JPH01291077A - Air conditioning device - Google Patents

Air conditioning device

Info

Publication number
JPH01291077A
JPH01291077A JP12235688A JP12235688A JPH01291077A JP H01291077 A JPH01291077 A JP H01291077A JP 12235688 A JP12235688 A JP 12235688A JP 12235688 A JP12235688 A JP 12235688A JP H01291077 A JPH01291077 A JP H01291077A
Authority
JP
Japan
Prior art keywords
compressor
bypass circuit
pressure
pipe
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12235688A
Other languages
Japanese (ja)
Other versions
JP2524382B2 (en
Inventor
Hideaki Tagashira
田頭 秀明
Masami Imanishi
正美 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63122356A priority Critical patent/JP2524382B2/en
Publication of JPH01291077A publication Critical patent/JPH01291077A/en
Application granted granted Critical
Publication of JP2524382B2 publication Critical patent/JP2524382B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a phenomenon of liquid returning into a compressor from being attained by a method wherein a part of gas coolant of high temperature and high pressure from the compressor exchanges heat with a suction side pipe through a suction heat exchanger. CONSTITUTION:Gas coolant of high temperature and high pressure from a compressor 1 exchanges heat with a suction pipe 1a and a pipe between a first metering device 4 and a second metering device 5 is provided with a bypassing circuit 10. First pressure reducing device 4a and second pressure reducing device 5a are provided with a smaller fourth bypassing circuit 14 than a discharging pipe bypassing and connected from a second bypassing circuit 4c and a third bypassing circuit 5c having bypassed check valves 4b and 5b and a discharging pipe 1b of the compressor to the pipe between the first metering device and the second metering device through a three-way changing- over valve 13. With this arrangement, a blowing of cold air into a room during a defrosting operation in case of a heating operation is prevented, a four-way changing- over valve is operated while keeping its heating side to reduce a low pressure and then a capability of the compressor is increased. In addition, gas coolant of high temperature and high pressure from the compressor exchanges heat with an absorbing pipe and then a liquid return to the compressor is also prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷凍サイクル回路を用いて冷暖房運転を行な
う空気調和装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in an air conditioner that performs heating and cooling operations using a refrigeration cycle circuit.

〔従来の技術〕[Conventional technology]

従来この種の空気調和袋こは、概略第3図に示すような
構成とされていた。これを簡単に説明すると、図中符4
′)lは圧ma、2は四方切換弁、3は室外側熱交換器
、4.5は冷房運転時、暖房運転時にそれぞれ膨張機構
として機能する第1および第2の絞り装置、6は室内側
熱交換器、7はアキュムレータで、これらを順次冷媒配
管で連結接続することで冷凍サイクル回路が構成されて
いる。なお、8.9は室内側、室外側熱交換器6゜3に
それぞれ送風する室内側および室外側送風機で、また4
a 、4bは第1の絞り装g14を構成するmlの減圧
袋g!1(キャピラリチューブ)およびこれをバイパス
する回路中に設けられた第1の逆IE弁、5a、5bは
第2の絞り装置5を構成する第2の減圧袋21(ギヤピ
ラリチューブ)およびこれをバイパスする回路中に設け
られた第2の逆1F弁である。
Conventionally, this type of air-conditioning bag has been constructed as schematically shown in FIG. To explain this simply, the middle mark 4 in the figure
') l is the pressure ma, 2 is the four-way switching valve, 3 is the outdoor heat exchanger, 4.5 is the first and second throttle devices that function as expansion mechanisms during cooling operation and heating operation, respectively, and 6 is the indoor The inner heat exchanger 7 is an accumulator, and a refrigeration cycle circuit is constructed by sequentially connecting these with refrigerant piping. In addition, 8.9 is the indoor side and outdoor side blower that blows air to the indoor side and outdoor side heat exchanger 6゜3, respectively, and 4.
a, 4b is a ml vacuum bag g! that constitutes the first squeezing device g14. 1 (capillary tube) and a first reverse IE valve 5a, 5b provided in a circuit that bypasses this; A second reverse 1F valve is provided in the bypassing circuit.

このような構成による空気調和装こにおいて、冷r1運
転時(冷媒の流れを図中太い実線による矢印で示す)に
は、圧縮4I!1から吐出された高温高圧のガス冷媒は
、四方切換弁2を通り、室外側熱交換器3で室外側送風
a9によって送風される室外空気と熱交換し、ガス冷媒
が凝縮液化される。そして、第1の絞り装2!4側での
バイパス回路中の第1の逆止弁4bを通り、第2の絞り
装置5を構成する第2の減圧装置5a側に導入されて減
圧され、低温低圧の液冷媒となる。その後、この液冷媒
は室内側熱交換器6に入り、室内側送風機8によって送
風される室内空気と熱交換し、室内空気を冷却するとと
もに、これにより液冷媒が蒸発ガス化され、四方切換弁
2、アキュムレータ7を通り圧縮機1に戻るという冷房
時の冷凍サイクルが構成され、以後冷媒は上述した冷凍
サイクル経路内を順次液化、気化を繰り返しながら循環
される。
In this air conditioner with such a configuration, during the cooling r1 operation (the flow of the refrigerant is shown by the thick solid line arrow in the figure), the compression is 4I! The high-temperature, high-pressure gas refrigerant discharged from 1 passes through the four-way switching valve 2, exchanges heat with outdoor air blown by the outdoor air blower a9 in the outdoor heat exchanger 3, and the gas refrigerant is condensed and liquefied. Then, it passes through the first check valve 4b in the bypass circuit on the side of the first throttle device 2!4, and is introduced into the second pressure reducing device 5a forming the second throttle device 5, where the pressure is reduced. It becomes a low temperature, low pressure liquid refrigerant. After that, this liquid refrigerant enters the indoor heat exchanger 6 and exchanges heat with the indoor air blown by the indoor blower 8 to cool the indoor air. 2. A refrigeration cycle during cooling is constructed in which the refrigerant passes through the accumulator 7 and returns to the compressor 1. Thereafter, the refrigerant is circulated through the above-mentioned refrigeration cycle path while repeating liquefaction and vaporization.

一方、暖J77運転時(冷媒の流れを図中細い実線によ
る矢印で示す)には、圧malから吐出された高温高圧
のガス冷媒は、暖m側に切換えられた四方切換弁2を通
り、室内側熱交換器6に入り。
On the other hand, during warm J77 operation (the flow of the refrigerant is shown by the thin solid line arrow in the figure), the high temperature and high pressure gas refrigerant discharged from the pressure mal passes through the four-way switching valve 2 which is switched to the warm side. Enters the indoor heat exchanger 6.

室内側送風機8によって送風される室内空気と熱交換し
て室内空気を加熱するとともに、これによリガス冷媒が
凝縮液化される。そして、この液冷媒は、第2の絞り装
!!i5をバイパスする回路中の第2の逆止弁5bを通
り、第1の絞り装置4を構成する第1の減圧袋214 
aに導かれて減圧され、低温低圧の液冷媒となる。その
後、液冷媒は室外側熱交換器3に入り、室外側送風機9
によって送風される室外空気と熱交換し室外空気から採
熱して室外空気を冷却するとともに、これにより液冷媒
が蒸発ガス化し、四方切換弁2、アキュムレータ7を通
り圧1itaiに戻り、これにより暖房時の冷凍サイク
ルが構成される。
The indoor air is heated by exchanging heat with the indoor air blown by the indoor blower 8, and the regas refrigerant is condensed and liquefied. And, this liquid refrigerant is passed through the second diaphragm! ! The first decompression bag 214 that passes through the second check valve 5b in the circuit that bypasses i5 and constitutes the first squeezing device 4
The refrigerant is led to a vacuum and becomes a low-temperature, low-pressure liquid refrigerant. After that, the liquid refrigerant enters the outdoor heat exchanger 3 and the outdoor fan 9.
The liquid refrigerant evaporates into gas, passes through the four-way switching valve 2 and the accumulator 7, and returns to the pressure of 1itai. A refrigeration cycle is constructed.

また、このような暖房運転を継続して行なっていると、
たとえば室外空気温度が低い場合、室外側熱交換器3に
着霜が生じてくる。このような着霜が多くなると熱交換
効率が悪くなり、室外空気からの採熱借が減少するため
、空気調和装置の暖房能力が著しく低下する。したがっ
て、このような場合には、デフロスト(除′M)を行な
うことが必要とされる。
Also, if you continue to use this type of heating operation,
For example, when the outdoor air temperature is low, frost forms on the outdoor heat exchanger 3. When such frost builds up, the heat exchange efficiency deteriorates, and the amount of heat borrowed from outdoor air decreases, resulting in a significant decrease in the heating capacity of the air conditioner. Therefore, in such a case, it is necessary to defrost the vehicle.

このようなデフ0スト運転時(冷媒の流れを図中破線に
よる矢印で示す)には、圧11i1mlから吐出された
高温高圧のガス冷媒は、暖房側から冷房側へと切換えら
れた四方切換弁2を通り、室外側熱交換器3に入る。こ
こで、室外側送風機9は停止している。そして、この室
外側熱交換器3の表面に着霜していた霜を高温ガス冷媒
で溶解し、この冷媒が凝縮液化して第1の絞り装置4を
バイパスする第1の逆止弁4bを通り、第2の絞り装置
5を構成する第2の減圧装置5aによって減圧されて低
温低圧の液冷媒となり、室内側熱交換器6に入り1次で
四方切換弁2およびアキュムレータ7を通って圧縮Ia
lに戻るという冷凍サイクル運転を行なうものであった
During such defrost operation (the flow of refrigerant is indicated by the dashed arrow in the figure), the high temperature and high pressure gas refrigerant discharged from the pressure 11i1ml is transferred from the four-way switching valve switched from the heating side to the cooling side. 2 and enters the outdoor heat exchanger 3. Here, the outdoor side blower 9 is stopped. Then, the frost that has formed on the surface of the outdoor heat exchanger 3 is dissolved by a high-temperature gas refrigerant, and the refrigerant is condensed and liquefied to bypass the first throttle device 4. As a result, the pressure is reduced by the second pressure reducing device 5a constituting the second expansion device 5 to become a low temperature, low pressure liquid refrigerant, which enters the indoor heat exchanger 6 and is then compressed through the four-way switching valve 2 and the accumulator 7. Ia
The refrigeration cycle operation was performed by returning to 1.

〔発明が解決しようとする5!題〕 ところで、上述した暖!M運転中のデフロスト運転時に
おいて、低温低圧の液冷媒が室内側熱交換器6に導入さ
れた場合に若干の問題を生じている。すなわち、この室
内側熱交換器6に対向して配置される室内側送風a8は
、このデフロスト運転時に通常は微風運転を行なってい
るか、あるいは停市されている。そして、たとえば微x
i転を行なっている場合には、低温低圧の液冷媒と室内
空気とが熱交換され、室内空気を冷却するとともに液冷
媒が蒸発ガス化し、四方切換弁2およびアキュムレータ
7を通り圧縮機lに戻る。したがって、このような場合
には、室内側に冷風が吹出されることとなり、空気調和
効果を著しく低下させてしまうという問題を生じている
[5 that the invention attempts to solve! Title] By the way, the warmth mentioned above! Some problems occur when low-temperature, low-pressure liquid refrigerant is introduced into the indoor heat exchanger 6 during the defrost operation during the M operation. That is, the indoor air blower a8 disposed opposite to the indoor heat exchanger 6 normally performs a light air operation or is stopped during the defrost operation. And, for example, fine x
When the i-turn is performed, the low-temperature, low-pressure liquid refrigerant and indoor air exchange heat, cool the indoor air, and the liquid refrigerant evaporates into gas, passes through the four-way switching valve 2 and the accumulator 7, and enters the compressor l. return. Therefore, in such a case, cold air is blown toward the indoor side, causing a problem in that the air conditioning effect is significantly reduced.

また、室内側送風機8を停止させた場合には。Also, when the indoor fan 8 is stopped.

低温低圧の液冷媒は採熱できず、冷媒は液のままアキュ
ムレータ7に入り圧縮機lに戻るため、圧縮機1が液圧
縮し、圧縮機トラブルを生じることがあった。
Heat cannot be collected from the low-temperature, low-pressure liquid refrigerant, and the refrigerant enters the accumulator 7 as a liquid and returns to the compressor 1, so the compressor 1 compresses the liquid, sometimes causing compressor trouble.

さらに、」二連した従来装置によれば、特にデフロスト
時における高圧圧力が低いため、低圧圧力も低下し、圧
縮機1の能力が充分に発揮できず。
Furthermore, according to the conventional double-connected device, since the high pressure is low, especially during defrosting, the low pressure also decreases, and the capacity of the compressor 1 cannot be fully demonstrated.

デフロスト時間も長くかかる等といった欠点があった。There were drawbacks such as a long defrost time.

また、暖房運転時に四方切換弁2を冷房側に切換え、デ
フロス“ト運転を行なうため、切換え時に熱のロスが生
じるという問題もあった。
Furthermore, since the four-way switching valve 2 is switched to the cooling side during heating operation to perform defrost operation, there is also a problem that heat loss occurs during switching.

本発明はl;述した事情に鑑みてなされたもので、暖房
運転中のデフロスト運転時において冷風の室内への吹出
しを防止するとともに、四方切換弁を暖房側としたまま
でのデフロストE転を行ない、低圧圧力を上げて圧縮機
能力を高め、しかも圧11!4aからの高温、高圧ガス
冷媒と吸入側配管とを熱交換させるように構成すること
で、圧縮機への液戻りをも防止し得る空気調和装置を得
ることを目的としている。
The present invention was made in view of the above-mentioned circumstances, and prevents cold air from being blown into the room during defrost operation during heating operation, and also prevents the defrost E rotation while the four-way selector valve is set to the heating side. By increasing the low pressure and increasing the compression function, the system is configured to exchange heat between the high-temperature, high-pressure gas refrigerant from pressure 11!4a and the suction side piping, which also prevents liquid from returning to the compressor. The purpose is to obtain an air conditioner that can

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る空気調和装置は、圧縮機からの高温高圧ガ
ス冷媒を吸入側配管と熱交換し第1の絞り装置と第2の
絞り装置との間の配管側にバイパスする第1のバイパス
回路を設けるとともに、第1の減圧装置およびfjS2
の減圧装置をバイパスする逆止弁を有する第2、第3の
バイパス回路および前記圧縮機の吐出側配管から三方切
換弁を介して前記第1および第2の絞り装置間の配管側
にバイパスして接続される該吐出側配管よりも細い内径
を有する配管によるt54のバイパス回路を設けるよう
にし、さらにこの第4のバイパス回路から圧縮機の吸入
側配管側にバイパスして接続される補助減圧手段を有す
る第5のバイパス回路を選択的に設けるようにしたもの
である。
The air conditioner according to the present invention has a first bypass circuit that exchanges heat with the suction side piping and bypasses the high temperature, high pressure gas refrigerant from the compressor to the piping side between the first expansion device and the second expansion device. and a first pressure reducing device and fjS2
second and third bypass circuits each having a check valve that bypasses the pressure reducing device, and a three-way switching valve from the discharge side piping of the compressor to the piping side between the first and second throttling devices; A bypass circuit t54 is provided by a pipe having an inner diameter smaller than that of the discharge pipe connected to the discharge pipe, and an auxiliary pressure reducing means is connected from this fourth bypass circuit to the suction pipe of the compressor in a bypass manner. A fifth bypass circuit is selectively provided.

〔作用〕[Effect]

本発明によれば、暖房運転中のデフロスト運転時に四方
切換弁を暖房運転の状態としたままで室内側および室内
側熱交換器への送風機を停止し。
According to the present invention, during the defrost operation during the heating operation, the blower to the indoor side and the indoor heat exchanger is stopped while the four-way switching valve remains in the heating operation state.

かつ三方切換弁を切換え、吐出側配管よりも細い配管内
径を有する第4のバイパス回路(さらに第5のバイパス
回路を選択して)を開路してデフロスト運転を行なうこ
とで、従来のような四方切換弁の切換え時における熱ロ
スを防止し、かつ室内側への冷風吹出しを防止するとと
もに、圧縮機の能力を高め、さらに該圧縮機からの高温
高圧のガス冷媒と吸入側配管との熱交換で圧縮機への液
戻り現象をも防【卜し得るものである。
In addition, by switching the three-way switching valve and opening the fourth bypass circuit (and selecting the fifth bypass circuit), which has a pipe inner diameter smaller than that of the discharge side pipe, to perform defrost operation, it is possible to This prevents heat loss when switching the switching valve, prevents cold air from blowing into the room, increases the capacity of the compressor, and exchanges heat between the high-temperature, high-pressure gas refrigerant from the compressor and the suction side piping. This can also prevent liquid from returning to the compressor.

〔実施例〕〔Example〕

第1図は本発明に係る空気調和装置の一実施例先示すも
のであり、同図において前述した第3図と同一または相
当する部分には同一番号を付してその説明は省略する。
FIG. 1 shows an embodiment of an air conditioner according to the present invention, and in this figure, the same or corresponding parts as those in FIG.

さて1本発明によれば、圧縮機l、四方切換弁2、室外
側熱交換″a3、第1の絞り装置4.第2の絞り装f2
’15、室内側熱交換器6およびアキュムレータ7を冷
媒配管で順次接続してなる冷媒回路を備えてなる空気調
和装置において、圧縮機lの吐出側配管から分岐されア
キュムレータ7と圧縮機lとの間を接続する吸入側配管
1aと熱交換可能に構成されたサクション熱交換器it
を通りかつ補助キャピラリチューブ12を通って第1お
よび第2の絞り装214.5間の配管側にバイパスして
接続されたwSlのバイパス配管lOを備え、かつf第
1の減圧装置’14aをバイパスする逆止弁4bを設け
た第2のバイパス回路4Cと第2の減圧装¥15aをバ
イパスする逆止弁5bを設けた第3のバイパス回路5C
とを設けるとともに、圧縮機1の吐出側配管1bから三
方切換弁13を介して前記第1およびff12の絞り装
置4.5間の配管側にバイパスして接続される吐出側配
管1bの内径よりも細い配管内径を有する第4のバイパ
ス回路14を設けるようにしたところに特徴を有してい
る。そして、このような構成において、デフロスト運転
時に四方切換弁2を暖房運転状態としたままで室内側お
よび室外側熱交換器6,3に送風する送風a8,9を停
止させるとともに、三方切換、fp13を切換えて第4
のバイパス回路14を開路してデフロスト運転を行なえ
るようにしている。
Now, according to the present invention, the compressor l, the four-way switching valve 2, the outdoor heat exchanger "a3", the first throttle device 4, the second throttle device f2
'15, In an air conditioner equipped with a refrigerant circuit in which an indoor heat exchanger 6 and an accumulator 7 are sequentially connected by refrigerant piping, the connection between the accumulator 7 and the compressor l is branched from the discharge side piping of the compressor l. A suction heat exchanger it configured to be able to exchange heat with the suction side piping 1a connecting between
and the auxiliary capillary tube 12 to the piping side between the first and second restricting devices 214.5 in a bypass manner, and the f-th first pressure reducing device '14a. A second bypass circuit 4C provided with a check valve 4b that bypasses it, and a third bypass circuit 5C provided with a check valve 5b that bypasses the second pressure reducing device ¥15a.
and from the inner diameter of the discharge side piping 1b which is connected from the discharge side piping 1b of the compressor 1 via the three-way switching valve 13 to the piping side between the first and FF12 throttling devices 4.5 in a bypass manner. It is also characterized in that a fourth bypass circuit 14 having a narrow pipe inner diameter is provided. In such a configuration, during the defrost operation, the four-way switching valve 2 remains in the heating operation state, and the air blowers a8 and 9 that blow air to the indoor and outdoor heat exchangers 6 and 3 are stopped, and the three-way switching and fp13 Switch to the fourth
The bypass circuit 14 is opened to enable defrost operation.

以上の構成による空気調和装れにおいて、冷房運転時(
冷媒の流れは図中太い実線による矢印方向)には、圧l
lli機1から吐出された高温高圧のガス冷媒は、四方
切換弁2を通り室外側熱交換器3で室外側送風4!19
によって送風される室外空気と熱交換するとともに、こ
れによりガス冷媒が凝縮液化する。そして、第1の絞り
装!!14における第1の減圧’4Jg4aによって減
圧され、低温低圧の液冷媒となる。一方、圧縮機1かも
吐出された高温高圧のガス冷媒の一部は、第1のバイパ
ス回路10を通すサクション熱交換器11で圧縮機1へ
吸入される低圧冷媒と熱交換し、吸入冷媒を加熱して完
全に気化させ、自らは凝縮液化し、補助キャピラリチュ
ーブ12によって減圧されて低温低圧の液冷媒となり、
第1および第2の絞り装置4.5間の配管に合流し、第
2の絞り装置5における第3のバイパス回路Se1通り
、室内側熱交換器6に入り室内側送風機8から送風され
る室内空気と熱交換して室内空気を冷却するとともに。
In the air conditioner with the above configuration, during cooling operation (
The flow of refrigerant (in the direction of the thick solid line arrow in the figure) is at pressure l.
The high-temperature, high-pressure gas refrigerant discharged from the LLI machine 1 passes through the four-way switching valve 2 and is sent to the outdoor side heat exchanger 3 to be sent to the outdoor side air blower 4!19.
The gas refrigerant is condensed and liquefied as well as exchanging heat with the outdoor air blown by the refrigerant. And the first shibori! ! The refrigerant is depressurized by the first depressurization '4Jg4a at step 14, and becomes a low-temperature, low-pressure liquid refrigerant. On the other hand, a part of the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 exchanges heat with the low-pressure refrigerant sucked into the compressor 1 in the suction heat exchanger 11 passing through the first bypass circuit 10, and converts the suction refrigerant into It is heated to completely vaporize, condenses and liquefies itself, and is depressurized by the auxiliary capillary tube 12 to become a low-temperature, low-pressure liquid refrigerant.
It joins the piping between the first and second throttle devices 4.5, enters the third bypass circuit Se1 in the second throttle device 5, enters the indoor heat exchanger 6, and enters the room where air is blown from the indoor fan 8. It also cools indoor air by exchanging heat with the air.

これにより液冷媒は蒸発ガス化し、四方切換弁2および
アキュムレータ7を通り圧16A機lに戻るという冷凍
サイクル回路が構成される。
As a result, the liquid refrigerant is evaporated and gasified, passes through the four-way switching valve 2 and the accumulator 7, and returns to a pressure of 16A, thereby forming a refrigeration cycle circuit.

また、暖房運転時(冷媒の流れは図中細い実線による矢
印方向)には、圧縮R1から吐出された高温高圧のガス
冷媒は、暖房側に切換えられた四方切換弁2を通って室
内側熱交換器6に入り。
In addition, during heating operation (the flow of refrigerant is in the direction of the arrow indicated by the thin solid line in the figure), the high-temperature, high-pressure gas refrigerant discharged from compression R1 passes through the four-way switching valve 2, which is switched to the heating side, and heats the indoor area. Enter exchanger 6.

室内側送風機8から送風される室内空気と熱交換して室
内空気を加熱するとともに、これによりガス冷媒は凝縮
液化する。そして、第2の絞り装置5における第2の減
圧装置5aによって減圧され、低温低圧の液冷媒となる
。一方、圧lif機1から吐出された高温高圧のガス冷
媒の一部は、第1のバイパス回路lOを通り、サクシ、
ン熱交換器11−r圧縮機lに吸入される低圧冷媒と熱
交換し吸入冷媒を加熱して完全に気化させ、自らは凝縮
液化し補助キャピラリチューブ12によって減圧され、
低温低圧の液冷媒となって前記配管側に合流し、第1の
絞り装置4における第2のバイパス回路4Cを通り、室
外側熱交換器3に入り室外側送風Ia9から送風される
室外空気と熱交換し、室外空気から採熱して室外空気を
冷却するとともに、これにより液冷媒は蒸発ガス化し、
四方切換弁2.アキュムレータ7を通り、圧縮alに戻
るという冷凍サイクル回路が構成される。
The indoor air is heated by exchanging heat with the indoor air blown from the indoor blower 8, and the gas refrigerant is thereby condensed and liquefied. Then, the pressure is reduced by the second pressure reducing device 5a in the second expansion device 5, and the refrigerant becomes a low-temperature, low-pressure liquid refrigerant. On the other hand, a part of the high temperature and high pressure gas refrigerant discharged from the pressure lif machine 1 passes through the first bypass circuit 10,
The refrigerant exchanges heat with the low-pressure refrigerant sucked into the compressor l, heats the suction refrigerant, and completely vaporizes the refrigerant.
It becomes a low-temperature, low-pressure liquid refrigerant, joins the pipe side, passes through the second bypass circuit 4C in the first throttle device 4, enters the outdoor heat exchanger 3, and is combined with the outdoor air blown from the outdoor air blower Ia9. In addition to exchanging heat and collecting heat from the outdoor air to cool the outdoor air, the liquid refrigerant evaporates into gas.
Four-way switching valve2. A refrigeration cycle circuit is constructed in which the air passes through the accumulator 7 and returns to compressed Al.

また、このような暖房運転時において、たとえば室外空
気温度が低く、室外側熱交換器3に着霜が生じた場合に
必要とされるデフロスト運転時(冷媒の流れは図中破線
による矢印方向)には、圧Ild機lから吐出された高
温高圧のガス冷媒は。
In addition, during such a heating operation, for example, during a defrost operation that is required when the outdoor air temperature is low and frost forms on the outdoor heat exchanger 3 (refrigerant flow is in the direction of the arrow indicated by the broken line in the figure). In this case, the high temperature and high pressure gas refrigerant discharged from the pressure Ild machine is.

デフロスト側に切換えられている状態の三方切換弁13
を通り第1およびtPj2の絞り装置4 、5 fll
lの配管側に接続されている第4のバイパス回路14を
通って該配管側に流入される。
Three-way switching valve 13 switched to the defrost side
through the first and tPj2 throttling devices 4, 5 flll
It flows into the piping side through the fourth bypass circuit 14 connected to the piping side of the pipe.

一方、ここで圧縮mlから吐出された高温高圧のガス冷
媒の一部は、第1のバイパス回路10を通り、サクショ
ン熱交換器11で圧I&機lに吸入される低圧冷媒と熱
交換され、吸入冷媒を加熱して完全に気化させるととも
に、自らは凝縮液化し補助キャピラリチューブ12によ
って減圧されて低温低圧の液冷媒となり、前記第4のバ
イパス回路14を通った高温高圧のガス冷媒と混合され
る。そして、これら合流されたガス冷媒は、第1の絞り
装置4における第2のバイパス回路4Cを通り室外側熱
交換器3に入る。このとき、室外側送風Ia9は停止ト
されている。そして、高温ガス冷媒は、室外側熱交!!
!!器3の表面に着霜した霜を高温ガス冷媒で融解し、
この冷媒が凝縮液化して四方切換弁2を通りアキュムレ
ータフに入り圧縮機lに戻されることになる。
On the other hand, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressed ml passes through the first bypass circuit 10 and is heat exchanged with the low-pressure refrigerant sucked into the pressure I & machine 1 in the suction heat exchanger 11, The suction refrigerant is heated to completely vaporize it, and it condenses and liquefies itself and is depressurized by the auxiliary capillary tube 12 to become a low-temperature, low-pressure liquid refrigerant, which is mixed with the high-temperature, high-pressure gas refrigerant that has passed through the fourth bypass circuit 14. Ru. These combined gas refrigerants then pass through the second bypass circuit 4C in the first expansion device 4 and enter the outdoor heat exchanger 3. At this time, the outdoor air blower Ia9 is stopped. And the high temperature gas refrigerant is an outdoor heat exchanger! !
! ! The frost that has formed on the surface of the container 3 is melted with a high temperature gas refrigerant,
This refrigerant is condensed and liquefied, passes through the four-way switching valve 2, enters the accumulator trough, and is returned to the compressor 1.

したがって、このようなデフロスト時においては、四方
切換弁2を暖房側から冷房側に切換えることなく、デフ
ロスト四転に入ることができ、これによりすJ換えのた
めの熱ロスがない、また、低温液冷媒が室内側熱交換器
6内を通過しないために、従来のような室内側に冷風が
吹出されるといった問題も解消される。さらに、吐出側
配管tbよりも第4のバイパス回路14を構成する配管
内径を細くするようにしたもので、圧力損失が生じ、圧
縮fitの高圧側圧力が」;昇し、入力が増加するので
、圧1ilIJ!lの俺力が増大し、デフロスト時間を
短くすることが5f能となる。また、サクション熱交換
器11によって圧縮機lに対する吸入側配管1aを、圧
縮機lから吐出された高温高圧のガス冷媒で熱交換する
ように構成したので、圧縮fitへの液戻り現象を防止
でき、圧縮機トラブルを防止することが可能となる。
Therefore, during such defrosting, it is possible to enter the four-way defrost mode without switching the four-way switching valve 2 from the heating side to the cooling side. Since the liquid refrigerant does not pass through the indoor heat exchanger 6, the conventional problem of cold air being blown indoors is also solved. Furthermore, since the inner diameter of the piping constituting the fourth bypass circuit 14 is made smaller than that of the discharge side piping tb, pressure loss occurs and the pressure on the high pressure side of the compression fit rises, causing an increase in input. , pressure 1ilIJ! L's power increases and shortening the defrost time becomes a 5f ability. In addition, since the suction heat exchanger 11 is configured to exchange heat with the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 in the suction side piping 1a to the compressor 1, it is possible to prevent liquid from returning to the compression fit. , it becomes possible to prevent compressor troubles.

ここで、図中15で示したように室内側熱交換器6に対
面して′rl!熱器を設置するようにすると。
Here, as shown by 15 in the figure, 'rl!' faces the indoor heat exchanger 6. If you install a heating device.

デフロスト運転中において冷媒がこの室内側熱交換器6
を通らないため、室内側進J!IL機8を運転すること
ができ、デフロストm転中も暖房運転を継続できるとい
った利点を奏する。
During defrost operation, the refrigerant flows into this indoor heat exchanger 6.
Because you don't have to go through it, you can go indoors! This has the advantage that the IL device 8 can be operated and the heating operation can be continued even during the defrost m transition.

第2図は本発明に係る空気調和装置の他の実施例を示す
ものであって、この実施例では、前述した実施例におい
て圧縮機lの吐出側配管tbから第1および0′S2の
絞り装置4.5間の配管にバイパス接続して設けた第4
のバイパス回路14に第3の逆+L弁18を設けるとと
もに、その上流側から圧縮機lの吸入側配’′r′Fl
a側にバイパスして接続される補助減圧手段としての補
助キャピラリチューブ17を有する第5のバイパス回路
16を設けてなる構成としている。
FIG. 2 shows another embodiment of the air conditioner according to the present invention, and in this embodiment, the first and 0'S2 throttles are A fourth pipe is connected to the piping between equipment 4 and 5 by bypass.
A third reverse +L valve 18 is provided in the bypass circuit 14 of
The fifth bypass circuit 16 is provided with an auxiliary capillary tube 17 as an auxiliary pressure reducing means connected to the a side in a bypass manner.

そして、このような構成によれば、冷mW転時や暖房運
転時には前述した実施例と同様の作動状態となるが、デ
フロスト運転時には次のような作動状態となる。すなわ
ち、このデフロスト運転時には、圧縮機1から吐出され
た高温高圧のガス冷媒は、三方切換弁13を介して第4
のバイパス回路14により前記第3の逆上弁18を通っ
た後、0′S1およびt52の絞り装置4,5間の配管
側に流入される。さらに、圧縮機1から吐出された高温
高圧ガス冷媒の一部は、第1のバイパス回路10により
前述した通り、圧縮機l吸入側の低圧冷媒を加熱して気
化させるとともに自らは凝縮液化しさらに減圧されて低
温低圧の液冷媒となって前記第4のバイパス回路14側
からの高温高圧ガス冷媒と混合され、第2のバイパス回
路4Cを通り室外側熱交換器3側に送られ、その表面に
着霜している霜を融解し、これにより凝縮液化された冷
媒が四方切換弁2、アキュムレータ7を介して圧縮機1
側に吸入される。また、この圧縮機lの吸入側配管la
内の冷媒は、サクション熱交換器11により第1のバイ
パス回路10を通って流れる高温高圧のガス冷媒により
気化されるので、圧縮機1への液戻り現象を防止し得る
ものである。
According to such a configuration, during cold mW operation and heating operation, the operating state is similar to that of the above-described embodiment, but during defrost operation, the following operating state is obtained. That is, during this defrost operation, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the three-way switching valve 13 to the fourth
After passing through the third reverse valve 18 through the bypass circuit 14, it flows into the piping between the throttling devices 4 and 5 at 0'S1 and t52. Further, a part of the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 heats and vaporizes the low-pressure refrigerant on the suction side of the compressor 1 through the first bypass circuit 10, and also condenses and liquefies itself. The pressure is reduced to become a low-temperature, low-pressure liquid refrigerant, which is mixed with the high-temperature, high-pressure gas refrigerant from the fourth bypass circuit 14 side, and is sent to the outdoor heat exchanger 3 side through the second bypass circuit 4C, and its surface The frost that has formed on the refrigerator is melted, and the refrigerant is condensed and liquefied through the four-way switching valve 2 and the accumulator 7 to the compressor 1.
Inhaled to the side. In addition, the suction side piping la of this compressor l
The refrigerant inside is vaporized by the high-temperature, high-pressure gas refrigerant flowing through the first bypass circuit 10 by the suction heat exchanger 11, so that the phenomenon of liquid returning to the compressor 1 can be prevented.

そして、本実施例によれば、このようなデフロスト運転
時において、第4のバイパス回路14を通る高温高圧の
ガス冷媒の一部が、第5のバイパス回路16へと分岐さ
れ、補助キャピラリチューブ17でIi量を制御されな
がら圧縮機lの低圧側(吸入側配管1a)に澄入するの
で、低圧圧力が上f4 L、圧IIdJalの能力が増
大し、デフロスト時間を短くすることができるという利
点を奏することが可能となる。
According to this embodiment, during such a defrost operation, a part of the high-temperature, high-pressure gas refrigerant passing through the fourth bypass circuit 14 is branched to the fifth bypass circuit 16 and transferred to the auxiliary capillary tube 17. Since the amount of Ii is controlled by Ii, it is clarified into the low pressure side (suction side piping 1a) of the compressor l, so the low pressure is increased, the capacity of the pressure IIdJal is increased, and the defrost time can be shortened. It becomes possible to play.

なお、本発明は上述した実施例構造に限定されず、空気
調和装置各部の形状、構造等を、必要に応じて適宜変形
、変更することは自由である。
Note that the present invention is not limited to the structure of the embodiment described above, and the shape, structure, etc. of each part of the air conditioner may be modified and changed as necessary.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る空気調和装置によれば
、圧llIi機からの高温高圧のガス冷媒の一部を、サ
クション熱交換器を介して吸入側配管と熱交換するよう
に構成したので、圧縮機への液戻り現象を防止できると
ともに、四方切換弁を暖房運転のままで三方切換弁をν
j換えてデフロスト運転を行なうことが可能で、従来の
ような四方切換弁の切換えによる熱ロス等を防止でき、
しかも従来のような室内側への冷風の吹出し等といった
問題を一掃することが可能となる等といった桓々慎れた
効果がある。さらに1本発明によれば、デフロスト運転
時に吐出側配管よりも細い配管径を有するバイパス回路
を、圧縮機からの吐出側ガス冷媒が通るので、高圧圧力
が増大し、これにより圧縮a圧力を向上させることがで
き、デフロスト時間を短くすることができる等の利点が
ある。
As explained above, according to the air conditioner according to the present invention, a part of the high temperature and high pressure gas refrigerant from the pressure llIi machine is configured to exchange heat with the suction side piping via the suction heat exchanger. , it is possible to prevent the phenomenon of liquid returning to the compressor, and the three-way switching valve can be switched to ν while the four-way switching valve is in heating operation.
It is possible to perform defrost operation by switching between the four-way switching valve, which prevents heat loss, etc. caused by switching the four-way switching valve as in the past.
Moreover, it has a very modest effect, such as making it possible to eliminate the conventional problem of blowing cold air toward the indoor side. Furthermore, according to the present invention, during defrost operation, the gas refrigerant on the discharge side from the compressor passes through the bypass circuit having a diameter smaller than that on the discharge side piping, so that the high pressure increases, thereby improving the compression a pressure. This has advantages such as shortening the defrost time.

また1本発明によれば、高温高圧の吐出ガスの一部を圧
縮機の低圧側にバイパスし得るので、低圧圧力をと昇さ
せることができ、圧Ii1機の能力を充分に発揮させ、
デフロスト時間をより一層短縮化し得るという利点もあ
る。
Further, according to the present invention, a part of the high temperature and high pressure discharged gas can be bypassed to the low pressure side of the compressor, so the low pressure can be increased, and the capacity of the pressure Ii1 machine can be fully demonstrated,
Another advantage is that the defrost time can be further shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る空気調和装置の一実施例を示す冷
凍サイクル回路の概略構成図、!7Sz図は本発明の他
の実施例を示す冷凍サイクル回路の概略構成図、第3図
は従来例を示す概略構成図である。 l・・・・圧縮機、la・・・・吸入側配管、1b・・
・・吐出側配管、2・・・・四方切換弁、3・・・・室
外側熱交換器、4.5・・・・第1および第2の絞り装
置、4a、5a・・・・第1および第2の減圧装置(キ
ャピラリチューブ)、4b、5b・・・−逆止弁、4c
 、5c・・・・第1および第2のバイパス回路、6・
・・・室内側熱交換器、7・・・・アキュムレータ、8
.9・・・・室内側および室外側送風機、10・・・・
第1のバイパス回路、11・・・・サクション熱交換器
、12・・・・補助キャピラリチューブ、13・・・・
三方9J換弁、14・・・・第4のバイパス回路、15
・・・・電熱器、16・・・・第5のバイパス回路、1
7・・・・補助キャピラリチューブ(補助減圧手段)、
18・・・・第3の逆Iヒ弁。 代 理 人   大  岩  増  雄第2図 1し:ぜ号2イ則 −:j+噂−−iタトイ1す第3図
FIG. 1 is a schematic configuration diagram of a refrigeration cycle circuit showing an embodiment of an air conditioner according to the present invention. 7Sz is a schematic configuration diagram of a refrigeration cycle circuit showing another embodiment of the present invention, and FIG. 3 is a schematic configuration diagram showing a conventional example. l...Compressor, la...Suction side piping, 1b...
...Discharge side piping, 2...Four-way switching valve, 3...Outdoor heat exchanger, 4.5...First and second throttling device, 4a, 5a...No. 1 and 2nd pressure reducing device (capillary tube), 4b, 5b...-Check valve, 4c
, 5c...first and second bypass circuits, 6.
...Indoor heat exchanger, 7...Accumulator, 8
.. 9... Indoor and outdoor blowers, 10...
First bypass circuit, 11... Suction heat exchanger, 12... Auxiliary capillary tube, 13...
Three-way 9J exchange valve, 14...4th bypass circuit, 15
...Electric heater, 16...Fifth bypass circuit, 1
7... Auxiliary capillary tube (auxiliary pressure reducing means),
18...Third reverse I valve. Agent Masuo Oiwa Figure 2 1 Shi: Zego 2 I Rule -: j + Rumor - i Tatoi 1 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機、四方切換弁、室外側熱交換器、第1の絞
り装置、第2の絞り装置、室内側熱交換器およびアキュ
ムレータを冷媒配管で順次接続してなる冷媒回路と、前
記圧縮機の吐出側配管から分岐され前記アキュムレータ
と圧縮機との間を接続する吸入側配管との間で熱交換可
能に構成されるとともに前記第1および第2の絞り装置
間の配管側にバイパスして接続される第1のバイパス回
路とを備え、かつ前記第1の絞り装置を構成する第1の
減圧装置をバイパスする逆止弁を有する第2のバイパス
回路と前記第2の絞り装置を構成する第2の減圧装置を
バイパスする逆止弁を有する第3のバイパス回路とを設
けるとともに、前記圧縮機の吐出側配管から三方切換弁
を介して前記第1および第2の絞り装置間の配管側にバ
イパスして接続される前記吐出側配管の内径よりも細い
配管内径を有する第4のバイパス回路を設けてなり、デ
フロスト運転時に、前記四方切換弁を暖房運転状態とし
たままで前記室内側および室外側熱交換器に送風する送
風機を停止させるとともに、前記三方切換弁を切換えて
第4のバイパス回路を開路してデフロスト運転を行なう
ように構成したことを特徴とする空気調和装置。
(1) A refrigerant circuit formed by sequentially connecting a compressor, a four-way switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and an accumulator through refrigerant piping; It is configured to be able to exchange heat with a suction side pipe that is branched from the discharge side pipe of the compressor and connects the accumulator and the compressor, and is bypassed to the pipe side between the first and second throttle devices. a first bypass circuit connected to the first bypass circuit, and a second bypass circuit having a check valve that bypasses a first pressure reducing device constituting the first throttle device; and a third bypass circuit having a check valve that bypasses the second pressure reducing device, and piping between the first and second throttle devices from the discharge side piping of the compressor via a three-way switching valve. A fourth bypass circuit having a pipe inner diameter smaller than the inner diameter of the discharge side pipe connected to the side in a bypass manner is provided, and during defrost operation, the four-way switching valve is kept in the heating operation state and the fourth bypass circuit is connected to the indoor side. and an air conditioner configured to stop the blower blowing air to the outdoor heat exchanger, switch the three-way switching valve, open the fourth bypass circuit, and perform defrost operation.
(2)請求項1記載の空気調和装置において、第4のバ
イパス回路から圧縮機の吸入側配管側にバイパスして接
続される補助減圧手段を有する第5のバイパス回路を設
け、デフロスト運転時に、この第5のバイパス回路を、
前記第4のバイパス回路と共に開路するように構成した
ことを特徴とする空気調和装置。
(2) In the air conditioner according to claim 1, a fifth bypass circuit having an auxiliary pressure reducing means connected from the fourth bypass circuit to the suction side piping side of the compressor in a bypass manner is provided, and during defrost operation, This fifth bypass circuit,
An air conditioner configured to open together with the fourth bypass circuit.
JP63122356A 1988-05-18 1988-05-18 Air conditioner Expired - Lifetime JP2524382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63122356A JP2524382B2 (en) 1988-05-18 1988-05-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63122356A JP2524382B2 (en) 1988-05-18 1988-05-18 Air conditioner

Publications (2)

Publication Number Publication Date
JPH01291077A true JPH01291077A (en) 1989-11-22
JP2524382B2 JP2524382B2 (en) 1996-08-14

Family

ID=14833879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63122356A Expired - Lifetime JP2524382B2 (en) 1988-05-18 1988-05-18 Air conditioner

Country Status (1)

Country Link
JP (1) JP2524382B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5092134A (en) * 1989-08-18 1992-03-03 Mitsubishi Denki Kabushiki Kaisha Heating and cooling air conditioning system with improved defrosting
CN104864619A (en) * 2015-06-19 2015-08-26 苏州医电神空调设备工程有限公司 Refrigerating system with stepless regulation return air temperature

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54180345U (en) * 1978-06-09 1979-12-20
JPS5640360U (en) * 1979-09-05 1981-04-15
JPS61250463A (en) * 1985-04-26 1986-11-07 松下電器産業株式会社 Heat pump type air conditioner
JPS62158958A (en) * 1986-01-07 1987-07-14 三菱電機株式会社 Separation type heat pump system air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54180345U (en) * 1978-06-09 1979-12-20
JPS5640360U (en) * 1979-09-05 1981-04-15
JPS61250463A (en) * 1985-04-26 1986-11-07 松下電器産業株式会社 Heat pump type air conditioner
JPS62158958A (en) * 1986-01-07 1987-07-14 三菱電機株式会社 Separation type heat pump system air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5092134A (en) * 1989-08-18 1992-03-03 Mitsubishi Denki Kabushiki Kaisha Heating and cooling air conditioning system with improved defrosting
CN104864619A (en) * 2015-06-19 2015-08-26 苏州医电神空调设备工程有限公司 Refrigerating system with stepless regulation return air temperature
CN104864619B (en) * 2015-06-19 2017-12-22 苏州医电神空调设备工程有限公司 Can step-less adjustment suction temperature refrigeration system

Also Published As

Publication number Publication date
JP2524382B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
JP2001056159A (en) Air conditioner
JP2804527B2 (en) Air conditioner
JP3324420B2 (en) Refrigeration equipment
JP2698118B2 (en) Air conditioner
JP2944507B2 (en) Air conditioner
JP4273588B2 (en) Air conditioner refrigerant circuit
JP4475740B2 (en) Air conditioner and operation method thereof
JPH01291077A (en) Air conditioning device
JP2646709B2 (en) Air conditioner
JPH09119754A (en) Air conditioner
JP2618057B2 (en) Two-stage compression cooling / heating hot water supply system
JPH06241582A (en) Heat accumulative type cooling device
JPH02247466A (en) Air conditioner
JP2550762B2 (en) Air conditioner
JP4372247B2 (en) Air conditioner
JP3268967B2 (en) Air conditioner
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JPH02110266A (en) Air-conditioning device
JP2871166B2 (en) Air conditioner
JPH10141815A (en) Air conditioner
JPH07117324B2 (en) Air conditioner
JPS608291Y2 (en) Refrigeration cycle for air conditioners
JPH08136067A (en) Air conditioner
JPH01127841A (en) Air-conditioning device
JPH03191264A (en) Air conditioning apparatus