JP2618057B2 - Two-stage compression cooling / heating hot water supply system - Google Patents

Two-stage compression cooling / heating hot water supply system

Info

Publication number
JP2618057B2
JP2618057B2 JP1288376A JP28837689A JP2618057B2 JP 2618057 B2 JP2618057 B2 JP 2618057B2 JP 1288376 A JP1288376 A JP 1288376A JP 28837689 A JP28837689 A JP 28837689A JP 2618057 B2 JP2618057 B2 JP 2618057B2
Authority
JP
Japan
Prior art keywords
water supply
stage compressor
hot water
heat exchanger
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1288376A
Other languages
Japanese (ja)
Other versions
JPH03148569A (en
Inventor
実 田頭
晃司 戎
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1288376A priority Critical patent/JP2618057B2/en
Publication of JPH03148569A publication Critical patent/JPH03148569A/en
Application granted granted Critical
Publication of JP2618057B2 publication Critical patent/JP2618057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、2段圧縮冷凍サイクルを用いた冷暖給湯ス
テムに関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling / heating hot water supply stem using a two-stage compression refrigeration cycle.

従来の技術 従来、圧縮機を2台直列に接続して冷媒を2段階に圧
縮する2段圧縮冷凍サイクルは、圧縮比が高くなる運転
条件における圧縮効率の向上を目的として採用されてい
る。
2. Description of the Related Art Conventionally, a two-stage compression refrigeration cycle in which two compressors are connected in series to compress a refrigerant in two stages has been adopted for the purpose of improving compression efficiency under operating conditions where the compression ratio increases.

第2図および第3図は従来の2段圧縮冷凍サイクルを
それぞれ示すものであり、1は低段側圧縮機、2は高段
側圧縮機、3は凝縮器、4は蒸発器、5は中間冷却器、
6は第1絞り装置、7は第2絞り装置である。
2 and 3 show a conventional two-stage compression refrigeration cycle, respectively, wherein 1 is a low-stage compressor, 2 is a high-stage compressor, 3 is a condenser, 4 is an evaporator, and 5 is Intercooler,
Reference numeral 6 denotes a first aperture device, and 7 denotes a second aperture device.

第2図に示す従来例では、低段側圧縮機1より吐出さ
れた冷媒と、凝縮器3を経て第1絞り装置6を出た冷媒
とは中間冷却器5で直接接触による熱交換を行い、液側
は第2絞り装置7を介して蒸発器4に導かれ、またガス
側に高段側圧縮機2の吸入側に導かれる。また、第3図
に示す従来例では、低段側圧縮機1より吐出された冷媒
と、凝縮器3を経て分岐され第1絞り装置6を経た冷媒
とは、中間冷却器5で直接接触による熱交換を行うとと
もに、凝縮器3を経て分岐された他の冷媒は、中間冷却
器5内を貫通熱交換し、第2絞り装置7を介して蒸発器
4に導かれる。中間冷却器5内で熱交換によりガス化し
た冷媒は高段側圧縮機2の吸入側に導かれる。
In the conventional example shown in FIG. 2, the refrigerant discharged from the low-stage compressor 1 and the refrigerant that has exited the first expansion device 6 through the condenser 3 perform heat exchange by direct contact in the intercooler 5. The liquid side is guided to the evaporator 4 via the second expansion device 7 and to the gas side to the suction side of the high-stage compressor 2. In the conventional example shown in FIG. 3, the refrigerant discharged from the low-stage compressor 1 and the refrigerant branched through the condenser 3 and passed through the first expansion device 6 are directly contacted by the intercooler 5. While performing heat exchange, the other refrigerant branched through the condenser 3 passes through the intercooler 5 and exchanges heat, and is guided to the evaporator 4 via the second expansion device 7. The refrigerant gasified by heat exchange in the intercooler 5 is guided to the suction side of the high-stage compressor 2.

このような2段圧縮冷凍サイクルを用いて冷暖房給湯
を行なう場合には、凝縮器3の熱を暖房、又は給湯に利
用し、冷房時には蒸発器4の熱を利用する。
When heating and cooling water is supplied using such a two-stage compression refrigeration cycle, the heat of the condenser 3 is used for heating or hot water supply, and the heat of the evaporator 4 is used for cooling.

このように、2段圧縮冷凍サイクルを採用して中間冷
却を行うことにより、冷暖給湯運転時の圧縮比が大きく
なる運転条件において、高段側圧縮機の吐出冷媒ガス温
度の異常上昇を防止するとともに、冷媒の圧縮に要する
動力を節約することができるものである。
As described above, by performing the intermediate cooling by employing the two-stage compression refrigeration cycle, it is possible to prevent an abnormal rise in the refrigerant gas temperature discharged from the high-stage compressor under the operating condition in which the compression ratio during the hot and cold water supply operation is increased. In addition, the power required for compressing the refrigerant can be saved.

発明が解決しようとする課題 しかしながら上記従来例のようなサイクルでは、比較
的圧縮比の小さい冷房運転時においても、2台の圧縮機
が絶えず運転されるという問題があり、さらに高段側圧
縮機で給湯と暖房を同時に運転することになるので暖房
と給湯の両負荷を賄う大きな能力の圧縮機が必要とな
り、また凝縮温度を給湯と暖房とで変えることが出来な
いため使い勝手が悪いという問題があった。
Problems to be Solved by the Invention However, in a cycle like the above-mentioned conventional example, there is a problem that two compressors are constantly operated even in a cooling operation with a relatively small compression ratio. Since hot water supply and heating will be operated at the same time, a compressor with a large capacity to cover both heating and hot water supply loads is required, and it is not easy to use because the condensation temperature can not be changed between hot water supply and heating. there were.

課題を解決するための手段 本発明の冷暖給湯システムは、低段側圧縮機、四方
弁、利用側熱交換器、主絞り装置、熱源側熱交換器を接
続し冷暖房回路を構成し、高段側圧縮機、給湯用熱交換
器、中間冷却器、中間絞り装置を接続し給湯回路を構成
し、前記冷暖房回路と接続したものであって、前記冷暖
房回路の前記低段側圧縮機の吐出部から四方弁の間に逆
止弁を設け、前記低段側圧縮機と前記逆止弁との間から
分岐した管路に制御弁を設け前記給湯回路の中間冷却器
を介し前記高段圧縮機の吸入側に接続し、前記低段側圧
縮機の吸入管と前記四方弁との間から分岐した管路に逆
止弁を設け前記制御弁と中間冷却器との間の管路に接続
し、前記利用側熱交換器と前記熱源側熱交換器の間に設
けられたそれぞれの前記主絞り装置の間から分岐し絞り
装置を介して中間熱交換器へ接続し、前記給湯回路側に
は前記高段側圧縮機と前記給湯用熱交換器の間に制御弁
を設け、前記制御弁と前記高段側圧縮機との間から分岐
した管路に制御弁を設け前記低段側圧縮機の吐出側に設
けた逆止弁と四方弁との間に接続し、前記高段圧縮機の
吐出側に給湯熱交換器と中間冷却器を介し前記冷暖房回
路のそれぞれの前記主絞り装置の間に接続したものであ
る。
Means for Solving the Problems The cooling / heating hot water supply system of the present invention comprises a cooling / heating circuit configured by connecting a low-stage compressor, a four-way valve, a use-side heat exchanger, a main throttle device, and a heat-source-side heat exchanger. A side compressor, a hot water supply heat exchanger, an intercooler, and an intermediate expansion device are connected to form a hot water supply circuit, which is connected to the cooling and heating circuit, and a discharge section of the low stage compressor of the cooling and heating circuit. A check valve is provided between the four-way valve and a control valve provided in a pipe branched from between the low-stage compressor and the check valve, and the high-stage compressor is provided through an intercooler in the hot water supply circuit. A check valve is provided in a pipe branched from between the suction pipe of the low-stage compressor and the four-way valve, and is connected to a pipe between the control valve and the intercooler. Branching from between the respective main throttle devices provided between the use side heat exchanger and the heat source side heat exchanger. Connected to the intermediate heat exchanger via a throttle device, a control valve is provided between the high-stage compressor and the hot-water supply heat exchanger on the hot water supply circuit side, and the control valve and the high-stage compressor are provided. A control valve is provided in a pipe branching from the lower stage and connected between a check valve provided on the discharge side of the low-stage compressor and a four-way valve, and hot water supply heat exchange is performed on the discharge side of the high-stage compressor. And an intercooler connected between the main throttle devices of the cooling and heating circuit.

作用 これにより、通常の冷房・暖房は、冷暖房回路の低段
側圧縮機により1段圧縮運転で行われ、暖房時高温風が
必要なときは、高段側圧縮機の運転による2段圧縮で吐
出された高温高圧の冷媒ガスが四方弁を通り利用側熱交
換器へ流れ吹き出し温度の高温化が図られる。また大き
な暖房負荷に対しては、低段および高段側圧縮機が並列
運転され(1段圧縮)吐出された冷媒ガスは四方弁前で
合流し共に利用側熱交換器へ流れ、冷媒循環量の増加に
より高能力運転される。冷媒についても暖房と同様に大
きな負荷に対しては、低段および高段側圧縮機が並列運
転され(1段圧縮)吐出された冷媒ガスを四方弁前で合
流させ冷媒循環量増大を図り、熱源側熱交換器で凝縮
し、利用側熱交換器で蒸発することにより高能力運転さ
れる。
By this operation, normal cooling and heating are performed in a single-stage compression operation by the low-stage compressor of the air-conditioning circuit, and when high-temperature air is required for heating, two-stage compression is performed by operation of the high-stage compressor. The discharged high-temperature and high-pressure refrigerant gas flows through the four-way valve to the use-side heat exchanger, thereby increasing the blow-out temperature. For a large heating load, the low-stage and high-stage compressors are operated in parallel (one-stage compression), and the discharged refrigerant gas is joined before the four-way valve and flows together to the use-side heat exchanger, and the refrigerant circulation amount is increased. High capacity operation due to increase in As for the refrigerant, for a large load as in the case of heating, the low-stage and high-stage compressors are operated in parallel (one-stage compression) to combine the discharged refrigerant gas before the four-way valve to increase the refrigerant circulation amount. High capacity operation is achieved by condensing in the heat source side heat exchanger and evaporating in the use side heat exchanger.

給湯暖房運転時は、低段側圧縮機を用いた1段圧縮に
よる冷暖房回路で暖房が行われ、同じく1段圧縮で高段
側圧縮機により給湯運転が行われる。そのため従来のよ
うに暖房給湯両負荷を賄う圧縮機能力は必要なく、それ
ぞれ独立して負荷に対応できる。さらに高温給湯を高温
風暖房が要求された場合は高段圧縮機から吐出された高
温高圧のガスを制御弁で給湯用熱交換器側と冷暖房回路
の四方弁を介して利用側熱交換器へ流すことにより給湯
・暖房で高温化が実現できる。
During the hot water supply / room heating operation, heating is performed in a cooling / heating circuit by one-stage compression using a low-stage compressor, and the hot-water supply operation is also performed by the high-stage compressor in one-stage compression. Therefore, unlike the conventional case, there is no need for a compression function to cover both loads of heating and hot water supply, and the loads can be independently handled. Furthermore, when high-temperature hot water supply requires high-temperature air heating, high-temperature, high-pressure gas discharged from the high-stage compressor is supplied to the heat exchanger for hot water supply by the control valve and to the use-side heat exchanger through the four-way valve of the cooling and heating circuit. High temperature can be realized by hot water supply and heating by flowing.

冷房給湯運転時においては、利用側熱交換器の廃熱を
利用するが、高段側圧縮機を用い給湯用熱交換器で給湯
水を加熱し凝縮した液冷媒を利用側熱交換器で蒸発させ
四方弁から逆止弁を通り中間冷却器を経て高段側圧縮機
へ吸入させる1段圧縮運転と、低段側圧縮機も同時に運
転し(高段側圧縮機と低段側圧縮機との並列運転)各々
の圧縮機から吐出された冷媒ガスを給湯用熱交換器前で
合流させ、給湯用熱交換器で給湯水を加熱し凝縮した液
冷媒を利用側熱交換器で蒸発させ四方弁を経た冷媒の一
部は逆止弁を通り中間冷却器へ送り残りは低段側圧縮機
へ吸入させる2台並列1段圧縮運転と、さらに高温給湯
が要求されたとき低段側圧縮機と高段側圧縮機の直列運
転による2段圧縮運転が実現できる。冷房負荷の無いと
きは四方弁の切り替えで利用側熱交換器と熱源側熱交換
器とを切り換えることにより給湯単独運転が可能とな
る。
During the cooling hot water supply operation, the waste heat of the use side heat exchanger is used, but the liquid refrigerant that has been heated and condensed by the hot water supply heat exchanger using the high-stage compressor is evaporated by the use side heat exchanger. One-stage compression operation in which the four-way valve passes through the check valve and passes through the intercooler to the high-stage compressor, and the low-stage compressor also operates simultaneously (the high-stage compressor and the low-stage compressor The refrigerant gas discharged from each compressor is joined in front of the heat exchanger for hot water supply, the hot water is heated by the heat exchanger for hot water supply, and the condensed liquid refrigerant is evaporated by the heat exchanger on the utilization side to evaporate in all directions. Part of the refrigerant that has passed through the valve passes through the check valve and is sent to the intercooler, and the rest is sucked into the low-stage compressor. Two-stage parallel single-stage compression operation, and when high-temperature hot water supply is required, the low-stage compressor And two-stage compression operation by series operation of the high-stage compressor. When there is no cooling load, the hot water supply alone operation can be performed by switching the use side heat exchanger and the heat source side heat exchanger by switching the four-way valve.

これにより低圧縮比運転、高能力運転、高温対応の高
圧縮比運転と負荷に合わせた運転モードが選択でき省エ
ネルギーで使い勝手のよい2段圧縮冷暖給湯システムが
提供できる。
As a result, a low-compression-ratio operation, a high-capacity operation, a high-compression-ratio operation corresponding to a high temperature, and an operation mode according to the load can be selected, and an energy-saving and easy-to-use two-stage compression cooling and heating water supply system can be provided.

実施例 以下、本発明の実施例を添付図面に基づいて説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は本発明の一実施例における2段圧縮冷暖給湯
システムを示すものであり、10は低段側圧縮機、11は逆
止弁、12は四方弁、13は利用側熱交換器、14、15は主絞
り装置、16は熱源側熱交換器であり、これらを順次配管
接続することにより、冷暖房回路17を構成している。ま
た、18は高段側圧縮機、19は制御弁、20は給湯用熱交換
器、21は副絞り装置、22は中間冷却器、であり給湯回路
24を構成しおり、25は低段側圧縮機10の吐出側から分岐
された管路に設けられた制御弁であり、中間冷却器22に
接続されている。26は高段側圧縮機18の吐出側から分岐
された管路に設けられた制御弁であり、逆止弁11と四方
弁12との間に接続されている。27は四方弁12と低段側圧
縮機10との間から分岐された管路に設けられた逆止弁で
あり、28は主絞り装置14と15との間から分岐された管路
に設けられた絞り装置であり、制御弁25と中間冷却器22
との間に接続され2段圧縮冷暖給湯システムを構成して
いる。
FIG. 1 shows a two-stage compression hot / cold hot water supply system according to one embodiment of the present invention, in which 10 is a low-stage compressor, 11 is a check valve, 12 is a four-way valve, 13 is a use side heat exchanger, Reference numerals 14 and 15 denote main expansion devices, and reference numeral 16 denotes a heat source side heat exchanger, and these are sequentially connected to form a cooling / heating circuit 17. Reference numeral 18 denotes a high-stage compressor, 19 denotes a control valve, 20 denotes a heat exchanger for hot water supply, 21 denotes a sub-throttle device, and 22 denotes an intermediate cooler.
A control valve 25 is provided in a pipe branched from the discharge side of the low-stage compressor 10, and is connected to the intercooler 22. Reference numeral 26 denotes a control valve provided in a pipe branched from the discharge side of the high-stage compressor 18, and is connected between the check valve 11 and the four-way valve 12. 27 is a check valve provided in a pipe branched from between the four-way valve 12 and the low-stage compressor 10, and 28 is provided in a pipe branched from between the main throttle devices 14 and 15. Control valve 25 and intercooler 22
To form a two-stage compression cooling / heating hot water supply system.

このような2段圧縮冷暖給湯システムに於ける作用を
説明する。
The operation in such a two-stage compression cooling / heating hot water supply system will be described.

まず、通常の冷房・暖房運転は、冷暖房回路17で行わ
れる。暖房運転は、低段側圧縮機10から吐出された冷媒
ガスが逆止弁11を通り四方弁12から利用側熱交換器13で
凝縮液化し冷媒液は、主絞り装置14を通過し主絞り装置
15で減圧され熱源側熱交換器16で蒸発ガス化し再び四方
弁12から低段側圧縮機10へ吸入される。冷房運転は、四
方弁12を切り変えることにより冷媒循環方向を逆転させ
利用側熱交換器13で蒸発させる。この暖房・冷房運転は
比較的低圧縮比であるため低段側圧縮機10により1段圧
縮運転され、このとき、高段側圧縮機18、制御弁19、2
5、26、絞り装置28は閉じている。
First, normal cooling / heating operation is performed in the cooling / heating circuit 17. In the heating operation, the refrigerant gas discharged from the low-stage compressor 10 passes through the check valve 11 and is condensed and liquefied in the use side heat exchanger 13 from the four-way valve 12. apparatus
The pressure is reduced at 15, the gas is vaporized by the heat source side heat exchanger 16, and is again sucked into the low-stage compressor 10 from the four-way valve 12. In the cooling operation, the refrigerant circulation direction is reversed by switching the four-way valve 12, and the refrigerant is evaporated by the use side heat exchanger 13. In this heating / cooling operation, since the compression ratio is relatively low, one-stage compression operation is performed by the low-stage compressor 10, and at this time, the high-stage compressor 18, the control valves 19, 2
5, 26, the aperture device 28 is closed.

次に暖房運転において快適な暖房感が得られる高温吹
き出し運転を行うときは、高圧縮比に対応した2段圧縮
運転とする。即ち、低段側圧縮機10から吐出された中間
圧の冷媒ガスを制御弁25から中間冷却器22を介し、高段
側圧縮機18で更に吸入圧縮させ高温高圧になった冷媒ガ
スを制御弁26を介し四方弁12から利用側熱交換器13へ流
し、室内の空気と熱交換し高温の吹き出しが実現でき
る。凝縮液化した高圧冷媒液は、主絞り装置14を通過し
主絞り装置15で減圧され低圧となり熱源側熱交換器16で
蒸発ガス化し再び四方弁12から低段側圧縮機10へ吸入さ
れる。この時、高段側圧縮機18の吐出温度の異常昇温を
防ぐため主絞り装置15手前の高圧液冷媒を絞り装置28を
介し低段側圧縮機10から吐出された中間圧の冷媒ガスへ
インジェクションする。これにより低段側圧縮機10の中
間圧の吐出ガスが冷却され高段側圧縮機18でさらに圧縮
されても吐出温度の異常な上昇は防止できる。これによ
り暖房運転に於て高温吹き出しが必要なとき2段圧縮運
転により高温吹き出しが実現できる。尚、この時制御弁
19は閉じており、逆止弁11、27は、出口側の圧が高いた
め中間圧・低圧、高圧・中間圧、が混合することを防止
している。
Next, when performing a high-temperature blowing operation that provides a comfortable feeling of heating in the heating operation, a two-stage compression operation corresponding to a high compression ratio is performed. That is, the intermediate-pressure refrigerant gas discharged from the low-stage compressor 10 is further sucked and compressed by the high-stage compressor 18 through the intermediate cooler 22 from the control valve 25, and the high-temperature and high-pressure refrigerant gas is controlled by the control valve. The air flows from the four-way valve 12 to the use-side heat exchanger 13 via 26, and exchanges heat with indoor air to achieve high-temperature blowing. The condensed and liquefied high-pressure refrigerant liquid passes through the main throttle device 14, is decompressed by the main throttle device 15, becomes low pressure, evaporates and gasifies in the heat source side heat exchanger 16, and is sucked into the low-stage compressor 10 again from the four-way valve 12. At this time, in order to prevent an abnormal rise in the discharge temperature of the high-stage compressor 18, the high-pressure liquid refrigerant before the main throttle device 15 is converted into intermediate-pressure refrigerant gas discharged from the low-stage compressor 10 via the throttle device 28. Inject. Thereby, even if the discharge gas at the intermediate pressure of the low-stage compressor 10 is cooled and further compressed by the high-stage compressor 18, an abnormal rise in the discharge temperature can be prevented. Thus, when high-temperature blowing is required in the heating operation, high-temperature blowing can be realized by the two-stage compression operation. At this time, the control valve
19 is closed, and the check valves 11, 27 prevent the intermediate pressure / low pressure and the high pressure / intermediate pressure from being mixed due to the high pressure on the outlet side.

次に、大きな暖房負荷に対しては、低段側圧縮機10か
ら逆止弁11を介して吐出された冷媒ガスと、高段側圧縮
機18から制御弁26を介して吐出された冷媒ガスとを四方
弁12前で合流され、四方弁12を経て利用側熱交換器13へ
入り凝縮液化した冷媒液は、主絞り装置14を通過し主絞
り装置15で減圧され、熱源側熱交換器16で蒸発ガス化し
再び四方弁12を通り、一部は低段側圧縮機10へ吸入さ
れ、一部は逆止弁27を介し中間冷却器22から高段側圧縮
機18へ吸入される。この高段側圧縮機18と低段側圧縮機
10の並列運転により利用側熱交換器13へ流れる冷媒循環
量の増加により高能力暖房運転される。冷房についても
暖房と同様に大きな負荷に対しては、低段側圧縮機10お
よび高段側圧縮機18の並列運転が行われ、冷媒循環量の
増加により高能力運転が実現できる。ただし四方弁12を
切り換え利用側熱交換器13を蒸発器とする。尚、この暖
房、冷房とも、制御弁19、25、絞り装置28は閉じてい
る。
Next, for a large heating load, the refrigerant gas discharged from the low-stage compressor 10 via the check valve 11 and the refrigerant gas discharged from the high-stage compressor 18 via the control valve 26 The refrigerant liquid which is merged in front of the four-way valve 12 and enters the use-side heat exchanger 13 via the four-way valve 12 passes through the main expansion device 14 and is depressurized by the main expansion device 15, and is decompressed by the heat source-side heat exchanger. At 16, it is vaporized and gasified again, passes through the four-way valve 12 again, and a part is sucked into the low-stage compressor 10, and a part is sucked from the intercooler 22 to the high-stage compressor 18 via a check valve 27. The high-stage compressor 18 and the low-stage compressor
The high-capacity heating operation is performed by increasing the amount of circulating refrigerant flowing to the use-side heat exchanger 13 by the parallel operation of the ten. In the case of cooling as well, for a large load like heating, the low-stage compressor 10 and the high-stage compressor 18 are operated in parallel, and high-capacity operation can be realized by increasing the amount of circulating refrigerant. However, the four-way valve 12 is switched and the use-side heat exchanger 13 is used as an evaporator. Note that the control valves 19 and 25 and the expansion device 28 are closed for both heating and cooling.

給湯暖房運転時は、低段側圧縮機10を用いた1段圧縮
により冷暖房回路17で暖房が行われ(通常の暖房と同
じ)、高段側圧縮機18を用いた1段圧縮により給湯運転
が行われる。即ち、高段側圧縮機18から吐出された冷媒
ガスは、制御弁19を通り給湯用熱交換器20へ入り給湯水
と熱交換し凝縮液化し、中間冷却器22を通過し利用側熱
交換器13から出てきた液冷媒と合流し、主絞り装置15で
減圧され熱源側熱交換器16で蒸発ガス化し四方弁12を通
り一部は冷暖房回路17の暖房用冷媒として低段側圧縮機
10へ吸入され、残りの冷媒は逆止弁27を通り中間冷却器
22から高段側圧縮機18に吸入される。尚、前記運転モー
ドの時は、制御弁25、26、絞り装置28、中間絞り装置21
は閉じている。そうすることにより比較的低圧縮比での
給湯暖房がそれぞれ独立して1段圧縮運転することがで
き、要求に応じた凝縮温度が得られる。そのため従来の
ように暖房給湯両負荷を賄う圧縮機能力は必要なく、そ
れぞれ独立して負荷に対応でき使い勝手のよいシステム
である。
During the hot water supply / heating operation, heating is performed in the cooling / heating circuit 17 by one-stage compression using the low-stage compressor 10 (same as normal heating), and hot-water supply operation is performed by one-stage compression using the high-stage compressor 18. Is performed. That is, the refrigerant gas discharged from the high-stage compressor 18 passes through the control valve 19, enters the hot-water supply heat exchanger 20, exchanges heat with the hot-water supply, condenses and liquefies, and passes through the intermediate cooler 22 to use-side heat exchange. Liquid refrigerant coming out of the heat exchanger 13, is decompressed by the main throttle device 15, is vaporized and gasified by the heat source side heat exchanger 16, passes through the four-way valve 12, and partially passes through the four-way valve 12 as a heating refrigerant in the cooling / heating circuit 17.
10 and the remaining refrigerant passes through check valve 27 and intercooler
From 22, it is sucked into the high-stage compressor 18. In the operation mode, the control valves 25 and 26, the expansion device 28, the intermediate expansion device 21
Is closed. By doing so, hot water supply and heating at a relatively low compression ratio can be independently operated in a single-stage compression operation, and a condensing temperature according to demand can be obtained. Therefore, unlike the conventional case, there is no need for a compression function to cover both heating and hot water supply loads, and the system can handle the loads independently and is a convenient system.

給湯・暖房に高温の要求のある場合は、低段側圧縮機
10から吐出された中間圧の冷媒ガスを制御弁25から中間
冷却器22を介し、高段側圧縮機18で更に吸入圧縮させ高
温高圧になった冷媒ガスを制御弁26と19の開度により暖
房用と給湯用に分離しする。制御弁26により分離された
暖房用の高温高圧ガスは、四方弁12から利用側熱交換器
13へ流し、室内の空気と熱交換し高温の吹き出しが実現
できる。凝縮液化した高圧冷媒液は、主絞り装置14を通
過し主絞り装置15で減圧され低圧となり熱源側熱交換器
16で蒸発ガス化し再び四方弁12から低段側圧縮機10へ吸
入される。一方制御弁19により分離された高温高圧の給
湯用冷媒ガスは、給湯用熱交換器20で給湯水を加熱し、
凝縮した高圧液冷媒を中間冷却器22を介しを通過し主絞
り装置15で減圧し、熱源側熱交換器16で蒸発ガス化し、
四方弁12から低段側圧縮機10へ吸入される。このとき低
段圧縮機10の中間圧吐出ガスの冷却は中間絞り装置21、
または絞り装置28のいずれでもよい。
If high temperature is required for hot water supply and heating, use a low-stage compressor.
The intermediate-pressure refrigerant gas discharged from 10 is further suction-compressed by the high-stage compressor 18 through the intermediate cooler 22 from the control valve 25, and the high-temperature and high-pressure refrigerant gas is changed by the opening of the control valves 26 and 19. Separate for heating and hot water. The high-temperature and high-pressure gas for heating separated by the control valve 26 is supplied from the four-way valve 12 to the use side heat exchanger.
13 and exchange heat with indoor air to achieve high-temperature blowing. The condensed and liquefied high-pressure refrigerant liquid passes through the main throttle device 14 and is decompressed by the main throttle device 15 to a low pressure, so that the heat source side heat exchanger
The gas is vaporized in 16 and is again sucked into the low-stage compressor 10 from the four-way valve 12. On the other hand, the high-temperature and high-pressure hot water supply refrigerant gas separated by the control valve 19 heats the hot water in the hot water supply heat exchanger 20,
The condensed high-pressure liquid refrigerant passes through the intercooler 22, is depressurized by the main throttle device 15, is vaporized by the heat source side heat exchanger 16, and is vaporized.
The four-way valve 12 sucks into the low-stage compressor 10. At this time, cooling of the intermediate-pressure discharge gas of the low-stage compressor 10 is performed by the intermediate expansion device 21,
Alternatively, any of the aperture devices 28 may be used.

また、制御弁19、26の開度調整により給湯と暖房の能
力調整が可能となる。
In addition, by adjusting the opening degrees of the control valves 19 and 26, it is possible to adjust the capacity of hot water supply and heating.

これにより2段圧縮運転で、暖房運転では高温吹き出
しが、給湯では高温の給湯が可能となる。尚、この時逆
止弁11、27は、出口側の圧が高いため中間圧・低圧、高
圧・中間圧、が混合することを防止している。
Thereby, in the two-stage compression operation, high-temperature blowing can be performed in the heating operation, and high-temperature hot water can be supplied in the hot water supply. At this time, the non-return valves 11, 27 prevent the intermediate pressure / low pressure and the high pressure / intermediate pressure from being mixed due to the high pressure on the outlet side.

冷房給湯運転時においては、冷房の利用側熱交換器13
の蒸発熱を利用するが、高段側圧縮機18から吐出された
冷媒ガスは、給湯用熱交換器20で給湯水を加熱し、凝縮
した液冷媒を中間冷却器22を介し主絞り装置14で減圧
し、利用側熱交換器13で室内空気と熱交換し蒸発ガス化
し、四方弁12から逆止弁27を通り中間冷却器22を経て高
段側圧縮機18へ吸入される。尚、このとき制御弁25、26
は閉じている。この運転は、1段圧縮運転であり高い給
湯温度を必要としない場合で、冷房の廃熱で給湯水を加
熱する省エネルギー運転が実現できる。次に、冷房給湯
ともに大きな負荷がある場合、前記の運転サイクルに低
段側圧縮機10も同時に運転し、吐出された冷媒ガスを逆
止弁11を通し制御弁26を経て制御弁19の手前で高段側圧
縮機18から吐出された冷媒ガスと合流され、冷媒流量が
増加し給湯用熱交換器20で給湯水と熱交換し凝縮する。
尚、このときは制御弁25は閉じている。冷媒循環量が増
加した分、給湯能力が増加する。同時に利用側熱交換器
13も同様に蒸発能力が増加する。蒸発した冷媒ガスは、
四方弁12を通り冷媒の一部は逆止弁27を通り中間冷却器
22を経て高段側圧縮機18に吸入される。残りは低段側圧
縮機10へ吸入させる。さらに高温給湯の要求がある場
合、低段側圧縮機10と高段側圧縮機18の直列運転による
2段圧縮運転が実現できる。低段側圧縮機10から吐出さ
れた冷媒ガスの全量が制御弁25を経て中間冷却器22を通
り、冷却され高段側圧縮機18に吸入される。高側圧縮機
18から吐出された冷媒ガスは、給湯用熱交換器20で凝縮
液化し一部は中間絞り装置21により中間圧力まで減圧さ
れ中間冷却器22内で低段側圧縮機10の吐出ガス冷却に使
われ、残りの液冷媒は中間冷却器22の中を貫通し過冷却
され主絞り装置14で減圧され利用側熱交換器13で蒸発ガ
ス化し四方弁12を経て低段側圧縮機10に吸入される。こ
の時は制御弁26は閉じている。冷房負荷の無いときは四
方弁12の切り替えで利用側熱交換器13と熱源側熱交換器
16とを切り換えることにより給湯のみの2段圧縮運転が
可能となる。
During the cooling hot water supply operation, the cooling use side heat exchanger 13
The refrigerant gas discharged from the high-stage compressor 18 heats the hot water in the hot water supply heat exchanger 20 and condenses the liquid refrigerant through the intercooler 22 to the main expansion device 14. Then, the heat is exchanged with the indoor air in the use side heat exchanger 13 to evaporate and gasified, and is sucked from the four-way valve 12 through the check valve 27 to the high-stage compressor 18 through the intermediate cooler 22. At this time, the control valves 25, 26
Is closed. This operation is a one-stage compression operation and does not require a high hot water supply temperature, and an energy saving operation of heating hot water with waste heat of cooling can be realized. Next, when a large load is applied to both the cooling and hot water supply, the low-stage compressor 10 is simultaneously operated in the above-mentioned operation cycle, and the discharged refrigerant gas passes through the check valve 11 and passes through the control valve 26 before the control valve 19. Then, the refrigerant gas is merged with the refrigerant gas discharged from the high-stage compressor 18, the flow rate of the refrigerant increases, and heat exchange with hot water is performed by the heat exchanger 20 for hot water supply to condense.
At this time, the control valve 25 is closed. As the amount of circulating refrigerant increases, the hot water supply capacity increases. User side heat exchanger at the same time
13 also has an increased evaporation capacity. The evaporated refrigerant gas is
A part of the refrigerant passes through the four-way valve 12 and passes through the check valve 27 and intercooler
It is sucked into the high-stage compressor 18 via 22. The rest is sucked into the low-stage compressor 10. Further, when there is a demand for high-temperature hot water supply, a two-stage compression operation can be realized by a series operation of the low-stage compressor 10 and the high-stage compressor 18. The entire amount of the refrigerant gas discharged from the low-stage compressor 10 passes through the control valve 25, passes through the intercooler 22, is cooled, and is sucked into the high-stage compressor 18. High side compressor
The refrigerant gas discharged from 18 is condensed and liquefied in a hot water supply heat exchanger 20 and partially decompressed to an intermediate pressure by an intermediate expansion device 21 and used in an intermediate cooler 22 to cool the discharge gas of the low-stage compressor 10. The remaining liquid refrigerant passes through the intercooler 22, is supercooled, is decompressed by the main expansion device 14, is vaporized by the use side heat exchanger 13, is vaporized by the use side heat exchanger 13, and is sucked into the low stage compressor 10 via the four-way valve 12. You. At this time, the control valve 26 is closed. When there is no cooling load, use side heat exchanger 13 and heat source side heat exchanger by switching four-way valve 12.
Switching to 16 makes it possible to perform a two-stage compression operation using only hot water.

以上説明したように通常の冷房暖房運転では圧縮比は
比較的小さく従って低段側圧縮機10のみの低圧縮比運転
即ち1段圧縮運転を行い、大きな負荷に対しては低段側
圧縮機10と高段側圧縮機18の並列運転により高能力運転
が可能となる。さらに高温対応の高圧縮比運転が給湯暖
房それぞれ可能であり、給湯回路24側の給湯運転と冷暖
房回路17の冷暖房運転と負荷に合わせた凝縮温度で運転
することが可能であり、高段側圧縮機18は給湯負荷のみ
を賄う能力が良く、冷房廃熱の給湯運転も実現でき、様
々な負荷に合わせた運転モードが選択でき省エネルギー
で使い勝手のよい2段圧縮冷暖給湯システムが提供でき
る。
As described above, in the ordinary cooling and heating operation, the compression ratio is relatively small, so the low compression ratio operation of only the low-stage compressor 10, that is, the one-stage compression operation, is performed. High-performance operation becomes possible by the parallel operation of the high-pressure side compressor 18 and the high-pressure side compressor 18. Furthermore, a high compression ratio operation corresponding to a high temperature is possible for each of the hot water supply and heating, and the hot water supply operation of the hot water supply circuit 24, the cooling and heating operation of the cooling and heating circuit 17 and the operation at the condensing temperature according to the load can be performed. The machine 18 has a good ability to cover only the hot water supply load, can also perform the hot water supply operation of cooling waste heat, can select an operation mode according to various loads, and can provide a two-stage compression cooling / heating hot water supply system that is energy-saving and easy to use.

発明の効果 以上の説明より明らかなように、本発明は、給湯・暖
房・冷房運転時に於て、低段側圧縮機と高段側圧縮機に
よる単独運転、高負荷時高能力の並列運転、更に高温対
応の高圧縮比運転が、給湯暖房それぞれで可能であり、
暖房の場合高温風が実現でき快適性が向上し、高段側圧
縮機による冷房給湯運転が行え冷房の廃熱を給湯に利用
でき、冷暖房と給湯運転で凝縮温度を最適化できる等、
様々な負荷に合わせた運転モードが選択でき省エネルギ
ーで使い勝手のよい2暖圧縮冷暖給湯システムであり実
用上多大な効果を発揮するものである。
Advantageous Effects of the Invention As is clear from the above description, the present invention provides, during hot water supply / heating / cooling operation, single operation with a low-stage compressor and a high-stage compressor, parallel operation with high capacity at high load, Furthermore, high compression ratio operation corresponding to high temperature is possible for each hot water supply and heating,
In the case of heating, high-temperature air can be realized and comfort is improved, cooling and hot water supply operation by the high-stage compressor can be performed, and waste heat of cooling can be used for hot water supply, and condensing temperature can be optimized in cooling and heating and hot water supply operation.
The operation mode can be selected according to various loads, and it is an energy-saving and easy-to-use two-heat compression / heating / hot water supply system which exerts a great effect in practical use.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の2暖圧縮冷暖給湯システム
の構成図、第2図および第3図は従来例の2段圧縮冷凍
サイクルの構成図である。 10……低段側圧縮機、11、27……逆止弁、12……四方
弁、13……利用側熱交換器、14、15……主絞り装置、16
……熱源側熱交換器、17……冷暖房回路、18……高段側
圧縮機、19、25、26……制御弁、20……給湯用熱交換
器、21……中間絞り装置、22……中間冷却器、24……給
湯回路、28……絞り装置。
FIG. 1 is a configuration diagram of a two-warming compression / heating / hot water supply system according to one embodiment of the present invention, and FIGS. 2 and 3 are configuration diagrams of a conventional two-stage compression refrigeration cycle. 10 ... Low-stage compressor, 11, 27 ... Check valve, 12 ... Four-way valve, 13 ... Use heat exchanger, 14, 15 ... Main throttle device, 16
... heat source side heat exchanger, 17 ... air conditioning circuit, 18 ... high stage compressor, 19, 25, 26 ... control valve, 20 ... hot water supply heat exchanger, 21 ... intermediate throttle device, 22 … Intercooler, 24… hot water supply circuit, 28… throttle device.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】低段側圧縮機、四方弁、利用側熱交換器、
主絞り装置、熱源側熱交換器を接続し冷暖房回路を構成
し、高段側圧縮機、給湯用熱交換器、中間冷却器、中間
絞り装置を接続し給湯回路を構成し、前記冷暖房回路と
接続したものであって、前記冷暖房回路の前記低段側圧
縮機の吐出部から四方弁の間に逆止弁を設け、前記低段
側圧縮機と前記逆止弁との間から分岐した管路に制御弁
を設け前記給湯回路の中間冷却器を介し前記高段圧縮機
の吸入側に接続し、前記低段側圧縮機の吸入管と前記四
方弁との間から分岐した管路に逆止弁を設け前記制御弁
と中間冷却器との間の管路に接続し、前記利用側熱交換
器と前記熱源側熱交換器の間に設けられたそれぞれの前
記主絞り装置の間から分岐し絞り装置を介して中間熱交
換器へ接続し、前記給湯回路側には前記高段側圧縮機と
前記給湯用熱交換器の間に制御弁を設け、前記制御弁と
前記高段側圧縮機との間から分岐した管路に制御弁を設
け前記低段側圧縮機の吐出側に設けた逆止弁と四方弁と
の間に接続し、前記高段圧縮機の吐出側に給湯熱交換器
と中間冷却器を介し前記冷暖房回路のそれぞれの前記主
絞り装置の間に接続したことを特徴とする2段圧縮冷暖
給湯システム。
1. A low-stage compressor, a four-way valve, a use-side heat exchanger,
A main throttle device, a heat source side heat exchanger is connected to form a cooling and heating circuit, a high-stage compressor, a hot water supply heat exchanger, an intercooler, and an intermediate throttle device are connected to form a hot water supply circuit. A pipe that is connected and has a check valve provided between the discharge part of the low-stage compressor and the four-way valve of the cooling / heating circuit, and branches from between the low-stage compressor and the check valve. A control valve is provided in the passage, connected to the suction side of the high-stage compressor through the intercooler of the hot water supply circuit, and is connected to a pipeline branched from between the suction pipe of the low-stage compressor and the four-way valve. A stop valve is provided, connected to a pipeline between the control valve and the intercooler, and branched from between the respective main throttle devices provided between the use side heat exchanger and the heat source side heat exchanger. Connected to an intermediate heat exchanger via a squeezing device, and the high-stage compressor and the hot-water supply heat exchange A check valve and a four-way valve are provided between the control valve and the high-stage compressor. A two-stage compression hot / cold hot water supply, which is connected between the main throttle devices of the cooling / heating circuit via a hot water supply heat exchanger and an intercooler on the discharge side of the high stage compressor. system.
JP1288376A 1989-11-06 1989-11-06 Two-stage compression cooling / heating hot water supply system Expired - Lifetime JP2618057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1288376A JP2618057B2 (en) 1989-11-06 1989-11-06 Two-stage compression cooling / heating hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288376A JP2618057B2 (en) 1989-11-06 1989-11-06 Two-stage compression cooling / heating hot water supply system

Publications (2)

Publication Number Publication Date
JPH03148569A JPH03148569A (en) 1991-06-25
JP2618057B2 true JP2618057B2 (en) 1997-06-11

Family

ID=17729403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288376A Expired - Lifetime JP2618057B2 (en) 1989-11-06 1989-11-06 Two-stage compression cooling / heating hot water supply system

Country Status (1)

Country Link
JP (1) JP2618057B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202018158U (en) * 2010-09-30 2011-10-26 邓锡伟 Air-conditioning water heater
JP2015048969A (en) * 2013-08-30 2015-03-16 株式会社富士通ゼネラル Heat pump device
CN104266399B (en) * 2014-10-16 2017-03-22 珠海格力电器股份有限公司 Heat pump system
CN111550942A (en) * 2020-04-26 2020-08-18 珠海格力电器股份有限公司 Double-enthalpy-increasing double-condensing three-stage compression refrigeration system, air conditioner and control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367253A (en) * 1976-11-26 1978-06-15 Mitsubishi Electric Corp Cooling and heating apparatus with hot water supply
JPS58217168A (en) * 1982-06-11 1983-12-17 株式会社日立製作所 Hot-water supply air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367253A (en) * 1976-11-26 1978-06-15 Mitsubishi Electric Corp Cooling and heating apparatus with hot water supply
JPS58217168A (en) * 1982-06-11 1983-12-17 株式会社日立製作所 Hot-water supply air conditioner

Also Published As

Publication number Publication date
JPH03148569A (en) 1991-06-25

Similar Documents

Publication Publication Date Title
EP1686323A2 (en) Heat exchanger of air conditioner
CN112377998B (en) All-condition heat pump heat recovery type fresh air fan with multiple reheating modes
US4528823A (en) Heat pump apparatus
JP2001235245A (en) Freezer
JP3324420B2 (en) Refrigeration equipment
JP2618057B2 (en) Two-stage compression cooling / heating hot water supply system
CN116123744A (en) Ultralow-temperature single-stage and double-stage hybrid air source heat pump unit
CN215930176U (en) Refrigerating system
JPH02309157A (en) Two-stage compression refrigeration cycle device and operation thereof
KR102274194B1 (en) An air conditioner
JP2646709B2 (en) Air conditioner
JP2808899B2 (en) Two-stage compression refrigeration cycle device
JP2543182B2 (en) Cooling / heating hot water supply system
CN111707015B (en) Air conditioning system and control method thereof
JPH09318178A (en) Air conditioner
JPH0926219A (en) Cooling/heating apparatus for many rooms
JP2524382B2 (en) Air conditioner
CN114087798B (en) Control method of direct expansion type fresh air conditioning system
JPH0528440Y2 (en)
JPH04268165A (en) Double-stage compression and freezing cycle device
JPH0351644A (en) Multiroom cooling heating device
JP2712641B2 (en) Air conditioner
JPH0827087B2 (en) Two-stage compression refrigeration cycle device
JP2800573B2 (en) Air conditioner
KR20020072101A (en) An evaporative temperature compensation device and process of heat pump