JP2524382B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2524382B2
JP2524382B2 JP63122356A JP12235688A JP2524382B2 JP 2524382 B2 JP2524382 B2 JP 2524382B2 JP 63122356 A JP63122356 A JP 63122356A JP 12235688 A JP12235688 A JP 12235688A JP 2524382 B2 JP2524382 B2 JP 2524382B2
Authority
JP
Japan
Prior art keywords
switching valve
way switching
compressor
refrigerant
bypass circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63122356A
Other languages
Japanese (ja)
Other versions
JPH01291077A (en
Inventor
秀明 田頭
正美 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63122356A priority Critical patent/JP2524382B2/en
Publication of JPH01291077A publication Critical patent/JPH01291077A/en
Application granted granted Critical
Publication of JP2524382B2 publication Critical patent/JP2524382B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷凍サイクル回路を用いて冷暖房運転を行
なう空気調和装置の改良に関する。
TECHNICAL FIELD The present invention relates to an improvement of an air conditioner that performs cooling / heating operation using a refrigeration cycle circuit.

〔従来の技術〕[Conventional technology]

従来この種の空気調和装置は、概略第3図に示すよう
な構成とされていた。これを簡単に説明すると、図中符
号1は圧縮機、2は四方切換弁、3は室外側熱交換器、
4,5は冷房運転時、暖房運転時にそれぞれ膨張機構とし
て機能する第1および第2の絞り装置、6は室内側熱交
換器、7はアキュムレータで、これらを順次冷媒配管で
連結接続することで冷凍サイクル回路が構成されてい
る。なお、8,9は室内側、室外側熱交換器6,3にそれぞれ
送風する室内側および室外側送風機で、また4a,4bは第
1の絞り装置4を構成する第1の減圧装置(キャピラリ
チューブ)およびこれをバイパスする回路中に設けられ
た第1の逆止弁、5a,5bは第2の絞り装置5を構成する
第2の減圧装置(キャピラリーチューブ)およびこれを
バイパスする回路中に設けられた第2の逆止弁である。
Conventionally, this type of air conditioner has a structure as schematically shown in FIG. Briefly describing this, reference numeral 1 in the figure indicates a compressor, 2 indicates a four-way switching valve, 3 indicates an outdoor heat exchanger,
Reference numerals 4 and 5 denote first and second expansion devices that function as expansion mechanisms during cooling operation and heating operation, respectively, 6 is an indoor heat exchanger, and 7 is an accumulator. A refrigeration cycle circuit is configured. In addition, 8 and 9 are the indoor side and the outdoor side and outdoor side air blowers, respectively, which blow air to the outdoor heat exchangers 6 and 3, and 4a and 4b are the first pressure reducing device (capillary) that constitutes the first expansion device 4. Tube) and a first check valve provided in a circuit that bypasses the tube, 5a and 5b in a second pressure reducing device (capillary tube) that constitutes the second expansion device 5 and a circuit that bypasses this. It is a second check valve provided.

このような構成による空気調和装置において、冷房運
転時(冷媒の流れを図中太い実線による矢印で示す)に
は、圧縮機1から吐出された高温高圧のガス冷媒は、四
方切換弁2を通り、室外側熱交換器3で室外側送風機9
によって送風される室外空気と熱交換し、ガス冷媒が凝
縮液化される。そして、第1の絞り装置4側でのバイパ
ス回路中の第1の逆止弁4bを通り、第2の絞り装置5を
構成する第2の減圧装置5a側に導入されて減圧され、低
温低圧の液冷媒となる。その後、この液冷媒は室内側熱
交換器6に入り、室内側送風機8によって送風される室
内空気と熱交換し、室内空気を冷却するとともに、これ
により液冷媒が蒸発ガス化され、四方切換弁2、アキュ
ムレータ7を通り圧縮機1に戻るという冷房時の冷凍サ
イクルが構成され、以後冷媒は上述した冷凍サイクル経
路内を順次液化、気化を繰り返しながら循環される。
In the air conditioner having such a configuration, during cooling operation (the flow of the refrigerant is indicated by a thick solid arrow in the figure), the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way switching valve 2. , Outdoor heat exchanger 3 and outdoor blower 9
The gas refrigerant is condensed and liquefied by exchanging heat with the outdoor air blown by. Then, the gas passes through the first check valve 4b in the bypass circuit on the side of the first expansion device 4 and is introduced to the second pressure reducing device 5a constituting the second expansion device 5, where the pressure is reduced and the low-temperature low-pressure Liquid refrigerant. After that, the liquid refrigerant enters the indoor heat exchanger 6, exchanges heat with the indoor air blown by the indoor blower 8, cools the indoor air, and the liquid refrigerant is vaporized and gasified by the four-way switching valve. 2. A refrigerating cycle for cooling is constituted by returning to the compressor 1 through the accumulator 7, and thereafter the refrigerant is circulated in the refrigerating cycle path described above while repeating liquefaction and vaporization.

一方、暖房運転時(冷媒の流れを図中細い実線による
矢印で示す)には、圧縮機1から吐出された高温高圧の
ガス冷媒は、暖房側に切換えられた四方切換弁2を通
り、室内側熱交換器6に入り、室内側送風機8によって
送風される室内空気と熱交換して室内空気を加熱すると
ともに、これによりガス冷媒が凝縮液化される。そし
て、この液冷媒は、第2の絞り装置5をバイパスする回
路中の第2の逆止弁5bを通り、第1の絞り装置4を構成
する第1の減圧装置4aに導かれて減圧され、低温低圧の
液冷媒となる。その後、液冷媒は室外側熱交換器3に入
り、室外側送風機9によって送風される室外空気と熱交
換し室外空気から採熱して室外空気を冷却するととも
に、これにより液冷媒が蒸発ガス化し、四方切換弁2、
アキュムレータ7を通り圧縮機1に戻り、これにより暖
房時の冷凍サイクルが構成される。
On the other hand, during the heating operation (the flow of the refrigerant is indicated by a thin solid arrow in the figure), the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way switching valve 2 switched to the heating side, and the room The gas enters the inner heat exchanger 6, exchanges heat with the indoor air blown by the indoor blower 8 to heat the indoor air, and thereby the gas refrigerant is condensed and liquefied. Then, this liquid refrigerant passes through the second check valve 5b in the circuit that bypasses the second expansion device 5, is guided to the first pressure reducing device 4a that constitutes the first expansion device 4, and is decompressed. , Becomes a low-temperature low-pressure liquid refrigerant. Then, the liquid refrigerant enters the outdoor heat exchanger 3, exchanges heat with the outdoor air blown by the outdoor blower 9, collects heat from the outdoor air to cool the outdoor air, and thereby the liquid refrigerant is vaporized and gasified, Four-way switching valve 2,
After passing through the accumulator 7 and returning to the compressor 1, a refrigeration cycle for heating is constituted.

また、このような暖房運転を継続して行なっている
と、たとえば室外空気温度が低い場合、室外側熱交換器
3に着霜が生じてくる。このような着霜が多くなると熱
交換効率が悪くなり、室外空気からの採熱量が減少する
ため、空気調和装置の暖房能力が著しく低下する。した
がって、このような場合には、デフロスト(除霜)を行
なうことが必要とされる。
Further, if such a heating operation is continuously performed, for example, when the outdoor air temperature is low, frost is formed on the outdoor heat exchanger 3. When such frost increases, the heat exchange efficiency deteriorates, and the amount of heat taken from the outdoor air decreases, so that the heating capacity of the air conditioner significantly decreases. Therefore, in such a case, it is necessary to perform defrosting.

このようなデフロスト運転時(冷媒の流れを図中破線
による矢印で示す)には、圧縮機1から吐出された高温
高圧のガス冷媒は、暖房側から冷房側へと切換えられた
四方切換弁2を通り、室外側熱交換器3に入る。ここ
で、室外側送風機9は停止している。そして、この室外
側熱交換器3の表面に着霜していた霜を高温ガス冷媒で
溶解し、この冷媒が凝縮液化して第1の絞り装置4をバ
イパスする第1の逆止弁4bを通り、第2の絞り装置5を
構成する第2の減圧装置5aによって減圧されて低温低圧
の液冷媒となり、室内側熱交換器6に入り、次で四方切
換弁2およびアキュムレータ7を通って圧縮機1に戻る
という冷凍サイクル運転を行なうものであった。
During such a defrost operation (the flow of the refrigerant is indicated by a dashed arrow in the figure), the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is switched from the heating side to the cooling side by the four-way switching valve 2 And enters the outdoor heat exchanger 3. Here, the outdoor blower 9 is stopped. Then, the frost that has formed on the surface of the outdoor heat exchanger 3 is melted by the high-temperature gas refrigerant, and the refrigerant is condensed and liquefied, and the first check valve 4b that bypasses the first expansion device 4 is operated. As described above, the refrigerant is decompressed by the second decompression device 5a constituting the second expansion device 5, becomes a low-temperature low-pressure liquid refrigerant, enters the indoor heat exchanger 6, and then is compressed through the four-way switching valve 2 and the accumulator 7. The refrigeration cycle operation of returning to the machine 1 was performed.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、上述した暖房運転中のデフロスト運転時に
おいて、低温低圧の液冷媒が室内側熱交換器6に導入さ
れた場合に若干の問題を生じている。すなわち、この室
内側熱交換器6に対向して配置される室内側送風機8
は、このデフロスト運転時に通常は微風運転を行なって
いるか、あるいは停止されている。そして、たとえば微
風運転を行なっている場合には、低温低圧の液冷媒と室
内空気とが熱交換され、室内空気を冷却するとともに液
冷媒が蒸発ガス化し、四方切換弁2およびアキュムレー
タ7を通り圧縮機1に戻る。したがって、このような場
合には、室内側に冷風が吹出されることとなり、空気調
和効果を著しく低下させてしまうという問題を生じてい
る。
By the way, when the low-temperature and low-pressure liquid refrigerant is introduced into the indoor-side heat exchanger 6 during the above-described defrost operation during the heating operation, some problems occur. That is, the indoor blower 8 arranged to face the indoor heat exchanger 6
Is normally performing a light breeze operation or is stopped during this defrost operation. Then, for example, when the breeze operation is performed, the low-temperature low-pressure liquid refrigerant is heat-exchanged with the room air, the room air is cooled, and the liquid refrigerant is vaporized and gasified, and passes through the four-way switching valve 2 and the accumulator 7 to be compressed. Return to machine 1. Therefore, in such a case, the cold air is blown out to the indoor side, which causes a problem that the air conditioning effect is significantly reduced.

また、室内側送風機8を停止させた場合には、低温低
圧の液冷媒は採熱できず、冷媒は液のままアキュムレー
タ7に入り圧縮機1に戻るため、圧縮機1が液圧縮し、
圧縮機トラブルを生じることがあった。
When the indoor blower 8 is stopped, the low-temperature low-pressure liquid refrigerant cannot collect heat, and the refrigerant enters the accumulator 7 and returns to the compressor 1 as a liquid, so that the compressor 1 is liquid-compressed,
It sometimes caused compressor trouble.

さらに、上述した従来装置によれば、特にデフロスト
時における高圧圧力が低いため、低圧圧力も低下し、圧
縮機1の能力が充分に発揮できず、デフロスト時間も長
くかかる等といった欠点があった。また、暖房運転時に
四方切換弁2を冷房側に切換え、デフロスト運転を行な
うため、切換え時に熱のロスが生じるという問題もあっ
た。
Further, according to the above-mentioned conventional device, there is a drawback that the high pressure is low especially at the time of defrosting, the low pressure is also lowered, the compressor 1 cannot fully exhibit its capability, and the defrosting time is long. In addition, since the four-way switching valve 2 is switched to the cooling side during the heating operation and the defrost operation is performed, there is a problem that heat loss occurs during the switching.

本発明は上述した事情に鑑みてなされたもので、暖房
運転中のデフロスト運転時において冷風の室内への吹出
しを防止するとともに、四方切換弁を暖房側としたまま
でのデフロスト運転を行ない、低圧圧力を上げて圧縮機
能力を高め、しかも圧縮機からの高温、高圧ガス冷媒と
吸入側配管とを熱交換させるように構成することで、圧
縮機への液戻りをも防止し得る空気調和装置を得ること
を目的としている。
The present invention has been made in view of the above-mentioned circumstances, and prevents the blowing of cold air into the room during the defrost operation during the heating operation, and performs the defrost operation with the four-way switching valve left on the heating side, thereby reducing the low pressure. An air conditioner that can prevent the liquid from returning to the compressor by increasing the pressure to increase the compression function and also by performing heat exchange between the high temperature and high pressure gas refrigerant from the compressor and the suction side pipe. The purpose is to get.

〔課題を解決するための手段〕[Means for solving the problem]

本願発明に係わる空気調和装置は、圧縮機と、この圧
縮機から吐出される高温高圧の冷媒の流れを切換える四
方切換弁と、室外側送風機を備えた室外側熱交換器と、
暖房時に冷媒を減圧する第2の絞り装置と、室内送風機
を備えた室内側熱交換器とを備え、これらを順次冷媒配
管で接続して冷媒回路を構成してなる空気調和装置にお
いて、 三方切換弁を備え、前記三方切換弁を前記圧縮機と前
記四方切換弁との間に前記圧縮機吐出側冷媒配管にて接
続し、前記三方切換弁を介して前記室外側熱交換器と第
2の絞り装置を接続する配管の間にバイパスして接続す
る第4のバイパス回路を設け、 前記三方切換弁を、暖房運転時には、四方切換弁側
に、デフロスト運転時には、前記第4のバイパス回路側
に切換え、 デフロスト運転時は、前記四方切換弁を暖房運転にし
たままで行うようにしたものである。
An air conditioner according to the present invention, a compressor, a four-way switching valve that switches the flow of high-temperature high-pressure refrigerant discharged from the compressor, an outdoor heat exchanger including an outdoor blower,
An air conditioner comprising a second expansion device for decompressing a refrigerant during heating and an indoor heat exchanger equipped with an indoor blower, which are sequentially connected by a refrigerant pipe to form a refrigerant circuit. A valve, the three-way switching valve is connected between the compressor and the four-way switching valve by the compressor discharge-side refrigerant pipe, and the outdoor heat exchanger and the second heat exchanger are connected via the three-way switching valve. A fourth bypass circuit, which is bypassed and connected between the pipes connecting the expansion devices, is provided, and the three-way switching valve is provided on the four-way switching valve side during heating operation and on the fourth bypass circuit side during defrost operation. During the switching and defrosting operation, the four-way switching valve is operated in the heating mode.

また、圧縮機から三方切換弁に至る吐出側冷媒配管の
途中から、室外側熱交換器と第2の絞り装置を接続する
配管の間にバイパスして接続する第1のバイパス回路を
設け、 かつ、この第1のバイパス回路はその配管途中に、前
記圧縮機の吸込側冷媒配管と熱交換するサクショク熱交
換器部と、冷媒を減圧する減圧装置を備えたものであ
る。
Further, a first bypass circuit is provided, which is connected in a bypass from the middle of the discharge side refrigerant pipe from the compressor to the three-way switching valve and between the pipe connecting the outdoor heat exchanger and the second expansion device, and The first bypass circuit is provided with a suction heat exchanger section for exchanging heat with the suction side refrigerant pipe of the compressor and a pressure reducing device for depressurizing the refrigerant in the middle of the piping.

また、冷媒回路に冷房時に冷媒を減圧する第1の絞り
装置を備え、 前記第1の絞り装置および第2の絞り装置は、それぞ
れの減圧装置をバイパスする第2および第3のバイパス
回路を有するとともに、これら第2および第3のバイパ
ス回路には、それぞれ室外側および室内側熱交換器側へ
のみ冷媒の流れを許容する逆止弁をを備え、 圧縮機の吐出側冷媒装置と四方切換弁との間に接続さ
れた三方切換弁を、暖房運転時および冷房運転時には前
記吐出側冷媒配管を四方切換弁側に、デフロスト運転時
には第4のバイパス回路側に切換え、 デフロスト運転時は、前記四方切換弁を暖房運転の状
態としたままで、前記三方切換弁を切換えて行うように
したものである。
Further, the refrigerant circuit is provided with a first expansion device that reduces the pressure of the refrigerant during cooling, and the first expansion device and the second expansion device have second and third bypass circuits that bypass the respective decompression devices. Along with these, the second and third bypass circuits are provided with check valves that allow the flow of the refrigerant only to the outdoor side and the indoor side heat exchanger side, respectively, and the discharge side refrigerant device of the compressor and the four-way switching valve. A three-way switching valve connected between the four-way switching valve and the discharge side refrigerant pipe to the four-way switching valve side during the heating operation and the cooling operation and to the fourth bypass circuit side during the defrost operation, and the four-way switching valve during the defrost operation. The three-way switching valve is switched while the switching valve is in the heating operation state.

また、室内側熱交換器の近傍に、補助熱源を設置した
ものである。
In addition, an auxiliary heat source is installed near the indoor heat exchanger.

また、第4のバイパス回路の配管内径を、圧縮機の吐
出側冷媒配管の内径よりも細い配管内径としたものであ
る。
The inner diameter of the fourth bypass circuit is smaller than the inner diameter of the discharge side refrigerant pipe of the compressor.

また、第4のバイパス回路から圧縮機の吸入側冷媒配
管側にバイパスして接続される補助減圧手段を備えた第
5のバイパス回路を設け、デフロスト運転時に、この第
5のバイパス回路を前記第4のバイパス回路と共に開路
するように構成したものである。
Further, a fifth bypass circuit including an auxiliary depressurizing means connected by bypass from the fourth bypass circuit to the suction side refrigerant pipe side of the compressor is provided, and the fifth bypass circuit is provided with the fifth bypass circuit during the defrost operation. It is configured so as to be opened together with the bypass circuit of No. 4.

また、第4のバイパス回路に、第3の逆止弁を備えた
ものである。
In addition, the third bypass valve is provided in the fourth bypass circuit.

〔作用〕[Action]

本発明によれば、暖房運転中に室外側熱交換器に着霜
した場合、四方切換弁を暖房運転としたままで三方切換
弁を切換えることにより、従来のような四方切換弁の切
換えによる熱ロスの発生や室内側への冷風の吹出しを防
止して、デフロスト運転を行うことができる。しかも、
デフロスト運転時に四方切換弁を介して冷媒が室内側熱
交換器に流れ、凝縮して溜り込むことがなく、第4のバ
イパス回路へ流れるデフロスト用冷媒が不足することが
なく、迅速なデフロストが可能である。
According to the present invention, when frost is formed on the outdoor heat exchanger during the heating operation, by switching the three-way switching valve while the four-way switching valve is kept in the heating operation, heat generated by the conventional four-way switching valve switching Defrost operation can be performed by preventing loss and blowing cold air into the room. Moreover,
Refrigerant does not flow to the indoor heat exchanger via the four-way switching valve during defrost operation, does not accumulate and accumulate, and there is no shortage of defrost refrigerant flowing to the fourth bypass circuit, enabling quick defrost. Is.

また、第1のバイパス回路のサクション熱交換器部に
より、暖房、冷房、デフロスト時に圧縮機への冷媒の液
戻りを防止する。
Further, the suction heat exchanger section of the first bypass circuit prevents the refrigerant from returning to the compressor during heating, cooling and defrosting.

また、第5のバイパス回路により圧縮機の低圧圧力が
上昇して、圧縮機の能力が増し、デフロスト時間を短縮
できる。
Further, the low pressure of the compressor is increased by the fifth bypass circuit, the capacity of the compressor is increased, and the defrost time can be shortened.

〔実施例〕〔Example〕

第1図は本発明に係る空気調和装置の一実施例を示す
ものであり、同図において前述した第3図と同一または
相当する部分には同一番号を付してその説明は省略す
る。
FIG. 1 shows an embodiment of an air conditioner according to the present invention. In FIG. 1, parts that are the same as or correspond to those in FIG. 3 described above are given the same numbers and their explanations are omitted.

さて、本発明によれば、圧縮機1、四方切換弁2、室外
側熱交換器3、第1の絞り装置4、第2の絞り装置5、
室内側熱交換器6およびアキュムレータ7を冷媒配管で
順次接続してなる冷媒回路を備えてなる空気調和装置に
おいて、圧縮機1の吐出側配管から分岐されアキュムレ
ータ7と圧縮機1との間を接続する吸入側配管1aと熱交
換可能に構成されたサクション熱交換器11を通りかつ補
助キャピラリチューブ12を通って第1および第2の絞り
装置4,5間の配管側にバイパスして接続された第1のバ
イパス配管10を備えている。また、第1の減圧装置4aを
バイパスする逆止弁4bを設けた第2のバイパス回路4cと
第2の減圧装置5aをバイパスする逆止弁5bを設けた第3
のバイパス回路5cとが設けられている。さらに、圧縮機
1の吐出側配管1bから三方切換弁13を介して前記第1お
よび第2の絞り装置4,5間の配管側にバイパスして接続
される吐出側配管1bの内径よりも細い配管内径を有する
第4のバイパス回路14を設けている。そして、このよう
な構成において、デフロスト運転時に四方切換弁2を暖
房運転状態としたままで室内側および室外側熱交換器6,
3に送風する送風機8,9を停止させるとともに、三方切換
弁13を切換えて第4のバイパス回路14を開路してデフロ
スト運転を行なえるようにしている。
Now, according to the present invention, the compressor 1, the four-way switching valve 2, the outdoor heat exchanger 3, the first expansion device 4, the second expansion device 5,
In an air conditioner including a refrigerant circuit in which an indoor heat exchanger 6 and an accumulator 7 are sequentially connected by a refrigerant pipe, the accumulator 7 and the compressor 1 are branched from a discharge side pipe of a compressor 1 and connected. Through the suction heat exchanger 11 configured to exchange heat with the suction side pipe 1a and through the auxiliary capillary tube 12 and connected to the pipe side between the first and second expansion devices 4 and 5 by bypassing. A first bypass pipe 10 is provided. A second bypass circuit 4c provided with a check valve 4b that bypasses the first pressure reducing device 4a and a third bypass valve 5b that bypasses the second pressure reducing device 5a.
And a bypass circuit 5c. Further, the discharge side pipe 1b of the compressor 1 is thinner than the inner diameter of the discharge side pipe 1b which is bypassed and connected to the pipe side between the first and second expansion devices 4 and 5 via the three-way switching valve 13. A fourth bypass circuit 14 having a pipe inner diameter is provided. In such a configuration, the indoor side and outdoor heat exchangers 6, while the four-way switching valve 2 is kept in the heating operation state during the defrost operation,
The blowers 8 and 9 for blowing air to 3 are stopped, and the three-way switching valve 13 is switched to open the fourth bypass circuit 14 so that the defrost operation can be performed.

以上の構成による空気調和装置において、冷房運転時
(冷媒の流れは図中太い実線による矢印方向)には、圧
縮機1から吐出された高温高圧のガス冷媒は、四方切換
弁2を通り室外側熱交換器3で室外側送風機9によって
送風される室外空気と熱交換するとともに、これにより
ガス冷媒が凝縮液化する。そして、第1の絞り装置4に
おける第1の減圧装置4aによって減圧され、低温低圧の
液冷媒となる。一方、圧縮機1から吐出された高温高圧
のガス冷媒の一部は、第1のバイパス回路10を通りサク
ション熱交換器11で圧縮機1へ吸入される低圧冷媒と熱
交換し、吸入冷媒を加熱して完全に気化させ、自らは凝
縮液化し、補助キャピラリチューブ12によって減圧され
て低温低圧の液冷媒となり、第1および第2の絞り装置
4,5間の配管に合流し、第2の絞り装置5における第3
のバイパス回路5cを通り、室内側熱交換器6に入り室内
側送風機8から送風される室内空気と熱交換して室内空
気を冷却するとともに、これにより液冷媒は蒸発ガス化
し、四方切換弁2およびアキュムレータ7を通り圧縮機
1に戻るという冷凍サイクル回路が構成される。
In the air conditioner having the above-described configuration, during the cooling operation (the refrigerant flow is in the direction indicated by the thick solid line in the figure), the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way switching valve 2 to the outside The heat exchanger 3 exchanges heat with the outdoor air blown by the outdoor blower 9, whereby the gas refrigerant is condensed and liquefied. Then, the pressure is reduced by the first pressure reducing device 4a in the first expansion device 4, and becomes a low-temperature low-pressure liquid refrigerant. On the other hand, a part of the high-temperature high-pressure gas refrigerant discharged from the compressor 1 exchanges heat with the low-pressure refrigerant sucked into the compressor 1 in the suction heat exchanger 11 through the first bypass circuit 10 to transfer the sucked refrigerant. It is heated to be completely vaporized, condensed and liquefied by itself, and is decompressed by the auxiliary capillary tube 12 to become a low-temperature low-pressure liquid refrigerant, and the first and second expansion devices.
It joins the pipe between 4 and 5, and the third
Through the bypass circuit 5c of the indoor heat exchanger 6 to exchange heat with the indoor air blown from the indoor blower 8 to cool the indoor air, whereby the liquid refrigerant is vaporized and gasified, and the four-way switching valve 2 Further, a refrigeration cycle circuit is configured that passes through the accumulator 7 and returns to the compressor 1.

また、暖房運転時(冷媒の流れは図中細い実線による
矢印方向)には、圧縮機1から吐出された高温高圧のガ
ス冷媒は、暖房側に切換えられた四方切換弁2を通って
室内側熱交換器6に入り、室内側送風機8から送風され
る室内空気と熱交換して室内空気を加熱するとともに、
これによりガス冷媒は凝縮液化する。そして、第2の絞
り装置5における第2の減圧装置5aによって減圧され、
低温低圧の液冷媒となる。一方、圧縮機1から吐出され
た高温高圧のガス冷媒の一部は、第1のバイパス回路10
を通り、サクション熱交換器11で圧縮機1に吸入される
低圧冷媒と熱交換し吸入冷媒を加熱して完全に気化さ
せ、自らは凝縮液化し補助キャピラリチューブ12によっ
て減圧され、低温低圧の液冷媒となって前記配管側に合
流し、第1の絞り装置4における第2のバイパス回路4c
を通り、室外側熱交換器3に入り室外側送風機9から送
風される室外空気と熱交換し、室外空気から採熱して室
外空気を冷却するとともに、これにより液冷媒は蒸発ガ
ス化し、四方切換弁2、アキュムレータ7を通り、圧縮
機1に戻るという冷凍サイクル回路が構成される。
Further, during the heating operation (the flow of the refrigerant is in the direction of the arrow indicated by the thin solid line in the figure), the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way switching valve 2 switched to the heating side to the indoor side. While entering the heat exchanger 6 and exchanging heat with the indoor air blown from the indoor side blower 8 to heat the indoor air,
As a result, the gas refrigerant is condensed and liquefied. Then, the pressure is reduced by the second pressure reducing device 5a in the second expansion device 5,
It becomes a low-temperature low-pressure liquid refrigerant. On the other hand, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is part of the first bypass circuit 10
Through the suction heat exchanger 11 to exchange heat with the low-pressure refrigerant sucked into the compressor 1 to heat and completely vaporize the sucked refrigerant, condense and liquefy itself, and reduce the pressure by the auxiliary capillary tube 12. It becomes a refrigerant and joins the pipe side, and the second bypass circuit 4c in the first expansion device 4
Through the outdoor heat exchanger 3 to exchange heat with the outdoor air blown from the outdoor blower 9 to cool the outdoor air by collecting heat from the outdoor air, and thereby the liquid refrigerant is vaporized and gasified, and the four-way switching is performed. A refrigeration cycle circuit is configured in which the flow returns to the compressor 1 through the valve 2 and the accumulator 7.

また、このような暖房運転時において、たとえば室外
空気温度が低く、室外側熱交換器3に着霜が生じた場合
に必要とされるデフロスト運転時(冷媒の流れは図中破
線による矢印方向)には、圧縮機1から吐出された高温
高圧のガス冷媒は、デフロスト側に切換えられている状
態の三方切換弁13を通り第1および第2の絞り装置4,5
間の配管側に接続されている第4のバイパス回路14を通
って該配管側に流入される。
Further, during such heating operation, for example, during defrost operation required when the outdoor air temperature is low and frost forms on the outdoor heat exchanger 3 (the flow of the refrigerant is in the direction of the arrow indicated by the broken line in the figure). First, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the three-way switching valve 13 in the state of being switched to the defrost side, and the first and second expansion devices 4,5.
It flows into the piping side through the fourth bypass circuit 14 connected to the piping side between them.

一方、ここで圧縮機1から吐出された高温高圧のガス
冷媒の一部は、第1のバイパス回路10を通り、サクショ
ン熱交換器11で圧縮機1に吸入される低圧冷媒と熱交換
され、吸入冷媒を加熱して完全に気化させるとともに、
自らは凝縮液化し補助キャピラリチューブ12によって減
圧されて低温低圧の液冷媒となり、前記第4のバイパス
回路14を通った高温高圧のガス冷媒と混合される。そし
て、これら合流されたガス冷媒は、第1の絞り装置4に
おける第2のバイパス回路4cを通り室外側熱交換器3に
入る。このとき、室外側送風機9は停止されている。そ
して、高温ガス冷媒は、室外側熱交換器3の表面に着霜
した霜を高温ガス冷媒で融解し、この冷媒が凝縮液化し
て四方切換弁2を通りアキュムレータ7に入り圧縮機1
に戻されることになる。
On the other hand, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the first bypass circuit 10 and exchanges heat with the low-pressure refrigerant sucked into the compressor 1 by the suction heat exchanger 11, While heating the suction refrigerant to completely vaporize it,
The condensed liquid itself is decompressed by the auxiliary capillary tube 12 to become a low-temperature low-pressure liquid refrigerant, which is mixed with the high-temperature high-pressure gas refrigerant passing through the fourth bypass circuit 14. Then, the combined gas refrigerants pass through the second bypass circuit 4c in the first expansion device 4 and enter the outdoor heat exchanger 3. At this time, the outdoor blower 9 is stopped. Then, the high-temperature gas refrigerant melts the frost that has frosted on the surface of the outdoor heat exchanger 3 with the high-temperature gas refrigerant, and this refrigerant condenses and liquefies into the accumulator 7 through the four-way switching valve 2 and the compressor 1
Will be returned to.

したがって、このようなデフロスト時においては、四
方切換弁2を暖房側から冷房側に切換えることなく、デ
フロスト運転に入ることができ、これにより切換えのた
めの熱ロスがない。また、低温液冷媒が室内側熱交換器
6内を通過しないために、従来のような室内側に冷風が
吹出されるといった問題も解消される。さらに、吐出側
配管1bよりも第4のバイパス回路14を構成する配管内径
を細くするようにしたもので、圧力損失が生じ、圧縮機
1の高圧側圧力が上昇し、入力が増加するので、圧縮機
1の能力が増大し、デフロスト時間を短くすることが可
能となる。また、サクション熱交換器11によって圧縮機
1に対する吸入側配管1aを、圧縮機1から吐出された高
温高圧のガス冷媒で熱交換するように構成したので、圧
縮機1への液戻り現象を防止でき、圧縮機トラブルを防
止することが可能となる。
Therefore, during such defrosting, the defrosting operation can be started without switching the four-way switching valve 2 from the heating side to the cooling side, so that there is no heat loss for switching. Further, since the low-temperature liquid refrigerant does not pass through the indoor side heat exchanger 6, the problem that the cold air is blown out toward the indoor side as in the conventional case is solved. Further, the inner diameter of the pipe forming the fourth bypass circuit 14 is made smaller than that of the discharge side pipe 1b, and pressure loss occurs, the high pressure side pressure of the compressor 1 rises, and the input increases. The capacity of the compressor 1 is increased, and the defrost time can be shortened. Further, since the suction side heat exchanger 11 is configured to perform heat exchange with the suction side pipe 1a for the compressor 1 by the high-temperature and high-pressure gas refrigerant discharged from the compressor 1, a liquid return phenomenon to the compressor 1 is prevented. This makes it possible to prevent compressor trouble.

ここで、図中15で示したように室内側熱交換器6に対
面して補助熱源としての電熱器を設置するようにする
と、デフロスト運転中において冷媒がこの室内側熱交換
器6を通らないため、室内側送風機8を運転することが
でき、デフロスト運転中も暖房運転を継続できるといっ
た利点を奏する。
Here, as shown by 15 in the figure, if an electric heater as an auxiliary heat source is installed so as to face the indoor heat exchanger 6, the refrigerant does not pass through the indoor heat exchanger 6 during the defrost operation. Therefore, the indoor blower 8 can be operated, and there is an advantage that the heating operation can be continued even during the defrost operation.

第2図は本発明に係る空気調和装置の他の実施例を示
すものであって、この実施例では、前述した実施例にお
いて圧縮機1の吐出側配管1bから第1および第2の絞り
装置4,5間の配管にバイパス接続して設けた第4のバイ
パス回路14に第3の逆止弁18を設けるとともに、その上
流側から圧縮機1の吸入側配管1a側にバイパスして接続
される補助減圧手段としての補助キャピラリチューブ17
を有する第5のバイパス回路16を設けてなる構成として
いる。
FIG. 2 shows another embodiment of the air conditioner according to the present invention. In this embodiment, the first and second throttle devices from the discharge side pipe 1b of the compressor 1 in the above-mentioned embodiment are shown. The third check valve 18 is provided in the fourth bypass circuit 14 provided by bypass connection to the pipe between the four and five, and is connected by bypass from the upstream side to the suction side pipe 1a side of the compressor 1. Auxiliary capillary tube 17 as auxiliary decompression means
The fifth bypass circuit 16 having the above is provided.

そして、このような構成によれば、冷房運転時や暖房
運転時には前述した実施例と同様の作動状態となるが、
デフロスト運転時には次のような作動状態となる。すな
わち、このデフロスト運転時には、圧縮機1から吐出さ
れた高温高圧のガス冷媒は、三方切換弁13を介して第4
のバイパス回路14により前記第3の逆止弁18を通った
後、第1および第2の絞り装置4,5間の配管側に流入さ
れる。さらに、圧縮機1から吐出された高温高圧ガス冷
媒の一部は、第1のバイパス回路10により前述した通
り、圧縮機1吸入側の低圧冷媒を加熱して気化させると
ともに自らは凝縮液化しさらに減圧されて低温低圧の液
冷媒となって前記第4のバイパス回路14側からの高温高
圧ガス冷媒と混合され、第2のバイパス回路4cを通り室
外側熱交換器3側に送られ、その表面に着霜している霜
を融解し、これにより凝縮液化された冷媒が四方切換弁
2、アキュムレータ7を介して圧縮機1側に吸入され
る。また、この圧縮機1の吸入側配管1a内の冷媒は、サ
クション熱交換器11により第1のバイパス回路10を通っ
て流れる高温高圧のガス冷媒により気化されるので、圧
縮機1への液戻り現象を防止し得るものである。
Then, according to such a configuration, during the cooling operation or the heating operation, the operating state is the same as that of the above-described embodiment,
The following operating conditions occur during defrost operation. That is, during this defrost operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the three-way switching valve 13 to the fourth
After passing through the third check valve 18 by the bypass circuit 14, the flow is introduced into the pipe side between the first and second expansion devices 4 and 5. Further, a part of the high-temperature high-pressure gas refrigerant discharged from the compressor 1 heats and vaporizes the low-pressure refrigerant on the suction side of the compressor 1 by vaporizing the low-pressure refrigerant on the suction side of the compressor 1 as described above by the first bypass circuit 10. The pressure is reduced to form a low-temperature low-pressure liquid refrigerant, which is mixed with the high-temperature high-pressure gas refrigerant from the fourth bypass circuit 14 side, is sent to the outdoor heat exchanger 3 side through the second bypass circuit 4c, and its surface The frost that has been frosted on is melted, and the refrigerant condensed and liquefied by this is sucked into the compressor 1 side through the four-way switching valve 2 and the accumulator 7. Further, the refrigerant in the suction side pipe 1a of the compressor 1 is vaporized by the high-temperature high-pressure gas refrigerant flowing through the first bypass circuit 10 by the suction heat exchanger 11, so that the liquid return to the compressor 1 is returned. The phenomenon can be prevented.

そして、本実施例によれば、このようなデフロスト運
転時において、第4のバイパス回路14を通る高温高圧の
ガス冷媒の一部が、第5のバイパス回路16へと分岐さ
れ、補助キャピラリチューブ17で流量を制御されながら
圧縮機1の低圧側(吸入側配管1a)に流入するので、低
圧圧力が上昇し、圧縮機1の能力が増大し、デフロスト
時間を短くすることができるという利点を奏することが
可能となる。
Then, according to the present embodiment, during such a defrost operation, a part of the high-temperature and high-pressure gas refrigerant passing through the fourth bypass circuit 14 is branched to the fifth bypass circuit 16, and the auxiliary capillary tube 17 is provided. Since it flows into the low pressure side (suction side pipe 1a) of the compressor 1 while the flow rate is controlled by, the low pressure pressure rises, the capacity of the compressor 1 increases, and the defrost time can be shortened. It becomes possible.

なお、本発明は上述した実施例構造に限定されず、空
気調和装置各部の形状、構造等を、必要に応じて適宜変
形、変更することは自由である。
The present invention is not limited to the structure of the above-described embodiment, and the shape, structure, etc. of each part of the air conditioner can be freely modified or changed as necessary.

〔発明の効果〕〔The invention's effect〕

以上説明したように本願発明による空気調和装置によ
れば、三方切換弁を備え、前記三方切換弁を圧縮機と四
方切換弁との間に前記圧縮機吐出側冷媒配管にて接続
し、前記三方切換弁を介して室外側熱交換器と第2の絞
り装置を接続する配管の間にバイパスして接続する第4
のバイパス回路を設け、前記三方切換弁を、暖房運転時
には、四方切換弁側に、デフロスト運転時には、前記第
4のバイパス回路側に切換え、デフロスト運転時は、前
記四方切換弁を暖房運転にしたままで行うようにしたの
で、デフロスト運転時に、四方切換弁を介して冷媒が室
内側熱交換器へ流れ込み、凝縮して溜りこむことがない
ので、第4のバイパス回路へ流れるデフロスト用冷媒が
不足することがなく、迅速なデフロストが可能となり、
また、従来のような四方切換弁の切換えによる熱ロスや
冷風の吹き出しを防止できるという顕著な効果を奏する
ものであります。
As described above, according to the air conditioner of the present invention, the three-way switching valve is provided, and the three-way switching valve is connected between the compressor and the four-way switching valve by the compressor discharge side refrigerant pipe, and the three-way switching valve is connected. A fourth bypass connecting between the outdoor heat exchanger and the pipe connecting the second expansion device via the switching valve.
The bypass circuit is provided to switch the three-way switching valve to the four-way switching valve side during the heating operation, to the fourth bypass circuit side during the defrost operation, and the four-way switching valve to the heating operation during the defrost operation. Since the refrigerant does not flow into the indoor heat exchanger via the four-way switching valve and does not condense and accumulate during the defrost operation, the defrost refrigerant flowing to the fourth bypass circuit is insufficient. Without the need for quick defrosting,
It also has the remarkable effect of preventing heat loss and cold air blowout due to the conventional switching of the four-way switching valve.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る空気調和装置の一実施例を示す冷
凍サイクル回路の概略構成図、第2図は本発明の他の実
施例を示す冷凍サイクル回路の概略構成図、第3図は従
来例を示す概略構成図である。 1……圧縮機、1a……吸入側配管、1b……吐出側配管、
2……四方切換弁、3……室外側熱交換器、4,5……第
1および第2の絞り装置、4a,5a……第1および第2の
減圧装置(キャピラリチューブ)、4b,5b……逆止弁、4
c,5c……第1および第2のバイパス回路、6……室内側
熱交換器、7……アキュムレータ、8,9……室内側およ
び室外側送風機、10……第1のバイパス回路、11……サ
クション熱交換器、12……補助キャピラリチューブ、13
……三方切換弁、14……第4のバイパス回路、15……電
熱器、16……第5のバイパス回路、17……補助キャピラ
リチューブ(補助減圧手段)、18……第3の逆止弁。
FIG. 1 is a schematic configuration diagram of a refrigeration cycle circuit showing an embodiment of an air conditioner according to the present invention, FIG. 2 is a schematic configuration diagram of a refrigeration cycle circuit showing another embodiment of the present invention, and FIG. It is a schematic block diagram which shows a prior art example. 1 ... Compressor, 1a ... Suction side piping, 1b ... Discharge side piping,
2 ... Four-way switching valve, 3 ... Outdoor heat exchanger, 4,5 ... First and second throttle devices, 4a, 5a ... First and second pressure reducing device (capillary tube), 4b, 5b ... Check valve, 4
c, 5c ...... first and second bypass circuits, 6 ... indoor heat exchanger, 7 ... accumulator, 8,9 ... indoor and outdoor blower, 10 ... first bypass circuit, 11 ...... Suction heat exchanger, 12 …… Auxiliary capillary tube, 13
...... Three-way selector valve, 14 ...... Fourth bypass circuit, 15 ...... Electric heater, 16 ...... Fifth bypass circuit, 17 ...... Auxiliary capillary tube (auxiliary decompression means), 18 ...... Third check valve valve.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機と、この圧縮機から吐出される高温
高圧の冷媒の流れを切換える四方切換弁と、室外側送風
機を備えた室外側熱交換器と、暖房時に冷媒を減圧する
第2の絞り装置と、室内送風機を備えた室内側熱交換器
とを備え、これらを順次冷媒配管で接続して冷媒回路を
構成してなる空気調和装置において、 三方切換弁を備え、前記三方切換弁を前記圧縮機と前記
四方切換弁との間に前記圧縮機吐出側冷媒配管にて接続
し、前記三方切換弁を介して前記室外側熱交換器と第2
の絞り装置を接続する配管の間にバイパスして接続する
第4のバイパス回路を設け、 前記三方切換弁を、暖房運転時には、四方切換弁側に、
デフロスト運転時には、前記第4のバイパス回路側に切
換え、 デフロスト運転時は、前記四方切換弁を暖房運転にした
ままで行うようにしたことを特徴とする空気調和装置。
1. A compressor, a four-way switching valve for switching the flow of high-temperature and high-pressure refrigerant discharged from the compressor, an outdoor heat exchanger equipped with an outdoor blower, and a second pressure reducing valve for heating. In the air conditioner having a throttle device and an indoor heat exchanger provided with an indoor blower, which are sequentially connected by a refrigerant pipe to form a refrigerant circuit, a three-way switching valve is provided, and the three-way switching valve is provided. Is connected by the compressor discharge-side refrigerant pipe between the compressor and the four-way switching valve, and the second heat exchanger is connected to the outdoor heat exchanger via the three-way switching valve.
A fourth bypass circuit that bypasses and connects between the pipes that connect the expansion device is provided, and the three-way switching valve is provided on the four-way switching valve side during heating operation.
An air conditioner characterized by switching to the side of the fourth bypass circuit during defrost operation, and during defrost operation with the four-way switching valve kept in heating operation.
【請求項2】圧縮機から三方切換弁に至る吐出側冷媒配
管の途中から、室外側熱交換器と第2の絞り装置を接続
する配管の間にバイパスして接続する第1のバイパス回
路を設け、 かつ、この第1のバイパス回路はその配管途中に、前記
圧縮機の吸込側冷媒配管と熱交換するサクショク熱交換
器部と、冷媒を減圧する減圧装置を備えていることを特
徴とする請求項1記載の空気調和装置。
2. A first bypass circuit, which is connected by bypassing from the middle of the discharge side refrigerant pipe from the compressor to the three-way switching valve, between the pipe connecting the outdoor heat exchanger and the second expansion device. The first bypass circuit is provided with, in the middle of its piping, a suction heat exchanger section for exchanging heat with the suction side refrigerant piping of the compressor, and a decompression device for decompressing the refrigerant. The air conditioner according to claim 1.
【請求項3】冷媒回路に冷房時に冷媒を減圧する第1の
絞り装置を備え、 前記第1の絞り装置および第2の絞り装置は、それぞれ
の減圧装置をバイパスする第2および第3のバイパス回
路を有するとともに、これら第2および第3のバイパス
回路には、それぞれ室外側および室内側熱交換器側への
み冷媒の流れを許容する逆止弁をを備え、 圧縮機の吐出側冷媒配管と四方切換弁との間に接続され
た三方切換弁を、暖房運転時および冷房運転時には前記
吐出側冷媒配管を四方切換弁側に、デフロスト運転時に
は第4のバイパス回路側に切換え、 デフロスト運転時は、前記四方切換弁を暖房運転の状態
としたままで、前記三方切換弁を切換えて行うようにし
たことを特徴とする請求項2記載の空気調和装置。
3. A refrigerant circuit is provided with a first expansion device for decompressing the refrigerant during cooling, and the first expansion device and the second expansion device are second and third bypasses bypassing the respective decompression devices. In addition to having a circuit, each of the second and third bypass circuits is provided with a check valve that allows the flow of the refrigerant only to the outdoor side and the indoor side heat exchanger side. A three-way switching valve connected between the four-way switching valve and the discharge-side refrigerant pipe is switched to the four-way switching valve side during the heating operation and the cooling operation, and to the fourth bypass circuit side during the defrost operation, and during the defrost operation. The air conditioner according to claim 2, wherein the three-way switching valve is switched while the four-way switching valve is in a heating operation state.
【請求項4】室内側熱交換器の近傍に、補助熱源を設置
したことを特徴とする請求項1、請求項2または請求項
3記載の空気調和装置。
4. The air conditioner according to claim 1, wherein an auxiliary heat source is installed near the indoor heat exchanger.
【請求項5】第4のバイパス回路の配管内径を、圧縮機
の吐出側冷媒配管の内径よりも細い配管内径としたこと
を特徴とする請求項1、請求項2、請求項3記載または
請求項4記載の空気調和装置。
5. The pipe inner diameter of the fourth bypass circuit is set to a pipe inner diameter smaller than the inner diameter of the discharge side refrigerant pipe of the compressor, claim 1, claim 2, claim 3 or claim Item 4. The air conditioner according to Item 4.
【請求項6】第4のバイパス回路から圧縮機の吸入側冷
媒配管側にバイパスして接続される補助減圧手段を備え
た第5のバイパス回路を設け、 デフロスト運転時に、この第5のバイパス回路を前記第
4のバイパス回路と共に開路するように構成したことを
特徴とする請求項1、請求項2、請求項3、請求項4ま
たは請求項5記載の空気調和装置。
6. A fifth bypass circuit having auxiliary depressurizing means, which is connected by bypass from the fourth bypass circuit to the suction side refrigerant pipe side of the compressor, is provided, and during defrost operation, this fifth bypass circuit is provided. Is configured to be opened together with the fourth bypass circuit, The air conditioner according to claim 1, claim 2, claim 3, claim 4 or claim 5.
【請求項7】第4のバイパス回路に、第3の逆止弁を備
えたことを特徴とする請求項6記載の空気調和装置。
7. The air conditioner according to claim 6, wherein the fourth bypass circuit is provided with a third check valve.
JP63122356A 1988-05-18 1988-05-18 Air conditioner Expired - Lifetime JP2524382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63122356A JP2524382B2 (en) 1988-05-18 1988-05-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63122356A JP2524382B2 (en) 1988-05-18 1988-05-18 Air conditioner

Publications (2)

Publication Number Publication Date
JPH01291077A JPH01291077A (en) 1989-11-22
JP2524382B2 true JP2524382B2 (en) 1996-08-14

Family

ID=14833879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63122356A Expired - Lifetime JP2524382B2 (en) 1988-05-18 1988-05-18 Air conditioner

Country Status (1)

Country Link
JP (1) JP2524382B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5092134A (en) * 1989-08-18 1992-03-03 Mitsubishi Denki Kabushiki Kaisha Heating and cooling air conditioning system with improved defrosting
CN104864619B (en) * 2015-06-19 2017-12-22 苏州医电神空调设备工程有限公司 Can step-less adjustment suction temperature refrigeration system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54180345U (en) * 1978-06-09 1979-12-20
JPS5640360U (en) * 1979-09-05 1981-04-15
JPS61250463A (en) * 1985-04-26 1986-11-07 松下電器産業株式会社 Heat pump type air conditioner
JPS62158958A (en) * 1986-01-07 1987-07-14 三菱電機株式会社 Separation type heat pump system air conditioner

Also Published As

Publication number Publication date
JPH01291077A (en) 1989-11-22

Similar Documents

Publication Publication Date Title
WO2004008048A1 (en) Refrigeration equipment
JP2875507B2 (en) Air conditioner
JP3324420B2 (en) Refrigeration equipment
JP2944507B2 (en) Air conditioner
JP2524382B2 (en) Air conditioner
KR20000075158A (en) Dual unit type air conditioner for heating and cooling and defrosting method thereof
JP2646709B2 (en) Air conditioner
JP3598997B2 (en) Refrigeration equipment
JPH10176869A (en) Refrigeration cycle device
JP2550762B2 (en) Air conditioner
JPH07117323B2 (en) Air conditioner
JP2618057B2 (en) Two-stage compression cooling / heating hot water supply system
JP2564980B2 (en) Air conditioner
JPH05322348A (en) Air conditioner
JPH07117322B2 (en) Air conditioner
JPH0821664A (en) Refrigerating cycle device
JP2718287B2 (en) Air conditioner
JPH01310276A (en) Air conditioner
JP2002156167A (en) Multi-chamber type air conditioner
JPH01123965A (en) Air conditioner
JPH01127870A (en) Air conditioner
JP2001280764A (en) Air conditioning system
JPH07117324B2 (en) Air conditioner
JPH03191264A (en) Air conditioning apparatus
JP2001280765A (en) Air conditioning system