JPH07117323B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH07117323B2
JPH07117323B2 JP1066921A JP6692189A JPH07117323B2 JP H07117323 B2 JPH07117323 B2 JP H07117323B2 JP 1066921 A JP1066921 A JP 1066921A JP 6692189 A JP6692189 A JP 6692189A JP H07117323 B2 JPH07117323 B2 JP H07117323B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
bypass circuit
pressure
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1066921A
Other languages
Japanese (ja)
Other versions
JPH02247466A (en
Inventor
秀明 田頭
正美 今西
俊介 大原
勝美 笠野
斉 木戸
祥道 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1066921A priority Critical patent/JPH07117323B2/en
Publication of JPH02247466A publication Critical patent/JPH02247466A/en
Publication of JPH07117323B2 publication Critical patent/JPH07117323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷凍サイクル回路を用いて冷暖房運転を行な
う空気調和装置の改良に関する。
TECHNICAL FIELD The present invention relates to an improvement of an air conditioner that performs cooling / heating operation using a refrigeration cycle circuit.

〔従来の技術〕[Conventional technology]

従来この種の空気調和装置は、概略第2図に示すような
構成とされていた。これを簡単に説明すると、図中
(1)は圧縮機、(2)は四方切換弁、(3)は室外側
熱交換器、(4),(5)は冷房運転時、暖房運転時に
それぞれ膨張機構として機能する第1および第2の絞り
装置、(6)は室内側熱交換器、(7)はアキユムレー
タで、これらを順次冷媒配管で連結接続することで冷凍
サイクル回路が構成されている。なお、(8),(9)
は室内側、室外側熱交換器(6),(3)にそれぞれ送
風する室内側および室外側送風機で、また(4a),(4
b)は第1の絞り装置(4)を構成する第1の減圧装置
(キヤピラリチユーブ)およびこれをバイパスする回路
中に設けられた第1の逆止弁、(5a),(5b)は第2の
絞り装置(5)を構成する第2の減圧装置(キヤピラリ
チユーブ)およびこれをバイパスする回路中に設けられ
た第2の逆止弁である。
Conventionally, this type of air conditioner has a structure as schematically shown in FIG. To briefly explain this, in the figure, (1) is a compressor, (2) is a four-way switching valve, (3) is an outdoor heat exchanger, and (4) and (5) are respectively during cooling operation and heating operation. The first and second expansion devices functioning as expansion mechanisms, (6) is an indoor heat exchanger, and (7) is an accumulator, and a refrigeration cycle circuit is formed by sequentially connecting and connecting these with refrigerant pipes. . In addition, (8), (9)
Are indoor and outdoor blowers that blow air to the indoor heat exchangers (6) and (3), respectively, and (4a) and (4)
b) is a first pressure reducing device (capillary tube) constituting the first expansion device (4) and a first check valve provided in a circuit bypassing the first reducing device (5a), (5b). A second pressure reducing device (capillary tube) that constitutes the second expansion device (5) and a second check valve provided in a circuit that bypasses the second pressure reducing device (capillary tube).

このような構成による空気調和装置において、冷房運転
時(冷媒の流れを図中太い実線による矢印で示す)に
は、圧縮機(1)から吐出された高温高圧のガス冷媒
は、四方切換弁(2)を通り、室外側熱交換器(3)で
室外側送風機(9)によつて送風される室外空気と熱交
換し、ガス冷媒が凝縮液化される。そして、第1の絞り
装置(4)側でのバイパス回路中の第1の逆止弁(4b)
を通り、第2の絞り装置(5)を構成する第2の減圧装
置(5a)側に導入されて減圧され、低温低圧の液冷媒と
なる。その後、この液冷媒は室内側熱交換器(6)に入
り、室内側送風機(8)によつて送風される室内空気と
熱交換し、室内空気を冷却するとともに、これにより液
冷媒が蒸発ガス化され、四方切換弁(2)、アキユムレ
ータ(7)を通り圧縮機(1)に戻るという冷房時の冷
凍サイクルが構成され、以後冷媒は上述した冷凍サイク
ル経路内を順次液化、気化を繰り返しながら循環され
る。
In the air conditioner having such a configuration, during the cooling operation (the flow of the refrigerant is indicated by a thick solid arrow in the figure), the high-temperature and high-pressure gas refrigerant discharged from the compressor (1) is supplied to the four-way switching valve ( After passing through 2), the outdoor heat exchanger (3) exchanges heat with the outdoor air blown by the outdoor blower (9), and the gas refrigerant is condensed and liquefied. The first check valve (4b) in the bypass circuit on the side of the first expansion device (4)
And is introduced into the second pressure reducing device (5a) side of the second expansion device (5) to be reduced in pressure to become a low-temperature low-pressure liquid refrigerant. After that, the liquid refrigerant enters the indoor heat exchanger (6), exchanges heat with the indoor air blown by the indoor blower (8), cools the indoor air, and thereby the liquid refrigerant evaporates gas. A refrigeration cycle during cooling is configured by returning to the compressor (1) through the four-way switching valve (2) and the accumulator (7), and the refrigerant is liquefied and vaporized repeatedly in the refrigeration cycle path described above. Circulated.

一方、暖房運転時(冷媒の流れを図中細い実線による矢
印で示す)には、圧縮機(1)から吐出された高温高圧
のガス冷媒は、暖房側に切換えられた四方切換弁(2)
を通り、室内側熱交換器(6)に入り、室内側送風機
(8)によつて送風される室内空気と熱交換して室内空
気を加熱するとともに、これによりガス冷媒が凝縮液化
される。そして、この液冷媒は、第2の絞り装置(5)
をバイパスする回路中の第2の逆止弁(5b)を通り、第
1の絞り装置(4)を構成する第1の減圧装置(4a)に
導かれて減圧され、低温低圧の液冷媒となる。その後、
液冷媒は室外側熱交換器(3)に入り、室外側送風機
(9)によつて送風される室外空気と熱交換し室外空気
から採熱して室外空気を冷却するとともに、これにより
液冷媒が蒸発ガス化し、四方切換弁(2)、アキユムレ
ータ(7)を通り圧縮機(1)に戻り、これにより暖房
時の冷凍サイクルが構成される。
On the other hand, during the heating operation (the flow of the refrigerant is indicated by a thin solid arrow in the figure), the high-temperature and high-pressure gas refrigerant discharged from the compressor (1) is switched to the heating side by the four-way switching valve (2).
And enters the indoor heat exchanger (6) to exchange heat with the indoor air blown by the indoor blower (8) to heat the indoor air, and thereby the gas refrigerant is condensed and liquefied. Then, this liquid refrigerant is used as the second expansion device (5).
Passing through the second check valve (5b) in the circuit for bypassing, and being led to the first pressure reducing device (4a) constituting the first expansion device (4) to be decompressed, and become a low-temperature low-pressure liquid refrigerant. Become. afterwards,
The liquid refrigerant enters the outdoor heat exchanger (3) and exchanges heat with the outdoor air blown by the outdoor blower (9) to collect heat from the outdoor air and cool the outdoor air. The gas is vaporized and returned to the compressor (1) through the four-way switching valve (2) and the accumulator (7), which constitutes a refrigeration cycle during heating.

また、このような暖房運転を継続して行なつていると、
たとえば室外空気温度が低い場合、室外側熱交換器
(3)に着霜が生じてくる。このような着霜が多くなる
と熱交換効率が悪くなり、室外空気からの採熱量が減少
するため、空気調和装置の暖房能力が著しく低下する。
したがつて、このような場合には、デフロスト(除霜)
を行なうことが必要とされる。
In addition, if such heating operation is continued,
For example, when the outdoor air temperature is low, frost forms on the outdoor heat exchanger (3). When such frost formation increases, the heat exchange efficiency deteriorates and the amount of heat collected from the outdoor air decreases, so that the heating capacity of the air conditioner significantly decreases.
Therefore, in such cases, defrost
Is required to do.

このようなデフロスト運転時(冷媒の流れを図中破線に
よる矢印で示す)には、圧縮機(1)から吐出された高
温高圧のガス冷媒は、暖房側から冷房側へと切換えられ
た四方切換弁(2)を通り、室外側熱交換器(3)に入
る。ここで、室外側送風機(9)は停止している。そし
て、この室外側熱交換器(3)の表面に着霜していた霜
を高温ガス冷媒で溶解し、この冷媒が凝縮液化して第1
の絞り装置(4)をバイパスする第1の逆止弁(4b)を
通り、第2の絞り装置(5)を構成する第2の減圧装置
(5a)によつて減圧されて低温低圧の液冷媒となり、室
内側熱交換器(6)に入り、次で四方切換弁(2)およ
びアキユムレータ(7)を通つて圧縮機(1)に戻ると
いう冷凍サイクル運転を行なうものであつた。
During such a defrost operation (refrigerant flow is indicated by a dashed arrow in the figure), the high-temperature and high-pressure gas refrigerant discharged from the compressor (1) is switched from the heating side to the cooling side by four-way switching. Pass the valve (2) and enter the outdoor heat exchanger (3). Here, the outdoor blower (9) is stopped. Then, the frost formed on the surface of the outdoor heat exchanger (3) is melted by the high-temperature gas refrigerant, and the refrigerant is condensed and liquefied to form the first gas.
Of the low-temperature low-pressure liquid passing through the first check valve (4b) bypassing the expansion device (4) of FIG. 2 and reduced in pressure by the second pressure reducing device (5a) constituting the second expansion device (5). The refrigerant becomes a refrigerant, enters the indoor heat exchanger (6), and then passes through the four-way switching valve (2) and the accumulator (7) to return to the compressor (1), thereby performing a refrigeration cycle operation.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、上述した暖房運転中のデフロスト運転時にお
いて、低温低圧の液冷媒が室内側熱交換器(6)に導入
された場合に若干の問題を生じている。すなわち、この
室内側熱交換器(6)に対向して配置される室内側送風
機(8)は、このデフロスト運転時に通常は微風運転を
行なつているか、あるいは停止されている。そして、た
とえば微風運転を行なつている場合には、低温低圧の液
冷媒と室内空気とが熱交換され、室内空気を冷却すると
ともに液冷媒が蒸発ガス化し、四方切換弁(2)および
アキユムレータ(7)を通り圧縮機(1)に戻る。した
がつて、このような場合には、室内側に冷風が吹出され
ることとなり、空気調和効果を著しく低下させてしまう
という問題を生じている。
By the way, during the defrosting operation during the heating operation described above, when a low-temperature low-pressure liquid refrigerant is introduced into the indoor heat exchanger (6), some problems occur. That is, the indoor blower (8) arranged so as to face the indoor heat exchanger (6) is normally performing a slight wind operation or is stopped during the defrost operation. Then, for example, when the breeze operation is performed, the low-temperature low-pressure liquid refrigerant and room air are heat-exchanged, the room air is cooled, and the liquid refrigerant is vaporized into gas, and the four-way switching valve (2) and the accumulator ( Return to compressor (1) via 7). Therefore, in such a case, there is a problem that cold air is blown to the inside of the room and the air conditioning effect is significantly reduced.

また、室内側送風機(8)を停止させた場合には、低温
低圧の液冷媒は採熱できず、冷媒は液のままアキユムレ
ータ(7)に入り圧縮機(1)に戻るため、圧縮機
(1)が液圧縮し、圧縮機トラブルを生じることがあつ
た。
Further, when the indoor blower (8) is stopped, the low-temperature low-pressure liquid refrigerant cannot collect heat, and the refrigerant enters the accumulator (7) as a liquid and returns to the compressor (1). 1) was liquid-compressed, which could cause compressor trouble.

さらに、上述した従来装置によれば、特にデフロスト時
における高圧圧力が低いため、低圧圧力も低下し、圧縮
機(1)の能力が充分に発揮できず、デフロスト時間も
長くかかる等といつた欠点があつた。また、暖房運転時
に四方切換弁(2)を冷房側に切換え、デフロスト運転
を行なうため、切換え時に熱のロスが生じるという問題
もあつた。
Further, according to the above-mentioned conventional apparatus, since the high pressure is low especially at the time of defrosting, the low pressure also decreases, the capacity of the compressor (1) cannot be fully exerted, and the defrosting time takes a long time. I got it. In addition, since the four-way switching valve (2) is switched to the cooling side during the heating operation and the defrost operation is performed, there is a problem that heat loss occurs during the switching.

本発明は上述した事情に鑑みてなされたもので、暖房運
転中のデフロスト運転時において冷風の室内への吹出し
を防止するとともに、四方切換弁を暖房側としたままで
のデフロスト運転を行ない、高圧圧力を上げて圧縮機能
力を高め、しかも圧縮機からの高温、高圧ガス冷媒と吸
入側配管とを熱交換させるように構成することで、圧縮
機への液戻りをも防止し得る空気調和装置を得ることを
目的としている。
The present invention has been made in view of the above-mentioned circumstances, and prevents the blowing of cold air into the room during the defrosting operation during the heating operation, and performs the defrosting operation with the four-way switching valve left on the heating side. An air conditioner that can prevent the liquid from returning to the compressor by increasing the pressure to increase the compression function and also by performing heat exchange between the high temperature and high pressure gas refrigerant from the compressor and the suction side pipe. The purpose is to get.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明に係る空気調和装置は、圧縮機と、この圧縮機よ
り吐出される高温高圧の冷媒の流れを切換える四方切換
弁と、室外側送風機を備えた室外側熱交換器と、暖房時
に冷媒を減圧する第2の絞り装置と、室内送風機を備え
た室内側熱交換器とを備え、これらを順次冷媒配管で接
続して冷媒回路を構成してなる空気調和装置において、
前記圧縮機の冷媒吐出配管と四方切換弁間に接続された
三方切換弁を介して前記室外側熱交換器と第2の絞り装
置を接続する配管にバイパスして接続する第1のバイパ
ス回路と前記第1のバイパス回路から圧縮機の吸入側配
管にバイパスして接続され、かつ吐出圧力調整弁と補助
減圧手段を有する第2のバイパス回路とを設け、暖房運
転時は前記三方切換弁を前記四方切換弁側に開き暖房運
転を行い、デフロスト運転時は前記四方切換弁を暖房運
転にしたまま前記三方切換弁を前記第1のバイパス回路
側に開きデフロスト運転を行うとともに圧縮機の高圧側
圧力が所定の高圧値に達した時前記第2のバイパス回路
の吐出圧力調整弁を開くようにしたものである。
The air conditioner according to the present invention includes a compressor, a four-way switching valve that switches the flow of high-temperature and high-pressure refrigerant discharged from the compressor, an outdoor heat exchanger including an outdoor blower, and a refrigerant during heating. An air conditioner comprising a second expansion device for decompressing and an indoor heat exchanger equipped with an indoor blower, which is sequentially connected by a refrigerant pipe to form a refrigerant circuit,
A first bypass circuit for bypassing and connecting to the pipe connecting the outdoor heat exchanger and the second expansion device via a three-way switching valve connected between the refrigerant discharge pipe of the compressor and the four-way switching valve; A second bypass circuit, which is connected to the suction side pipe of the compressor by bypass from the first bypass circuit, and which has a discharge pressure adjusting valve and an auxiliary pressure reducing means, is provided, and the three-way switching valve is used during heating operation. The heating operation is performed by opening the four-way switching valve side, and during the defrost operation, the three-way switching valve is opened to the first bypass circuit side while the four-way switching valve is in the heating operation and the defrost operation is performed, and the pressure on the high pressure side of the compressor is increased. When the pressure reaches a predetermined high pressure value, the discharge pressure adjusting valve of the second bypass circuit is opened.

また、第1のバイパス回路が圧縮機の吐出側配管の内径
より細い内径を有する配管を有する様にしたものでる。
Further, the first bypass circuit has a pipe having an inner diameter smaller than that of the discharge side pipe of the compressor.

また、冷媒回路に冷房時に冷媒を減圧する第1の絞り装
置を備え、前記第1の絞り装置及び第2の絞り装置は、
それぞれの減圧装置をバイパスするバイパス回路を有す
るとともに、前記それぞれのバイパス回路には、それぞ
れ室外側及び室内側熱交換器へのみ冷媒の流れを許容す
る逆止弁を備え、前記圧縮機の冷媒吐出配管と直接、前
記第1及び第2の絞り装置を接続する配管の間にバイパ
スして接続するバイパス回路を設け、このバイパス回路
は、管路途中に、前記圧縮機の冷媒吸入配管と熱交換す
るサクション熱交換部と、冷媒を減圧する減圧装置を備
えたものである。
Further, the refrigerant circuit is provided with a first expansion device that reduces the pressure of the refrigerant during cooling, and the first expansion device and the second expansion device are:
While having a bypass circuit that bypasses each pressure reducing device, each of the bypass circuits is provided with a check valve that allows the flow of the refrigerant only to the outdoor side and the indoor side heat exchangers, and the refrigerant discharge of the compressor. A bypass circuit for bypassing and connecting between the pipe and the pipe connecting the first and second expansion devices is provided, and the bypass circuit performs heat exchange with the refrigerant suction pipe of the compressor in the middle of the pipeline. And a decompression device for decompressing the refrigerant.

〔作用〕[Action]

本発明によれば、暖房運転中のデフロスト運転時に四方
切換弁を暖房運転の状態としたままで、かつ三方切換弁
を切換え、第1のバイパス回路あるいは第1、第2のバ
イパス回路を共に開路してデフロスト運転することで、
従来のような四方切換弁の切換え時における熱ロスを防
止できる。
According to the present invention, during the defrost operation during the heating operation, the three-way switching valve is switched while the four-way switching valve is kept in the heating operation state, and the first bypass circuit or both the first and second bypass circuits are opened. And by defrosting,
It is possible to prevent heat loss when switching the conventional four-way switching valve.

また、第1のバイパス回路が圧縮機の吐出側配管の内径
より細い内径を有する配管を有するようにしており、圧
力損失が生じ、圧縮機の高圧側圧力が上昇し、1入力が
増加し、圧縮機の能力が増大し、デフロスト時間が短く
なる。
Further, the first bypass circuit has a pipe having an inner diameter smaller than the inner diameter of the discharge side pipe of the compressor, pressure loss occurs, the high pressure side pressure of the compressor rises, and one input increases, Compressor capacity is increased and defrost time is reduced.

また、サクション熱交換部で圧縮機に吸入される冷媒を
加熱し、完全に気化する。
In addition, the suction heat exchange section heats the refrigerant drawn into the compressor to completely vaporize it.

〔実施例〕〔Example〕

第1図は本発明に係る空気調和装置の一実施例を示すも
のであり、同図において前述した第2図と同一または相
当する部分には同一符号を付してその説明は省略する。
FIG. 1 shows an embodiment of an air conditioner according to the present invention, in which the same or corresponding parts as those in FIG. 2 described above are designated by the same reference numerals and the description thereof is omitted.

さて、本発明によれば、圧縮機(1)、四方切換弁
(2)、室外側熱交換器(3)、第1の絞り装置
(4)、第2の絞り装置(5)、室内側熱交換器(6)
およびアキユムレータ(7)を冷媒配管で順次接続して
なる冷媒回路を備えてなる空気調和装置において、圧縮
機(1)の吐出側配管(1b)から分岐されアキユムレー
タ(7)と圧縮機(1)との間を接続する吸入側配管
(1a)と熱交換可能に構成されたサクシヨン熱交換器
(11)を通りかつ補助キヤピラリチユーブ(12)を通つ
て第1および第2の絞り装置(4),(5)間の配管側
にバイパスして接続されたバイパス配管(10)を備え、
かつ第1の減圧装置(4a)をバイパスする逆止弁(4b)
を設けたバイパス回路(4c)と、第2の減圧装置(5a)
をバイパスする逆止弁(5b)を設けた第3のバイパス回
路(5c)とを設けるとともに、圧縮機(1)の吐出側配
管(1b)から三方切換弁(13)を介して前記第1および
第2の絞り装置(4),(5)間の配管側にバイパスし
て接続され、吐出側配管(1b)の内径よりも細い内径を
有する配管(15)を有する第1のバイパス回路(14)を
設け、その上流側からアキユムレータ(7)の入口配管
側にバイパスして接続される吐出圧力調整弁(16)と補
助減圧手段としての補助キヤラリチユーブ(18)を有す
る第2のバイパス回路(17)を設けてなる構成としてい
る。そして、このような構成において、デフロスト運転
時に四方切換弁(2)を暖房運転状態としたままで室内
側および室外側熱交換器(6),(3)に送風する送風
機(8),(9)を停止させるとともに、三方切換弁
(13)を切換えて第1のバイパス回路(14)を開路して
デフロスト運転を行なえるようにしている。
Now, according to the present invention, a compressor (1), a four-way switching valve (2), an outdoor heat exchanger (3), a first expansion device (4), a second expansion device (5), an indoor side. Heat exchanger (6)
In an air conditioner including a refrigerant circuit in which the accumulator (7) is sequentially connected by a refrigerant pipe, the accumulator (7) and the compressor (1) branched from the discharge side pipe (1b) of the compressor (1). The first and second throttle devices (4) are passed through a suction heat exchanger (11) configured to be capable of heat exchange with a suction side pipe (1a) connecting between the first side and the second side and a supplementary capillary tube (12). ), (5) is provided with a bypass pipe (10) connected by bypass on the pipe side,
And a check valve (4b) that bypasses the first pressure reducing device (4a)
Bypass circuit (4c) provided with a second decompression device (5a)
And a third bypass circuit (5c) provided with a check valve (5b) for bypassing the first side, and the first side via the three-way switching valve (13) from the discharge side pipe (1b) of the compressor (1). And a first bypass circuit having a pipe (15) having an inner diameter smaller than the inner diameter of the discharge side pipe (1b), which is connected by bypass to the pipe side between the second expansion devices (4) and (5). A second bypass circuit (14) provided with a discharge pressure control valve (16) connected by bypass from the upstream side to the inlet pipe side of the accumulator (7) and an auxiliary carrier tube (18) as auxiliary pressure reducing means (18). 17) is provided. In such a configuration, the blowers (8) and (9) for blowing air to the indoor and outdoor heat exchangers (6) and (3) while keeping the four-way switching valve (2) in the heating operation state during defrost operation. ) Is stopped and the three-way switching valve (13) is switched to open the first bypass circuit (14) so that the defrost operation can be performed.

以上の構成による空気調和装置において、冷房運転時
(冷媒の流れは図中太い実線による矢印方向)には、圧
縮機(1)から吐出された高温高圧のガス冷媒は、四方
切換弁(2)を通り室外側熱交換器(3)で室外側送風
機(9)によつて送風される室外空気と熱交換するとと
もに、これによりガス冷媒が凝縮液化する。そして、第
1の絞り装置(4)における第1の減圧装置(4a)によ
つて減圧され、低温低圧の液冷媒となる。一方、圧縮機
(1)から吐出された高温高圧のガス冷媒の一部は、バ
イパス回路(10)を通り、サクシヨン熱交換器(11)で
圧縮機(1)へ吸入される低圧冷媒と熱交換し、吸入冷
媒を加熱して完全に気化させ、自らは凝縮液化し、補助
キヤピラリチユーブ(12)によつて減圧されて低温低圧
の液冷媒となり、第1および第2の絞り装置(4),
(5)間の配管に合流し、第2の絞り装置(5)におけ
るバイパス回路(5c)を通り、室内側熱交換器(6)に
入り、室内側送風機(8)から送風される室内空気と熱
交換して室内空気を冷却するとともに、これにより液冷
媒は蒸発ガス化し、四方切換弁(2)およびアキユムレ
ータ(7)を通り圧縮機(1)に戻るという冷凍サイク
ル回路が構成される。
In the air conditioner having the above-described configuration, during the cooling operation (the refrigerant flow is in the direction of the arrow indicated by the thick solid line in the figure), the high-temperature high-pressure gas refrigerant discharged from the compressor (1) is supplied to the four-way switching valve (2). Through the outdoor heat exchanger (3) to exchange heat with the outdoor air blown by the outdoor blower (9), whereby the gas refrigerant is condensed and liquefied. Then, the pressure is reduced by the first pressure reducing device (4a) in the first expansion device (4) to become a low-temperature low-pressure liquid refrigerant. On the other hand, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor (1) passes through the bypass circuit (10) and the low-pressure refrigerant and heat which are sucked into the compressor (1) by the suction heat exchanger (11). The refrigerant is exchanged, the suction refrigerant is heated to be completely vaporized, and the condensed refrigerant itself is condensed and liquefied, and the pressure is reduced by the auxiliary capillary tube (12) to become a low temperature and low pressure liquid refrigerant, and the first and second expansion devices (4 ),
Indoor air that joins the pipe between (5), passes through the bypass circuit (5c) in the second expansion device (5), enters the indoor heat exchanger (6), and is blown from the indoor blower (8). A refrigeration cycle circuit is constructed in which heat is exchanged with the room air to cool the indoor air, and thereby the liquid refrigerant is vaporized and gasified and returned to the compressor (1) through the four-way switching valve (2) and the accumulator (7).

また、暖房運転時(冷媒の流れは図中細い実線による矢
印方向)には、圧縮機(1)から吐出された高温高圧の
ガス冷媒は、暖房側に切換えられた四方切換弁(2)を
通つて室内側熱交換器(6)に入り、室内側送風機
(8)から送風される室内空気と熱交換して室内空気を
加熱するとともに、これによりガス冷媒は凝縮液化す
る。そして、第2の絞り装置(5)における第2の減圧
装置(5a)によつて減圧され、低温低圧の液冷媒とな
る。一方、圧縮機(1)から吐出された高温高圧のガス
冷媒の一部は、バイパス回路(10)を通り、サクシヨン
熱交換器(11)で圧縮機(1)に吸入される低圧冷媒と
熱交換し吸入冷媒を加熱して完全に気化させ、自らは凝
縮液化し補助キヤピラリチユーブ(12)によつて減圧さ
れ、低温低圧の液冷媒となつて前記配管側に合流し、第
1の絞り装置(4)におけるバイパス回路(4c)を通
り、室外側熱交換器(3)に入り、室外側送風機(9)
から送風される室外空気と熱交換し、室外空気から採熱
して室外空気を冷却するとともに、これにより液冷媒は
蒸発ガス化し、四方切換弁(2)、アキユムレータ
(7)を通り、圧縮機(1)に戻るという冷凍サイクル
回路が構成される。
Further, during the heating operation (the flow of the refrigerant is the direction of the arrow indicated by the thin solid line in the figure), the high-temperature and high-pressure gas refrigerant discharged from the compressor (1) flows through the four-way switching valve (2) switched to the heating side. The air enters the indoor heat exchanger (6) and exchanges heat with the indoor air blown from the indoor blower (8) to heat the indoor air, whereby the gas refrigerant is condensed and liquefied. Then, the pressure is reduced by the second pressure reducing device (5a) in the second expansion device (5) to become a low-temperature low-pressure liquid refrigerant. On the other hand, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor (1) passes through the bypass circuit (10) and the low-pressure refrigerant and heat which are drawn into the compressor (1) by the suction heat exchanger (11). The refrigerant is exchanged and the suction refrigerant is heated to be completely vaporized, and the condensed refrigerant itself is decompressed by the auxiliary capillary tube (12) and merges into the pipe side as a low temperature and low pressure liquid refrigerant, and the first throttle After passing through the bypass circuit (4c) in the device (4) and entering the outdoor heat exchanger (3), the outdoor blower (9)
While exchanging heat with the outdoor air blown from the outdoor air, the outdoor air is cooled to cool the outdoor air, and thereby the liquid refrigerant is vaporized and gasified, passing through the four-way switching valve (2) and the accumulator (7), and then the compressor ( A refrigeration cycle circuit for returning to 1) is constructed.

また、このような暖房運転時において、たとえば室外空
気温度が低く、室外側熱交換器(3)に着霜が生じた場
合に必要とされるデフロスト運転時(冷媒の流れは図中
破線による矢印方向)には、圧縮機(1)から吐出され
た高温高圧のガス冷媒は、デフロスト側に切換えられて
いる状態の三方切換弁(13)を通り第1および第2の絞
り装置(4),(5)間の配管側に接続されている第1
のバイパス回路(14)の配管(15)を通つて該配管側に
流入される。
In addition, during such heating operation, for example, during defrost operation that is required when the outdoor air temperature is low and frost forms on the outdoor heat exchanger (3) (the flow of the refrigerant is the arrow indicated by the broken line in the figure). Direction), the high-temperature high-pressure gas refrigerant discharged from the compressor (1) passes through the three-way switching valve (13) in the state of being switched to the defrost side, and the first and second expansion devices (4), The first connected to the pipe side between (5)
Through the pipe (15) of the bypass circuit (14) and flow into the pipe side.

一方、ここで圧縮機(1)から吐出された高温高圧のガ
ス冷媒の一部は、バイパス回路(10)を通り、サクシヨ
ン熱交換器(11)で圧縮機(1)に吸入される低圧冷媒
と熱交換され、吸入冷媒を加熱して完全に気化させると
ともに、自らは凝縮液化し補助キヤピラリチユーブ(1
2)によつて減圧されて低温低圧の液冷媒となり、前記
第1のバイパス回路(14)の配管(15)を通つた高温高
圧のガス冷媒と混合される。そして、これら合流された
ガス冷媒は、第1の絞り装置(4)におけるバイパス回
路(4c)を通り室外側熱交換器(3)に入る。このと
き、室外側送風機(9)は停止されている。そして、高
温ガス冷媒は、室外側熱交換器(3)の表面に着霜した
霜を高温ガス冷媒で融解し、この冷媒が凝縮液化して四
方切換弁(2)を通りアキユムレータ(7)に入り圧縮
機(1)に戻されることになる。
On the other hand, a part of the high-temperature high-pressure gas refrigerant discharged from the compressor (1) here passes through the bypass circuit (10) and is sucked into the compressor (1) by the suction heat exchanger (11). The refrigerant is heat-exchanged with the suction refrigerant to heat and completely vaporize the refrigerant, and it also condenses and liquefies itself, and the auxiliary capillary tube (1
The pressure is reduced by 2) to become a low-temperature low-pressure liquid refrigerant, which is mixed with the high-temperature high-pressure gas refrigerant passing through the pipe (15) of the first bypass circuit (14). Then, these combined gas refrigerants pass through the bypass circuit (4c) in the first expansion device (4) and enter the outdoor heat exchanger (3). At this time, the outdoor blower (9) is stopped. Then, the high temperature gas refrigerant melts the frost frosted on the surface of the outdoor heat exchanger (3) with the high temperature gas refrigerant, and this refrigerant condenses and liquefies to pass through the four-way switching valve (2) to the accumulator (7). It will be returned to the incoming compressor (1).

したがつて、このようなデフロスト時においては、四方
切換弁(2)を暖房側から冷房側に切換えることなく、
デフロスト運転に入ることができ、これにより切換えの
ための熱ロスがない。また、低温液冷媒が室内側熱交換
器(6)内を通過しないために、従来のような室内側に
冷風が吹出されるといつた問題も解消される。
Therefore, during such defrosting, without switching the four-way switching valve (2) from the heating side to the cooling side,
Defrost operation can be entered so that there is no heat loss for switching. Further, since the low-temperature liquid refrigerant does not pass through the indoor heat exchanger (6), the problem is solved when cold air is blown to the indoor side as in the conventional case.

さらに第1のバイパス回路(14)の一部を構成する配管
(15)の内径を吐出側配管(1b)より細くするようにし
たもので圧力損失が生じ、圧縮機(1)の高圧側圧力が
上昇し、入力が増加するので圧縮機(1)の能力が増大
し、デフロスト時間を短くする事が可能となる。
Furthermore, the inner diameter of the pipe (15) forming a part of the first bypass circuit (14) is made smaller than that of the discharge side pipe (1b), resulting in pressure loss, and the high pressure side pressure of the compressor (1). Rises and the input increases, so that the capacity of the compressor (1) increases and the defrost time can be shortened.

また、デフロスト終了信号はデフロスト中の室外熱交換
器(3)の出口側温度をサーミスタ等の検出装置で検出
しているが、高圧側圧力を上昇させている為にデフロス
ト終了直前の急激な高圧側圧力の上昇により、室外熱交
換器(3)の出口側温度が終了温度に達する前に高圧カ
ツトによる異常停止する場合がある。この時第1のバイ
パス回路(14)途中より分岐された第2のバイパス回路
(17)中の吐出圧力調整弁(16)が開き、補助キヤピラ
リチユーブ(18)で流量を制御しながらアキユムレータ
(7)の入口配管へ圧力を逃がし高圧側圧力を一定に維
持する事により高圧カツトによる異常停止を防止でき
る。
As for the defrost end signal, the temperature on the outlet side of the outdoor heat exchanger (3) during defrost is detected by a detection device such as a thermistor. Due to the increase in the side pressure, the outlet side temperature of the outdoor heat exchanger (3) may be abnormally stopped by the high pressure cut before reaching the end temperature. At this time, the discharge pressure control valve (16) in the second bypass circuit (17) branched from the middle of the first bypass circuit (14) is opened, and the accumulator (18) controls the flow rate by the auxiliary capillary tube (18). By releasing the pressure to the inlet pipe of 7) and maintaining the high-pressure side pressure constant, abnormal stop due to the high-pressure cut can be prevented.

また、サクシヨン熱交換器(11)によつて圧縮機(1)
に対する吸入側配管(1a)を、圧縮機(1)から吐出さ
れた高温高圧のガス冷媒で熱交換するように構成したの
で、圧縮機(1)への液戻り現象を防止でき、圧縮機ト
ラブルを防止することが可能となる。
In addition, the compression heat exchanger (11) allows the compressor (1)
Since the suction side pipe (1a) is configured to exchange heat with the high-temperature and high-pressure gas refrigerant discharged from the compressor (1), it is possible to prevent a liquid return phenomenon to the compressor (1) and to prevent a compressor trouble. Can be prevented.

なお、図中、(20)で示したように室内側熱交換器
(6)に対面して電熱器を設置するようにすると、デフ
ロスト運転中において冷媒がこの室内側熱交換器(6)
を通らないため、室内側送風機(8)を運転することが
でき、デフロスト運転中も暖房運転を継続できるといつ
た利点を奏する。
As shown by (20) in the figure, if an electric heater is installed so as to face the indoor heat exchanger (6), the refrigerant will remain in the indoor heat exchanger (6) during defrost operation.
Since it does not pass through, the indoor blower (8) can be operated, and there is an advantage that the heating operation can be continued even during the defrost operation.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明に係る空気調和装置によれ
ば、圧縮機の冷媒吐出配管と四方切換弁間に接続された
三方切換弁を介して前記室外側熱交換器と第2の絞り装
置を接続する配管にバイパスして接続する第1のバイパ
ス回路と前記第1のバイパス回路から圧縮機の吸入側配
管にバイパスして接続され、かつ吐出圧力調整弁と補助
減圧手段を有する第2のバイパス回路とを設け、暖房運
転時は前記三方切換弁を前記四方切換弁側に開き暖房運
転を行い、デフロスト運転時は前記四方切換弁を暖房運
転にしたまま前記三方切換弁を前記第1のバイパス回路
側に開きデフロスト運転を行うとともに圧縮機の高圧側
圧力が所定の高圧値に達した時前記第2のバイパス回路
の吐出圧力調整弁を開くようにしたので、暖房運転が可
能であると共に、暖房運転中に室外熱交換器に着霜した
場合、四方切換弁を暖房運転のままで、三方切換弁を第
1のバイパス回路に切換えデフロスト運転を行うので、
従来のような四方切換弁の切換による熱ロスを防止で
き、また、従来のような室内側への冷風の吹き出しを防
止できる。しかもデフロスト運転時に、四方切換弁を介
して、冷媒が室内熱交換器に寝込むことがないので第1
バイパス回路へ流れるデフロスト用冷媒が不足すること
がなく、迅速なデフロストが可能となる。また、デフロ
スト中に高圧圧力が上昇し過ぎた場合は、吐出圧力調整
弁を開き、かつ、補助減圧手段により冷媒流量を制限し
て流れ過ぎないようして、高圧圧力を一定に維持し、高
圧カットによる異常停止を防止するとともに、デフロス
ト時間を延長することなく、完全に行うことができる。
As described above, according to the air conditioner of the present invention, the outdoor heat exchanger and the second expansion device are connected via the three-way switching valve connected between the refrigerant discharge pipe of the compressor and the four-way switching valve. A first bypass circuit that bypasses and connects to the connecting pipe, and a second bypass that is connected from the first bypass circuit to the suction side pipe of the compressor by bypass and that has a discharge pressure adjusting valve and auxiliary pressure reducing means. A circuit is provided, and during the heating operation, the three-way switching valve is opened to the four-way switching valve side to perform the heating operation, and during the defrost operation, the four-way switching valve is kept in the heating operation and the three-way switching valve is connected to the first bypass. Since the discharge pressure adjusting valve of the second bypass circuit is opened when the high pressure side pressure of the compressor reaches a predetermined high pressure value while performing the defrost operation by opening to the circuit side, it is possible to perform the heating operation, Warm If you frosted outdoor heat exchanger during operation, the four-way selector valve remains heating operation, the three-way valve to the first bypass circuit since the switching defrosting operation,
It is possible to prevent heat loss due to switching of the conventional four-way switching valve, and to prevent cold air from blowing into the room as in the conventional case. Moreover, during the defrost operation, the refrigerant does not lie in the indoor heat exchanger via the four-way switching valve, so the first
The defrosting refrigerant flowing to the bypass circuit does not run short, and quick defrosting is possible. If the high pressure rises excessively during defrosting, the discharge pressure adjusting valve is opened, and the auxiliary pressure reducing means limits the flow rate of the refrigerant to prevent it from flowing too much, maintaining the high pressure constant, Abnormal stop due to cutting can be prevented, and complete defrosting can be performed without extending the time.

また、第1のバイパス回路が圧縮機の吐出側配管の内径
より細い内径を有する配管を有するようにしており、圧
力損失が生じ、圧縮機の高圧側圧力が上昇し、入力が増
加し、圧縮機の能力が増大し、デフロスト時間を短くで
きる。
Further, the first bypass circuit has a pipe having an inner diameter smaller than the inner diameter of the discharge side pipe of the compressor, resulting in pressure loss, the high pressure side pressure of the compressor increases, the input increases, The capacity of the machine is increased and the defrost time can be shortened.

また、サクション熱交換部で圧縮機に吸入される冷媒を
加熱し、完全に気化できるので圧縮機の液圧縮が防止で
きる。
Further, since the refrigerant sucked into the compressor can be heated and completely vaporized in the suction heat exchange section, liquid compression of the compressor can be prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る空気調和装置の一実施例を示す冷
凍サイクル回路の概略構成図、第2図は従来例を示す冷
凍サイクル回路の概略構成図である。 これらの図において、(1)は圧縮機、(1a)は吸入側
配管、(1b)は吐出側配管、(2)は四方切換弁、
(3)は室外側熱交換器、(4),(5)は第1および
第2の絞り装置、(4a),(5a)は第1および第2の減
圧装置、(4b),(5b)は逆止弁、(6)は室内側熱交
換器、(7)はアキユムレータ、(13)は三方切換弁、
(14)は第1のバイパス回路、(15)は細配管、(16)
は吐出圧力調整弁、(17)は第2のバイパス回路、(1
8)は補助減圧手段である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a schematic configuration diagram of a refrigeration cycle circuit showing an embodiment of an air conditioner according to the present invention, and FIG. 2 is a schematic configuration diagram of a refrigeration cycle circuit showing a conventional example. In these figures, (1) is a compressor, (1a) is a suction side pipe, (1b) is a discharge side pipe, (2) is a four-way switching valve,
(3) is an outdoor heat exchanger, (4) and (5) are first and second expansion devices, (4a) and (5a) are first and second pressure reducing devices, and (4b) and (5b). ) Is a check valve, (6) is an indoor heat exchanger, (7) is an accumulator, (13) is a three-way switching valve,
(14) is the first bypass circuit, (15) is thin piping, (16)
Is the discharge pressure control valve, (17) is the second bypass circuit, (1
8) is an auxiliary decompression means. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笠野 勝美 和歌山県和歌山市手平6丁目5番66号 三 菱電機株式会社和歌山製作所内 (72)発明者 木戸 斉 和歌山県和歌山市手平6丁目5番66号 三 菱電機株式会社和歌山製作所内 (72)発明者 中川 祥道 和歌山県和歌山市手平6丁目5番66号 三 菱電機株式会社和歌山製作所内 (56)参考文献 特開 昭62−138660(JP,A) 特開 昭57−95555(JP,A) 特開 昭62−158958(JP,A) 実開 昭56−40360(JP,U) 実開 昭54−180345(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Katsumi Kasano, Katsumi Kasano 6-566, Tehira, Wakayama, Wakayama Sanryo Electric Co., Ltd. Wakayama Works (72) Inventor, Hitoshi Kido, 6-5, Tehira, Wakayama, Wakayama Prefecture No. 66 Sanryo Electric Co., Ltd. Wakayama Works (72) Inventor Yoshimichi Nakagawa 6-5-6 Tehira, Wakayama City, Wakayama Sanryo Electric Co., Ltd. (56) Reference: JP-A-62-138660 (JP, A) JP-A-57-95555 (JP, A) JP-A-62-158958 (JP, A) Actually open 56-40360 (JP, U) Actual-open Sho-54-180345 (JP, U)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧縮機と、この圧縮機より吐出される高温
高圧の冷媒の流れを切換える四方切換弁と、室外側送風
機を備えた室外側熱交換器と、暖房時に冷媒を減圧する
第2の絞り装置と、室内送風機を備えた室内側熱交換器
とを備え、これらを順次冷媒配管で接続して冷媒回路を
構成してなる空気調和装置において、前記圧縮機の冷媒
吐出配管と四方切換弁間に接続された三方切換弁を介し
て前記室外側熱交換器と第2の絞り装置を接続する配管
にバイパスして接続する第1のバイパス回路と前記第1
のバイパス回路から圧縮機の吸入側配管にバイパスして
接続され、かつ吐出圧力調整弁と補助減圧手段を有する
第2のバイパス回路とを設け、暖房運転時は前記三方切
換弁を前記四方切換弁側に開き暖房運転を行い、デフロ
スト運転時は前記四方切換弁を暖房運転にしたまま前記
三方切換弁を前記第1のバイパス回路側に開きデフロス
ト運転を行うとともに圧縮機の高圧側圧力が所定の高圧
値に達した時前記第2のバイパス回路の吐出圧力調整弁
を開くようにしたことを特徴とする空気調和装置。
1. A compressor, a four-way switching valve for switching the flow of high-temperature and high-pressure refrigerant discharged from the compressor, an outdoor heat exchanger provided with an outdoor blower, and a second pressure reducing valve for heating. In the air conditioner comprising a throttle device and an indoor heat exchanger equipped with an indoor blower, which are sequentially connected by a refrigerant pipe to form a refrigerant circuit, the refrigerant discharge pipe of the compressor and four-way switching. The first bypass circuit and the first bypass circuit, which are bypassed and connected to a pipe connecting the outdoor heat exchanger and the second expansion device via a three-way switching valve connected between the valves.
A bypass circuit connected from the bypass circuit to the suction side pipe of the compressor, and having a second bypass circuit having a discharge pressure adjusting valve and an auxiliary pressure reducing means, and during heating operation, the three-way switching valve is replaced with the four-way switching valve. Side to perform the heating operation, and during the defrost operation, the three-way switching valve is opened to the first bypass circuit side while the four-way switching valve is in the heating operation to perform the defrost operation, and the high-pressure side pressure of the compressor is set to a predetermined value. An air conditioner, wherein the discharge pressure adjusting valve of the second bypass circuit is opened when a high pressure value is reached.
【請求項2】第1のバイパス回路が圧縮機の吐出側配管
の内径より細い内径を有する配管を有することを特徴と
する特許請求の範囲第1項記載の空気調和装置。
2. The air conditioner according to claim 1, wherein the first bypass circuit has a pipe having an inner diameter smaller than that of the discharge side pipe of the compressor.
【請求項3】冷媒回路に冷房時に冷媒を減圧する第1の
絞り装置を備え、前記第1の絞り装置及び第2の絞り装
置は、それぞれの減圧装置をバイパスするバイパス回路
を有するとともに、前記それぞれのバイパス回路には、
それぞれ室外側及び室内側熱交換器へのみ冷媒の流れを
許容する逆止弁を備え、前記圧縮機の冷媒吐出配管と直
接、前記第1及び第2の絞り装置を接続する配管の間に
バイパスして接続するバイパス回路を設け、このバイパ
ス回路は、管路途中に、前記圧縮機の冷媒吸入配管と熱
交換するサクション熱交換部と、冷媒を減圧する減圧装
置を備えたことを特徴とする請求項第1項または第2項
記載の空気調和装置。
3. A refrigerant circuit is provided with a first expansion device for decompressing the refrigerant during cooling, and each of the first expansion device and the second expansion device has a bypass circuit for bypassing the respective decompression device, and Each bypass circuit has
A check valve that allows the flow of the refrigerant only to the outdoor side and the indoor side heat exchangers, respectively, and is bypassed between the refrigerant discharge pipe of the compressor and the pipe connecting the first and second expansion devices. The bypass circuit is provided with a suction heat exchange section for exchanging heat with the refrigerant suction pipe of the compressor and a decompression device for decompressing the refrigerant in the middle of the pipeline. The air conditioner according to claim 1 or 2.
JP1066921A 1989-03-17 1989-03-17 Air conditioner Expired - Lifetime JPH07117323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1066921A JPH07117323B2 (en) 1989-03-17 1989-03-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1066921A JPH07117323B2 (en) 1989-03-17 1989-03-17 Air conditioner

Publications (2)

Publication Number Publication Date
JPH02247466A JPH02247466A (en) 1990-10-03
JPH07117323B2 true JPH07117323B2 (en) 1995-12-18

Family

ID=13329926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1066921A Expired - Lifetime JPH07117323B2 (en) 1989-03-17 1989-03-17 Air conditioner

Country Status (1)

Country Link
JP (1) JPH07117323B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101414395B1 (en) * 2008-02-20 2014-07-01 엘지전자 주식회사 Air conditioner
KR20190122426A (en) * 2018-04-20 2019-10-30 엘지전자 주식회사 Cooling system for a low temperature storage
KR20200017083A (en) * 2018-08-08 2020-02-18 엘지전자 주식회사 Cooling system for a low temperature storage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218102B (en) * 2021-04-28 2022-09-20 湖南雅立科技开发有限公司 Heat pump system based on three devices and defrosting method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54180345U (en) * 1978-06-09 1979-12-20
JPS5640360U (en) * 1979-09-05 1981-04-15
JPS5795555A (en) * 1980-12-05 1982-06-14 Mitsubishi Electric Corp Cooler
JPH0730979B2 (en) * 1985-12-13 1995-04-10 株式会社日立製作所 Air conditioner
JPS62158958A (en) * 1986-01-07 1987-07-14 三菱電機株式会社 Separation type heat pump system air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101414395B1 (en) * 2008-02-20 2014-07-01 엘지전자 주식회사 Air conditioner
KR20190122426A (en) * 2018-04-20 2019-10-30 엘지전자 주식회사 Cooling system for a low temperature storage
KR20200017083A (en) * 2018-08-08 2020-02-18 엘지전자 주식회사 Cooling system for a low temperature storage

Also Published As

Publication number Publication date
JPH02247466A (en) 1990-10-03

Similar Documents

Publication Publication Date Title
EP1659348A1 (en) Freezing apparatus
JP2875507B2 (en) Air conditioner
KR101872783B1 (en) Outdoor heat exchanger
JPH08159621A (en) Air conditioner
JPH07117323B2 (en) Air conditioner
KR20000075158A (en) Dual unit type air conditioner for heating and cooling and defrosting method thereof
JPH09119754A (en) Air conditioner
JP2550762B2 (en) Air conditioner
JP2646709B2 (en) Air conditioner
JP2524382B2 (en) Air conditioner
JPH07117322B2 (en) Air conditioner
JPH01127870A (en) Air conditioner
JPH07117324B2 (en) Air conditioner
JP2564980B2 (en) Air conditioner
JP2871166B2 (en) Air conditioner
JPH01123965A (en) Air conditioner
JP2000337720A (en) Air conditioner
JPH02223778A (en) Defrosting device for air-conditioning machine
JPH01310276A (en) Air conditioner
JPH05322352A (en) Air conditioner
JP4186399B2 (en) Heat pump air conditioner
JPH08320172A (en) Air conditioner
JPH03113249A (en) Air-conditioning snow melting device
JP2002156167A (en) Multi-chamber type air conditioner
JPH08136067A (en) Air conditioner