JP2001235245A - Freezer - Google Patents

Freezer

Info

Publication number
JP2001235245A
JP2001235245A JP2000044665A JP2000044665A JP2001235245A JP 2001235245 A JP2001235245 A JP 2001235245A JP 2000044665 A JP2000044665 A JP 2000044665A JP 2000044665 A JP2000044665 A JP 2000044665A JP 2001235245 A JP2001235245 A JP 2001235245A
Authority
JP
Japan
Prior art keywords
gas
refrigerant
stage compressor
stage
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000044665A
Other languages
Japanese (ja)
Inventor
Takahiro Yamaguchi
貴弘 山口
Tomohiro Yabu
知宏 薮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2000044665A priority Critical patent/JP2001235245A/en
Publication of JP2001235245A publication Critical patent/JP2001235245A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Abstract

PROBLEM TO BE SOLVED: To increase an economizer effect in a double-stage compression type freezing cycle. SOLUTION: Discharged gas at a lower stage compressor and a double-phase refrigerant at an intermediate pressure are pre-mixed to each other, gas and liquid are separated by a gas-liquid separator (24), wherein the liquid refrigerant is supplied to an evaporator (13) and the gaseous refrigerant is supplied to a higher stage compressor (21).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2段圧縮機構を備
えて冷凍サイクルを行う冷凍装置に関し、特に、エコノ
マイザ効果の改善技術に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus having a two-stage compression mechanism for performing a refrigerating cycle, and more particularly to a technique for improving an economizer effect.

【0002】[0002]

【従来の技術】従来より、例えば特開平4−80545
号公報に示されているように、蒸発圧力が低くて高圧縮
比の運転が要求される冷凍装置では、2段圧縮式冷凍サ
イクルが採用されている。2段圧縮式冷凍サイクルの圧
縮機構は、低段側圧縮機と高段側圧縮機とから構成さ
れ、一方の圧縮機のみを使用する単段圧縮運転と、両方
の圧縮機を直列に使用する2段圧縮運転とを切り換える
ことができるように構成されている。
2. Description of the Related Art Conventionally, for example, Japanese Patent Application Laid-Open No. 4-80545
As described in the publication, a two-stage compression refrigeration cycle is employed in a refrigeration system that requires a low evaporation pressure and a high compression ratio operation. The compression mechanism of the two-stage compression refrigeration cycle is composed of a low-stage compressor and a high-stage compressor, and uses a single-stage compression operation using only one compressor and uses both compressors in series. It is configured to be able to switch between two-stage compression operation.

【0003】そして、2段圧縮式冷凍サイクルの冷凍装
置においては、2段圧縮運転時に冷媒回路内で中間圧冷
媒を生成し、この中間圧冷媒のガス相と低段側圧縮機の
吐出ガス冷媒とを合流させて高段側圧縮機に供給するこ
とによりエコノマイザ効果を発揮させ、吐出冷媒温度の
過上昇による油の劣化や冷媒の分解を防いで信頼性を高
めるとともに、効率向上によるCOP(成績係数)の改
善を図っているものがある。
In the refrigeration system of the two-stage compression refrigeration cycle, an intermediate-pressure refrigerant is generated in the refrigerant circuit during the two-stage compression operation, and the gas phase of the intermediate-pressure refrigerant and the gas refrigerant discharged from the low-stage compressor are discharged. And supply it to the high-stage compressor to achieve the economizer effect, prevent oil deterioration and refrigerant decomposition due to excessive rise in the discharge refrigerant temperature, improve reliability, and improve COP (performance) Coefficient).

【0004】具体的には、図8に示しているように、凝
縮器から蒸発器への液ラインに中間膨張弁と気液分離器
を設け、気液分離器へ流入した二相冷媒から分離した飽
和ガス状態の冷媒を、低段側圧縮機の吐出側から高段側
圧縮機の吸入側へ接続されたガスラインに供給するもの
や、図9に示しているように、液ラインに設けた気液分
離器に、低段側圧縮機の吐出側からの低段側吐出ライン
と、高段側圧縮機の吸入側への高段側吸入ラインとを接
続したものなどがある。
More specifically, as shown in FIG. 8, an intermediate expansion valve and a gas-liquid separator are provided in a liquid line from a condenser to an evaporator to separate the liquid from the two-phase refrigerant flowing into the gas-liquid separator. The refrigerant in the saturated gas state is supplied to the gas line connected from the discharge side of the low-stage compressor to the suction side of the high-stage compressor, or provided in the liquid line as shown in FIG. Some gas-liquid separators connect a low-stage discharge line from the discharge side of a low-stage compressor and a high-stage suction line to the suction side of a high-stage compressor.

【0005】[0005]

【発明が解決しようとする課題】このうち、図8に示し
た第1の例では、気液分離器により二相冷媒から飽和ガ
スを分離して低段側の吐出ガスと混合している。つま
り、図10のモリエル線図に示すように、圧縮行程の途
中でA点の飽和ガスとB点の低段側吐出ガスとを混合し
ているので、C点に示すように過熱の付いたガスが高段
側圧縮機に供給されることになり、高段側圧縮機に吸入
されるガス冷媒の温度が充分に低下せず、エコノマイザ
効果が不充分になる問題があった。
In the first example shown in FIG. 8, the saturated gas is separated from the two-phase refrigerant by the gas-liquid separator and mixed with the low-stage discharge gas. That is, as shown in the Mollier diagram of FIG. 10, the saturated gas at the point A and the low-stage side discharge gas at the point B are mixed in the middle of the compression stroke. Since the gas is supplied to the high-stage compressor, the temperature of the gas refrigerant sucked into the high-stage compressor is not sufficiently reduced, and the economizer effect is insufficient.

【0006】また、図9に示した第2の例では、高圧液
ラインから中間膨張弁を通って生成された二相冷媒と低
段側圧縮機からのガス冷媒とを気液分離器に流入させた
後、気液分離器内のガス冷媒を高段側圧縮機で吸入する
ようにしている。しかし、この場合には、二相冷媒から
分離したガス冷媒の圧力が液冷媒の圧力よりも高いとこ
ろに低段側の吐出ガス冷媒が入るため、ガス冷媒が図に
破線で示すように液冷媒と混合されずに流出してしま
い、低段側の吐出ガスを液冷媒で充分に冷却できないこ
とになる。このため、第1の例と同様に図10に示すよ
うに高段側で吸入するガス冷媒が過熱の付いた状態とな
り、やはりエコノマイザ効果が不充分になる問題があっ
た。
In the second example shown in FIG. 9, the two-phase refrigerant generated from the high-pressure liquid line through the intermediate expansion valve and the gas refrigerant from the low-stage compressor flow into the gas-liquid separator. After that, the gas refrigerant in the gas-liquid separator is sucked by the high-stage compressor. However, in this case, the gas refrigerant separated from the two-phase refrigerant is higher than the pressure of the liquid refrigerant, so that the low-stage discharge gas refrigerant enters the gas refrigerant. Therefore, the discharged gas on the lower stage side cannot be sufficiently cooled by the liquid refrigerant. For this reason, as in the first example, as shown in FIG. 10, the gas refrigerant sucked on the high stage side is in a state of being overheated, and the economizer effect is also insufficient.

【0007】本発明は、このような問題点に鑑みて創案
されたものであり、その目的とするところは、高段側圧
縮機に供給するガス冷媒を充分に冷却した状態として、
2段圧縮式冷凍サイクルにおけるエコノマイザ効果を高
めることである。
[0007] The present invention has been made in view of such problems, and an object of the present invention is to provide a state in which a gas refrigerant supplied to a high-stage compressor is sufficiently cooled.
It is to enhance the economizer effect in a two-stage compression refrigeration cycle.

【0008】[0008]

【課題を解決するための手段】本発明は、低段側圧縮機
の吐出ガスと二相冷媒とを予め混合した後に気液分離器
で気液分離し、液冷媒を蒸発器に、ガス冷媒を高段側圧
縮機に流すようにしたものである。
SUMMARY OF THE INVENTION According to the present invention, a gas discharged from a low-stage compressor and a two-phase refrigerant are preliminarily mixed, and then gas-liquid separated by a gas-liquid separator. Flows into the high-stage compressor.

【0009】具体的に、本発明が講じた解決手段は、低
段側圧縮機(11)と高段側圧縮機(21)とからなる2段圧縮
機構(11,21) を備えて冷凍サイクルを行うとともに、凝
縮器(31)から蒸発器(13)への液ライン(40L) で生成した
中間圧冷媒からガス冷媒を分離して低段側圧縮機(11)の
吐出ガスとともに高段側圧縮機(21)に供給する冷凍装置
を前提としている。そして、低段側圧縮機(11)の吐出ガ
スと中間圧冷媒とが予め混合された状態で供給される気
液分離器(24)を備え、該気液分離器(24)内で分離された
液冷媒を蒸発器(13)に、ガス冷媒を高段側圧縮機(21)に
供給するように構成したものである。
Specifically, a solution taken by the present invention is to provide a refrigeration cycle including a two-stage compression mechanism (11, 21) comprising a low-stage compressor (11) and a high-stage compressor (21). Gas refrigerant from the intermediate-pressure refrigerant generated in the liquid line (40 L) from the condenser (31) to the evaporator (13), and separates the gas refrigerant from the low-stage compressor (11) with the gas discharged from the low-stage compressor (11). It is premised on a refrigerating device to be supplied to the compressor (21). A gas-liquid separator (24) is provided in which the discharge gas of the low-stage compressor (11) and the intermediate-pressure refrigerant are supplied in a premixed state, and is separated in the gas-liquid separator (24). The liquid refrigerant is supplied to the evaporator (13), and the gas refrigerant is supplied to the high-stage compressor (21).

【0010】上記構成においては、低段側圧縮機(11)か
ら気液分離器(24)に接続されたガスライン(40G) に、凝
縮器(31)から中間膨張機構(23)を経た液ライン(40L) を
接続するとともに、気液分離器(24)の液出口を蒸発器(1
3)に、ガス出口を高段側圧縮機(21)に接続するとよい。
In the above configuration, the liquid passing through the intermediate expansion mechanism (23) from the condenser (31) to the gas line (40G) connected from the low-stage compressor (11) to the gas-liquid separator (24). Connect the line (40L) and connect the liquid outlet of the gas-liquid separator (24) to the evaporator (1
In 3), the gas outlet may be connected to the high-stage compressor (21).

【0011】−作用− 上記解決手段では、中間圧の二相冷媒は気液分離器(24)
で気液分離する前に低段側の吐出ガスと予め混合され
る。このため、低段側圧縮機(11)の吐出ガスと二相冷媒
とを充分に混合してから気液分離器(24)に供給できる。
また、その混合の際に二相冷媒の乾き度が高くなるた
め、気液分離器(24)前で予め混合しない場合と比べてガ
スの量が増加する。さらに、低段側の吐出ガスが二相冷
媒と充分に混合されるため、低段側の吐出ガスは充分に
冷却される。
In the above solution, the intermediate-pressure two-phase refrigerant is supplied to the gas-liquid separator (24).
Before the gas-liquid separation in step (a), the gas is previously mixed with the discharge gas on the lower stage side. Therefore, the gas discharged from the low-stage compressor (11) and the two-phase refrigerant can be sufficiently mixed and then supplied to the gas-liquid separator (24).
In addition, since the dryness of the two-phase refrigerant increases during the mixing, the amount of gas increases as compared with the case where the two-phase refrigerant is not mixed before the gas-liquid separator (24). Further, since the low-stage discharge gas is sufficiently mixed with the two-phase refrigerant, the low-stage discharge gas is sufficiently cooled.

【0012】[0012]

【発明の効果】したがって、上記解決手段によれば、高
段側圧縮機(21)で吸入するガス冷媒を飽和ガスの状態ま
で冷却することが可能となり、高段側圧縮機(21)の吐出
温度の過上昇を防いで、冷凍機油の劣化や冷媒の分解を
確実に防止し、信頼性を高めることができる。
Therefore, according to the above solution, the gas refrigerant sucked by the high-stage compressor (21) can be cooled to a saturated gas state, and the discharge of the high-stage compressor (21) can be performed. By preventing the temperature from rising excessively, deterioration of the refrigerating machine oil and decomposition of the refrigerant can be reliably prevented, and reliability can be improved.

【0013】さらに、高段側圧縮機(21)で吸入するガス
の量を従来よりも増やすことができるため、従来よりも
効率向上による能力アップを図ることが可能となる。こ
のように、本発明によれば、従来よりもエコノマイザ効
果を高めることができる。
Further, since the amount of gas sucked in by the high-stage compressor (21) can be increased as compared with the conventional case, it is possible to increase the capacity by improving the efficiency compared with the conventional case. As described above, according to the present invention, the economizer effect can be enhanced as compared with the related art.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0015】本発明の実施形態は、暖房運転時に単段圧
縮と2段圧縮とを切り替えることができ、冷房運転時に
は単段圧縮が行われる空気調和装置(1) において、エコ
ノマイザを改良した構成としたものである。
An embodiment of the present invention is an air conditioner (1) in which single-stage compression and two-stage compression can be switched during heating operation and single-stage compression is performed during cooling operation. It was done.

【0016】この空気調和装置(1) の具体的な回路構成
は以下のとおりである。
The specific circuit configuration of the air conditioner (1) is as follows.

【0017】すなわち、図1に示すように、この空気調
和装置は、室外ユニット(10)と、中間ユニット(20)と、
並列に接続された複数の室内ユニット(30)とから構成さ
れている。中間ユニット(20)は、単段圧縮方式の既設の
空気調和装置(1) において2段圧縮運転を可能にするも
ので、室外ユニット(10)と室内ユニット(30)とを有する
既設の空気調和装置に増設することができるように構成
されている。
That is, as shown in FIG. 1, this air conditioner comprises an outdoor unit (10), an intermediate unit (20),
And a plurality of indoor units (30) connected in parallel. The intermediate unit (20) enables two-stage compression operation in the existing air conditioner (1) of the single-stage compression system, and has an existing air conditioner having the outdoor unit (10) and the indoor unit (30). It is configured so that it can be added to the device.

【0018】室外ユニット(10)は、容量可変の低段側圧
縮機(11)と、冷房運転と暖房運転とを切り換える第1四
路切換弁(12)と、室外熱交換器(13)と、室外膨張弁(14)
とを備えている。中間ユニット(20)は、高段側圧縮機(2
1)と、暖房運転時に2段圧縮運転と単段圧縮運転とを切
り換える第2四路切換弁(22)と、中間膨張弁(中間膨張
機構)(23)と、気液分離器(24)とを備えている。また、
各室内ユニット(30)は、室内熱交換器(31)と室内膨張弁
(32)とを備えている。そして、これらの機器が、冷媒配
管(40)によって順に接続されて蒸気圧縮式冷凍サイクル
を行うように構成され、また、低段側圧縮機(11)と高段
側圧縮機(21)とにより2段圧縮機構(11,21) が構成され
ている。なお、冷媒配管(40)は、各ユニット(10,20,30)
間において、配管継手(41)によって接続されている。
The outdoor unit (10) includes a variable-stage low-stage compressor (11), a first four-way switching valve (12) for switching between a cooling operation and a heating operation, and an outdoor heat exchanger (13). , Outdoor expansion valve (14)
And The intermediate unit (20) is connected to the high-stage compressor (2
1), a second four-way switching valve (22) for switching between the two-stage compression operation and the single-stage compression operation during the heating operation, an intermediate expansion valve (intermediate expansion mechanism) (23), and a gas-liquid separator (24). And Also,
Each indoor unit (30) consists of an indoor heat exchanger (31) and an indoor expansion valve.
(32). Then, these devices are connected in order by a refrigerant pipe (40) and configured to perform a vapor compression refrigeration cycle, and also include a low-stage compressor (11) and a high-stage compressor (21). A two-stage compression mechanism (11, 21) is constituted. The refrigerant pipe (40) is connected to each unit (10, 20, 30)
In between, they are connected by a pipe joint (41).

【0019】より具体的には、容量可変の低段側圧縮機
(11)は、吸入側と吐出側が、第1四路切換弁(12)の2つ
のポートに接続されている。第1四路切換弁(12)の他の
一つのポートは室外熱交換器(13)に接続され、他の一つ
のポートは第2四路切換弁(22)の一つのポートに接続さ
れている。第2四路切換弁(22)は、他の三つのポート
が、気液分離器(24)を介して高段側圧縮機(21)の吸入側
と、高段側圧縮機(21)の吐出側と、室内熱交換器(31)と
に接続されている。
More specifically, a variable displacement low-stage compressor.
In (11), the suction side and the discharge side are connected to two ports of the first four-way switching valve (12). The other port of the first four-way switching valve (12) is connected to the outdoor heat exchanger (13), and the other port is connected to one port of the second four-way switching valve (22). I have. The other four ports of the second four-way switching valve (22) are connected to the suction side of the high-stage compressor (21) and the high-stage compressor (21) through the gas-liquid separator (24). The discharge side and the indoor heat exchanger (31) are connected.

【0020】そして、各四路切換弁(12,22) を図に実線
で示す状態に切り換えることにより、低段側圧縮機(11)
の吐出ガス冷媒が各四路切換弁(12,22) と気液分離器(2
4)とを介して高段側圧縮機(21)に吸入されるようになっ
ている。以上により、室外熱交換器(13)と室内熱交換器
(31)との間のガスライン(40G) が構成されている。
By switching the four-way switching valves (12, 22) to the state shown by the solid line in the figure, the low-stage compressor (11)
The four-way switching valves (12, 22) and the gas-liquid separator (2
4) and is sucked into the high-stage compressor (21). As described above, the outdoor heat exchanger (13) and the indoor heat exchanger
A gas line (40G) between the gas line and (31) is formed.

【0021】一方、室内熱交換器(31)と室外熱交換器(1
3)との間の液ライン(40L) は、室内熱交換器(31)側から
順に、室内膨張弁(32)、中間膨張弁(23)を介して気液分
離器(24)のガス入口に合流するとともに、気液分離器(2
4)の液出口が、逆止弁(25)、室外膨張弁(14)を介して室
外熱交換器(13)に接続されている。
On the other hand, the indoor heat exchanger (31) and the outdoor heat exchanger (1)
The liquid line (40L) to the gas inlet of the gas-liquid separator (24) through the indoor expansion valve (32) and the intermediate expansion valve (23) in order from the indoor heat exchanger (31) side. And a gas-liquid separator (2
The liquid outlet of 4) is connected to the outdoor heat exchanger (13) via the check valve (25) and the outdoor expansion valve (14).

【0022】このように、本実施形態では、低段側圧縮
機(11)から気液分離器(24)に接続されたガスライン(40
G) に、凝縮器(31)から中間膨張弁(23)を経た液ライン
(40L)が接続されるとともに、気液分離器(24)の液出口
が蒸発器(13)に、ガス出口が高段側圧縮機(21)に接続さ
れている。
As described above, in this embodiment, the gas line (40) connected from the low-stage compressor (11) to the gas-liquid separator (24)
G), a liquid line from the condenser (31) through the intermediate expansion valve (23)
(40L), the liquid outlet of the gas-liquid separator (24) is connected to the evaporator (13), and the gas outlet is connected to the high-stage compressor (21).

【0023】そして、気液分離器(24)の近傍の冷媒配管
を図2の拡大図に示しているように、2段圧縮運転時に
は、低段側圧縮機(11)からの吐出ガス冷媒と、室内熱交
換器(31)側から中間膨張弁(23)を通過して生成された中
間圧の二相冷媒とを予め混合して気液分離器(24)に供給
し、さらに該気液分離器(24)で気液分離した後に液冷媒
を室外膨張弁(14)から室外熱交換器(13)に、ガス冷媒を
高段側圧縮機(21)に供給するようにして、本発明のエコ
ノマイザが構成されている。
As shown in the enlarged view of FIG. 2 in the refrigerant pipe near the gas-liquid separator (24), during the two-stage compression operation, the refrigerant gas discharged from the low-stage compressor (11) is connected to the refrigerant pipe. An intermediate-pressure two-phase refrigerant generated by passing through the intermediate expansion valve (23) from the indoor heat exchanger (31) side is premixed and supplied to the gas-liquid separator (24). After gas-liquid separation in the separator (24), the liquid refrigerant is supplied from the outdoor expansion valve (14) to the outdoor heat exchanger (13), and the gas refrigerant is supplied to the high-stage compressor (21). Economizer is configured.

【0024】また、上記液ライン(40L) は、室内膨張弁
(32)と中間膨張弁(23)の間の位置と、逆止弁(25)と室外
膨張弁(14)の間の位置とが、電磁弁などの開閉弁(42)を
備えた連絡通路(43)を介して接続されている。
The liquid line (40L) is provided with an indoor expansion valve.
The position between (32) and the intermediate expansion valve (23) and the position between the check valve (25) and the outdoor expansion valve (14) correspond to a communication passage provided with an on-off valve (42) such as a solenoid valve. (43).

【0025】なお、本実施形態では、単段圧縮時に高段
側圧縮機(21)が停止しているときに高段側圧縮機(21)が
冷えて液冷媒が溜まるのを防止するために、図示してい
ないが該高段側圧縮機(21)のクランクケースヒータなど
で液冷媒を加熱して、ガス冷媒を気液分離器(24)に抜く
ことができるようにしている。
In this embodiment, in order to prevent the high-stage compressor (21) from cooling down and the liquid refrigerant from being accumulated when the high-stage compressor (21) is stopped during single-stage compression. Although not shown, the liquid refrigerant is heated by a crankcase heater or the like of the high-stage compressor (21) so that the gas refrigerant can be discharged to the gas-liquid separator (24).

【0026】また、上記第2四路切換弁(22)には、例え
ばロータリー式の四路切換弁を用いることができる。こ
のロータリー式の四路切換弁は、例えば電磁駆動方式や
モータ駆動方式などを採用して、流路の切り換えを行う
ように構成することができる。
As the second four-way switching valve (22), for example, a rotary four-way switching valve can be used. This rotary four-way switching valve can be configured to switch the flow path by adopting, for example, an electromagnetic drive system or a motor drive system.

【0027】−運転動作− 次に、この空気調和装置(1) の運転動作について説明す
る。
-Operation- Next, the operation of the air conditioner (1) will be described.

【0028】まず、2段圧縮により暖房運転を行うとき
の動作について、冷媒の流れ方向を示した図3を参照し
て説明する。このとき、各四路切換弁(12,22) は図2の
実線の状態にセットされる。また、室内膨張弁(32)は全
開に設定され、中間膨張弁(23)は高圧の冷媒を所定の中
間圧に減圧するように開度が設定され、室外膨張弁(14)
は中間圧の冷媒を所定の低圧に減圧するように開度が設
定される。また、連絡通路(43)の電磁弁(42)は閉鎖され
る。
First, the operation when the heating operation is performed by the two-stage compression will be described with reference to FIG. 3 showing the flow direction of the refrigerant. At this time, the four-way switching valves (12, 22) are set to the state shown by the solid line in FIG. Further, the indoor expansion valve (32) is set to fully open, the intermediate expansion valve (23) is set to an opening degree to reduce the high-pressure refrigerant to a predetermined intermediate pressure, and the outdoor expansion valve (14)
Is set so as to reduce the intermediate pressure refrigerant to a predetermined low pressure. Further, the solenoid valve (42) of the communication passage (43) is closed.

【0029】そして、低段側圧縮機(11)で低圧の冷媒が
1段圧縮されて吐出され、その吐出ガスが両四路切換弁
(12,22) と気液分離器(24)とを介して高段側圧縮機(21)
に吸入され、2段圧縮される。高段側圧縮機(21)の吐出
ガス冷媒は、第2四路切換弁(22)を介して、凝縮器とし
て作用する室内熱交換器(31)に流入し、室内空気と熱交
換して該室内空気を加熱する。加熱された室内空気は図
示しない室内ファンにより室内へ吹き出され、室内に温
風が供給される。
The low-pressure compressor (11) compresses the low-pressure refrigerant in one stage and discharges it.
High-stage compressor (21) via (12,22) and gas-liquid separator (24)
And compressed in two stages. The gas refrigerant discharged from the high-stage compressor (21) flows into the indoor heat exchanger (31) acting as a condenser via the second four-way switching valve (22), and exchanges heat with indoor air. The room air is heated. The heated indoor air is blown into the room by an indoor fan (not shown), and warm air is supplied to the room.

【0030】室内熱交換器(31)での熱交換により凝縮し
た冷媒は、室内膨張弁(32)を通過した後、中間膨張弁(2
3)で一部が膨張して中間圧の二相冷媒となって気液分離
器(24)に流入する。その際、二相冷媒は低段側圧縮機(1
1)の吐出ガスと混合されてから気液分離器(24)に流入す
る。このため、二相冷媒の一部が蒸発して乾き度が高め
られるとともに、低段側の吐出ガス冷媒は二相冷媒によ
って冷却される。
The refrigerant condensed by the heat exchange in the indoor heat exchanger (31) passes through the indoor expansion valve (32), and then passes through the intermediate expansion valve (2).
A part expands in 3) and becomes a two-phase refrigerant of an intermediate pressure and flows into the gas-liquid separator (24). At this time, the two-phase refrigerant is supplied to the low-stage compressor (1
After being mixed with the discharge gas of 1), it flows into the gas-liquid separator (24). For this reason, a part of the two-phase refrigerant evaporates and the dryness is increased, and the low-stage discharge gas refrigerant is cooled by the two-phase refrigerant.

【0031】そして、このようにして混合した冷媒が気
液分離器(24)で液冷媒とガス冷媒とに分離され、液冷媒
は気液分離器(24)を流出して室外膨張弁(14)で減圧さ
れ、蒸発器として作用する室外熱交換器(13)に流入す
る。そして、室外熱交換器(13)では、冷媒が室外空気と
熱交換して加熱され、ガス冷媒に相変化して第1四路切
換弁(12)を通過し、低段側圧縮機(11)に吸入される。
The refrigerant thus mixed is separated into a liquid refrigerant and a gas refrigerant by a gas-liquid separator (24), and the liquid refrigerant flows out of the gas-liquid separator (24) and flows out of the outdoor expansion valve (14). ), And flows into the outdoor heat exchanger (13) acting as an evaporator. Then, in the outdoor heat exchanger (13), the refrigerant is heated by exchanging heat with the outdoor air, is heated, changes phase into a gas refrigerant, passes through the first four-way switching valve (12), and passes through the low-stage compressor (11). ).

【0032】一方、低段側圧縮機(11) の吐出ガス冷媒
と合流して気液分離器(24)内に流入したガス冷媒は、高
段側圧縮機(21)に吸入される。このとき、図4のモリエ
ル線図に示すように、圧縮行程の途中で、B点の低段側
吐出ガス冷媒は、従来のC点を越えてA点で示す飽和ガ
スの状態まで冷却される。したがって、従来の状態を破
線で示しているのと比較すれば明らかなように、高段側
圧縮機(21)での圧縮による吐出温度の上昇が抑えられ
る。また、二相冷媒の乾き度が高められることで、室内
熱交換器(31)を流れる冷媒の量が増加するため、高い暖
房能力を得ることができる。
On the other hand, the gas refrigerant that has merged with the gas refrigerant discharged from the low-stage compressor (11) and flows into the gas-liquid separator (24) is sucked into the high-stage compressor (21). At this time, as shown in the Mollier diagram of FIG. 4, during the compression stroke, the low-stage side discharge gas refrigerant at the point B is cooled to the state of the saturated gas shown at the point A beyond the conventional point C. . Therefore, as is apparent from comparison with the state of the related art shown by a broken line, an increase in the discharge temperature due to compression in the high-stage compressor (21) can be suppressed. In addition, since the dryness of the two-phase refrigerant is increased, the amount of the refrigerant flowing through the indoor heat exchanger (31) increases, so that a high heating capacity can be obtained.

【0033】次に、単段圧縮の暖房運転について、冷媒
の流れ方向を示した図5を参照して説明する。このと
き、低段側圧縮機(11)を運転して高段側圧縮機(21)を停
止させ、両四路切換弁(11,21) を図5の実線の状態にセ
ットする。つまり、第1四路切換弁(12)は図3と同じ状
態とする一方で、第2四路切換弁(22)を図3の破線側に
切り換える。そして、室内膨張弁(32)を全開に、中間膨
張弁(23)を全閉に制御し、室外膨張弁(14)は高圧の冷媒
を所定の低圧に減圧するように開度を制御する。また、
連絡通路(43)の電磁弁(42)を開放する。
Next, the single-stage compression heating operation will be described with reference to FIG. 5 showing the flow direction of the refrigerant. At this time, the low-stage compressor (11) is operated to stop the high-stage compressor (21), and the two-way switching valves (11, 21) are set to the state shown by the solid line in FIG. That is, while the first four-way switching valve (12) is in the same state as in FIG. 3, the second four-way switching valve (22) is switched to the broken line side in FIG. Then, the indoor expansion valve (32) is controlled to be fully opened, the intermediate expansion valve (23) is controlled to be fully closed, and the outdoor expansion valve (14) controls the opening degree so as to reduce the high-pressure refrigerant to a predetermined low pressure. Also,
The solenoid valve (42) of the communication passage (43) is opened.

【0034】このようにすると、低段側圧縮機(11)の吐
出ガスが、第1四路切換弁(12)と第2四路切換弁(22)と
を介して室内熱交換器(31)に流入し、該室内熱交換器(3
1)において室内空気を加熱する。そして、その際に凝縮
した冷媒が、室内膨張弁(32)及び連絡通路(43)を通過
し、室外膨張弁(14)で減圧して室外熱交換器(13)に流入
する。冷媒はこの室外熱交換器(13)で加熱され、ガス相
に変化して低段側圧縮機(11)に吸入される。単段圧縮の
暖房運転は以上のサイクルを繰り返すことによって行わ
れる。
In this way, the discharge gas of the low-stage compressor (11) is supplied to the indoor heat exchanger (31) via the first four-way switching valve (12) and the second four-way switching valve (22). ) And flows into the indoor heat exchanger (3
In 1), the room air is heated. Then, the refrigerant condensed at that time passes through the indoor expansion valve (32) and the communication passage (43), is depressurized by the outdoor expansion valve (14), and flows into the outdoor heat exchanger (13). The refrigerant is heated by the outdoor heat exchanger (13), changes into a gas phase, and is sucked into the low-stage compressor (11). The single-stage compression heating operation is performed by repeating the above cycle.

【0035】以上のようにして2段圧縮や単段圧縮での
暖房運転を行って室外熱交換器(13)に着霜すると、図6
に示す冷媒の流れによるデフロスト運転が行われる。デ
フロスト運転時、低段側圧縮機(11)の容量が高段側圧縮
機(21)の容量よりも大きい状態で両圧縮機(11,21) が運
転され、両四路切換弁(12,22) が図6の実線の状態、つ
まり第1四路切換弁(12)が図1の破線の状態に、第2四
路切換弁(22)が図1の実線の状態にセットされる。ま
た、室内膨張弁(32)及び室外膨張弁(14)は全開に設定さ
れ、連絡通路(43)の電磁弁(42)が開放されるとともに、
中間膨張弁(23)は高圧の液冷媒を所定の低圧に減圧する
ように開度が制御される。
When frost is formed on the outdoor heat exchanger (13) by performing the heating operation with the two-stage compression or the single-stage compression as described above, FIG.
The defrost operation is performed by the flow of the refrigerant shown in FIG. During defrost operation, both compressors (11, 21) are operated in a state where the capacity of the low-stage compressor (11) is larger than the capacity of the high-stage compressor (21), and both four-way switching valves (12, 22 is set to the state shown by the solid line in FIG. 6, that is, the first four-way switching valve (12) is set to the state shown by the broken line in FIG. 1, and the second four-way switching valve (22) is set to the state shown by the solid line in FIG. Further, the indoor expansion valve (32) and the outdoor expansion valve (14) are set to fully open, and the solenoid valve (42) of the communication passage (43) is opened,
The opening of the intermediate expansion valve (23) is controlled so that the high-pressure liquid refrigerant is reduced to a predetermined low pressure.

【0036】以上の設定で、低段側圧縮機(11)の吐出ガ
スは、第1四路切換弁(12)を介して室外熱交換器(13)に
流入し、該室外熱交換器(13)を加熱して除霜する。その
際、図示しない室外ファンは停止しており、冷媒は幾分
冷却されて室外熱交換器(13)から流出し、さらに室外膨
張弁(14)から連絡通路(43)を通過して、中間膨張弁(23)
に達する。
With the above setting, the gas discharged from the low-stage compressor (11) flows into the outdoor heat exchanger (13) via the first four-way switching valve (12), and is discharged from the outdoor heat exchanger (13). 13) Heat to defrost. At this time, the outdoor fan (not shown) is stopped, the refrigerant is cooled somewhat, flows out of the outdoor heat exchanger (13), further passes through the communication passage (43) from the outdoor expansion valve (14), and is Expansion valve (23)
Reach

【0037】一方、高段側圧縮機(21)の吐出ガスは、第
2四路切換弁(22)を介して室内熱交換器(31)に流入す
る。このとき、図示しない室内ファンは回っており、冷
媒と室内空気との熱交換が行われる。このため、室内へ
の温風の吹き出しが継続され、冷媒は凝縮して室内熱交
換器(31)から流出する。冷媒は、室内膨張弁(32)を通過
した後、低段側圧縮機(11)からの冷媒と合流してから中
間膨張弁(23)で減圧され、気液二相状態で気液分離器(2
4)に流入する。
On the other hand, the gas discharged from the high-stage compressor (21) flows into the indoor heat exchanger (31) via the second four-way switching valve (22). At this time, the indoor fan (not shown) is rotating, and heat exchange between the refrigerant and the indoor air is performed. Therefore, the blowing of the warm air into the room is continued, and the refrigerant is condensed and flows out of the indoor heat exchanger (31). After passing through the indoor expansion valve (32), the refrigerant merges with the refrigerant from the low-stage compressor (11), and is decompressed by the intermediate expansion valve (23). (2
4).

【0038】この冷媒は、低段側の冷媒の余熱により加
熱されながら、一部が低段側圧縮機(11)側へ、他の一部
が気液分離器(24)を介して高段側圧縮機(21)に吸入され
る。各圧縮機(11,21) に吸入された冷媒は再度圧縮され
て吐出され、室外側と室内側で以上のサイクルが繰り返
して行われることで、暖房運転を継続しながらデフロス
ト運転が行われる。
While this refrigerant is heated by the residual heat of the low-stage refrigerant, a part of the refrigerant is directed to the low-stage compressor (11) and another part is transmitted to the high-stage compressor (24) through the gas-liquid separator (24). It is sucked into the side compressor (21). The refrigerant drawn into each of the compressors (11, 21) is compressed again and discharged, and the above cycle is repeatedly performed on the outdoor side and the indoor side, so that the defrost operation is performed while the heating operation is continued.

【0039】次に、冷房運転は、低段側圧縮機(11)のみ
を運転し、両四路切換弁(12,22) を図7の実線の状態
(図1の破線の状態)に切り換えて行う。このとき、室
外膨張弁(14)は全開に設定され、室内膨張弁(32)は高圧
の冷媒を所定の低圧に減圧するように開度が制御され
る。また、連絡通路(43)の電磁弁(42)は開放され、中間
膨張弁(23)は閉鎖される。以上の設定により、冷媒が低
段側圧縮機(11)、第1四路切換弁(12)、室外熱交換器(1
3)、室外膨張弁(14)、連絡通路(43)、室内膨張弁(32)、
室内熱交換器(31)、第2四路切換弁(22)、第1四路切換
弁(12)の順に循環して、室内に冷風が吹き出される。
Next, in the cooling operation, only the low-stage compressor (11) is operated, and the two-way switching valves (12, 22) are switched to the state shown by the solid line in FIG. 7 (the state shown by the broken line in FIG. 1). Do it. At this time, the outdoor expansion valve (14) is set to fully open, and the opening of the indoor expansion valve (32) is controlled so as to reduce the high-pressure refrigerant to a predetermined low pressure. Further, the solenoid valve (42) of the communication passage (43) is opened, and the intermediate expansion valve (23) is closed. With the above setting, the refrigerant is supplied to the low-stage compressor (11), the first four-way switching valve (12), and the outdoor heat exchanger (1).
3), outdoor expansion valve (14), communication passage (43), indoor expansion valve (32),
Cool air is blown into the room by circulating in the order of the indoor heat exchanger (31), the second four-way switching valve (22), and the first four-way switching valve (12).

【0040】−実施形態の効果− 以上説明したように、本実施形態によれば、2段圧縮運
転時には、中間圧の二相冷媒を気液分離器(24)で気液分
離する前に低段側圧縮機(11)の吐出ガス冷媒と予め混合
している。したがって、この低段側吐出ガスと二相冷媒
とを充分に混合してから気液分離器(24)に供給できる。
また、その混合の際に二相冷媒の乾き度が高くなるた
め、予め混合しない場合と比べてガスの量が増加する。
このため、高段側圧縮機(21)で吸入するガスの量を従来
よりも増やすことができ、従来よりも効率向上による能
力アップを図ることが可能となる。
-Effects of Embodiment- As described above, according to the present embodiment, during the two-stage compression operation, the intermediate-pressure two-phase refrigerant is set to a low pressure before the gas-liquid separator (24) separates it into gas and liquid. It is mixed in advance with the refrigerant discharged from the stage-side compressor (11). Therefore, the low-stage side discharge gas and the two-phase refrigerant can be sufficiently mixed and then supplied to the gas-liquid separator (24).
In addition, since the dryness of the two-phase refrigerant increases during the mixing, the amount of gas increases as compared with the case where the two-phase refrigerant is not mixed in advance.
For this reason, the amount of gas sucked in by the high-stage compressor (21) can be increased as compared with the conventional case, and the capacity can be increased by improving the efficiency compared to the conventional case.

【0041】また、低段側圧縮機(11)の吐出ガスが二相
冷媒と充分に混合されるため、低段側吐出ガスは充分に
冷却される。したがって、高段側圧縮機(21)で吸入する
ガス冷媒を図4のモリエル線図にA点で示すように飽和
ガスの状態まで冷却することが可能となり、高段側圧縮
機(21)の吐出温度の過上昇を防いで、冷凍機油の劣化や
冷媒の分解を確実に防止し、信頼性を高めることができ
る。
Further, since the discharge gas of the low-stage compressor (11) is sufficiently mixed with the two-phase refrigerant, the low-stage discharge gas is sufficiently cooled. Therefore, the gas refrigerant sucked by the high-stage compressor (21) can be cooled to a saturated gas state as shown by the point A in the Mollier diagram of FIG. By preventing an excessive rise in the discharge temperature, deterioration of the refrigerating machine oil and decomposition of the refrigerant can be reliably prevented, and reliability can be improved.

【0042】このように、本実施形態によれば、エコノ
マイザ効果を従来よりも高めることが可能となる。
As described above, according to the present embodiment, it is possible to enhance the economizer effect as compared with the conventional case.

【0043】[0043]

【発明のその他の実施の形態】本発明は、上記実施形態
について、以下のような構成としてもよい。
Other Embodiments of the Invention The present invention may be configured as follows with respect to the above embodiment.

【0044】例えば、上記実施形態は冷暖房が可能な空
気調和装置に本発明を適用したものであるが、本発明
は、暖房運転のみが可能な空気調和装置や、空気調和装
置以外の冷凍装置などでも適用可能である。また、上記
実施形態の回路構成は単なる一例にすぎず、例えば中間
ユニット(20)を用いずに、室外ユニット(10)内に2段圧
縮機構(11,21) を備えた構成としてもよい。このように
本発明は、要するに2段圧縮運転が可能な冷凍装置にお
いて、低段側圧縮機(11)の吐出ガスと中間圧の二相冷媒
とを混合した後に気液分離して、液冷媒を蒸発器(実施
形態では室外熱交換器(13))に、ガス冷媒を高段側圧縮
機(21)に供給するようになっていればよい。
For example, in the above embodiment, the present invention is applied to an air conditioner capable of cooling and heating, but the present invention is applicable to an air conditioner capable of only heating operation, a refrigeration device other than the air conditioner, and the like. But it is applicable. Further, the circuit configuration of the above embodiment is merely an example. For example, a configuration in which the two-stage compression mechanism (11, 21) is provided in the outdoor unit (10) without using the intermediate unit (20) may be used. As described above, the present invention provides a refrigeration system that can perform a two-stage compression operation, in which the gas discharged from the low-stage compressor (11) and the intermediate-pressure two-phase refrigerant are mixed and then gas-liquid separated to form a liquid refrigerant. The gas refrigerant may be supplied to the evaporator (in the embodiment, the outdoor heat exchanger (13)) and the gas refrigerant to the high-stage compressor (21).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る空気調和装置の冷媒回
路図である。
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.

【図2】図1の空気調和装置のエコノマイザを示す拡大
図である。
FIG. 2 is an enlarged view showing an economizer of the air conditioner of FIG.

【図3】図1の空気調和装置において2段圧縮により暖
房運転を行うときの動作を示す運転状態図である。
3 is an operation state diagram showing an operation when performing a heating operation by two-stage compression in the air-conditioning apparatus of FIG.

【図4】図3の運転状態を示すモリエル線図である。FIG. 4 is a Mollier chart showing the operation state of FIG.

【図5】図1の空気調和装置において単段圧縮により暖
房運転を行うときの動作を示す運転状態図である。
5 is an operation state diagram showing an operation when performing a heating operation by single-stage compression in the air-conditioning apparatus of FIG.

【図6】図1の空気調和装置においてデフロスト運転を
行うときの動作を示す運転状態図である。
6 is an operation state diagram showing an operation when performing a defrost operation in the air-conditioning apparatus of FIG.

【図7】図1の空気調和装置において冷房運転を行うと
きの動作を示す運転状態図である。
FIG. 7 is an operation state diagram showing an operation when performing a cooling operation in the air-conditioning apparatus of FIG. 1;

【図8】2段圧縮を行う冷凍装置におけるエコノマイザ
の従来例を示す図である。
FIG. 8 is a diagram showing a conventional example of an economizer in a refrigerating apparatus that performs two-stage compression.

【図9】2段圧縮を行う冷凍装置におけるエコノマイザ
の他の従来例を示す図である。
FIG. 9 is a diagram showing another conventional example of an economizer in a refrigerating apparatus that performs two-stage compression.

【図10】図8及び図9の冷凍装置の2段圧縮運転状態
を示すモリエル線図である。
FIG. 10 is a Mollier diagram showing a two-stage compression operation state of the refrigeration apparatus of FIGS. 8 and 9;

【符号の説明】[Explanation of symbols]

(1) 空気調和装置(冷凍装置) (10) 室外ユニット (11) 低段側圧縮機 (12) 第1四路切換弁 (13) 室外熱交換器(蒸発器) (14) 室外膨張弁 (20) 中間ユニット (21) 高段側圧縮機 (22) 第2四路切換弁 (23) 中間膨張弁(中間膨張機構) (24) 気液分離器 (25) 逆止弁 (30) 室内ユニット (31) 室内熱交換器(凝縮器) (32) 室内膨張弁 (40) 冷媒配管 (40G) ガスライン (40L) 液ライン (41) 配管継手 (42) 開閉弁 (43) 連絡通路 (1) Air conditioner (refrigerator) (10) Outdoor unit (11) Low-stage compressor (12) First four-way switching valve (13) Outdoor heat exchanger (evaporator) (14) Outdoor expansion valve ( 20) Intermediate unit (21) High-stage compressor (22) Second four-way switching valve (23) Intermediate expansion valve (intermediate expansion mechanism) (24) Gas-liquid separator (25) Check valve (30) Indoor unit (31) Indoor heat exchanger (condenser) (32) Indoor expansion valve (40) Refrigerant piping (40G) Gas line (40L) Liquid line (41) Piping joint (42) Open / close valve (43) Communication passage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 低段側圧縮機(11)と高段側圧縮機(21)と
からなる2段圧縮機構(11,21) を備えて冷凍サイクルを
行うとともに、凝縮器(31)から蒸発器(13)への液ライン
(40L) で生成した中間圧冷媒からガス冷媒を分離して低
段側圧縮機(11)の吐出ガスとともに高段側圧縮機(21)に
供給する冷凍装置であって、 低段側圧縮機(11)の吐出ガスと中間圧冷媒とが予め混合
された状態で供給される気液分離器(24)を備え、気液分
離器(24)内で分離された液冷媒が蒸発器(13)に、ガス冷
媒が高段側圧縮機(21)に供給されるように構成されてい
る冷凍装置。
A refrigerating cycle is performed by providing a two-stage compression mechanism (11, 21) comprising a low-stage compressor (11) and a high-stage compressor (21), and a vaporization process is performed from a condenser (31). Liquid line to vessel (13)
A refrigerating device that separates the gas refrigerant from the intermediate-pressure refrigerant generated in (40L) and supplies it to the high-stage compressor (21) together with the discharge gas of the low-stage compressor (11). (11) is provided with a gas-liquid separator (24) which is supplied in a state of being mixed in advance with the intermediate-pressure refrigerant, the liquid refrigerant separated in the gas-liquid separator (24) evaporator (13 ), A refrigeration apparatus configured to supply a gas refrigerant to the high-stage compressor (21).
【請求項2】 低段側圧縮機(11)から気液分離器(24)に
接続されたガスライン(40G) に、凝縮器(31)から中間膨
張機構(23)を経た液ライン(40L) が接続されるととも
に、気液分離器(24)の液出口が蒸発器(13)に、ガス出口
が高段側圧縮機(21)に接続されている請求項1記載の冷
凍装置。
2. A gas line (40G) connected from the low-stage compressor (11) to the gas-liquid separator (24), and a liquid line (40L) from the condenser (31) through the intermediate expansion mechanism (23). ), The liquid outlet of the gas-liquid separator (24) is connected to the evaporator (13), and the gas outlet is connected to the high-stage compressor (21).
JP2000044665A 2000-02-22 2000-02-22 Freezer Pending JP2001235245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000044665A JP2001235245A (en) 2000-02-22 2000-02-22 Freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000044665A JP2001235245A (en) 2000-02-22 2000-02-22 Freezer

Publications (1)

Publication Number Publication Date
JP2001235245A true JP2001235245A (en) 2001-08-31

Family

ID=18567391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000044665A Pending JP2001235245A (en) 2000-02-22 2000-02-22 Freezer

Country Status (1)

Country Link
JP (1) JP2001235245A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147229A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Refrigerating device
JP2007155145A (en) * 2005-11-30 2007-06-21 Daikin Ind Ltd Refrigerating device
WO2007111099A1 (en) * 2006-03-27 2007-10-04 Daikin Industries, Ltd. Refrigeration device
CN102109240A (en) * 2009-12-25 2011-06-29 三洋电机株式会社 Cooling device
DE102012204405A1 (en) 2011-03-28 2012-10-04 Denso Corporation REFRIGERANT DISTRIBUTOR AND COLD CIRCULAR DEVICE
CN103453700A (en) * 2012-05-28 2013-12-18 珠海格力节能环保制冷技术研究中心有限公司 Flash evaporator and air conditioner comprising same
JP2014088974A (en) * 2012-10-29 2014-05-15 Mitsubishi Electric Corp Refrigerator and refrigeration device
JP2014517248A (en) * 2011-06-13 2014-07-17 リンゲルバック、フレッド Condenser / evaporator for cooling device and method thereof
JP2014517249A (en) * 2011-06-13 2014-07-17 リンゲルバック、フレッド Cooling system and cooling method
JP2014163627A (en) * 2013-02-27 2014-09-08 Mitsubishi Electric Corp Open showcase
CN104501437A (en) * 2014-11-25 2015-04-08 珠海格力电器股份有限公司 Heat pump system and operation method thereof
JP2015215160A (en) * 2015-09-01 2015-12-03 三菱電機株式会社 Refrigerator and refrigeration device
CN110131167A (en) * 2019-06-03 2019-08-16 珠海凌达压缩机有限公司 Compressor and air-conditioning system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155145A (en) * 2005-11-30 2007-06-21 Daikin Ind Ltd Refrigerating device
JP4655906B2 (en) * 2005-11-30 2011-03-23 ダイキン工業株式会社 Refrigeration equipment
JP2007147229A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Refrigerating device
WO2007111099A1 (en) * 2006-03-27 2007-10-04 Daikin Industries, Ltd. Refrigeration device
CN102109240A (en) * 2009-12-25 2011-06-29 三洋电机株式会社 Cooling device
US9239178B2 (en) 2011-03-28 2016-01-19 Denso Corporation Refrigerant distributor and refrigeration cycle device
DE102012204405A1 (en) 2011-03-28 2012-10-04 Denso Corporation REFRIGERANT DISTRIBUTOR AND COLD CIRCULAR DEVICE
DE102012204405B4 (en) * 2011-03-28 2021-04-22 Denso Corporation REFRIGERANT DISTRIBUTOR AND REFRIGERATION CIRCUIT DEVICE
US10260779B2 (en) 2011-06-13 2019-04-16 Aresco Technologies, Llc Refrigeration system and methods for refrigeration
JP2014517249A (en) * 2011-06-13 2014-07-17 リンゲルバック、フレッド Cooling system and cooling method
JP2014517248A (en) * 2011-06-13 2014-07-17 リンゲルバック、フレッド Condenser / evaporator for cooling device and method thereof
US9513033B2 (en) 2011-06-13 2016-12-06 Aresco Technologies, Llc Refrigeration system and methods for refrigeration
US10989445B2 (en) 2011-06-13 2021-04-27 Aresco Technologies, Llc Refrigeration system and methods for refrigeration
US11549727B2 (en) 2011-06-13 2023-01-10 Aresco Technologies, Llc Refrigeration system and methods for refrigeration
CN103453700A (en) * 2012-05-28 2013-12-18 珠海格力节能环保制冷技术研究中心有限公司 Flash evaporator and air conditioner comprising same
JP2014088974A (en) * 2012-10-29 2014-05-15 Mitsubishi Electric Corp Refrigerator and refrigeration device
JP2014163627A (en) * 2013-02-27 2014-09-08 Mitsubishi Electric Corp Open showcase
CN104501437A (en) * 2014-11-25 2015-04-08 珠海格力电器股份有限公司 Heat pump system and operation method thereof
JP2015215160A (en) * 2015-09-01 2015-12-03 三菱電機株式会社 Refrigerator and refrigeration device
CN110131167A (en) * 2019-06-03 2019-08-16 珠海凌达压缩机有限公司 Compressor and air-conditioning system

Similar Documents

Publication Publication Date Title
EP2479517B1 (en) Air conditioner
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
US20090126399A1 (en) Refigeration system
WO2007105511A1 (en) Refrigerating apparatus
JP2001056159A (en) Air conditioner
KR20120049440A (en) Air conditioner
US7908878B2 (en) Refrigerating apparatus
KR20040094099A (en) Air conditioner capable of defrosting and heating operation simultaneously and out door unit with self defrosting cycle for air conditioner
JP2001235245A (en) Freezer
JP2008064421A (en) Refrigerating device
JP4449139B2 (en) Refrigeration equipment
KR20040094100A (en) Air conditioner capable of defrosting and heating operation simultaneously and out door unit with self defrosting cycle for air conditioner
KR20100096857A (en) Air conditioner
CN112432255B (en) Outdoor unit and air conditioner
JP4407000B2 (en) Refrigeration system using CO2 refrigerant
JP2001056156A (en) Air conditioning apparatus
KR20120053381A (en) Refrigerant cycle apparatus
WO2020071293A1 (en) Refrigeration cycle device
JP2010002112A (en) Refrigerating device
JP2007232280A (en) Refrigeration unit
JP4277354B2 (en) Air conditioner
JP4407013B2 (en) Heat pump equipment
JP4023386B2 (en) Refrigeration equipment
KR102274194B1 (en) An air conditioner
JP2646894B2 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105