JPH10176869A - Refrigeration cycle device - Google Patents

Refrigeration cycle device

Info

Publication number
JPH10176869A
JPH10176869A JP8333853A JP33385396A JPH10176869A JP H10176869 A JPH10176869 A JP H10176869A JP 8333853 A JP8333853 A JP 8333853A JP 33385396 A JP33385396 A JP 33385396A JP H10176869 A JPH10176869 A JP H10176869A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
compressor
auxiliary heat
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8333853A
Other languages
Japanese (ja)
Other versions
JP3719296B2 (en
Inventor
Keisuke Sotozono
圭介 外囿
Tomohiko Kasai
智彦 河西
Fumio Matsuoka
文雄 松岡
Yoshihiro Sumida
嘉裕 隅田
Fumitake Unezaki
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP33385396A priority Critical patent/JP3719296B2/en
Publication of JPH10176869A publication Critical patent/JPH10176869A/en
Application granted granted Critical
Publication of JP3719296B2 publication Critical patent/JP3719296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high reliable refrigeration cycle device in which an excessive load can be prevented from being applied to a compressor due to an excessive operation capacity without using any variable capacity type compressor. SOLUTION: There are provided a bypass passage E arranged while a first branch section C and a second branch section D in a refrigerant circuit 1 are being connected, an auxiliary heat exchanger 10 arranged at the bypass passage E, and a second throttle device 9 arranged at the bypass passage E between the first branch section C and the auxiliary heat exchanger 10. Then, in the case that a total operating capacity of the compressor being operated in a plurality of compressors A and B is excessive against a load at the utilization side, the refrigerant is branched to flow to the bypass passage E and evaporated or condensed at the auxiliary heat exchanger 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、並列に接続され
た複数台の定容量型の圧縮機、熱源側熱交換器、第1の
絞り装置、及び利用側熱交換器を配管により接続してな
る冷媒回路を備え、利用側負荷に応じて前記圧縮機の運
転台数制御を行なうように構成された冷凍サイクル装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of connecting a plurality of constant capacity compressors connected in parallel, a heat source side heat exchanger, a first expansion device, and a use side heat exchanger by piping. The present invention relates to a refrigeration cycle apparatus including a refrigerant circuit, and configured to control the number of operating compressors in accordance with a use-side load.

【0002】[0002]

【従来の技術】従来、例えば空気調和装置、冷凍装置な
どの冷凍サイクル装置であって、複数台の異容量もしく
は同容量の定容量型圧縮機を並列に接続して冷媒回路に
用いたものにおいては、随時変化する利用側負荷(例え
ば空調負荷)に応じて前記圧縮機の運転台数を変える制
御(以下「運転台数制御」という)を行なっていた。
2. Description of the Related Art Conventionally, a refrigerating cycle device such as an air conditioner or a refrigerating device in which a plurality of constant capacity compressors having different capacities or the same capacity are connected in parallel and used in a refrigerant circuit. Has performed control (hereinafter, referred to as "operating number control") for changing the operating number of the compressors according to a use side load (for example, an air conditioning load) that changes as needed.

【0003】図18は従来の運転台数制御の一例とし
て、定容量型の圧縮機Aと、この圧縮機Aよりも容量の
大きい定容量型の圧縮機Bとの2台の圧縮機を用い、利
用側負荷が最小の場合は圧縮機Aのみを運転し、利用側
負荷がある程度大きくなると圧縮機Bのみを運転し、さ
らに利用側負荷が大きくなると圧縮機Aと圧縮機Bとの
両方を運転するという運転台数制御を行なった場合の、
利用側負荷と圧縮機の総運転容量との関係を示してい
る。
FIG. 18 shows an example of conventional control of the number of operating units using two compressors, a constant capacity compressor A and a constant capacity compressor B having a larger capacity than the compressor A. When the load on the use side is minimum, only the compressor A is operated. When the load on the use side is increased to some extent, only the compressor B is operated. When the load on the use side is further increased, both the compressor A and the compressor B are operated. When the operation number control
4 shows the relationship between the use side load and the total operating capacity of the compressor.

【0004】[0004]

【発明が解決しようとする課題】しかし、図18のよう
な従来の運転台数制御では、利用側負荷が無段階に変化
するのに対し、圧縮機の総運転容量は段階的に変化する
ため、図18に斜線影部で示すように、利用側負荷に対
して圧縮機の総運転容量が過剰になる場合があった。そ
して、このように運転容量が過剰となると、例えば冷房
運転時であれば圧縮機の吸入圧力が低下し、暖房運転時
であれば圧縮機の吐出圧力が過昇するなどして、圧縮機
に無理な負荷がかかり、圧縮機の損傷を招くことになっ
ていた。
However, in the conventional operation number control as shown in FIG. 18, the utilization side load changes steplessly, whereas the total operating capacity of the compressor changes stepwise. As shown by the shaded area in FIG. 18, the total operating capacity of the compressor sometimes became excessive with respect to the use-side load. When the operating capacity becomes excessive in this way, for example, during the cooling operation, the suction pressure of the compressor decreases, and during the heating operation, the discharge pressure of the compressor excessively increases. An unreasonable load was applied, resulting in damage to the compressor.

【0005】なお、圧縮機にインバータを用いた容量可
変型の圧縮機を用いれば、図18に示したように利用側
負荷と圧縮機運転容量との関係をリニアに制御できて、
圧縮機に無理な負荷がかかることは防止できる反面、近
来問題視され始めたインバータによる圧縮機運転効率ロ
ス、高調波ノイズなどの弊害が生じることになった。
If a variable displacement compressor using an inverter is used as the compressor, the relationship between the load on the user side and the operating capacity of the compressor can be linearly controlled as shown in FIG.
While it is possible to prevent an unreasonable load from being applied to the compressor, adverse effects such as a loss of compressor operation efficiency and harmonic noise caused by the inverter, which has recently been regarded as a problem, have occurred.

【0006】この発明は以上のような問題点を解消する
ためになされたものであって、容量可変型の圧縮機を用
いずに、運転容量過剰に起因して圧縮機に無理な負荷が
かかることを防止できる、信頼性の高い冷凍サイクル装
置を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an excessive load is applied to a compressor due to an excessive operating capacity without using a variable displacement compressor. It is an object of the present invention to provide a highly reliable refrigeration cycle device that can prevent such a situation.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するた
め、この発明は、並列に接続された複数台の定容量型の
圧縮機、熱源側熱交換器、第1の絞り装置、及び利用側
熱交換器を配管により接続してなる冷媒回路を備え、利
用側負荷に応じて圧縮機の運転台数制御を行なうように
構成された冷凍サイクル装置において、熱源側熱交換器
と第1の絞り装置との間の冷媒回路に設けられた第1の
分岐部と利用側熱交換器と圧縮機との間の冷媒回路に設
けられた第2の分岐部とを接続して設けられたバイパス
路と、バイパス路に設けられた補助熱交換器と、第1の
分岐部と補助熱交換器との間のバイパス路に設けられた
第2の絞り装置とを備え、複数台の圧縮機のうち運転さ
れている圧縮機の総運転容量が利用側負荷に対して過剰
となった場合に、冷媒をバイパス路に分流させて補助熱
交換器で蒸発又は凝縮させるように構成したものであ
る。
In order to achieve the above object, the present invention relates to a plurality of constant capacity compressors connected in parallel, a heat source side heat exchanger, a first expansion device, and a use side. A refrigeration cycle apparatus including a refrigerant circuit formed by connecting heat exchangers by pipes and configured to control the number of operating compressors according to a load on a use side, wherein a heat source side heat exchanger and a first expansion device And a bypass provided by connecting a first branch provided in the refrigerant circuit between the first heat exchanger and the second branch provided in the refrigerant circuit between the use-side heat exchanger and the compressor. An auxiliary heat exchanger provided in the bypass path, and a second expansion device provided in the bypass path between the first branch portion and the auxiliary heat exchanger. If the total operating capacity of the The is so diverted to bypass those configured to evaporate or condensed in the auxiliary heat exchanger.

【0008】また、前記構成において、補助熱交換器
が、バイパス路内の冷媒と熱源側風路内の空気との間で
熱交換を行なうものである。
Further, in the above configuration, the auxiliary heat exchanger exchanges heat between the refrigerant in the bypass and the air in the heat source side air passage.

【0009】また、前記構成において、補助熱交換器
が、バイパス路内の冷媒と圧縮機から吐出された高温高
圧の冷媒との間で熱交換を行なうものである。
In the above structure, the auxiliary heat exchanger performs heat exchange between the refrigerant in the bypass and the high-temperature and high-pressure refrigerant discharged from the compressor.

【0010】また、前記構成において、熱源側熱交換器
と第1の絞り装置との間の冷媒回路と第2の絞り装置と
補助熱交換器との間のバイパス路とを接続して設けられ
た第1の接続配管と、補助熱交換器と第2の分岐部との
間のバイパス路と圧縮機と熱源側熱交換器との間の冷媒
回路とを接続して設けられた第2の接続配管と、第1の
接続配管及び第2の接続配管を開閉する開閉手段とを備
えたものである。
In the above structure, the refrigerant circuit between the heat source side heat exchanger and the first expansion device and the bypass between the second expansion device and the auxiliary heat exchanger are connected to each other. A second connection pipe that connects the first connection pipe, the bypass path between the auxiliary heat exchanger and the second branch, and the refrigerant circuit between the compressor and the heat source side heat exchanger. It comprises a connection pipe and an opening / closing means for opening and closing the first connection pipe and the second connection pipe.

【0011】また、前記構成において、第2の絞り装置
を開度制御可能な流量制御弁としたものである。
Further, in the above configuration, the second throttle device is a flow control valve capable of controlling the opening degree.

【0012】また、前記構成において、流量制御弁から
補助熱交換器までのバイパス路内の冷媒と熱源側熱交換
器から第1の分岐部までの冷媒回路内の冷媒との間で熱
交換を行なう過冷却熱交換器を備えたものである。
Further, in the above structure, heat exchange is performed between the refrigerant in the bypass from the flow control valve to the auxiliary heat exchanger and the refrigerant in the refrigerant circuit from the heat source side heat exchanger to the first branch. It is equipped with a supercooling heat exchanger to perform.

【0013】また、前記構成において、圧縮機の吸入圧
力を検出する吸入圧力検出手段と、圧縮機の吐出圧力を
検出する吐出圧力検出手段の検出値及び熱源側熱交換器
と第1の絞り装置との間の冷媒温度を検出する第1の温
度検出手段の検出値に基づいて冷媒の過冷却度を演算す
る過冷却度演算手段と、補助熱交換器の冷媒出側と冷媒
入側とのそれぞれの冷媒温度を検出する第2の温度検出
手段の検出値に基づいて冷媒の過熱度を演算する過熱度
演算手段と、冷房運転時に吸入圧力検出手段の検出値が
予め設定されている所定値以下の場合は流量制御弁を開
き、吸入圧力検出手段の検出値が所定値を超えている場
合は過冷却度演算手段の演算値及び過熱度演算手段の演
算値がそれぞれ予め設定されている過冷却度目標値及び
過熱度目標値に近付くように流量制御弁を開度制御する
第1の制御手段とを備えたものである。
Further, in the above construction, the suction pressure detecting means for detecting the suction pressure of the compressor, the detected value of the discharge pressure detecting means for detecting the discharge pressure of the compressor, the heat source side heat exchanger, and the first throttle device Supercooling degree calculating means for calculating the degree of supercooling of the refrigerant based on the detected value of the first temperature detecting means for detecting the refrigerant temperature between the refrigerant and the refrigerant outlet side and the refrigerant inlet side of the auxiliary heat exchanger. Superheat degree calculating means for calculating the degree of superheat of the refrigerant based on the detected value of the second temperature detecting means for detecting each refrigerant temperature, and a predetermined value in which the detected value of the suction pressure detecting means is set in advance during the cooling operation In the following cases, the flow control valve is opened, and when the detected value of the suction pressure detecting means exceeds a predetermined value, the calculated value of the supercooling degree calculating means and the calculated value of the superheat degree calculating means are respectively set in advance. Close to the cooling target and superheat target A flow control valve is obtained and a first control means for opening control moves easily.

【0014】また、前記構成において、圧縮機の吐出圧
力を検出する吐出圧力検出手段と、吐出圧力検出手段の
検出値及び補助熱交換器の冷媒出側の冷媒温度を検出す
る第3の温度検出手段の検出値に基づいて冷媒の過冷却
度を演算する補助熱交換器過冷却度演算手段と、暖房運
転時に吐出圧力検出手段の検出値が予め設定されている
所定値以上の場合は補助熱交換器過冷却度演算手段の演
算値が予め設定されている過冷却度目標値に近付くよう
に流量制御弁を開度制御し、吐出圧力検出手段の検出値
が所定値に満たない場合は流量制御弁を閉じる制御を行
なう第2の制御手段とを備えたものである。
In the above construction, a discharge pressure detecting means for detecting a discharge pressure of the compressor, and a third temperature detecting means for detecting a detected value of the discharge pressure detecting means and a refrigerant temperature at a refrigerant outlet side of the auxiliary heat exchanger. Means for calculating the degree of supercooling of the refrigerant based on the detected value of the means, and means for calculating the degree of supercooling of the refrigerant, and auxiliary heating when the detected value of the discharge pressure detecting means during heating operation is equal to or higher than a predetermined value. The opening degree of the flow control valve is controlled so that the calculated value of the exchanger supercooling degree calculating means approaches the preset supercooling degree target value, and if the detected value of the discharge pressure detecting means is less than the predetermined value, the flow rate is controlled. Second control means for performing control to close the control valve.

【0015】[0015]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1は、この発明の実施の形態1に係る
空気調和装置(冷凍サイクル装置)の冷媒回路図であっ
て、図中A,Bは並列に接続された定容量型の圧縮機、
2は四方切換弁、3は熱源側熱交換器、4は流量制御弁
(第1の絞り装置)、5は利用側熱交換器、8はアキュ
ムレータであり、以上の構成要素を配管により接続して
冷媒回路1が形成されている。圧縮機Bには圧縮機Aよ
りも運転容量の大きいものが用いられている。
Embodiment 1 FIG. FIG. 1 is a refrigerant circuit diagram of an air-conditioning apparatus (refrigeration cycle apparatus) according to Embodiment 1 of the present invention, in which A and B are constant capacity compressors connected in parallel,
2 is a four-way switching valve, 3 is a heat source side heat exchanger, 4 is a flow control valve (first throttling device), 5 is a utilization side heat exchanger, and 8 is an accumulator. Thus, a refrigerant circuit 1 is formed. A compressor having a larger operating capacity than the compressor A is used as the compressor B.

【0016】また、Cは熱源側熱交換器3と流量制御弁
4との間の冷媒回路1に設けられた第1の分岐部、Dは
利用側熱交換器5と四方切換弁2との間の冷媒回路1に
設けられた第2の分岐部、Eは第1の分岐部Cと第2の
分岐部Dとを接続して設けられたバイパス路、10はバ
イパス路Eに設けられた補助熱交換器、9は第1の分岐
部Cと補助熱交換器10との間のバイパス路Eに設けら
れた流量制御弁(第2の絞り装置)である。補助熱交換
器10は、熱源側熱交換器3と同じ熱源側風路内に設け
られ、バイパス路E内の冷媒と熱源側風路内の空気(外
気)との間で熱交換を行なうものであって、充分な耐圧
性をもつ材質で形成され、利用側負荷に対する圧縮機容
量の過剰に起因する吸入圧力低下や吐出圧力過昇を抑制
できるだけの熱交換容量を有している。
C is a first branch provided in the refrigerant circuit 1 between the heat source side heat exchanger 3 and the flow control valve 4, and D is a connection between the use side heat exchanger 5 and the four-way switching valve 2. The second branch portion E provided in the refrigerant circuit 1 between the first branch portion C and the second branch portion D is provided by connecting the first branch portion C and the second branch portion D, and the second branch portion 10 is provided in the bypass passage E. The auxiliary heat exchanger 9 is a flow control valve (second throttle device) provided in the bypass E between the first branch C and the auxiliary heat exchanger 10. The auxiliary heat exchanger 10 is provided in the same heat source side air path as the heat source side heat exchanger 3 and exchanges heat between the refrigerant in the bypass path E and the air (outside air) in the heat source side air path. It is formed of a material having sufficient pressure resistance, and has a heat exchange capacity that can suppress a decrease in suction pressure and an excessive rise in discharge pressure due to an excessive compressor capacity with respect to a use-side load.

【0017】さらに、Fは第1の分岐部Cと流量制御弁
4との間の冷媒回路1と利用側熱交換器5と第2の分岐
部Dとの間の冷媒回路1とを接続して設けられた過冷却
用配管、6は過冷却用配管Fに設けられた流量制御弁、
7は過冷却用配管F内の冷媒と冷媒回路1内の冷媒との
間で熱交換を行なう過冷却熱交換器である。
F connects the refrigerant circuit 1 between the first branch C and the flow control valve 4 and the refrigerant circuit 1 between the use side heat exchanger 5 and the second branch D. A supercooling pipe provided at 6; a flow control valve 6 provided at the supercooling pipe F;
Reference numeral 7 denotes a supercooling heat exchanger that performs heat exchange between the refrigerant in the supercooling pipe F and the refrigerant in the refrigerant circuit 1.

【0018】次いで、動作を説明する。通常の冷房運転
では、四方切換弁2を圧縮機A,Bの吐出側と熱源側熱
交換器3とが連通する方向に切り換えるとともに、流量
制御弁9を全閉して圧縮機A,Bのいずれか一方又は両
方を運転する。圧縮機A,Bから吐出された高温高圧の
ガス冷媒は、四方切換弁2を経て熱源側熱交換器3に流
入し、ここで外気と熱交換して高温高圧の気液二相冷媒
となる。熱源側熱交換器3を出た気液二相冷媒は、過冷
却熱交換器7で過冷却をつけられて利用側へと流入し、
流量制御弁4で減圧されたのち利用側熱交換器5へ流入
し、ここで室内の空気と熱交換して低温低圧の気液二相
冷媒となる。利用側熱交換器5を出た気液二相冷媒は、
四方切換弁2を経てアキュムレータ8へ流入して気液分
離され、液冷媒はアキュムレータ8内に溜められ、ガス
冷媒は圧縮機A,Bへ戻る。以上のようにして冷凍サイ
クルが形成される。また、過冷却熱交換器7を出た冷媒
の一部は過冷却用配管Fへ分流し、流量制御弁6で減圧
され低温低圧の気液二相冷媒となって過冷却熱交換器7
に再度流入し、冷媒回路1内の冷媒と熱交換して過冷却
をつけたのち、利用側熱交換器5と第2の分岐部Dとの
間の冷媒回路1に合流する。
Next, the operation will be described. In a normal cooling operation, the four-way switching valve 2 is switched to a direction in which the discharge sides of the compressors A and B and the heat source side heat exchanger 3 communicate with each other, and the flow control valve 9 is fully closed to open the compressors A and B. Operate either or both. The high-temperature and high-pressure gas refrigerant discharged from the compressors A and B flows into the heat source side heat exchanger 3 via the four-way switching valve 2, where it exchanges heat with the outside air to become a high-temperature and high-pressure gas-liquid two-phase refrigerant. . The gas-liquid two-phase refrigerant that has exited the heat source side heat exchanger 3 is supercooled by the supercooling heat exchanger 7 and flows into the use side.
After the pressure is reduced by the flow control valve 4, it flows into the use side heat exchanger 5, where it exchanges heat with indoor air to become a low-temperature low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant leaving the use side heat exchanger 5 is:
The gas refrigerant flows into the accumulator 8 via the four-way switching valve 2 and is separated into gas and liquid. The liquid refrigerant is stored in the accumulator 8 and the gas refrigerant returns to the compressors A and B. A refrigeration cycle is formed as described above. A part of the refrigerant flowing out of the subcooling heat exchanger 7 is diverted to the supercooling pipe F, and is decompressed by the flow control valve 6 to become a low-temperature low-pressure gas-liquid two-phase refrigerant, and becomes a subcooling heat exchanger 7.
Flows again and exchanges heat with the refrigerant in the refrigerant circuit 1 to supercool, and then joins the refrigerant circuit 1 between the use side heat exchanger 5 and the second branch portion D.

【0019】そして、利用側の空調負荷に対して圧縮機
の運転容量が過剰となり、系内の蒸発圧力すなわち圧縮
機A,Bの吸入圧力が低下した場合には、バイパス路E
の流量制御弁9を開く。これにより、熱源側熱交換器3
を出た気液二相冷媒の一部が第1の分岐部Cでバイパス
路Eに分流し、流量制御弁9で減圧されたのち補助熱交
換器10へ流入し、ここで外気と熱交換して蒸発したの
ち、第2の分岐部Dで冷媒回路1内の冷媒と合流する。
以上のように補助熱交換器10で蒸発した冷媒が圧縮機
A,Bの吸入側に流入するので、圧縮機A,Bの吸入圧
力が上昇することになって、圧縮機A,Bに無理な負荷
がかかることは防止される。
When the operating capacity of the compressor becomes excessive with respect to the air conditioning load on the user side, and the evaporation pressure in the system, that is, the suction pressure of the compressors A and B decreases, the bypass passage E
Is opened. Thereby, the heat source side heat exchanger 3
A part of the gas-liquid two-phase refrigerant that has flowed out is divided into the bypass passage E at the first branch portion C, and after being reduced in pressure by the flow control valve 9, flows into the auxiliary heat exchanger 10, where heat exchange with outside air is performed. After that, the refrigerant merges with the refrigerant in the refrigerant circuit 1 at the second branch portion D.
As described above, since the refrigerant evaporated in the auxiliary heat exchanger 10 flows into the suction sides of the compressors A and B, the suction pressures of the compressors A and B increase, and the compressors A and B are forced to operate. A heavy load is prevented.

【0020】また、通常の暖房運転では、四方切換弁2
を圧縮機A,Bの吐出側と利用側熱交換器5とを連通す
る方向に切り換えるとともに、流量制御弁6、9を全閉
して圧縮機A,Bのいずれか一方又は両方を運転する。
圧縮機A,Bから吐出された高温高圧のガス冷媒は、四
方切換弁2を経て利用側熱交換器5に流入し、ここで室
内の空気と熱交換して高温高圧の液単相冷媒となる。利
用側熱交換器5を出た液単相冷媒は利用側の流量制御弁
4で減圧され、過冷却熱交換器7を通過して熱源側熱交
換器3へ流入し、ここで外気と熱交換して低温低圧の気
液二相冷媒となる。熱源側熱交換器3を出た気液二相冷
媒は、四方切換弁2を経てアキュムレータ8へ流入して
気液分離され、液冷媒はアキュムレータ8内に溜めら
れ、ガス冷媒は圧縮機A,Bへ戻る。以上のようにして
冷凍サイクルが形成される。
In a normal heating operation, the four-way switching valve 2
Is switched to a direction in which the discharge side of the compressors A and B communicates with the use side heat exchanger 5, and the flow control valves 6 and 9 are fully closed to operate one or both of the compressors A and B. .
The high-temperature and high-pressure gas refrigerant discharged from the compressors A and B flows into the use-side heat exchanger 5 through the four-way switching valve 2, where it exchanges heat with indoor air to form a high-temperature and high-pressure liquid single-phase refrigerant. Become. The liquid single-phase refrigerant that has exited the use-side heat exchanger 5 is decompressed by the use-side flow control valve 4, passes through the subcooling heat exchanger 7, flows into the heat-source-side heat exchanger 3, where the outside air and heat It is replaced with a low-temperature, low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has exited the heat source side heat exchanger 3 flows into the accumulator 8 via the four-way switching valve 2 and is separated into gas and liquid. The liquid refrigerant is stored in the accumulator 8, and the gas refrigerant is compressed by the compressors A and Return to B. A refrigeration cycle is formed as described above.

【0021】そして、利用側の空調負荷に対して圧縮機
の運転容量が過剰となり、系内の凝縮圧力すなわち圧縮
機A,Bの吐出圧力が過昇した場合には、バイパス路E
の流量制御弁9を開く。これにより、圧縮機A,Bから
吐出された高温高圧のガス単相冷媒の一部が第2の分岐
部Dでバイパス路Eに分流し、補助熱交換器10で外気
と熱交換して凝縮したのち、第1の分岐部Cで冷媒回路
1内の冷媒と合流する。以上のように、圧縮機A,Bの
吐出側のガス冷媒の一部が補助熱交換器10で凝縮する
ので、圧縮機A,Bの吐出圧力が低下することになっ
て、圧縮機A,Bに無理な負荷がかかることは防止され
る。
When the operating capacity of the compressor becomes excessive with respect to the air conditioning load on the user side, and the condensing pressure in the system, that is, the discharge pressure of the compressors A and B rises excessively, the bypass passage E
Is opened. As a result, a part of the high-temperature and high-pressure gas single-phase refrigerant discharged from the compressors A and B is diverted to the bypass path E at the second branch portion D, exchanges heat with the outside air in the auxiliary heat exchanger 10, and condenses. After that, the refrigerant merges with the refrigerant in the refrigerant circuit 1 at the first branch portion C. As described above, a part of the gas refrigerant on the discharge side of the compressors A and B is condensed in the auxiliary heat exchanger 10, so that the discharge pressures of the compressors A and B decrease. An unreasonable load is prevented from being applied to B.

【0022】図2は、この実施の形態における、利用側
負荷と圧縮機A,Bの総運転容量との関係を示してい
る。このように、利用側負荷が最小の場合は圧縮機Aの
みを運転し、利用側負荷がある程度大きくなると圧縮機
Bのみを運転し、さらに利用側負荷が大きくなると圧縮
機Aと圧縮機Bとの両方を運転するという運転台数制御
を行なった場合、利用側負荷が無段階に変化するのに対
し、圧縮機の総運転容量は段階的に変化するため、従来
は図2に斜線影部で示す領域で利用側負荷に対して圧縮
機の総運転容量が過剰になっていた。これに対し、この
実施の形態では前記のように冷媒の一部をバイパス路E
に分流させて、補助熱交換器10で利用側熱交換器5と
同様に蒸発又は凝縮させるので、利用側負荷が増えたの
と同じことになって、補助熱交換器10で圧縮機運転容
量の過剰分を吸収することになる。したがって、圧縮機
の運転容量をリニアに制御した場合と実質的に同じ効果
が得られ、しかも、インバータによる弊害が生じること
がない。
FIG. 2 shows the relationship between the use side load and the total operating capacity of the compressors A and B in this embodiment. As described above, when the use side load is minimum, only the compressor A is operated, when the use side load is increased to some extent, only the compressor B is operated, and when the use side load is further increased, the compressor A and the compressor B are connected. When the number of operating units is controlled to operate both, the utilization side load changes steplessly, while the total operating capacity of the compressor changes stepwise. In the indicated area, the total operating capacity of the compressor was excessive with respect to the use side load. On the other hand, in this embodiment, a part of the refrigerant is
And is evaporated or condensed in the auxiliary heat exchanger 10 in the same manner as in the use side heat exchanger 5, so that the use side load increases, and the auxiliary heat exchanger 10 Will be absorbed. Therefore, substantially the same effect as in the case where the operating capacity of the compressor is linearly controlled can be obtained, and no adverse effect is caused by the inverter.

【0023】実施の形態2.図3及び図4は、この発明
の実施の形態2に係る空気調和装置(冷凍サイクル装
置)の冷媒回路図であって、図中、前記実施の形態と同
一もしくは相当する構成要素には同一符号を付して説明
を省略する。11は、熱源側熱交換器3と流量制御弁4
(第1の絞り装置)との間の冷媒回路1と、流量制御弁
9(第2の絞り装置)と補助熱交換器10との間のバイ
パス路Eとを接続して設けられた第1の接続配管であ
る。また、12は、補助熱交換器10と第2の分岐部D
との間のバイパス路Eと、圧縮機A,Bと熱源側熱交換
器3との間の冷媒回路1とを接続して設けられた第2の
接続配管である。さらに、13は第1の接続配管11に
設けられた開閉弁(開閉手段)、14は第2の接続配管
12に設けられた開閉弁(開閉手段)、15は第2の接
続配管12の接続位置と第2の分岐部Dとの間のバイパ
ス路Eに設けられた開閉弁である。
Embodiment 2 FIG. 3 and 4 are refrigerant circuit diagrams of an air conditioner (refrigeration cycle device) according to Embodiment 2 of the present invention. In the drawings, components that are the same as or correspond to those of the above-described embodiment have the same reference numerals. And the description is omitted. 11 is a heat source side heat exchanger 3 and a flow control valve 4
The first refrigerant circuit 1 is connected to a refrigerant circuit 1 (a first expansion device) and a bypass path E between a flow control valve 9 (a second expansion device) and an auxiliary heat exchanger 10. Connection piping. Reference numeral 12 denotes the auxiliary heat exchanger 10 and the second branch portion D
And a refrigerant circuit 1 between the compressors A and B and the heat-source-side heat exchanger 3. Further, 13 is an on-off valve (opening / closing means) provided on the first connection pipe 11, 14 is an on-off valve (opening / closing means) provided on the second connection pipe 12, and 15 is a connection of the second connection pipe 12. This is an on-off valve provided in a bypass E between the position and the second branch portion D.

【0024】次いで、動作を説明する。通常の冷房運転
では、四方切換弁2を圧縮機A,Bの吐出側と熱源側熱
交換器3とを連通する方向に切り換え、開閉弁12、1
3を開くとともに、開閉弁15を閉じて圧縮機A,Bの
いずれか一方又は両方を運転する。圧縮機A,Bから吐
出された高温高圧のガス冷媒は、図3に実線矢印で示し
たように、四方切換弁2を通過したのち、一部が第2の
接続配管12へ分流し、他は熱源側熱交換器3へ流入す
る。
Next, the operation will be described. In a normal cooling operation, the four-way switching valve 2 is switched to a direction in which the discharge sides of the compressors A and B and the heat source side heat exchanger 3 are communicated with each other.
3 is opened, and the on-off valve 15 is closed to operate one or both of the compressors A and B. The high-temperature and high-pressure gas refrigerant discharged from the compressors A and B passes through the four-way switching valve 2 as shown by the solid arrow in FIG. Flows into the heat source side heat exchanger 3.

【0025】熱源側熱交換器3へ流入したガス冷媒は、
ここで外気と熱交換して高温高圧の気液二相冷媒とな
る。また、第2の接続配管12へ分流したガス冷媒はバ
イパス路Eの補助熱交換器10へ流入し、ここで外気と
熱交換して高温高圧の気液二相冷媒となり、さらに第1
の接続配管11を経て、熱源側熱交換器3からの気液二
相冷媒と合流する。そして、過冷却熱交換器7で過冷却
をつけられて利用側へと流入し、流量制御弁4で減圧さ
れたのち利用側熱交換器5へ流入し、ここで室内の空気
と熱交換して低温低圧の気液二相冷媒となる。利用側熱
交換器5を出た気液二相冷媒は、四方切換弁2を経てア
キュムレータ8へ流入して気液分離され、液冷媒はアキ
ュムレータ8内に溜められ、ガス冷媒は圧縮機A,Bへ
戻る。以上のようにして冷凍サイクルが形成される。ま
た、過冷却熱交換器7を出た冷媒の一部は過冷却用配管
Fへ分流し、流量制御弁6で減圧され低温低圧の気液二
相冷媒となって過冷却熱交換器7に再度流入し、冷媒回
路1内の冷媒と熱交換して過冷却をつけたのち、利用側
熱交換器5と第2の分岐部Dとの間の冷媒回路1に合流
する。
The gas refrigerant flowing into the heat source side heat exchanger 3 is
Here, it exchanges heat with the outside air to become a high-temperature and high-pressure gas-liquid two-phase refrigerant. Further, the gas refrigerant diverted to the second connection pipe 12 flows into the auxiliary heat exchanger 10 in the bypass E, where it exchanges heat with the outside air to become a high-temperature and high-pressure gas-liquid two-phase refrigerant,
Through the connection pipe 11 of FIG. 2 and the gas-liquid two-phase refrigerant from the heat source side heat exchanger 3. Then, it is supercooled by the supercooling heat exchanger 7 and flows into the use side, and after being depressurized by the flow control valve 4, flows into the use side heat exchanger 5 where it exchanges heat with indoor air. It becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has exited from the use side heat exchanger 5 flows into the accumulator 8 via the four-way switching valve 2 and is separated into gas and liquid. The liquid refrigerant is stored in the accumulator 8 and the gas refrigerant is compressed by the compressors A and Return to B. A refrigeration cycle is formed as described above. Further, a part of the refrigerant that has exited the supercooling heat exchanger 7 is diverted to the supercooling pipe F, and is decompressed by the flow control valve 6 to be a low-temperature low-pressure gas-liquid two-phase refrigerant, which is transmitted to the supercooling heat exchanger 7. After flowing again, the refrigerant in the refrigerant circuit 1 exchanges heat with the refrigerant in the refrigerant circuit 1 to perform supercooling, and then joins the refrigerant circuit 1 between the use side heat exchanger 5 and the second branch portion D.

【0026】そして、利用側負荷に対し圧縮機容量が過
剰となり、圧縮機A,Bの吸入圧力が低下した場合に
は、開閉弁12、13を閉じるとともに、開閉弁15を
閉く。これにより、図3に点線矢印で示したように、熱
源側熱交換器3を出た気液二相冷媒の一部が第1の分岐
部Cでバイパス路Eに分流し、流量制御弁9で減圧され
たのち補助熱交換器10へ流入し、ここで外気から吸熱
して一部が蒸発したのち、第2の分岐部Dで冷媒回路1
内の冷媒と合流する。以上により、圧縮機A,Bの吸入
圧力が上昇するために、運転容量過剰が原因となって圧
縮機A,Bに無理な負荷がかかることは防止される。
Then, when the compressor capacity becomes excessive with respect to the utilization side load and the suction pressure of the compressors A and B decreases, the on-off valves 12 and 13 are closed and the on-off valve 15 is closed. As a result, as shown by the dotted arrow in FIG. 3, a part of the gas-liquid two-phase refrigerant that has exited the heat source side heat exchanger 3 is diverted to the bypass E at the first branch C, and the flow control valve 9 After flowing into the auxiliary heat exchanger 10 and absorbing heat from the outside air and partially evaporating, the refrigerant circuit 1
Merges with the refrigerant inside. As described above, since the suction pressures of the compressors A and B increase, it is prevented that excessive loads are applied to the compressors A and B due to excessive operating capacity.

【0027】また、通常の暖房運転では、四方切換弁2
を圧縮機A,Bの吐出側と利用側熱交換器5とを連通す
る方向に切り換え、開閉弁12、13を開くとともに、
開閉弁15を閉じて圧縮機A,Bのいずれか一方又は両
方を運転する。圧縮機A,Bから吐出された高温高圧の
ガス冷媒は、図4に実線矢印で示したように、四方切換
弁2を経て利用側熱交換器5に流入し、ここで室内の空
気と熱交換して高温高圧の液単相冷媒となる。利用側熱
交換器5を出た液単相冷媒は利用側の流量制御弁4で減
圧され、過冷却熱交換器7を通過したのち、一部が第1
の接続配管11へ分流し、他は熱源側熱交換器3へ流入
する。熱源側熱交換器3へ流入した液単相冷媒は、ここ
で外気と熱交換して低温高圧の気液二相冷媒となる。ま
た、第1の接続配管11へ分流した液単相冷媒はバイパ
ス路Eの補助熱交換器10へ流入し、ここで外気と熱交
換して低温高圧の気液二相冷媒となり、さらに第2の接
続配管12を経て、熱源側熱交換器3からの気液二相冷
媒と合流する。そして、四方切換弁2を経てアキュムレ
ータ8へ流入して気液分離され、液冷媒はアキュムレー
タ8内に溜められ、ガス冷媒は圧縮機A,Bへ戻る。以
上のようにして冷凍サイクルが形成される。
In a normal heating operation, the four-way switching valve 2
In the direction in which the discharge sides of the compressors A and B and the use side heat exchanger 5 are communicated, and the on-off valves 12 and 13 are opened.
The on-off valve 15 is closed to operate one or both of the compressors A and B. The high-temperature and high-pressure gas refrigerant discharged from the compressors A and B flows into the use side heat exchanger 5 through the four-way switching valve 2 as shown by the solid line arrows in FIG. It is replaced with a high-temperature, high-pressure liquid single-phase refrigerant. The liquid single-phase refrigerant that has exited from the use-side heat exchanger 5 is decompressed by the use-side flow control valve 4, passes through the supercooling heat exchanger 7, and then partially passes through the first
And the other flows into the heat source side heat exchanger 3. The liquid single-phase refrigerant that has flowed into the heat-source-side heat exchanger 3 exchanges heat with the outside air to become a low-temperature and high-pressure gas-liquid two-phase refrigerant. The liquid single-phase refrigerant that has flowed into the first connection pipe 11 flows into the auxiliary heat exchanger 10 in the bypass passage E, where it exchanges heat with the outside air to become a low-temperature and high-pressure gas-liquid two-phase refrigerant. Through the connection pipe 12 of FIG. 1 and joins the gas-liquid two-phase refrigerant from the heat source side heat exchanger 3. Then, the gas refrigerant flows into the accumulator 8 via the four-way switching valve 2 and is separated into gas and liquid. The liquid refrigerant is stored in the accumulator 8 and the gas refrigerant returns to the compressors A and B. A refrigeration cycle is formed as described above.

【0028】そして、利用側の空調負荷に対して圧縮機
の運転容量が過剰となり、圧縮機A,Bの吐出圧力が過
昇した場合には、開閉弁12、13を閉じるとともに、
開閉弁15を閉く。これにより、図4に点線矢印で示し
たように、圧縮機A,Bから吐出された高温高圧のガス
冷媒の一部が第2の分岐部Dでバイパス路E側に分流
し、補助熱交換器10で外気と熱交換して高圧高温の液
単相冷媒となり、次いで流量制御弁9で減圧され低温低
圧の気液二相冷媒となったのち、第1の分岐部Cで冷媒
回路1内の冷媒と合流する。以上により、圧縮機A,B
の吐出圧力が低下するために、運転容量過剰が原因とな
って圧縮機A,Bに無理な負荷がかかることは防止され
る。
When the operating capacity of the compressor becomes excessive with respect to the air conditioning load on the user side and the discharge pressure of the compressors A and B rises excessively, the on-off valves 12 and 13 are closed,
The on-off valve 15 is closed. Thereby, as indicated by the dotted arrows in FIG. 4, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressors A and B is diverted to the bypass passage E side at the second branch portion D, and the auxiliary heat exchange is performed. After exchanging heat with the outside air in the heat exchanger 10, it becomes a high-pressure, high-temperature liquid single-phase refrigerant, and then decompressed by the flow control valve 9 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. With the refrigerant. As described above, the compressors A and B
Of the compressors A and B due to a decrease in the discharge pressure of the compressors A and B due to excessive operating capacity is prevented.

【0029】以上説明したように、この実施の形態で
は、冷房運転時、暖房運転時とも、圧縮機の運転容量が
過剰となっていない場合には、補助熱交換器10を熱源
側熱交換器3と同じ用途で使用できる。したがって、通
常運転に必要な熱交換容量は熱源側熱交換器3と補助熱
交換器10との両方で確保できればよいことになるた
め、補助熱交換器10を圧縮機の過剰分の運転容量を吸
収する用途のみに用いた場合に比べて、熱源側熱交換器
3の熱交換容量を小さくできる。
As described above, in this embodiment, in both the cooling operation and the heating operation, if the operating capacity of the compressor is not excessive, the auxiliary heat exchanger 10 is connected to the heat source side heat exchanger. Can be used for the same purpose as 3. Therefore, since the heat exchange capacity required for normal operation only needs to be ensured by both the heat source side heat exchanger 3 and the auxiliary heat exchanger 10, the auxiliary heat exchanger 10 is replaced by an excessive operating capacity of the compressor. The heat exchange capacity of the heat source side heat exchanger 3 can be reduced as compared with the case where the heat exchanger 3 is used only for absorbing.

【0030】実施の形態3.図5は、この発明の実施の
形態3に係る空気調和装置(冷凍サイクル装置)の冷媒
回路図である。同図において、A,Bは並列に接続され
た定容量型の圧縮機、2は四方切換弁、3は熱源側熱交
換器、4は流量制御弁(第1の絞り装置)、5は利用側
熱交換器、8はアキュムレータであり、以上の構成要素
を配管により接続して冷媒回路1が形成されている。ま
た、Fは熱源側熱交換器3と流量制御弁4との間の冷媒
回路1と利用側熱交換器5と四方切換弁2との間の冷媒
回路1とを接続して設けられた過冷却用配管、6は過冷
却用配管Fに設けられた流量制御弁、7は過冷却用配管
F内の冷媒と冷媒回路1内の冷媒との間で熱交換を行な
う過冷却熱交換器である。
Embodiment 3 FIG. 5 is a refrigerant circuit diagram of an air conditioner (refrigeration cycle device) according to Embodiment 3 of the present invention. In the figure, A and B are fixed capacity compressors connected in parallel, 2 is a four-way switching valve, 3 is a heat source side heat exchanger, 4 is a flow control valve (first throttle device), and 5 is used. The side heat exchanger 8 is an accumulator, and the above components are connected by piping to form the refrigerant circuit 1. F is a circuit provided by connecting the refrigerant circuit 1 between the heat source side heat exchanger 3 and the flow control valve 4 and the refrigerant circuit 1 between the use side heat exchanger 5 and the four-way switching valve 2. A cooling pipe, 6 is a flow control valve provided in the supercooling pipe F, and 7 is a supercooling heat exchanger that exchanges heat between the refrigerant in the supercooling pipe F and the refrigerant in the refrigerant circuit 1. is there.

【0031】また、16は熱源側熱交換器3と過冷却熱
交換器7との間の冷媒回路1から分岐し途中にキャピラ
リチューブ17(第2の絞り装置)及び補助熱交換器1
0が設けられ末端に流路制御弁18(開閉手段)が設け
られた冷媒配管、19は四方切換弁2とアキュムレータ
8との間の冷媒回路1と流路切換弁18とを接続して設
けられた冷媒配管、20は圧縮機A,Bと四方切換弁2
との間の冷媒回路1と流路切換弁18とを接続して設け
られた冷媒配管であり、流路切換弁18は、冷媒配管1
9、20のいずれか一方が冷媒配管16と連通するよう
切り換え可能に構成されている。また、補助熱交換器1
0は熱源側熱交換器3と共通の熱源側風路内に設けられ
ている。さらに、11は熱源側熱交換器3と過冷却熱交
換器7との間の冷媒回路1とキャピラリチューブ17と
補助熱交換器10との間の冷媒配管16とを接続して設
けられた第1の接続配管、13は第1の接続配管11に
設けられた開閉弁(開閉手段)である。
A branch 16 branches from the refrigerant circuit 1 between the heat source side heat exchanger 3 and the subcooling heat exchanger 7 and a capillary tube 17 (second expansion device) and the auxiliary heat exchanger 1 on the way.
0 is provided and a refrigerant pipe provided with a flow path control valve 18 (opening / closing means) at the end, and 19 is provided by connecting the refrigerant circuit 1 between the four-way switching valve 2 and the accumulator 8 and the flow path switching valve 18. Refrigerant pipe 20, compressors A and B and four-way switching valve 2
Is a refrigerant pipe provided by connecting the refrigerant circuit 1 and the flow path switching valve 18 between the refrigerant pipe 1 and the flow path switching valve 18.
It is configured to be switchable so that either one of 9 and 20 communicates with the refrigerant pipe 16. In addition, the auxiliary heat exchanger 1
Numeral 0 is provided in a heat source side air passage common to the heat source side heat exchanger 3. Further, a reference numeral 11 is provided to connect the refrigerant circuit 1 between the heat source side heat exchanger 3 and the subcooling heat exchanger 7 and the refrigerant pipe 16 between the capillary tube 17 and the auxiliary heat exchanger 10. Reference numeral 1 denotes a connection pipe, and reference numeral 13 denotes an opening / closing valve (opening / closing means) provided in the first connection pipe 11.

【0032】次いで、動作を説明する。通常の冷房運転
では、四方切換弁2を圧縮機A,Bと熱源側熱交換器3
とが連通する方向に切り換え、流路切換弁18を冷媒配
管16と冷媒配管20とが連通する方向に切り換えると
ともに、開閉弁13を開いて、圧縮機A,Bのいずれか
一方又は両方を運転する。圧縮機A,Bから吐出された
高温高圧のガス冷媒の一部は冷媒配管20へ分流し、流
路切換弁18を経て冷媒配管16の補助熱交換器10に
流入する。他方、冷媒配管20へ分流しなかったガス冷
媒は四方切換弁2を経て熱源側熱交換器3に流入する。
そして、熱源側熱交換器3と補助熱交換器10とに流入
したガス冷媒は、それぞれ外気と熱交換して高温高圧の
気液二相冷媒となる。補助熱交換器10からの気液二相
冷媒は冷媒配管16から第1の接続配管11に入って、
冷媒配管1内を流れる熱源側熱交換器3からの気液二相
冷媒と合流する。そして、過冷却熱交換器7で過冷却さ
れて利用側へと流入し、流量制御弁4で減圧されたのち
利用側熱交換器5へ流入し、ここで室内の空気と熱交換
して低温低圧の気液二相冷媒となる。利用側熱交換器5
を出た気液二相冷媒は、四方切換弁2を経てアキュムレ
ータ8へ流入し気液分離され、液冷媒はアキュムレータ
8内に溜められ、ガス冷媒のみ圧縮機A,Bに吸入され
る。以上のようにして冷凍サイクルが形成される。ま
た、過冷却熱交換器7を出た冷媒の一部は過冷却用回路
Fへ分流し、流量制御弁6で減圧され低温低圧の気液二
相冷媒となって過冷却熱交換器7に再度流入し、冷媒回
路1内の高温高圧の気液二相冷媒と熱交換して、この気
液二相冷媒に過冷却をつけたのち、利用側熱交換器5と
四方切換弁2との間の冷媒回路1に合流する。
Next, the operation will be described. In a normal cooling operation, the four-way switching valve 2 is connected to the compressors A and B and the heat source side heat exchanger 3.
And the flow path switching valve 18 is switched to a direction in which the refrigerant pipe 16 and the refrigerant pipe 20 communicate with each other, and the on-off valve 13 is opened to operate one or both of the compressors A and B. I do. Part of the high-temperature and high-pressure gas refrigerant discharged from the compressors A and B is diverted to the refrigerant pipe 20 and flows into the auxiliary heat exchanger 10 of the refrigerant pipe 16 via the flow path switching valve 18. On the other hand, the gas refrigerant that has not flowed to the refrigerant pipe 20 flows into the heat source side heat exchanger 3 via the four-way switching valve 2.
The gas refrigerant that has flowed into the heat source side heat exchanger 3 and the auxiliary heat exchanger 10 exchanges heat with the outside air to become a high-temperature, high-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant from the auxiliary heat exchanger 10 enters the first connection pipe 11 from the refrigerant pipe 16,
It merges with the gas-liquid two-phase refrigerant from the heat source side heat exchanger 3 flowing in the refrigerant pipe 1. Then, it is supercooled by the supercooling heat exchanger 7 and flows into the use side. After being depressurized by the flow control valve 4, it flows into the use side heat exchanger 5, where it exchanges heat with indoor air to reduce the temperature. It becomes a low-pressure gas-liquid two-phase refrigerant. User side heat exchanger 5
Is discharged into the accumulator 8 via the four-way switching valve 2 and separated into gas and liquid. The liquid refrigerant is stored in the accumulator 8 and only the gas refrigerant is sucked into the compressors A and B. A refrigeration cycle is formed as described above. A part of the refrigerant flowing out of the subcooling heat exchanger 7 is diverted to the subcooling circuit F, and is decompressed by the flow control valve 6 to become a low-temperature low-pressure gas-liquid two-phase refrigerant, which is transferred to the subcooling heat exchanger 7 After flowing again, it exchanges heat with the high-temperature and high-pressure gas-liquid two-phase refrigerant in the refrigerant circuit 1 to supercool the gas-liquid two-phase refrigerant, and then connects the use-side heat exchanger 5 and the four-way switching valve 2 to each other. Merges into the intervening refrigerant circuit 1.

【0033】そして、利用側負荷に対し圧縮機容量が過
剰となり、系内の蒸発圧力(圧縮機の吸入圧力)が低下
した場合には、流路切換弁18を冷媒配管16と冷媒配
管19とが連通する方向に切り換えるとともに、開閉弁
13を閉じる。これにより、図5に実線矢印で示したよ
うに、熱源側熱交換器3を出た高温高圧の液単相冷媒の
一部は冷媒配管16へ分流し、キャピラリチューブ17
で減圧されたのち補助熱交換器10へ流入し、ここで外
気と熱交換して系内の蒸発圧力を上昇させ、次いで冷媒
配管16から流路切換弁18及び冷媒配管19を経て、
冷媒回路1内を流れる利用側熱交換器5からの冷媒と合
流して、アキュムレータ8に流入する。以上により、圧
縮機A,Bの吸入圧力が上昇するために、運転容量過剰
が原因となって圧縮機A,Bに無理な負荷がかかること
は防止される。
When the compressor capacity becomes excessive with respect to the use side load and the evaporation pressure (suction pressure of the compressor) in the system decreases, the flow path switching valve 18 is connected to the refrigerant pipe 16 and the refrigerant pipe 19. Are switched to communicate with each other, and the on-off valve 13 is closed. As a result, as shown by solid arrows in FIG. 5, a part of the high-temperature and high-pressure liquid single-phase refrigerant that has exited the heat source side heat exchanger 3 is diverted to the refrigerant pipe 16 and the capillary tube 17
After flowing into the auxiliary heat exchanger 10, it exchanges heat with the outside air to increase the evaporation pressure in the system, and then from the refrigerant pipe 16 through the flow path switching valve 18 and the refrigerant pipe 19,
The refrigerant merges with the refrigerant from the use side heat exchanger 5 flowing in the refrigerant circuit 1 and flows into the accumulator 8. As described above, since the suction pressures of the compressors A and B increase, it is prevented that excessive loads are applied to the compressors A and B due to excessive operating capacity.

【0034】なお、この実施の形態では、冷房運転時に
は、冷媒配管16と冷媒配管19とからなる一連の配管
がこの発明にいうバイパス路となり、冷媒配管20がこ
の発明にいう第2の接続配管となる。
In this embodiment, during cooling operation, a series of pipes composed of the refrigerant pipe 16 and the refrigerant pipe 19 serve as a bypass in the present invention, and the refrigerant pipe 20 serves as a second connection pipe in the present invention. Becomes

【0035】また、通常の暖房運転では、四方切換弁2
を圧縮機A,Bの吐出側と利用側熱交換器5とが連通す
る方向に切り換え、流路切換弁18を冷媒配管16と冷
媒配管19とが連通する方向に切り換えるとともに、開
閉弁13を開いて、圧縮機A,Bのいずれか一方又は両
方を運転する。圧縮機A,Bから吐出された高温高圧の
ガス冷媒は、四方切換弁2を経て利用側熱交換器5に流
入し、ここで室内の空気と熱交換して高温高圧の液単相
冷媒となる。利用側熱交換器5を出た液単相冷媒は流量
制御弁4で減圧され、過冷却熱交換器7を通過したの
ち、一部が第1の接続配管11へ分流し、冷媒配管16
の補助熱交換器10に流入する。他方、接続配管11へ
分流しなかった冷媒は熱源側熱交換器3へ流入する。そ
して、熱源側熱交換器3と補助熱交換器10とに流入し
た冷媒は、それぞれ外気と熱交換して低温低圧の気液二
相冷媒となる。補助熱交換器10を出た気液二相冷媒は
冷媒配管16から流路切換弁18、冷媒配管19を経
て、冷媒回路1内を流れる熱源側熱交換器3からの気液
二相冷媒と合流する。そして、合流した気液二相冷媒は
アキュムレータ8へ流入し気液分離され、液冷媒はアキ
ュムレータ8内に溜められ、ガス冷媒のみ圧縮機A,B
に吸入される。以上のようにして冷凍サイクルが形成さ
れる。
In a normal heating operation, the four-way switching valve 2
In the direction in which the discharge side of the compressors A and B and the use side heat exchanger 5 communicate with each other, and the flow path switching valve 18 in the direction in which the refrigerant pipe 16 and the refrigerant pipe 19 communicate with each other. Open to operate one or both of compressors A and B. The high-temperature and high-pressure gas refrigerant discharged from the compressors A and B flows into the use-side heat exchanger 5 through the four-way switching valve 2, where it exchanges heat with indoor air to form a high-temperature and high-pressure liquid single-phase refrigerant. Become. The liquid single-phase refrigerant that has exited the use-side heat exchanger 5 is depressurized by the flow control valve 4, passes through the supercooling heat exchanger 7, and is partially diverted to the first connection pipe 11.
Flows into the auxiliary heat exchanger 10. On the other hand, the refrigerant not divided into the connection pipe 11 flows into the heat source side heat exchanger 3. The refrigerant that has flowed into the heat source side heat exchanger 3 and the auxiliary heat exchanger 10 exchanges heat with the outside air to become a low-temperature low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has exited the auxiliary heat exchanger 10 passes through the refrigerant pipe 16 through the flow path switching valve 18 and the refrigerant pipe 19, and flows into the refrigerant circuit 1 from the heat source-side heat exchanger 3 that flows through the refrigerant circuit 1. Join. Then, the combined gas-liquid two-phase refrigerant flows into the accumulator 8 and is separated into gas and liquid. The liquid refrigerant is stored in the accumulator 8, and only the gas refrigerant is supplied to the compressors A and B.
Inhaled. A refrigeration cycle is formed as described above.

【0036】そして、利用側負荷に対し圧縮機容量が過
剰となり、系内の凝縮圧力(圧縮機の吐出圧力)が過昇
した場合には、流路切換弁18を冷媒配管16と冷媒配
管20とが連通する方向に切り換えるとともに、開閉弁
13を閉じる。これにより、図5に点線矢印で示したよ
うに、圧縮機A,Bから吐出された高温高圧のガス冷媒
の一部が冷媒配管20に分流し、流路切換弁18を経て
冷媒配管16の補助熱交換器10へ流入し、ここで外気
と熱交換し高圧高温の液単相冷媒となって系内の凝縮圧
力を低下させる。そして、キャピラリチューブ17で減
圧されて低温低圧の気液二相状態となったのち、冷媒回
路1内を流れる利用側からの冷媒と合流して、熱源側熱
交換器3に流入する。以上により、圧縮機A,Bの吐出
圧力が低下するために、運転容量過剰が原因となって圧
縮機A,Bに無理な負荷がかかることは防止される。
When the compressor capacity becomes excessive with respect to the use side load and the condensing pressure (discharge pressure of the compressor) in the system rises excessively, the flow path switching valve 18 is connected to the refrigerant pipe 16 and the refrigerant pipe 20. And the on-off valve 13 is closed. Thereby, as indicated by the dotted arrows in FIG. 5, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressors A and B is diverted to the refrigerant pipe 20 and passes through the flow path switching valve 18 to the refrigerant pipe 16. The refrigerant flows into the auxiliary heat exchanger 10, where it exchanges heat with the outside air to become a high-pressure and high-temperature liquid single-phase refrigerant, thereby reducing the condensation pressure in the system. Then, after being decompressed by the capillary tube 17 to be in a low-temperature and low-pressure gas-liquid two-phase state, the refrigerant flows into the heat source side heat exchanger 3 by merging with the refrigerant flowing from the utilization side flowing in the refrigerant circuit 1. As described above, since the discharge pressures of the compressors A and B decrease, it is prevented that excessive loads are applied to the compressors A and B due to excessive operating capacity.

【0037】なお、この実施の形態では、暖房運転時に
は、冷媒配管16と冷媒配管20とからなる一連の配管
がこの発明にいうバイパス路となり、冷媒配管19がこ
の発明にいう第2の接続配管となる。
In this embodiment, during the heating operation, a series of pipes composed of the refrigerant pipe 16 and the refrigerant pipe 20 constitute the bypass passage according to the present invention, and the refrigerant pipe 19 serves as the second connection pipe according to the present invention. Becomes

【0038】図6は、この実施の形態3に係る別の空気
調和装置(冷凍サイクル装置)の冷媒回路図である。こ
の冷媒回路は、流路切換弁18を設ける代わりに、冷媒
配管19に開閉弁21(開閉手段)が、冷媒配管20に
開閉弁22(開閉手段)が、それぞれ設けられているこ
とを除いて、図5の冷媒回路と同様の回路構成となって
いる。
FIG. 6 is a refrigerant circuit diagram of another air conditioner (refrigeration cycle device) according to the third embodiment. This refrigerant circuit is provided with the exception that an on-off valve 21 (opening / closing means) is provided on the refrigerant pipe 19 and an on-off valve 22 (opening / closing means) is provided on the refrigerant pipe 20 instead of providing the flow path switching valve 18. Has the same circuit configuration as the refrigerant circuit of FIG.

【0039】したがって、通常の冷房運転は、開閉弁1
3及び開閉弁22を開くとともに、開閉弁21を閉じ
て、図5の場合と同様の冷媒流れで行なわれる。また、
冷房運転中に利用側負荷に対し圧縮機容量が過剰とな
り、圧縮機の吸入圧力が低下した場合は、開閉弁21を
開くとともに、開閉弁13及び開閉弁20を閉じると、
図5の場合と同様に熱源側熱交換器3を出た高温高圧の
液単相冷媒の一部が冷媒配管16に分流し、キャピラリ
チューブ17を通過して低温低圧の気液二相となったの
ち補助熱交換器10へ流入し、ここで外気と熱交換して
系内の蒸発圧力を上昇させ、冷媒配管19を経て冷媒回
路1に合流する。
Therefore, the normal cooling operation is performed with the on-off valve 1
3 and the on-off valve 22 are opened, and the on-off valve 21 is closed. Also,
When the compressor capacity becomes excessive with respect to the use side load during the cooling operation and the suction pressure of the compressor decreases, the on-off valve 21 is opened, and the on-off valves 13 and 20 are closed.
As in the case of FIG. 5, a part of the high-temperature and high-pressure liquid single-phase refrigerant that has exited the heat source side heat exchanger 3 is diverted to the refrigerant pipe 16 and passes through the capillary tube 17 to become a low-temperature and low-pressure gas-liquid two-phase. After that, it flows into the auxiliary heat exchanger 10, where it exchanges heat with the outside air to raise the evaporation pressure in the system, and joins the refrigerant circuit 1 via the refrigerant pipe 19.

【0040】また、通常の暖房運転は、開閉弁13及び
開閉弁21を開くとともに、開閉弁22を閉じて、図5
の場合と同様の冷媒流れで行なわれる。そして、暖房運
転中に利用側負荷に対し圧縮機容量が過剰となり、圧縮
機の吐出圧力が過昇した場合は、開閉弁22を開くとと
もに、開閉弁13及び開閉弁21を閉じると、図5の場
合と同様に圧縮機A,Bから吐出された高温高圧のガス
冷媒の一部が冷媒配管20を経て冷媒配管16へ流入
し、補助熱交換器10で外気と熱交換して系内の凝縮圧
力を低下させ高温高圧の液単相冷媒となり、次いでキャ
ピラリチューブ17で減圧されて低温低圧の気液二相冷
媒となったのち、冷媒回路1に合流する。
In a normal heating operation, the on-off valve 13 and the on-off valve 21 are opened, and the on-off valve 22 is closed.
Is performed with the same refrigerant flow as in the case of (1). Then, when the compressor capacity becomes excessive with respect to the use side load during the heating operation and the discharge pressure of the compressor rises excessively, the on-off valve 22 is opened, and the on-off valves 13 and 21 are closed. As in the case of the above, part of the high-temperature and high-pressure gas refrigerant discharged from the compressors A and B flows into the refrigerant pipe 16 via the refrigerant pipe 20, and exchanges heat with the outside air in the auxiliary heat exchanger 10 to make the system The condensing pressure is reduced to become a high-temperature and high-pressure liquid single-phase refrigerant, which is then decompressed by the capillary tube 17 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, and then joins the refrigerant circuit 1.

【0041】実施の形態4.図7は、この発明の実施の
形態4に係る空気調和装置(冷凍サイクル装置)の冷媒
回路図である。この冷媒回路は、第2の絞り装置として
キャピラリチューブ17に代えて開度制御可能な流量制
御弁23が設けられていることを除いて、図5の冷媒回
路と同様の回路構成となっている。
Embodiment 4 FIG. FIG. 7 is a refrigerant circuit diagram of an air conditioner (refrigeration cycle device) according to Embodiment 4 of the present invention. This refrigerant circuit has the same circuit configuration as the refrigerant circuit of FIG. 5 except that a flow control valve 23 whose opening degree can be controlled is provided instead of the capillary tube 17 as a second expansion device. .

【0042】したがって、通常の冷房運転は、流量制御
弁23を全閉するとともに、開閉弁13を開いて、図5
の場合と同様の冷媒流れで行なわれる。そして、冷房運
転中に利用側負荷に対し圧縮機容量が過剰となり、圧縮
機の吸入圧力が低下した場合は、流路切換弁18を冷媒
配管16と冷媒配管19とが連通する方向に切り換える
とともに、開閉弁13を閉じたのち、圧縮機の吸入圧力
が所定値に収束するように流量制御弁23の開度を調整
する。
Therefore, in a normal cooling operation, the flow control valve 23 is fully closed and the on-off valve 13 is opened to
Is performed with the same refrigerant flow as in the case of (1). When the compressor capacity becomes excessive with respect to the use-side load during the cooling operation and the suction pressure of the compressor decreases, the flow path switching valve 18 is switched to a direction in which the refrigerant pipe 16 and the refrigerant pipe 19 communicate with each other. After closing the on-off valve 13, the opening of the flow control valve 23 is adjusted so that the suction pressure of the compressor converges to a predetermined value.

【0043】また、通常の暖房運転は、流量制御弁23
を全閉するとともに、開閉弁13を開いて、図5の場合
と同様の冷媒流れで行なわれる。そして、暖房運転中に
利用側負荷に対し圧縮機容量が過剰となり、圧縮機の吐
出圧力が過昇した場合は、流路切換弁18を冷媒配管1
6と冷媒配管20とが連通する方向に切り換えるととも
に、開閉弁13を閉じたのち、圧縮機の吐出圧力が所定
値に収束するように流量制御弁23の開度を調整する。
In the normal heating operation, the flow control valve 23
Is fully closed, and the on-off valve 13 is opened to perform the same refrigerant flow as in FIG. If the compressor capacity becomes excessive with respect to the use side load during the heating operation and the discharge pressure of the compressor rises excessively, the flow path switching valve 18 is connected to the refrigerant pipe 1.
After switching to a direction in which the refrigerant pipe 6 communicates with the refrigerant pipe 20 and closing the on-off valve 13, the opening of the flow control valve 23 is adjusted so that the discharge pressure of the compressor converges to a predetermined value.

【0044】以上のような制御を行なうので、図5のよ
うに冷媒配管16にキャピラリチューブ17を設けた場
合に比べて、圧縮機の吸入圧力及び吐出圧力をより高精
度に制御することが可能となり、一層信頼性の高い冷凍
サイクル装置が得られる。
Since the above-described control is performed, the suction pressure and the discharge pressure of the compressor can be controlled with higher accuracy than when the capillary tube 17 is provided in the refrigerant pipe 16 as shown in FIG. Thus, a more reliable refrigeration cycle device can be obtained.

【0045】図8は、この実施の形態4に係る別の空気
調和装置(冷凍サイクル装置)の冷媒回路図である。こ
の冷媒回路は、第2の絞り装置としてキャピラリチュー
ブ17に代えて開度制御可能な流量制御弁23が設けら
れていることを除いて、図6の冷媒回路と同様の回路構
成となっている。したがって、開閉弁13、21、及び
22の開閉のしかたは図6の冷媒回路と同様であり、流
量制御弁23の開度制御については図7の冷媒回路と同
様である。
FIG. 8 is a refrigerant circuit diagram of another air conditioner (refrigeration cycle device) according to the fourth embodiment. This refrigerant circuit has the same circuit configuration as the refrigerant circuit of FIG. 6 except that a flow control valve 23 whose opening degree can be controlled is provided instead of the capillary tube 17 as a second expansion device. . Therefore, the way of opening and closing the on-off valves 13, 21, and 22 is the same as that of the refrigerant circuit of FIG. 6, and the degree of opening control of the flow control valve 23 is the same as that of the refrigerant circuit of FIG.

【0046】実施の形態5.図9は、この発明の実施の
形態5に係る空気調和装置(冷凍サイクル装置)の冷媒
回路図であって、図中A,Bは並列に接続された定容量
型の圧縮機、2は四方切換弁、3は熱源側熱交換器、4
は流量制御弁(第1の絞り装置)、5は利用側熱交換
器、8はアキュムレータであり、以上の構成要素を配管
により接続して冷媒回路1が形成されている。また、C
は熱源側熱交換器3と流量制御弁4との間の冷媒回路1
に設けられた第1の分岐部、Dは利用側熱交換器5と四
方切換弁2との間の冷媒回路1に設けられた第2の分岐
部、Eは第1の分岐部Cと第2の分岐部Dとを接続して
設けられたバイパス路、10はバイパス路Eに設けられ
た補助熱交換器、9は第1の分岐部Cと補助熱交換器1
0との間のバイパス路Eに設けられた流量制御弁(第2
の絞り装置)である。補助熱交換器10は熱源側熱交換
器3と同じ熱源側風路内に設けられ、バイパス路E内の
冷媒と熱源側風路内の空気(外気)との間で熱交換を行
なうものである。さらに、24は、流量制御弁9から補
助熱交換器10までの間のバイパス路E内の冷媒と熱源
側熱交換器3から第1の分岐部Cまでの冷媒との間で熱
交換を行なうように設けられた過冷却熱交換器である。
Embodiment 5 FIG. FIG. 9 is a refrigerant circuit diagram of an air conditioner (refrigeration cycle device) according to Embodiment 5 of the present invention. In the drawing, A and B are parallel-connected constant displacement compressors, and 2 is a four-way compressor. Switching valve, 3 is heat source side heat exchanger, 4
Is a flow control valve (first throttle device), 5 is a use side heat exchanger, 8 is an accumulator, and the above components are connected by piping to form a refrigerant circuit 1. Also, C
Is a refrigerant circuit 1 between the heat source side heat exchanger 3 and the flow control valve 4
Is a second branch provided in the refrigerant circuit 1 between the use side heat exchanger 5 and the four-way switching valve 2, and E is a first branch C and the first branch. 2 is a bypass path connected to the branch section D, 10 is an auxiliary heat exchanger provided in the bypass path E, 9 is the first branch section C and the auxiliary heat exchanger 1
0 and a flow control valve (second
Aperture device). The auxiliary heat exchanger 10 is provided in the same heat source side air passage as the heat source side heat exchanger 3 and exchanges heat between the refrigerant in the bypass passage E and the air (outside air) in the heat source side air passage. is there. Further, 24 performs heat exchange between the refrigerant in the bypass E between the flow control valve 9 and the auxiliary heat exchanger 10 and the refrigerant from the heat source side heat exchanger 3 to the first branch C. Is a supercooling heat exchanger provided as described above.

【0047】次いで、動作を説明する。通常の冷房運転
では、四方切換弁2を圧縮機A,Bの吐出側と熱源側熱
交換器3とが連通する方向に切り換えて圧縮機A,Bの
いずれか一方又は両方を運転する。圧縮機A,Bから吐
出された高温高圧のガス冷媒は四方切換弁2を経て熱源
側熱交換器3に流入し、高温高圧の気液二相冷媒とな
る。熱源側熱交換器3を出た気液二相冷媒は、過冷却熱
交換器24で過冷却をつけられたのち利用側へと流入
し、利用側の流量制御弁4で減圧され、利用側熱交換器
5へ流入して低温低圧の気液二相冷媒となる。利用側熱
交換器5を出た気液二相冷媒は四方切換弁2を経てアキ
ュムレータ8で気液分離され、液冷媒はアキュムレータ
8内に溜められ、ガス冷媒のみ圧縮機吸入配管25から
圧縮機へ流入する。以上のようにして冷凍サイクルが形
成される。また、熱源側熱交換器3からの高温高圧の気
液二相冷媒は、過冷却熱交換器24を出た後、その一部
がバイパス路Eに分流し、流量制御弁9で減圧され低温
低圧の気液二相冷媒となって過冷却熱交換器24に再度
流入し、ここで冷媒回路1内の高温高圧の気液二相冷媒
と熱交換して、冷媒回路1内の冷媒に過冷却をつける。
そして、補助熱交換器10を通過して、第2の分岐部D
で冷媒回路1に合流する。
Next, the operation will be described. In normal cooling operation, one or both of the compressors A and B are operated by switching the four-way switching valve 2 in a direction in which the discharge sides of the compressors A and B and the heat source side heat exchanger 3 communicate with each other. The high-temperature and high-pressure gas refrigerant discharged from the compressors A and B flows into the heat source side heat exchanger 3 via the four-way switching valve 2, and becomes a high-temperature and high-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has exited the heat source side heat exchanger 3 is supercooled by the supercooling heat exchanger 24, flows into the use side, is depressurized by the use side flow control valve 4, and is decompressed. The refrigerant flows into the heat exchanger 5 and becomes a low-temperature low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has exited from the use side heat exchanger 5 passes through the four-way switching valve 2 and is separated into gas and liquid by the accumulator 8. Flows into A refrigeration cycle is formed as described above. The high-temperature and high-pressure gas-liquid two-phase refrigerant from the heat source side heat exchanger 3 exits the supercooling heat exchanger 24, and a part of the refrigerant is diverted to the bypass path E. It becomes a low-pressure gas-liquid two-phase refrigerant and flows into the supercooling heat exchanger 24 again, where it exchanges heat with the high-temperature and high-pressure gas-liquid two-phase refrigerant in the refrigerant circuit 1 and passes through the refrigerant in the refrigerant circuit 1. Turn on cooling.
After passing through the auxiliary heat exchanger 10, the second branch portion D
To join the refrigerant circuit 1.

【0048】そして、利用側負荷に対し圧縮機容量が過
剰となり、圧縮機の吸入圧力が低下した場合には、流量
制御弁9の開度を大きくすると、図9に実線矢印で示し
たように、冷媒回路1からバイパス路Eへ分流し過冷却
熱交換器24を経て補助熱交換器10へ流入する気液二
相冷媒の量が多くなる。よって、この気液二相冷媒が補
助熱交換器10で外気と熱交換して蒸発したのち冷媒回
路1に合流することになって、圧縮機の吸入圧力が上昇
させられる。
When the compressor capacity becomes excessive with respect to the utilization side load and the suction pressure of the compressor decreases, the opening of the flow control valve 9 is increased, as shown by a solid line arrow in FIG. The amount of the gas-liquid two-phase refrigerant flowing from the refrigerant circuit 1 to the bypass path E and flowing into the auxiliary heat exchanger 10 via the supercooling heat exchanger 24 increases. Therefore, the gas-liquid two-phase refrigerant exchanges heat with the outside air in the auxiliary heat exchanger 10 and evaporates, and then joins the refrigerant circuit 1, thereby increasing the suction pressure of the compressor.

【0049】また、暖房の冷房運転では、四方切換弁2
を圧縮機A,Bの吐出側と利用側熱交換器5とが連通す
る方向に切り換えて圧縮機A,Bのいずれか一方又は両
方を運転する。圧縮機A,Bから吐出された高温高圧の
ガス冷媒は四方切換弁2を経て利用側熱交換器5に流入
し、高温高圧の液単相冷媒となる。利用側熱交換器5を
出た液単相冷媒は利用側の流量制御弁4で減圧され、過
冷却熱交換器24を通過して熱源側熱交換器3へ流入
し、低温低圧の気液二相冷媒となる。熱源側熱交換器3
を出た気液二相冷媒は、四方切換弁2を経てアキュムレ
ータ8へ流入し気液分離され、液冷媒はアキュムレータ
8内に溜められ、ガス冷媒のみ圧縮機A,Bに吸入され
る。以上のようにして冷凍サイクルが形成される。
In the cooling operation for heating, the four-way switching valve 2
Is switched to a direction in which the discharge side of the compressors A and B and the use side heat exchanger 5 communicate with each other, and one or both of the compressors A and B are operated. The high-temperature and high-pressure gas refrigerant discharged from the compressors A and B flows into the use-side heat exchanger 5 via the four-way switching valve 2, and becomes a high-temperature and high-pressure liquid single-phase refrigerant. The liquid single-phase refrigerant that has exited the use-side heat exchanger 5 is depressurized by the use-side flow control valve 4, passes through the subcooling heat exchanger 24, flows into the heat source-side heat exchanger 3, and has a low-temperature, low-pressure gas-liquid It becomes a two-phase refrigerant. Heat source side heat exchanger 3
Is discharged into the accumulator 8 via the four-way switching valve 2 and separated into gas and liquid. The liquid refrigerant is stored in the accumulator 8 and only the gas refrigerant is sucked into the compressors A and B. A refrigeration cycle is formed as described above.

【0050】そして、利用側負荷に対し圧縮機容量が過
剰となり、圧縮機の吐出圧力が過昇した場合には、流量
制御弁9を開くと、圧縮機A,Bから吐出された高温高
圧のガス単相冷媒の一部は、第2の分岐部Dでバイパス
路Eに分流して補助熱交換器10へ流入し、ここで外気
と熱交換して圧縮機の吐出圧力を低下させ、第1の分岐
部Cで冷媒回路1に合流する。
When the compressor capacity becomes excessive with respect to the use side load and the discharge pressure of the compressor rises excessively, the flow control valve 9 is opened, and the high temperature and high pressure discharged from the compressors A and B are released. A part of the gas single-phase refrigerant is diverted to the bypass path E at the second branch portion D and flows into the auxiliary heat exchanger 10, where it exchanges heat with outside air to lower the discharge pressure of the compressor. At the first branch portion C, the refrigerant circuit 1 joins the refrigerant circuit 1.

【0051】以上のように、流量制御弁9の開度を適宜
に調整することにより、通常の冷房運転時には過冷却熱
交換器24で冷媒回路1内の冷媒に所定の過冷却をつけ
るようにできるとともに、冷房運転時及び暖房運転時に
利用側負荷に対し圧縮機容量が過剰となった場合にはそ
の過剰分を補助熱交換器10で吸収して圧縮機の吸入圧
力及び吐出圧力を高精度に制御することができる。
As described above, the degree of opening of the flow control valve 9 is appropriately adjusted so that the refrigerant in the refrigerant circuit 1 is supercooled by the supercooling heat exchanger 24 during normal cooling operation. In addition, when the compressor capacity becomes excessive with respect to the utilization side load during the cooling operation and the heating operation, the excess amount is absorbed by the auxiliary heat exchanger 10 so that the suction pressure and the discharge pressure of the compressor can be precisely controlled. Can be controlled.

【0052】しかも、図1、図3〜図8の冷媒回路のよ
うに過冷却用配管Fを設けた場合には、過冷却用配管F
用の流量制御弁6と、バイパス路E用の流量制御弁9と
の両方が必要となるので、流量制御弁の数が増えて冷凍
サイクル装置が高価なものとなるが、この実施の形態の
冷媒回路では、前記冷媒回路と略同様の機能を実現しな
がら、流量制御弁の数を減らせて、冷凍サイクル装置の
低コスト化が図れる。
Further, when the supercooling pipe F is provided as in the refrigerant circuits of FIGS. 1 and 3 to 8, the supercooling pipe F
, A flow control valve 6 for the bypass passage E and a flow control valve 9 for the bypass path E are required, so that the number of flow control valves increases and the refrigeration cycle apparatus becomes expensive. In the refrigerant circuit, the number of flow control valves can be reduced while achieving substantially the same function as the refrigerant circuit, and the cost of the refrigeration cycle device can be reduced.

【0053】実施の形態6.図10は、この発明の実施
の形態6に係る空気調和装置(冷凍サイクル装置)の冷
媒回路図である。この冷媒回路は、以下に述べる点を除
いて、図9の冷媒回路と同様に構成されている。すなわ
ち、圧縮機A,Bと四方切換弁2との間の冷媒回路1
と、第2の分岐部Dと四方切換弁2との間の冷媒回路1
とを接続して設けられた冷媒配管25を備えている。そ
して、冷媒配管25に開閉弁26と絞り装置27とが設
けられている。さらに、外気と熱交換する補助熱交換器
10に代えて、バイパス路E内の冷媒と冷媒配管25内
の冷媒との間で熱交換を行なう補助熱交換器28が設け
られている。
Embodiment 6 FIG. FIG. 10 is a refrigerant circuit diagram of an air conditioner (refrigeration cycle device) according to Embodiment 6 of the present invention. This refrigerant circuit is configured similarly to the refrigerant circuit of FIG. 9 except for the points described below. That is, the refrigerant circuit 1 between the compressors A and B and the four-way switching valve 2
Circuit 1 between the second branch portion D and the four-way switching valve 2
And a refrigerant pipe 25 provided to connect the The refrigerant pipe 25 is provided with an on-off valve 26 and a throttle device 27. Further, instead of the auxiliary heat exchanger 10 that exchanges heat with the outside air, an auxiliary heat exchanger 28 that exchanges heat between the refrigerant in the bypass E and the refrigerant in the refrigerant pipe 25 is provided.

【0054】次に動作について説明する。冷房運転中に
利用側負荷に対し圧縮機容量が過剰となり、圧縮機の吸
入圧力が低下した場合には、開閉弁26を開くと、図1
0に実線矢印で示したように、圧縮機A,Bから吐出さ
れた高温高圧のガス単相冷媒の一部は冷媒配管25に分
流し、補助熱交換器28へ流入する。一方、過冷却熱交
換器24を出た低温低圧の気液二相冷媒の一部は第1の
分岐部Cでバイパス路Eに分流し、再び過冷却熱交換器
24を通過したのち、補助熱交換器28に流入する。そ
して、冷媒配管25から補助熱交換器28へ流入した高
温高圧のガス単相冷媒と熱交換して蒸発し、圧縮機の吸
入圧力を上昇させたのち、第2の分岐部Dで冷媒回路1
に合流する。また、補助熱交換器28を出た冷媒配管2
5内の冷媒は、開閉弁26及び絞り装置27を通過して
冷媒回路1に合流する。なお、補助熱交換器28は、利
用側負荷に対する圧縮機容量の過剰分を吸収できるだけ
の熱交換容量を有するものであって、例えば、充分な耐
圧性をもつ材質から形成された二重管状の熱交換器が用
いられる。また、絞り装置27は、過冷却熱交換器24
からの低温低圧の気液二相冷媒を補助熱交換器28で蒸
発させるのに必要な量のガス冷媒を冷媒配管25へ流す
ための流路抵抗である。
Next, the operation will be described. When the compressor capacity becomes excessive with respect to the usage-side load during the cooling operation and the suction pressure of the compressor decreases, the on-off valve 26 is opened to open the compressor shown in FIG.
As indicated by a solid line arrow at 0, part of the high-temperature and high-pressure gas single-phase refrigerant discharged from the compressors A and B is diverted to the refrigerant pipe 25 and flows into the auxiliary heat exchanger. On the other hand, a part of the low-temperature and low-pressure gas-liquid two-phase refrigerant that has exited the supercooling heat exchanger 24 is diverted to the bypass passage E at the first branch C, passes through the subcooling heat exchanger 24 again, and It flows into the heat exchanger 28. Then, the refrigerant exchanges heat with the high-temperature and high-pressure gas single-phase refrigerant flowing into the auxiliary heat exchanger 28 from the refrigerant pipe 25 and evaporates to increase the suction pressure of the compressor.
To join. In addition, the refrigerant pipe 2 that has exited the auxiliary heat exchanger 28
The refrigerant in 5 passes through the on-off valve 26 and the expansion device 27 to join the refrigerant circuit 1. The auxiliary heat exchanger 28 has a heat exchange capacity capable of absorbing an excess of the compressor capacity with respect to the use-side load, and is, for example, a double tubular member formed of a material having a sufficient pressure resistance. A heat exchanger is used. The expansion device 27 is provided with a subcooling heat exchanger 24.
Is a flow path resistance for flowing an amount of gas refrigerant necessary for evaporating the low-temperature low-pressure gas-liquid two-phase refrigerant from the auxiliary heat exchanger 28 to the refrigerant pipe 25.

【0055】また、暖房運転中に利用側負荷に対して圧
縮機容量が過剰となり、圧縮機の吐出圧力が過昇した場
合には、バイパス路Eの流量制御弁9を開くと、図3に
点線矢印で示したように、圧縮機A,Bから吐出され四
方切換弁2を通過した高温高圧のガス単相冷媒の一部
が、第2の分岐部Dで冷媒回路1からバイパス路Eに分
流し、補助熱交換器28を通過して過冷却熱交換器28
へ流入する。そして、この過冷却熱交換器28におい
て、冷媒回路1内を流れる利用側の流量制御弁4からの
低温低圧気液二相冷媒と熱交換して凝縮し、圧縮機の吐
出圧力を低下させたのち、第1の分岐部Cで冷媒回路1
に合流する。
When the compressor capacity becomes excessive with respect to the utilization side load during the heating operation and the discharge pressure of the compressor rises excessively, when the flow control valve 9 of the bypass passage E is opened, FIG. As indicated by the dotted arrows, a part of the high-temperature and high-pressure gas single-phase refrigerant discharged from the compressors A and B and passing through the four-way switching valve 2 is transferred from the refrigerant circuit 1 to the bypass passage E at the second branch D. The sub flow is passed through the auxiliary heat exchanger 28,
Flows into Then, in the supercooling heat exchanger 28, heat exchange with the low-temperature low-pressure gas-liquid two-phase refrigerant from the flow control valve 4 on the utilization side flowing in the refrigerant circuit 1 is performed, and the refrigerant is condensed, thereby reducing the discharge pressure of the compressor. After that, the refrigerant circuit 1
To join.

【0056】実施の形態7.図11は、この発明の実施
の形態6に係る空気調和装置(冷凍サイクル装置)の冷
媒回路図、図12は制御ブロック図である。これらの図
において、41は圧縮機A,Bの吸入圧力を検出する吸
入圧力検出手段、42は圧縮機A,Bの吐出圧力を検出
する吐出圧力検出手段、43は熱源側熱交換器3と流量
制御弁4(第1の絞り装置)との間の冷媒温度を検出す
る第1の温度検出手段、44は吐出圧力検出手段42の
検出値と第1の温度検出手段43の検出値とに基づいて
冷媒の過冷却度を演算する過冷却度演算手段、45は補
助熱交換器10の冷媒出側と冷媒入側とのそれぞれの冷
媒温度を検出する第2の温度検出手段、46は第2の温
度検出手段の検出値に基づいて冷媒の過熱度を演算する
過熱度演算手段、40は吸入圧力検出手段41の検出値
と過冷却度演算手段44及び過熱度演算手段46のそれ
ぞれの演算値とに基づいて流量制御弁9(第2の絞り装
置)を開度制御する第1の制御手段である。なお、以上
の各手段を除いた冷媒回路そのものの構成は図9と同様
である。
Embodiment 7 FIG. FIG. 11 is a refrigerant circuit diagram of an air conditioner (refrigeration cycle device) according to Embodiment 6 of the present invention, and FIG. 12 is a control block diagram. In these figures, 41 is a suction pressure detecting means for detecting the suction pressure of the compressors A and B, 42 is a discharge pressure detecting means for detecting the discharge pressure of the compressors A and B, 43 is a heat source side heat exchanger 3 and The first temperature detecting means 44 for detecting the temperature of the refrigerant between the flow control valve 4 (first throttle device) and the detection value of the discharge pressure detecting means 42 and the detection value of the first temperature detecting means 43 A supercooling degree calculating means for calculating the degree of supercooling of the refrigerant based on the second temperature detecting means for detecting the respective refrigerant temperatures on the refrigerant outlet side and the refrigerant inlet side of the auxiliary heat exchanger; The superheat degree calculating means 40 calculates the degree of superheat of the refrigerant based on the detection value of the temperature detecting means 2 and the detection value of the suction pressure detecting means 41 and the respective calculations of the supercooling degree calculating means 44 and the superheat degree calculating means 46. The flow control valve 9 (second throttle device) based on the A first control means for degrees control. The configuration of the refrigerant circuit itself except for the above-described units is the same as that of FIG.

【0057】次いで、図13のフローチャートに基づい
て、第1の制御手段40による制御動作を説明する。ス
テップS1で吸入圧力検出手段41の検出値PSが第1
の所定吸入圧力値PSBを上回っていればステップS2に
進む。冷房運転中に利用側負荷に対して圧縮機A,Bの
総運転容量が過剰となって、ステップS1で吸入圧力検
出手段41の検出値PSが第1の所定吸入圧力値PSB
下になっていればステップS6に進む。ステップS2で
は、過冷却度演算手段44の演算値SCが過冷却度目標
値SC 0以上であればステップS3に進み、演算値SC
が過冷却度目標値SC0未満であればステップS5に進
む。
Next, based on the flowchart of FIG.
Next, the control operation of the first control means 40 will be described. S
In step S1, the detected value P of the suction pressure detecting means 41 is obtained.SIs the first
Predetermined suction pressure value PSBIf it exceeds, go to step S2
move on. During the cooling operation, the compressors A and B
When the total operating capacity becomes excessive, the suction pressure is detected in step S1.
Detection value P of output means 41SIs the first predetermined suction pressure value PSBLess than
If it is, go to step S6. In step S2
Indicates that the calculated value SC of the subcooling degree calculating means 44 is
Value SC 0If so, the process proceeds to step S3, where the calculated value SC
Is the supercooling degree target value SC0If less, proceed to step S5
No.

【0058】ステップS3では、過熱度演算手段46の
演算値SHが過熱度目標値SH0以上であればステップ
S6に進み、演算値SHが過熱度目標値SH0未満であ
ればステップS4に進む。ステップS4では、吐出圧力
検出手段42の検出値Pdが所定吐出圧力値Pd0以上
であればステップS6に進み、検出値Pdが所定吐出圧
力値Pd0未満であればステップS8に進む。また、ス
テップS5では、過熱度演算手段46の演算値SHが過
熱度目標値SH0以上であればステップS6に進み、演
算値SHが過熱度目標値SH0未満であればステップS
8に進む。
[0058] In step S3, if the calculated value SH of the superheat degree calculation means 46 target superheat degree SH 0 or proceeds to step S6, the process proceeds to step S4 if the calculated value SH is less than target superheat degree SH 0 . In step S4, the detection value Pd of the discharge pressure detecting means 42 proceeds to step S6 if the predetermined discharge pressure value Pd 0 or more, the detection value Pd proceeds to step S8 is less than the predetermined discharge pressure value Pd 0. In step S5, if the calculated value SH of the superheat degree calculation means 46 target superheat degree SH 0 or proceeds to step S6, step S if the calculated value SH is less than target superheat degree SH 0
Proceed to 8.

【0059】ステップS6では流量制御弁9の開度を大
きくする制御を行ない、ステップS7に進む。ステップ
S7では、吸入圧力検出手段41の検出値PSが第2の
所定吸入圧力値PSU以上であればステップS1に戻り、
検出値PSが第2の所定吸入圧力値PSU未満であればス
テップS6に戻る。また、ステップS8では流量制御弁
9の開度を小さくする制御を行い、ステップS1へ戻
る。
In step S6, control is performed to increase the opening of the flow control valve 9, and the process proceeds to step S7. In step S7, returns to step S1 If the detected value P S of the intake pressure detecting means 41 is the second predetermined suction pressure value P SU or higher,
If the detected value P S is less than the second predetermined suction pressure value P SU returns to step S6. In step S8, control is performed to reduce the opening of the flow control valve 9, and the process returns to step S1.

【0060】したがって、冷房運転中に利用側負荷に対
して圧縮機A,Bの総運転容量が過剰となって圧縮機の
吸入圧力が低下した場合には、流量制御弁9が開かれ、
第1の分岐部Cでバイパス路Eに分流する冷媒の量が増
えて、圧縮機の吸入圧力が上昇させられる。そして、吸
入圧力検出手段41の検出値PSが別途設定されている
第2の所定吸入圧力値PSUに達するまで流量制御弁9が
開度調整される。また、圧縮機の吸入圧力が低下してい
ない場合には、過冷却度演算手段44の演算値SC及び
過熱度演算手段46の演算値SHがそれぞれ予め設定さ
れている過熱度目標値SC0及び過熱度目標値SH0に近
付くように流量制御弁9が開度制御される。
Accordingly, when the total operating capacity of the compressors A and B becomes excessive with respect to the utilization side load during the cooling operation and the suction pressure of the compressor drops, the flow control valve 9 is opened,
The amount of refrigerant diverted to the bypass E at the first branch C increases, and the suction pressure of the compressor is increased. Then, the flow control valve 9 is adjusted opening until it reaches the second predetermined suction pressure value P SU the detected value P S of the intake pressure detecting means 41 is separately set. When the suction pressure of the compressor has not decreased, the calculated value SC of the supercooling degree calculating means 44 and the calculated value SH of the superheating degree calculating means 46 are respectively set to the preset superheat degree target values SC 0 and SC 0. flow control valve 9 is opening control so as to approach the target degree of superheat SH 0.

【0061】なお、図14は、以上のような制御を図1
0の冷媒回路に適用する場合の、吸入圧力演算手段4
1、吐出圧力演算手段42、第1の温度検出手段43、
及び第2の温度検出手段の配置を示している(第1の制
御手段40、過冷却度演算手段44、及び過熱度演算手
段46の図示は省略している)。このように、冷媒相互
間で熱交換する補助熱交換器28を用いた冷媒回路も、
同様に制御することができる。
FIG. 14 shows the above control in FIG.
Suction pressure calculation means 4 when applied to refrigerant circuit 0
1, discharge pressure calculating means 42, first temperature detecting means 43,
And the arrangement of the second temperature detecting means (the first control means 40, the supercooling degree calculating means 44, and the superheating degree calculating means 46 are not shown). Thus, the refrigerant circuit using the auxiliary heat exchanger 28 for exchanging heat between the refrigerants also
It can be controlled similarly.

【0062】実施の形態8.図15は、この発明の実施
の形態6に係る空気調和装置(冷凍サイクル装置)の冷
媒回路図、図16は制御ブロック図である。これらの図
において、42は圧縮機A,Bの吐出圧力を検出する吐
出圧力検出手段、47は補助熱交換器10の冷媒出側の
冷媒温度を検出する第3の温度検出手段、48は吐出圧
力検出手段42の検出値及び第3の温度検出手段47の
検出値に基づいて冷媒の過冷却度を演算する補助熱交換
器過冷却度演算手段、49は吐出圧力検出手段42の検
出値及び補助熱交換器過冷却度演算手段の演算値に基づ
いて流量制御弁9(第2の絞り装置)を開度制御する第
2の制御手段である。なお、以上の各手段を除いた冷媒
回路そのものの構成は図9と同様である。
Embodiment 8 FIG. FIG. 15 is a refrigerant circuit diagram of an air conditioner (refrigeration cycle device) according to Embodiment 6 of the present invention, and FIG. 16 is a control block diagram. In these figures, reference numeral 42 denotes discharge pressure detecting means for detecting discharge pressures of the compressors A and B; 47, third temperature detecting means for detecting the refrigerant temperature on the refrigerant outlet side of the auxiliary heat exchanger 10; Auxiliary heat exchanger subcooling degree calculating means for calculating the degree of supercooling of the refrigerant based on the detected value of the pressure detecting means 42 and the detected value of the third temperature detecting means 47; This is second control means for controlling the opening of the flow control valve 9 (second throttle device) based on the operation value of the auxiliary heat exchanger subcooling degree operation means. The configuration of the refrigerant circuit itself except for the above-described units is the same as that of FIG.

【0063】次いで、図17のフローチャートに基づい
て、第2の制御手段49による制御動作を説明する。ス
テップS11で吐出圧力検出手段42の検出値Pdが所
定吐出圧力値Pd0未満であればステップS15に進ん
で流量制御弁9を全閉にし、ステップS11に戻る。暖
房運転中に利用側負荷に対して圧縮機A,Bの総運転容
量が過剰となって、ステップS11で吐出圧力検出手段
42の検出値Pdが所定吐出圧力値Pd0以上になって
いればステップS12に進む。ステップS12では、流
量制御弁9の開度を大きくする制御を行ない、ステップ
S13に進む。ステップS13では、補助熱交換器過冷
却度演算手段49の演算値SCが過冷却度目標値SC0
以上であればステップS12に戻り、演算値SCが過冷
却度目標値SC0未満であればステップS14に進む。
ステップS14では、流量制御弁9の開度を小さくする
制御を行ない、ステップS11に戻る。
Next, the control operation of the second control means 49 will be described with reference to the flowchart of FIG. Detection value Pd of the discharge pressure detecting means 42 in step S11 the flow control valve 9 proceeds to step S15 if less than the predetermined discharge pressure value Pd 0 is fully closed, the flow returns to step S11. Compressor A to the usage-side load during heating operation, the total operating capacity of the B becomes excessive, if the detection value Pd of the discharge pressure detecting means 42 in step S11 is sufficient that above a predetermined discharge pressure value Pd 0 Proceed to step S12. In step S12, control is performed to increase the opening of the flow control valve 9, and the process proceeds to step S13. In step S13, the calculated value SC is the subcooling degree target value SC 0 of the auxiliary heat exchanger supercooling degree operating means 49
Returning to step S12 if the above calculated value SC proceeds to step S14 if it is less than the degree of subcooling target value SC 0.
In step S14, control is performed to reduce the opening of the flow control valve 9, and the process returns to step S11.

【0064】したがって、暖房運転中に利用側負荷に対
して圧縮機A,Bの総運転容量が過剰となって圧縮機の
吐出圧力が過昇した場合には、流量制御弁9が開かれ、
第1の分岐部Cでバイパス路Eに分流する冷媒の量が増
えて、圧縮機の吐出圧力が低下させられる。そして、流
量制御弁9は、補助熱交換器過冷却度演算手段49の演
算値SCが過冷却度目標値SC0に近付くように開度調
整される。また、暖房運転中に圧縮機の吐出圧力が過昇
していなければ流量制御弁9が全閉になるので、バイパ
ス路Eへの冷媒の分流による運転効率低下が防止され
る。
Accordingly, when the total operating capacity of the compressors A and B becomes excessive with respect to the utilization side load during the heating operation and the discharge pressure of the compressor rises excessively, the flow control valve 9 is opened,
The amount of refrigerant diverted to the bypass path E at the first branch portion C increases, and the discharge pressure of the compressor is reduced. Then, the flow control valve 9, the calculated value SC of the auxiliary heat exchanger supercooling degree operating means 49 is opening adjustment to approach the degree of supercooling target value SC 0. In addition, if the discharge pressure of the compressor is not excessively increased during the heating operation, the flow control valve 9 is fully closed, so that a decrease in the operating efficiency due to the branch flow of the refrigerant to the bypass E is prevented.

【0065】なお、以上では空気調和装置について説明
したが、空気調和装置以外の例えば冷凍機などの冷凍サ
イクル装置にも、この発明が適用できる。また、以上説
明した実施の形態では容量が互いに異なる定容量型の圧
縮機を2台用いたが、容量が互いに等しい定容量型の圧
縮機を2台用いた冷凍サイクル装置や、異容量又は等容
量の圧縮機を3台以上用いた冷凍サイクル装置にも、こ
の発明が適用できる。
Although the air conditioner has been described above, the present invention can be applied to a refrigerating cycle device such as a refrigerator other than the air conditioner. Further, in the embodiment described above, two constant capacity compressors having different capacities are used. However, a refrigeration cycle apparatus using two constant capacity compressors having the same capacities, a different capacity or the like is used. The present invention is also applicable to a refrigeration cycle apparatus using three or more compressors having a capacity.

【0066】[0066]

【発明の効果】以上説明したように、この発明に係る冷
凍サイクル装置にあっては、運転されている圧縮機の総
運転容量が利用側負荷に対して過剰となった場合に、冷
媒回路を循環する冷媒の一部をバイパス路に分流させて
補助熱交換器で蒸発又は凝縮させることにより、圧縮機
運転容量の過剰分を補助熱交換器で吸収するようにでき
る。したがって、冷房運転時に圧縮機の吸入圧力が低下
したり暖房運転時に圧縮機の吐出圧力が過昇したりする
ような圧縮機に無理な負担がかかる状況となるのを回避
できて信頼性の高い冷凍サイクル装置が得られ、しか
も、インバータを用いて圧縮機の運転容量制御を行なう
場合のようにインバータに起因する種々の弊害が生じる
ことがない。
As described above, in the refrigeration cycle apparatus according to the present invention, when the total operating capacity of the operated compressor becomes excessive with respect to the use side load, the refrigerant circuit is not operated. By diverting a part of the circulating refrigerant to the bypass path and evaporating or condensing it in the auxiliary heat exchanger, an excess of the compressor operating capacity can be absorbed in the auxiliary heat exchanger. Therefore, it is possible to avoid a situation in which an excessive load is applied to the compressor such that the suction pressure of the compressor decreases during the cooling operation or the discharge pressure of the compressor excessively increases during the heating operation, and high reliability can be avoided. A refrigeration cycle apparatus can be obtained, and various adverse effects due to the inverter do not occur as in the case where the operation capacity of the compressor is controlled using the inverter.

【0067】また、補助熱交換器をバイパス路内の冷媒
と熱源側風路内の空気との間で熱交換を行なうものとす
れば、例えば送風用のファンを補助熱交換器と熱源側熱
交換器とに共用でき、冷凍サイクル装置の簡略化が図れ
る。
Further, if the auxiliary heat exchanger exchanges heat between the refrigerant in the bypass and the air in the heat source side air path, for example, a fan for blowing air may be connected to the auxiliary heat exchanger and the heat source side heat exchanger. The refrigeration cycle apparatus can be simplified because it can be shared with an exchanger.

【0068】また、補助熱交換器をバイパス路内の冷媒
と圧縮機から吐出された高温高圧の冷媒との間で熱交換
を行なうものとすれば、補助熱交換器を例えば二重管で
形成でき、冷凍サイクル装置の小型化と低コスト化とが
図れる。
If the auxiliary heat exchanger exchanges heat between the refrigerant in the bypass and the high-temperature and high-pressure refrigerant discharged from the compressor, the auxiliary heat exchanger is formed of, for example, a double tube. As a result, the size and cost of the refrigeration cycle device can be reduced.

【0069】また、第1の接続配管、第2の接続配管な
どを備えたものでは、前記した冷凍サイクル装置と同
様、運転されている圧縮機の総運転容量が利用側負荷に
対して過剰となった場合に圧縮機に無理な負担がかかる
のを回避できるのに加えて、圧縮機の運転容量が利用側
の空調負荷に対して過剰となっていない場合には、冷媒
回路を循環する冷媒の一部を第1の接続配管及び第2の
接続配管を通じて補助熱交換器に流すことにより、補助
熱交換器を熱源側熱交換器と同じ用途に使用できる。し
たがって、通常運転に必要な熱交換容量は熱源側熱交換
器と補助熱交換器との両方で確保すればよくなるため、
補助熱交換器を圧縮機の過剰分の運転容量を吸収する用
途のみに用いる場合に比べて、熱源側熱交換器の小型化
が図れ、延いては冷凍サイクル装置の小型化と低コスト
化とが図れる。
In the case of the one provided with the first connection pipe, the second connection pipe, and the like, similarly to the refrigeration cycle apparatus, the total operating capacity of the operated compressor is excessive with respect to the use side load. When the operating capacity of the compressor is not excessive with respect to the air conditioning load on the user side, the refrigerant circulating through the refrigerant circuit Is supplied to the auxiliary heat exchanger through the first connection pipe and the second connection pipe, whereby the auxiliary heat exchanger can be used for the same purpose as the heat source side heat exchanger. Therefore, the heat exchange capacity required for normal operation can be secured by both the heat source side heat exchanger and the auxiliary heat exchanger,
Compared to the case where the auxiliary heat exchanger is used only for absorbing the excess operating capacity of the compressor, the heat source side heat exchanger can be downsized, and the refrigeration cycle device can be downsized and cost reduced. Can be achieved.

【0070】また、第2の絞り装置を開度制御可能な流
量制御弁としたものでは、利用側負荷に応じて圧縮機の
吸入圧力又は吐出圧力をより高精度に制御することが可
能となり、一層信頼性の高い冷凍サイクル装置が得られ
る。
Further, when the second throttle device is a flow control valve capable of controlling the opening, the suction pressure or the discharge pressure of the compressor can be controlled with higher accuracy in accordance with the load on the user side. A more reliable refrigeration cycle device can be obtained.

【0071】また、バイパス路内の冷媒と冷媒回路内の
冷媒との間で熱交換を行なう過冷却熱交換器を備えたも
のでは、過冷却熱交換器と流量制御弁とを有する過冷却
用回路を別に設けた場合に比べて、流量制御弁の数を減
らすことができて、冷凍サイクル装置の一層の簡略化と
低コスト化とが図れる。
Further, in the apparatus provided with a supercooling heat exchanger for exchanging heat between the refrigerant in the bypass passage and the refrigerant in the refrigerant circuit, a supercooling heat exchanger having a supercooling heat exchanger and a flow control valve is provided. The number of flow control valves can be reduced as compared with the case where a separate circuit is provided, so that the refrigeration cycle apparatus can be further simplified and the cost can be reduced.

【0072】また、吸入圧力検出手段、過冷却度演算手
段、過熱度演算手段、及び第1の制御手段などを備えた
ものでは、冷房運転時に冷媒の過冷却度及び過熱度を目
標値に近付けることができて好適な状態で運転でき、バ
イパス路の流量制御弁を圧縮機の吸入圧力のみに基づい
て開度制御するような場合に比べて利用側の空調負荷に
応じて圧縮機の吸入圧力をより高精度に制御することが
可能となり、さらに信頼性の高い冷凍サイクル装置が得
られる。
Further, in the apparatus provided with the suction pressure detecting means, the supercooling degree calculating means, the superheating degree calculating means, the first control means, etc., the supercooling degree and the superheating degree of the refrigerant are brought close to the target values during the cooling operation. It can be operated in a suitable state, and the suction pressure of the compressor according to the air conditioning load on the user side, compared to the case where the opening control of the flow rate control valve in the bypass passage is performed based only on the suction pressure of the compressor. Can be controlled with higher accuracy, and a more reliable refrigeration cycle apparatus can be obtained.

【0073】また、吐出圧力検出手段、補助熱交換器過
冷却度演算手段、及び第2の制御手段などを備えたもの
では、暖房運転時に補助熱交換器の冷媒出側の過冷却度
を目標値に近付けることができ、バイパス路の流量制御
弁を圧縮機の吐出圧力のみに基づいて開度制御するよう
な場合に比べて利用側の空調負荷に応じて圧縮機の吐出
圧力をより高精度に制御することが可能となり、さらに
信頼性の高い冷凍サイクル装置が得られる。
Further, in the apparatus provided with the discharge pressure detecting means, the auxiliary heat exchanger subcooling degree calculating means, the second control means, and the like, the supercooling degree on the refrigerant outlet side of the auxiliary heat exchanger during the heating operation is set to the target. Value can be approached, and the discharge pressure of the compressor according to the air conditioning load on the user side is more accurate than in the case where the opening control of the flow control valve in the bypass path is performed based only on the discharge pressure of the compressor. , And a more reliable refrigeration cycle apparatus can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1に係る冷媒回路図で
ある。
FIG. 1 is a refrigerant circuit diagram according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1に係る利用側容量と
圧縮機の総運転容量との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a use side capacity and a total operating capacity of a compressor according to Embodiment 1 of the present invention.

【図3】 この発明の実施の形態2に係る冷媒回路図で
ある。
FIG. 3 is a refrigerant circuit diagram according to Embodiment 2 of the present invention.

【図4】 この発明の実施の形態2に係る冷媒回路図で
ある。
FIG. 4 is a refrigerant circuit diagram according to Embodiment 2 of the present invention.

【図5】 この発明の実施の形態3に係る冷媒回路図で
ある。
FIG. 5 is a refrigerant circuit diagram according to Embodiment 3 of the present invention.

【図6】 この発明の実施の形態3に係る別の冷媒回路
図である。
FIG. 6 is another refrigerant circuit diagram according to Embodiment 3 of the present invention.

【図7】 この発明の実施の形態4に係る冷媒回路図で
ある。
FIG. 7 is a refrigerant circuit diagram according to Embodiment 4 of the present invention.

【図8】 この発明の実施の形態4に係る別の冷媒回路
図である。
FIG. 8 is another refrigerant circuit diagram according to Embodiment 4 of the present invention.

【図9】 この発明の実施の形態5に係る冷媒回路図で
ある。
FIG. 9 is a refrigerant circuit diagram according to Embodiment 5 of the present invention.

【図10】 この発明の実施の形態6に係る冷媒回路図
である。
FIG. 10 is a refrigerant circuit diagram according to Embodiment 6 of the present invention.

【図11】 この発明の実施の形態7に係る冷媒回路図
である。
FIG. 11 is a refrigerant circuit diagram according to Embodiment 7 of the present invention.

【図12】 この発明の実施の形態7に係る制御ブロッ
ク図である。
FIG. 12 is a control block diagram according to Embodiment 7 of the present invention.

【図13】 この発明の実施の形態7に係る制御フロー
チャートである。
FIG. 13 is a control flowchart according to Embodiment 7 of the present invention.

【図14】 この発明の実施の形態7に係る別の冷媒回
路図である。
FIG. 14 is another refrigerant circuit diagram according to Embodiment 7 of the present invention.

【図15】 この発明の実施の形態8に係る冷媒回路図
である。
FIG. 15 is a refrigerant circuit diagram according to Embodiment 8 of the present invention.

【図16】 この発明の実施の形態8に係る制御ブロッ
ク図である。
FIG. 16 is a control block diagram according to Embodiment 8 of the present invention.

【図17】 この発明の実施の形態8に係る制御フロー
チャートである。
FIG. 17 is a control flowchart according to Embodiment 8 of the present invention.

【図18】 圧縮機の運転台数制御を行なう従来の冷凍
サイクル装置に係る利用側容量と圧縮機の総運転容量と
の関係を示すグラフである。
FIG. 18 is a graph showing the relationship between the usage-side capacity and the total operating capacity of the compressor in a conventional refrigeration cycle apparatus that controls the number of operating compressors.

【符号の説明】[Explanation of symbols]

1 冷媒回路、3 熱源側熱交換器、4 流量制御弁
(第1の絞り装置)、5利用側熱交換器、9 流量制御
弁(第2の絞り装置)、10 補助熱交換器、11 第
1の接続配管、12 第2の接続配管、13 開閉弁
(開閉手段)、14 開閉弁(開閉手段)、16 冷媒
配管、17 キャピラリチューブ(第2の絞り装置)、
18 流路切換弁(開閉手段)、19 冷媒配管、20
冷媒配管、21 開閉弁(開閉手段)、22 開閉弁
(開閉手段)、23 流量制御弁(第2の絞り装置)、
24 過冷却熱交換器、28 補助熱交換器、40 第
1の制御手段、41 吸入圧力検出手段、42 吐出圧
力検出手段、43 第1の温度検出手段、44 過冷却
度演算手段、45 第2の温度検出手段、46 過熱度
演算手段、47 第3の温度検出手段、48 補助熱交
換器過冷却度演算手段、49 第2の制御手段、A 圧
縮機、B 圧縮機、C 第1の分岐部、D 第2の分岐
部、E バイパス路。
REFERENCE SIGNS LIST 1 refrigerant circuit, 3 heat source side heat exchanger, 4 flow control valve (first throttle device), 5 utilization side heat exchanger, 9 flow control valve (second throttle device), 10 auxiliary heat exchanger, 11th 1 connection pipe, 12 second connection pipe, 13 on-off valve (opening / closing means), 14 on-off valve (opening / closing means), 16 refrigerant pipe, 17 capillary tube (second throttle device),
18 flow path switching valve (opening / closing means), 19 refrigerant pipe, 20
Refrigerant pipe, 21 on-off valve (opening / closing means), 22 on-off valve (opening / closing means), 23 flow control valve (second throttle device),
24 supercooling heat exchanger, 28 auxiliary heat exchanger, 40 first control means, 41 suction pressure detecting means, 42 discharge pressure detecting means, 43 first temperature detecting means, 44 supercooling degree calculating means, 45 second Temperature detecting means, 46 superheat degree calculating means, 47 third temperature detecting means, 48 auxiliary heat exchanger subcooling degree calculating means, 49 second control means, A compressor, B compressor, C first branch Section, D second branch, E bypass.

フロントページの続き (51)Int.Cl.6 識別記号 FI F25B 5/02 510 F25B 5/02 510J (72)発明者 隅田 嘉裕 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 畝崎 史武 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内Continued on the front page (51) Int.Cl. 6 Identification code FI F25B 5/02 510 F25B 5/02 510J (72) Inventor Yoshihiro Sumida 2-3-2 Marunouchi, Chiyoda-ku, Tokyo, Mitsubishi Electric Corporation ( 72) Inventor Fumitake Unezaki 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 並列に接続された複数台の定容量型の圧
縮機、熱源側熱交換器、第1の絞り装置、及び利用側熱
交換器を配管により接続してなる冷媒回路を備え、利用
側負荷に応じて前記圧縮機の運転台数制御を行なうよう
に構成された冷凍サイクル装置において、 前記熱源側熱交換器と前記第1の絞り装置との間の冷媒
回路に設けられた第1の分岐部と前記利用側熱交換器と
前記圧縮機との間の冷媒回路に設けられた第2の分岐部
とを接続して設けられたバイパス路と、前記バイパス路
に設けられた補助熱交換器と、前記第1の分岐部と前記
補助熱交換器との間のバイパス路に設けられた第2の絞
り装置とを備え、複数台の圧縮機のうち運転されている
圧縮機の総運転容量が利用側負荷に対して過剰となった
場合に、冷媒を前記バイパス路に分流させて前記補助熱
交換器で蒸発又は凝縮させるように構成したことを特徴
とする冷凍サイクル装置。
1. A refrigerant circuit comprising a plurality of constant capacity compressors connected in parallel, a heat source side heat exchanger, a first expansion device, and a use side heat exchanger connected by piping, In a refrigeration cycle apparatus configured to control the number of operating compressors according to a use side load, a first refrigerant circuit provided in a refrigerant circuit between the heat source side heat exchanger and the first expansion device. And a bypass provided by connecting a second branch provided in a refrigerant circuit between the use side heat exchanger and the compressor, and an auxiliary heat provided in the bypass. An exchanger, and a second expansion device provided in a bypass between the first branch portion and the auxiliary heat exchanger. When the operating capacity becomes excessive with respect to the utilization side load, the refrigerant is supplied to the bypass passage. Refrigerating cycle apparatus characterized by being configured so as to divert evaporated or condensed in the auxiliary heat exchanger.
【請求項2】 補助熱交換器が、バイパス路内の冷媒と
熱源側風路内の空気との間で熱交換を行なうものである
請求項第1項に記載の冷凍サイクル装置。
2. The refrigeration cycle apparatus according to claim 1, wherein the auxiliary heat exchanger exchanges heat between the refrigerant in the bypass passage and the air in the heat source side air passage.
【請求項3】 補助熱交換器が、バイパス路内の冷媒と
圧縮機から吐出された高温高圧の冷媒との間で熱交換を
行なうものである請求項第1項に記載の冷凍サイクル装
置。
3. The refrigeration cycle apparatus according to claim 1, wherein the auxiliary heat exchanger exchanges heat between the refrigerant in the bypass and the high-temperature and high-pressure refrigerant discharged from the compressor.
【請求項4】 熱源側熱交換器と第1の絞り装置との間
の冷媒回路と第2の絞り装置と補助熱交換器との間のバ
イパス路とを接続して設けられた第1の接続配管と、前
記補助熱交換器と第2の分岐部との間のバイパス路と圧
縮機と前記熱源側熱交換器との間の冷媒回路とを接続し
て設けられた第2の接続配管と、前記第1の接続配管及
び前記第2の接続配管を開閉する開閉手段とを備えた請
求項第2項に記載の冷凍サイクル装置。
4. A first circuit provided by connecting a refrigerant circuit between the heat source side heat exchanger and the first expansion device and a bypass between the second expansion device and the auxiliary heat exchanger. A second connection pipe provided by connecting a connection pipe, a bypass path between the auxiliary heat exchanger and the second branch, and a refrigerant circuit between the compressor and the heat source side heat exchanger. The refrigeration cycle apparatus according to claim 2, further comprising: opening and closing means for opening and closing the first connection pipe and the second connection pipe.
【請求項5】 第2の絞り装置が開度制御可能な流量制
御弁である請求項第1項ないし第4項のいずれかに記載
の冷凍サイクル装置。
5. The refrigeration cycle apparatus according to claim 1, wherein the second expansion device is a flow control valve whose opening degree can be controlled.
【請求項6】 流量制御弁から補助熱交換器までのバイ
パス路内の冷媒と熱源側熱交換器から第1の分岐部まで
の冷媒回路内の冷媒との間で熱交換を行なう過冷却熱交
換器を備えた請求項第5項に記載の冷凍サイクル装置。
6. Supercooling heat for performing heat exchange between a refrigerant in a bypass from a flow control valve to an auxiliary heat exchanger and a refrigerant in a refrigerant circuit from a heat source side heat exchanger to a first branch. The refrigeration cycle apparatus according to claim 5, further comprising an exchanger.
【請求項7】 圧縮機の吸入圧力を検出する吸入圧力検
出手段と、前記圧縮機の吐出圧力を検出する吐出圧力検
出手段の検出値及び熱源側熱交換器と第1の絞り装置と
の間の冷媒温度を検出する第1の温度検出手段の検出値
に基づいて冷媒の過冷却度を演算する過冷却度演算手段
と、補助熱交換器の冷媒出側と冷媒入側とのそれぞれの
冷媒温度を検出する第2の温度検出手段の検出値に基づ
いて冷媒の過熱度を演算する過熱度演算手段と、冷房運
転時に前記吸入圧力検出手段の検出値が予め設定されて
いる所定値以下の場合は流量制御弁を開き、前記吸入圧
力検出手段の検出値が前記所定値を超えている場合は前
記過冷却度演算手段の演算値及び前記過熱度演算手段の
演算値がそれぞれ予め設定されている過冷却度目標値及
び過熱度目標値に近付くように前記流量制御弁を開度制
御する第1の制御手段とを備えた請求項第5項又は第6
項に記載の冷凍サイクル装置。
7. A suction pressure detection means for detecting a suction pressure of a compressor, a detection value of a discharge pressure detection means for detecting a discharge pressure of the compressor, and a value between a heat source side heat exchanger and the first throttle device. Means for calculating the degree of supercooling of the refrigerant based on the detected value of the first temperature detecting means for detecting the temperature of the refrigerant, and the respective refrigerants on the refrigerant outlet side and the refrigerant inlet side of the auxiliary heat exchanger A superheat degree calculating means for calculating the degree of superheat of the refrigerant based on a detection value of the second temperature detecting means for detecting a temperature, and a detection value of the suction pressure detecting means during a cooling operation is equal to or less than a predetermined value. In this case, the flow control valve is opened, and when the detected value of the suction pressure detecting means exceeds the predetermined value, the calculated value of the supercooling degree calculating means and the calculated value of the superheat degree calculating means are respectively set in advance. Near the supercooling target and superheat target 7. A control device for controlling the opening of the flow control valve so as to be attached thereto.
A refrigeration cycle apparatus according to the paragraph.
【請求項8】 圧縮機の吐出圧力を検出する吐出圧力検
出手段と、前記吐出圧力検出手段の検出値及び補助熱交
換器の冷媒出側の冷媒温度を検出する第3の温度検出手
段の検出値に基づいて冷媒の過冷却度を演算する補助熱
交換器過冷却度演算手段と、暖房運転時に前記吐出圧力
検出手段の検出値が予め設定されている所定値以上の場
合は前記補助熱交換器過冷却度演算手段の演算値が予め
設定されている過冷却度目標値に近付くように前記流量
制御弁を開度制御し、前記吐出圧力検出手段の検出値が
前記所定値に満たない場合は前記流量制御弁を閉じる制
御を行なう第2の制御手段とを備えた請求項第5項又は
第6項に記載の冷凍サイクル装置。
8. A discharge pressure detecting means for detecting a discharge pressure of the compressor, and a third temperature detecting means for detecting a detected value of the discharge pressure detecting means and a refrigerant temperature at a refrigerant outlet side of the auxiliary heat exchanger. An auxiliary heat exchanger subcooling degree calculating means for calculating the degree of subcooling of the refrigerant based on the value, and the auxiliary heat exchange means when the detected value of the discharge pressure detecting means is not less than a predetermined value during a heating operation. The flow control valve is controlled so that the calculated value of the subcooling degree calculating means approaches a preset supercooling degree target value, and the detection value of the discharge pressure detecting means is less than the predetermined value. 7. The refrigeration cycle apparatus according to claim 5, further comprising: second control means for performing control for closing the flow control valve.
JP33385396A 1996-12-13 1996-12-13 Refrigeration cycle equipment Expired - Fee Related JP3719296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33385396A JP3719296B2 (en) 1996-12-13 1996-12-13 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33385396A JP3719296B2 (en) 1996-12-13 1996-12-13 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JPH10176869A true JPH10176869A (en) 1998-06-30
JP3719296B2 JP3719296B2 (en) 2005-11-24

Family

ID=18270681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33385396A Expired - Fee Related JP3719296B2 (en) 1996-12-13 1996-12-13 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP3719296B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087681A1 (en) * 2002-03-29 2003-10-23 Daikin Industries, Ltd. Heat source unit of air conditioner and air conditioner
WO2010023894A1 (en) * 2008-08-28 2010-03-04 ダイキン工業株式会社 Air-conditioning device
JP2010054118A (en) * 2008-08-28 2010-03-11 Daikin Ind Ltd Air conditioner
JP2011099626A (en) * 2009-11-06 2011-05-19 Panasonic Corp Refrigerating cycle device and hot water heating device using the same
WO2014054120A1 (en) * 2012-10-02 2014-04-10 三菱電機株式会社 Air conditioner
WO2018167866A1 (en) * 2017-03-15 2018-09-20 三菱電機株式会社 Air conditioning device
WO2019017351A1 (en) * 2017-07-20 2019-01-24 ダイキン工業株式会社 Freezer
EP3657097A4 (en) * 2017-07-20 2021-04-21 Daikin Industries, Ltd. Freezer

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1498668A1 (en) * 2002-03-29 2005-01-19 Daikin Industries, Ltd. Heat source unit of air conditioner and air conditioner
AU2003220985B2 (en) * 2002-03-29 2006-01-19 Daikin Industries, Ltd. Heat source unit of air conditioner and air conditioner
US7380411B2 (en) 2002-03-29 2008-06-03 Daikin Industries, Ltd. Heat source unit with switching means between heating and cooling
EP1498668A4 (en) * 2002-03-29 2012-09-05 Daikin Ind Ltd Heat source unit of air conditioner and air conditioner
WO2003087681A1 (en) * 2002-03-29 2003-10-23 Daikin Industries, Ltd. Heat source unit of air conditioner and air conditioner
WO2010023894A1 (en) * 2008-08-28 2010-03-04 ダイキン工業株式会社 Air-conditioning device
JP2010054118A (en) * 2008-08-28 2010-03-11 Daikin Ind Ltd Air conditioner
JP2011099626A (en) * 2009-11-06 2011-05-19 Panasonic Corp Refrigerating cycle device and hot water heating device using the same
US10161647B2 (en) 2012-10-02 2018-12-25 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2014054120A1 (en) * 2012-10-02 2014-04-10 三菱電機株式会社 Air conditioner
JPWO2014054120A1 (en) * 2012-10-02 2016-08-25 三菱電機株式会社 Air conditioner
WO2018167866A1 (en) * 2017-03-15 2018-09-20 三菱電機株式会社 Air conditioning device
WO2019017351A1 (en) * 2017-07-20 2019-01-24 ダイキン工業株式会社 Freezer
JP2019020088A (en) * 2017-07-20 2019-02-07 ダイキン工業株式会社 Freezing unit
CN110741211A (en) * 2017-07-20 2020-01-31 大金工业株式会社 Refrigerating machine
EP3657096A4 (en) * 2017-07-20 2021-04-14 Daikin Industries, Ltd. Freezer
EP3657097A4 (en) * 2017-07-20 2021-04-21 Daikin Industries, Ltd. Freezer
CN110741211B (en) * 2017-07-20 2021-12-10 大金工业株式会社 Refrigerating machine
US11231186B2 (en) 2017-07-20 2022-01-25 Daikin Industries, Ltd. Refrigeration unit with a liquid heat source and reduced condensation at a utilization unit
US11333410B2 (en) 2017-07-20 2022-05-17 Daikin Industries, Ltd. Refrigeration apparatus

Also Published As

Publication number Publication date
JP3719296B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP5951109B2 (en) Air conditioner with additional unit for heating capacity enhancement
JP4803199B2 (en) Refrigeration cycle equipment
JP4123829B2 (en) Refrigeration cycle equipment
US7360372B2 (en) Refrigeration system
KR100833441B1 (en) Freezing apparatus
WO2014141375A1 (en) Air conditioner
US20090145151A1 (en) Air conditioner
WO2014141374A1 (en) Air conditioner
JP5968519B2 (en) Air conditioner
JP2008513725A (en) Heat pump with reheat and economizer functions
KR20070007771A (en) Freezing apparatus
EP3159630B1 (en) Air conditioner
US11112140B2 (en) Air conditioning apparatus
WO2017138108A1 (en) Air conditioning device
WO2015063846A1 (en) Air conditioning device
JP5855284B2 (en) Air conditioner
JPH10176869A (en) Refrigeration cycle device
JPWO2004013550A1 (en) Refrigeration equipment
JP2944507B2 (en) Air conditioner
KR100526204B1 (en) A refrigerator
JP4023386B2 (en) Refrigeration equipment
JP6932551B2 (en) Heat exchange system and its control method
WO2015177852A1 (en) Refrigeration cycle device
JP2009115336A (en) Refrigeration system
WO2017138243A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees