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
flow path
way valve
refrigerant flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13880289A
Other languages
Japanese (ja)
Inventor
Etsuo Shibata
悦雄 柴田
Kazuaki Minato
和明 湊
Kenji Yao
八尾 健治
Takeshi Nakakoshi
中越 猛
Akira Yoshida
陽 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP13880289A priority Critical patent/JPH035680A/en
Publication of JPH035680A publication Critical patent/JPH035680A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To perform a heating operation while performing a defrosting operation by a method wherein in case of performing a defrosting operation, a part of refrigerant discharged out of a compressor passes through the first refrigerant passage, thereafter the refrigerant passes in the second refrigerant passage through a metering device and the remaining refrigerant passes in the second refrigerant passage through an indoor heat exchanger and an expansion valve. CONSTITUTION:In case of performing a defrosting operation, a part of refrigerant vapor of high temperature and high pressure discharged out of a compressor 1 passes from a four- way valve 4 via a three-way valve 8 and further passes through the first refrigerant passage 6, thereafter the refrigerant passes through a metering device 10, its pressure is reduced, the refrigerant temperature is low and the refrigerant pressure is low. The refrigerant enters the second refrigerant passage 7. At this time, an outdoor heat exchanger 3 is heated by refrigerant of high temperature and high pressure passing through the passage 6 and then frosts adhered to the heat exchanger is melted. Remaining refrigerant vapor of high temperature and high pressure discharged out of the compressor 1 passes through a four-way valve 4, radiates heat into an interior air through an indoor heat exchanger 2 and the refrigerant is condensed and liquified, thereafter a pressure of the refrigerant is reduced by an expansion valve 5 to get its low temperature and low pressure and then the refrigerant may flow into the second refrigerant passage 7. During this period, a heating operation is carried out. The refrigerant of low temperature and low pressure flowed into the passage 7 is evaporated in the passage 7, then the refrigerant returns back again into the compressor 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、除霜機能を備えた空気調和機に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an air conditioner equipped with a defrosting function.

(従来の技術) 従来の空気調和機における除霜は、冷媒回路を流れる冷
媒の流路を変化させることにより、室外熱交換器の内部
に高温の冷媒を流し、これによって室外熱交換器を加熱
し、該室外熱交換器の外部に着霜した霜を融解していた
(Prior art) Defrosting in conventional air conditioners involves changing the flow path of the refrigerant flowing through the refrigerant circuit to flow high-temperature refrigerant into the outdoor heat exchanger, thereby heating the outdoor heat exchanger. The frost that had formed on the outside of the outdoor heat exchanger was melted.

すなわち、第4図に示すような冷媒回路において、通常
暖房運転時は、点線矢印で示すように、圧縮機21で圧
縮された高温高圧の冷媒1気は、四方弁22を経て室内
熱交換器23において凝縮液化し、膨張弁24で減圧さ
れた後、室外熱交換器25において蒸発して低温の蒸気
となり、再び四方弁22を経て圧縮機21に戻る。一方
、除霜運転時は、実線矢印で示すように、室内熱交換器
23の入口の手前と室外熱交換器25の入口の手前とを
接続する冷媒流路に設けた吐出バイパス二方弁26を開
くことにより、圧縮器21で圧縮された高温高圧の冷媒
蒸気が、室外熱交換器25に直接流入し、これによって
室外熱交換器25が加熱され、該室外熱交換器25の外
部に着霜した霜が融解する。
That is, in the refrigerant circuit as shown in FIG. 4, during normal heating operation, the high-temperature, high-pressure refrigerant 1 air compressed by the compressor 21 passes through the four-way valve 22 to the indoor heat exchanger, as shown by the dotted arrow. After being condensed and liquefied at 23 and depressurized at an expansion valve 24, it evaporates at an outdoor heat exchanger 25 to become low-temperature vapor, and returns to the compressor 21 via the four-way valve 22 again. On the other hand, during defrosting operation, as shown by the solid arrow, a discharge bypass two-way valve 26 is provided in the refrigerant flow path connecting the inlet of the indoor heat exchanger 23 and the inlet of the outdoor heat exchanger 25. By opening the door, the high-temperature, high-pressure refrigerant vapor compressed by the compressor 21 directly flows into the outdoor heat exchanger 25, thereby heating the outdoor heat exchanger 25 and reaching the outside of the outdoor heat exchanger 25. Frost thaws.

(発明が解決しようとする課題) しかし、この除霜方法の場合、圧縮機から吐出された高
温高圧の冷媒蒸気を室外熱交換器に流して霜を溶かすた
め、除霜時には、空気調和機の暖房運転が行えないとい
う不都合があった。また、除霜運転の後、通常の暖房運
転を再開した場合、室内熱交換器やこれに接続する配管
を暖機するために、暖房の立上がりに時間を要したり、
運転効率が悪くなるといった不都合があった。
(Problem to be Solved by the Invention) However, in this defrosting method, the high-temperature, high-pressure refrigerant vapor discharged from the compressor is passed through the outdoor heat exchanger to melt the frost. There was an inconvenience that heating operation could not be performed. In addition, when normal heating operation is restarted after defrosting operation, it may take time for heating to start up in order to warm up the indoor heat exchanger and the piping connected to it.
There was an inconvenience that driving efficiency deteriorated.

本発明は、係る実情に鑑みてなされたもので、除霜運転
をしながら暖房運転を行うことができる空気調和機を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an air conditioner that can perform heating operation while performing defrosting operation.

(課題を解決するための手段) 本発明の空気調和機は、圧縮機、室内熱交換器、室外熱
交換器、四方弁、膨張弁を有した冷媒回路において、前
記室外熱交換器に第1冷媒流路および第2冷媒流路が設
けられ、第1冷媒流路の入口は三方弁を介して前記膨張
弁に接続され、該第1冷媒流路の出口は二方弁を介して
前記四方弁の室外熱交換器接続口に接続され、一方、第
2冷媒流路の入口は前記膨張弁に接続され、該第2冷媒
流路の出口は前記四方弁の室外熱交換器接続口に接続さ
れるとともに、前記第2冷媒流路の入口に前記第1冷媒
流路の出口が絞り装置を介して接続され、かつ前記第1
冷媒流路の入口は前記三方弁を介して前記圧縮機の吐出
口もしくは前記四方弁の室内熱交換器接続口に接続され
、除霜運転時、前記圧縮機から吐出された冷媒の一部は
前記第1冷媒流路を通過した後、前記絞り装置を経て前
記第2冷媒流路に流れるとともに、上記流路を流れる冷
媒以外は前記室内熱交換器、前記膨張弁を経て前記第2
冷媒流路を流れるようになされたものである。
(Means for Solving the Problems) The air conditioner of the present invention includes a refrigerant circuit having a compressor, an indoor heat exchanger, an outdoor heat exchanger, a four-way valve, and an expansion valve. A refrigerant flow path and a second refrigerant flow path are provided, an inlet of the first refrigerant flow path is connected to the expansion valve via a three-way valve, and an outlet of the first refrigerant flow path is connected to the expansion valve through a two-way valve. connected to the outdoor heat exchanger connection port of the valve, while the inlet of the second refrigerant flow path is connected to the expansion valve, and the outlet of the second refrigerant flow path is connected to the outdoor heat exchanger connection port of the four-way valve. and the outlet of the first refrigerant flow path is connected to the inlet of the second refrigerant flow path via a throttle device, and
The inlet of the refrigerant flow path is connected to the discharge port of the compressor or the indoor heat exchanger connection port of the four-way valve via the three-way valve, and during defrosting operation, a part of the refrigerant discharged from the compressor is After passing through the first refrigerant flow path, the refrigerant flows through the expansion device into the second refrigerant flow path, and the refrigerant other than the refrigerant flowing through the flow path passes through the indoor heat exchanger, the expansion valve, and then into the second refrigerant flow path.
The refrigerant is made to flow through the refrigerant flow path.

(作用) 第1図において、二方弁9を閉じる一方、三方弁8の吐
出接続口8aと室外熱交換器接続口8bとを開いて膨張
弁接続口8cを閉じ、吐出接続口8a4室外熱交換器接
続口8bとが連通した状態にして除霜運転を行う。
(Function) In FIG. 1, while the two-way valve 9 is closed, the discharge connection port 8a and the outdoor heat exchanger connection port 8b of the three-way valve 8 are opened, the expansion valve connection port 8c is closed, and the discharge connection port 8a4 is heated by the outdoor heat exchanger. Defrosting operation is performed with the exchanger connection port 8b in communication.

この状態で圧縮機1から吐出された高温高圧の冷媒蒸気
の一部は、四方弁4から三方弁8を経て第1冷媒流路6
を通過した後、絞り装置lOを経て減圧されて低温低圧
となり、第2冷媒流路7に流入する。この際、第1冷媒
流路6を通過する高温高圧の冷媒蒸気によって室外熱交
換器3が加熱され、該室外熱交換器3に着霜した霜が融
解する。
A part of the high-temperature, high-pressure refrigerant vapor discharged from the compressor 1 in this state passes through the four-way valve 4, the three-way valve 8, and the first refrigerant flow path 6.
After passing through, the refrigerant is depressurized through the expansion device 1O, becomes low temperature and low pressure, and flows into the second refrigerant flow path 7. At this time, the outdoor heat exchanger 3 is heated by the high-temperature, high-pressure refrigerant vapor passing through the first refrigerant flow path 6, and the frost formed on the outdoor heat exchanger 3 is melted.

一方、圧縮機1から吐出された高温高圧の冷媒蒸気の残
りは、四方弁4を経て室内熱交換器2で凝縮液化した後
、膨張弁5で減圧されて低温低圧となり、第2冷媒流路
7に流入する。この際、室内熱交換器2を通過する高温
高圧の冷媒蒸気によって室内熱交換器2が加熱され、暖
房運転が行われる。
On the other hand, the remainder of the high-temperature, high-pressure refrigerant vapor discharged from the compressor 1 passes through the four-way valve 4 and is condensed and liquefied in the indoor heat exchanger 2, and then is depressurized by the expansion valve 5 to become low-temperature and low-pressure, and is transferred to the second refrigerant flow path. 7. At this time, the indoor heat exchanger 2 is heated by the high-temperature, high-pressure refrigerant vapor passing through the indoor heat exchanger 2, and heating operation is performed.

そして、第2冷媒流路7に流入した低温低圧の冷媒は、
該第2冷媒流路7で蒸発した後、四方弁4を経て再び圧
縮機1に戻り、循環サイクルを繰り返す。
The low-temperature, low-pressure refrigerant that has flowed into the second refrigerant flow path 7 is
After being evaporated in the second refrigerant flow path 7, the refrigerant returns to the compressor 1 via the four-way valve 4 and repeats the circulation cycle.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

〔第1実施例〕 第1図は、空気調和機の全体構成の概略を示している。[First example] FIG. 1 shows an outline of the overall configuration of an air conditioner.

同図において、本装置は、圧縮機l、室内熱交換器2、
室外熱交換器3、四方弁4、膨張弁5を具備した冷媒回
路であって、室外熱交換器3に第1冷媒流路6と第2冷
媒流路7とを設けて構成している。
In the figure, this device includes a compressor 1, an indoor heat exchanger 2,
The refrigerant circuit includes an outdoor heat exchanger 3, a four-way valve 4, and an expansion valve 5. The outdoor heat exchanger 3 is provided with a first refrigerant flow path 6 and a second refrigerant flow path 7.

すなわち、第1冷媒流路6の入口6aは、三方弁8を介
して膨張弁5と四方弁4の室内熱交換器接続口4bとに
接続され、三方弁8を切り換えることによって膨張弁5
または四方弁4の室内熱交換器接続口4bに連通ずるよ
うになっている。また、第1冷媒流路6の出口6bは、
二方弁9を介して四方弁4の室外熱交換器接続口4aに
接続されるとともに、絞り装置10を介して第2冷媒流
路7の入ロアaにも接続されている。
That is, the inlet 6a of the first refrigerant flow path 6 is connected to the expansion valve 5 and the indoor heat exchanger connection port 4b of the four-way valve 4 via the three-way valve 8, and the expansion valve 5 is connected by switching the three-way valve 8.
Alternatively, it communicates with the indoor heat exchanger connection port 4b of the four-way valve 4. Further, the outlet 6b of the first refrigerant flow path 6 is
It is connected to the outdoor heat exchanger connection port 4a of the four-way valve 4 via the two-way valve 9, and is also connected to the inlet lower a of the second refrigerant flow path 7 via the expansion device 10.

一方、第2冷媒流路7の入ロアaは、前記したように絞
り装置10を介して第1冷媒流路6の出口6bに接続さ
れるとともに、膨張弁5にも接続されている。また、第
2冷媒流路7の出ロアbは、四方弁4の室外熱交換器接
続口4aに接続されている。
On the other hand, the lower inlet a of the second refrigerant flow path 7 is connected to the outlet 6b of the first refrigerant flow path 6 via the expansion device 10 as described above, and is also connected to the expansion valve 5. Further, the outlet lower b of the second refrigerant flow path 7 is connected to the outdoor heat exchanger connection port 4a of the four-way valve 4.

なお、三方弁8の切り換えは、電動ソレノイド(図示省
略)によって行われ、通常の暖房運転時には、吐出接続
口8aが閉じ、膨張弁接続口8cと室外熱交換器接続口
8bとが開いた状態となり、除霜運転時には、吐出接続
口8aと室外熱交換器接続口8bとが開き、膨張弁接続
口8cが閉じた状態となる。また、二方弁9も電動ソレ
ノイド(図示省略)によって開閉が行われ、通常の暖房
運転時には、開いた状態となり、除霜運転時には、閉じ
た状態となる。この三方弁9としては、該二方弁9の上
流側の冷媒が高圧になった時に冷媒の圧力によって自動
的に弁を閉じることができるパイロフト二方弁を用いる
こともできる。この場合、パイロット二方弁は、通常の
暖房運転時には、該パイロット二方弁の上流側の冷媒が
膨張弁5で減圧され低圧であるので開くこととなり、除
霜運転時には、高圧の冷媒蒸気が三方弁8を経て第1冷
媒流路6に流入するので閉じることとなる。
The three-way valve 8 is switched by an electric solenoid (not shown), and during normal heating operation, the discharge connection port 8a is closed and the expansion valve connection port 8c and the outdoor heat exchanger connection port 8b are open. Therefore, during defrosting operation, the discharge connection port 8a and the outdoor heat exchanger connection port 8b are opened, and the expansion valve connection port 8c is closed. The two-way valve 9 is also opened and closed by an electric solenoid (not shown), and is open during normal heating operation and closed during defrosting operation. As the three-way valve 9, a pyroft two-way valve that can automatically close the valve due to the pressure of the refrigerant when the refrigerant upstream of the two-way valve 9 becomes high pressure can also be used. In this case, the pilot two-way valve opens during normal heating operation because the refrigerant on the upstream side of the pilot two-way valve is depressurized by the expansion valve 5 and is at low pressure, and during defrosting operation, high-pressure refrigerant vapor is opened. Since the refrigerant flows into the first refrigerant flow path 6 via the three-way valve 8, it is closed.

次に、上記空気調和機の動作を説明する。Next, the operation of the air conditioner will be explained.

通常の暖房運転時の冷媒の流れを点線の矢印で、除霜運
転時の冷媒の流れを実線の矢印で示す。
The flow of refrigerant during normal heating operation is shown by dotted arrows, and the flow of refrigerant during defrosting operation is shown by solid arrows.

通常の暖房運転時、圧縮機1から吐出された高温高圧の
冷媒蒸気は、四方弁4を経て室内熱交換器2に流入し、
室内空気に熱を放出して凝縮液化する。この際、室内熱
交換器2を通過する高温高圧の冷媒蒸気が室内空気に放
熱することによって暖房運転が行われる。そして、凝縮
液化した高温高圧の冷媒は、膨張弁5に流入して減圧さ
れて膨張し、低温低圧になって室外熱交換器3の第1冷
媒流路6および第2冷媒流路7に流入することにより室
外空気から吸熱して蒸発し、低温低圧の蒸気になる。そ
して、室外熱交換器3の第1冷媒流路6および第2冷媒
流路7から流出した冷媒は、四方弁4を経由した後、再
び圧縮機1に戻って圧縮され、循環サイクルを繰り返す
During normal heating operation, high-temperature, high-pressure refrigerant vapor discharged from the compressor 1 flows into the indoor heat exchanger 2 through the four-way valve 4.
It releases heat into the indoor air and condenses into liquid. At this time, heating operation is performed by the high-temperature, high-pressure refrigerant vapor passing through the indoor heat exchanger 2 radiating heat to the indoor air. The condensed and liquefied high-temperature, high-pressure refrigerant flows into the expansion valve 5, is depressurized, expands, becomes low-temperature and low-pressure, and flows into the first refrigerant flow path 6 and the second refrigerant flow path 7 of the outdoor heat exchanger 3. As a result, it absorbs heat from the outdoor air and evaporates, becoming low-temperature, low-pressure steam. Then, the refrigerant flowing out from the first refrigerant flow path 6 and the second refrigerant flow path 7 of the outdoor heat exchanger 3 passes through the four-way valve 4, returns to the compressor 1, is compressed, and repeats the circulation cycle.

一方、除霜運転時、圧縮機1から吐出された高温高圧の
冷媒蒸気の一部は、四方弁4から三方弁8を経て第1冷
媒流路6を通過した後、絞り装置10を経て減圧されて
低温低圧となり、第2冷媒流路7に流入する。この際、
第1冷媒流路6を通過する高温高圧の冷媒蒸気によって
室外熱交換器3が加熱され、該室外熱交換器3に着霜し
た霜が融解する。また、圧縮機1から吐出された高温高
圧の冷媒蒸気の残りは、四方弁4を経て室内熱交換器2
で室内空気に放熱して凝縮液化した後、膨張弁5で減圧
されて低温低圧となり、第2冷媒流路7に流入する。こ
の際、室内熱交換器2を通過する高温高圧の冷媒蒸気が
室内空気に放熱することによって暖房運転が行われる。
On the other hand, during defrosting operation, a part of the high-temperature, high-pressure refrigerant vapor discharged from the compressor 1 passes through the four-way valve 4, the three-way valve 8, the first refrigerant flow path 6, and then passes through the expansion device 10 to reduce the pressure. The refrigerant becomes low temperature and low pressure, and flows into the second refrigerant flow path 7. On this occasion,
The outdoor heat exchanger 3 is heated by the high-temperature, high-pressure refrigerant vapor passing through the first refrigerant flow path 6, and the frost formed on the outdoor heat exchanger 3 is melted. Further, the remainder of the high temperature and high pressure refrigerant vapor discharged from the compressor 1 passes through the four-way valve 4 to the indoor heat exchanger 2.
After the refrigerant radiates heat to the indoor air to condense and liquefy, the refrigerant is depressurized by the expansion valve 5 to become low temperature and low pressure, and flows into the second refrigerant flow path 7. At this time, heating operation is performed by the high-temperature, high-pressure refrigerant vapor passing through the indoor heat exchanger 2 radiating heat to the indoor air.

そして、第2冷媒流路7に流入した低温低圧の冷媒は、
該第2冷媒流路7で蒸発した後、四方弁4を経て再び圧
縮機1に戻って圧縮され、循環サイクルを繰り返す。
The low-temperature, low-pressure refrigerant that has flowed into the second refrigerant flow path 7 is
After evaporating in the second refrigerant flow path 7, the refrigerant passes through the four-way valve 4, returns to the compressor 1, is compressed, and repeats the circulation cycle.

〔第2実施例〕 本実施例を第2図に示す。本実施例は、三方弁8として
パイロット三方弁を用いるとともに、該バイロフト三方
弁の吐出接続口8aと四方弁4の室内熱交換器接続口4
bとの間に、電動ソレノイドによって作動するバイパス
二方弁11を設け、このバイパス二方弁11の作動によ
って冷媒の流れを変更できるように構成したものである
[Second Example] This example is shown in FIG. In this embodiment, a pilot three-way valve is used as the three-way valve 8, and a discharge connection port 8a of the viroft three-way valve and an indoor heat exchanger connection port 4 of the four-way valve 4 are used.
A bypass two-way valve 11 operated by an electric solenoid is provided between the refrigerant and the refrigerant, and the flow of the refrigerant can be changed by operating the bypass two-way valve 11.

このパイロット三方弁8は、通常、室外熱交換器接続口
8bと膨張弁接続口8cとが連通し、吐出接続口8aに
冷媒の圧力が加わった時にのみ、該吐出接続口8aと室
外熱交換器接続口8bとが連通ずるように構成する。
This pilot three-way valve 8 normally communicates with the outdoor heat exchanger connection port 8b and the expansion valve connection port 8c, and only when refrigerant pressure is applied to the discharge connection port 8a, the outdoor heat exchanger and the outdoor heat exchanger are connected. It is configured so that it communicates with the device connection port 8b.

この空気調和機によると、通常の暖房運転時には、バイ
パス二方弁11を閉じておくことにより、吐出接続口8
aに冷媒の圧力が加わらなくなるので、室外熱交換器接
続口8bと膨張弁接続口8cとが連通し、暖房運転を行
うことができる。また、除霜運転時には、バイパス二方
弁1■を開くことにより、吐出接続口8aに冷媒の圧力
が加わるので、室外熱交換器接続口8bと吐出接続口8
aとが連通し、除霜運転を行うことができる。その他の
構成や冷媒の流れ等は、上記第1実施例と同様の動作で
ある。
According to this air conditioner, by keeping the bypass two-way valve 11 closed during normal heating operation, the discharge connection port 8
Since the pressure of the refrigerant is no longer applied to a, the outdoor heat exchanger connection port 8b and the expansion valve connection port 8c communicate with each other, and heating operation can be performed. In addition, during defrosting operation, by opening the bypass two-way valve 1■, refrigerant pressure is applied to the discharge connection port 8a, so that the outdoor heat exchanger connection port 8b and the discharge connection port 8
A is in communication with the air conditioner, and defrosting operation can be performed. The other configurations, refrigerant flow, etc. are similar to those in the first embodiment.

次に、本発明に用いられる室外熱交換器3の具体例につ
いて説明する。
Next, a specific example of the outdoor heat exchanger 3 used in the present invention will be described.

(第1具体例) 本具体例の室外熱交換器3を第3図に示す。この室外熱
交換器3は、室外空気の流れFの上流側に第1冷媒流路
6を配置するとともに、室外空気の流れFの下流側に第
2冷媒流路7を配置した構成としている。すなわち、第
1冷媒流路6と第2冷媒流路7とを並列に配置し、これ
ら冷媒流路6゜7の管束間に、熱伝導可能な伝熱フィン
12を熱的に結合している。この室外熱交換器3の材質
としては、銅やアルミニウム等の熱伝導性の良い金属が
用いられる。
(First Specific Example) The outdoor heat exchanger 3 of this specific example is shown in FIG. The outdoor heat exchanger 3 has a first refrigerant flow path 6 disposed upstream of the flow F of outdoor air, and a second refrigerant flow path 7 disposed downstream of the flow F of outdoor air. That is, the first refrigerant flow path 6 and the second refrigerant flow path 7 are arranged in parallel, and heat transfer fins 12 capable of conducting heat are thermally coupled between the tube bundles of these refrigerant flow paths 6.7. . As the material of the outdoor heat exchanger 3, a metal with good thermal conductivity such as copper or aluminum is used.

この室外熱交換器3によると、除霜運転時に、第1冷媒
流路6に高温の冷媒蒸気が流れ、第2冷媒流路7に低温
の冷媒が流れる。そのため、第1冷媒流路6では冷媒蒸
気の熱が第1冷媒流路6から伝熱フィン12を伝って順
次熱伝導されて高温となる。一方、第2冷媒流路7では
吸熱が行われることとなり低温となる。そして、第1冷
媒流路6付近に着霜した霜は、第1冷媒流路6を伝って
順次熱伝導される冷媒蒸気の熱によって順次融解するこ
ととなる。一方、第2冷媒流路7付近に着霜した霜は、
該第2冷媒流路7が低温となるため、第1冷媒流路6付
近で温められて熱風となった室外空気の流れFによって
順次融解することとなる。
According to this outdoor heat exchanger 3, high-temperature refrigerant vapor flows into the first refrigerant flow path 6 and low-temperature refrigerant flows into the second refrigerant flow path 7 during defrosting operation. Therefore, in the first refrigerant flow path 6, the heat of the refrigerant vapor is sequentially conducted from the first refrigerant flow path 6 through the heat transfer fins 12, and becomes high temperature. On the other hand, heat is absorbed in the second refrigerant flow path 7, resulting in a low temperature. Then, the frost formed near the first refrigerant flow path 6 is sequentially melted by the heat of the refrigerant vapor that is sequentially thermally conducted along the first refrigerant flow path 6. On the other hand, the frost formed near the second refrigerant flow path 7,
Since the second refrigerant flow path 7 has a low temperature, it will be sequentially melted by the flow F of outdoor air that has been warmed near the first refrigerant flow path 6 and turned into hot air.

(発明の効果) 以上述べたように、本発明によると除霜運転時でも継続
して暖房を行うことができるので、除霜運転後に通常の
暖房運転に切り替わった時に室内熱交換器や、該室内熱
交換器に接続する配管等を暖機することなく充分な暖房
能力を得ることができるとともに運転の効率を向上する
ことできる。
(Effects of the Invention) As described above, according to the present invention, heating can be continued even during defrosting operation, so when switching to normal heating operation after defrosting operation, the indoor heat exchanger Sufficient heating capacity can be obtained without warming up piping etc. connected to the indoor heat exchanger, and operational efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は、本発明に係る図面を示し、第1
図は第1実施例に係る空気調和機の全体構成の概略を示
すシステム構成図、第2図は第2実施例に係る空気調和
機の全体構成の概略を示すシステム構成図、第3図は第
1具体例に係る室外熱交換器の全体構成の概略を示す斜
視図、第4図は従来の空気調和機の全体構成の概略を示
すシステム構成図である。 5・・・膨張弁 6・・・第1冷媒流路 6a・・・入口  6b・・・出ロ ア・・・第2冷媒流路 7a・・・入口 8・・・三方弁 9・・・二方弁 10・・・絞り装置 7b・・・出口 1・・・圧縮機 1a・・・吐出口 2・・・室内熱交換器 3・・・室外熱交換器 4・・・四方弁 4a・・・室外熱交換器接続口 4b・・・室内熱交換器接続口
1 to 3 show drawings according to the present invention;
The figure is a system configuration diagram schematically showing the overall configuration of an air conditioner according to the first embodiment, FIG. 2 is a system configuration diagram schematically showing the overall configuration of the air conditioner according to the second embodiment, and FIG. FIG. 4 is a perspective view schematically showing the overall configuration of an outdoor heat exchanger according to the first specific example, and FIG. 4 is a system configuration diagram schematically showing the overall configuration of a conventional air conditioner. 5... Expansion valve 6... First refrigerant flow path 6a... Inlet 6b... Lower outlet... Second refrigerant flow path 7a... Inlet 8... Three-way valve 9... Two Way valve 10...throttle device 7b...outlet 1...compressor 1a...discharge port 2...indoor heat exchanger 3...outdoor heat exchanger 4...four-way valve 4a...・Outdoor heat exchanger connection port 4b...Indoor heat exchanger connection port

Claims (1)

【特許請求の範囲】 1)圧縮機、室内熱交換器、室外熱交換器、四方弁、膨
張弁を有した冷媒回路において、前記室外熱交換器に第
1冷媒流路および第2冷媒流路が設けられ、第1冷媒流
路の入口は三方弁を介して前記膨張弁に接続され、該第
1冷媒流路の出口は二方弁を介して前記四方弁の室外熱
交換器接続口に接続され、一方、第2冷媒流路の入口は
前記膨張弁に接続され、該第2冷媒流路の出口は前記四
方弁の室外熱交換器接続口に接続されるとともに、前記
第2冷媒流路の入口に前記第1冷媒流路の出口が絞り装
置を介して接続され、かつ前記第1冷媒流路の入口は前
記三方弁を介して前記圧縮機の吐出口もしくは前記四方
弁の室内熱交換器接続口に接続され、 除霜運転時、前記圧縮機から吐出された冷媒の一部は前
記第1冷媒流路を通過した後、前記絞り装置を経て前記
第2冷媒流路に流れるとともに、上記流路を流れる冷媒
以外は前記室内熱交換器、前記膨張弁を経て前記第2冷
媒流路を流れるようになされたことを特徴とする空気調
和機。
[Scope of Claims] 1) In a refrigerant circuit having a compressor, an indoor heat exchanger, an outdoor heat exchanger, a four-way valve, and an expansion valve, a first refrigerant flow path and a second refrigerant flow path are provided in the outdoor heat exchanger. is provided, the inlet of the first refrigerant flow path is connected to the expansion valve via a three-way valve, and the outlet of the first refrigerant flow path is connected to the outdoor heat exchanger connection port of the four-way valve via a two-way valve. On the other hand, the inlet of the second refrigerant flow path is connected to the expansion valve, the outlet of the second refrigerant flow path is connected to the outdoor heat exchanger connection port of the four-way valve, and the second refrigerant flow The outlet of the first refrigerant flow path is connected to the inlet of the refrigerant flow path via a throttle device, and the inlet of the first refrigerant flow path is connected to the discharge port of the compressor or the indoor heat of the four-way valve via the three-way valve. Connected to the exchanger connection port, during defrosting operation, a part of the refrigerant discharged from the compressor passes through the first refrigerant flow path, passes through the expansion device, and flows into the second refrigerant flow path. An air conditioner, characterized in that refrigerant other than the refrigerant flowing through the flow path flows through the indoor heat exchanger and the expansion valve, and then through the second refrigerant flow path.
JP13880289A 1989-05-30 1989-05-30 Air conditioner Pending JPH035680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13880289A JPH035680A (en) 1989-05-30 1989-05-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13880289A JPH035680A (en) 1989-05-30 1989-05-30 Air conditioner

Publications (1)

Publication Number Publication Date
JPH035680A true JPH035680A (en) 1991-01-11

Family

ID=15230576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13880289A Pending JPH035680A (en) 1989-05-30 1989-05-30 Air conditioner

Country Status (1)

Country Link
JP (1) JPH035680A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281299A (en) * 1993-03-30 1994-10-07 Toshiba Corp Defrosting control system for air conditioner
US5865033A (en) * 1994-09-29 1999-02-02 Gossler; Ewald Method and device for cooling gases
JP2009156472A (en) * 2007-12-25 2009-07-16 Mitsubishi Electric Corp Air conditioner
WO2017138108A1 (en) * 2016-02-10 2017-08-17 三菱電機株式会社 Air conditioning device
JP2020165581A (en) * 2019-03-29 2020-10-08 三菱重工サーマルシステムズ株式会社 Non-azeotropic refrigerant circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281299A (en) * 1993-03-30 1994-10-07 Toshiba Corp Defrosting control system for air conditioner
US5865033A (en) * 1994-09-29 1999-02-02 Gossler; Ewald Method and device for cooling gases
JP2009156472A (en) * 2007-12-25 2009-07-16 Mitsubishi Electric Corp Air conditioner
WO2017138108A1 (en) * 2016-02-10 2017-08-17 三菱電機株式会社 Air conditioning device
JP2020165581A (en) * 2019-03-29 2020-10-08 三菱重工サーマルシステムズ株式会社 Non-azeotropic refrigerant circuit

Similar Documents

Publication Publication Date Title
CN211739592U (en) Air conditioning system capable of continuously heating
JP2522919B2 (en) Air conditioner
KR19980017695A (en) Dropping prevention device of heat pump
JPH11173711A (en) Dual refrigerator
JPH035680A (en) Air conditioner
KR100333814B1 (en) Dual unit type air conditioner for heating and cooling and defrosting method thereof
JPH04236075A (en) Air-conditioning machine
JP3289373B2 (en) Heat pump water heater
JP2646709B2 (en) Air conditioner
JPH09318178A (en) Air conditioner
JPH08313096A (en) Air conditioner
JP2871166B2 (en) Air conditioner
JPH08291950A (en) Air conditioner
JP3004773B2 (en) Air conditioner
JPH07117323B2 (en) Air conditioner
JPH08313121A (en) Refrigerating device
JPH0730978B2 (en) Heat pump device
JPH04222360A (en) Heat pump type air conditioner
JPS6117873A (en) Air-conditioning hot-water supply device
JPH08136067A (en) Air conditioner
JPH0429345Y2 (en)
JP2001033126A (en) Air conditioner
JPS6243249Y2 (en)
JPS6360305B2 (en)
JPH0571821A (en) Heating and cooling apparatus