WO2007105511A1 - Refrigerating apparatus - Google Patents

Refrigerating apparatus Download PDF

Info

Publication number
WO2007105511A1
WO2007105511A1 PCT/JP2007/054184 JP2007054184W WO2007105511A1 WO 2007105511 A1 WO2007105511 A1 WO 2007105511A1 JP 2007054184 W JP2007054184 W JP 2007054184W WO 2007105511 A1 WO2007105511 A1 WO 2007105511A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
pressure
circuit
supercooling
Prior art date
Application number
PCT/JP2007/054184
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Yamada
Takahiro Yamaguchi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2007105511A1 publication Critical patent/WO2007105511A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Definitions

  • the present invention relates to a refrigeration apparatus that performs gas injection by supplying an intermediate-pressure gas refrigerant to a compressor.
  • FIG. 1 of Patent Document 1 discloses a refrigeration apparatus that performs a single-stage compression refrigeration cycle and that supplies an intermediate-pressure gas refrigerant to a compression chamber in the middle of compression in a compressor.
  • FIG. 13 of Patent Document 1 discloses a refrigeration apparatus that performs a two-stage compression refrigeration cycle, and supplies an intermediate-pressure gas refrigerant between a low-stage compressor and a high-stage compressor! Speak.
  • the intermediate-pressure refrigerant is evaporated by exchanging heat with the high-pressure liquid refrigerant in the intermediate-pressure heat exchanger, and the intermediate-pressure refrigerant from the intermediate-pressure heat exchanger to the compressor Supply the gas refrigerant with pressure.
  • Patent Document 1 JP 2001-033117 A
  • the high pressure liquid refrigerant dissipates heat to the intermediate pressure refrigerant, so that the degree of supercooling of the high pressure liquid refrigerant is somewhat increased.
  • the temperature difference between the intermediate-pressure refrigerant and the high-pressure liquid refrigerant is so large! / Therefore, the increase in the supercooling of the high-pressure liquid refrigerant is not so large. For this reason, the distance to the intermediate pressure heat exchanger force utilization side heat exchanger is long, or the utilization side heat exchanger is provided at a position higher than the intermediate pressure heat exchanger, and the high pressure liquid refrigerant is disposed on the utilization side.
  • the present invention has been made in view of the strong point, and the object of the present invention is to ensure that the cooling capacity of the refrigeration apparatus that performs so-called gas indication is reliably exhibited regardless of the installation state. .
  • the compressor (31, 34), the heat source side heat exchanger (36), and the use side heat exchanger (71) are connected, and the heat source side heat exchanger (36) is condensed.
  • the refrigerant circuit (20) includes an injection passage (43) for supplying intermediate pressure refrigerant obtained by decompressing part of the high-pressure liquid refrigerant to the compressor (31, 34), and the injection passage.
  • a supercooling heat exchanger that is arranged downstream of (40) and cools the high-pressure liquid refrigerant by heat exchange with the low-pressure refrigerant obtained by reducing the pressure of part of the high-pressure liquid refrigerant to low pressure (60) And are provided.
  • the refrigerant circuit (20) can perform at least a cooling operation.
  • the refrigerant condensed in the heat source side heat exchanger (36) that is, the high-pressure liquid refrigerant flows into the intermediate pressure heat exchanger (40).
  • the intermediate pressure heat exchanger (40) the high pressure liquid refrigerant and the intermediate pressure refrigerant flowing through the induction passage (43) exchange heat, and the intermediate pressure refrigerant evaporates to cool the high pressure liquid refrigerant.
  • the intermediate pressure refrigerant evaporated in the intermediate pressure heat exchanger (40) is supplied to the compressor (31, 34).
  • the high-pressure liquid refrigerant cooled by the intermediate pressure heat exchange (40) is sent to the supercooling heat exchanger (60).
  • Supercooling heat exchanger (60) The high-pressure liquid refrigerant that has flowed in is cooled by exchanging heat with the low-pressure refrigerant obtained by decompressing part of the high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant cooled by the supercooling heat exchange (60) is sent to the use side heat exchange (71).
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger (36) is cooled sequentially by the intermediate pressure heat exchanger (40) and the subcooling heat exchanger (60), and then the use side heat exchanger (71 ).
  • the refrigerant circuit (20) is a heat source side circuit provided with the compressor (31, 34) and the heat source side heat exchanger (36).
  • (30) and the use side circuit (70) provided with the use side heat exchanger (71) are connected by connecting pipes (21, 22).
  • the injection passage (43), the intermediate pressure heat exchanger (40), and the supercooling heat exchanger (60) are provided in the heat source side circuit (30).
  • the refrigerant circuit (20) includes the heat source side circuit (30), the use side circuit (70), and the connecting pipes (21, 22).
  • the high-pressure liquid refrigerant cooled when passing through the supercooling heat exchanger (60) flows into the use side heat exchanger (71) through the connecting pipe (21).
  • the connecting pipe (21, 22) is long or the user circuit (70) is installed at a higher position than the heat source circuit (30)
  • the user heat exchanger (71) The high-pressure refrigerant supplied to is kept in a liquid state, or the amount of high-pressure refrigerant supplied to the use-side heat exchanger (71) is reduced in the middle.
  • the use side heat exchanger (71) serves as a condenser and the heat source side heat exchanger (36) evaporates.
  • the refrigerant circuit (20) has the supercooling heat exchange from the intermediate pressure heat exchanger (40) in both the cooling operation and the heating operation.
  • a mechanism (50) is provided for switching the refrigerant flow path so that the high-pressure liquid refrigerant flows to the vessel (60).
  • the refrigerant circuit (20) can switch between the cooling operation and the heating operation. Although the refrigerant flow path in the refrigerant circuit (20) differs between the cooling operation and the heating operation, the refrigerant passes through the intermediate pressure heat exchanger (40) in both the cooling operation and the heating operation by the operation of the switching mechanism (50). After passing, it flows into the supercooling heat exchanger (60).
  • a supercooling heat exchanger (60) is provided downstream of the intermediate pressure heat exchanger (40) during the cooling operation, and the intermediate pressure heat exchanger (40)
  • the cooled high-pressure liquid refrigerant is introduced into the supercooling heat exchanger (60).
  • the temperature of the low-pressure refrigerant that exchanges heat with the high-pressure liquid refrigerant in the supercooling heat exchanger (60) is lower than the temperature of the intermediate-pressure refrigerant that exchanges heat with the high-pressure refrigerant in the intermediate pressure heat exchanger (40). Therefore, the degree of supercooling of the high-pressure liquid refrigerant supplied to the user-side heat exchanger (71) during the cooling operation is larger than when the high-pressure liquid refrigerant is cooled only by the intermediate pressure heat exchanger (40). It becomes.
  • the user side heat exchanger (71) is placed at a position far away from Or the user-side heat exchanger (71) is placed at a position higher than the supercooling heat exchanger (60), and the user-side heat exchanger (71) ), Even in an installation situation where the pressure of the high-pressure refrigerant is reduced by force, the high-pressure refrigerant supplied to the user-side heat exchanger (71) can be kept in a liquid state. Of the high-pressure refrigerant supplied to the use-side heat exchanger (71), the amount of vaporization in the middle can be reduced. As a result, the amount of liquid refrigerant supplied to the use side heat exchanger (71) during the cooling operation can be ensured, and the cooling capacity of the use side heat exchanger (71) can be fully exhibited.
  • the refrigerant circuit (20) is constituted by the heat source side circuit (30), the use side circuit (70), and the connection pipes (21, 22).
  • the heat source side circuit (30) provided with the supercooling heat exchange (60) and the use side circuit (70) provided with the use side heat exchange (71) are located far away from each other. Are often placed at different heights. Therefore, in the refrigeration apparatus (10) including the refrigerant circuit (20) configured as in the present invention, the high-pressure liquid refrigerant cooled by the supercooling heat exchanger (60) during the cooling operation and having a high degree of supercooling. Is supplied to the use side circuit (70), loss due to evaporation of a part of the high-pressure liquid refrigerant before reaching the use side circuit (70) can be reduced. The cooling capacity can be exerted reliably.
  • the intermediate pressure heat exchanger can be used for both the cooling operation and the heating operation!
  • the refrigerant can flow in the order of (40) to supercooling heat exchange (60).
  • the temperature of the low-pressure refrigerant that exchanges heat with the high-pressure liquid refrigerant in the supercooling heat exchanger (60) is higher than the temperature of the intermediate-pressure refrigerant that exchanges heat with the high-pressure refrigerant in the intermediate pressure heat exchanger (40). Lower. For this reason, if the refrigerant flows toward the supercooling heat exchanger (60) force intermediate pressure heat exchanger (40) when the operation is switched, the intermediate pressure heat exchanger (40) The temperature difference between the liquid refrigerant and the intermediate pressure refrigerant is almost eliminated, and there is a possibility that the intermediate pressure gas refrigerant cannot be supplied to the compressor (31, 34). As a countermeasure, it is conceivable to stop the cooling of the high-pressure liquid refrigerant in the supercooling heat exchanger (60), but this makes it impossible to sufficiently increase the degree of supercooling of the high-pressure liquid refrigerant.
  • the refrigerant circuit (20) even when the operation of the refrigerant circuit (20) is switched, the refrigerant flows in the order of intermediate pressure heat exchange (40) to supercooling heat exchange (60). Can do. others Therefore, in both the cooling operation and the heating operation, the intermediate pressure refrigerant supplied to the compressor (31, 34) can be reliably evaporated by the intermediate pressure heat exchanger (40), and at the same time, the supercooling heat exchange can be performed.
  • the high-pressure liquid refrigerant can also be cooled in the vessel (60).
  • ⁇ 3 It is a piping system diagram showing a configuration of a refrigerant circuit of an air conditioner in another embodiment.
  • Embodiment 1 of the present invention will be described.
  • This embodiment is a refrigeration apparatus according to the present invention.
  • the air conditioner (10) configured.
  • the air conditioner (10) of the present embodiment includes one outdoor unit (11) and two indoor units (12).
  • the number of indoor units (12) is merely an example.
  • the outdoor unit (11) accommodates an outdoor circuit (30) that is a heat source side circuit (30).
  • Each indoor unit (12) accommodates an indoor circuit (70) which is a use side circuit.
  • the refrigerant circuit (20) is formed by connecting the outdoor circuit (30) and the indoor circuit (70) with the liquid side connecting pipe (21) and the gas side connecting pipe (22). Te! In this refrigerant circuit (20), two indoor circuits (70) are connected in parallel to one outdoor circuit (30).
  • Each indoor circuit (70) is provided with one indoor heat exchanger (71), which is a use side heat exchanger, and one indoor expansion valve (72).
  • Indoor heat exchange (71) is air heat exchange that exchanges heat between indoor air and refrigerant.
  • the indoor heat exchanger (71) and the indoor expansion valve (72) are connected in series with each other.
  • the liquid side communication pipe (21) is connected to the end on the indoor expansion valve (72) side, and the gas side communication pipe (22) is connected to the end on the indoor heat exchanger (71) side. Is connected!
  • the outdoor circuit (30) includes a compressor (31), a four-way switching valve (35), an outdoor heat exchanger (36) as a heat source side heat exchanger, an outdoor expansion valve (37), An accumulator (38) is provided.
  • the outdoor heat exchanger (36) is provided with an intermediate pressure heat exchanger (40), an injection pipe (43), a supercooling heat exchanger (60), and a supercooling pipe (63). Yes.
  • the compressor (31) is a positive displacement compressor (31) and is configured to compress the refrigerant sucked into the compression chamber.
  • the compressor (31) is provided with an intermediate pressure port (32) for introducing an intermediate pressure refrigerant into the compression chamber in the middle of compression.
  • the compressor (31) has its discharge side connected to the first port of the four-way switching valve (35) and its suction side connected to the second port of the four-way switching valve (35) via the accumulator (38). ing.
  • only one compressor (31) is provided in the outdoor circuit (30), but a plurality of compressors may be provided in parallel.
  • the outdoor heat exchanger (36) is an air heat exchanger that exchanges heat between outdoor air and the refrigerant.
  • the intermediate pressure heat exchanger (40) and the supercooling heat exchanger (60) are both a double-pipe heat exchanger and a plate type. This is heat exchange that exchanges heat between refrigerants such as heat exchange.
  • a first flow path (41) and a second flow path (42) are formed in the intermediate pressure heat exchange (40). Further, the first flow path (61) and the second flow path (62) are also formed in the supercooling heat exchanger (60).
  • the outdoor heat exchanger (36) has one end connected to the third port of the four-way switching valve (35) and the other end connected to the third pressure of the intermediate pressure heat exchanger (40) via the outdoor expansion valve (37). Each is connected to one end of one flow path (41). The other end of the first flow path (41) of the intermediate pressure heat exchanger (40) is connected to one end of the first flow path (61) of the supercooling heat exchanger (60). The other end of the first flow path (61) of the supercooling heat exchanger (60) is connected to the liquid side connecting pipe (21).
  • the injection pipe (43) forms an injection passage.
  • the injection pipe (43) has a start end connected between the intermediate pressure heat exchanger (40) and the subcooling heat exchanger (60), and a terminal end connected to the intermediate pressure port (32) of the compressor (31). Has been.
  • the second flow path (42) of the intermediate pressure heat exchanger (40) is arranged in the middle of the injection pipe (43).
  • an injection expansion valve (44) is provided between the starting end thereof and the second flow path (42) of the intermediate pressure heat exchange (40).
  • the supercooling pipe (63) has a start end between the supercooling heat exchanger (60) and the liquid side communication pipe (21), and a terminal end between the accumulator (38) and the four-way switching valve (35). Are connected to each.
  • the second flow path (62) of the supercooling heat exchanger (60) is disposed in the middle of the supercooling pipe (63).
  • a supercooling expansion valve (64) is provided between its starting end and the second flow path (62) of the supercooling heat exchanger (60).
  • the four-way selector valve (35) has a first port on the discharge side of the compressor (31), a second port on the accumulator (38), and a third port on the outdoor heat. Each is connected to the reversal (36).
  • the fourth port of the four-way selector valve (35) is connected to the gas side communication pipe (22).
  • This four-way switching valve (35) has a first state (the state shown in FIG. 1 (A)) in which the first port and the third port communicate with each other, and the second port and the fourth port communicate with each other. Switch to the 2nd state (state shown in Fig. 1 (B)) where the 1 port communicates with the 4th port and the 2nd port communicates with the 3rd port.
  • the air conditioner (10) can be switched between cooling operation and heating operation! [0033] ⁇ Cooling operation>
  • the refrigerant circuit (20) during the cooling operation the refrigerant circulates so that the outdoor heat exchanger (36) serves as a condenser and the indoor heat exchanger (71) serves as an evaporator. That is, the cooling operation is performed in the refrigerant circuit (20).
  • the four-way switching valve (35) is set to the first state. Further, the outdoor expansion valve (37) is set to a fully open state, and the opening degrees of the injection expansion valve (44), the supercooling expansion valve (64), and the indoor expansion valve (72) are adjusted as appropriate.
  • the high-pressure gas refrigerant discharged from the compressor (31) is condensed by releasing heat to the outdoor air in the outdoor heat exchanger (36).
  • the high-pressure liquid refrigerant from the outdoor heat exchanger (36) dissipates heat to the refrigerant in the second flow path (42) while passing through the first flow path (41) of the intermediate pressure heat exchanger (40).
  • the high-pressure liquid refrigerant that also flowed out of the first flow path (41) of the intermediate pressure heat exchanger (40) flows into the partial force S injection pipe (43), and the rest flows into the supercooling heat exchanger (60). To do.
  • the high-pressure liquid refrigerant flowing into the injection pipe (43) is reduced to an intermediate pressure when passing through the injection expansion valve (44) to become an intermediate-pressure refrigerant in a gas-liquid two-phase state.
  • the intermediate pressure refrigerant absorbs heat from the refrigerant in the first flow path (41) and evaporates while flowing through the second flow path (42) of the intermediate pressure heat exchanger (40).
  • the intermediate pressure gas refrigerant exiting from the second flow path (42) of the intermediate pressure heat exchanger (40) is sent to the intermediate pressure port (32) of the compressor (31).
  • the high-pressure liquid refrigerant flowing into the supercooling heat exchanger (60) radiates heat to the refrigerant in the second flow path (62) while passing through the first flow path (61).
  • Part of the high-pressure liquid refrigerant that has flowed out of the first flow path (61) of the supercooling heat exchanger (60) flows into the supercooling pipe (63), and the rest passes through the liquid side connecting pipe (21).
  • the high-pressure liquid refrigerant cooled by both the intermediate pressure heat exchanger (40) and the supercooling heat exchanger (60) is supplied to the indoor circuit (70).
  • each indoor circuit (70) the high-pressure liquid refrigerant that has flowed in is reduced in pressure when passing through the indoor expansion valve (72), and then is evaporated by absorbing the indoor aerodynamic force in the indoor heat exchanger (71).
  • the refrigerant evaporated in the indoor heat exchanger (71) returns to the outdoor circuit (30) through the gas side connecting pipe (22), and is sucked into the compressor (31) through the accumulator (38). .
  • the high-pressure liquid refrigerant flowing into the supercooling pipe (63) passes through the supercooling expansion valve (64). In doing so, the pressure is reduced to a low pressure to become a low-pressure refrigerant in a gas-liquid two-phase state.
  • This low-pressure refrigerant absorbs heat from the refrigerant in the first channel (61) and evaporates while flowing through the second channel (62) of the supercooling heat exchanger (60).
  • the low-pressure gas refrigerant generated in the second flow path (62) of the supercooling heat exchanger (60) returned from the indoor circuit (70) to the outdoor circuit (30) through the gas side connection pipe (22). It is sucked into the compressor (31) together with the low-pressure refrigerant.
  • the compressor (31) sucks and compresses the low-pressure refrigerant into the compression chamber through the accumulator (38).
  • the intermediate pressure gas refrigerant flowing from the intermediate pressure port (32) is introduced into the compression chamber in the middle of compression.
  • the compressor (31) compresses the refrigerant in the compression chamber to a high pressure and discharges it.
  • the high-pressure liquid refrigerant that has been cooled when passing through the intermediate pressure heat exchanger (40) and the supercooling heat exchanger (60) and has a high degree of supercooling is It is sent to the indoor circuit (70) through the liquid side connection pipe (21).
  • the liquid side communication pipe (21) is longer than a certain length, or the indoor circuit (70) is placed at a position higher than the outdoor circuit (30) to some extent! Even if the degree of supercooling of the liquid refrigerant sent from (30) to the liquid side connecting pipe (21) is small, even if a part of the high-pressure liquid refrigerant evaporates before reaching the indoor circuit (70).
  • the high-pressure refrigerant flowing into the indoor circuit (70) is kept in the liquid single phase state. Even if a part of the high-pressure liquid refrigerant evaporates before reaching the indoor circuit (70), the liquid refrigerant cooled only by the intermediate pressure heat exchanger (40) is transferred from the outdoor circuit (30) to the liquid-side connecting pipe. The amount of high-pressure liquid refrigerant that evaporates is reduced compared to the case of being sent to (21).
  • the refrigerant circuit (20) during the heating operation the refrigerant circulates so that the indoor heat exchanger (71) serves as a condenser and the outdoor heat exchanger (36) serves as an evaporator. That is, a heating operation is performed in the refrigerant circuit (20).
  • the four-way selector valve (35) is set to the second state. Further, the opening degrees of the outdoor expansion valve (37), the indoor expansion valve (72), and the injection expansion valve (44) are adjusted as appropriate, and the supercooling expansion valve (64) is set to a fully closed state.
  • the high-pressure gas refrigerant discharged from the compressor (31) is distributed to each indoor circuit (70) through the gas side connecting pipe (22).
  • the indoor heat exchanger (71) of each indoor circuit (70) the high-pressure gas refrigerant Radiates heat to room air and condenses.
  • the refrigerant flowing out of the indoor heat exchanger (71) passes through the indoor expansion valve (72) and then returns to the outdoor circuit (30) through the liquid side communication pipe (21). All of them pass through the first flow path (61) of the supercooling heat exchanger (60).
  • the high-pressure liquid refrigerant that has passed through the supercooling heat exchanger (60) flows into the partial force S injection pipe (43), and the remainder flows into the first flow path (41) of the intermediate pressure heat exchanger (40). To do.
  • the high-pressure liquid refrigerant that has flowed into the injection pipe (43) is reduced to an intermediate pressure when passing through the injection expansion valve (44) to become a gas-liquid two-phase intermediate-pressure refrigerant.
  • the intermediate pressure refrigerant absorbs heat from the refrigerant in the first flow path (41) and evaporates while flowing through the second flow path (42) of the intermediate pressure heat exchanger (40).
  • the intermediate pressure gas refrigerant exiting from the second flow path (42) of the intermediate pressure heat exchanger (40) is sent to the intermediate pressure port (32) of the compressor (31).
  • the high-pressure liquid refrigerant flowing into the first flow path (41) of the intermediate pressure heat exchanger (40) is cooled by the intermediate pressure refrigerant in the second flow path (42).
  • the high-pressure liquid refrigerant cooled by the intermediate pressure heat exchanger (40) is reduced in pressure when passing through the outdoor expansion valve (37) and flows into the power outdoor heat exchanger (36).
  • the refrigerant absorbs heat from the outdoor air and evaporates.
  • the refrigerant evaporated in the outdoor heat exchanger (36) is sucked into the compressor (31) through the accumulator (38).
  • the compressor (31) sucks the low-pressure refrigerant into the compression chamber through the accumulator (38) and compresses it.
  • the intermediate pressure gas refrigerant flowing from the intermediate pressure port (32) is introduced into the compression chamber in the middle of compression.
  • the compressor (31) compresses the refrigerant in the compression chamber to a high pressure and discharges it.
  • the high-pressure liquid refrigerant cooled in each of the intermediate pressure heat exchanger (40) and the supercooling heat exchanger (60) is supplied to the indoor circuit (70). .
  • the liquid side connecting pipe (21) connecting the outdoor circuit (30) and the indoor circuit (70) is extremely long, or the indoor circuit (70) is positioned higher than the outdoor circuit (30). Therefore, the high-pressure refrigerant supplied to the indoor circuit (70) is kept in a liquid state even in an installation situation in which the refrigerant pressure greatly decreases while flowing through the liquid side connecting pipe (21). Or the amount of high-pressure refrigerant supplied to the indoor circuit (70) can be reduced. As a result, the amount of liquid refrigerant supplied to the indoor circuit (70) during cooling operation can be secured, and the indoor unit ( The cooling ability of 12) can be fully exerted.
  • the refrigerant distribution ratio to the indoor circuit (70) is adjusted by individually controlling the opening of the indoor expansion valve (72) of each indoor circuit (70).
  • the refrigerant passing through the indoor expansion valve (72) enters a gas-liquid two-phase state, the flow characteristics of the indoor expansion valve (72) become unstable, and the distribution ratio of the refrigerant to each indoor circuit (70) becomes appropriate. May be out of control.
  • the air conditioner (10) of the present embodiment the refrigerant flowing into the indoor circuit (70) during the cooling operation can be easily held in a liquid state. Therefore, according to the present embodiment, in the air conditioner (10) including the plurality of indoor units (12), the cooling capacity of each indoor unit (12) can be accurately controlled.
  • Embodiment 2 of the present invention will be described.
  • a bridge circuit (50) is added to the air conditioner (10) of the first embodiment.
  • the air conditioner (10) of the present embodiment will be described with respect to differences from the first embodiment.
  • the bridge circuit (50) has four check valves (51 to 54) connected in a bridge shape.
  • This bridge circuit (50) switches the refrigerant circulation path so that the intermediate pressure heat exchanger (40) is located upstream of the supercooling heat exchanger (60) during both cooling and heating operations. And constitutes a shelf structure.
  • Each check valve (51 to 54) provided in the bridge circuit (50) is configured to allow only the flow of the refrigerant directed from the inflow side to the outflow side.
  • the outflow side of the first check valve (51) is the outflow side of the second check valve (52)
  • the inflow side of the second check valve (52) is the third check valve ( 53)
  • the inflow side of the third check valve (53) is the inflow side of the fourth check valve (54)
  • the outflow side of the fourth check valve (54) is the first check valve (51) Are connected to the inflow side.
  • the other end of the outdoor heat exchanger (36) is provided between the first check valve (51) and the fourth check valve (54) in the bridge circuit (50). Is connected via the outdoor expansion valve (37), and the liquid side communication pipe (21) is connected between the second check valve (52) and the third check valve (53) in the bridge circuit (50). Yes.
  • the first circuit in the bridge circuit (50) is used.
  • One end of the first flow path (41) of the intermediate pressure heat exchanger (40) is connected between the check valve (51) and the second check valve (52), and the third check valve in the bridge circuit (50) is connected.
  • the other end of the first flow path (61) of the supercooling heat exchanger (60) is connected between the valve (53) and the fourth check valve (54).
  • the refrigerant condensed by the outdoor heat exchange (36) passes through the outdoor expansion valve (37) and the first check valve (51) of the bridge circuit (50). It passes in order, and then flows into the first flow path (41) of the intermediate pressure heat exchanger (40). Subsequently, the refrigerant is cooled while passing through the first flow path (41) of the intermediate pressure heat exchanger (40), and then passes through the first flow path (61) of the supercooling heat exchanger (60). It is further cooled during This point is the same as in the case of the first embodiment.
  • the first flow path (61) force of the supercooling heat exchanger (60) flows out of the refrigerant, passes through the third check valve (53) of the bridge circuit (50), and then passes through the liquid side communication pipe (21). And is distributed to each indoor circuit (70).
  • the refrigerant condensed in the indoor heat exchanger (71) flows into the outdoor circuit (30) through the liquid side connecting pipe (21).
  • the refrigerant flowing into the outdoor circuit (30) flows into the first flow path (41) of the intermediate pressure heat exchanger (40) through the second check valve (52) of the bridge circuit (50). Cooled while passing through the first flow path (41). Thereafter, the refrigerant flows into the first flow path (61) of the supercooling heat exchanger (60) and is cooled by heat exchange with the low-pressure refrigerant flowing through the second flow path (62).
  • the refrigerant flowing into the supercooling pipe (63) is decompressed to a low pressure when passing through the supercooling expansion valve (64), and becomes a low-pressure refrigerant in a gas-liquid two-phase state.
  • This low-pressure refrigerant absorbs heat from the refrigerant in the first channel (61) and evaporates while flowing through the second channel (62) of the supercooling heat exchanger (60).
  • the low pressure gas refrigerant that has flowed out of the second flow path (62) of the cooling heat exchanger (60) is returned to the outdoor circuit (30) through the indoor circuit (70) force gas side connecting pipe (22). At the same time, it is sucked into the compressor (31).
  • the refrigerant can be flowed in the order of the supercooling heat exchange (60) from the intermediate pressure heat exchanger (40) regardless of whether the cooling operation or the heating operation is performed.
  • the temperature of the low-pressure refrigerant that exchanges heat with the high-pressure liquid refrigerant in the supercooling heat exchanger (60) is higher than the temperature of the intermediate-pressure refrigerant that exchanges heat with the high-pressure refrigerant in the intermediate pressure heat exchanger (40). Lower. For this reason, if the refrigerant flows from the supercooling heat exchanger (60) to the intermediate pressure heat exchanger (40) during the heating operation, the intermediate pressure heat exchanger (40) can There is almost no difference in temperature of the pressure refrigerant, and there is a risk that the intermediate pressure gas refrigerant cannot be supplied to the compressor (31, 34). As a countermeasure, it is conceivable to stop the cooling of the high-pressure liquid refrigerant in the supercooling heat exchanger (60). However, this makes it impossible to sufficiently increase the degree of supercooling of the high-pressure liquid refrigerant.
  • the refrigerant can be flowed in the order of the intermediate pressure heat exchange (40) to the supercooling heat exchange (60) even during the heating operation as well as during the cooling operation. Therefore, in both the cooling operation and the heating operation, the intermediate pressure heat exchanger (40) can reliably evaporate the intermediate pressure refrigerant supplied to the compressor (31, 34), and at the same time, the supercooling heat exchange The high-pressure liquid refrigerant can also be cooled in the vessel (60).
  • the low-stage compressor (33) and the high-stage compressor (34) are installed in the outdoor circuit (30), and the refrigerant circuit (20) performs the two-stage compression refrigeration cycle. Also good.
  • the modification applied to the air conditioner (10) of the first embodiment will be described with reference to FIG.
  • the low-stage compressor (33) and the high-stage compressor (34) are connected in series. Specifically, the suction side of the low-stage compressor (33) is connected to the second port of the four-way switching valve (35) via the accumulator (38). The discharge side of the low stage compressor (33) is connected to the suction side of the high stage compressor (34). The discharge side of the high stage compressor (34) , Connected to the first port of the four-way selector valve (35). In this modification, the end of the injection pipe (43) is connected to a pipe connecting the discharge side of the low stage compressor (33) and the suction side of the high stage compressor (34). The intermediate-pressure gas refrigerant flowing through the injection pipe (43) is drawn into the high-stage compressor (34) together with the intermediate-pressure refrigerant discharged from the low-stage compressor (33).
  • the present invention is useful for a refrigeration apparatus that performs gas injection by supplying an intermediate-pressure gas refrigerant to a compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

An intermediate pressure heat exchanger (40) and a supercooling heat exchanger (60) are installed in a refrigerant circuit (20). In the refrigerant circuit (20), a first flow passage (61) of the supercooling heat exchanger (60) is disposed on the downstream side, relative to the direction of refrigerant circulation in cooling operation, of the first flow passage (41) of the intermediate pressure heat exchanger (40). In the cooling operation, a high-pressure liquid refrigerant is cooled while it passes through the first flow passage (41) of the intermediate pressure heat exchanger (40) and is supplied to an indoor circuit (70) after it is further cooled while passing through the first flow passage (61) of the supercooling heat exchanger (60).

Description

冷凍装置  Refrigeration equipment
技術分野  Technical field
[0001] 本発明は、中間圧のガス冷媒を圧縮機へ供給してガスインジェクションを行う冷凍 装置に関するものである。 背景技術  [0001] The present invention relates to a refrigeration apparatus that performs gas injection by supplying an intermediate-pressure gas refrigerant to a compressor. Background art
[0002] 従来より、圧縮機への入力の削減を目的として、いわゆるガスインジェクション (即ち 、中間圧のガス冷媒を圧縮機へ供給する動作)を行う冷凍装置が知られている。例え ば、特許文献 1の図 1には、単段圧縮冷凍サイクルを行う冷凍装置であって、圧縮機 における圧縮途中の圧縮室へ中間圧のガス冷媒を供給するものが開示されている。 また、特許文献 1の図 13には、二段圧縮冷凍サイクルを行う冷凍装置であって低段 圧縮機と高段圧縮機の間に中間圧のガス冷媒を供給するものが開示されて!ヽる。  Conventionally, a refrigeration apparatus that performs so-called gas injection (that is, an operation of supplying an intermediate-pressure gas refrigerant to a compressor) is known for the purpose of reducing the input to the compressor. For example, FIG. 1 of Patent Document 1 discloses a refrigeration apparatus that performs a single-stage compression refrigeration cycle and that supplies an intermediate-pressure gas refrigerant to a compression chamber in the middle of compression in a compressor. Further, FIG. 13 of Patent Document 1 discloses a refrigeration apparatus that performs a two-stage compression refrigeration cycle, and supplies an intermediate-pressure gas refrigerant between a low-stage compressor and a high-stage compressor! Speak.
[0003] ガスインジェクションを行うには、中間圧のガス冷媒を発生させなければならない。  [0003] In order to perform gas injection, an intermediate-pressure gas refrigerant must be generated.
そのため、例えば特許文献 1の図 9に記載された冷凍装置では、中間圧熱交換器で 中間圧冷媒を高圧液冷媒と熱交換させることによって蒸発させ、この中間圧熱交換 器から圧縮機へ中間圧のガス冷媒を供給して 、る。  Therefore, for example, in the refrigeration apparatus described in FIG. 9 of Patent Document 1, the intermediate-pressure refrigerant is evaporated by exchanging heat with the high-pressure liquid refrigerant in the intermediate-pressure heat exchanger, and the intermediate-pressure refrigerant from the intermediate-pressure heat exchanger to the compressor Supply the gas refrigerant with pressure.
特許文献 1 :特開 2001— 033117号公報  Patent Document 1: JP 2001-033117 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 上述したように、中間圧熱交翻では、高圧液冷媒が中間圧冷媒に対して放熱す るため、高圧液冷媒の過冷却度が多少は大きくなる。しかしながら、中間圧冷媒と高 圧液冷媒の温度差はそれ程大きくな!/、ため、高圧液冷媒の過冷却の増加分もそれ 程は大きくない。このため、中間圧熱交換器力 利用側熱交換器までの距離が長か つたり、利用側熱交換器が中間圧熱交換器よりも高い位置に設けられていて、高圧 液冷媒が利用側熱交換器へ到達する迄に大幅に圧力低下するような場合は、冷媒 の一部が蒸発してしまうことがある。このため、利用側熱交^^への液冷媒の流入量 が減少し、利用側熱交換器で得られる冷却能力が減少するおそれがあった。 [0005] 本発明は、力かる点に鑑みてなされたものであり、その目的は、いわゆるガスインジ クシヨンを行う冷凍装置において、その設置状況に拘わらず冷却能力を確実に発 揮させること〖こある。 [0004] As described above, in the intermediate pressure heat exchange, the high pressure liquid refrigerant dissipates heat to the intermediate pressure refrigerant, so that the degree of supercooling of the high pressure liquid refrigerant is somewhat increased. However, the temperature difference between the intermediate-pressure refrigerant and the high-pressure liquid refrigerant is so large! / Therefore, the increase in the supercooling of the high-pressure liquid refrigerant is not so large. For this reason, the distance to the intermediate pressure heat exchanger force utilization side heat exchanger is long, or the utilization side heat exchanger is provided at a position higher than the intermediate pressure heat exchanger, and the high pressure liquid refrigerant is disposed on the utilization side. If the pressure drops significantly before reaching the heat exchanger, part of the refrigerant may evaporate. For this reason, the amount of liquid refrigerant flowing into the use-side heat exchanger is reduced, which may reduce the cooling capacity obtained by the use-side heat exchanger. [0005] The present invention has been made in view of the strong point, and the object of the present invention is to ensure that the cooling capacity of the refrigeration apparatus that performs so-called gas indication is reliably exhibited regardless of the installation state. .
課題を解決するための手段  Means for solving the problem
[0006] 第 1の発明は、圧縮機 (31,34)と熱源側熱交換器 (36)と利用側熱交換器 (71)とが 接続され、上記熱源側熱交換器 (36)が凝縮器となって上記利用側熱交換器 (71)が 蒸発器となる冷却動作を実行可能な冷媒回路 (20)を備える冷凍装置を対象として!/、 る。そして、上記冷媒回路 (20)には、高圧液冷媒の一部を減圧して得られた中間圧 冷媒を上記圧縮機 (31,34)へ供給するインジェクション通路 (43)と、上記インジェクシ ヨン通路 (43)を上記圧縮機 (31,34)へ向けて流れる中間圧冷媒を高圧液冷媒と熱交 換させて蒸発させる中間圧熱交 (40)と、上記冷却動作中における上記中間圧 熱交^^ (40)の下流側に配置されて高圧液冷媒の一部を低圧にまで減圧して得ら れた低圧冷媒との熱交換によって高圧液冷媒を冷却する過冷却熱交換器 (60)とが 設けられるものである。 [0006] In the first invention, the compressor (31, 34), the heat source side heat exchanger (36), and the use side heat exchanger (71) are connected, and the heat source side heat exchanger (36) is condensed. For refrigeration systems equipped with a refrigerant circuit (20) that can perform a cooling operation in which the use-side heat exchanger (71) becomes an evaporator! / The refrigerant circuit (20) includes an injection passage (43) for supplying intermediate pressure refrigerant obtained by decompressing part of the high-pressure liquid refrigerant to the compressor (31, 34), and the injection passage. The intermediate pressure heat exchange (40) for evaporating the intermediate pressure refrigerant (43) flowing toward the compressor (31, 34) by heat exchange with the high pressure liquid refrigerant and the intermediate pressure heat exchange during the cooling operation. ^^ A supercooling heat exchanger that is arranged downstream of (40) and cools the high-pressure liquid refrigerant by heat exchange with the low-pressure refrigerant obtained by reducing the pressure of part of the high-pressure liquid refrigerant to low pressure (60) And are provided.
[0007] 第 1の発明では、冷媒回路 (20)が少なくとも冷却動作を実行可能となっている。冷 却動作中において、熱源側熱交換器 (36)で凝縮した冷媒、即ち高圧液冷媒は、中 間圧熱交換器 (40)へ流入する。中間圧熱交換器 (40)では、高圧液冷媒とインジエタ シヨン通路 (43)を流れる中間圧冷媒とが熱交換し、中間圧冷媒が蒸発して高圧液冷 媒が冷却される。中間圧熱交換器 (40)で蒸発した中間圧冷媒は、圧縮機 (31,34)へ 供給される。一方、中間圧熱交 (40)で冷却された高圧液冷媒は、過冷却熱交 換器 (60)へ送られる。過冷却熱交換器 (60)流入した高圧液冷媒は、高圧液冷媒の 一部を減圧して得られた低圧冷媒と熱交換することによって冷却される。過冷却熱交 (60)で冷却された高圧液冷媒は、利用側熱交 (71)へ送られる。つまり、熱 源側熱交換器 (36)力 流出した高圧液冷媒は、中間圧熱交換器 (40)と過冷却熱交 換器 (60)で順次冷却された後に利用側熱交換器 (71)へ供給される。  [0007] In the first invention, the refrigerant circuit (20) can perform at least a cooling operation. During the cooling operation, the refrigerant condensed in the heat source side heat exchanger (36), that is, the high-pressure liquid refrigerant flows into the intermediate pressure heat exchanger (40). In the intermediate pressure heat exchanger (40), the high pressure liquid refrigerant and the intermediate pressure refrigerant flowing through the induction passage (43) exchange heat, and the intermediate pressure refrigerant evaporates to cool the high pressure liquid refrigerant. The intermediate pressure refrigerant evaporated in the intermediate pressure heat exchanger (40) is supplied to the compressor (31, 34). On the other hand, the high-pressure liquid refrigerant cooled by the intermediate pressure heat exchange (40) is sent to the supercooling heat exchanger (60). Supercooling heat exchanger (60) The high-pressure liquid refrigerant that has flowed in is cooled by exchanging heat with the low-pressure refrigerant obtained by decompressing part of the high-pressure liquid refrigerant. The high-pressure liquid refrigerant cooled by the supercooling heat exchange (60) is sent to the use side heat exchange (71). In other words, the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger (36) is cooled sequentially by the intermediate pressure heat exchanger (40) and the subcooling heat exchanger (60), and then the use side heat exchanger (71 ).
[0008] 第 2の発明は、上記第 1の発明において、上記冷媒回路 (20)は、上記圧縮機 (31,3 4)及び上記熱源側熱交換器 (36)が設けられた熱源側回路 (30)と上記利用側熱交 (71)が設けられた利用側回路 (70)とを連絡配管 (21,22)で接続することによつ て構成され、上記インジェクション通路 (43)、上記中間圧熱交換器 (40)、及び上記 過冷却熱交 (60)が上記熱源側回路 (30)に設けられるものである。 [0008] In a second aspect based on the first aspect, the refrigerant circuit (20) is a heat source side circuit provided with the compressor (31, 34) and the heat source side heat exchanger (36). (30) and the use side circuit (70) provided with the use side heat exchanger (71) are connected by connecting pipes (21, 22). The injection passage (43), the intermediate pressure heat exchanger (40), and the supercooling heat exchanger (60) are provided in the heat source side circuit (30).
[0009] 第 2の発明では、冷媒回路 (20)が熱源側回路 (30)と利用側回路 (70)と連絡配管( 21,22)とによって構成される。冷却動作中には、過冷却熱交 (60)を通過する際 に冷却された高圧液冷媒が連絡配管 (21)を通って利用側熱交換器 (71)へ流入する 。このため、連絡配管 (21,22)が長い場合や、利用側回路 (70)が熱源側回路 (30)よ りも高い位置に設置される場合であっても、利用側熱交 (71)へ供給される高圧 冷媒は液状態に保たれ、あるいは利用側熱交 (71)へ供給される高圧冷媒のう ち途中で蒸発する量が少なくなる。  [0009] In the second invention, the refrigerant circuit (20) includes the heat source side circuit (30), the use side circuit (70), and the connecting pipes (21, 22). During the cooling operation, the high-pressure liquid refrigerant cooled when passing through the supercooling heat exchanger (60) flows into the use side heat exchanger (71) through the connecting pipe (21). For this reason, even if the connecting pipe (21, 22) is long or the user circuit (70) is installed at a higher position than the heat source circuit (30), the user heat exchanger (71) The high-pressure refrigerant supplied to is kept in a liquid state, or the amount of high-pressure refrigerant supplied to the use-side heat exchanger (71) is reduced in the middle.
[0010] 第 3の発明は、上記第 1の発明において、上記冷媒回路 (20)では、上記利用側熱 交換器 (71)が凝縮器となって上記熱源側熱交換器 (36)が蒸発器となる加熱動作が 上記冷却動作と切り換え可能となる一方、上記冷媒回路 (20)には、上記冷却動作と 上記加熱動作の両方で上記中間圧熱交換器 (40)から上記過冷却熱交換器 (60)へ 高圧液冷媒が流れるように冷媒の流通経路を切り換える切 構 (50)が設けられる ものである。  [0010] In a third aspect based on the first aspect, in the refrigerant circuit (20), the use side heat exchanger (71) serves as a condenser and the heat source side heat exchanger (36) evaporates. On the other hand, while the heating operation as a cooler can be switched to the cooling operation, the refrigerant circuit (20) has the supercooling heat exchange from the intermediate pressure heat exchanger (40) in both the cooling operation and the heating operation. A mechanism (50) is provided for switching the refrigerant flow path so that the high-pressure liquid refrigerant flows to the vessel (60).
[0011] 第 3の発明では、冷媒回路 (20)で冷却動作と加熱動作が切り換え可能となって!/、 る。冷却動作と加熱動作では冷媒回路 (20)における冷媒の流通経路が相違するが 、切換機構 (50)の動作により、冷却動作と加熱動作の何れにおいても冷媒は中間圧 熱交換器 (40)を通過後に過冷却熱交換器 (60)へ流れ込む。  [0011] In the third invention, the refrigerant circuit (20) can switch between the cooling operation and the heating operation. Although the refrigerant flow path in the refrigerant circuit (20) differs between the cooling operation and the heating operation, the refrigerant passes through the intermediate pressure heat exchanger (40) in both the cooling operation and the heating operation by the operation of the switching mechanism (50). After passing, it flows into the supercooling heat exchanger (60).
発明の効果  The invention's effect
[0012] 本発明の冷媒回路 (20)では、冷却動作中における中間圧熱交換器 (40)の下流側 に過冷却熱交換器 (60)が設けられ、中間圧熱交換器 (40)で冷却された高圧液冷媒 が過冷却熱交換器 (60)へ導入される。過冷却熱交換器 (60)で高圧液冷媒と熱交換 する低圧冷媒の温度は、中間圧熱交換器 (40)で高圧冷媒と熱交換する中間圧冷媒 の温度よりも低くなる。従って、冷却動作中に利用側熱交換器 (71)へ供給される高 圧液冷媒の過冷却度は、中間圧熱交換器 (40)だけで高圧液冷媒を冷却する場合 に比べて大きな値となる。  In the refrigerant circuit (20) of the present invention, a supercooling heat exchanger (60) is provided downstream of the intermediate pressure heat exchanger (40) during the cooling operation, and the intermediate pressure heat exchanger (40) The cooled high-pressure liquid refrigerant is introduced into the supercooling heat exchanger (60). The temperature of the low-pressure refrigerant that exchanges heat with the high-pressure liquid refrigerant in the supercooling heat exchanger (60) is lower than the temperature of the intermediate-pressure refrigerant that exchanges heat with the high-pressure refrigerant in the intermediate pressure heat exchanger (40). Therefore, the degree of supercooling of the high-pressure liquid refrigerant supplied to the user-side heat exchanger (71) during the cooling operation is larger than when the high-pressure liquid refrigerant is cooled only by the intermediate pressure heat exchanger (40). It becomes.
[0013] このため、利用側熱交 (71)が過冷却熱交 (60)力 遠く離れた位置に配 置されて!、たり、利用側熱交換器 (71)が過冷却熱交換器 (60)よりも高 、位置に配置 されて 、て、過冷却熱交 (60)から利用側熱交 (71)へ至るまでに高圧冷媒 の圧力が力なり低下するような設置状況であっても、利用側熱交 (71)へ供給さ れる高圧冷媒を液状態に保つことができ、ある!/、は利用側熱交翻 (71)へ供給され る高圧冷媒のうち途中で蒸発する量を削減することができる。その結果、冷却動作中 に利用側熱交 (71)へ供給される液冷媒の量を確保することができ、利用側熱交 (71)の冷却能力を充分に発揮させることができる。 [0013] For this reason, the user side heat exchanger (71) is placed at a position far away from Or the user-side heat exchanger (71) is placed at a position higher than the supercooling heat exchanger (60), and the user-side heat exchanger (71) ), Even in an installation situation where the pressure of the high-pressure refrigerant is reduced by force, the high-pressure refrigerant supplied to the user-side heat exchanger (71) can be kept in a liquid state. Of the high-pressure refrigerant supplied to the use-side heat exchanger (71), the amount of vaporization in the middle can be reduced. As a result, the amount of liquid refrigerant supplied to the use side heat exchanger (71) during the cooling operation can be ensured, and the cooling capacity of the use side heat exchanger (71) can be fully exhibited.
[0014] 上記第 2の発明では、冷媒回路 (20)を熱源側回路 (30)と利用側回路 (70)と連絡 配管 (21,22)とによって構成している。この場合には、過冷却熱交翻 (60)が設けら れた熱源側回路 (30)と、利用側熱交 (71)が設けられた利用側回路 (70)とが遠 く離れた位置に配置されたり、両者が異なる高さに設置されることが多い。従って、こ の発明のような構成の冷媒回路 (20)を備える冷凍装置(10)において、冷却動作中 に過冷却熱交換器 (60)で冷却されて過冷却度が大きくなつた高圧液冷媒を利用側 回路 (70)へ供給するようにすると、高圧液冷媒の一部が利用側回路 (70)へ到達す る前に蒸発してしまうことによるロスを削減でき、冷凍装置(10)の冷却能力を確実に 発揮させることができる。  [0014] In the second invention, the refrigerant circuit (20) is constituted by the heat source side circuit (30), the use side circuit (70), and the connection pipes (21, 22). In this case, the heat source side circuit (30) provided with the supercooling heat exchange (60) and the use side circuit (70) provided with the use side heat exchange (71) are located far away from each other. Are often placed at different heights. Therefore, in the refrigeration apparatus (10) including the refrigerant circuit (20) configured as in the present invention, the high-pressure liquid refrigerant cooled by the supercooling heat exchanger (60) during the cooling operation and having a high degree of supercooling. Is supplied to the use side circuit (70), loss due to evaporation of a part of the high-pressure liquid refrigerant before reaching the use side circuit (70) can be reduced. The cooling capacity can be exerted reliably.
[0015] 上記第 3の発明によれば、冷却動作と加熱動作の何れにお!、ても中間圧熱交換器  [0015] According to the third invention, the intermediate pressure heat exchanger can be used for both the cooling operation and the heating operation!
(40)から過冷却熱交 (60)の順に冷媒を流すことができる。  The refrigerant can flow in the order of (40) to supercooling heat exchange (60).
[0016] ここで、過冷却熱交換器 (60)で高圧液冷媒と熱交換する低圧冷媒の温度は、中間 圧熱交換器 (40)で高圧冷媒と熱交換する中間圧冷媒の温度よりも低くなる。このた め、仮に運転動作の切り換えに伴って冷媒が過冷却熱交換器 (60)力 中間圧熱交 換器 (40)へ向かって流れる状態になると、中間圧熱交換器 (40)では高圧液冷媒と 中間圧冷媒の温度差が殆どなくなってしまい、圧縮機 (31,34)へ中間圧のガス冷媒 を供給できなくなるおそれがある。その対策としては過冷却熱交換器 (60)における高 圧液冷媒の冷却を停止することが考えられるが、それでは高圧液冷媒の過冷却度を 充分に増大させることができなくなる。  [0016] Here, the temperature of the low-pressure refrigerant that exchanges heat with the high-pressure liquid refrigerant in the supercooling heat exchanger (60) is higher than the temperature of the intermediate-pressure refrigerant that exchanges heat with the high-pressure refrigerant in the intermediate pressure heat exchanger (40). Lower. For this reason, if the refrigerant flows toward the supercooling heat exchanger (60) force intermediate pressure heat exchanger (40) when the operation is switched, the intermediate pressure heat exchanger (40) The temperature difference between the liquid refrigerant and the intermediate pressure refrigerant is almost eliminated, and there is a possibility that the intermediate pressure gas refrigerant cannot be supplied to the compressor (31, 34). As a countermeasure, it is conceivable to stop the cooling of the high-pressure liquid refrigerant in the supercooling heat exchanger (60), but this makes it impossible to sufficiently increase the degree of supercooling of the high-pressure liquid refrigerant.
[0017] これに対し、上記第 3の発明では、冷媒回路 (20)の運転動作が切り換わっても、中 間圧熱交 (40)から過冷却熱交 (60)の順に冷媒を流すことができる。このた め、冷却動作と加熱動作の何れにおいても、中間圧熱交換器 (40)で圧縮機 (31,34) へ供給される中間圧冷媒を確実に蒸発させることができると同時に、過冷却熱交換 器 (60)での高圧液冷媒の冷却も行うことが可能となる。 [0017] In contrast, in the third aspect of the invention, even when the operation of the refrigerant circuit (20) is switched, the refrigerant flows in the order of intermediate pressure heat exchange (40) to supercooling heat exchange (60). Can do. others Therefore, in both the cooling operation and the heating operation, the intermediate pressure refrigerant supplied to the compressor (31, 34) can be reliably evaporated by the intermediate pressure heat exchanger (40), and at the same time, the supercooling heat exchange can be performed. The high-pressure liquid refrigerant can also be cooled in the vessel (60).
図面の簡単な説明  Brief Description of Drawings
圆 1]実施形態 1における空調機の冷媒回路の構成を示す配管系統図であって、(A) は冷房運転時の状態を示しており、(B)は暖房運転時の状態を示して 、る。  圆 1] Piping system diagram showing the configuration of the refrigerant circuit of the air conditioner in Embodiment 1, wherein (A) shows the state during cooling operation, (B) shows the state during heating operation, The
圆 2]実施形態 2における空調機の冷媒回路の構成を示す配管系統図であって、(A) は冷房運転時の状態を示しており、(B)は暖房運転時の状態を示して 、る。  圆 2] Piping system diagram showing the configuration of the refrigerant circuit of the air conditioner in Embodiment 2, wherein (A) shows the state during cooling operation, (B) shows the state during heating operation, The
圆 3]その他の実施形態における空調機の冷媒回路の構成を示す配管系統図であ る。  圆 3] It is a piping system diagram showing a configuration of a refrigerant circuit of an air conditioner in another embodiment.
符号の説明  Explanation of symbols
20 冷媒回路  20 Refrigerant circuit
21 液側連絡配管  21 Liquid side connection piping
22 ガス側連絡配管  22 Gas side communication piping
30 室外回路 (熱源側回路)  30 Outdoor circuit (heat source side circuit)
31 圧縮機  31 Compressor
33 低段側圧縮機  33 Low stage compressor
34 高段側圧縮機  34 High stage compressor
36 室外熱交換器 (熱源側熱交換器)  36 Outdoor heat exchanger (heat source side heat exchanger)
40 中間圧熱交  40 Intermediate pressure heat exchange
43 インジェクション配管(インジェクション通路)  43 Injection piping (injection passage)
50 ブリッジ回路 (50) (切換機構)  50 bridge circuit (50) (switching mechanism)
70 室内回路 (利用側回路)  70 Indoor circuit (use side circuit)
71 室内熱交翻 (利用側熱交翻)  71 Indoor heat exchange (user side heat exchange)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の実施形態を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0021] 《発明の実施形態 1》 <Embodiment 1 of the Invention>
本発明の実施形態 1について説明する。本実施形態は、本発明に係る冷凍装置に よって構成された空調機(10)である。 Embodiment 1 of the present invention will be described. This embodiment is a refrigeration apparatus according to the present invention. Thus, the air conditioner (10) configured.
[0022] 図 1に示すように、本実施形態の空調機(10)は、 1台の室外ユニット(11)と、 2台の 室内ユニット(12)とを備えている。なお、室内ユニット(12)の台数は、単なる例示であ る。室外ユニット(11)には、熱源側回路 (30)である室外回路 (30)が収容されている。 各室内ユニット(12)には、利用側回路である室内回路(70)が収容されている。  As shown in FIG. 1, the air conditioner (10) of the present embodiment includes one outdoor unit (11) and two indoor units (12). The number of indoor units (12) is merely an example. The outdoor unit (11) accommodates an outdoor circuit (30) that is a heat source side circuit (30). Each indoor unit (12) accommodates an indoor circuit (70) which is a use side circuit.
[0023] 空調機(10)では、室外回路 (30)と室内回路 (70)を液側連絡配管 (21)及びガス側 連絡配管 (22)で接続することによって冷媒回路 (20)が形成されて!、る。この冷媒回 路 (20)では、 1つの室外回路 (30)に対して 2つの室内回路(70)が互いに並列に接 続されている。  [0023] In the air conditioner (10), the refrigerant circuit (20) is formed by connecting the outdoor circuit (30) and the indoor circuit (70) with the liquid side connecting pipe (21) and the gas side connecting pipe (22). Te! In this refrigerant circuit (20), two indoor circuits (70) are connected in parallel to one outdoor circuit (30).
[0024] 各室内回路 (70)には、利用側熱交換器である室内熱交換器 (71)と、室内膨張弁( 72)とが 1つずつ設けられている。室内熱交 (71)は、室内空気と冷媒を熱交換さ せる空気熱交^^である。各室内回路 (70)において、室内熱交 (71)と室内膨 張弁 (72)は互いに直列に接続されている。各室内回路 (70)では、室内膨張弁 (72) 側の端部に液側連絡配管 (21)が接続され、室内熱交換器 (71)側の端部にガス側連 絡配管 (22)が接続されて!ヽる。  [0024] Each indoor circuit (70) is provided with one indoor heat exchanger (71), which is a use side heat exchanger, and one indoor expansion valve (72). Indoor heat exchange (71) is air heat exchange that exchanges heat between indoor air and refrigerant. In each indoor circuit (70), the indoor heat exchanger (71) and the indoor expansion valve (72) are connected in series with each other. In each indoor circuit (70), the liquid side communication pipe (21) is connected to the end on the indoor expansion valve (72) side, and the gas side communication pipe (22) is connected to the end on the indoor heat exchanger (71) side. Is connected!
[0025] 室外回路 (30)には、圧縮機 (31)と、四方切換弁 (35)と、熱源側熱交換器である室 外熱交 (36)と、室外膨張弁 (37)と、アキュームレータ (38)とが設けられて 、る。 また、この室外熱交 (36)には、中間圧熱交 (40)と、インジェクション配管 (4 3)と、過冷却熱交 (60)と、過冷却用配管 (63)とが設けられている。  [0025] The outdoor circuit (30) includes a compressor (31), a four-way switching valve (35), an outdoor heat exchanger (36) as a heat source side heat exchanger, an outdoor expansion valve (37), An accumulator (38) is provided. The outdoor heat exchanger (36) is provided with an intermediate pressure heat exchanger (40), an injection pipe (43), a supercooling heat exchanger (60), and a supercooling pipe (63). Yes.
[0026] 圧縮機 (31)は、容積型の圧縮機 (31)であって、圧縮室へ吸入した冷媒を圧縮する ように構成されている。圧縮機 (31)には、圧縮途中の圧縮室へ中間圧の冷媒を導入 するための中間圧ポート (32)が設けられている。この圧縮機 (31)は、その吐出側が 四方切換弁 (35)の第 1のポートに、その吸入側がアキュームレータ (38)を介して四 方切換弁 (35)の第 2のポートにそれぞれ接続されている。なお、本実施形態では室 外回路 (30)に圧縮機 (31)を 1台だけ設けているが、複数台の圧縮機を並列に設け てもよい。  [0026] The compressor (31) is a positive displacement compressor (31) and is configured to compress the refrigerant sucked into the compression chamber. The compressor (31) is provided with an intermediate pressure port (32) for introducing an intermediate pressure refrigerant into the compression chamber in the middle of compression. The compressor (31) has its discharge side connected to the first port of the four-way switching valve (35) and its suction side connected to the second port of the four-way switching valve (35) via the accumulator (38). ing. In the present embodiment, only one compressor (31) is provided in the outdoor circuit (30), but a plurality of compressors may be provided in parallel.
[0027] 室外熱交換器 (36)は、室外空気と冷媒を熱交換させる空気熱交換器である。中間 圧熱交換器 (40)と過冷却熱交換器 (60)は、何れも二重管式熱交換器やプレート式 熱交 等の冷媒同士を熱交換させる熱交^^である。中間圧熱交 (40)には 、第 1流路 (41)と第 2流路 (42)とが形成されて 、る。また、過冷却熱交 (60)にも 、第 1流路 (61)と第 2流路 (62)とが形成されている。 [0027] The outdoor heat exchanger (36) is an air heat exchanger that exchanges heat between outdoor air and the refrigerant. The intermediate pressure heat exchanger (40) and the supercooling heat exchanger (60) are both a double-pipe heat exchanger and a plate type. This is heat exchange that exchanges heat between refrigerants such as heat exchange. A first flow path (41) and a second flow path (42) are formed in the intermediate pressure heat exchange (40). Further, the first flow path (61) and the second flow path (62) are also formed in the supercooling heat exchanger (60).
[0028] 室外熱交換器 (36)は、その一端が四方切換弁 (35)の第 3のポートに、他端が室外 膨張弁 (37)を介して中間圧熱交換器 (40)の第 1流路 (41)の一端にそれぞれ接続さ れている。中間圧熱交換器 (40)の第 1流路 (41)の他端は、過冷却熱交換器 (60)の 第 1流路 (61)の一端に接続されて!、る。過冷却熱交換器 (60)の第 1流路 (61)の他 端は、液側連絡配管 (21)に接続されている。  [0028] The outdoor heat exchanger (36) has one end connected to the third port of the four-way switching valve (35) and the other end connected to the third pressure of the intermediate pressure heat exchanger (40) via the outdoor expansion valve (37). Each is connected to one end of one flow path (41). The other end of the first flow path (41) of the intermediate pressure heat exchanger (40) is connected to one end of the first flow path (61) of the supercooling heat exchanger (60). The other end of the first flow path (61) of the supercooling heat exchanger (60) is connected to the liquid side connecting pipe (21).
[0029] インジェクション配管 (43)は、インジェクション通路を形成して 、る。このインジェクシ ヨン配管 (43)は、その始端が中間圧熱交換器 (40)と過冷却熱交換器 (60)の間に、 終端が圧縮機 (31)の中間圧ポート (32)にそれぞれ接続されている。中間圧熱交換 器 (40)の第 2流路 (42)は、このインジェクション配管 (43)の途中に配置されて 、る。 インジェクション配管 (43)では、その始端と中間圧熱交 (40)の第 2流路 (42)との 間にインジェクション用膨張弁 (44)が設けられて 、る。  [0029] The injection pipe (43) forms an injection passage. The injection pipe (43) has a start end connected between the intermediate pressure heat exchanger (40) and the subcooling heat exchanger (60), and a terminal end connected to the intermediate pressure port (32) of the compressor (31). Has been. The second flow path (42) of the intermediate pressure heat exchanger (40) is arranged in the middle of the injection pipe (43). In the injection pipe (43), an injection expansion valve (44) is provided between the starting end thereof and the second flow path (42) of the intermediate pressure heat exchange (40).
[0030] 過冷却用配管 (63)は、その始端が過冷却熱交換器 (60)と液側連絡配管 (21)の間 に、終端がアキュームレータ (38)と四方切換弁 (35)の間にそれぞれ接続されている 。過冷却熱交換器 (60)の第 2流路 (62)は、この過冷却用配管 (63)の途中に配置さ れている。過冷却用配管 (63)では、その始端と過冷却熱交換器 (60)の第 2流路 (62 )との間に過冷却用膨張弁 (64)が設けられて 、る。  [0030] The supercooling pipe (63) has a start end between the supercooling heat exchanger (60) and the liquid side communication pipe (21), and a terminal end between the accumulator (38) and the four-way switching valve (35). Are connected to each. The second flow path (62) of the supercooling heat exchanger (60) is disposed in the middle of the supercooling pipe (63). In the supercooling pipe (63), a supercooling expansion valve (64) is provided between its starting end and the second flow path (62) of the supercooling heat exchanger (60).
[0031] 上述したように、四方切換弁 (35)は、その第 1のポートが圧縮機 (31)の吐出側に、 第 2のポートがアキュームレータ(38)に、第 3のポートが室外熱交翻 (36)にそれぞ れ接続されている。また、四方切換弁 (35)の第 4のポートは、ガス側連絡配管(22)に 接続されている。この四方切換弁 (35)は、第 1のポートと第 3のポートが連通して第 2 のポートと第 4のポートが連通する第 1状態(図 1(A)に示す状態)と、第 1のポートと第 4のポートが連通して第 2のポートと第 3のポートが連通する第 2状態(図 1(B)に示す 状態)とに切り換わる。  [0031] As described above, the four-way selector valve (35) has a first port on the discharge side of the compressor (31), a second port on the accumulator (38), and a third port on the outdoor heat. Each is connected to the reversal (36). The fourth port of the four-way selector valve (35) is connected to the gas side communication pipe (22). This four-way switching valve (35) has a first state (the state shown in FIG. 1 (A)) in which the first port and the third port communicate with each other, and the second port and the fourth port communicate with each other. Switch to the 2nd state (state shown in Fig. 1 (B)) where the 1 port communicates with the 4th port and the 2nd port communicates with the 3rd port.
[0032] 運転動作  [0032] Driving behavior
上記空調機(10)では、冷房運転と暖房運転が切り換え可能となって!/、る。 [0033] 〈冷房運転〉 The air conditioner (10) can be switched between cooling operation and heating operation! [0033] <Cooling operation>
冷房運転時の運転動作について、図 1(A)を参照しながら説明する。冷房運転時の 冷媒回路 (20)では、室外熱交換器 (36)が凝縮器となって室内熱交換器 (71)が蒸発 器となるように冷媒が循環する。つまり、冷媒回路 (20)では、冷却動作が行われる。  The operation during cooling operation will be described with reference to FIG. 1 (A). In the refrigerant circuit (20) during the cooling operation, the refrigerant circulates so that the outdoor heat exchanger (36) serves as a condenser and the indoor heat exchanger (71) serves as an evaporator. That is, the cooling operation is performed in the refrigerant circuit (20).
[0034] 具体的に、冷房運転時には、四方切換弁 (35)が第 1状態に設定される。また、室 外膨張弁 (37)が全開状態に設定され、インジェクション用膨張弁 (44)と過冷却用膨 張弁 (64)と室内膨張弁 (72)の開度がそれぞれ適宜調節される。  Specifically, during the cooling operation, the four-way switching valve (35) is set to the first state. Further, the outdoor expansion valve (37) is set to a fully open state, and the opening degrees of the injection expansion valve (44), the supercooling expansion valve (64), and the indoor expansion valve (72) are adjusted as appropriate.
[0035] 圧縮機 (31)から吐出された高圧ガス冷媒は、室外熱交換器 (36)で室外空気へ放 熱して凝縮する。室外熱交換器 (36)から出た高圧液冷媒は、中間圧熱交換器 (40) の第 1流路 (41)を通過する間に第 2流路 (42)の冷媒に対して放熱する。中間圧熱交 (40)の第 1流路 (41)力も流出した高圧液冷媒は、その一部力 Sインジェクション配 管 (43)へ流入し、残りが過冷却熱交換器 (60)へ流入する。  [0035] The high-pressure gas refrigerant discharged from the compressor (31) is condensed by releasing heat to the outdoor air in the outdoor heat exchanger (36). The high-pressure liquid refrigerant from the outdoor heat exchanger (36) dissipates heat to the refrigerant in the second flow path (42) while passing through the first flow path (41) of the intermediate pressure heat exchanger (40). . The high-pressure liquid refrigerant that also flowed out of the first flow path (41) of the intermediate pressure heat exchanger (40) flows into the partial force S injection pipe (43), and the rest flows into the supercooling heat exchanger (60). To do.
[0036] インジェクション配管 (43)へ流入した高圧液冷媒は、インジェクション用膨張弁 (44) を通過する際に中間圧にまで減圧されて気液二相状態の中間圧冷媒となる。この中 間圧冷媒は、中間圧熱交換器 (40)の第 2流路 (42)を流れる間に第 1流路 (41)の冷 媒から吸熱して蒸発する。中間圧熱交換器 (40)の第 2流路 (42)から出た中間圧ガス 冷媒は、圧縮機 (31)の中間圧ポート (32)へ送られる。  [0036] The high-pressure liquid refrigerant flowing into the injection pipe (43) is reduced to an intermediate pressure when passing through the injection expansion valve (44) to become an intermediate-pressure refrigerant in a gas-liquid two-phase state. The intermediate pressure refrigerant absorbs heat from the refrigerant in the first flow path (41) and evaporates while flowing through the second flow path (42) of the intermediate pressure heat exchanger (40). The intermediate pressure gas refrigerant exiting from the second flow path (42) of the intermediate pressure heat exchanger (40) is sent to the intermediate pressure port (32) of the compressor (31).
[0037] 一方、過冷却熱交換器 (60)へ流入した高圧液冷媒は、第 1流路 (61)を通過する間 に第 2流路 (62)の冷媒に対して放熱する。過冷却熱交換器 (60)の第 1流路 (61)から 流出した高圧液冷媒は、その一部が過冷却用配管 (63)へ流入し、残りが液側連絡 配管 (21)を通って各室内回路 (70)へ分配される。つまり、室内回路 (70)へは、中間 圧熱交換器 (40)と過冷却熱交換器 (60)の両方で冷却された高圧液冷媒が供給され る。  On the other hand, the high-pressure liquid refrigerant flowing into the supercooling heat exchanger (60) radiates heat to the refrigerant in the second flow path (62) while passing through the first flow path (61). Part of the high-pressure liquid refrigerant that has flowed out of the first flow path (61) of the supercooling heat exchanger (60) flows into the supercooling pipe (63), and the rest passes through the liquid side connecting pipe (21). Distributed to each indoor circuit (70). In other words, the high-pressure liquid refrigerant cooled by both the intermediate pressure heat exchanger (40) and the supercooling heat exchanger (60) is supplied to the indoor circuit (70).
[0038] 各室内回路 (70)では、流入した高圧液冷媒が室内膨張弁 (72)を通過する際に減 圧され、その後に室内熱交 (71)で室内空気力 吸熱して蒸発する。室内熱交 換器 (71)で蒸発した冷媒は、ガス側連絡配管 (22)を通って室外回路 (30)へ戻り、ァ キュームレータ (38)を通って圧縮機 (31)へ吸入される。  [0038] In each indoor circuit (70), the high-pressure liquid refrigerant that has flowed in is reduced in pressure when passing through the indoor expansion valve (72), and then is evaporated by absorbing the indoor aerodynamic force in the indoor heat exchanger (71). The refrigerant evaporated in the indoor heat exchanger (71) returns to the outdoor circuit (30) through the gas side connecting pipe (22), and is sucked into the compressor (31) through the accumulator (38). .
[0039] 一方、過冷却用配管 (63)へ流入した高圧液冷媒は、過冷却用膨張弁 (64)を通過 する際に低圧にまで減圧されて気液二相状態の低圧冷媒となる。この低圧冷媒は、 過冷却熱交換器 (60)の第 2流路 (62)を流れる間に第 1流路 (61)の冷媒から吸熱し て蒸発する。過冷却熱交換器 (60)の第 2流路 (62)力 出た低圧ガス冷媒は、室内回 路 (70)からガス側連絡配管 (22)を通って室外回路 (30)へ戻ってきた低圧冷媒と共 に圧縮機 (31)へ吸入される。 On the other hand, the high-pressure liquid refrigerant flowing into the supercooling pipe (63) passes through the supercooling expansion valve (64). In doing so, the pressure is reduced to a low pressure to become a low-pressure refrigerant in a gas-liquid two-phase state. This low-pressure refrigerant absorbs heat from the refrigerant in the first channel (61) and evaporates while flowing through the second channel (62) of the supercooling heat exchanger (60). The low-pressure gas refrigerant generated in the second flow path (62) of the supercooling heat exchanger (60) returned from the indoor circuit (70) to the outdoor circuit (30) through the gas side connection pipe (22). It is sucked into the compressor (31) together with the low-pressure refrigerant.
[0040] 圧縮機 (31)は、アキュームレータ (38)を通じて低圧冷媒を圧縮室へ吸入して圧縮 する。また、圧縮途中の圧縮室へは、中間圧ポート (32)から流入した中間圧ガス冷 媒が導入される。そして、圧縮機 (31)は、圧縮室内の冷媒を高圧にまで圧縮して吐 出する。 [0040] The compressor (31) sucks and compresses the low-pressure refrigerant into the compression chamber through the accumulator (38). In addition, the intermediate pressure gas refrigerant flowing from the intermediate pressure port (32) is introduced into the compression chamber in the middle of compression. The compressor (31) compresses the refrigerant in the compression chamber to a high pressure and discharges it.
[0041] このように、冷房運転中には、中間圧熱交換器 (40)と過冷却熱交換器 (60)を通過 する際に冷却されて過冷却度の大きくなつた高圧液冷媒が、液側連絡配管 (21)を通 じて室内回路 (70)へ送られる。このため、液側連絡配管 (21)の長さがある程度以上 であったり、室内回路(70)が室外回路 (30)よりもある程度以上高 、位置に配置され て!、たりして、室外回路 (30)から液側連絡配管 (21)へ送り込まれる液冷媒の過冷却 度が小さいと室内回路 (70)に達するまでに高圧液冷媒の一部が蒸発してしまうような 場合であっても、室内回路 (70)へ流入する高圧冷媒が液単相状態に保たれる。また 、室内回路 (70)に達するまでに高圧液冷媒の一部が蒸発したとしても、中間圧熱交 換器 (40)だけで冷却された液冷媒が室外回路 (30)から液側連絡配管 (21)へ送り込 まれる場合に比べれば、蒸発する高圧液冷媒の量は減少する。  [0041] Thus, during the cooling operation, the high-pressure liquid refrigerant that has been cooled when passing through the intermediate pressure heat exchanger (40) and the supercooling heat exchanger (60) and has a high degree of supercooling is It is sent to the indoor circuit (70) through the liquid side connection pipe (21). For this reason, the liquid side communication pipe (21) is longer than a certain length, or the indoor circuit (70) is placed at a position higher than the outdoor circuit (30) to some extent! Even if the degree of supercooling of the liquid refrigerant sent from (30) to the liquid side connecting pipe (21) is small, even if a part of the high-pressure liquid refrigerant evaporates before reaching the indoor circuit (70). The high-pressure refrigerant flowing into the indoor circuit (70) is kept in the liquid single phase state. Even if a part of the high-pressure liquid refrigerant evaporates before reaching the indoor circuit (70), the liquid refrigerant cooled only by the intermediate pressure heat exchanger (40) is transferred from the outdoor circuit (30) to the liquid-side connecting pipe. The amount of high-pressure liquid refrigerant that evaporates is reduced compared to the case of being sent to (21).
[0042] 〈暖房運転〉  [0042] <Heating operation>
暖房運転時の運転動作について、図 1(B)を参照しながら説明する。暖房運転時の 冷媒回路 (20)では、室内熱交換器 (71)が凝縮器となって室外熱交換器 (36)が蒸発 器となるように冷媒が循環する。つまり、冷媒回路 (20)では、加熱動作が行われる。  The operation during heating operation will be described with reference to FIG. 1 (B). In the refrigerant circuit (20) during the heating operation, the refrigerant circulates so that the indoor heat exchanger (71) serves as a condenser and the outdoor heat exchanger (36) serves as an evaporator. That is, a heating operation is performed in the refrigerant circuit (20).
[0043] 具体的に、暖房運転時には、四方切換弁 (35)が第 2状態に設定される。また、室 外膨張弁 (37)と室内膨張弁 (72)とインジェクション用膨張弁 (44)の開度がそれぞれ 適宜調節され、過冷却用膨張弁 (64)が全閉状態に設定される。  [0043] Specifically, during the heating operation, the four-way selector valve (35) is set to the second state. Further, the opening degrees of the outdoor expansion valve (37), the indoor expansion valve (72), and the injection expansion valve (44) are adjusted as appropriate, and the supercooling expansion valve (64) is set to a fully closed state.
[0044] 圧縮機 (31)カゝら吐出された高圧ガス冷媒は、ガス側連絡配管 (22)を通って各室内 回路 (70)へ分配される。各室内回路 (70)の室内熱交換器 (71)では、高圧ガス冷媒 が室内空気へ放熱して凝縮する。各室内回路 (70)において、室内熱交換器 (71)か ら流出した冷媒は、室内膨張弁 (72)を通過後に液側連絡配管 (21)を通って室外回 路 (30)へ戻り、その全部が過冷却熱交換器 (60)の第 1流路 (61)を通過する。過冷 却熱交 (60)を通過した高圧液冷媒は、その一部力 Sインジェクション配管 (43)へ 流入し、残りが中間圧熱交換器 (40)の第 1流路 (41)へ流入する。 [0044] The high-pressure gas refrigerant discharged from the compressor (31) is distributed to each indoor circuit (70) through the gas side connecting pipe (22). In the indoor heat exchanger (71) of each indoor circuit (70), the high-pressure gas refrigerant Radiates heat to room air and condenses. In each indoor circuit (70), the refrigerant flowing out of the indoor heat exchanger (71) passes through the indoor expansion valve (72) and then returns to the outdoor circuit (30) through the liquid side communication pipe (21). All of them pass through the first flow path (61) of the supercooling heat exchanger (60). The high-pressure liquid refrigerant that has passed through the supercooling heat exchanger (60) flows into the partial force S injection pipe (43), and the remainder flows into the first flow path (41) of the intermediate pressure heat exchanger (40). To do.
[0045] インジェクション配管 (43)へ流入した高圧液冷媒は、インジェクション用膨張弁 (44) を通過する際に中間圧にまで減圧されて気液二相状態の中間圧冷媒となる。この中 間圧冷媒は、中間圧熱交換器 (40)の第 2流路 (42)を流れる間に第 1流路 (41)の冷 媒から吸熱して蒸発する。中間圧熱交換器 (40)の第 2流路 (42)から出た中間圧ガス 冷媒は、圧縮機 (31)の中間圧ポート (32)へ送られる。  [0045] The high-pressure liquid refrigerant that has flowed into the injection pipe (43) is reduced to an intermediate pressure when passing through the injection expansion valve (44) to become a gas-liquid two-phase intermediate-pressure refrigerant. The intermediate pressure refrigerant absorbs heat from the refrigerant in the first flow path (41) and evaporates while flowing through the second flow path (42) of the intermediate pressure heat exchanger (40). The intermediate pressure gas refrigerant exiting from the second flow path (42) of the intermediate pressure heat exchanger (40) is sent to the intermediate pressure port (32) of the compressor (31).
[0046] 一方、中間圧熱交換器 (40)の第 1流路 (41)へ流入した高圧液冷媒は、第 2流路 (4 2)の中間圧冷媒によって冷却される。中間圧熱交換器 (40)で冷却された高圧液冷 媒は、室外膨張弁 (37)を通過する際に減圧されて力 室外熱交 (36)へ流入す る。室外熱交換器 (36)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換器 (36)で蒸発した冷媒は、アキュームレータ (38)を通って圧縮機 (31)へ吸入される。  On the other hand, the high-pressure liquid refrigerant flowing into the first flow path (41) of the intermediate pressure heat exchanger (40) is cooled by the intermediate pressure refrigerant in the second flow path (42). The high-pressure liquid refrigerant cooled by the intermediate pressure heat exchanger (40) is reduced in pressure when passing through the outdoor expansion valve (37) and flows into the power outdoor heat exchanger (36). In the outdoor heat exchanger (36), the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant evaporated in the outdoor heat exchanger (36) is sucked into the compressor (31) through the accumulator (38).
[0047] 圧縮機 (31)は、アキュームレータ (38)を通じて低圧冷媒を圧縮室へ吸入して圧縮 する。また、圧縮途中の圧縮室へは、中間圧ポート (32)から流入した中間圧ガス冷 媒が導入される。そして、圧縮機 (31)は、圧縮室内の冷媒を高圧にまで圧縮して吐 出する。  [0047] The compressor (31) sucks the low-pressure refrigerant into the compression chamber through the accumulator (38) and compresses it. In addition, the intermediate pressure gas refrigerant flowing from the intermediate pressure port (32) is introduced into the compression chamber in the middle of compression. The compressor (31) compresses the refrigerant in the compression chamber to a high pressure and discharges it.
[0048] 一実施形態 1の効果  [0048] Effect of Embodiment 1
上記空調機 (10)の冷房運転中には、中間圧熱交換器 (40)と過冷却熱交換器 (60) のそれぞれにおいて冷却された高圧液冷媒を室内回路 (70)へ供給している。このた め、室外回路 (30)と室内回路 (70)を繋ぐ液側連絡配管 (21)が極めて長力つたり、室 内回路 (70)が室外回路 (30)よりも高 、位置に配置されて 、て、液側連絡配管 (21) を流れる間に冷媒の圧力が大幅に低下するような設置状況であっても、室内回路(7 0)へ供給される高圧冷媒を液状態に保つことができ、あるいは室内回路 (70)へ供給 される高圧冷媒のうち途中で蒸発する量を削減することができる。その結果、冷房運 転中に室内回路(70)へ供給される液冷媒の量を確保することができ、室内ユニット( 12)の冷房能力を充分に発揮させることができる。 During the cooling operation of the air conditioner (10), the high-pressure liquid refrigerant cooled in each of the intermediate pressure heat exchanger (40) and the supercooling heat exchanger (60) is supplied to the indoor circuit (70). . For this reason, the liquid side connecting pipe (21) connecting the outdoor circuit (30) and the indoor circuit (70) is extremely long, or the indoor circuit (70) is positioned higher than the outdoor circuit (30). Therefore, the high-pressure refrigerant supplied to the indoor circuit (70) is kept in a liquid state even in an installation situation in which the refrigerant pressure greatly decreases while flowing through the liquid side connecting pipe (21). Or the amount of high-pressure refrigerant supplied to the indoor circuit (70) can be reduced. As a result, the amount of liquid refrigerant supplied to the indoor circuit (70) during cooling operation can be secured, and the indoor unit ( The cooling ability of 12) can be fully exerted.
[0049] ここで、上記空調機(10)のように、複数の室内回路(70)が互いに並列接続されて いる場合には、各室内ユニット(12)の冷房能力を適切に調節するため、各室内回路 (70)の室内膨張弁 (72)の開度を個別に制御して室内回路 (70)への冷媒の分配割 合を調節している。ところが、室内膨張弁 (72)を通過する冷媒が気液二相状態にな ると、室内膨張弁 (72)の流量特性が不安定となり、各室内回路 (70)に対する冷媒の 分配割合を適切に制御できなくなるおそれがある。これに対し、本実施形態の空調 機(10)では、冷房運転時に室内回路 (70)へ流入する冷媒を液状態に保持しやすく なる。従って、本実施形態によれば、複数の室内ユニット(12)を備える空調機(10)に おいて、各室内ユニット(12)の冷房能力を的確に制御することが可能となる。  [0049] Here, when a plurality of indoor circuits (70) are connected in parallel to each other as in the air conditioner (10), in order to appropriately adjust the cooling capacity of each indoor unit (12), The refrigerant distribution ratio to the indoor circuit (70) is adjusted by individually controlling the opening of the indoor expansion valve (72) of each indoor circuit (70). However, if the refrigerant passing through the indoor expansion valve (72) enters a gas-liquid two-phase state, the flow characteristics of the indoor expansion valve (72) become unstable, and the distribution ratio of the refrigerant to each indoor circuit (70) becomes appropriate. May be out of control. In contrast, in the air conditioner (10) of the present embodiment, the refrigerant flowing into the indoor circuit (70) during the cooling operation can be easily held in a liquid state. Therefore, according to the present embodiment, in the air conditioner (10) including the plurality of indoor units (12), the cooling capacity of each indoor unit (12) can be accurately controlled.
[0050] 《発明の実施形態 2》  [Embodiment 2 of the Invention]
本発明の実施形態 2について説明する。本実施形態は、上記実施形態 1の空調機 (10)にブリッジ回路 (50)を追加したものである。ここでは、本実施形態の空調機(10) について、上記実施形態 1と異なる点を説明する。  Embodiment 2 of the present invention will be described. In this embodiment, a bridge circuit (50) is added to the air conditioner (10) of the first embodiment. Here, the air conditioner (10) of the present embodiment will be described with respect to differences from the first embodiment.
[0051] 図 2に示すように、ブリッジ回路(50)は、 4つの逆止弁(51〜54)をブリッジ状に接続 したものである。このブリッジ回路 (50)は、冷房運転時と暖房運転時の両方で中間圧 熱交換器 (40)が過冷却熱交換器 (60)の上流側に位置するように冷媒の循環経路を 切り換えるためのものであって、切棚構を構成している。  [0051] As shown in FIG. 2, the bridge circuit (50) has four check valves (51 to 54) connected in a bridge shape. This bridge circuit (50) switches the refrigerant circulation path so that the intermediate pressure heat exchanger (40) is located upstream of the supercooling heat exchanger (60) during both cooling and heating operations. And constitutes a shelf structure.
[0052] ブリッジ回路 (50)に設けられた各逆止弁 (51〜54)は、それぞれの流入側から流出 側へ向力う冷媒の流通だけを許容するように構成されている。このブリッジ回路 (50) では、第 1逆止弁 (51)の流出側が第 2逆止弁 (52)の流出側に、第 2逆止弁 (52)の流 入側が第 3逆止弁 (53)の流出側に、第 3逆止弁 (53)の流入側が第 4逆止弁 (54)の 流入側に、第 4逆止弁 (54)の流出側が第 1逆止弁 (51)の流入側に、それぞれ接続さ れている。  [0052] Each check valve (51 to 54) provided in the bridge circuit (50) is configured to allow only the flow of the refrigerant directed from the inflow side to the outflow side. In this bridge circuit (50), the outflow side of the first check valve (51) is the outflow side of the second check valve (52), and the inflow side of the second check valve (52) is the third check valve ( 53), the inflow side of the third check valve (53) is the inflow side of the fourth check valve (54), and the outflow side of the fourth check valve (54) is the first check valve (51) Are connected to the inflow side.
[0053] 本実施形態の冷媒回路 (20)では、ブリッジ回路 (50)における第 1逆止弁 (51)と第 4逆止弁 (54)の間に室外熱交換器 (36)の他端が室外膨張弁 (37)を介して接続され 、ブリッジ回路 (50)における第 2逆止弁 (52)と第 3逆止弁 (53)の間に液側連絡配管( 21)が接続されている。また、この冷媒回路 (20)では、ブリッジ回路 (50)における第 1 逆止弁 (51)と第 2逆止弁 (52)の間に中間圧熱交換器 (40)の第 1流路 (41)の一端が 接続され、ブリッジ回路 (50)における第 3逆止弁 (53)と第 4逆止弁 (54)の間に過冷 却熱交換器 (60)の第 1流路 (61)の他端が接続されて!ヽる。 [0053] In the refrigerant circuit (20) of the present embodiment, the other end of the outdoor heat exchanger (36) is provided between the first check valve (51) and the fourth check valve (54) in the bridge circuit (50). Is connected via the outdoor expansion valve (37), and the liquid side communication pipe (21) is connected between the second check valve (52) and the third check valve (53) in the bridge circuit (50). Yes. In the refrigerant circuit (20), the first circuit in the bridge circuit (50) is used. One end of the first flow path (41) of the intermediate pressure heat exchanger (40) is connected between the check valve (51) and the second check valve (52), and the third check valve in the bridge circuit (50) is connected. The other end of the first flow path (61) of the supercooling heat exchanger (60) is connected between the valve (53) and the fourth check valve (54).
[0054] 運転動作 [0054] Driving operation
〈冷房運転〉  <Cooling operation>
本実施形態の空調機(10)の冷房運転中の動作について、上記実施形態 1と異な る点を説明する。  The operation of the air conditioner (10) of the present embodiment during the cooling operation will be described with respect to differences from the first embodiment.
[0055] 図 2(A)に示すように、室外熱交翻 (36)で凝縮した冷媒は、室外膨張弁 (37)とブ リッジ回路 (50)の第 1逆止弁 (51)とを順に通過し、その後に中間圧熱交換器 (40)の 第 1流路 (41)へ流入する。続いて、冷媒は、中間圧熱交換器 (40)の第 1流路 (41)を 通過する間に冷却された後に、過冷却熱交換器 (60)の第 1流路 (61)を通過する間 に更に冷却される。この点は、上記実施形態 1の場合と同様である。過冷却熱交換 器 (60)の第 1流路 (61)力 流出した冷媒は、ブリッジ回路 (50)の第 3逆止弁 (53)を 通過し、その後に液側連絡配管(21)を通って各室内回路(70)へ分配される。  [0055] As shown in FIG. 2 (A), the refrigerant condensed by the outdoor heat exchange (36) passes through the outdoor expansion valve (37) and the first check valve (51) of the bridge circuit (50). It passes in order, and then flows into the first flow path (41) of the intermediate pressure heat exchanger (40). Subsequently, the refrigerant is cooled while passing through the first flow path (41) of the intermediate pressure heat exchanger (40), and then passes through the first flow path (61) of the supercooling heat exchanger (60). It is further cooled during This point is the same as in the case of the first embodiment. The first flow path (61) force of the supercooling heat exchanger (60) flows out of the refrigerant, passes through the third check valve (53) of the bridge circuit (50), and then passes through the liquid side communication pipe (21). And is distributed to each indoor circuit (70).
[0056] 〈暖房運転〉  [0056] <Heating operation>
本実施形態の空調機(10)の暖房運転中の動作について、上記実施形態 1と異な る点を説明する。  The operation during the heating operation of the air conditioner (10) of the present embodiment will be described for the differences from the first embodiment.
[0057] 図 2(B)に示すように、室内熱交換器 (71)で凝縮した冷媒は、液側連絡配管 (21)を 通って室外回路 (30)へ流入する。室外回路 (30)へ流入した冷媒は、ブリッジ回路 (5 0)の第 2逆止弁 (52)を通って中間圧熱交換器 (40)の第 1流路 (41)へ流入し、この第 1流路 (41)を通過する間に冷却される。その後、冷媒は、過冷却熱交換器 (60)の第 1流路 (61)へ流入し、その第 2流路 (62)を流れる低圧冷媒との熱交換によって冷却 される。過冷却熱交換器 (60)の第 1流路 (61)から流出した冷媒は、その一部が過冷 却用配管(63)へ流入し、残りがブリッジ回路 (50)の第 4逆止弁 (54)を通って室外熱 交換器 (36)へ流入する。  [0057] As shown in FIG. 2 (B), the refrigerant condensed in the indoor heat exchanger (71) flows into the outdoor circuit (30) through the liquid side connecting pipe (21). The refrigerant flowing into the outdoor circuit (30) flows into the first flow path (41) of the intermediate pressure heat exchanger (40) through the second check valve (52) of the bridge circuit (50). Cooled while passing through the first flow path (41). Thereafter, the refrigerant flows into the first flow path (61) of the supercooling heat exchanger (60) and is cooled by heat exchange with the low-pressure refrigerant flowing through the second flow path (62). A part of the refrigerant flowing out from the first flow path (61) of the supercooling heat exchanger (60) flows into the supercooling pipe (63), and the rest is the fourth check in the bridge circuit (50). It flows into the outdoor heat exchanger (36) through the valve (54).
[0058] 過冷却用配管 (63)へ流入した冷媒は、過冷却用膨張弁 (64)を通過する際に低圧 にまで減圧されて気液二相状態の低圧冷媒となる。この低圧冷媒は、過冷却熱交換 器 (60)の第 2流路 (62)を流れる間に第 1流路 (61)の冷媒から吸熱して蒸発する。過 冷却熱交 (60)の第 2流路 (62)力 出た低圧ガス冷媒は、室内回路 (70)力 ガ ス側連絡配管 (22)を通って室外回路 (30)へ戻ってきた低圧冷媒と共に圧縮機 (31) へ吸入される。 [0058] The refrigerant flowing into the supercooling pipe (63) is decompressed to a low pressure when passing through the supercooling expansion valve (64), and becomes a low-pressure refrigerant in a gas-liquid two-phase state. This low-pressure refrigerant absorbs heat from the refrigerant in the first channel (61) and evaporates while flowing through the second channel (62) of the supercooling heat exchanger (60). Excessive The low pressure gas refrigerant that has flowed out of the second flow path (62) of the cooling heat exchanger (60) is returned to the outdoor circuit (30) through the indoor circuit (70) force gas side connecting pipe (22). At the same time, it is sucked into the compressor (31).
[0059] 一実施形態 2の効果  [0059] Effect of Embodiment 2
本実施形態によれば、冷却動作と加熱動作の何れにお!ヽても中間圧熱交換器 (40 )から過冷却熱交 (60)の順に冷媒を流すことができる。  According to the present embodiment, the refrigerant can be flowed in the order of the supercooling heat exchange (60) from the intermediate pressure heat exchanger (40) regardless of whether the cooling operation or the heating operation is performed.
[0060] ここで、過冷却熱交換器 (60)で高圧液冷媒と熱交換する低圧冷媒の温度は、中間 圧熱交換器 (40)で高圧冷媒と熱交換する中間圧冷媒の温度よりも低くなる。このた め、仮に暖房運転中に冷媒が過冷却熱交換器 (60)から中間圧熱交換器 (40)へ向 かって流れる状態になると、中間圧熱交換器 (40)では高圧液冷媒と中間圧冷媒の 温度差が殆どなくなってしまい、圧縮機 (31,34)へ中間圧のガス冷媒を供給できなく なるおそれがある。その対策としては過冷却熱交 (60)における高圧液冷媒の冷 却を停止することが考えられるが、それでは高圧液冷媒の過冷却度を充分に増大さ せることができなくなる。  Here, the temperature of the low-pressure refrigerant that exchanges heat with the high-pressure liquid refrigerant in the supercooling heat exchanger (60) is higher than the temperature of the intermediate-pressure refrigerant that exchanges heat with the high-pressure refrigerant in the intermediate pressure heat exchanger (40). Lower. For this reason, if the refrigerant flows from the supercooling heat exchanger (60) to the intermediate pressure heat exchanger (40) during the heating operation, the intermediate pressure heat exchanger (40) can There is almost no difference in temperature of the pressure refrigerant, and there is a risk that the intermediate pressure gas refrigerant cannot be supplied to the compressor (31, 34). As a countermeasure, it is conceivable to stop the cooling of the high-pressure liquid refrigerant in the supercooling heat exchanger (60). However, this makes it impossible to sufficiently increase the degree of supercooling of the high-pressure liquid refrigerant.
[0061] これに対し、本実施形態では、冷房運転中だけでなぐ暖房運転中においても中間 圧熱交 (40)から過冷却熱交 (60)の順に冷媒を流すことができる。このため 、冷房運転と暖房運転の両方において、中間圧熱交換器 (40)では圧縮機 (31,34) へ供給される中間圧冷媒を確実に蒸発させることができると同時に、過冷却熱交換 器 (60)での高圧液冷媒の冷却も行うことが可能となる。  In contrast, in the present embodiment, the refrigerant can be flowed in the order of the intermediate pressure heat exchange (40) to the supercooling heat exchange (60) even during the heating operation as well as during the cooling operation. Therefore, in both the cooling operation and the heating operation, the intermediate pressure heat exchanger (40) can reliably evaporate the intermediate pressure refrigerant supplied to the compressor (31, 34), and at the same time, the supercooling heat exchange The high-pressure liquid refrigerant can also be cooled in the vessel (60).
[0062] 《その他の実施形態》  << Other Embodiments >>
上記の各実施形態では、室外回路 (30)に低段側圧縮機 (33)と高段側圧縮機 (34) を設置し、冷媒回路 (20)で二段圧縮冷凍サイクルを行うようにしてもよい。ここでは、 本変形例を上記実施形態 1の空調機(10)に適用したものについて、図 3を参照しな がら説明する。  In each of the above embodiments, the low-stage compressor (33) and the high-stage compressor (34) are installed in the outdoor circuit (30), and the refrigerant circuit (20) performs the two-stage compression refrigeration cycle. Also good. Here, the modification applied to the air conditioner (10) of the first embodiment will be described with reference to FIG.
[0063] 本変形例の室外回路 (30)では、低段側圧縮機 (33)と高段側圧縮機 (34)が直列に 接続される。具体的に、低段側圧縮機 (33)の吸入側は、アキュームレータ (38)を介 して四方切換弁 (35)の第 2のポートに接続されて 、る。低段側圧縮機 (33)の吐出側 は、高段側圧縮機 (34)の吸入側に接続されている。高段側圧縮機 (34)の吐出側は 、四方切換弁 (35)の第 1のポートに接続されている。また、本変形例において、イン ジェクシヨン配管 (43)の終端は、低段側圧縮機 (33)の吐出側と高段側圧縮機 (34) の吸入側を繋ぐ配管に接続されている。そして、インジェクション配管 (43)を流れる中 間圧のガス冷媒は、低段側圧縮機 (33)から吐出された中間圧冷媒と共に高段側圧 縮機 (34)へ吸入される。 [0063] In the outdoor circuit (30) of this modification, the low-stage compressor (33) and the high-stage compressor (34) are connected in series. Specifically, the suction side of the low-stage compressor (33) is connected to the second port of the four-way switching valve (35) via the accumulator (38). The discharge side of the low stage compressor (33) is connected to the suction side of the high stage compressor (34). The discharge side of the high stage compressor (34) , Connected to the first port of the four-way selector valve (35). In this modification, the end of the injection pipe (43) is connected to a pipe connecting the discharge side of the low stage compressor (33) and the suction side of the high stage compressor (34). The intermediate-pressure gas refrigerant flowing through the injection pipe (43) is drawn into the high-stage compressor (34) together with the intermediate-pressure refrigerant discharged from the low-stage compressor (33).
[0064] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。 [0064] The above embodiments are merely preferred examples in nature, and are not intended to limit the scope of the present invention, its application, or its use.
産業上の利用可能性  Industrial applicability
[0065] 以上説明したように、本発明は、中間圧のガス冷媒を圧縮機へ供給してガスインジ ェクシヨンを行う冷凍装置について有用である。 [0065] As described above, the present invention is useful for a refrigeration apparatus that performs gas injection by supplying an intermediate-pressure gas refrigerant to a compressor.

Claims

請求の範囲 The scope of the claims
[1] 圧縮機 (31,34)と熱源側熱交換器 (36)と利用側熱交換器 (71)とが接続され、上記 熱源側熱交 (36)が凝縮器となって上記利用側熱交 (71)が蒸発器となる冷 却動作を実行可能な冷媒回路 (20)を備える冷凍装置であって、  [1] The compressor (31, 34), the heat source side heat exchanger (36), and the use side heat exchanger (71) are connected, and the heat source side heat exchanger (36) serves as a condenser and serves as the use side. A refrigeration apparatus comprising a refrigerant circuit (20) capable of performing a cooling operation in which heat exchange (71) serves as an evaporator,
上記冷媒回路 (20)には、  The refrigerant circuit (20)
高圧液冷媒の一部を減圧して得られた中間圧冷媒を上記圧縮機 (31,34)へ供給 するインジェクション通路(43)と、  An injection passage (43) for supplying intermediate pressure refrigerant obtained by decompressing part of the high-pressure liquid refrigerant to the compressor (31, 34);
上記インジェクション通路 (43)を上記圧縮機 (31,34)へ向けて流れる中間圧冷媒 を高圧液冷媒と熱交換させて蒸発させる中間圧熱交換器 (40)と、  An intermediate pressure heat exchanger (40) for evaporating the intermediate pressure refrigerant flowing through the injection passage (43) toward the compressor (31, 34) by exchanging heat with the high pressure liquid refrigerant;
上記冷却動作中における上記中間圧熱交換器 (40)の下流側に配置されて高圧 液冷媒の一部を低圧にまで減圧して得られた低圧冷媒との熱交換によって高圧液 冷媒を冷却する過冷却熱交 (60)とが設けられて 、る  The high-pressure liquid refrigerant is cooled by heat exchange with a low-pressure refrigerant that is arranged downstream of the intermediate-pressure heat exchanger (40) during the cooling operation and is obtained by reducing a part of the high-pressure liquid refrigerant to a low pressure. A supercooling heat exchanger (60) is provided.
ことを特徴とする冷凍装置。  A refrigeration apparatus characterized by that.
[2] 請求項 1において、 [2] In claim 1,
上記冷媒回路 (20)は、上記圧縮機 (31,34)及び上記熱源側熱交換器 (36)が設け られた熱源側回路 (30)と上記利用側熱交 (71)が設けられた利用側回路 (70)と を連絡配管 (21,22)で接続することによって構成され、  The refrigerant circuit (20) includes a heat source side circuit (30) provided with the compressor (31, 34) and the heat source side heat exchanger (36) and a use side provided with the use side heat exchanger (71). Side circuit (70) and connecting pipe (21, 22)
上記インジェクション通路 (43)、上記中間圧熱交換器 (40)、及び上記過冷却熱交 (60)が上記熱源側回路 (30)に設けられて 、る  The injection passage (43), the intermediate pressure heat exchanger (40), and the supercooling heat exchanger (60) are provided in the heat source side circuit (30).
ことを特徴とする冷凍装置。  A refrigeration apparatus characterized by that.
[3] 請求項 1において、 [3] In claim 1,
上記冷媒回路 (20)では、上記利用側熱交換器 (71)が凝縮器となって上記熱源側 熱交 (36)が蒸発器となる加熱動作が上記冷却動作と切り換え可能となる一方、 上記冷媒回路 (20)には、上記冷却動作と上記加熱動作の両方で上記中間圧熱交 換器 (40)から上記過冷却熱交換器 (60)へ高圧液冷媒が流れるように冷媒の流通経 路を切り換える切 構 (50)が設けられて ヽる  In the refrigerant circuit (20), the heating operation in which the use side heat exchanger (71) serves as a condenser and the heat source side heat exchanger (36) serves as an evaporator can be switched to the cooling operation. In the refrigerant circuit (20), the flow rate of the refrigerant is such that the high pressure liquid refrigerant flows from the intermediate pressure heat exchanger (40) to the supercooling heat exchanger (60) in both the cooling operation and the heating operation. There is a mechanism (50) for switching the road.
ことを特徴とする冷凍装置。  A refrigeration apparatus characterized by that.
PCT/JP2007/054184 2006-03-06 2007-03-05 Refrigerating apparatus WO2007105511A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-059481 2006-03-06
JP2006059481A JP2007240025A (en) 2006-03-06 2006-03-06 Refrigerating device

Publications (1)

Publication Number Publication Date
WO2007105511A1 true WO2007105511A1 (en) 2007-09-20

Family

ID=38509345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054184 WO2007105511A1 (en) 2006-03-06 2007-03-05 Refrigerating apparatus

Country Status (2)

Country Link
JP (1) JP2007240025A (en)
WO (1) WO2007105511A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078233A1 (en) * 2007-12-19 2009-06-25 Mitsubishi Heavy Industries, Ltd. Refrigeration device
JP2009204244A (en) * 2008-02-28 2009-09-10 Daikin Ind Ltd Refrigerating device
JP2009228978A (en) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp Refrigerating device
JP2010210146A (en) * 2009-03-10 2010-09-24 Mitsubishi Heavy Ind Ltd Air heat source turbo heat pump
JP2010255905A (en) * 2009-04-23 2010-11-11 Tokyo Electric Power Co Inc:The Industrial heating system
WO2014129472A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
WO2014129473A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
WO2015029223A1 (en) * 2013-08-30 2015-03-05 三菱電機株式会社 Air conditioner
WO2015029220A1 (en) * 2013-08-30 2015-03-05 三菱電機株式会社 Air conditioner
WO2015145712A1 (en) * 2014-03-28 2015-10-01 日立アプライアンス株式会社 Refrigeration cycle device
EP3242096A4 (en) * 2014-12-26 2018-10-31 Daikin Industries, Ltd. Regenerative air conditioner

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194884B2 (en) * 2008-02-29 2013-05-08 ダイキン工業株式会社 Refrigeration equipment
JP6064744B2 (en) * 2013-03-29 2017-01-25 株式会社富士通ゼネラル Refrigeration cycle equipment
KR102240070B1 (en) * 2014-03-20 2021-04-13 엘지전자 주식회사 Air Conditioner and Controlling method for the same
CN106642792B (en) * 2017-01-20 2022-04-19 珠海格力电器股份有限公司 Enhanced vapor injection air conditioning unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152195A (en) * 1995-11-28 1997-06-10 Sanyo Electric Co Ltd Refrigerating apparatus
JP2000274859A (en) * 1999-03-18 2000-10-06 Daikin Ind Ltd Refrigerator
JP2002228275A (en) * 2001-01-31 2002-08-14 Mitsubishi Heavy Ind Ltd Supercritical steam compression refrigerating cycle
JP2006038306A (en) * 2004-07-26 2006-02-09 Hitachi Ltd Freezer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152195A (en) * 1995-11-28 1997-06-10 Sanyo Electric Co Ltd Refrigerating apparatus
JP2000274859A (en) * 1999-03-18 2000-10-06 Daikin Ind Ltd Refrigerator
JP2002228275A (en) * 2001-01-31 2002-08-14 Mitsubishi Heavy Ind Ltd Supercritical steam compression refrigerating cycle
JP2006038306A (en) * 2004-07-26 2006-02-09 Hitachi Ltd Freezer

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078233A1 (en) * 2007-12-19 2009-06-25 Mitsubishi Heavy Industries, Ltd. Refrigeration device
JP2009150594A (en) * 2007-12-19 2009-07-09 Mitsubishi Heavy Ind Ltd Refrigeration device
JP2009204244A (en) * 2008-02-28 2009-09-10 Daikin Ind Ltd Refrigerating device
JP2009228978A (en) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp Refrigerating device
JP2010210146A (en) * 2009-03-10 2010-09-24 Mitsubishi Heavy Ind Ltd Air heat source turbo heat pump
JP2010255905A (en) * 2009-04-23 2010-11-11 Tokyo Electric Power Co Inc:The Industrial heating system
AU2014219807B2 (en) * 2013-02-19 2016-06-02 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5992089B2 (en) * 2013-02-19 2016-09-14 三菱電機株式会社 Air conditioner
WO2014129473A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
WO2014128830A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
US10107533B2 (en) 2013-02-19 2018-10-23 Mitsubishi Electric Corporation Air-conditioning apparatus with subcooling heat exchanger
US9857088B2 (en) 2013-02-19 2018-01-02 Mitsubishi Electric Corporation Air-conditioning apparatus
CN104838219A (en) * 2013-02-19 2015-08-12 三菱电机株式会社 Air conditioning device
CN104838219B (en) * 2013-02-19 2017-03-15 三菱电机株式会社 Conditioner
WO2014129472A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
AU2014219806B2 (en) * 2013-02-19 2016-10-13 Mitsubishi Electric Corporation Air-conditioning apparatus
EP2960596A4 (en) * 2013-02-19 2016-09-28 Mitsubishi Electric Corp Air conditioning device
WO2014128831A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
JP5992088B2 (en) * 2013-02-19 2016-09-14 三菱電機株式会社 Air conditioner
GB2533042A (en) * 2013-08-30 2016-06-08 Mitsubishi Electric Corp Air conditioner
GB2533041A (en) * 2013-08-30 2016-06-08 Mitsubishi Electric Corp Air conditioner
JP6017049B2 (en) * 2013-08-30 2016-10-26 三菱電機株式会社 Air conditioner
JP6017048B2 (en) * 2013-08-30 2016-10-26 三菱電機株式会社 Air conditioner
WO2015029220A1 (en) * 2013-08-30 2015-03-05 三菱電機株式会社 Air conditioner
WO2015029223A1 (en) * 2013-08-30 2015-03-05 三菱電機株式会社 Air conditioner
GB2533041B (en) * 2013-08-30 2020-06-24 Mitsubishi Electric Corp Air conditioning apparatus
GB2533042B (en) * 2013-08-30 2020-08-12 Mitsubishi Electric Corp Air-conditioning apparatus
WO2015145712A1 (en) * 2014-03-28 2015-10-01 日立アプライアンス株式会社 Refrigeration cycle device
EP3242096A4 (en) * 2014-12-26 2018-10-31 Daikin Industries, Ltd. Regenerative air conditioner

Also Published As

Publication number Publication date
JP2007240025A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
WO2007105511A1 (en) Refrigerating apparatus
JP4715561B2 (en) Refrigeration equipment
US20060048539A1 (en) Freezer apparatus
WO2007083560A1 (en) Refrigeration system
WO2006013938A1 (en) Freezing apparatus
US9651288B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP2007064510A (en) Air conditioner
WO2006134771A1 (en) Refrigeration device
US11112140B2 (en) Air conditioning apparatus
WO2004005811A1 (en) Refrigeration equipment
AU2003281797A1 (en) Refrigeration equipment
JP2011214753A (en) Refrigerating device
WO2007102345A1 (en) Refrigeration device
KR20100096857A (en) Air conditioner
JP2008267653A (en) Refrigerating device
WO2014038059A1 (en) Air conditioning apparatus
JP2001235245A (en) Freezer
KR20100032200A (en) Air conditioner
KR20120053381A (en) Refrigerant cycle apparatus
JP3998035B2 (en) Refrigeration equipment
CN111919073A (en) Refrigerating device
JP2010014343A (en) Refrigerating device
WO2007040031A1 (en) Liquid gas heat exchanger for air conditioner
KR101692243B1 (en) Heat pump with cascade refrigerating cycle
JP4023386B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737769

Country of ref document: EP

Kind code of ref document: A1