WO2015029220A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2015029220A1
WO2015029220A1 PCT/JP2013/073341 JP2013073341W WO2015029220A1 WO 2015029220 A1 WO2015029220 A1 WO 2015029220A1 JP 2013073341 W JP2013073341 W JP 2013073341W WO 2015029220 A1 WO2015029220 A1 WO 2015029220A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
opening
temperature
compressor
Prior art date
Application number
PCT/JP2013/073341
Other languages
French (fr)
Japanese (ja)
Inventor
山下 浩司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015533895A priority Critical patent/JP6017048B2/en
Priority to PCT/JP2013/073341 priority patent/WO2015029220A1/en
Priority to GB1521701.1A priority patent/GB2533042B/en
Publication of WO2015029220A1 publication Critical patent/WO2015029220A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi-air conditioner.
  • an air conditioner such as a multi air conditioner for buildings
  • the discharge temperature can be controlled to the set temperature regardless of the operating state (see, for example, Patent Document 1).
  • an air conditioner that includes a supercooling heat exchanger on the refrigerant outlet side of the condenser, controls the flow rate of refrigerant flowing to the supercooling heat exchanger, and controls the discharge temperature of the compressor (for example, (See Patent Document 3).
  • Japanese Patent Laying-Open No. 2005-282972 page 4, FIG. 1, etc.
  • JP-A-2-110255 page 3, FIG. 1 etc.
  • Japanese Patent Laid-Open No. 2001-227823 page 4, FIG. 1, etc.
  • a check valve is installed in parallel with both the indoor and outdoor throttle devices, and therefore, a configuration capable of sucking and injecting liquid refrigerant during cooling and heating.
  • a special indoor unit is required for this purpose, and a normal indoor unit in which a check valve is not connected in parallel with the throttle device cannot be used. It was.
  • the flow rate of the refrigerant flowing through the supercooling heat exchanger is controlled by the throttle device attached to the supercooling heat exchanger, and the discharge temperature is controlled. Since both the degree of supercooling at the outlet of the condenser cannot be controlled separately to the target value and the discharge temperature cannot be controlled properly while maintaining the appropriate degree of supercooling, the outdoor unit and the indoor unit If the extension pipe to be connected is long, if the discharge temperature is controlled to the target value, the degree of supercooling at the outlet of the outdoor unit cannot be controlled to the target value, and the refrigerant flowing into the indoor unit will flow in two phases due to pressure loss in the extension pipe. If the indoor unit is equipped with a throttle device, such as a multi-type air conditioner, sound may be produced or the control may become unstable if the inlet side of the throttle device becomes two-phase. There was a problem that it would end up.
  • a throttle device such as a multi-type air conditioner
  • the present invention has been made to solve the above-described problems, and provides an air conditioner that can stably control the discharge temperature of the compressor and the degree of supercooling of the refrigerant.
  • An air conditioner includes a compression chamber and an injection port for introducing a refrigerant into the compression chamber, a compressor that compresses and discharges the refrigerant, and a first heat exchanger that performs heat exchange of the refrigerant.
  • a refrigerant flow switching device for switching whether the first heat exchanger is a condenser or an evaporator, a first flow path and a second flow path, and heat exchange of the refrigerant passing through each flow path
  • a subcooling heat exchanger that supercools the refrigerant flowing through the first flow path
  • a second heat exchanger that performs heat exchange of the refrigerant
  • a first throttle that adjusts the pressure of the refrigerant passing through the second heat exchanger
  • a refrigerant circuit that circulates the refrigerant by connecting a pipe to the apparatus, and the refrigerant inflow side and the excess of the pipe between the first heat exchanger and the second heat exchanger and the second flow path of the supercooling heat exchanger
  • a first bypass pipe connecting a refrigerant outflow side of the second flow path of the cooling heat exchanger and a pipe of the refrigerant suction side of the compressor; In one bypass pipe, a second expansion device that adjusts the pressure of the refrigerant flowing
  • the first heat exchanger is controlled to be introduced.
  • the refrigerant When acting as a generator, the refrigerant is introduced into the compression chamber through the second bypass pipe through the fourth throttle device, and the opening of the third throttle device is fully closed or the refrigerant almost flows.
  • the refrigerant In the cooling operation, the refrigerant is injected into the compressor chamber while greatly controlling the degree of supercooling of the refrigerant at the outlet of the supercooling heat exchanger, and discharged from the compressor.
  • the temperature can be lowered, and the discharge temperature of the compressor can be lowered while preventing the refrigerant from being two-phased in the extension pipe, so that the operation can be safely performed and the life of the device is extended.
  • the discharge temperature of the compressor is increased by allowing the refrigerant to be injected into the compression chamber of the compressor while keeping the subcooling degree of the outdoor unit outlet at an appropriate value during the cooling operation. You can make sure it ’s not too much. For this reason, damage to the compressor can be prevented and the life can be extended.
  • FIG. 5 is a ph diagram (pressure-enthalpy diagram) during cooling operation when the discharge temperature of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is low.
  • FIG. 6 is a ph diagram (pressure-enthalpy diagram) during cooling operation when the discharge temperature of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is high. It is a figure which shows the flow of the refrigerant
  • FIG. 3 is a ph diagram (pressure-enthalpy diagram) during heating operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 and the following drawings the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below.
  • the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification.
  • the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment.
  • the subscripts may be omitted.
  • the size relationship of each component may be different from the actual one.
  • the level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in the state, operation, etc. of the system, apparatus, and the like.
  • FIG. FIG. 1 is a schematic diagram illustrating an installation example of an air-conditioning apparatus according to Embodiment 1 of the present invention. Based on FIG. 1, the installation example of the air conditioning apparatus in this Embodiment is demonstrated.
  • the air conditioning apparatus in the present embodiment can select either the cooling mode or the heating mode as the operation mode by using the refrigeration cycle due to the phase change of the refrigerant.
  • the air-conditioning apparatus includes one outdoor unit 1 and a plurality of indoor units 2 that are heat source units.
  • the outdoor unit 1 and the indoor unit 2 are connected by an extension pipe (refrigerant pipe) 5 through which the refrigerant passes.
  • the outdoor unit 1 is usually disposed in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop).
  • the outdoor unit 1 generates cold or warm heat and delivers it to the indoor unit 2 via the extension pipe 5.
  • the indoor unit 2 is arranged at a position where air with adjusted temperature or the like can be supplied to the indoor space 7 which is a space (for example, a living room) inside the building 9. Cooling air or heating air is supplied to the indoor space 7.
  • an outdoor unit 1 and each indoor unit 2 are connected to each other using two extension pipes (refrigerant pipes) 5.
  • FIG. 1 shows an example in which the indoor unit 2 is a ceiling cassette type, but the present invention is not limited to this.
  • any type may be used as long as it can supply cooling air or heating air directly into the indoor space 7 or through a duct, such as a ceiling-embedded type or a ceiling-suspended type.
  • the outdoor unit 1 is installed in the outdoor space 6 as an example, it is not limited to this.
  • the outdoor unit 1 may be installed in the building 9 as long as it can be exhausted outside the building 9 by an exhaust duct or the like.
  • the water-cooled outdoor unit 1 or the like may be installed inside the building 9. No matter what place the outdoor unit 1 of the present embodiment is installed, no particular problem occurs.
  • the number of connected outdoor units 1 and 2 is not limited to the number shown in FIG. For example, what is necessary is just to determine a number according to the building 9 in which the air conditioning apparatus which concerns on this Embodiment is installed.
  • FIG. 2 is a diagram showing a schematic configuration of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the air conditioner of the present embodiment is referred to as an air conditioner 100.
  • the detailed structure of the air conditioning apparatus 100 in this Embodiment is demonstrated.
  • the outdoor unit 1 and the indoor unit 2 are connected by the extension pipe 5 through which the refrigerant flows, and constitute a refrigerant circuit.
  • Outdoor unit 1 In the outdoor unit 1, a compressor 10, a refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 15 are connected and connected in series with a refrigerant pipe.
  • the main refrigerant circuit is configured together with the device 16 and the use side heat exchanger 17.
  • the outdoor unit 1 is provided with a first bypass pipe 4a, a second bypass pipe 4b, a supercooling heat exchanger 13, a throttle device 14a, a throttle device 14b, a throttle device 14c, a throttle device 14d, and a liquid separator 18. ing.
  • the compressor 10 sucks the refrigerant, compresses the refrigerant, and discharges it in a high temperature and high pressure state.
  • it may be configured with an inverter compressor capable of capacity control.
  • the compressor 10 of the present embodiment includes an injection port that can introduce the refrigerant into the compression chamber from the outside of the compressor 10 in the compression chamber that compresses the refrigerant inside the compressor 10.
  • the compressor 10 has a compression chamber in a hermetically sealed container, and the inside of the hermetically sealed container has a low-pressure refrigerant pressure atmosphere, and uses a low-pressure shell structure that sucks and compresses the low-pressure refrigerant in the hermetic container. .
  • the refrigerant flow switching device 11 switches the refrigerant flow during the heating operation and the refrigerant flow during the cooling operation.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser or a radiator during cooling operation, and performs heat exchange between air and refrigerant supplied by a blower (not shown), The refrigerant absorbs heat to evaporate gas or dissipate heat to condense.
  • the subcooling heat exchanger 13 is composed of, for example, a double-pipe heat exchanger or the like, has a first flow path and a second flow path, and heats between the refrigerants that exchange heat between the refrigerants passing through the flow paths. It is an exchanger.
  • the refrigerant flowing into and out of the heat source side heat exchanger 12 passes through the first flow path.
  • the refrigerant that has passed through the expansion device 14a flows into the second flow path, and flows out to the first bypass pipe 4a.
  • the supercooling heat exchanger 13 is not limited to a two-pipe heat exchanger, but can exchange heat between the refrigerant passing through the first flow path and the refrigerant passing through the second flow path. Any structure may be used.
  • the expansion device 14a that functions as the second expansion device adjusts the pressure and flow rate of the refrigerant that flows from the liquid separator 18 through the first bypass pipe 4a and flows into the second flow path of the supercooling heat exchanger 13.
  • the expansion device 14b functioning as the third expansion device in the present invention passes through the first bypass pipe 4a from the second flow path of the supercooling heat exchanger 13 to the upstream side of the accumulator 15 (the suction side of the compressor 10). ) Adjust the pressure and flow rate of the refrigerant flowing in the pipe.
  • the expansion device 14d that functions as the fourth expansion device in the present invention adjusts the pressure and flow rate of the refrigerant that passes through the second bypass pipe 4b.
  • the expansion device 14c adjusts the pressure of the refrigerant in the pipe between the expansion device 14a and the expansion device 16 in the present embodiment.
  • the accumulator 15 is connected to the compressor 10 via a pipe serving as a suction side flow path, and stores excess refrigerant in the refrigerant circuit.
  • the accumulator 15 may be provided as necessary. For example, when the surplus refrigerant is not generated or the surplus refrigerant is small in the refrigerant circuit, the accumulator 15 may not be provided.
  • the liquid separator 18 is provided in the refrigerant circuit at a position on the refrigerant outflow side of the heat source side heat exchanger 12 during cooling operation (on the pipe between the heat source side heat exchanger 12 and the expansion device 16).
  • the liquid separator 18 is provided in a pipe between the heat source side heat exchanger 12 and the use side heat exchanger 17 of each indoor unit 2 (for example, between the heat source side heat exchanger 12 and the extension pipe 5). It becomes a branching means for branching. For example, when a refrigerant in a gas-liquid two-phase state (two-phase refrigerant) passes, it is separated into a part of the liquid refrigerant (which may be all included) and the remaining refrigerant (other liquid refrigerant and gas refrigerant). A part of the liquid refrigerant flows through the first bypass pipe 4a, and the remaining refrigerant flows through the main refrigerant circuit.
  • the first bypass pipe 4a is configured to extract the refrigerant condensed and liquefied in the heat source side heat exchanger 12 serving as a condenser during the cooling operation by using the expansion device 14a, the second flow path of the supercooling heat exchanger 13, and the expansion device.
  • This is a pipe that bypasses the suction side flow path (upstream side of the accumulator 15) of the compressor 10 as a low-pressure superheated gas refrigerant through 14d.
  • it is connected to the upstream side of the accumulator 15, but may be connected to a pipe on the outlet side (downstream side) of the accumulator 15 because it may be a suction side flow path of the compressor 10. .
  • the second bypass pipe 4 b is a pipe that connects between the refrigerant outflow side of the second flow path of the supercooling heat exchanger 13 and the injection port of the compressor 10.
  • the second bypass pipe 4b depressurizes the high-pressure or first medium-pressure liquid refrigerant by the action of the expansion device 14b, and the second medium-pressure is lower than the first medium-pressure.
  • Two-phase refrigerant can be injected into the interior of the compression chamber.
  • the high pressure is the pressure of the refrigerant on the discharge side of the compressor 10.
  • the low pressure is the pressure of the refrigerant on the suction side of the compressor 10.
  • the intermediate pressure is lower than the high pressure and higher than the low pressure.
  • the outdoor unit 1 includes a discharge refrigerant temperature detection device 21, a high pressure detection device 22, a low pressure detection device 23, a liquid refrigerant temperature detection device 24, a supercooling heat exchanger inlet refrigerant temperature detection device 25, and a supercooling heat exchanger outlet.
  • a refrigerant temperature detection device 26 and a control device 50 are provided.
  • the discharged refrigerant temperature detection device 21 is a device that detects the temperature of the refrigerant discharged from the compressor 10.
  • the high pressure detection device 22 is a device that detects the pressure on the discharge side of the compressor 10 on the high pressure side in the refrigerant circuit.
  • the low-pressure detection device 23 is a device that detects the pressure on the refrigerant inflow side of the accumulator 15 on the low-pressure side in the refrigerant circuit.
  • the liquid refrigerant temperature detection device 24 is a device that detects the temperature of the liquid refrigerant.
  • the supercooling heat exchanger inlet refrigerant temperature detection device 25 is a device that detects the temperature of the refrigerant flowing into the second flow path of the supercooling heat exchanger 13.
  • the supercooling heat exchanger outlet refrigerant temperature detection device 26 is a device that detects the temperature of the refrigerant flowing out from the second flow path of the supercooling heat exchanger 13.
  • control apparatus 50 controls each apparatus of the outdoor unit 1 based on the detection information in various detection apparatuses, the instruction
  • the expansion device 14b, the expansion device 14c, the expansion device 14d, and the like are controlled to adjust the flow rate, pressure, and the like of the refrigerant injected into the suction side of the compressor 10.
  • the control device 50 is configured by a microcomputer or the like.
  • the indoor units 2 are each equipped with a throttle device 16 and a use side heat exchanger 17.
  • the expansion device 16 and the use side heat exchanger 17 are connected to the outdoor unit 1 by the extension pipe 5.
  • the expansion device 16 that functions as the first expansion device such as an expansion valve or a flow rate adjustment device, depressurizes the refrigerant that passes therethrough.
  • the use side heat exchanger 17 serving as the second heat exchanger in the present invention performs heat exchange between air supplied from a blower such as a fan (not shown) and the refrigerant and supplies the heat to the indoor space 7. Heating air or cooling air is generated.
  • each indoor unit 2 has a control device that controls the expansion device 16 and the blower.
  • FIG. 2 shows an example in which four indoor units 2 are connected, and are illustrated as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the bottom of the page.
  • the diaphragm device 16 is illustrated as a diaphragm device 16a, a diaphragm device 16b, a diaphragm device 16c, and a diaphragm device 16d from the lower side of the drawing according to the indoor units 2a to 2d.
  • the use side heat exchanger 17 is illustrated as a use side heat exchanger 17a, a use side heat exchanger 17b, a use side heat exchanger 17c, and a use side heat exchanger 17d from the lower side of the drawing.
  • FIG. 2 shows four units, the number of connected indoor units 2 according to the present embodiment is not limited to four as in FIG.
  • the air conditioning apparatus 100 determines the operation mode of the outdoor unit 1 to be either the cooling operation mode or the heating operation mode based on an instruction from each indoor unit 2, for example.
  • each indoor unit 2 that are driven perform the same operation (cooling operation or heating operation) based on the determined operation mode to air condition the indoor space 7.
  • each indoor unit 2 can be freely operated or stopped in both the cooling operation mode and the heating operation mode.
  • FIG. 3 is a diagram showing the refrigerant flow in the cooling operation mode when the discharge temperature of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is low.
  • the discharge temperature is low when the discharge temperature is lower than 105 ° C.
  • the cooling operation mode will be described by taking as an example a case where a cooling load is generated in all the use side heat exchangers 17.
  • a pipe indicated by a thick line indicates a pipe through which the refrigerant flows, and a direction in which the refrigerant flows is indicated by a solid line arrow.
  • the control device 50 switches the refrigerant flow switching device 11 to the flow channel through which the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the compressor 10 compresses the low-temperature and low-pressure refrigerant and discharges the high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 through the refrigerant flow switching device 11.
  • the heat source side heat exchanger 12 condenses and liquefies while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 passes through the first flow path of the expansion device 14c and the supercooling heat exchanger 13 that are fully opened.
  • the refrigerant that has passed through the first flow path of the supercooling heat exchanger 13 is branched into two flow paths. One flows out of the outdoor unit 1 through the liquid separator 18. The other flows into the first bypass pipe 4a.
  • the high-temperature and high-pressure liquid refrigerant flowing into the first bypass pipe 4a is decompressed by the expansion device 14a to become a low-temperature and low-pressure two-phase refrigerant, and the second flow path of the supercooling heat exchanger 13 and the fully-open expansion device 14d are connected.
  • the flow rate of the refrigerant passing through the second flow path (first bypass pipe 4a) of the supercooling heat exchanger 13 is adjusted by the opening degree (opening area) of the expansion device 14a because the expansion device 14d is fully open. become.
  • the control device 50 detects the excess of the refrigerant on the downstream side of the first flow path of the supercooling heat exchanger 13 that is the temperature difference between the saturation temperature of the detection pressure of the high pressure detection device 22 and the detection temperature of the liquid refrigerant temperature detection device 24.
  • the opening degree (opening area) of the expansion device 14a is controlled so that the degree of cooling approaches the target value.
  • the second flow path of the supercooling heat exchanger 13 is a temperature difference between the detected temperature of the supercooling heat exchanger outlet refrigerant temperature detection device 26 and the detection temperature of the supercooling heat exchanger inlet refrigerant temperature detection device 25.
  • the degree of opening of the expansion device 14a may be controlled so that the temperature difference (degree of superheat) of the refrigerant approaches the target value.
  • the liquid refrigerant temperature detection device 24 may be provided at the other end of the first flow path of the supercooling heat exchanger 13.
  • the high-temperature and high-pressure liquid refrigerant flowing out of the outdoor unit 1 passes through the extension pipe 5 and flows into each of the indoor units 2 (2a to 2d).
  • the high-temperature and high-pressure liquid refrigerant that has flowed into the indoor unit 2 (2a to 2d) is expanded by the expansion device 16 (16a to 16d) to become a low-temperature and low-pressure two-phase refrigerant and serves as an evaporator. 17 (17a to 17d) and absorbs heat from the air flowing around the use side heat exchanger 17 to become a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flows out of the indoor unit 2 (2a to 2d), flows into the outdoor unit 1 again through the extension pipe 5, passes through the refrigerant flow switching device 11, and passes through the first bypass pipe 4a.
  • the refrigerant flows through and merges with the refrigerant bypassed to the upstream side of the accumulator 15, then flows into the accumulator 15, and is then sucked into the compressor 10 again.
  • the opening degree (opening area) of the expansion devices 16a to 16d is the temperature difference between the detection temperature of the use side heat exchanger gas refrigerant temperature detection device 28 and the detection temperature of the use side heat exchanger liquid refrigerant temperature detection device 27. (Superheat degree) is controlled so as to approach the target value.
  • the supercooling heat exchanger 13 is used in order to reliably supercool the refrigerant even when the extension pipe 5 is long (for example, 100 m). Provided.
  • the extension pipe 5 is long, the pressure loss in the extension pipe 5 increases. For this reason, if the degree of supercooling of the refrigerant is small, the refrigerant may become a two-phase refrigerant before reaching the indoor unit 2.
  • the two-phase refrigerant flows into the indoor unit 2, the two-phase refrigerant flows into the expansion device 16.
  • a throttling device such as an expansion valve or a flow rate adjusting device has a property of generating a sound around when a two-phase refrigerant flows.
  • the expansion device 16 of the present embodiment is disposed in the indoor unit 2 that sends temperature-adjusted air to the indoor space 7, if the generated sound leaks into the indoor space 7, it makes the resident feel uncomfortable. Sometimes. Further, when the two-phase refrigerant flows into the expansion device 16, the pressure is not stabilized, and the operation of the expansion device 16 becomes unstable. Therefore, it is necessary to flow into the expansion device 16 a liquid refrigerant that is reliably supercooled. From the above, the supercooling heat exchanger 13 is provided.
  • the first bypass pipe 4a is provided with a throttle device 14a, and the flow rate of the low-temperature and low-pressure two-phase refrigerant flowing in the second flow path of the supercooling heat exchanger 13 is increased by increasing the opening degree (opening area) of the throttle device 14a. If it increases, the supercooling degree of the refrigerant
  • the degree of supercooling of the refrigerant flowing out of the flow path is reduced.
  • the opening degree (opening area) of the expansion device 14a the degree of supercooling of the outlet refrigerant in the first flow path of the supercooling heat exchanger 13 can be controlled to an appropriate value.
  • the compressor 10 sucks a low dryness refrigerant mixed with a large amount of liquid refrigerant in a normal operation. Therefore, in the present embodiment, the first bypass pipe 4 a is connected to the refrigerant inflow side (upstream side) pipe of the accumulator 15.
  • the accumulator 15 is for storing surplus refrigerant.
  • the above is the operation of each device and the refrigerant flow in the refrigerant circuit when the discharge temperature of the compressor 10 is low in the cooling operation mode.
  • the case where the discharge temperature of the compressor 10 is high will be described later. Since the discharge temperature of the compressor 10 is low, the second bypass pipe 4b is fully closed or has a small opening so that the refrigerant does not flow, so that the refrigerant does not flow into the second bypass pipe 4b.
  • the discharge temperature does not increase unless the temperature around the heat source side heat exchanger 12 is very high.
  • FIG. 4 is a ph diagram (pressure-enthalpy diagram) during cooling operation when the discharge temperature of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is low.
  • the refrigerant compressed and discharged by the compressor 10 (point G in FIG. 4) is condensed and liquefied by the heat source side heat exchanger 12 to become a high-pressure liquid refrigerant (point J in FIG. 4).
  • the supercooling heat exchanger 13 is cooled by the refrigerant branched to the first bypass pipe 4a to increase the degree of supercooling (point L in FIG. 4) and flows into the liquid separator 18.
  • a part of the liquid refrigerant branched into the second flow path of the supercooling heat exchanger 13 by the liquid separator 18 is decompressed by the expansion device 14a, and then heated by the supercooling heat exchanger 13 to be evaporated and gasified.
  • the refrigerant passes through the first bypass pipe 4a and the fully-open throttle device 14d, and flows into the refrigerant inflow side of the accumulator 15.
  • the high-pressure two-phase refrigerant that has passed through the liquid separator 18 flows out of the outdoor unit 1, passes through the extension pipe 5, flows into the indoor unit 2, and is expanded by the expansion device 16 (16 a to 16 d) of the indoor unit 2.
  • the pressure is reduced (point K in FIG. 4).
  • the expansion device 14a can change the opening area, such as an electronic expansion valve. If the electronic expansion valve is used, the flow rate of the refrigerant passing through the second flow path of the supercooling heat exchanger 13 can be arbitrarily adjusted, and the supercooling degree of the refrigerant flowing out of the outdoor unit 1 can be finely controlled. Can do.
  • the aperture device 14a is not limited to this.
  • an opening / closing valve such as a small electromagnetic valve may be combined so that the opening degree can be selected and controlled in a plurality of stages.
  • the capillary tube may be configured to perform supercooling according to the refrigerant pressure loss.
  • the expansion device 14b may be any device that can close the flow path.
  • the expansion device 14d In the cooling operation mode when the discharge temperature of the compressor 10 is low, the expansion device 14d is fully open, and any device may be used as long as no large pressure loss occurs.
  • an electromagnetic valve or the like that opens and closes a flow path, an electronic expansion valve or the like that can change the opening area may be used.
  • the fully open state does not mean a state where no pressure loss occurs, but means a state where the pressure loss is not so large.
  • the operation is stopped because there is no need to flow the refrigerant to the use side heat exchanger 17 (including the thermo-off) without the heat load.
  • the expansion device 16 corresponding to the stopped indoor unit 2 is fully closed or set to a small opening at which the refrigerant does not flow.
  • FIG. 5 is a diagram showing the refrigerant flow in the cooling operation mode when the discharge temperature of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is high.
  • a high discharge temperature is, for example, a case where the discharge temperature is 105 ° C. or higher without injection.
  • the cooling operation mode will be described by taking as an example a case where a cooling load is generated in all the use side heat exchangers 17.
  • the pipes indicated by bold lines in FIG. 5 indicate the pipes through which the refrigerant flows, and the directions in which the refrigerant flows are indicated by solid arrows.
  • the control device 50 switches the refrigerant flow switching device 11 to the flow channel through which the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the compressor 10 compresses the low-temperature and low-pressure refrigerant and discharges the high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 through the refrigerant flow switching device 11.
  • the heat source side heat exchanger 12 condenses and liquefies while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 passes through the first flow path of the expansion device 14c and the supercooling heat exchanger 13 that are fully opened.
  • the refrigerant that has passed through the first flow path of the supercooling heat exchanger 13 is branched into two flow paths. One flows out of the outdoor unit 1 through the liquid separator 18. The other flows into the first bypass pipe 4a.
  • the compressor 10 compresses the low-temperature and low-pressure refrigerant and discharges the high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 through the refrigerant flow switching device 11.
  • the heat source side heat exchanger 12 condenses and liquefies while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 passes through the first flow path of the expansion device 14c and the supercooling heat exchanger 13 that are fully opened.
  • the refrigerant that has passed through the first flow path of the supercooling heat exchanger 13 is branched into two flow paths, one of which flows out of the outdoor unit 1 through the liquid separator 18, and the other reaches the expansion device 14a. It flows into the flow path.
  • the high-temperature and high-pressure liquid refrigerant flowing into the first bypass pipe 4a is reduced in pressure by the expansion device 14a to become a first medium-pressure two-phase refrigerant, and passes through the second flow path of the supercooling heat exchanger 13 and the expansion device 14d. Then, it flows into the flow path on the upstream side of the accumulator 15. At this time, in the supercooling heat exchanger 13, heat exchange is performed between the high-temperature and high-pressure liquid refrigerant passing through the first flow path and the first medium-pressure two-phase refrigerant passing through the second flow path. Therefore, the refrigerant passing through the first flow path is cooled by the refrigerant passing through the second flow path, and the refrigerant passing through the second flow path is heated by the refrigerant passing through the first flow path.
  • the flow rate of the refrigerant passing through the second flow path of the supercooling heat exchanger 13 is adjusted by the opening degree (opening area) of the expansion device 14a.
  • the control device 50 detects the excess of the refrigerant on the downstream side of the first flow path of the supercooling heat exchanger 13 that is the temperature difference between the saturation temperature of the detection pressure of the high pressure detection device 22 and the detection temperature of the liquid refrigerant temperature detection device 24.
  • the opening degree (opening area) of the expansion device 14a is controlled so that the degree of cooling approaches the target value.
  • the high-temperature and high-pressure liquid refrigerant flowing out of the outdoor unit 1 passes through the extension pipe 5 and flows into each of the indoor units 2 (2a to 2d).
  • the high-temperature and high-pressure liquid refrigerant that has flowed into the indoor unit 2 (2a to 2d) is expanded by the expansion device 16 (16a to 16d) to become a low-temperature and low-pressure two-phase refrigerant and serves as an evaporator. 17 (17a to 17d) and absorbs heat from the air flowing around the use side heat exchanger 17 to become a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flows out of the indoor unit 2 (2a to 2d), flows into the outdoor unit 1 again through the extension pipe 5, passes through the refrigerant flow switching device 11, and passes through the first bypass pipe 4a.
  • the refrigerant flows through and merges with the refrigerant bypassed to the upstream side of the accumulator 15, then flows into the accumulator 15, and is then sucked into the compressor 10 again.
  • the opening degree (opening area) of the expansion devices 16a to 16d is the temperature difference between the detection temperature of the use side heat exchanger gas refrigerant temperature detection device 28 and the detection temperature of the use side heat exchanger liquid refrigerant temperature detection device 27. (Superheat degree) is controlled so as to approach the target value.
  • the supercooling heat exchanger 13 is provided in order to reliably supercool the refrigerant even when the extension pipe 5 is long. And the supercooling degree of the exit refrigerant
  • coolant of the 1st flow path of the supercooling heat exchanger 13 can be controlled to an appropriate value by adjusting the opening degree (opening area) of the expansion device 14a.
  • the second bypass pipe 4b is connected to an injection port provided in the compression chamber of the compressor 10.
  • the compressor 10 In order to protect the compressor 10, it is necessary to prevent the discharge temperature of the compressor 10 from becoming too high. For example, even if the refrigerant is bypassed to the refrigerant inlet side (upstream side) of the accumulator 15, most of the refrigerant is stored in the accumulator 15, and only a part of the refrigerant flows into the compressor 10. Therefore, the two-phase refrigerant having a high dryness can be directly injected into the compression chamber via the second bypass pipe 4b and the injection port of the compressor 10.
  • the flow rate of the refrigerant passing through the second bypass pipe 4b is adjusted by the opening degree (opening area) of the expansion device 14b.
  • the opening degree (opening area) of the expansion device 14b is increased and the flow rate of the refrigerant flowing through the second bypass pipe 4b is increased, the discharge temperature of the compressor 10 decreases.
  • the opening degree (opening area) of the expansion device 14b is reduced and the flow rate of the refrigerant flowing through the second bypass pipe 4b is reduced, the discharge temperature of the compressor 10 increases. Therefore, by adjusting the opening degree (opening area) of the expansion device 14b, it is possible to control the discharge temperature of the compressor 10, which is the detection value of the discharge refrigerant temperature detection device 21, to approach the target value.
  • the cooling operation mode when the temperature around the heat source side heat exchanger 12 is high, for example, in the case of high outside air cooling, the discharge temperature of the compressor 10 becomes high, and the injection through the second bypass pipe 4b is necessary. It becomes.
  • FIG. 6 is a ph diagram (pressure-enthalpy diagram) during cooling operation when the discharge temperature of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is high. Based on FIG. 6, the detail of the operation
  • the refrigerant (point I in FIG. 6) compressed and discharged by the compressor 10 is condensed and liquefied by the heat source side heat exchanger 12 to become a high-pressure liquid refrigerant (point J in FIG. 6).
  • the supercooling heat exchanger 13 is cooled by the refrigerant branched to the first bypass pipe 4a to increase the degree of supercooling (point L in FIG. 6), and flows into the liquid separator 18.
  • Part of the liquid refrigerant branched by the liquid separator 18 and flowing to the first bypass pipe 4a side is decompressed by the expansion device 14a and becomes the first intermediate pressure (point M in FIG. 6). And it is divided into the refrigerant
  • the refrigerant flowing through the second bypass pipe 4b is reduced to the second intermediate pressure through the expansion device 14b, and is injected into the compression chamber from the injection port provided in the compression chamber of the compressor 10. Then, it merges with the refrigerant sucked into the compressor 10 and compressed to the second intermediate pressure.
  • the refrigerant flowing through the first bypass pipe 4 a is decompressed to a low pressure via the expansion device 14 d and flows into the upstream flow path of the accumulator 15.
  • the high-pressure two-phase refrigerant that has passed through the liquid separator 18 flows out of the outdoor unit 1, passes through the extension pipe 5, flows into the indoor unit 2, and is expanded by the expansion device 16 (16 a to 16 d) of the indoor unit 2.
  • the pressure is reduced (point K in FIG. 6).
  • the refrigerant flows through the refrigerant flow switching device 11, flows through the first bypass pipe 4 a, joins the refrigerant bypassed to the upstream side of the accumulator 15, and then flows into the accumulator 15. Further, the refrigerant that has flowed out of the accumulator 15 passes through the suction side flow path and is sucked into the compressor 10.
  • the compressor 10 of the present embodiment is a low-pressure shell type compressor.
  • the sucked refrigerant and oil flow into the lower part of the compressor 10.
  • a motor is disposed in the intermediate portion.
  • the high-temperature and high-pressure refrigerant compressed in the compression chamber is discharged from the compressor 10 after being discharged into the discharge chamber in the sealed container. Therefore, the metal sealed container of the compressor 10 has a portion exposed to the high-temperature and high-pressure refrigerant and a portion exposed to the low-temperature and low-pressure refrigerant. For this reason, the temperature of the sealed container becomes an intermediate temperature. Further, since current flows through the motor, it generates heat.
  • the low-temperature and low-pressure gas refrigerant sucked into the compressor 10 is heated by the sealed container and the motor of the compressor 10 and the temperature rises (point F in FIG. 6). Then, it is sucked into the compression chamber and compressed to the second intermediate pressure in the compression chamber (point N in FIG. 6).
  • the refrigerant is injected into the compression chamber of the compressor 10 via the second bypass pipe 4b, the temperature of the refrigerant in the merged portion of the refrigerant sucked from the suction side flow path and the refrigerant related to the injection in the compression chamber. (Point H in FIG. 6). Then, the compression is further continued in the compression chamber, whereby a high-pressure gas refrigerant is discharged from the compressor 10.
  • the temperature of the refrigerant is reduced at the merged portion, and therefore, the discharge temperature with respect to the discharge temperature of the compressor 10 when not flowing (point G in FIG. 6). Decreases (point I in FIG. 6). For example, even when using a refrigerant whose discharge temperature of the compressor 10 is higher than R410A, such as R32, the discharge temperature of the compressor 10 can be lowered and can be used safely. it can. In addition, reliability is increased.
  • the control device 50 performs the following control. First, the opening degree (opening area) of the expansion device 14a is changed so that the degree of supercooling of the refrigerant that has passed through the first flow path of the supercooling heat exchanger 13 approaches the target value. The refrigerant flow rate flowing through the second flow path is controlled. And the opening degree (opening area) of the expansion device 14b is changed so that the discharge temperature of the compressor 10 approaches the target value, and the refrigerant flow rate flowing into the injection port of the compressor 10 via the second bypass pipe 4b is changed. Control.
  • the refrigerant flowing through the second flow path of the supercooling heat exchanger 13 is branched into the first bypass pipe 4a in which the expansion device 14d is installed and the second bypass pipe 4b in which the expansion device 14b is installed.
  • the expansion device 14b is set to a fully closed position or a small opening at which the refrigerant does not flow, and the expansion device 14d is set to a full open state.
  • discharge temperature becomes high, even if it changes the opening degree of the expansion device 14b, setting the expansion device 14d to full open, the flow inside the expansion device 14d installed in the 1st bypass piping 4a Since the resistance is small, most of the refrigerant flows through the first bypass pipe 4a. For this reason, the discharge temperature of the compressor 10 cannot be controlled by adjusting the flow rate of the refrigerant flowing through the injection port of the compressor 10 via the second bypass pipe 4b.
  • the opening of the expansion device 14d is adjusted in accordance with the change in the opening (opening area) of the expansion device 14b. It is necessary to change the degree (opening area). For example, when the discharge temperature of the compressor 10 is low, the expansion device 14d is fully opened, the expansion device 14b is fully closed, or the opening degree is small so that the refrigerant does not flow. From this state, even when the discharge temperature of the compressor 10 becomes high, the discharge temperature of the compressor 10 becomes high while keeping the flow rate of the refrigerant flowing through the second flow path of the supercooling heat exchanger 13 from changing greatly. Control not to be too much.
  • the control of the diaphragm device 14b and the control of the diaphragm device 14d are interlocked (substantially simultaneously) so that the sum of the aperture area of the diaphragm device 14b and the aperture area of the diaphragm device 14d does not change significantly.
  • a value obtained by subtracting the opening area of the expansion device 14b that controls the discharge temperature as a target from the opening area when the expansion device 14d is fully open may be used as the opening area of the new expansion device 14d.
  • the expansion device is often designed so that the opening degree and the opening area correspond to each other in a shape that is almost a straight line.
  • a value obtained by subtracting the opening of the expansion device 14b that controls the discharge temperature from the opening when the expansion device 14d is fully open may be set as the opening of the new expansion device 14d.
  • the expansion device 14b and the expansion device 14d have the same capacity (the opening area at the time of the fully open position is substantially the same) and are the same type of expansion device. More specifically, the opening degree of full opening is 1500 pulses, and the refrigerant stops flowing at an opening degree of 100 pulses or less. Further, it is assumed that the expansion device 14b and the expansion device 14d are designed so that the opening degree and the opening area correspond to each other in a form that is almost a straight line.
  • the expansion device 14d when the discharge temperature is low, the expansion device 14d is set to 1500 pulses, and the expansion device 14b is set to 100 pulses. At this time, the sum of the opening of the expansion device 14d and the opening of the expansion device 14b is 1600 pulses.
  • the discharge temperature of the compressor 10 is increased, and the opening degree of the expansion device 14b is controlled with the discharge temperature as a target value, resulting in 600 pulses. At this time, the opening degree of the expansion device 14d is controlled almost simultaneously with the control of the expansion device 14b.
  • the opening of the expansion device 14d is set to 1000 pulses obtained by subtracting 600 pulses, which is the opening of the expansion device 14b, from 1600 pulses, which is the total opening of the two expansion devices.
  • the flow resistance inside the expansion device 14d installed in the first bypass pipe 4a is increased, and the flow resistance inside the expansion device 14b installed in the second bypass pipe 4b is reduced. It becomes possible to flow the refrigerant through the bypass pipe 4b.
  • the discharge temperature of the compressor 10 can be appropriately controlled by also controlling the opening degree of the expansion device 14d.
  • the diaphragm device 14b and the diaphragm device 14d are controlled almost simultaneously.
  • the diaphragm devices are not simultaneously controlled but are sequentially controlled at each control timing. Therefore, “substantially simultaneous” in the present embodiment means that the aperture devices are controlled at the same control timing (for example, every 30 seconds). Even at the same control timing, in actuality, the respective throttle devices are not simultaneously controlled.
  • the aperture of the aperture device 14b is controlled, and then the aperture of the aperture device 14d is controlled in many cases. In this way, either sequential control or simultaneous control may be used.
  • the opening of the expansion device 14d may be controlled first, and then the opening of the expansion device 14b may be controlled.
  • the total opening area of the two expansion devices is controlled to be substantially the same. Is desirable.
  • the total opening area of the two aperture devices being substantially the same means that, for example, the total opening area of both is within a range of about ⁇ 1%.
  • the total opening is 1600
  • the total opening only needs to be within 1600 ⁇ 16 pulses.
  • the opening degree of the expansion device 14d may be set to a pulse between 984 pulses and 1016 pulses.
  • the controllability is slightly worse than when the total opening area is within a range of about ⁇ 1%, but if the total opening area of the two aperture devices is within a range of about ⁇ 10%, the compression is reduced.
  • the discharge temperature of the machine 10 can be normally controlled to the target value. For example, as in the example described above, when the total opening is 1600, the total opening may be within 1600 ⁇ 160 pulses. For example, when the opening degree of the expansion device 14b is 600 pulses, the opening degree of the expansion device 14d may be set to a pulse between 840 pulses and 1160 pulses.
  • controllability is further deteriorated, but if the total opening area of both is within a range of about ⁇ 20%, the control responsiveness is slightly deteriorated, but there is no problem in control, and the discharge temperature is reduced.
  • the target value can be controlled. For example, as in the example described above, when the total opening is 1600, the total opening may be within 1600 ⁇ 320 pulses. For example, when the opening degree of the expansion device 14b is 600 pulses, the opening degree of the expansion device 14d may be set to a pulse between 680 pulses and 1320 pulses.
  • both aperture devices may be controlled so that the total aperture area of the aperture portion of the aperture device 14b and the aperture area of the aperture device 14d is substantially the same.
  • the opening amount (opening area) of the expansion device 14d corresponding to the change in the opening amount (opening area) of the expansion device 14b. ) May be changed in the opposite direction.
  • the degree of opening (opening area) of the expansion device 14a is adjusted to control the degree of supercooling of the first flow path of the supercooling heat exchanger 13, and the expansion device 14b installed in the second bypass pipe 4b is opened.
  • the discharge temperature of the compressor 10 can be controlled by adjusting the degree (opening area).
  • changing in the reverse direction means, for example, that if the opening degree (opening area) of the expansion device 14b increases, the opening degree (opening area) of the expansion device 14d decreases, and the opening degree (opening area) of the expansion device 14b. ) Is reduced, the aperture (opening area) of the expansion device 14d is changed to be increased.
  • the opening area at the maximum opening of the expansion device 14b is 1.5 times the opening area at the maximum opening of the expansion device 14d, and the opening and the opening area have a linear relationship.
  • the expansion device 14b it is assumed that the fully opened opening is 2000 pulses and the minimum opening at which the refrigerant does not flow is 200 pulses.
  • fully open opening degree shall be 1000 pulses and the minimum opening degree from which a refrigerant
  • the expansion device 14d when the discharge temperature is low, the expansion device 14d is set to 1000 pulses at the maximum opening, and the expansion device 14b is set to 200 pulses at the minimum opening.
  • the control device 50 When the opening temperature of the expansion device 14b is controlled so that the discharge temperature of the compressor 10 becomes high and the discharge temperature of the compressor 10 becomes the target value, the control device 50 has an appropriate opening amount of 800 pulses for the expansion device 14b. Is calculated.
  • the opening of the expansion device 14b is controlled from the minimum 200 pulses to the new 800 opening, and the expansion of the expansion device 14d is changed from the fully open 1000 pulses. Control to close. Then, the opening degree of the expansion device 14d is determined based on, for example, Expression (1). This is to close the expansion device 14d at the same rate as the opening rate of the expansion device 14b.
  • equation (2) When substituting a specific value based on the condition into equation (1), equation (2) is obtained. When the equation (2) is calculated, 400 pulses are obtained.
  • the control device 50 controls the opening of the expansion device 14b to 400 pulses at the control timing for controlling the opening of the expansion device 14d to 800 pulses.
  • the change is about 33% with respect to the difference between the maximum opening and the minimum opening of the respective throttle devices.
  • the amount of change in the opening amount of the expansion device 14d corresponding to the change in the opening amount of the expansion device 14b.
  • the discharge temperature of the compressor 10 can be controlled to the target value by controlling the direction of change of the opening of the expansion device 14b and the direction of change of the opening of the expansion device 14d in opposite directions.
  • the total area of the aperture area of the aperture device 14b and the aperture area of the aperture device 14d is different before and after the control. Therefore, it is necessary to control the opening degree of the expansion device 14a and keep the degree of supercooling of the first flow path of the supercooling heat exchanger 13 at a target.
  • the relationship between the opening degree and the opening area is better when the relationship is a linear relationship, but is not limited thereto. Regardless of the form of correspondence, the same control can be performed as long as the opening increases and the opening area increases.
  • the expansion device 14a is controlled so that the degree of supercooling of the first flow path of the supercooling heat exchanger 13 approaches the target,
  • the flow rate of the refrigerant flowing through the second flow path of the supercooling heat exchanger 13 is adjusted.
  • the flow rate of the refrigerant flowing through the second bypass pipe 4b connected to the injection port of the compressor 10 is adjusted by controlling the opening degree of the expansion device 14b so that the discharge temperature of the compressor 10 approaches the target.
  • the diaphragm device 14d is controlled in conjunction with the diaphragm device 14b, and is calculated based on the opening (opening area) of the throttle device 14b after the control to set the opening (opening area) of the diaphragm device 14d. By doing so, it is possible to appropriately control both the degree of supercooling of the supercooling heat exchanger 13 and the discharge temperature of the compressor 10.
  • the opening change direction of the expansion device 14b and the opening change direction of the expansion device 14d are opposite to each other.
  • the control device 50 controls the opening area of the expansion device 14d to be small.
  • the aperture area of the aperture device 14d is controlled to be large.
  • the angle at which the injection port of the compressor 10 opens into the compression chamber is usually immediately after the suction port of the compression chamber is closed.
  • the pressure in the compression chamber where the injection port is located is a value close to a low pressure (pressure on the suction side).
  • the expansion device 14b and the expansion device 14d are of the same capacity (the opening area at the fully opened position is substantially the same).
  • the flow rate through the throttle device is proportional to the square root of the pressure difference across the throttle device. For example, if the injection port of the compressor 10 opens into the compression chamber after the suction angle of the compression chamber is closed and the rotation angle becomes considerably large, the pressure in the compression chamber is sufficiently higher than the low pressure.
  • the pressure difference before and after the expansion device 14b becomes smaller than the pressure difference before and after the expansion device 14d.
  • the controllability is improved by increasing the capacity of the expansion device 14b (opening area at the fully open position) relative to the capacity of the expansion device 14d (opening area at the fully open position). Even in this case, there is no change in linking the control of the expansion device 14b and the control of the expansion device 14d.
  • the control device 50 changes the amount of opening or opening of the expansion device 14d or changes in the opening area or opening area. What is necessary is just to calculate the quantity.
  • the expansion device 14a it is desirable to change the opening area, such as an electronic expansion valve, but it is not limited to this.
  • it may be configured by combining on-off valves such as small solenoid valves, or may be configured by a capillary tube.
  • the expansion device 14d only needs to change the flow resistance in accordance with the change in the opening degree of the expansion device 14b.
  • the electronic expansion valve etc. which can change an opening area
  • a plurality of solenoid valves may be combined in parallel so that the opening area can be changed in a plurality of stages in accordance with the change in the opening degree of the expansion device 14b.
  • the control accuracy of the discharge temperature is slightly deteriorated, but there is no problem because the discharge temperature can be controlled so as not to exceed the limit value.
  • the operation is stopped.
  • the expansion device 16 corresponding to the stopped indoor unit 2 is fully closed or set to a small opening at which the refrigerant does not flow.
  • two bypass pipes are provided on the downstream side of the second flow path of the supercooling heat exchanger 13, and the first bypass pipe 4a is connected to the upstream side of the accumulator 15 (compressor) via the expansion device 14d.
  • the refrigerant is allowed to flow in the flow path on the suction side 10), and the refrigerant can be injected into the compression chamber of the compressor 10 through the expansion device 14 b in the second bypass pipe 4 b.
  • the expansion device 14b and the expansion device 14d in an interlocked manner, even when the extension pipe 5 is long, the refrigerant flowing into the indoor unit 2 can be reliably in a state of being supercooled, and In the condition where the discharge temperature of the compressor 10 becomes high, the discharge temperature of the compressor 10 can be reliably controlled so as not to exceed the upper limit.
  • the refrigerant that has passed through the second flow path of the supercooling heat exchanger 13 is a low-temperature two-phase refrigerant or gas refrigerant.
  • a low-temperature gas refrigerant may be flowed into the compression chamber of the compressor 10 via the second bypass pipe 4b.
  • the discharge temperature is considerably higher than the limit temperature, it is necessary to flow a low-temperature two-phase refrigerant into the compression chamber of the compressor 10.
  • the refrigerant in the two-phase state is branched into the first bypass pipe 4a and the second bypass pipe 4b.
  • the refrigerant flowing into the branch portion between the first bypass pipe 4a and the second bypass pipe 4b is configured to flow from bottom to top in the direction of gravity (height direction), for example.
  • the branched flow path is configured so that the branched refrigerant flows at substantially the same height in the height direction. If comprised in this way, a liquid refrigerant can branch the refrigerant
  • a T-type joint or a Y-type joint is used for the branch portion.
  • the branching portion is slightly inclined, there is no problem as long as it is slightly inclined, and the two-phase refrigerant is neatly distributed. This allowable inclination angle is within about 15 degrees, and if it is less than this, the two-phase refrigerant can be distributed without any problem.
  • the branching portion between the first bypass pipe 4a and the second bypass pipe 4b is not limited to this, as long as the refrigerant in the two-phase state can branch cleanly without biasing the refrigerant liquid to one side, Any structure may be used.
  • FIG. 7 is a diagram showing a refrigerant flow when the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is in the heating operation mode.
  • the heating operation mode will be described by taking as an example a case where a thermal load is generated in all the use side heat exchangers 17.
  • the pipes indicated by bold lines in FIG. 5 indicate the pipes through which the refrigerant flows, and the directions in which the refrigerant flows are indicated by solid arrows.
  • the control device 50 controls the refrigerant flow switching device 11 so that the refrigerant discharged from the compressor 10 does not pass through the heat source side heat exchanger 12. 1 is instructed to switch to the flow path that flows out into the indoor unit 2. Then, the compressor 10 compresses the low-temperature and low-pressure refrigerant and discharges the high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the refrigerant flow switching device 11 and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 passes through the extension pipe 5 and flows into each of the indoor units 2 (2a to 2d).
  • the high-temperature and high-pressure gas refrigerant flowing into the indoor unit 2 (2a to 2d) flows into each of the use side heat exchangers 17 (17a to 17d) and circulates around the use side heat exchangers 17 (17a to 17d). It liquefies while radiating heat to the air, and becomes a high-temperature and high-pressure liquid refrigerant.
  • the liquid refrigerant flowing out from the use side heat exchanger 17 (17a to 17d) is expanded by the expansion device 16 (16a to 16d) to become a first medium pressure two-phase refrigerant, and the indoor unit 2 (2a to 2d). Spill from.
  • the first medium-pressure two-phase refrigerant flowing out of the indoor unit 2 flows into the outdoor unit 1 again through the extension pipe 5.
  • the opening degree (opening area) of the expansion devices 16a to 16d is the temperature difference (supercooling) between the condensation temperature in the use side heat exchangers 17a to 17d and the detection temperature of the use side heat exchanger liquid refrigerant temperature detection device 27. Is controlled so as to approach the target value.
  • the control device 50 of the outdoor unit 1 determines a value of the condensation temperature in the use side heat exchangers 17a to 17d, and sends a signal to the control device (not shown) of each indoor unit 2 by communication.
  • the first medium-pressure two-phase refrigerant that has flowed into the outdoor unit 1 flows into the liquid separator 18.
  • the liquid refrigerant having the first intermediate pressure is decompressed by the expansion device 14a, becomes a two-phase refrigerant having the second intermediate pressure, and passes through the second flow path of the supercooling heat exchanger 13.
  • the remaining two-phase refrigerant that has flowed into the liquid separator 18 flows out from an outlet provided near or above the center of the liquid separator 18 in the direction of gravity, and flows into the first flow path of the supercooling heat exchanger 13.
  • the first medium pressure two-phase refrigerant that has flowed into the first flow path of the supercooling heat exchanger 13 is slightly cooled by the second medium pressure refrigerant flowing through the second flow path of the supercooling heat exchanger 13, and the dryness Spills out a little smaller. Then, the pressure is reduced through the expansion device 14 c to become a low-temperature and low-pressure two-phase refrigerant and flows into the heat source side heat exchanger 12.
  • the low-temperature and low-pressure two-phase refrigerant absorbs heat from the air flowing around the heat source side heat exchanger 12 in the heat source side heat exchanger 12, evaporates and flows out as a low temperature and low pressure gas refrigerant. Then, the refrigerant is again sucked into the compressor 10 through the refrigerant flow switching device 11 and the accumulator 15.
  • the refrigerant flows through the second flow path of the supercooling heat exchanger 13, the refrigerant flowing through the first flow path of the supercooling heat exchanger 13 is supercooled, and is sent to the extension pipe 5. It was.
  • the heating operation mode it is not necessary to supercool the refrigerant flowing through the extension pipe 5.
  • the first purpose of flowing the refrigerant through the second flow path of the supercooling heat exchanger 13 is to lower the discharge temperature when the discharge temperature of the compressor 10 becomes too high.
  • the second purpose is to improve the heating capacity. Both are necessary when the outside air temperature is low. For this reason, when the outside air temperature is relatively high (for example, when the discharge temperature is 105 ° C.
  • the control device 50 controls the throttle device 14b to be fully closed or to a small opening at which the refrigerant does not flow so that the refrigerant does not flow into the second bypass pipe 4b.
  • the expansion device 14d is normally set to a fully closed position or a small opening at which the refrigerant does not flow, so that the refrigerant does not flow into the first bypass pipe 4a.
  • the discharge temperature is higher than when R410A is used at a slightly higher outside temperature. For example, it is necessary to lower the discharge temperature in order to prevent deterioration of refrigeration oil, burnout of the compressor 10, and the like.
  • a two-phase refrigerant having a high degree of dryness can be directly injected into the compressor 10 through the second bypass pipe 4 b connected to the injection port of the compressor 10.
  • the flow rate of the refrigerant passing through the second bypass pipe 4b is adjusted by the opening degree (opening area) of the expansion device 14b.
  • the opening degree (opening area) of the expansion device 14b is increased and the flow rate of the refrigerant flowing through the second bypass pipe 4b is increased, the discharge temperature of the compressor 10 decreases.
  • the opening degree (opening area) of the expansion device 14b is reduced and the flow rate of the refrigerant flowing through the second bypass pipe 4b is reduced, the discharge temperature of the compressor 10 increases. Therefore, the discharge temperature of the compressor 10 can be controlled by adjusting the opening degree (opening area) of the expansion device 14b.
  • a two-phase refrigerant having a high degree of dryness is injected into the compression chamber of the compressor 10.
  • the degree of discharge superheat is calculated from the discharge temperature detected by the discharge refrigerant temperature detection device 21 and the saturation temperature of the pressure detected by the high pressure detection device 22, and control is performed so that the discharge superheat degree falls within the target range. If it does in this way, the quantity of the refrigerant
  • the control device 50 may control the amount of refrigerant to be injected with the discharge temperature as a target.
  • the injection amount may be controlled with the discharge superheat degree as a target in order to improve the heating capacity.
  • the expansion device 14c controls the refrigerant pressure between the expansion device 16 and the expansion device 14a (liquid separator 18) to be the first intermediate pressure.
  • the first intermediate pressure is lower than the high pressure on the discharge side of the compressor 10 and is the pressure on the downstream side of the second bypass pipe 4b. And it is a pressure higher than the 2nd intermediate pressure which is the pressure of the injection port of the compression chamber of the compressor 10.
  • the opening degree (opening area) of the expansion device 14c is controlled so that the intermediate pressure obtained by converting the detected temperature of the liquid refrigerant temperature detection device 24 into the saturation pressure approaches the target value.
  • FIG. 8 is a ph diagram (pressure-enthalpy diagram) during heating operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the refrigerant point I in FIG. 8 compressed and discharged by the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11 and passes through the extension pipe 5 to the indoor unit. Flows into 2. Then, after being condensed in the use side heat exchanger 17 of the indoor unit 2, it passes through the expansion device 16 and returns to the outdoor unit 1 via the extension pipe 5. Furthermore, it flows to the expansion device 14 c via the first flow path of the liquid separator 18 and the supercooling heat exchanger 13.
  • the pressure of the refrigerant (refrigerant upstream of the expansion device 14c) flowing between the expansion device 16 and the expansion device 14c is controlled to be the first intermediate pressure ( Point J in FIG.
  • Part of the liquid refrigerant of the first medium-pressure refrigerant flowing between the expansion device 16 and the expansion device 14c is branched by the liquid separator 18 (point J 1 in FIG. 8).
  • a part of the branched liquid refrigerant passes through the first bypass pipe 4a, is decompressed by the expansion device 14a, and becomes a second medium-pressure refrigerant (point M in FIG. 8).
  • the remaining refrigerant slightly increases in dryness (point J 2 in FIG. 8).
  • the remaining refrigerant passes through the first flow path of the supercooling heat exchanger 13 and is cooled by exchanging heat with the refrigerant flowing through the second flow path of the supercooling heat exchanger 13 (FIG. 8). point J 3 of).
  • the pressure is reduced by the expansion device 14c to become a low-pressure two-phase refrigerant (point K in FIG. 8).
  • the low-pressure two-phase refrigerant evaporates in the heat source side heat exchanger 12 and then flows into the accumulator 15 through the refrigerant flow switching device 11. Further, the refrigerant that has flowed out of the accumulator 15 passes through the suction side flow path and is sucked into the compressor 10.
  • the compressor 10 of the present embodiment is a low-pressure shell type compressor.
  • the sucked refrigerant and oil flow into the lower part of the compressor 10.
  • a motor is disposed in the intermediate portion.
  • the high-temperature and high-pressure refrigerant compressed in the compression chamber is discharged from the compressor 10 after being discharged into the discharge chamber in the sealed container. Therefore, the metal sealed container of the compressor 10 has a portion exposed to the high-temperature and high-pressure refrigerant and a portion exposed to the low-temperature and low-pressure refrigerant. For this reason, the temperature of the sealed container becomes an intermediate temperature. Further, since current flows through the motor, it generates heat.
  • the low-temperature and low-pressure gas refrigerant sucked into the compressor 10 is heated by the sealed container and the motor of the compressor 10 and the temperature rises (point F in FIG. 8). Then, it is sucked into the compression chamber and compressed to the second intermediate pressure in the compression chamber (point N in FIG. 8).
  • the refrigerant is injected into the compression chamber of the compressor 10 via the second bypass pipe 4b, the temperature of the refrigerant in the merged portion of the refrigerant sucked from the suction side flow path and the refrigerant related to the injection in the compression chamber. (Point H in FIG. 8). Then, the compression is further continued in the compression chamber, whereby a high-pressure gas refrigerant is discharged from the compressor 10.
  • the temperature of the refrigerant is reduced at the merged portion, and therefore, the discharge temperature with respect to the discharge temperature of the compressor 10 when the refrigerant is not introduced (point G in FIG. 8). Decreases (point I in FIG. 8). For example, even when using a refrigerant whose discharge temperature of the compressor 10 is higher than R410A, such as R32, the discharge temperature of the compressor 10 can be lowered and can be used safely. it can. In addition, reliability is increased.
  • the expansion device 14c can change the opening area, such as an electronic expansion valve.
  • the first intermediate pressure which is the pressure of the refrigerant upstream of the expansion device 14c
  • the discharge temperature can be finely controlled.
  • the aperture device 14c is not limited to this.
  • an opening / closing valve such as a small electromagnetic valve may be combined so that the opening degree can be selected and controlled in a plurality of stages.
  • the capillary tube may be configured to perform supercooling according to the refrigerant pressure loss. Although the controllability is slightly worse than that of the electronic expansion valve, the discharge temperature can be brought close to the target.
  • the system can be configured at low cost.
  • a pressure sensor may be provided, and the first intermediate pressure may be obtained using the directly detected pressure.
  • the expansion device 14a is composed of an electronic expansion valve or the like whose opening area can be changed. Then, the control device 50 sets the discharge superheat degree calculated by the temperature difference between the discharge temperature of the compressor 10 detected by the discharge refrigerant temperature detection device 21 and the high pressure saturation temperature detected by the high pressure detection device 22 to the target range. The opening area of the expansion device 14a is controlled so as to enter the inside.
  • the discharge temperature when it is determined that the discharge temperature has exceeded a certain value (for example, 110 ° C., etc.), the discharge temperature may be controlled to be opened by a certain degree of opening, for example, 10 pulses.
  • the target temperature may be set in a range instead of a constant value, and the discharge temperature may be controlled so as to fall within the target temperature range (for example, between 100 ° C. and 110 ° C.).
  • the expansion device 14b is fully opened, and the expansion device 14d is fully closed. When starting up, the expansion device 14b may be fully closed.
  • the heating operation mode when executed, it is not necessary to flow the refrigerant to the use side heat exchanger 17 (including the thermo-off) without the heat load (heating load).
  • the heating operation mode if the expansion device 16 corresponding to the use-side heat exchanger 17 without a heating load is fully closed or has an opening that is small enough to prevent the refrigerant from flowing, the use-side heat of the stopped indoor unit 2 In the exchanger 17, the refrigerant is cooled by the ambient air, condensed and collected, and the refrigerant circuit as a whole may be short of refrigerant.
  • the opening (opening area) of the expansion device 16 corresponding to the use-side heat exchanger 17 having no heat load is set to a large opening such as full opening so that the refrigerant can pass therethrough. To. For this reason, accumulation of the refrigerant can be prevented.
  • the opening degree (opening area) of the expansion device 14a is controlled so that the discharge superheat degree approaches a target value (for example, 40 ° C.) or is controlled so as to fall within a target range (for example, 30 ° C. to 40 ° C.). .
  • the target value of the discharge superheat degree is set to a different value based on the outside air temperature, the degree of improvement in the heating capacity exhibited by the indoor unit 2 is as large as possible at each outside air temperature, and the discharge temperature does not exceed the limit temperature. Set to value.
  • the opening degree (opening area) of the expansion device 14a may be controlled so that the discharge temperature of the compressor 10 approaches the target value.
  • the target value of the discharge temperature is set lower than the limit value of the discharge temperature.
  • the heating capability which the indoor unit 2 exhibits can be increased at a higher temperature, it is desirable to set the temperature as high as possible. For example, when the discharge temperature limit of the compressor 10 is 120 ° C., the frequency of the compressor 10 is decelerated when it exceeds 110 ° C. so that the discharge temperature does not exceed 120 ° C. Therefore, when injection is performed to lower the discharge temperature of the compressor 10, a temperature between 100 ° C. and 110 ° C.
  • the target value of the discharge temperature may be a temperature between 100 ° C. and 120 ° C. (for example, 115 ° C.).
  • FIG. Although not particularly shown in the above-described first embodiment, a four-way valve is generally used as the second refrigerant flow switching device 19.
  • the present invention is not limited to this, and a plurality of two-way flow switching valves, three-way flow switching valves, and the like may be used so that the flow switching similar to the four-way valve can be performed.
  • the details of the configuration of the liquid separator 18 are not particularly described in the first embodiment.
  • it has one inlet-side channel and two outlet-side channels, separates the liquid refrigerant from the refrigerant flowing in from the inlet-side channel, and flows out from one outlet-side channel to the first bypass pipe 4a. Anything that can do.
  • the liquid separator 18 Even if some gas refrigerant is mixed in the refrigerant flowing out to the first bypass pipe 4a, if the degree of mixing of the gas refrigerant does not greatly affect the control of the expansion device, the liquid separator 18 The liquid refrigerant separation efficiency may not be 100%.
  • compressor 10 has been described by way of example using a low-pressure shell type compressor, for example, the same effect can be obtained even when a high-pressure shell type compressor is used.
  • the injection according to the present invention has a great effect of lowering the discharge temperature.
  • the discharge temperature is 3 ° C. or more higher than when the R410A refrigerant is used.
  • the injection according to the present invention has a great effect of lowering the discharge temperature.
  • the refrigerant type in the mixed refrigerant is not limited to this, and even a mixed refrigerant containing a small amount of other refrigerant components has no significant effect on the discharge temperature and has the same effect.
  • any refrigerant that can be used in a mixed refrigerant containing a small amount of R32, HFO1234yf, and other refrigerants, and whose discharge temperature is higher than R410A needs to lower the discharge temperature. Have the same effect.
  • the heat source side heat exchanger 12 and the use side heat exchangers 17a to 17d are often equipped with a blower that promotes condensation or evaporation of the refrigerant by blowing air. Absent.
  • a blower that promotes condensation or evaporation of the refrigerant by blowing air. Absent.
  • a panel heater using radiation can be used as the use side heat exchangers 17a to 17d.
  • a water-cooled type heat exchanger that exchanges heat with a liquid such as water or antifreeze can be used as the heat source side heat exchanger 12. Any material can be used as long as it can dissipate or absorb heat from the refrigerant.
  • the direct expansion type air conditioner in which the refrigerant is circulated by connecting the pipe between the outdoor unit 1 and the indoor unit 2 has been described as an example, but the present invention is not limited thereto.
  • a repeater is provided between the outdoor unit 1 and the indoor unit 2.
  • the refrigerant is circulated between the outdoor unit and the relay unit, and a heat medium such as water and brine is circulated between the relay unit and the indoor unit, and the relay unit performs heat exchange between the refrigerant and the heat medium.
  • the present invention can also be applied to an air conditioner that performs air conditioning, and has the same effect. In such an air conditioner, installation of the liquid separator 18 becomes unnecessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

When a first heat exchanger, namely a heat-source-side heat exchanger (12), is acting as a condenser, this air conditioner is controlled such that, as a refrigerant flows through a first bypass pipe (4a) to an inlet-side pipe for a compressor (10) via throttling devices (14a and 14d), said refrigerant also flows through a second bypass pipe (4b) via one of the throttling devices (14b) and is introduced into a compression chamber via an injection port. When the heat-source-side heat exchanger (12) is acting as an evaporator, the air conditioner is controlled such that the refrigerant flows through the second bypass pipe (4b) via the aforementioned throttling device (14b) and is introduced into the compression chamber via the injection port and the other throttling device (14d) is either closed completely or closed down such that almost no refrigerant flows therethrough.

Description

空気調和装置Air conditioner
 本発明は、例えばビル用マルチエアコン等に適用される空気調和装置に関するものである。 The present invention relates to an air conditioner applied to, for example, a building multi-air conditioner.
 ビル用マルチエアコン等の空気調和装置において、圧縮機の吐出温度を低下させるために、高圧液管から圧縮機の圧縮行程の中間部分に液状の冷媒をインジェクション(液インジェクション)する冷媒回路を有する空気調和装置が存在している。この空気調和装置では、運転状態によらず吐出温度を設定温度に制御することができる(例えば、特許文献1参照)。 In an air conditioner such as a multi air conditioner for buildings, air having a refrigerant circuit for injecting a liquid refrigerant (liquid injection) from a high pressure liquid pipe to an intermediate portion of a compressor compression stroke in order to lower the discharge temperature of the compressor A harmony device exists. In this air conditioner, the discharge temperature can be controlled to the set temperature regardless of the operating state (see, for example, Patent Document 1).
 また、冷房運転および暖房運転のいずれにおいても、冷凍サイクルにおいて高圧状態の液冷媒を、圧縮機の吸入側の配管にインジェクションすることができる空気調和装置も存在している(例えば、特許文献2参照)。 There is also an air conditioner that can inject liquid refrigerant in a high-pressure state in a refrigerating cycle into piping on the suction side of a compressor in both cooling operation and heating operation (see, for example, Patent Document 2). ).
 さらに、凝縮器の冷媒流出口側に過冷却熱交換器を備え、過冷却熱交換器へ流す冷媒流量を制御し、圧縮機の吐出温度を制御する空気調和装置も存在している(例えば、特許文献3参照)。 Furthermore, there is also an air conditioner that includes a supercooling heat exchanger on the refrigerant outlet side of the condenser, controls the flow rate of refrigerant flowing to the supercooling heat exchanger, and controls the discharge temperature of the compressor (for example, (See Patent Document 3).
特開2005-282972号公報(第4頁、図1等)Japanese Patent Laying-Open No. 2005-282972 (page 4, FIG. 1, etc.) 特開平2-110255号公報(第3頁、図1等)JP-A-2-110255 (page 3, FIG. 1 etc.) 特開2001-227823号公報(第4頁、図1等)Japanese Patent Laid-Open No. 2001-227823 (page 4, FIG. 1, etc.)
 例えば、上記の特許文献1に記載の空気調和装置においては、高圧液管から圧縮機の中間にインジェクションする方法しか記載されておらず、冷凍サイクルの循環路を逆転させた場合(冷房、暖房の切り替え)等の対応ができないという課題があった。 For example, in the air conditioner described in Patent Document 1 described above, only a method of injecting from a high-pressure liquid pipe to the middle of a compressor is described, and when the circulation path of the refrigeration cycle is reversed (for cooling and heating) There was a problem that it was not possible to cope with such as switching.
 特許文献2に記載の空気調和装置においては、室内側および室外側の双方の絞り装置と並列に逆止弁が設置されており、そのため、冷房時も暖房時も、液冷媒を吸入インジェクションできる構成となっているが、そのためには特殊な室内機が必要で、絞り装置に逆止弁が並列接続されていない通常の室内機を用いることはできず、汎用的な構成ではないという課題があった。 In the air conditioner described in Patent Document 2, a check valve is installed in parallel with both the indoor and outdoor throttle devices, and therefore, a configuration capable of sucking and injecting liquid refrigerant during cooling and heating. However, a special indoor unit is required for this purpose, and a normal indoor unit in which a check valve is not connected in parallel with the throttle device cannot be used. It was.
 特許文献3に記載の空気調和装置においては、過冷却熱交換器に付属の絞り装置で、過冷却熱交換器に流す冷媒の流量を制御し、吐出温度を制御しているため、吐出温度と凝縮器出口の過冷却度の双方を別々に目標値に制御することができず、適正な過冷却度を保ちながら、吐出温度を適正に制御することができないため、室外機と室内機とを接続する延長配管が長い場合、吐出温度を目標値に制御すると、室外機出口の過冷却度を目標値に制御できず、延長配管での圧力損失のため、室内機に流入する冷媒が二相化してしまう可能性があり、マルチ型の空気調和装置等のように室内機に絞り装置を備えている場合、絞り装置の入口側が二相になると音が出たり制御が不安定になったりしてしまう、という課題があった。 In the air conditioner described in Patent Document 3, the flow rate of the refrigerant flowing through the supercooling heat exchanger is controlled by the throttle device attached to the supercooling heat exchanger, and the discharge temperature is controlled. Since both the degree of supercooling at the outlet of the condenser cannot be controlled separately to the target value and the discharge temperature cannot be controlled properly while maintaining the appropriate degree of supercooling, the outdoor unit and the indoor unit If the extension pipe to be connected is long, if the discharge temperature is controlled to the target value, the degree of supercooling at the outlet of the outdoor unit cannot be controlled to the target value, and the refrigerant flowing into the indoor unit will flow in two phases due to pressure loss in the extension pipe. If the indoor unit is equipped with a throttle device, such as a multi-type air conditioner, sound may be produced or the control may become unstable if the inlet side of the throttle device becomes two-phase. There was a problem that it would end up.
 本発明は、上記の課題を解決するためになされたもので、圧縮機の吐出温度および冷媒の過冷却度を安定して制御することができる空気調和装置を得るものである。 The present invention has been made to solve the above-described problems, and provides an air conditioner that can stably control the discharge temperature of the compressor and the degree of supercooling of the refrigerant.
 本発明に係る空気調和装置は、圧縮室および圧縮室の内部に冷媒を導入するインジェクションポートを有し、冷媒を圧縮して吐出する圧縮機と、冷媒の熱交換を行う第1熱交換器と、第1熱交換器を凝縮器とするか蒸発器とするかを切り替える冷媒流路切替装置と、第1流路と第2流路とを有し、各流路を通過する冷媒を熱交換させて第1流路を流れる冷媒を過冷却する過冷却熱交換器と、冷媒の熱交換を行う第2熱交換器と、第2熱交換器を通過する冷媒の圧力を調整する第1絞り装置とを配管接続して冷媒を循環させる冷媒回路を構成し、第1熱交換器と第2熱交換器との間の配管と過冷却熱交換器の第2流路の冷媒流入側および過冷却熱交換器の第2流路の冷媒流出側と圧縮機の冷媒吸入側の配管とを接続する第1バイパス配管と、第1バイパス配管において、第1熱交換器と第2熱交換器との間の配管から過冷却熱交換器の第2流路に流れる冷媒の圧力を調整する第2絞り装置と、第1バイパス配管において、過冷却熱交換器の第2流路から圧縮機の冷媒吸入側の配管に流れる冷媒の圧力を調整する第3絞り装置と、過冷却熱交換器の第2流路の冷媒流出側とインジェクションポートとを接続する第2バイパス配管と、第2バイパス配管を流れる冷媒の流量を調整する第4絞り装置とを備え、第1熱交換器が凝縮器として作用しているときに、第2絞り装置および第3絞り装置を介して第1バイパス配管を通過させて圧縮機の吸入側配管に冷媒を流しつつ、第4絞り装置を介して第2バイパス配管を通過させて圧縮室内に冷媒を導入させるように制御し、第1熱交換器が蒸発器として作用しているときに、第4絞り装置を介して第2バイパス配管を通過させて圧縮室内に冷媒を導入させ、かつ、第3絞り装置の開度を全閉または冷媒がほとんど流れない開度に制御するもので、冷房運転時において、過冷却熱交換器の出口の冷媒の過冷却度を大きく制御しながら、冷媒を圧縮機の圧縮室の内部にインジェクションして圧縮機の吐出温度を下げることができ、延長配管での冷媒の二相化を防ぎながら、圧縮機の吐出温度を低下させることができ、安全に運転することができ、機器の寿命を長くするものである。 An air conditioner according to the present invention includes a compression chamber and an injection port for introducing a refrigerant into the compression chamber, a compressor that compresses and discharges the refrigerant, and a first heat exchanger that performs heat exchange of the refrigerant. , A refrigerant flow switching device for switching whether the first heat exchanger is a condenser or an evaporator, a first flow path and a second flow path, and heat exchange of the refrigerant passing through each flow path A subcooling heat exchanger that supercools the refrigerant flowing through the first flow path, a second heat exchanger that performs heat exchange of the refrigerant, and a first throttle that adjusts the pressure of the refrigerant passing through the second heat exchanger A refrigerant circuit that circulates the refrigerant by connecting a pipe to the apparatus, and the refrigerant inflow side and the excess of the pipe between the first heat exchanger and the second heat exchanger and the second flow path of the supercooling heat exchanger A first bypass pipe connecting a refrigerant outflow side of the second flow path of the cooling heat exchanger and a pipe of the refrigerant suction side of the compressor; In one bypass pipe, a second expansion device that adjusts the pressure of the refrigerant flowing from the pipe between the first heat exchanger and the second heat exchanger to the second flow path of the supercooling heat exchanger, and the first bypass pipe A third expansion device that adjusts the pressure of the refrigerant flowing from the second flow path of the supercooling heat exchanger to the refrigerant suction side pipe of the compressor, and the refrigerant outflow side of the second flow path of the supercooling heat exchanger; A second bypass pipe that connects the injection port and a fourth expansion device that adjusts the flow rate of the refrigerant flowing through the second bypass pipe, and when the first heat exchanger acts as a condenser, The refrigerant passes through the first bypass pipe through the throttle device and the third throttle device and flows through the suction side pipe of the compressor, and passes through the second bypass pipe through the fourth throttle device to pass the refrigerant into the compression chamber. The first heat exchanger is controlled to be introduced. When acting as a generator, the refrigerant is introduced into the compression chamber through the second bypass pipe through the fourth throttle device, and the opening of the third throttle device is fully closed or the refrigerant almost flows. In the cooling operation, the refrigerant is injected into the compressor chamber while greatly controlling the degree of supercooling of the refrigerant at the outlet of the supercooling heat exchanger, and discharged from the compressor. The temperature can be lowered, and the discharge temperature of the compressor can be lowered while preventing the refrigerant from being two-phased in the extension pipe, so that the operation can be safely performed and the life of the device is extended.
 本発明の空気調和装置においては、冷房運転時に室外機出口の過冷却度を適切な値に保ちながら、圧縮機の圧縮室に冷媒をインジェクション可能にすることで、圧縮機の吐出温度を高くなりすぎないようにすることができる。このため、圧縮機の損傷を防ぐことができ、寿命を延ばすことができる。 In the air conditioner of the present invention, the discharge temperature of the compressor is increased by allowing the refrigerant to be injected into the compression chamber of the compressor while keeping the subcooling degree of the outdoor unit outlet at an appropriate value during the cooling operation. You can make sure it ’s not too much. For this reason, damage to the compressor can be prevented and the life can be extended.
本発明の実施の形態1に係る空気調和装置の設置例を示す概略図である。It is the schematic which shows the example of installation of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の構成の概略を示す図である。It is a figure which shows the outline of a structure of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の吐出温度が低い場合の冷房運転モード時における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant at the time of the air_conditionaing | cooling operation mode when the discharge temperature of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention is low. 本発明の実施の形態1に係る空気調和装置100の吐出温度が低い場合の冷房運転時におけるp-h線図(圧力-エンタルピ線図)である。FIG. 5 is a ph diagram (pressure-enthalpy diagram) during cooling operation when the discharge temperature of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is low. 本発明の実施の形態1に係る空気調和装置100の吐出温度が高い場合の冷房運転モード時における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant at the time of the cooling operation mode in case the discharge temperature of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention is high. 本発明の実施の形態1に係る空気調和装置100の吐出温度が高い場合の冷房運転時におけるp-h線図(圧力-エンタルピ線図)である。FIG. 6 is a ph diagram (pressure-enthalpy diagram) during cooling operation when the discharge temperature of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is high. 本発明の実施の形態1に係る空気調和装置100の暖房運転モード時における冷媒の流れ示す図である。It is a figure which shows the flow of the refrigerant | coolant at the time of the heating operation mode of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の暖房運転時におけるp-h線図(圧力-エンタルピ線図)である。FIG. 3 is a ph diagram (pressure-enthalpy diagram) during heating operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
 以下、発明の実施の形態に係る空気調和装置について図面等を参照しながら説明する。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。さらに、添字で区別等している複数の同種の機器等について、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合がある。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。 Hereinafter, an air conditioner according to an embodiment of the invention will be described with reference to the drawings. Here, in FIG. 1 and the following drawings, the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below. And the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification. In particular, the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment. Furthermore, when there is no need to distinguish or identify a plurality of similar devices that are distinguished by subscripts, the subscripts may be omitted. In the drawings, the size relationship of each component may be different from the actual one. The level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in the state, operation, etc. of the system, apparatus, and the like.
実施の形態1.
 図1は本発明の実施の形態1に係る空気調和装置の設置例を示す概略図である。図1に基づいて、本実施の形態における空気調和装置の設置例について説明する。本実施の形態における空気調和装置は、冷媒の相変化による冷凍サイクルを利用することで、運転モードとして冷房モードあるいは暖房モードのいずれかを選択することができる。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram illustrating an installation example of an air-conditioning apparatus according to Embodiment 1 of the present invention. Based on FIG. 1, the installation example of the air conditioning apparatus in this Embodiment is demonstrated. The air conditioning apparatus in the present embodiment can select either the cooling mode or the heating mode as the operation mode by using the refrigeration cycle due to the phase change of the refrigerant.
 図1において、本実施の形態に係る空気調和装置は、熱源機である1台の室外機1および複数台の室内機2を有している。そして、冷媒が通過する延長配管(冷媒配管)5により室外機1と室内機2とを接続している。 In FIG. 1, the air-conditioning apparatus according to the present embodiment includes one outdoor unit 1 and a plurality of indoor units 2 that are heat source units. The outdoor unit 1 and the indoor unit 2 are connected by an extension pipe (refrigerant pipe) 5 through which the refrigerant passes.
 室外機1は、通常、ビル等の建物9の外の空間(例えば、屋上等)である室外空間6に配置される。また、室外機1は、冷熱または温熱を生成し、延長配管5を介して室内機2に配送する。室内機2は、建物9の内部の空間(例えば、居室等)である室内空間7に、温度等を調整した空気を供給できる位置に配置される。室内空間7に冷房用空気または暖房用空気を供給する。 The outdoor unit 1 is usually disposed in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop). The outdoor unit 1 generates cold or warm heat and delivers it to the indoor unit 2 via the extension pipe 5. The indoor unit 2 is arranged at a position where air with adjusted temperature or the like can be supplied to the indoor space 7 which is a space (for example, a living room) inside the building 9. Cooling air or heating air is supplied to the indoor space 7.
 図1に示すように、本実施の形態に係る空気調和装置においては、室外機1と各室内機2とが2本の延長配管(冷媒配管)5を用いて、それぞれ接続されている。 As shown in FIG. 1, in the air conditioner according to the present embodiment, an outdoor unit 1 and each indoor unit 2 are connected to each other using two extension pipes (refrigerant pipes) 5.
 ここで、図1においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではない。例えば天井埋込型、天井吊下式等、室内空間7に直接またはダクトを介する等して、冷房用空気または暖房用空気を供給できるものであればどんな種類のものでもよい。 Here, FIG. 1 shows an example in which the indoor unit 2 is a ceiling cassette type, but the present invention is not limited to this. For example, any type may be used as long as it can supply cooling air or heating air directly into the indoor space 7 or through a duct, such as a ceiling-embedded type or a ceiling-suspended type.
 また、図1においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。例えば、換気口付の機械室等のように囲まれた空間に室外機1を設置するようにしてもよい。

さらに、排気ダクト等により建物9の外に排気することができるのであれば、建物9内に室外機1を設置してもよい。また、水冷式の室外機1等を建物9の内部に設置するようにしてもよい。本実施の形態の室外機1をどのような場所に設置するとしても、特段の問題が発生することはない。
Moreover, in FIG. 1, although the case where the outdoor unit 1 is installed in the outdoor space 6 is shown as an example, it is not limited to this. For example, you may make it install the outdoor unit 1 in the enclosed space like a machine room with a ventilation opening.

Furthermore, the outdoor unit 1 may be installed in the building 9 as long as it can be exhausted outside the building 9 by an exhaust duct or the like. Further, the water-cooled outdoor unit 1 or the like may be installed inside the building 9. No matter what place the outdoor unit 1 of the present embodiment is installed, no particular problem occurs.
 また、室外機1および室内機2の接続台数を図1に示してある台数に限定するものではない。例えば、本実施の形態に係る空気調和装置が設置される建物9に応じて台数を決定すればよい。 Also, the number of connected outdoor units 1 and 2 is not limited to the number shown in FIG. For example, what is necessary is just to determine a number according to the building 9 in which the air conditioning apparatus which concerns on this Embodiment is installed.
 図2は本発明の実施の形態1に係る空気調和装置の構成の概略を示す図である。図2以降においては、本実施の形態の空気調和装置を空気調和装置100とする。図2に基づいて、本実施の形態における空気調和装置100の詳しい構成について説明する。前述したように、室外機1と室内機2とが、内部に冷媒が流れる延長配管5で接続されており、冷媒回路を構成する。 FIG. 2 is a diagram showing a schematic configuration of the air-conditioning apparatus according to Embodiment 1 of the present invention. In FIG. 2 and subsequent figures, the air conditioner of the present embodiment is referred to as an air conditioner 100. Based on FIG. 2, the detailed structure of the air conditioning apparatus 100 in this Embodiment is demonstrated. As described above, the outdoor unit 1 and the indoor unit 2 are connected by the extension pipe 5 through which the refrigerant flows, and constitute a refrigerant circuit.
[室外機1]
 室外機1には、圧縮機10、四方弁等の冷媒流路切替装置11、熱源側熱交換器12およびアキュムレータ15が冷媒配管で直列となるように接続されて搭載され、室内機2の絞り装置16および利用側熱交換器17とともに主となる冷媒回路を構成する。また、室外機1には、第1バイパス配管4a、第2バイパス配管4b、過冷却熱交換器13、絞り装置14a、絞り装置14b、絞り装置14c、絞り装置14dおよび液分離器18が設けられている。
[Outdoor unit 1]
In the outdoor unit 1, a compressor 10, a refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 15 are connected and connected in series with a refrigerant pipe. The main refrigerant circuit is configured together with the device 16 and the use side heat exchanger 17. Further, the outdoor unit 1 is provided with a first bypass pipe 4a, a second bypass pipe 4b, a supercooling heat exchanger 13, a throttle device 14a, a throttle device 14b, a throttle device 14c, a throttle device 14d, and a liquid separator 18. ing.
 圧縮機10は、冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にして吐出する。例えば容量制御可能なインバータ圧縮機等で構成するとよい。ここで、本実施の形態の圧縮機10は、圧縮機10の内部において冷媒を圧縮する圧縮室に、圧縮機10の外部から冷媒を圧縮室内部に導入することができるインジェクションポートを備えている。また、圧縮機10は、例えば、密閉容器内に圧縮室を有し、密閉容器内が低圧の冷媒圧雰囲気となり、密閉容器内の低圧冷媒を吸入して圧縮する低圧シェル構造のものを使用する。冷媒流路切替装置11は、暖房運転時における冷媒の流れと冷房運転時における冷媒の流れとを切り替えるものである。熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器または放熱器として機能して、図示省略の送風機により供給される空気と冷媒との間で熱交換を行い、その冷媒を吸熱させて蒸発ガス化または放熱させて凝縮液化するものである。過冷却熱交換器13は、例えば二重管式の熱交換器等で構成され、第1流路と第2流路とを有し、各流路を通過する冷媒を熱交換させる冷媒間熱交換器である。第1流路には熱源側熱交換器12に流入出する冷媒が通過する。第2流路には、絞り装置14aを通過した冷媒が流入し、第1バイパス配管4aに流出する。ここで、過冷却熱交換器13は、二管式の熱交換器に限るものではなく、第1流路を通った冷媒と第2流路を通った冷媒とで熱交換可能なものであれば、どのような構造のものでも構わない。 The compressor 10 sucks the refrigerant, compresses the refrigerant, and discharges it in a high temperature and high pressure state. For example, it may be configured with an inverter compressor capable of capacity control. Here, the compressor 10 of the present embodiment includes an injection port that can introduce the refrigerant into the compression chamber from the outside of the compressor 10 in the compression chamber that compresses the refrigerant inside the compressor 10. . For example, the compressor 10 has a compression chamber in a hermetically sealed container, and the inside of the hermetically sealed container has a low-pressure refrigerant pressure atmosphere, and uses a low-pressure shell structure that sucks and compresses the low-pressure refrigerant in the hermetic container. . The refrigerant flow switching device 11 switches the refrigerant flow during the heating operation and the refrigerant flow during the cooling operation. The heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser or a radiator during cooling operation, and performs heat exchange between air and refrigerant supplied by a blower (not shown), The refrigerant absorbs heat to evaporate gas or dissipate heat to condense. The subcooling heat exchanger 13 is composed of, for example, a double-pipe heat exchanger or the like, has a first flow path and a second flow path, and heats between the refrigerants that exchange heat between the refrigerants passing through the flow paths. It is an exchanger. The refrigerant flowing into and out of the heat source side heat exchanger 12 passes through the first flow path. The refrigerant that has passed through the expansion device 14a flows into the second flow path, and flows out to the first bypass pipe 4a. Here, the supercooling heat exchanger 13 is not limited to a two-pipe heat exchanger, but can exchange heat between the refrigerant passing through the first flow path and the refrigerant passing through the second flow path. Any structure may be used.
 本発明において第2絞り装置として機能する絞り装置14aは、液分離器18から第1バイパス配管4aを通過して過冷却熱交換器13の第2流路に流れる冷媒の圧力および流量調整を行う。また、本発明において第3絞り装置として機能する絞り装置14bは、過冷却熱交換器13の第2流路から第1バイパス配管4aを通過してアキュムレータ15の上流側(圧縮機10の吸入側)の配管に流れる冷媒の圧力および流量調整を行う。さらに、本発明において第4絞り装置として機能する絞り装置14dは、第2バイパス配管4bを通過する冷媒の圧力および流量調整を行う。そして、絞り装置14cは、本実施の形態においては、絞り装置14aと絞り装置16との間の配管における冷媒の圧力調整を行う。 In the present invention, the expansion device 14a that functions as the second expansion device adjusts the pressure and flow rate of the refrigerant that flows from the liquid separator 18 through the first bypass pipe 4a and flows into the second flow path of the supercooling heat exchanger 13. . Further, the expansion device 14b functioning as the third expansion device in the present invention passes through the first bypass pipe 4a from the second flow path of the supercooling heat exchanger 13 to the upstream side of the accumulator 15 (the suction side of the compressor 10). ) Adjust the pressure and flow rate of the refrigerant flowing in the pipe. Furthermore, the expansion device 14d that functions as the fourth expansion device in the present invention adjusts the pressure and flow rate of the refrigerant that passes through the second bypass pipe 4b. And the expansion device 14c adjusts the pressure of the refrigerant in the pipe between the expansion device 14a and the expansion device 16 in the present embodiment.
 アキュムレータ15は、吸入側流路となる配管を介して圧縮機10と接続されており、冷媒回路中で余剰となる冷媒を貯留するものである。ここで、アキュムレータ15は必要に応じて設ければよく、例えば冷媒回路において余剰冷媒が発生しないまたは余剰冷媒が少ない場合は、アキュムレータ15を備えていなくてもよい。液分離器18は、冷媒回路において、冷房運転時に熱源側熱交換器12の冷媒流出側となる位置(熱源側熱交換器12と絞り装置16との間の配管上)に設けられている。液分離器18は、熱源側熱交換器12と各室内機2の利用側熱交換器17との間(例えば熱源側熱交換器12と延長配管5との間)の配管に設けられ、冷媒を分岐する分岐手段となる。例えば気液二相状態の冷媒(二相冷媒)が通過したときに、液冷媒の一部(全部を含むこともある)と残りの冷媒(他の液冷媒とガス冷媒)とに分離する。そして、液冷媒の一部が第1バイパス配管4aに流れるようにし、残りの冷媒が主となる冷媒回路に流れるようにする。 The accumulator 15 is connected to the compressor 10 via a pipe serving as a suction side flow path, and stores excess refrigerant in the refrigerant circuit. Here, the accumulator 15 may be provided as necessary. For example, when the surplus refrigerant is not generated or the surplus refrigerant is small in the refrigerant circuit, the accumulator 15 may not be provided. The liquid separator 18 is provided in the refrigerant circuit at a position on the refrigerant outflow side of the heat source side heat exchanger 12 during cooling operation (on the pipe between the heat source side heat exchanger 12 and the expansion device 16). The liquid separator 18 is provided in a pipe between the heat source side heat exchanger 12 and the use side heat exchanger 17 of each indoor unit 2 (for example, between the heat source side heat exchanger 12 and the extension pipe 5). It becomes a branching means for branching. For example, when a refrigerant in a gas-liquid two-phase state (two-phase refrigerant) passes, it is separated into a part of the liquid refrigerant (which may be all included) and the remaining refrigerant (other liquid refrigerant and gas refrigerant). A part of the liquid refrigerant flows through the first bypass pipe 4a, and the remaining refrigerant flows through the main refrigerant circuit.
 第1バイパス配管4aは、例えば、冷房運転時において、凝縮器となる熱源側熱交換器12で凝縮液化された冷媒を、絞り装置14a、過冷却熱交換器13の第2流路および絞り装置14dを介して、低圧の過熱ガス冷媒として、圧縮機10の吸入側流路(アキュムレータ15の上流側)にバイパスする配管である。ここで、図2では、アキュムレータ15の上流側に接続しているが、圧縮機10の吸入側流路であればよいので、アキュムレータ15の出口側(下流側)の配管と接続してもよい。 For example, the first bypass pipe 4a is configured to extract the refrigerant condensed and liquefied in the heat source side heat exchanger 12 serving as a condenser during the cooling operation by using the expansion device 14a, the second flow path of the supercooling heat exchanger 13, and the expansion device. This is a pipe that bypasses the suction side flow path (upstream side of the accumulator 15) of the compressor 10 as a low-pressure superheated gas refrigerant through 14d. Here, in FIG. 2, it is connected to the upstream side of the accumulator 15, but may be connected to a pipe on the outlet side (downstream side) of the accumulator 15 because it may be a suction side flow path of the compressor 10. .
 第2バイパス配管4bは、過冷却熱交換器13の第2流路の冷媒流出側と圧縮機10のインジェクションポートとの間を接続する配管である。第2バイパス配管4bにより、冷房運転時および暖房運転時において、高圧または第1中圧の液冷媒を、絞り装置14bの作用で減圧し、第1中圧よりも圧力が低い第2中圧の二相冷媒を圧縮室の内部にインジェクションすることができる。ここで、高圧は圧縮機10の吐出側における冷媒の圧力である。低圧は圧縮機10の吸入側における冷媒の圧力である。そして、中圧は高圧よりも低く、低圧よりも高い圧力である。 The second bypass pipe 4 b is a pipe that connects between the refrigerant outflow side of the second flow path of the supercooling heat exchanger 13 and the injection port of the compressor 10. During the cooling operation and the heating operation, the second bypass pipe 4b depressurizes the high-pressure or first medium-pressure liquid refrigerant by the action of the expansion device 14b, and the second medium-pressure is lower than the first medium-pressure. Two-phase refrigerant can be injected into the interior of the compression chamber. Here, the high pressure is the pressure of the refrigerant on the discharge side of the compressor 10. The low pressure is the pressure of the refrigerant on the suction side of the compressor 10. The intermediate pressure is lower than the high pressure and higher than the low pressure.
 また、室外機1には、吐出冷媒温度検出装置21、高圧検出装置22、低圧検出装置23、液冷媒温度検出装置24、過冷却熱交換器入口冷媒温度検出装置25、過冷却熱交換器出口冷媒温度検出装置26および制御装置50が備えられている。吐出冷媒温度検出装置21は、圧縮機10が吐出する冷媒の温度を検出する装置である。高圧検出装置22は、冷媒回路において高圧側となる圧縮機10の吐出側の圧力を検出する装置である。低圧検出装置23は、冷媒回路において低圧側となるアキュムレータ15の冷媒流入側の圧力を検出する装置である。液冷媒温度検出装置24は、液冷媒の温度を検出する装置である。過冷却熱交換器入口冷媒温度検出装置25は、過冷却熱交換器13の第2流路に流入する冷媒の温度を検出する装置である。過冷却熱交換器出口冷媒温度検出装置26は過冷却熱交換器13の第2流路から流出する冷媒の温度を検出する装置である。また、制御装置50は、各種検出装置での検出情報、リモートコントローラからの信号に含まれる指示等に基づいて、室外機1の各機器を制御する。例えば圧縮機10の周波数、送風機(図示せず)の回転数(ON/OFF含む)、冷媒流路切替装置11の切り替え等の制御を行い、後述する各運転モードを実行する。本実施の形態では、例えば、絞り装置14b、絞り装置14c、絞り装置14d等の制御を行い、圧縮機10の吸入側にインジェクションする冷媒の流量、圧力等を調整することができる。このため、R32冷媒(以下、R32という)等の圧縮機10の吐出温度が高温になりやすい冷媒を使用している場合において、圧縮機10の吐出温度を下げることができる。制御装置50が行う具体的な制御動作については、後述の各運転モードの動作説明において説明を行う。ここで、制御装置50は、マイクロコンピュータ等で構成されている。 The outdoor unit 1 includes a discharge refrigerant temperature detection device 21, a high pressure detection device 22, a low pressure detection device 23, a liquid refrigerant temperature detection device 24, a supercooling heat exchanger inlet refrigerant temperature detection device 25, and a supercooling heat exchanger outlet. A refrigerant temperature detection device 26 and a control device 50 are provided. The discharged refrigerant temperature detection device 21 is a device that detects the temperature of the refrigerant discharged from the compressor 10. The high pressure detection device 22 is a device that detects the pressure on the discharge side of the compressor 10 on the high pressure side in the refrigerant circuit. The low-pressure detection device 23 is a device that detects the pressure on the refrigerant inflow side of the accumulator 15 on the low-pressure side in the refrigerant circuit. The liquid refrigerant temperature detection device 24 is a device that detects the temperature of the liquid refrigerant. The supercooling heat exchanger inlet refrigerant temperature detection device 25 is a device that detects the temperature of the refrigerant flowing into the second flow path of the supercooling heat exchanger 13. The supercooling heat exchanger outlet refrigerant temperature detection device 26 is a device that detects the temperature of the refrigerant flowing out from the second flow path of the supercooling heat exchanger 13. Moreover, the control apparatus 50 controls each apparatus of the outdoor unit 1 based on the detection information in various detection apparatuses, the instruction | indication contained in the signal from a remote controller, etc. For example, the frequency of the compressor 10, the rotational speed (including ON / OFF) of the blower (not shown), switching of the refrigerant flow switching device 11 and the like are controlled, and each operation mode described later is executed. In the present embodiment, for example, the expansion device 14b, the expansion device 14c, the expansion device 14d, and the like are controlled to adjust the flow rate, pressure, and the like of the refrigerant injected into the suction side of the compressor 10. For this reason, when the refrigerant | coolant which discharge temperature of the compressor 10 tends to become high temperature, such as R32 refrigerant | coolant (henceforth R32), the discharge temperature of the compressor 10 can be lowered | hung. Specific control operations performed by the control device 50 will be described in the operation description of each operation mode described later. Here, the control device 50 is configured by a microcomputer or the like.
[室内機2]
 室内機2には、それぞれ絞り装置16および利用側熱交換器17が搭載されている。絞り装置16および利用側熱交換器17は、延長配管5によって室外機1に接続するようになっている。本発明において第1絞り装置として機能する、例えば膨張弁、流量調整装置等の絞り装置16は通過する冷媒の減圧を行う。また、本発明において第2熱交換器となる利用側熱交換器17は、図示省略のファン等の送風機から供給される空気と冷媒との間で熱交換を行い、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。また、図2等では図示していないが、各室内機2は、絞り装置16、送風機等の制御を行う制御装置を有している。
[Indoor unit 2]
The indoor units 2 are each equipped with a throttle device 16 and a use side heat exchanger 17. The expansion device 16 and the use side heat exchanger 17 are connected to the outdoor unit 1 by the extension pipe 5. In the present invention, the expansion device 16 that functions as the first expansion device, such as an expansion valve or a flow rate adjustment device, depressurizes the refrigerant that passes therethrough. In addition, the use side heat exchanger 17 serving as the second heat exchanger in the present invention performs heat exchange between air supplied from a blower such as a fan (not shown) and the refrigerant and supplies the heat to the indoor space 7. Heating air or cooling air is generated. Although not shown in FIG. 2 and the like, each indoor unit 2 has a control device that controls the expansion device 16 and the blower.
 ここで、図2では、4台の室内機2が接続されている場合を例に示しており、紙面下から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。同様に、室内機2a~室内機2dに応じ、絞り装置16については、紙面下側から絞り装置16a、絞り装置16b、絞り装置16c、絞り装置16dとして図示している。また、利用側熱交換器17は、紙面下側から利用側熱交換器17a、利用側熱交換器17b、利用側熱交換器17c、利用側熱交換器17dとして図示している。図2では4台で図示しているが、図1と同様に、本実施の形態の室内機2の接続台数は4台に限定するものではない。 Here, FIG. 2 shows an example in which four indoor units 2 are connected, and are illustrated as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the bottom of the page. Similarly, the diaphragm device 16 is illustrated as a diaphragm device 16a, a diaphragm device 16b, a diaphragm device 16c, and a diaphragm device 16d from the lower side of the drawing according to the indoor units 2a to 2d. The use side heat exchanger 17 is illustrated as a use side heat exchanger 17a, a use side heat exchanger 17b, a use side heat exchanger 17c, and a use side heat exchanger 17d from the lower side of the drawing. Although FIG. 2 shows four units, the number of connected indoor units 2 according to the present embodiment is not limited to four as in FIG.
 次に、空気調和装置100が実行する各運転モードについて説明する。本実施の形態の空気調和装置100は、例えば各室内機2からの指示に基づいて、室外機1の運転モードを、冷房運転モードまたは暖房運転モードのいずれかに決定する。 Next, each operation mode executed by the air conditioner 100 will be described. The air conditioning apparatus 100 according to the present embodiment determines the operation mode of the outdoor unit 1 to be either the cooling operation mode or the heating operation mode based on an instruction from each indoor unit 2, for example.
 空気調和装置100は、決定した運転モードに基づいて、駆動しているすべての室内機2が同一運転(冷房運転か暖房運転)を行って室内空間7を空気調和する。ここで、冷房運転モード、暖房運転モードのいずれにおいても、各室内機2の運転または停止を自由に行うことができる。 In the air conditioner 100, all the indoor units 2 that are driven perform the same operation (cooling operation or heating operation) based on the determined operation mode to air condition the indoor space 7. Here, each indoor unit 2 can be freely operated or stopped in both the cooling operation mode and the heating operation mode.
[冷房運転モード(吐出温度が低い場合)]
 図3は本発明の実施の形態1に係る空気調和装置100の吐出温度が低い場合の冷房運転モード時における冷媒の流れを示す図である。吐出温度が低いとは、例えば吐出温度が105℃未満である場合のことである。図3では、全部の利用側熱交換器17において冷熱負荷が発生している場合を例に冷房運転モードについて説明する。ここで、図3において太線で表した配管が冷媒が流れる配管を示しており、冷媒が流れる方向を実線矢印で示している。
[Cooling operation mode (when discharge temperature is low)]
FIG. 3 is a diagram showing the refrigerant flow in the cooling operation mode when the discharge temperature of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is low. For example, the discharge temperature is low when the discharge temperature is lower than 105 ° C. In FIG. 3, the cooling operation mode will be described by taking as an example a case where a cooling load is generated in all the use side heat exchangers 17. Here, in FIG. 3, a pipe indicated by a thick line indicates a pipe through which the refrigerant flows, and a direction in which the refrigerant flows is indicated by a solid line arrow.
 図3に示す冷房運転モードの場合、室外機1では、制御装置50が冷媒流路切替装置11を、圧縮機10から吐出された冷媒が熱源側熱交換器12へ流入する流路に切り替えるように指示する。そして、圧縮機10が低温低圧の冷媒を圧縮し、高温高圧のガス冷媒を吐出する。圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧液冷媒となる。熱源側熱交換器12から流出した高圧液冷媒は、全開状態となっている絞り装置14c、過冷却熱交換器13の第1流路を通過する。過冷却熱交換器13の第1流路を通過した冷媒は、2つの流路に分岐される。一方は、液分離器18を通って室外機1から流出する。他方は、第1バイパス配管4aに流入する。第1バイパス配管4aに流入した高温高圧の液冷媒は、絞り装置14aで減圧されて低温低圧の二相冷媒となり、過冷却熱交換器13の第2流路と全開状態の絞り装置14dとを通過して、アキュムレータ15の上流側の流路に流入する。このとき、過冷却熱交換器13において、第1流路を通った高温高圧の液冷媒と第2流路を通った低温低圧の二相冷媒とによる熱交換が行われる。このため、第1流路を通った冷媒は第2流路を通った冷媒によって冷却され、第2流路を通った冷媒は第1流路を通った冷媒によって加熱される。 In the case of the cooling operation mode shown in FIG. 3, in the outdoor unit 1, the control device 50 switches the refrigerant flow switching device 11 to the flow channel through which the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12. To instruct. Then, the compressor 10 compresses the low-temperature and low-pressure refrigerant and discharges the high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 through the refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses and liquefies while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 passes through the first flow path of the expansion device 14c and the supercooling heat exchanger 13 that are fully opened. The refrigerant that has passed through the first flow path of the supercooling heat exchanger 13 is branched into two flow paths. One flows out of the outdoor unit 1 through the liquid separator 18. The other flows into the first bypass pipe 4a. The high-temperature and high-pressure liquid refrigerant flowing into the first bypass pipe 4a is decompressed by the expansion device 14a to become a low-temperature and low-pressure two-phase refrigerant, and the second flow path of the supercooling heat exchanger 13 and the fully-open expansion device 14d are connected. Pass through and flow into the upstream flow path of the accumulator 15. At this time, in the supercooling heat exchanger 13, heat exchange is performed between the high-temperature and high-pressure liquid refrigerant passing through the first flow path and the low-temperature and low-pressure two-phase refrigerant passing through the second flow path. Therefore, the refrigerant passing through the first flow path is cooled by the refrigerant passing through the second flow path, and the refrigerant passing through the second flow path is heated by the refrigerant passing through the first flow path.
 過冷却熱交換器13の第2流路(第1バイパス配管4a)を通る冷媒の流量は、絞り装置14dが全開であることから、絞り装置14aの開度(開口面積)により調整されることになる。制御装置50は、高圧検出装置22の検出圧力の飽和温度と液冷媒温度検出装置24の検出温度との温度差となる、過冷却熱交換器13の第1流路の下流側における冷媒の過冷却度が目標値に近づくように、絞り装置14aの開度(開口面積)を制御する。ここで、過冷却熱交換器出口冷媒温度検出装置26の検出温度と過冷却熱交換器入口冷媒温度検出装置25の検出温度との温度差となる、過冷却熱交換器13の第2流路における冷媒の温度差(過熱度)が目標値に近づくように、絞り装置14aの開度を制御してもよい。また、液冷媒温度検出装置24は過冷却熱交換器13の第1流路の他端に備えるようにしてもよい。 The flow rate of the refrigerant passing through the second flow path (first bypass pipe 4a) of the supercooling heat exchanger 13 is adjusted by the opening degree (opening area) of the expansion device 14a because the expansion device 14d is fully open. become. The control device 50 detects the excess of the refrigerant on the downstream side of the first flow path of the supercooling heat exchanger 13 that is the temperature difference between the saturation temperature of the detection pressure of the high pressure detection device 22 and the detection temperature of the liquid refrigerant temperature detection device 24. The opening degree (opening area) of the expansion device 14a is controlled so that the degree of cooling approaches the target value. Here, the second flow path of the supercooling heat exchanger 13 is a temperature difference between the detected temperature of the supercooling heat exchanger outlet refrigerant temperature detection device 26 and the detection temperature of the supercooling heat exchanger inlet refrigerant temperature detection device 25. The degree of opening of the expansion device 14a may be controlled so that the temperature difference (degree of superheat) of the refrigerant approaches the target value. Further, the liquid refrigerant temperature detection device 24 may be provided at the other end of the first flow path of the supercooling heat exchanger 13.
 室外機1を流出した高温高圧の液冷媒は、延長配管5を通って、室内機2(2a~2d)のそれぞれに流入する。室内機2(2a~2d)に流入した高温高圧の液冷媒は、絞り装置16(16a~16d)で膨張させられて、低温低圧の二相冷媒となり、蒸発器として作用する利用側熱交換器17(17a~17d)のそれぞれに流入し、利用側熱交換器17の周囲を流通する空気から吸熱して、低温低圧のガス冷媒となる。そして、低温低圧のガス冷媒は、室内機2(2a~2d)から流出し、延長配管5を通って再び室外機1へ流入し、冷媒流路切替装置11を通り、第1バイパス配管4aを流通してアキュムレータ15の上流側にバイパスさせられた冷媒と合流した後、アキュムレータ15へ流入し、その後、圧縮機10へ再度吸入される。 The high-temperature and high-pressure liquid refrigerant flowing out of the outdoor unit 1 passes through the extension pipe 5 and flows into each of the indoor units 2 (2a to 2d). The high-temperature and high-pressure liquid refrigerant that has flowed into the indoor unit 2 (2a to 2d) is expanded by the expansion device 16 (16a to 16d) to become a low-temperature and low-pressure two-phase refrigerant and serves as an evaporator. 17 (17a to 17d) and absorbs heat from the air flowing around the use side heat exchanger 17 to become a low-temperature and low-pressure gas refrigerant. Then, the low-temperature and low-pressure gas refrigerant flows out of the indoor unit 2 (2a to 2d), flows into the outdoor unit 1 again through the extension pipe 5, passes through the refrigerant flow switching device 11, and passes through the first bypass pipe 4a. The refrigerant flows through and merges with the refrigerant bypassed to the upstream side of the accumulator 15, then flows into the accumulator 15, and is then sucked into the compressor 10 again.
 このとき、絞り装置16a~16dの開度(開口面積)は、利用側熱交換器ガス冷媒温度検出装置28の検出温度と利用側熱交換器液冷媒温度検出装置27の検出温度との温度差(過熱度)が目標値に近づくように制御される。 At this time, the opening degree (opening area) of the expansion devices 16a to 16d is the temperature difference between the detection temperature of the use side heat exchanger gas refrigerant temperature detection device 28 and the detection temperature of the use side heat exchanger liquid refrigerant temperature detection device 27. (Superheat degree) is controlled so as to approach the target value.
 ここで、本実施の形態においては、延長配管5が長い(例えば100m等)場合であっても確実に冷媒を過冷却させておく(液冷媒にしておく)ために過冷却熱交換器13を設けている。延長配管5が長い場合、延長配管5内での圧力損失が大きくなる。このため、冷媒の過冷却度が小さいと、室内機2に至るまでに二相冷媒になってしまう可能性がある。二相冷媒が室内機2に流入すると、絞り装置16に二相冷媒が流入することになる。膨張弁、流量調整装置等の絞り装置は二相冷媒が流入すると周囲に音が発する性質がある。本実施の形態の絞り装置16は、室内空間7に温度調整した空気を送る室内機2内に配置されているため、発生した音が室内空間7に漏れると、居住者に不快な思いをさせることがある。また、二相冷媒が絞り装置16に流入すると、圧力が安定せず、絞り装置16の動作が不安定になる。そこで、絞り装置16には、確実に過冷却された液状態の冷媒を流入させる必要がある。以上のことから過冷却熱交換器13を設けている。第1バイパス配管4aには絞り装置14aが設けられ、絞り装置14aの開度(開口面積)を増やして、過冷却熱交換器13の第2流路に流れる低温低圧の二相冷媒の流量を増加させると過冷却熱交換器13の第1流路から流出する冷媒の過冷却度が増加する。逆に絞り装置14aの開度(開口面積)を減らして、過冷却熱交換器13の第2流路に流れる低温低圧の二相冷媒の流量を低下させると過冷却熱交換器13の第1流路から流出する冷媒の過冷却度が低下する。このように、絞り装置14aの開度(開口面積)を調整することにより、過冷却熱交換器13の第1流路の出口冷媒の過冷却度を適切な値に制御することができる。しかし、信頼性の面からは、通常の運転において圧縮機10が液冷媒が多く混ざった乾き度の小さい冷媒を吸入することは好ましくない。そこで、本実施の形態では、第1バイパス配管4aはアキュムレータ15の冷媒流入側(上流側)配管に接続されている。アキュムレータ15は余剰冷媒を貯留するためのものであり、第1バイパス配管4aにより、アキュムレータ15の冷媒流入側にバイパスされた冷媒は、その大半がアキュムレータ15の内部に貯留され、圧縮機10に多量の液冷媒が戻るのを防ぐことができる。 Here, in the present embodiment, the supercooling heat exchanger 13 is used in order to reliably supercool the refrigerant even when the extension pipe 5 is long (for example, 100 m). Provided. When the extension pipe 5 is long, the pressure loss in the extension pipe 5 increases. For this reason, if the degree of supercooling of the refrigerant is small, the refrigerant may become a two-phase refrigerant before reaching the indoor unit 2. When the two-phase refrigerant flows into the indoor unit 2, the two-phase refrigerant flows into the expansion device 16. A throttling device such as an expansion valve or a flow rate adjusting device has a property of generating a sound around when a two-phase refrigerant flows. Since the expansion device 16 of the present embodiment is disposed in the indoor unit 2 that sends temperature-adjusted air to the indoor space 7, if the generated sound leaks into the indoor space 7, it makes the resident feel uncomfortable. Sometimes. Further, when the two-phase refrigerant flows into the expansion device 16, the pressure is not stabilized, and the operation of the expansion device 16 becomes unstable. Therefore, it is necessary to flow into the expansion device 16 a liquid refrigerant that is reliably supercooled. From the above, the supercooling heat exchanger 13 is provided. The first bypass pipe 4a is provided with a throttle device 14a, and the flow rate of the low-temperature and low-pressure two-phase refrigerant flowing in the second flow path of the supercooling heat exchanger 13 is increased by increasing the opening degree (opening area) of the throttle device 14a. If it increases, the supercooling degree of the refrigerant | coolant which flows out out of the 1st flow path of the supercooling heat exchanger 13 will increase. Conversely, when the flow rate of the low-temperature and low-pressure two-phase refrigerant flowing in the second flow path of the supercooling heat exchanger 13 is reduced by reducing the opening (opening area) of the expansion device 14a, the first of the supercooling heat exchanger 13 is reduced. The degree of supercooling of the refrigerant flowing out of the flow path is reduced. Thus, by adjusting the opening degree (opening area) of the expansion device 14a, the degree of supercooling of the outlet refrigerant in the first flow path of the supercooling heat exchanger 13 can be controlled to an appropriate value. However, from the viewpoint of reliability, it is not preferable that the compressor 10 sucks a low dryness refrigerant mixed with a large amount of liquid refrigerant in a normal operation. Therefore, in the present embodiment, the first bypass pipe 4 a is connected to the refrigerant inflow side (upstream side) pipe of the accumulator 15. The accumulator 15 is for storing surplus refrigerant. Most of the refrigerant bypassed to the refrigerant inflow side of the accumulator 15 by the first bypass pipe 4a is stored inside the accumulator 15, and a large amount is stored in the compressor 10. It is possible to prevent the liquid refrigerant from returning.
 以上が冷房運転モードにおいて圧縮機10の吐出温度が低い場合の冷媒回路における各装置の動作および冷媒の流れとなる。圧縮機10の吐出温度が高い場合については後述する。圧縮機10の吐出温度が低いため、第2バイパス配管4bを全閉または冷媒が流れない小さい開度とし、第2バイパス配管4bに冷媒が流れないようにしている。ここで、冷房運転モードにおいては、熱源側熱交換器12の周囲の温度がかなり高い状態でなければ、吐出温度も高くはならない。 The above is the operation of each device and the refrigerant flow in the refrigerant circuit when the discharge temperature of the compressor 10 is low in the cooling operation mode. The case where the discharge temperature of the compressor 10 is high will be described later. Since the discharge temperature of the compressor 10 is low, the second bypass pipe 4b is fully closed or has a small opening so that the refrigerant does not flow, so that the refrigerant does not flow into the second bypass pipe 4b. Here, in the cooling operation mode, the discharge temperature does not increase unless the temperature around the heat source side heat exchanger 12 is very high.
 図4は本発明の実施の形態1に係る空気調和装置100の吐出温度が低い場合の冷房運転時におけるp-h線図(圧力-エンタルピ線図)である。冷房運転モードにおいては、圧縮機10において圧縮され吐出された冷媒(図4の点G)は、熱源側熱交換器12にて凝縮され液化されて高圧液冷媒となる(図4の点J)。さらに、過冷却熱交換器13で第1バイパス配管4aに分岐された冷媒で冷却されて過冷却度が増加し(図4の点L)、液分離器18に流入する。液分離器18で、過冷却熱交換器13の第2流路に分岐された一部の液冷媒は、絞り装置14aで減圧された後、過冷却熱交換器13で加熱されて蒸発ガス化し、第1バイパス配管4aおよび全開状態の絞り装置14dを通り、アキュムレータ15の冷媒流入側に流入する。一方、液分離器18を通過した高圧二相冷媒は、室外機1を流出し、延長配管5を通過して、室内機2に流入し、室内機2の絞り装置16(16a~16d)で減圧される(図4の点K)。さらに利用側熱交換器17(17a~17d)で蒸発した後、室内機2を流出して、延長配管5を通過して室外機1に流入する。そして、冷媒流路切替装置11を通り、第1バイパス配管4aを流通してアキュムレータ15の上流側にバイパスさせられた冷媒と合流した後、アキュムレータ15に流入する(図4の点F)。 FIG. 4 is a ph diagram (pressure-enthalpy diagram) during cooling operation when the discharge temperature of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is low. In the cooling operation mode, the refrigerant compressed and discharged by the compressor 10 (point G in FIG. 4) is condensed and liquefied by the heat source side heat exchanger 12 to become a high-pressure liquid refrigerant (point J in FIG. 4). . Further, the supercooling heat exchanger 13 is cooled by the refrigerant branched to the first bypass pipe 4a to increase the degree of supercooling (point L in FIG. 4) and flows into the liquid separator 18. A part of the liquid refrigerant branched into the second flow path of the supercooling heat exchanger 13 by the liquid separator 18 is decompressed by the expansion device 14a, and then heated by the supercooling heat exchanger 13 to be evaporated and gasified. The refrigerant passes through the first bypass pipe 4a and the fully-open throttle device 14d, and flows into the refrigerant inflow side of the accumulator 15. On the other hand, the high-pressure two-phase refrigerant that has passed through the liquid separator 18 flows out of the outdoor unit 1, passes through the extension pipe 5, flows into the indoor unit 2, and is expanded by the expansion device 16 (16 a to 16 d) of the indoor unit 2. The pressure is reduced (point K in FIG. 4). Further, after evaporating in the use side heat exchanger 17 (17a to 17d), it flows out of the indoor unit 2, passes through the extension pipe 5, and flows into the outdoor unit 1. Then, after passing through the refrigerant flow switching device 11 and flowing through the first bypass pipe 4a and joining with the refrigerant bypassed to the upstream side of the accumulator 15, the refrigerant flows into the accumulator 15 (point F in FIG. 4).
 ここで、絞り装置14aは、電子式膨張弁等のように、開口面積を変化させられるものが望ましい。電子式膨張弁を使用すれば、過冷却熱交換器13の第2流路を通る冷媒の流量を任意に調整することができ、室外機1を流出する冷媒の過冷却度を細かく制御することができる。しかし、絞り装置14aは、これに限るものではない。例えば、小型の電磁弁等の開閉弁を組み合わせて、開度を複数段階で選択制御できるような構成にしてもよい。また、キャピラリチューブにより冷媒の圧損に応じた過冷却を行えるようにした構成にしてもよい。制御性は電子式膨張弁等の場合より少し悪化するものの、過冷却度を目標に近づけることができる。一方で、絞り装置14bは、流路を閉止できるものであればどんなものでもよい。また、圧縮機10の吐出温度が低い場合の冷房運転モードにおいては、絞り装置14dは全開状態であり、大きな圧力損失が生じないものであれば、どんなものでもよい。例えば、電磁弁等の流路を開閉するもの、電子式膨張弁等の開口面積を変化させられるもの等でもよい。ここで、全開状態とは、全く圧力損失を生じない状態、という意味ではなく、圧力損失があまり大きくない状態、という意味である。 Here, it is desirable that the expansion device 14a can change the opening area, such as an electronic expansion valve. If the electronic expansion valve is used, the flow rate of the refrigerant passing through the second flow path of the supercooling heat exchanger 13 can be arbitrarily adjusted, and the supercooling degree of the refrigerant flowing out of the outdoor unit 1 can be finely controlled. Can do. However, the aperture device 14a is not limited to this. For example, an opening / closing valve such as a small electromagnetic valve may be combined so that the opening degree can be selected and controlled in a plurality of stages. In addition, the capillary tube may be configured to perform supercooling according to the refrigerant pressure loss. Although the controllability is slightly worse than in the case of an electronic expansion valve or the like, the degree of supercooling can be brought close to the target. On the other hand, the expansion device 14b may be any device that can close the flow path. In the cooling operation mode when the discharge temperature of the compressor 10 is low, the expansion device 14d is fully open, and any device may be used as long as no large pressure loss occurs. For example, an electromagnetic valve or the like that opens and closes a flow path, an electronic expansion valve or the like that can change the opening area may be used. Here, the fully open state does not mean a state where no pressure loss occurs, but means a state where the pressure loss is not so large.
 冷房運転モードを実行する際、熱負荷のない利用側熱交換器17(サーモオフを含む)へは冷媒を流す必要がないため、運転を停止させる。このとき、停止している室内機2に対応する絞り装置16は、全閉または冷媒が流れない小さい開度としておく。 When the cooling operation mode is executed, the operation is stopped because there is no need to flow the refrigerant to the use side heat exchanger 17 (including the thermo-off) without the heat load. At this time, the expansion device 16 corresponding to the stopped indoor unit 2 is fully closed or set to a small opening at which the refrigerant does not flow.
[冷房運転モード(吐出温度が高い場合)]
 図5は本発明の実施の形態1に係る空気調和装置100の吐出温度が高い場合の冷房運転モード時における冷媒の流れを示す図である。吐出温度が高いとは、例えば、インジェクションをしない状態で吐出温度が105℃以上の場合のことである。図5では、全部の利用側熱交換器17において冷熱負荷が発生している場合を例に冷房運転モードについて説明する。ここで、図5において太線で表した配管が冷媒が流れる配管を示しており、冷媒が流れる方向を実線矢印で示している。
[Cooling operation mode (when discharge temperature is high)]
FIG. 5 is a diagram showing the refrigerant flow in the cooling operation mode when the discharge temperature of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is high. A high discharge temperature is, for example, a case where the discharge temperature is 105 ° C. or higher without injection. In FIG. 5, the cooling operation mode will be described by taking as an example a case where a cooling load is generated in all the use side heat exchangers 17. Here, the pipes indicated by bold lines in FIG. 5 indicate the pipes through which the refrigerant flows, and the directions in which the refrigerant flows are indicated by solid arrows.
 図5に示す冷房運転モードの場合、室外機1では、制御装置50が冷媒流路切替装置11を、圧縮機10から吐出された冷媒が熱源側熱交換器12へ流入する流路に切り替えるように指示する。そして、圧縮機10が低温低圧の冷媒を圧縮し、高温高圧のガス冷媒を吐出する。圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧液冷媒となる。熱源側熱交換器12から流出した高圧液冷媒は、全開状態となっている絞り装置14c、過冷却熱交換器13の第1流路を通過する。過冷却熱交換器13の第1流路を通過した冷媒は、2つの流路に分岐される。一方は、液分離器18を通って室外機1から流出する。他方は、第1バイパス配管4aに流入する。圧縮機10が低温低圧の冷媒を圧縮し、高温高圧のガス冷媒を吐出する。圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧液冷媒となる。熱源側熱交換器12から流出した高圧液冷媒は、全開状態となっている絞り装置14c、過冷却熱交換器13の第1流路を通過する。過冷却熱交換器13の第1流路を通過した冷媒は、2つの流路に分岐され、一方は、液分離器18を通って室外機1から流出し、他方は、絞り装置14aに至る流路に流入する。第1バイパス配管4aに流入した高温高圧の液冷媒は、絞り装置14aで減圧されて第1中圧の二相冷媒となり、過冷却熱交換器13の第2流路と絞り装置14dとを通過して、アキュムレータ15の上流側の流路に流入する。このとき、過冷却熱交換器13において、第1流路を通った高温高圧の液冷媒と第2流路を通った第一中圧の二相冷媒とによる熱交換が行われる。このため、第1流路を通った冷媒は第2流路を通った冷媒によって冷却され、第2流路を通った冷媒は第1流路を通った冷媒によって加熱される。 In the case of the cooling operation mode shown in FIG. 5, in the outdoor unit 1, the control device 50 switches the refrigerant flow switching device 11 to the flow channel through which the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12. To instruct. Then, the compressor 10 compresses the low-temperature and low-pressure refrigerant and discharges the high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 through the refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses and liquefies while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 passes through the first flow path of the expansion device 14c and the supercooling heat exchanger 13 that are fully opened. The refrigerant that has passed through the first flow path of the supercooling heat exchanger 13 is branched into two flow paths. One flows out of the outdoor unit 1 through the liquid separator 18. The other flows into the first bypass pipe 4a. The compressor 10 compresses the low-temperature and low-pressure refrigerant and discharges the high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 through the refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses and liquefies while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 passes through the first flow path of the expansion device 14c and the supercooling heat exchanger 13 that are fully opened. The refrigerant that has passed through the first flow path of the supercooling heat exchanger 13 is branched into two flow paths, one of which flows out of the outdoor unit 1 through the liquid separator 18, and the other reaches the expansion device 14a. It flows into the flow path. The high-temperature and high-pressure liquid refrigerant flowing into the first bypass pipe 4a is reduced in pressure by the expansion device 14a to become a first medium-pressure two-phase refrigerant, and passes through the second flow path of the supercooling heat exchanger 13 and the expansion device 14d. Then, it flows into the flow path on the upstream side of the accumulator 15. At this time, in the supercooling heat exchanger 13, heat exchange is performed between the high-temperature and high-pressure liquid refrigerant passing through the first flow path and the first medium-pressure two-phase refrigerant passing through the second flow path. Therefore, the refrigerant passing through the first flow path is cooled by the refrigerant passing through the second flow path, and the refrigerant passing through the second flow path is heated by the refrigerant passing through the first flow path.
 過冷却熱交換器13の第2流路を通る冷媒の流量は、絞り装置14aの開度(開口面積)により調整される。制御装置50は、高圧検出装置22の検出圧力の飽和温度と液冷媒温度検出装置24の検出温度との温度差となる、過冷却熱交換器13の第1流路の下流側における冷媒の過冷却度が目標値に近づくように、絞り装置14aの開度(開口面積)を制御する。 The flow rate of the refrigerant passing through the second flow path of the supercooling heat exchanger 13 is adjusted by the opening degree (opening area) of the expansion device 14a. The control device 50 detects the excess of the refrigerant on the downstream side of the first flow path of the supercooling heat exchanger 13 that is the temperature difference between the saturation temperature of the detection pressure of the high pressure detection device 22 and the detection temperature of the liquid refrigerant temperature detection device 24. The opening degree (opening area) of the expansion device 14a is controlled so that the degree of cooling approaches the target value.
 室外機1を流出した高温高圧の液冷媒は、延長配管5を通って、室内機2(2a~2d)のそれぞれに流入する。室内機2(2a~2d)に流入した高温高圧の液冷媒は、絞り装置16(16a~16d)で膨張させられて、低温低圧の二相冷媒となり、蒸発器として作用する利用側熱交換器17(17a~17d)のそれぞれに流入し、利用側熱交換器17の周囲を流通する空気から吸熱して、低温低圧のガス冷媒となる。そして、低温低圧のガス冷媒は、室内機2(2a~2d)から流出し、延長配管5を通って再び室外機1へ流入し、冷媒流路切替装置11を通り、第1バイパス配管4aを流通してアキュムレータ15の上流側にバイパスさせられた冷媒と合流した後、アキュムレータ15へ流入し、その後、圧縮機10へ再度吸入される。 The high-temperature and high-pressure liquid refrigerant flowing out of the outdoor unit 1 passes through the extension pipe 5 and flows into each of the indoor units 2 (2a to 2d). The high-temperature and high-pressure liquid refrigerant that has flowed into the indoor unit 2 (2a to 2d) is expanded by the expansion device 16 (16a to 16d) to become a low-temperature and low-pressure two-phase refrigerant and serves as an evaporator. 17 (17a to 17d) and absorbs heat from the air flowing around the use side heat exchanger 17 to become a low-temperature and low-pressure gas refrigerant. Then, the low-temperature and low-pressure gas refrigerant flows out of the indoor unit 2 (2a to 2d), flows into the outdoor unit 1 again through the extension pipe 5, passes through the refrigerant flow switching device 11, and passes through the first bypass pipe 4a. The refrigerant flows through and merges with the refrigerant bypassed to the upstream side of the accumulator 15, then flows into the accumulator 15, and is then sucked into the compressor 10 again.
 このとき、絞り装置16a~16dの開度(開口面積)は、利用側熱交換器ガス冷媒温度検出装置28の検出温度と利用側熱交換器液冷媒温度検出装置27の検出温度との温度差(過熱度)が目標値に近づくように制御される。 At this time, the opening degree (opening area) of the expansion devices 16a to 16d is the temperature difference between the detection temperature of the use side heat exchanger gas refrigerant temperature detection device 28 and the detection temperature of the use side heat exchanger liquid refrigerant temperature detection device 27. (Superheat degree) is controlled so as to approach the target value.
 上述したように、本実施の形態においては、延長配管5が長い場合であっても確実に冷媒を過冷却させておくために過冷却熱交換器13を設けている。そして、絞り装置14aの開度(開口面積)を調整することにより、過冷却熱交換器13の第1流路の出口冷媒の過冷却度を適切な値に制御することができる。 As described above, in the present embodiment, the supercooling heat exchanger 13 is provided in order to reliably supercool the refrigerant even when the extension pipe 5 is long. And the supercooling degree of the exit refrigerant | coolant of the 1st flow path of the supercooling heat exchanger 13 can be controlled to an appropriate value by adjusting the opening degree (opening area) of the expansion device 14a.
 ここで、冷媒として、R410Aよりも圧縮機10の吐出温度が高温になりやすいR32等の冷媒を使用する場合、冷凍機油の劣化、圧縮機10の焼損等を防ぐために、吐出温度を低下させる必要がある。そこで、過冷却熱交換器13の第2流路を通過した冷媒の一部を分岐させて、第2バイパス配管4bおよび絞り装置14bを通過させ、圧縮機10に設けられたインジェクションポートを介して、圧縮機10の圧縮室の内部に流入させる。インジェクションポートから冷媒を流入させることで、圧縮機10が吐出する冷媒の温度を低下させることができ、安全に使用できるようになる。 Here, when a refrigerant such as R32, which tends to have a higher discharge temperature of the compressor 10 than R410A, is used as the refrigerant, it is necessary to lower the discharge temperature in order to prevent deterioration of the refrigerating machine oil, burning of the compressor 10, and the like. There is. Therefore, a part of the refrigerant that has passed through the second flow path of the supercooling heat exchanger 13 is branched to pass through the second bypass pipe 4b and the expansion device 14b, and through an injection port provided in the compressor 10. Then, it flows into the compression chamber of the compressor 10. By allowing the refrigerant to flow in from the injection port, the temperature of the refrigerant discharged from the compressor 10 can be lowered, and it can be used safely.
 ここで、第2バイパス配管4bは、圧縮機10の圧縮室に設けられたインジェクションポートに接続されている。圧縮機10の保護をはかるためには、圧縮機10の吐出温度が高くなり過ぎないようにする必要がある。例えば、アキュムレータ15の冷媒流入口側(上流側)に冷媒をバイパスしても、その大半がアキュムレータ15に貯留され、圧縮機10にはその一部の冷媒しか流入しない。そこで、第2バイパス配管4bを介して、圧縮機10のインジェクションポートを介して、乾き度の大きい二相状態の冷媒を、直接圧縮室の内部にインジェクションすることができる。 Here, the second bypass pipe 4b is connected to an injection port provided in the compression chamber of the compressor 10. In order to protect the compressor 10, it is necessary to prevent the discharge temperature of the compressor 10 from becoming too high. For example, even if the refrigerant is bypassed to the refrigerant inlet side (upstream side) of the accumulator 15, most of the refrigerant is stored in the accumulator 15, and only a part of the refrigerant flows into the compressor 10. Therefore, the two-phase refrigerant having a high dryness can be directly injected into the compression chamber via the second bypass pipe 4b and the injection port of the compressor 10.
 第2バイパス配管4bを通る冷媒の流量は、絞り装置14bの開度(開口面積)により調整される。絞り装置14bの開度(開口面積)を大きくし、第2バイパス配管4bを流れる冷媒の流量を増やすと、圧縮機10の吐出温度が低下する。逆に絞り装置14bの開度(開口面積)を小さくし、第2バイパス配管4bを流れる冷媒の流量を減らすと、圧縮機10の吐出温度が高くなる。したがって、絞り装置14bの開度(開口面積)を調整することにより、吐出冷媒温度検出装置21の検出値である圧縮機10の吐出温度を目標値に近づけるように制御することができる。 The flow rate of the refrigerant passing through the second bypass pipe 4b is adjusted by the opening degree (opening area) of the expansion device 14b. When the opening degree (opening area) of the expansion device 14b is increased and the flow rate of the refrigerant flowing through the second bypass pipe 4b is increased, the discharge temperature of the compressor 10 decreases. Conversely, when the opening degree (opening area) of the expansion device 14b is reduced and the flow rate of the refrigerant flowing through the second bypass pipe 4b is reduced, the discharge temperature of the compressor 10 increases. Therefore, by adjusting the opening degree (opening area) of the expansion device 14b, it is possible to control the discharge temperature of the compressor 10, which is the detection value of the discharge refrigerant temperature detection device 21, to approach the target value.
 また、冷房運転モードにおいては、熱源側熱交換器12の周囲の温度が高い、高外気冷房の場合等に、圧縮機10の吐出温度が高くなり、第2バイパス配管4bを介したインジェクションが必要となる。 Further, in the cooling operation mode, when the temperature around the heat source side heat exchanger 12 is high, for example, in the case of high outside air cooling, the discharge temperature of the compressor 10 becomes high, and the injection through the second bypass pipe 4b is necessary. It becomes.
 図6は本発明の実施の形態1に係る空気調和装置100の吐出温度が高い場合の冷房運転時におけるp-h線図(圧力-エンタルピ線図)である。図6に基づいて、インジェクションに係る動作の詳細について説明する。冷房運転モードにおいては、圧縮機10において圧縮され吐出された冷媒(図6の点I)は、熱源側熱交換器12にて凝縮され液化されて高圧液冷媒となる(図6の点J)。さらに、過冷却熱交換器13で第1バイパス配管4aに分岐された冷媒で冷却されて過冷却度が増加し(図6の点L)、液分離器18に流入する。 FIG. 6 is a ph diagram (pressure-enthalpy diagram) during cooling operation when the discharge temperature of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is high. Based on FIG. 6, the detail of the operation | movement which concerns on injection is demonstrated. In the cooling operation mode, the refrigerant (point I in FIG. 6) compressed and discharged by the compressor 10 is condensed and liquefied by the heat source side heat exchanger 12 to become a high-pressure liquid refrigerant (point J in FIG. 6). . Further, the supercooling heat exchanger 13 is cooled by the refrigerant branched to the first bypass pipe 4a to increase the degree of supercooling (point L in FIG. 6), and flows into the liquid separator 18.
 液分離器18で分岐し、第1バイパス配管4a側に流れた液冷媒の一部は、絞り装置14aで減圧されて第1中圧になる(図6の点M)。そして、そのまま第1バイパス配管4aを流れる冷媒と第2バイパス配管4bに分岐する冷媒とに分けられる。このうち、第2バイパス配管4bを流れる冷媒は、絞り装置14bを介して第2中圧に減圧され、圧縮機10の圧縮室に設けられたインジェクションポートから圧縮室にインジェクションされる。そして、圧縮機10に吸入され第2中圧まで圧縮された冷媒と合流する。また、第1バイパス配管4aを流れる冷媒は、絞り装置14dを介して低圧に減圧され、アキュムレータ15の上流側の流路に流入する。 Part of the liquid refrigerant branched by the liquid separator 18 and flowing to the first bypass pipe 4a side is decompressed by the expansion device 14a and becomes the first intermediate pressure (point M in FIG. 6). And it is divided into the refrigerant | coolant which flows through the 1st bypass piping 4a as it is, and the refrigerant | coolant which branches to the 2nd bypass piping 4b. Among these, the refrigerant flowing through the second bypass pipe 4b is reduced to the second intermediate pressure through the expansion device 14b, and is injected into the compression chamber from the injection port provided in the compression chamber of the compressor 10. Then, it merges with the refrigerant sucked into the compressor 10 and compressed to the second intermediate pressure. In addition, the refrigerant flowing through the first bypass pipe 4 a is decompressed to a low pressure via the expansion device 14 d and flows into the upstream flow path of the accumulator 15.
 一方、液分離器18を通過した高圧二相冷媒は、室外機1を流出し、延長配管5を通過して、室内機2に流入し、室内機2の絞り装置16(16a~16d)で減圧される(図6の点K)。さらに利用側熱交換器17(17a~17d)で蒸発した後、室内機2を流出して、延長配管5を通過して室外機1に流入する。そして、冷媒流路切替装置11を通り、第1バイパス配管4aを流通してアキュムレータ15の上流側にバイパスさせられた冷媒と合流した後、アキュムレータ15に流入する。また、アキュムレータ15を流出した冷媒は、吸入側流路を通過して圧縮機10に吸入される。 On the other hand, the high-pressure two-phase refrigerant that has passed through the liquid separator 18 flows out of the outdoor unit 1, passes through the extension pipe 5, flows into the indoor unit 2, and is expanded by the expansion device 16 (16 a to 16 d) of the indoor unit 2. The pressure is reduced (point K in FIG. 6). Further, after evaporating in the use side heat exchanger 17 (17a to 17d), it flows out of the indoor unit 2, passes through the extension pipe 5, and flows into the outdoor unit 1. Then, the refrigerant flows through the refrigerant flow switching device 11, flows through the first bypass pipe 4 a, joins the refrigerant bypassed to the upstream side of the accumulator 15, and then flows into the accumulator 15. Further, the refrigerant that has flowed out of the accumulator 15 passes through the suction side flow path and is sucked into the compressor 10.
 ここで、本実施の形態の圧縮機10は低圧シェル型の圧縮機である。圧縮機10内の下部には吸入された冷媒と油とが流入する。また、中間部にはモータが配置されている。そして、上部では、圧縮室で圧縮された高温高圧の冷媒が密閉容器内の吐出室に吐出された後、圧縮機10から吐出される。したがって、圧縮機10の金属製の密閉容器は高温高圧の冷媒にさらされている部分と、低温低圧の冷媒にさらされている部分とがある。このため、密閉容器の温度はその中間的な温度になる。また、モータには電流が流れるため発熱する。したがって、圧縮機10に吸入された低温低圧のガス冷媒は、圧縮機10の密閉容器とモータとによって加熱されて温度が上昇する(図6の点F)。そして、圧縮室内に吸入され、圧縮室内で第2中圧まで圧縮される(図6の点N)。そして、第2バイパス配管4bを介して、圧縮機10の圧縮室内に冷媒をインジェクションした場合、圧縮室内では、吸入側流路から吸入された冷媒とインジェクションに係る冷媒との合流部分における冷媒の温度が下がる(図6の点H)。そして、圧縮室内において、さらに圧縮が継続されることで、高圧のガス冷媒となって圧縮機10から吐出する。そのため、第2バイパス配管4bを介して冷媒を流入させると、合流部分において冷媒の温度が低下するため、流入させない場合(図6の点G)の圧縮機10の吐出温度に対して、吐出温度が低下する(図6の点I)。例えばR32等のように、圧縮機10の吐出温度がR410Aよりも高温になる冷媒を使用している場合等においても、圧縮機10の吐出温度を低下させることができ、安全に使用することができる。また、信頼性が高くなる。 Here, the compressor 10 of the present embodiment is a low-pressure shell type compressor. The sucked refrigerant and oil flow into the lower part of the compressor 10. In addition, a motor is disposed in the intermediate portion. In the upper part, the high-temperature and high-pressure refrigerant compressed in the compression chamber is discharged from the compressor 10 after being discharged into the discharge chamber in the sealed container. Therefore, the metal sealed container of the compressor 10 has a portion exposed to the high-temperature and high-pressure refrigerant and a portion exposed to the low-temperature and low-pressure refrigerant. For this reason, the temperature of the sealed container becomes an intermediate temperature. Further, since current flows through the motor, it generates heat. Therefore, the low-temperature and low-pressure gas refrigerant sucked into the compressor 10 is heated by the sealed container and the motor of the compressor 10 and the temperature rises (point F in FIG. 6). Then, it is sucked into the compression chamber and compressed to the second intermediate pressure in the compression chamber (point N in FIG. 6). When the refrigerant is injected into the compression chamber of the compressor 10 via the second bypass pipe 4b, the temperature of the refrigerant in the merged portion of the refrigerant sucked from the suction side flow path and the refrigerant related to the injection in the compression chamber. (Point H in FIG. 6). Then, the compression is further continued in the compression chamber, whereby a high-pressure gas refrigerant is discharged from the compressor 10. For this reason, when the refrigerant is caused to flow in via the second bypass pipe 4b, the temperature of the refrigerant is reduced at the merged portion, and therefore, the discharge temperature with respect to the discharge temperature of the compressor 10 when not flowing (point G in FIG. 6). Decreases (point I in FIG. 6). For example, even when using a refrigerant whose discharge temperature of the compressor 10 is higher than R410A, such as R32, the discharge temperature of the compressor 10 can be lowered and can be used safely. it can. In addition, reliability is increased.
 さて、吐出温度が高い冷房運転モードの場合、過冷却熱交換器13の第1流路の過冷却度と圧縮機10の吐出温度の両方を目標に近づけるように制御する必要がある。例えば、制御装置50は以下のような制御を行う。まず、過冷却熱交換器13の第1流路を通過した冷媒の過冷却度が目標値に近づくように、絞り装置14aの開度(開口面積)を変化させ、過冷却熱交換器13の第2流路を流れる冷媒流量を制御する。そして、圧縮機10の吐出温度が目標値に近づくように、絞り装置14bの開度(開口面積)を変化させ、第2バイパス配管4bを介して圧縮機10のインジェクションポートに流入する冷媒流量を制御する。 Now, in the cooling operation mode in which the discharge temperature is high, it is necessary to control so that both the degree of supercooling of the first flow path of the supercooling heat exchanger 13 and the discharge temperature of the compressor 10 are close to the target. For example, the control device 50 performs the following control. First, the opening degree (opening area) of the expansion device 14a is changed so that the degree of supercooling of the refrigerant that has passed through the first flow path of the supercooling heat exchanger 13 approaches the target value. The refrigerant flow rate flowing through the second flow path is controlled. And the opening degree (opening area) of the expansion device 14b is changed so that the discharge temperature of the compressor 10 approaches the target value, and the refrigerant flow rate flowing into the injection port of the compressor 10 via the second bypass pipe 4b is changed. Control.
 このとき、過冷却熱交換器13の第2流路を流れた冷媒は、絞り装置14dが設置された第1バイパス配管4aと絞り装置14bが設置された第2バイパス配管4bとに分岐される。圧縮機10の吐出温度が低い場合は、絞り装置14bは全閉または冷媒が流れない小さい開度に設定され、かつ、絞り装置14dは全開に設定されている。そして、吐出温度が高くなった場合に、絞り装置14dを全開に設定したままで、絞り装置14bの開度を変化させても、第1バイパス配管4aに設置された絞り装置14dの内部の流動抵抗が小さいため、ほとんどの冷媒が第1バイパス配管4aを通って流れてしまう。このため、第2バイパス配管4bを介して圧縮機10のインジェクションポートに流れる冷媒の流量を調整して、圧縮機10の吐出温度を制御することができない。 At this time, the refrigerant flowing through the second flow path of the supercooling heat exchanger 13 is branched into the first bypass pipe 4a in which the expansion device 14d is installed and the second bypass pipe 4b in which the expansion device 14b is installed. . When the discharge temperature of the compressor 10 is low, the expansion device 14b is set to a fully closed position or a small opening at which the refrigerant does not flow, and the expansion device 14d is set to a full open state. And when discharge temperature becomes high, even if it changes the opening degree of the expansion device 14b, setting the expansion device 14d to full open, the flow inside the expansion device 14d installed in the 1st bypass piping 4a Since the resistance is small, most of the refrigerant flows through the first bypass pipe 4a. For this reason, the discharge temperature of the compressor 10 cannot be controlled by adjusting the flow rate of the refrigerant flowing through the injection port of the compressor 10 via the second bypass pipe 4b.
 そこで、絞り装置14bを開度を制御することによって第2バイパス配管4bに流れる冷媒の流量を変化させるためには、絞り装置14bの開度(開口面積)の変化に合わせて絞り装置14dの開度(開口面積)を変化させる必要がある。例えば圧縮機10の吐出温度が低いときは、絞り装置14dが全開、絞り装置14bが全閉または冷媒が流れない小さい開度となっている。この状態から、圧縮機10の吐出温度が高くなった場合でも、過冷却熱交換器13の第2流路を流れる冷媒の流量が大きく変化しないようにしながら、圧縮機10の吐出温度が高くなりすぎないように制御する。このため、絞り装置14bの開口面積と絞り装置14dの開口面積との合計が大きく変わらないように、絞り装置14bの制御と絞り装置14dの制御とを連動して、(ほぼ同時に)制御する。例えば、絞り装置14dが全開の状態における開口面積から、吐出温度を目標として制御する絞り装置14bの開口面積を引いた値を、新しい絞り装置14dの開口面積とすればよい。 Therefore, in order to change the flow rate of the refrigerant flowing through the second bypass pipe 4b by controlling the opening of the expansion device 14b, the opening of the expansion device 14d is adjusted in accordance with the change in the opening (opening area) of the expansion device 14b. It is necessary to change the degree (opening area). For example, when the discharge temperature of the compressor 10 is low, the expansion device 14d is fully opened, the expansion device 14b is fully closed, or the opening degree is small so that the refrigerant does not flow. From this state, even when the discharge temperature of the compressor 10 becomes high, the discharge temperature of the compressor 10 becomes high while keeping the flow rate of the refrigerant flowing through the second flow path of the supercooling heat exchanger 13 from changing greatly. Control not to be too much. For this reason, the control of the diaphragm device 14b and the control of the diaphragm device 14d are interlocked (substantially simultaneously) so that the sum of the aperture area of the diaphragm device 14b and the aperture area of the diaphragm device 14d does not change significantly. For example, a value obtained by subtracting the opening area of the expansion device 14b that controls the discharge temperature as a target from the opening area when the expansion device 14d is fully open may be used as the opening area of the new expansion device 14d.
 一般的に、絞り装置は、開度と開口面積とがほぼ直線に近い形で対応するように設計されることが多い。このような場合は、絞り装置14dが全開の状態での開度から、吐出温度を目標として制御する絞り装置14bの開度を引いた値を、新しい絞り装置14dの開度とすればよい。例えば、絞り装置14bおよび絞り装置14dが同容量(全開開度時の開口面積がほぼ同一)であり、かつ、同種類の絞り装置である場合を想定する。より具体的には、全開の開度が1500パルスであり、100パルス以下の開度で冷媒が流れなくなる性質を持ったものである。そして、絞り装置14bと絞り装置14dとは、開度と開口面積とがほぼ直線に近い形で対応するように設計されている場合を想定する。 In general, the expansion device is often designed so that the opening degree and the opening area correspond to each other in a shape that is almost a straight line. In such a case, a value obtained by subtracting the opening of the expansion device 14b that controls the discharge temperature from the opening when the expansion device 14d is fully open may be set as the opening of the new expansion device 14d. For example, it is assumed that the expansion device 14b and the expansion device 14d have the same capacity (the opening area at the time of the fully open position is substantially the same) and are the same type of expansion device. More specifically, the opening degree of full opening is 1500 pulses, and the refrigerant stops flowing at an opening degree of 100 pulses or less. Further, it is assumed that the expansion device 14b and the expansion device 14d are designed so that the opening degree and the opening area correspond to each other in a form that is almost a straight line.
 このような想定において、吐出温度が小さいときは、絞り装置14dは1500パルス、絞り装置14bは100パルスに設定されている。このとき、絞り装置14dの開度と絞り装置14bの開度の合計は、1600パルスである。ここで、圧縮機10の吐出温度が高くなり、絞り装置14bは、吐出温度を目標値として開度が制御され、600パルスになったとする。このとき、絞り装置14bが制御されるのとほぼ同時に絞り装置14dの開度も制御する。絞り装置14dの開度を、2つの絞り装置の合計開度である1600パルスから絞り装置14bの開度である600パルスを減じた1000パルスに設定する。このようにすると、第1バイパス配管4aに設置された絞り装置14dの内部の流動抵抗が大きくなり、第2バイパス配管4bに設置された絞り装置14bの内部の流動抵抗が小さくなるため、第2バイパス配管4bに冷媒を流すことができるようになる。毎回、絞り装置14bの開度を制御する度に、絞り装置14dの開度も併せて制御することにより、圧縮機10の吐出温度を適切に制御することができる。 In such an assumption, when the discharge temperature is low, the expansion device 14d is set to 1500 pulses, and the expansion device 14b is set to 100 pulses. At this time, the sum of the opening of the expansion device 14d and the opening of the expansion device 14b is 1600 pulses. Here, it is assumed that the discharge temperature of the compressor 10 is increased, and the opening degree of the expansion device 14b is controlled with the discharge temperature as a target value, resulting in 600 pulses. At this time, the opening degree of the expansion device 14d is controlled almost simultaneously with the control of the expansion device 14b. The opening of the expansion device 14d is set to 1000 pulses obtained by subtracting 600 pulses, which is the opening of the expansion device 14b, from 1600 pulses, which is the total opening of the two expansion devices. In this case, the flow resistance inside the expansion device 14d installed in the first bypass pipe 4a is increased, and the flow resistance inside the expansion device 14b installed in the second bypass pipe 4b is reduced. It becomes possible to flow the refrigerant through the bypass pipe 4b. Each time the opening degree of the expansion device 14b is controlled, the discharge temperature of the compressor 10 can be appropriately controlled by also controlling the opening degree of the expansion device 14d.
 ここで、絞り装置14bと絞り装置14dとをほぼ同時に制御するという説明を行ったが、実際は、各絞り装置は同時ではなく、各制御タイミングにおいて、順に制御がなされる。したがって、本実施の形態における、ほぼ同時とは、同じ制御タイミング(例えば30秒毎)に各絞り装置を制御することを意味している。同じ制御タイミングであっても、実際は各絞り装置は同時ではなく、例えば絞り装置14bの開度を制御し、次に絞り装置14dの開度を制御するというように順次制御される場合が多く、このように順次制御しても、同時に制御しても、どちらでもよい。また、順次制御する場合に、先に絞り装置14dの開度を制御し、その後に、絞り装置14bの開度を制御するようにしてもよい。また、絞り装置14bと絞り装置14dの制御タイミングが、少し(例えば30秒から1分程度)ずれたとしても、大きな問題は起きず、過冷却熱交換器13の過冷却度および圧縮機10の吐出温度を、共に目標に制御することができる。ただし、各絞り装置を同一の制御タイミングで制御した方が、制御性がよく、吐出温度が早く目標値に達する。また、絞り装置14bと絞り装置14dを順次制御ではなく、同時に制御した方が、吐出温度の制御性がよい。 Here, it has been described that the diaphragm device 14b and the diaphragm device 14d are controlled almost simultaneously. However, in actuality, the diaphragm devices are not simultaneously controlled but are sequentially controlled at each control timing. Therefore, “substantially simultaneous” in the present embodiment means that the aperture devices are controlled at the same control timing (for example, every 30 seconds). Even at the same control timing, in actuality, the respective throttle devices are not simultaneously controlled. For example, the aperture of the aperture device 14b is controlled, and then the aperture of the aperture device 14d is controlled in many cases. In this way, either sequential control or simultaneous control may be used. In the case of sequential control, the opening of the expansion device 14d may be controlled first, and then the opening of the expansion device 14b may be controlled. Further, even if the control timing of the expansion device 14b and the expansion device 14d is slightly shifted (for example, from about 30 seconds to about 1 minute), no major problem occurs, and the degree of supercooling of the supercooling heat exchanger 13 and the compressor 10 Both discharge temperatures can be controlled to a target. However, it is better to control each expansion device at the same control timing, and the discharge temperature reaches the target value earlier. In addition, the control of the discharge temperature is better when the expansion device 14b and the expansion device 14d are controlled simultaneously rather than sequentially.
 上述したように、絞り装置14bと絞り装置14dが同容量(全開開度時の開口面積がほぼ同一)である場合は、2つの絞り装置における合計の開口面積がほぼ同じになるように制御するのが望ましい。ここで、2つの絞り装置における合計の開口面積がほぼ同じであるとは、例えば、双方の合計の開口面積が±1%程度の範囲に収まっていることをいう。例えば、前述した例のように、合計の開度が1600のときには、合計の開度が1600±16パルスに収まっていればよい。また、例えば、絞り装置14bの開度が600パルスの場合、絞り装置14dの開度は984パルスと1016パルスとの間のパルスに設定されていればよい。 As described above, when the expansion device 14b and the expansion device 14d have the same capacity (the opening area at the fully open position is almost the same), the total opening area of the two expansion devices is controlled to be substantially the same. Is desirable. Here, the total opening area of the two aperture devices being substantially the same means that, for example, the total opening area of both is within a range of about ± 1%. For example, as in the example described above, when the total opening is 1600, the total opening only needs to be within 1600 ± 16 pulses. For example, when the opening degree of the expansion device 14b is 600 pulses, the opening degree of the expansion device 14d may be set to a pulse between 984 pulses and 1016 pulses.
 また、合計の開口面積を±1%程度の範囲で収める場合よりも少し制御性は悪くなるが、2つの絞り装置における合計の開口面積が±10%程度の範囲に収まるようにすれば、圧縮機10の吐出温度を目標値に正常に制御することができる。例えば、前述した例のように、合計の開度が1600のときには、合計の開度が1600±160パルスに収まるようにすればよい。例えば、絞り装置14bの開度が600パルスの場合、絞り装置14dの開度は840パルスと1160パルスとの間のパルスに設定されていればよい。また、さらに制御性は悪くなるが、双方の合計の開口面積が±20%程度の範囲に収まっていれば、少し制御の応答性は悪化するが、制御上の問題は起きず、吐出温度を目標値に制御することができる。例えば、前述した例のように、合計の開度が1600のときには、合計の開度が1600±320パルスに収まるようにすればよい。例えば、絞り装置14bの開度が600パルスの場合、絞り装置14dの開度は680パルスと1320パルスとの間のパルスに設定されていればよい。 In addition, the controllability is slightly worse than when the total opening area is within a range of about ± 1%, but if the total opening area of the two aperture devices is within a range of about ± 10%, the compression is reduced. The discharge temperature of the machine 10 can be normally controlled to the target value. For example, as in the example described above, when the total opening is 1600, the total opening may be within 1600 ± 160 pulses. For example, when the opening degree of the expansion device 14b is 600 pulses, the opening degree of the expansion device 14d may be set to a pulse between 840 pulses and 1160 pulses. Further, the controllability is further deteriorated, but if the total opening area of both is within a range of about ± 20%, the control responsiveness is slightly deteriorated, but there is no problem in control, and the discharge temperature is reduced. The target value can be controlled. For example, as in the example described above, when the total opening is 1600, the total opening may be within 1600 ± 320 pulses. For example, when the opening degree of the expansion device 14b is 600 pulses, the opening degree of the expansion device 14d may be set to a pulse between 680 pulses and 1320 pulses.
 ここでは、絞り装置14bと絞り装置14dが同容量(全開開度時の開口面積がほぼ同一)のものである場合について説明したが、これに限るものではなく、異なる種類、異なる容量のものであっても構わない。種類等が異なる場合は、絞り装置14bの絞り部の開口面積と絞り装置14dの絞り部の開口面積との合計の開口面積がほぼ同じになるように、双方の絞り装置を制御すればよい。 Here, a case has been described where the expansion device 14b and the expansion device 14d have the same capacity (the opening areas at the fully opened position are almost the same). However, the present invention is not limited to this, and different types and different capacities. It does not matter. When the types and the like are different, both aperture devices may be controlled so that the total aperture area of the aperture portion of the aperture device 14b and the aperture area of the aperture device 14d is substantially the same.
 また、絞り装置14bの開口面積と絞り装置14dの開口面積の合計が多少異なったとしても、絞り装置14bの開度(開口面積)の変化に対応して、絞り装置14dの開度(開口面積)を逆方向に変化させるようにしてもよい。これにより、絞り装置14aの開度(開口面積)を調整して過冷却熱交換器13の第1流路の過冷却度を制御し、第2バイパス配管4bに設置された絞り装置14bの開度(開口面積)を調整して圧縮機10の吐出温度を制御することができる。ここで、逆方向に変化させるとは、例えば、絞り装置14bの開度(開口面積)が大きくなれば絞り装置14dの開度(開口面積)を小さくし、絞り装置14bの開度(開口面積)が小さくなれば絞り装置14dの開度(開口面積)を大きくするように変化させることである。例えば、絞り装置14bの最大開度時の開口面積が絞り装置14dの最大開度時の開口面積の1.5倍であり、開度と開口面積は直線関係になっているものとする。また、絞り装置14bについては、全開開度が2000パルスであり、冷媒が流れなくなる最低開度が200パルスであるものとする。そして、絞り装置14dについては、全開開度が1000パルスであり、冷媒が流れなくなる最低開度が100パルスであるものとする。このような条件において、吐出温度が小さいときは、絞り装置14dは最大開度の1000パルス、絞り装置14bは最低開度の200パルスに設定されている。圧縮機10の吐出温度が高くなり、圧縮機10の吐出温度が目標値になるように絞り装置14bの開度を制御する場合に、制御装置50が、800パルスが絞り装置14bの適切開度であると演算したものとする。このとき、絞り装置14bの開度を最低開度の200パルスから新しい開度である800パルスに開く制御を行うのと対応させて、絞り装置14dの開度を全開開度である1000パルスから閉じるように制御する。そして、絞り装置14dの開度を、例えば、式(1)に基づいて決定する。これは、絞り装置14bの開度が開く変化割合と同じ割合で絞り装置14dを閉じるようにするものである。 Further, even if the total opening area of the expansion device 14b and the total opening area of the expansion device 14d are slightly different, the opening amount (opening area) of the expansion device 14d corresponding to the change in the opening amount (opening area) of the expansion device 14b. ) May be changed in the opposite direction. Thereby, the degree of opening (opening area) of the expansion device 14a is adjusted to control the degree of supercooling of the first flow path of the supercooling heat exchanger 13, and the expansion device 14b installed in the second bypass pipe 4b is opened. The discharge temperature of the compressor 10 can be controlled by adjusting the degree (opening area). Here, changing in the reverse direction means, for example, that if the opening degree (opening area) of the expansion device 14b increases, the opening degree (opening area) of the expansion device 14d decreases, and the opening degree (opening area) of the expansion device 14b. ) Is reduced, the aperture (opening area) of the expansion device 14d is changed to be increased. For example, it is assumed that the opening area at the maximum opening of the expansion device 14b is 1.5 times the opening area at the maximum opening of the expansion device 14d, and the opening and the opening area have a linear relationship. As for the expansion device 14b, it is assumed that the fully opened opening is 2000 pulses and the minimum opening at which the refrigerant does not flow is 200 pulses. And about the expansion | swelling apparatus 14d, fully open opening degree shall be 1000 pulses and the minimum opening degree from which a refrigerant | coolant does not flow shall be 100 pulses. Under such conditions, when the discharge temperature is low, the expansion device 14d is set to 1000 pulses at the maximum opening, and the expansion device 14b is set to 200 pulses at the minimum opening. When the opening temperature of the expansion device 14b is controlled so that the discharge temperature of the compressor 10 becomes high and the discharge temperature of the compressor 10 becomes the target value, the control device 50 has an appropriate opening amount of 800 pulses for the expansion device 14b. Is calculated. At this time, the opening of the expansion device 14b is controlled from the minimum 200 pulses to the new 800 opening, and the expansion of the expansion device 14d is changed from the fully open 1000 pulses. Control to close. Then, the opening degree of the expansion device 14d is determined based on, for example, Expression (1). This is to close the expansion device 14d at the same rate as the opening rate of the expansion device 14b.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)に、条件に基づく具体的な値を代入すると、式(2)のようになる。式(2)を演算すると400パルスとなる。 When substituting a specific value based on the condition into equation (1), equation (2) is obtained. When the equation (2) is calculated, 400 pulses are obtained.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 したがって、制御装置50は、絞り装置14dの開度を800パルスに制御する制御タイミングで、絞り装置14bの開度を400パルスに制御する。このとき、各絞り装置の開度の変化量は、絞り装置14dは(800-200)=600パルスとなり、絞り装置14bは(400-100)=300パルスとなる。各絞り装置とも、それぞれの絞り装置の最大開度と最低開度との差に対して約33%分の変化である。 Therefore, the control device 50 controls the opening of the expansion device 14b to 400 pulses at the control timing for controlling the opening of the expansion device 14d to 800 pulses. At this time, the amount of change in the opening of each expansion device is (800−200) = 600 pulses for the expansion device 14d, and (400−100) = 300 pulses for the expansion device 14b. In each of the throttle devices, the change is about 33% with respect to the difference between the maximum opening and the minimum opening of the respective throttle devices.
 このように、絞り装置14bと絞り装置14dの容量(最大開度での開口面積)に違いがあっても、絞り装置14bの開度の変化に対応させて絞り装置14dの開度の変化量を決定し、かつ、絞り装置14bの開度の変化方向と絞り装置14dの開度の変化方向を逆方向に制御すれば、圧縮機10の吐出温度を目標値に制御できる。ただし、この場合、制御前と制御後とでは、絞り装置14bの開口面積と絞り装置14dの開口面積の合計面積が異なる。そこで、絞り装置14aの開度を制御し、過冷却熱交換器13の第1流路の過冷却度を目標に保つ必要がある。 Thus, even if there is a difference in the capacity (opening area at the maximum opening) between the expansion device 14b and the expansion device 14d, the amount of change in the opening amount of the expansion device 14d corresponding to the change in the opening amount of the expansion device 14b. And the discharge temperature of the compressor 10 can be controlled to the target value by controlling the direction of change of the opening of the expansion device 14b and the direction of change of the opening of the expansion device 14d in opposite directions. However, in this case, the total area of the aperture area of the aperture device 14b and the aperture area of the aperture device 14d is different before and after the control. Therefore, it is necessary to control the opening degree of the expansion device 14a and keep the degree of supercooling of the first flow path of the supercooling heat exchanger 13 at a target.
 例えば、絞り装置14bと絞り装置14dとの容量が違う場合、開度と開口面積の関係は直線関係になっている方が制御性がよいが、これに限るものではない。どのような形の対応関係になっていても、開度を大きくすると開口面積が大きくなるものであれば、同様の制御を行うことができる。 For example, when the expansion device 14b and the expansion device 14d have different capacities, the relationship between the opening degree and the opening area is better when the relationship is a linear relationship, but is not limited thereto. Regardless of the form of correspondence, the same control can be performed as long as the opening increases and the opening area increases.
 以上説明したように、圧縮機10の吐出温度が高い冷房運転モードにおいては、過冷却熱交換器13の第1流路の過冷却度を目標に近づけるように、絞り装置14aを制御して、過冷却熱交換器13の第2流路を流れる冷媒流量を調整する。また、圧縮機10の吐出温度を目標に近づけるように、絞り装置14bの開度を制御して、圧縮機10のインジェクションポートに接続された第2バイパス配管4bに流れる冷媒の流量を調整する。このとき、絞り装置14dを絞り装置14bと連動制御し、制御後の絞り装置14bの開度(開口面積)を基に、演算し、絞り装置14dの開度(開口面積)を設定するようにすることで、過冷却熱交換器13の過冷却度と圧縮機10の吐出温度との双方を適切に制御することができる。 As described above, in the cooling operation mode in which the discharge temperature of the compressor 10 is high, the expansion device 14a is controlled so that the degree of supercooling of the first flow path of the supercooling heat exchanger 13 approaches the target, The flow rate of the refrigerant flowing through the second flow path of the supercooling heat exchanger 13 is adjusted. Further, the flow rate of the refrigerant flowing through the second bypass pipe 4b connected to the injection port of the compressor 10 is adjusted by controlling the opening degree of the expansion device 14b so that the discharge temperature of the compressor 10 approaches the target. At this time, the diaphragm device 14d is controlled in conjunction with the diaphragm device 14b, and is calculated based on the opening (opening area) of the throttle device 14b after the control to set the opening (opening area) of the diaphragm device 14d. By doing so, it is possible to appropriately control both the degree of supercooling of the supercooling heat exchanger 13 and the discharge temperature of the compressor 10.
 ここで、絞り装置14bの開度変化方向と絞り装置14dの開度変化方向とは、逆方向となるようにする。例えば、制御装置50は、絞り装置14bの開口面積が大きくなるように制御するときは、絞り装置14dの開口面積が小さくなるように制御する。また、絞り装置14bの開口面積が小さくなるように制御するときは、絞り装置14dの開口面積が大きくなるように制御する。 Here, the opening change direction of the expansion device 14b and the opening change direction of the expansion device 14d are opposite to each other. For example, when controlling the opening area of the expansion device 14b to be large, the control device 50 controls the opening area of the expansion device 14d to be small. Further, when controlling the aperture area of the aperture device 14b to be small, the aperture area of the aperture device 14d is controlled to be large.
 ここで、圧縮機10のインジェクションポートが圧縮室に開口する角度は、通常、圧縮室の吸入口が閉じてすぐの場合が多い。この場合、インジェクションポートが位置する圧縮室内の圧力は低圧(吸入側の圧力)に近い値である。このときは、絞り装置14bと絞り装置14dとは同容量(全開開度時の開口面積がほぼ同一)のものを使用する。しかし、絞り装置を流れる流量は、絞り装置前後の圧力差の平方根に比例する。例えば圧縮室の吸入口が閉じてからかなり回転角度が大きくなってから、圧縮機10のインジェクションポートが圧縮室に開口する場合は、圧縮室内の圧力が低圧よりも十分に高くなる。したがって、絞り装置14bの前後の圧力差が、絞り装置14dの前後の圧力差に対して小さくなる。このため、絞り装置14dの容量(全開開度時の開口面積)に対して、絞り装置14bの容量(全開開度時の開口面積)を大きくした方が、制御性がよくなる。この場合でも、絞り装置14bの制御と絞り装置14dの制御を連動させることには変わりはない。制御装置50は、絞り装置14bの開度若しくは開度の変化量または開口面積若しくは開口面積の変化量を基に、絞り装置14dの開度若しくは開度の変化量または開口面積若しくは開口面積の変化量を演算すればよい。 Here, the angle at which the injection port of the compressor 10 opens into the compression chamber is usually immediately after the suction port of the compression chamber is closed. In this case, the pressure in the compression chamber where the injection port is located is a value close to a low pressure (pressure on the suction side). At this time, the expansion device 14b and the expansion device 14d are of the same capacity (the opening area at the fully opened position is substantially the same). However, the flow rate through the throttle device is proportional to the square root of the pressure difference across the throttle device. For example, if the injection port of the compressor 10 opens into the compression chamber after the suction angle of the compression chamber is closed and the rotation angle becomes considerably large, the pressure in the compression chamber is sufficiently higher than the low pressure. Therefore, the pressure difference before and after the expansion device 14b becomes smaller than the pressure difference before and after the expansion device 14d. For this reason, the controllability is improved by increasing the capacity of the expansion device 14b (opening area at the fully open position) relative to the capacity of the expansion device 14d (opening area at the fully open position). Even in this case, there is no change in linking the control of the expansion device 14b and the control of the expansion device 14d. Based on the amount of change in the opening or opening of the expansion device 14b or the amount of change in the opening area or opening area, the control device 50 changes the amount of opening or opening of the expansion device 14d or changes in the opening area or opening area. What is necessary is just to calculate the quantity.
 ここで、絞り装置14aについては、電子式膨張弁等のように、開口面積を変化させられるものが望ましいが、これに限定するものではない。例えば、小型の電磁弁等の開閉弁を組み合わせて構成する、キャピラリチューブで構成する等してもよい。 Here, as the expansion device 14a, it is desirable to change the opening area, such as an electronic expansion valve, but it is not limited to this. For example, it may be configured by combining on-off valves such as small solenoid valves, or may be configured by a capillary tube.
 また、絞り装置14dは、絞り装置14bの開度の変化に応じて、流動抵抗を変化させられればよい。このため、開口面積を変化させられる電子式膨張弁等で構成することが望ましいが、これに限るものではない。例えば、複数の電磁弁を並列に組み合わせて構成し、絞り装置14bの開度の変化に応じて、複数段階で開口面積を変化させられるようにしてもよい。この場合、連続的に開口面積を変えられないので、吐出温度の制御精度は少し悪化するが、吐出温度が限界値を超えないように制御することができるので問題ない。 Further, the expansion device 14d only needs to change the flow resistance in accordance with the change in the opening degree of the expansion device 14b. For this reason, although it is desirable to comprise the electronic expansion valve etc. which can change an opening area, it is not restricted to this. For example, a plurality of solenoid valves may be combined in parallel so that the opening area can be changed in a plurality of stages in accordance with the change in the opening degree of the expansion device 14b. In this case, since the opening area cannot be continuously changed, the control accuracy of the discharge temperature is slightly deteriorated, but there is no problem because the discharge temperature can be controlled so as not to exceed the limit value.
 また、上述したように、熱負荷のない利用側熱交換器17(サーモオフを含む)へは冷媒を流す必要がないため、運転を停止させる。このとき、停止している室内機2に対応する絞り装置16は、全閉または冷媒が流れない小さい開度としておく。 Further, as described above, since it is not necessary to flow the refrigerant to the use side heat exchanger 17 (including the thermo-off) without the heat load, the operation is stopped. At this time, the expansion device 16 corresponding to the stopped indoor unit 2 is fully closed or set to a small opening at which the refrigerant does not flow.
 以上のように、過冷却熱交換器13の第2流路の下流側に2つのバイパス配管を備え、第1バイパス配管4aには、絞り装置14dを介して、アキュムレータ15の上流側(圧縮機10の吸入側)の流路に冷媒が流れるようにし、第2バイパス配管4bには、絞り装置14bを介して、圧縮機10の圧縮室に冷媒をインジェクションできるようにする。このとき、絞り装置14bと絞り装置14dとを連動制御することにより、延長配管5が長い場合であっても、室内機2に流入する冷媒に確実に過冷却度がついている状態にでき、かつ、圧縮機10の吐出温度が高くなる条件において、圧縮機10の吐出温度が上限を超えないように、確実に制御することができる。 As described above, two bypass pipes are provided on the downstream side of the second flow path of the supercooling heat exchanger 13, and the first bypass pipe 4a is connected to the upstream side of the accumulator 15 (compressor) via the expansion device 14d. The refrigerant is allowed to flow in the flow path on the suction side 10), and the refrigerant can be injected into the compression chamber of the compressor 10 through the expansion device 14 b in the second bypass pipe 4 b. At this time, by controlling the expansion device 14b and the expansion device 14d in an interlocked manner, even when the extension pipe 5 is long, the refrigerant flowing into the indoor unit 2 can be reliably in a state of being supercooled, and In the condition where the discharge temperature of the compressor 10 becomes high, the discharge temperature of the compressor 10 can be reliably controlled so as not to exceed the upper limit.
 ここで、過冷却熱交換器13の第2流路を通った冷媒は、低温の二相冷媒またはガス冷媒である。例えば圧縮機10の吐出温度が限界温度よりも少しだけ高い場合は、第2バイパス配管4bを介して低温のガス冷媒を圧縮機10の圧縮室に流入させればよい。一方、吐出温度が限界温度よりもかなり高い場合は、圧縮機10の圧縮室には、低温の二相冷媒を流入させる必要がある。過冷却熱交換器13の第2流路を通った冷媒を二相状態とする場合は、二相状態の冷媒を第1バイパス配管4aと第2バイパス配管4bとに分岐することになる。この場合、第1バイパス配管4aと第2バイパス配管4bとの分岐部に流入した冷媒が、例えば、重力方向(高さ方向)において下から上に向かって流れるように構成する。そして、分岐後の冷媒が高さ方向において、ほぼ同じ高さで流れるように分岐後の流路を構成する。このように構成すると、液冷媒が片方の流路に偏ることなく、二相状態の冷媒をきれいに(均等に)分岐することができる。この場合の分岐部には、T型の継手やY型の継手が用いられる。また、分岐部が少し傾いていたとしても、僅かな傾きであれば問題はなく、二相冷媒はきれいに分配される。この許容傾き角度は、約15度以内であり、これ以下であれば問題なく二相冷媒を分配することができる。ただし、第1バイパス配管4aと第2バイパス配管4bとの分岐部は、これに限るものではなく、二相状態の冷媒を、冷媒液が片方に偏ることなく、きれいに分岐できるものであれば、どのような構造のものでもよい。 Here, the refrigerant that has passed through the second flow path of the supercooling heat exchanger 13 is a low-temperature two-phase refrigerant or gas refrigerant. For example, when the discharge temperature of the compressor 10 is slightly higher than the limit temperature, a low-temperature gas refrigerant may be flowed into the compression chamber of the compressor 10 via the second bypass pipe 4b. On the other hand, when the discharge temperature is considerably higher than the limit temperature, it is necessary to flow a low-temperature two-phase refrigerant into the compression chamber of the compressor 10. When the refrigerant that has passed through the second flow path of the supercooling heat exchanger 13 is in a two-phase state, the refrigerant in the two-phase state is branched into the first bypass pipe 4a and the second bypass pipe 4b. In this case, the refrigerant flowing into the branch portion between the first bypass pipe 4a and the second bypass pipe 4b is configured to flow from bottom to top in the direction of gravity (height direction), for example. Then, the branched flow path is configured so that the branched refrigerant flows at substantially the same height in the height direction. If comprised in this way, a liquid refrigerant can branch the refrigerant | coolant of a two-phase state neatly (evenly), without biasing to one flow path. In this case, a T-type joint or a Y-type joint is used for the branch portion. Further, even if the branching portion is slightly inclined, there is no problem as long as it is slightly inclined, and the two-phase refrigerant is neatly distributed. This allowable inclination angle is within about 15 degrees, and if it is less than this, the two-phase refrigerant can be distributed without any problem. However, the branching portion between the first bypass pipe 4a and the second bypass pipe 4b is not limited to this, as long as the refrigerant in the two-phase state can branch cleanly without biasing the refrigerant liquid to one side, Any structure may be used.
[暖房運転モード]
 図7は本発明の実施の形態1に係る空気調和装置100の暖房運転モード時における冷媒の流れを示す図である。図7では、全部の利用側熱交換器17において温熱負荷が発生している場合を例に暖房運転モードについて説明する。ここで、図5において太線で表した配管が冷媒が流れる配管を示しており、冷媒が流れる方向を実線矢印で示している。
[Heating operation mode]
FIG. 7 is a diagram showing a refrigerant flow when the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is in the heating operation mode. In FIG. 7, the heating operation mode will be described by taking as an example a case where a thermal load is generated in all the use side heat exchangers 17. Here, the pipes indicated by bold lines in FIG. 5 indicate the pipes through which the refrigerant flows, and the directions in which the refrigerant flows are indicated by solid arrows.
 図7に示す暖房運転モードの場合、室外機1では、制御装置50が、冷媒流路切替装置11を、圧縮機10から吐出された冷媒が熱源側熱交換器12を経由せずに室外機1を流出して室内機2へ流入する流路に切り替えるように指示する。そして、圧縮機10が低温低圧の冷媒を圧縮し、高温高圧のガス冷媒を吐出する。圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を通過して室外機1から流出する。室外機1から流出した高温高圧のガス冷媒は、延長配管5を通って室内機2(2a~2d)のそれぞれに流入する。室内機2(2a~2d)に流入した高温高圧のガス冷媒は、利用側熱交換器17(17a~17d)のそれぞれに流入し、利用側熱交換器17(17a~17d)の周囲を流通する空気に放熱しながら凝縮液化し、高温高圧の液冷媒となる。利用側熱交換器17(17a~17d)から流出した液冷媒は、絞り装置16(16a~16d)で膨張させられて、第1中圧の二相冷媒となり、室内機2(2a~2d)から流出する。室内機2から流出した第1中圧の二相冷媒は、延長配管5を通って再び室外機1へ流入する。 In the case of the heating operation mode shown in FIG. 7, in the outdoor unit 1, the control device 50 controls the refrigerant flow switching device 11 so that the refrigerant discharged from the compressor 10 does not pass through the heat source side heat exchanger 12. 1 is instructed to switch to the flow path that flows out into the indoor unit 2. Then, the compressor 10 compresses the low-temperature and low-pressure refrigerant and discharges the high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the refrigerant flow switching device 11 and flows out of the outdoor unit 1. The high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 passes through the extension pipe 5 and flows into each of the indoor units 2 (2a to 2d). The high-temperature and high-pressure gas refrigerant flowing into the indoor unit 2 (2a to 2d) flows into each of the use side heat exchangers 17 (17a to 17d) and circulates around the use side heat exchangers 17 (17a to 17d). It liquefies while radiating heat to the air, and becomes a high-temperature and high-pressure liquid refrigerant. The liquid refrigerant flowing out from the use side heat exchanger 17 (17a to 17d) is expanded by the expansion device 16 (16a to 16d) to become a first medium pressure two-phase refrigerant, and the indoor unit 2 (2a to 2d). Spill from. The first medium-pressure two-phase refrigerant flowing out of the indoor unit 2 flows into the outdoor unit 1 again through the extension pipe 5.
 このとき、絞り装置16a~16dの開度(開口面積)は、利用側熱交換器17a~17dにおける凝縮温度と利用側熱交換器液冷媒温度検出装置27の検出温度との温度差(過冷却度)が目標値に近づくように制御される。利用側熱交換器17a~17dにおける凝縮温度は、例えば室外機1の制御装置50が値を決定し、各室内機2が有する制御装置(図示せず)に通信で信号を送る。 At this time, the opening degree (opening area) of the expansion devices 16a to 16d is the temperature difference (supercooling) between the condensation temperature in the use side heat exchangers 17a to 17d and the detection temperature of the use side heat exchanger liquid refrigerant temperature detection device 27. Is controlled so as to approach the target value. For example, the control device 50 of the outdoor unit 1 determines a value of the condensation temperature in the use side heat exchangers 17a to 17d, and sends a signal to the control device (not shown) of each indoor unit 2 by communication.
 室外機1に流入した第1中圧の二相冷媒は、液分離器18に流入する。液分離器18に流入した液冷媒の一部は、液分離器18の重力方向において下側に設けられた流出口より流出して第1バイパス配管4aを流れ、絞り装置14aを通過する。第1中圧の液冷媒は、絞り装置14aで減圧され、第2中圧の二相冷媒となって過冷却熱交換器13の第2流路を通過する。過冷却熱交換器13の第2流路を通過することで、過冷却熱交換器13の第1流路を通過した冷媒により加熱されて乾き度が大きくなった二相冷媒またはガス冷媒となる。そして、第2バイパス配管4bおよび全開状態の絞り装置14bを介して、圧縮機10に設けられたインジェクションポートより圧縮室内に流入する。 The first medium-pressure two-phase refrigerant that has flowed into the outdoor unit 1 flows into the liquid separator 18. A part of the liquid refrigerant that has flowed into the liquid separator 18 flows out from the outlet provided on the lower side in the direction of gravity of the liquid separator 18, flows through the first bypass pipe 4a, and passes through the expansion device 14a. The liquid refrigerant having the first intermediate pressure is decompressed by the expansion device 14a, becomes a two-phase refrigerant having the second intermediate pressure, and passes through the second flow path of the supercooling heat exchanger 13. By passing through the second flow path of the supercooling heat exchanger 13, it becomes a two-phase refrigerant or gas refrigerant that is heated by the refrigerant that has passed through the first flow path of the supercooling heat exchanger 13 and has increased in dryness. . And it flows in into a compression chamber from the injection port provided in the compressor 10 through the 2nd bypass piping 4b and the expansion device 14b of a full open state.
 また、液分離器18に流入した残りの二相冷媒は液分離器18の重力方向の中央近辺または上側に設けられた流出口より流出して過冷却熱交換器13の第1流路に流入する。過冷却熱交換器13の第1流路に流入した第1中圧の二相冷媒は、過冷却熱交換器13の第2流路を流れる第2中圧の冷媒によって少し冷却され、乾き度が少し小さくなって流出する。そして、絞り装置14cを通って減圧されて、低温低圧の二相冷媒になり、熱源側熱交換器12に流入する。低温低圧の二相冷媒は、熱源側熱交換器12内において、熱源側熱交換器12の周囲に流れる空気から吸熱し、蒸発して低温低圧のガス冷媒となって流出する。そして、冷媒流路切替装置11およびアキュムレータ15を介して、再び圧縮機10に吸入される。 The remaining two-phase refrigerant that has flowed into the liquid separator 18 flows out from an outlet provided near or above the center of the liquid separator 18 in the direction of gravity, and flows into the first flow path of the supercooling heat exchanger 13. To do. The first medium pressure two-phase refrigerant that has flowed into the first flow path of the supercooling heat exchanger 13 is slightly cooled by the second medium pressure refrigerant flowing through the second flow path of the supercooling heat exchanger 13, and the dryness Spills out a little smaller. Then, the pressure is reduced through the expansion device 14 c to become a low-temperature and low-pressure two-phase refrigerant and flows into the heat source side heat exchanger 12. The low-temperature and low-pressure two-phase refrigerant absorbs heat from the air flowing around the heat source side heat exchanger 12 in the heat source side heat exchanger 12, evaporates and flows out as a low temperature and low pressure gas refrigerant. Then, the refrigerant is again sucked into the compressor 10 through the refrigerant flow switching device 11 and the accumulator 15.
 上述したように、冷房運転モードでは、過冷却熱交換器13の第2流路に冷媒を流し、過冷却熱交換器13の第1流路を流れる冷媒を過冷却し、延長配管5に送り出していた。ここで、暖房運転モードにおいては、延長配管5を流れる冷媒を過冷却させる必要はない。過冷却熱交換器13の第2流路に冷媒を流す第一の目的は、圧縮機10の吐出温度が高くなりすぎる場合に吐出温度を下げるためである。また、第二の目的は暖房能力を向上させるためである。いずれも外気温度が低い場合等に必要になる。このため、外気温度が比較的高い場合(例えば、インジェクションをしない状態で吐出温度が105℃以下の場合)等、圧縮機10の吐出温度があまり高くなく、また、暖房能力を向上させる必要がない場合、制御装置50は、絞り装置14bは全閉または冷媒が流れない小さい開度に制御して、第2バイパス配管4bに冷媒が流れないようにする。また、絞り装置14dは、暖房運転モードにおいては、通常、全閉または冷媒が流れない小さい開度に設定し、第1バイパス配管4aに冷媒が流れないようにしている。 As described above, in the cooling operation mode, the refrigerant flows through the second flow path of the supercooling heat exchanger 13, the refrigerant flowing through the first flow path of the supercooling heat exchanger 13 is supercooled, and is sent to the extension pipe 5. It was. Here, in the heating operation mode, it is not necessary to supercool the refrigerant flowing through the extension pipe 5. The first purpose of flowing the refrigerant through the second flow path of the supercooling heat exchanger 13 is to lower the discharge temperature when the discharge temperature of the compressor 10 becomes too high. The second purpose is to improve the heating capacity. Both are necessary when the outside air temperature is low. For this reason, when the outside air temperature is relatively high (for example, when the discharge temperature is 105 ° C. or less without injection), the discharge temperature of the compressor 10 is not so high, and it is not necessary to improve the heating capacity. In this case, the control device 50 controls the throttle device 14b to be fully closed or to a small opening at which the refrigerant does not flow so that the refrigerant does not flow into the second bypass pipe 4b. In the heating operation mode, the expansion device 14d is normally set to a fully closed position or a small opening at which the refrigerant does not flow, so that the refrigerant does not flow into the first bypass pipe 4a.
 ここで、冷媒として、R410Aよりも圧縮機10の吐出温度が高温になる、R32等の冷媒を使用する場合、少し高い外気温度において、R410Aを使用した場合よりも吐出温度が高くなる。例えば、冷凍機油の劣化、圧縮機10の焼損等を防ぐために、吐出温度を低下させる必要がある。 Here, when a refrigerant such as R32, in which the discharge temperature of the compressor 10 is higher than that of R410A, is used as the refrigerant, the discharge temperature is higher than when R410A is used at a slightly higher outside temperature. For example, it is necessary to lower the discharge temperature in order to prevent deterioration of refrigeration oil, burnout of the compressor 10, and the like.
 上述したように、圧縮機10のインジェクションポートと接続する第2バイパス配管4bを介して、圧縮室の内部に乾き度の大きい二相状態の冷媒を、圧縮機10に直接インジェクションすることができる。 As described above, a two-phase refrigerant having a high degree of dryness can be directly injected into the compressor 10 through the second bypass pipe 4 b connected to the injection port of the compressor 10.
 第2バイパス配管4bを通る冷媒の流量は、絞り装置14bの開度(開口面積)により調整される。絞り装置14bの開度(開口面積)を大きくし、第2バイパス配管4bを流れる冷媒の流量を増やすと、圧縮機10の吐出温度が低下する。逆に絞り装置14bの開度(開口面積)を小さくし、第2バイパス配管4bを流れる冷媒の流量を減らすと、圧縮機10の吐出温度が高くなる。したがって、絞り装置14bの開度(開口面積)を調整することにより、圧縮機10の吐出温度を制御できる。例えば、暖房運転モードにおいては、乾き度の大きい二相状態の冷媒が圧縮機10の圧縮室にインジェクションされるようにする。このとき、吐出冷媒温度検出装置21で検出した吐出温度と高圧検出装置22で検出した圧力の飽和温度とから吐出過熱度を算出し、吐出過熱度が目標の範囲に収まるように制御する。このようにすると、インジェクションできる冷媒の量が増え、暖房能力を向上させることができる。 The flow rate of the refrigerant passing through the second bypass pipe 4b is adjusted by the opening degree (opening area) of the expansion device 14b. When the opening degree (opening area) of the expansion device 14b is increased and the flow rate of the refrigerant flowing through the second bypass pipe 4b is increased, the discharge temperature of the compressor 10 decreases. Conversely, when the opening degree (opening area) of the expansion device 14b is reduced and the flow rate of the refrigerant flowing through the second bypass pipe 4b is reduced, the discharge temperature of the compressor 10 increases. Therefore, the discharge temperature of the compressor 10 can be controlled by adjusting the opening degree (opening area) of the expansion device 14b. For example, in the heating operation mode, a two-phase refrigerant having a high degree of dryness is injected into the compression chamber of the compressor 10. At this time, the degree of discharge superheat is calculated from the discharge temperature detected by the discharge refrigerant temperature detection device 21 and the saturation temperature of the pressure detected by the high pressure detection device 22, and control is performed so that the discharge superheat degree falls within the target range. If it does in this way, the quantity of the refrigerant | coolant which can be injected will increase and a heating capability can be improved.
 例えば、上述したように、冷媒としてR32を使用した場合は、吐出温度が高くなりやすいので、圧縮機10にインジェクションすることになる。このような場合は、基本的には暖房能力を向上させなくてもよいので、制御装置50は、吐出温度を目標として、インジェクションする冷媒の量を制御するようにしてもよい。当然、R32を使用した場合でも、暖房能力を向上させるために、吐出過熱度を目標としてインジェクション量を制御してもよい。 For example, as described above, when R32 is used as the refrigerant, the discharge temperature tends to be high, so that the compressor 10 is injected. In such a case, basically, it is not necessary to improve the heating capacity. Therefore, the control device 50 may control the amount of refrigerant to be injected with the discharge temperature as a target. Of course, even when R32 is used, the injection amount may be controlled with the discharge superheat degree as a target in order to improve the heating capacity.
 また、絞り装置14cは、絞り装置16と絞り装置14aとの間(液分離器18)の冷媒の圧力を第1中圧にするために制御する。第1中圧とは、前述したように、圧縮機10の吐出側の高圧よりも低く、第2バイパス配管4bの下流側の圧力である。そして、圧縮機10の圧縮室のインジェクションポートの圧力である第2中圧よりも高い圧力である。絞り装置16と絞り装置14cとの間の冷媒の圧力を第1中圧に保つことにより、絞り装置14aの前後差圧を確保することができ、圧縮機10に確実に冷媒をインジェクションすることができる。ここで、絞り装置14cの開度(開口面積)は、液冷媒温度検出装置24の検出温度を飽和圧力に換算した中圧が目標値に近づくように制御される。 Further, the expansion device 14c controls the refrigerant pressure between the expansion device 16 and the expansion device 14a (liquid separator 18) to be the first intermediate pressure. As described above, the first intermediate pressure is lower than the high pressure on the discharge side of the compressor 10 and is the pressure on the downstream side of the second bypass pipe 4b. And it is a pressure higher than the 2nd intermediate pressure which is the pressure of the injection port of the compression chamber of the compressor 10. By maintaining the refrigerant pressure between the expansion device 16 and the expansion device 14c at the first intermediate pressure, the differential pressure across the expansion device 14a can be secured, and the refrigerant can be reliably injected into the compressor 10. it can. Here, the opening degree (opening area) of the expansion device 14c is controlled so that the intermediate pressure obtained by converting the detected temperature of the liquid refrigerant temperature detection device 24 into the saturation pressure approaches the target value.
 図8は本発明の実施の形態1に係る空気調和装置の暖房運転時におけるp-h線図(圧力-エンタルピ線図)である。暖房運転モードにおいては、圧縮機10において圧縮され、吐出された冷媒(図8の点I)は、冷媒流路切替装置11を介して室外機1を流出し、延長配管5を介して室内機2に流入する。そして、室内機2の利用側熱交換器17で凝縮された後、絞り装置16を通過して、延長配管5を介して、室外機1に戻る。さらに、液分離器18、過冷却熱交換器13の第一流路を介して、絞り装置14cに流れる。絞り装置14cの開度を調整することで、絞り装置16と絞り装置14cとの間を流れる冷媒(絞り装置14cの上流側の冷媒)の圧力は第1中圧となるように制御される(図8の点J)。絞り装置16と絞り装置14cとの間を流れる第1中圧の冷媒は、液分離器18で液冷媒の一部が分岐される(図8の点J)。分岐された液冷媒の一部は、第1バイパス配管4aを通過し、絞り装置14aによって減圧されて第2中圧の冷媒になる(図8の点M)。さらに、過冷却熱交換器13の第2流路を通過することで、過冷却熱交換器13の第1流路を流れる冷媒と熱交換をして加熱され、乾き度の大きい第2中圧の二相冷媒となる(図8の点M)。そして、第2バイパス配管4bおよび全開状態の絞り装置14bを介して、圧縮機10が有するインジェクションポートから圧縮室にインジェクションされる。 FIG. 8 is a ph diagram (pressure-enthalpy diagram) during heating operation of the air-conditioning apparatus according to Embodiment 1 of the present invention. In the heating operation mode, the refrigerant (point I in FIG. 8) compressed and discharged by the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11 and passes through the extension pipe 5 to the indoor unit. Flows into 2. Then, after being condensed in the use side heat exchanger 17 of the indoor unit 2, it passes through the expansion device 16 and returns to the outdoor unit 1 via the extension pipe 5. Furthermore, it flows to the expansion device 14 c via the first flow path of the liquid separator 18 and the supercooling heat exchanger 13. By adjusting the opening degree of the expansion device 14c, the pressure of the refrigerant (refrigerant upstream of the expansion device 14c) flowing between the expansion device 16 and the expansion device 14c is controlled to be the first intermediate pressure ( Point J in FIG. Part of the liquid refrigerant of the first medium-pressure refrigerant flowing between the expansion device 16 and the expansion device 14c is branched by the liquid separator 18 (point J 1 in FIG. 8). A part of the branched liquid refrigerant passes through the first bypass pipe 4a, is decompressed by the expansion device 14a, and becomes a second medium-pressure refrigerant (point M in FIG. 8). Furthermore, by passing through the second flow path of the supercooling heat exchanger 13, heat is exchanged with the refrigerant flowing through the first flow path of the supercooling heat exchanger 13, and the second intermediate pressure having a high dryness is heated. (A point M 1 in FIG. 8). And it injects into the compression chamber from the injection port which the compressor 10 has via the 2nd bypass piping 4b and the expansion device 14b of a full open state.
 一方、液分離器18で液冷媒の一部が分岐したことで、残りの冷媒は、乾き度が若干大きくなる(図8の点J)。そして、残りの冷媒は、過冷却熱交換器13の第1流路を通過することで、過冷却熱交換器13の第2流路を流れる冷媒と熱交換をして冷却される(図8の点J)。さらに、絞り装置14cで減圧されて、低圧の二相冷媒となる(図8の点K)。低圧の二相冷媒は、熱源側熱交換器12で蒸発した後、冷媒流路切替装置11を介して、アキュムレータ15に流入する。また、アキュムレータ15を流出した冷媒は、吸入側流路を通過して圧縮機10に吸入される。 On the other hand, when a part of the liquid refrigerant branches off in the liquid separator 18, the remaining refrigerant slightly increases in dryness (point J 2 in FIG. 8). The remaining refrigerant passes through the first flow path of the supercooling heat exchanger 13 and is cooled by exchanging heat with the refrigerant flowing through the second flow path of the supercooling heat exchanger 13 (FIG. 8). point J 3 of). Further, the pressure is reduced by the expansion device 14c to become a low-pressure two-phase refrigerant (point K in FIG. 8). The low-pressure two-phase refrigerant evaporates in the heat source side heat exchanger 12 and then flows into the accumulator 15 through the refrigerant flow switching device 11. Further, the refrigerant that has flowed out of the accumulator 15 passes through the suction side flow path and is sucked into the compressor 10.
 ここで、本実施の形態の圧縮機10は低圧シェル型の圧縮機である。圧縮機10内の下部には吸入された冷媒と油とが流入する。また、中間部にはモータが配置されている。そして、上部では、圧縮室で圧縮された高温高圧の冷媒が密閉容器内の吐出室に吐出された後、圧縮機10から吐出される。したがって、圧縮機10の金属製の密閉容器は高温高圧の冷媒にさらされている部分と、低温低圧の冷媒にさらされている部分とがある。このため、密閉容器の温度はその中間的な温度になる。また、モータには電流が流れるため発熱する。したがって、圧縮機10に吸入された低温低圧のガス冷媒は、圧縮機10の密閉容器とモータとによって加熱されて温度が上昇する(図8の点F)。そして、圧縮室内に吸入され、圧縮室内で第2中圧まで圧縮される(図8の点N)。そして、第2バイパス配管4bを介して、圧縮機10の圧縮室内に冷媒をインジェクションした場合、圧縮室内では、吸入側流路から吸入された冷媒とインジェクションに係る冷媒との合流部分における冷媒の温度が下がる(図8の点H)。そして、圧縮室内において、さらに圧縮が継続されることで、高圧のガス冷媒となって圧縮機10から吐出する。そのため、第2バイパス配管4bを介して冷媒を流入させると、合流部分において冷媒の温度が低下するため、流入させない場合(図8の点G)の圧縮機10の吐出温度に対して、吐出温度が低下する(図8の点I)。例えばR32等のように、圧縮機10の吐出温度がR410Aよりも高温になる冷媒を使用している場合等においても、圧縮機10の吐出温度を低下させることができ、安全に使用することができる。また、信頼性が高くなる。 Here, the compressor 10 of the present embodiment is a low-pressure shell type compressor. The sucked refrigerant and oil flow into the lower part of the compressor 10. In addition, a motor is disposed in the intermediate portion. In the upper part, the high-temperature and high-pressure refrigerant compressed in the compression chamber is discharged from the compressor 10 after being discharged into the discharge chamber in the sealed container. Therefore, the metal sealed container of the compressor 10 has a portion exposed to the high-temperature and high-pressure refrigerant and a portion exposed to the low-temperature and low-pressure refrigerant. For this reason, the temperature of the sealed container becomes an intermediate temperature. Further, since current flows through the motor, it generates heat. Therefore, the low-temperature and low-pressure gas refrigerant sucked into the compressor 10 is heated by the sealed container and the motor of the compressor 10 and the temperature rises (point F in FIG. 8). Then, it is sucked into the compression chamber and compressed to the second intermediate pressure in the compression chamber (point N in FIG. 8). When the refrigerant is injected into the compression chamber of the compressor 10 via the second bypass pipe 4b, the temperature of the refrigerant in the merged portion of the refrigerant sucked from the suction side flow path and the refrigerant related to the injection in the compression chamber. (Point H in FIG. 8). Then, the compression is further continued in the compression chamber, whereby a high-pressure gas refrigerant is discharged from the compressor 10. For this reason, when the refrigerant is introduced through the second bypass pipe 4b, the temperature of the refrigerant is reduced at the merged portion, and therefore, the discharge temperature with respect to the discharge temperature of the compressor 10 when the refrigerant is not introduced (point G in FIG. 8). Decreases (point I in FIG. 8). For example, even when using a refrigerant whose discharge temperature of the compressor 10 is higher than R410A, such as R32, the discharge temperature of the compressor 10 can be lowered and can be used safely. it can. In addition, reliability is increased.
 ここで、絞り装置14cは、電子式膨張弁等のように、開口面積を変化させられるものが望ましい。電子式膨張弁を使用すれば、絞り装置14cの上流側の冷媒の圧力となる第1中圧を任意の圧力に調整することができ、吐出温度を細かく制御することができる。しかし、絞り装置14cは、これに限るものではない。例えば、小型の電磁弁等の開閉弁を組み合わせて、開度を複数段階で選択制御できるような構成にしてもよい。また、キャピラリチューブにより冷媒の圧損に応じた過冷却を行えるようにした構成にしてもよい。電子式膨張弁よりも制御性は少し悪化するものの、吐出温度を目標に近づけることができる。 Here, it is desirable that the expansion device 14c can change the opening area, such as an electronic expansion valve. If an electronic expansion valve is used, the first intermediate pressure, which is the pressure of the refrigerant upstream of the expansion device 14c, can be adjusted to an arbitrary pressure, and the discharge temperature can be finely controlled. However, the aperture device 14c is not limited to this. For example, an opening / closing valve such as a small electromagnetic valve may be combined so that the opening degree can be selected and controlled in a plurality of stages. In addition, the capillary tube may be configured to perform supercooling according to the refrigerant pressure loss. Although the controllability is slightly worse than that of the electronic expansion valve, the discharge temperature can be brought close to the target.
 また、第1中圧を求める場合に、液冷媒温度検出装置24の検出温度を飽和圧力換算して求める方法について説明した。この方法にすることで、システムを安価に構成することができる。ただ、これに限るものではない。例えば圧力センサーを設け、直接検出した圧力を用いて第1中圧を求めてもよい。絞り装置14aは、開口面積を変化させられる電子式膨張弁等で構成する。そして、制御装置50は、吐出冷媒温度検出装置21が検出する圧縮機10の吐出温度と、高圧検出装置22が検出する高圧の飽和温度との温度差で算出される吐出過熱度が目標の範囲内に入るように、絞り装置14aの開口面積を制御する。また、吐出温度が一定値(例えば110℃等)を超えたと判断したときに、一定の開度分、例えば10パルスずつ、開くように制御してもよい。また、目標温度を一定値ではなく、範囲で設定し、吐出温度が目標温度範囲内(例えば100℃から110℃の間)に入るように制御してもよい。なお、暖房運転モードにおいては、通常は、絞り装置14bは全開状態とし、絞り装置14dは全閉状態とする。起動時等は、絞り装置14bを全閉とする場合もある。 Further, the method for obtaining the detected temperature of the liquid refrigerant temperature detecting device 24 by converting to the saturated pressure when obtaining the first intermediate pressure has been described. By adopting this method, the system can be configured at low cost. However, it is not limited to this. For example, a pressure sensor may be provided, and the first intermediate pressure may be obtained using the directly detected pressure. The expansion device 14a is composed of an electronic expansion valve or the like whose opening area can be changed. Then, the control device 50 sets the discharge superheat degree calculated by the temperature difference between the discharge temperature of the compressor 10 detected by the discharge refrigerant temperature detection device 21 and the high pressure saturation temperature detected by the high pressure detection device 22 to the target range. The opening area of the expansion device 14a is controlled so as to enter the inside. Further, when it is determined that the discharge temperature has exceeded a certain value (for example, 110 ° C., etc.), the discharge temperature may be controlled to be opened by a certain degree of opening, for example, 10 pulses. Alternatively, the target temperature may be set in a range instead of a constant value, and the discharge temperature may be controlled so as to fall within the target temperature range (for example, between 100 ° C. and 110 ° C.). In the heating operation mode, normally, the expansion device 14b is fully opened, and the expansion device 14d is fully closed. When starting up, the expansion device 14b may be fully closed.
 ここで、暖房運転モードを実行する際、熱負荷(暖房負荷)のない利用側熱交換器17(サーモオフを含む)へは冷媒を流す必要がない。しかし、暖房運転モードにおいて、暖房負荷のない利用側熱交換器17と対応する絞り装置16を全閉または冷媒が流れないほどの小さい開度とすると、停止している室内機2の利用側熱交換器17の内部で冷媒が周囲空気によって冷やされて凝縮して溜まり込んでしまい、冷媒回路全体として冷媒不足に陥ってしまう可能性がある。そこで、本実施の形態では、暖房運転時において、熱負荷のない利用側熱交換器17と対応する絞り装置16の開度(開口面積)は全開等の大きい開度にして冷媒が通過できるようにする。このため、冷媒の溜まり込みを防止することができる。 Here, when the heating operation mode is executed, it is not necessary to flow the refrigerant to the use side heat exchanger 17 (including the thermo-off) without the heat load (heating load). However, in the heating operation mode, if the expansion device 16 corresponding to the use-side heat exchanger 17 without a heating load is fully closed or has an opening that is small enough to prevent the refrigerant from flowing, the use-side heat of the stopped indoor unit 2 In the exchanger 17, the refrigerant is cooled by the ambient air, condensed and collected, and the refrigerant circuit as a whole may be short of refrigerant. Therefore, in the present embodiment, during heating operation, the opening (opening area) of the expansion device 16 corresponding to the use-side heat exchanger 17 having no heat load is set to a large opening such as full opening so that the refrigerant can pass therethrough. To. For this reason, accumulation of the refrigerant can be prevented.
 絞り装置14aの開度(開口面積)は、吐出過熱度が目標値(例えば40℃)に近づくように制御するか、または、目標の範囲(例えば30℃から40℃)に入るように制御する。吐出過熱度の目標値は、外気温度に基づいて異なる値に設定し、各外気温度にて、室内機2が発揮する暖房能力の向上度合いがなるべく大きく、かつ、吐出温度が限界温度を超えない値に設定する。 The opening degree (opening area) of the expansion device 14a is controlled so that the discharge superheat degree approaches a target value (for example, 40 ° C.) or is controlled so as to fall within a target range (for example, 30 ° C. to 40 ° C.). . The target value of the discharge superheat degree is set to a different value based on the outside air temperature, the degree of improvement in the heating capacity exhibited by the indoor unit 2 is as large as possible at each outside air temperature, and the discharge temperature does not exceed the limit temperature. Set to value.
 また、絞り装置14aの開度(開口面積)は、圧縮機10の吐出温度が目標値に近づくように制御してもよい。吐出温度の目標値は、吐出温度の限界値よりは低くする。ただ、高い温度の方が室内機2が発揮する暖房能力を大きくすることができるので、なるべく高い温度に設定することが望ましい。例えば、圧縮機10の吐出温度限界が120℃の場合、吐出温度が120℃を超えないようにするため、110℃を超えると圧縮機10の周波数を減速させるようにする。したがって、インジェクションを行って圧縮機10の吐出温度を下げる場合、圧縮機10の周波数が減速する温度である110℃よりも少し低い温度である、100℃から110℃の間の温度(例えば105℃等)に吐出温度の目標値を設定するとよい。ここで、110℃による周波数の減速がかからない場合は、吐出温度の目標値は100℃から120℃の間の温度(例えば115℃等)とするとよい。 Further, the opening degree (opening area) of the expansion device 14a may be controlled so that the discharge temperature of the compressor 10 approaches the target value. The target value of the discharge temperature is set lower than the limit value of the discharge temperature. However, since the heating capability which the indoor unit 2 exhibits can be increased at a higher temperature, it is desirable to set the temperature as high as possible. For example, when the discharge temperature limit of the compressor 10 is 120 ° C., the frequency of the compressor 10 is decelerated when it exceeds 110 ° C. so that the discharge temperature does not exceed 120 ° C. Therefore, when injection is performed to lower the discharge temperature of the compressor 10, a temperature between 100 ° C. and 110 ° C. (eg, 105 ° C.), which is a little lower than 110 ° C., which is the temperature at which the frequency of the compressor 10 decelerates. Etc.) may be set to a target value for the discharge temperature. Here, when the frequency is not decelerated by 110 ° C., the target value of the discharge temperature may be a temperature between 100 ° C. and 120 ° C. (for example, 115 ° C.).
実施の形態2.
 上述した実施の形態1においては、特に示さなかったが、第2冷媒流路切替装置19としては、四方弁を用いるのが一般的である。ただ、これに限るものではなく、二方流路切替弁、三方流路切替弁等を複数個用いて、四方弁と同様の流路切替を行えるように構成してもよい。
Embodiment 2. FIG.
Although not particularly shown in the above-described first embodiment, a four-way valve is generally used as the second refrigerant flow switching device 19. However, the present invention is not limited to this, and a plurality of two-way flow switching valves, three-way flow switching valves, and the like may be used so that the flow switching similar to the four-way valve can be performed.
 また、室内機2が4台接続されている場合を例に説明したが、室内機2の接続台数は何台接続されていても、実施の形態1と同様のことが成り立つ。 Further, although the case where four indoor units 2 are connected has been described as an example, the same thing as in the first embodiment can be established regardless of how many indoor units 2 are connected.
 ここで、上述の実施の形態1では液分離器18の構成の詳細については特に説明しなかった。例えば、1つの入口側流路と2つの出口側流路を持ち、入口側流路から流入した冷媒から液冷媒を分離して、一方の出口側流路から第1バイパス配管4aに流出させることができるものであればよい。また、第1バイパス配管4aに流出する冷媒に多少のガス冷媒が混入していても、ガス冷媒の混入度が、絞り装置の制御に大きな影響を与えない程度であれば、液分離器18における液冷媒の分離効率が100%でなくてもよい。 Here, the details of the configuration of the liquid separator 18 are not particularly described in the first embodiment. For example, it has one inlet-side channel and two outlet-side channels, separates the liquid refrigerant from the refrigerant flowing in from the inlet-side channel, and flows out from one outlet-side channel to the first bypass pipe 4a. Anything that can do. Further, even if some gas refrigerant is mixed in the refrigerant flowing out to the first bypass pipe 4a, if the degree of mixing of the gas refrigerant does not greatly affect the control of the expansion device, the liquid separator 18 The liquid refrigerant separation efficiency may not be 100%.
 また、上述の実施の形態では、室外機1が1台の場合について説明したが、複数台接続するようにしてもよい。このとき、複数の室外機1に流入出する冷媒の分流部分または合流部分が各室外機1の外部に位置していてもよい。 In the above-described embodiment, the case where there is one outdoor unit 1 has been described, but a plurality of units may be connected. At this time, a diversion portion or a merging portion of the refrigerant flowing into and out of the plurality of outdoor units 1 may be located outside each outdoor unit 1.
 また、圧縮機10は、低圧シェル型の圧縮機を使用する場合を例に説明したが、例えば高圧シェル型の圧縮機を使用しても同様の効果を奏する。 Further, although the compressor 10 has been described by way of example using a low-pressure shell type compressor, for example, the same effect can be obtained even when a high-pressure shell type compressor is used.
 上述の実施の形態1においては、R32以外の冷媒について言及しなかった。例えば、R32等のように、吐出温度が高くなりやすい冷媒を使用する場合に本発明の効果が特に大きくなる。ただし、R32に限定するものではない。例えば、R32以外には、R32と、地球温暖化係数が小さく化学式がCF3 CF=CH2 で表されるテトラフルオロプロペン系冷媒であるHFO1234yf、HFO1234ze等との混合冷媒(非共沸混合冷媒)を使用してもよい。例えば冷媒としてR32を使用した場合は、R410Aを使用した場合に対して、同一運転状態において、吐出温度が約20℃上昇する。このため、吐出温度を低下させる必要があり、本発明によるインジェクションの効果が大きい。また、R32とHFO1234yfとの混合冷媒においては、R32の質量比率が62%(62wt%)以上である場合に、R410A冷媒を使用した場合よりも吐出温度が3℃以上高くなる。このため、本発明によるインジェクションにより、吐出温度を低下させるようにする効果が大きい。また、R32とHFO1234zeとの混合冷媒においては、R32の質量比率が43%(43wt%)以上である場合に、R410A冷媒を使用した場合よりも吐出温度が3℃以上高くなる。このため、本発明によるインジェクションにより、吐出温度を低下させるようにする効果が大きい。また、混合冷媒における冷媒種はこれに限るものではなく、その他の冷媒成分を少量含んだ混合冷媒であっても、吐出温度には大きな影響がなく、同様の効果を奏する。また、例えば、R32とHFO1234yfとその他の冷媒を少量含んだ混合冷媒等においても使用でき、吐出温度がR410Aよりも高くなる冷媒であれば、どんな冷媒であっても吐出温度を低下させる必要があり、同様の効果がある。 In Embodiment 1 described above, no refrigerant other than R32 is mentioned. For example, the effect of the present invention is particularly great when a refrigerant, such as R32, that tends to increase the discharge temperature is used. However, it is not limited to R32. For example, in addition to R32 is a R32, a tetrafluoropropene base refrigerant small formula global warming potential is represented by CF 3 CF = CH 2 HFO1234yf, refrigerant mixed with HFO1234ze such (non-azeotropic mixed refrigerant) May be used. For example, when R32 is used as the refrigerant, the discharge temperature rises by about 20 ° C. in the same operation state as compared with the case where R410A is used. For this reason, it is necessary to lower the discharge temperature, and the effect of the injection according to the present invention is great. In the mixed refrigerant of R32 and HFO1234yf, when the mass ratio of R32 is 62% (62 wt%) or more, the discharge temperature is 3 ° C. or more higher than when the R410A refrigerant is used. For this reason, the injection according to the present invention has a great effect of lowering the discharge temperature. In the mixed refrigerant of R32 and HFO1234ze, when the mass ratio of R32 is 43% (43 wt%) or more, the discharge temperature is 3 ° C. or more higher than when the R410A refrigerant is used. For this reason, the injection according to the present invention has a great effect of lowering the discharge temperature. In addition, the refrigerant type in the mixed refrigerant is not limited to this, and even a mixed refrigerant containing a small amount of other refrigerant components has no significant effect on the discharge temperature and has the same effect. Further, for example, any refrigerant that can be used in a mixed refrigerant containing a small amount of R32, HFO1234yf, and other refrigerants, and whose discharge temperature is higher than R410A, needs to lower the discharge temperature. Have the same effect.
 また、一般的に、熱源側熱交換器12および利用側熱交換器17a~17dには、送風によって冷媒の凝縮または蒸発を促進させる送風機が取り付けられていることが多いが、これに限るものではない。例えば利用側熱交換器17a~17dとして、放射を利用したパネルヒータのようなものも用いることができる。また、熱源側熱交換器12としては、水、不凍液等の液体により熱交換する水冷式のタイプの熱交換器を用いることができる。冷媒の放熱または吸熱が行えるものであればどんなものでも用いることができる。 In general, the heat source side heat exchanger 12 and the use side heat exchangers 17a to 17d are often equipped with a blower that promotes condensation or evaporation of the refrigerant by blowing air. Absent. For example, as the use side heat exchangers 17a to 17d, a panel heater using radiation can be used. Further, as the heat source side heat exchanger 12, a water-cooled type heat exchanger that exchanges heat with a liquid such as water or antifreeze can be used. Any material can be used as long as it can dissipate or absorb heat from the refrigerant.
 また、ここでは、室外機1と室内機2との間を配管接続して冷媒を循環させる直膨式空気調和装置を例として説明を行ったが、これに限るものではない。例えば室外機1と室内機2との間に中継機を備える。そして、室外機と中継機の間で冷媒を循環させ、中継機と室内機との間で水、ブライン等の熱媒体を循環させて、中継機において冷媒と熱媒体との熱交換を行って空気調和を行う空気調和装置についても適用することができ、同様の効果を奏する。このような空気調和装置においては、液分離器18の設置は不要となる。 In addition, here, the direct expansion type air conditioner in which the refrigerant is circulated by connecting the pipe between the outdoor unit 1 and the indoor unit 2 has been described as an example, but the present invention is not limited thereto. For example, a repeater is provided between the outdoor unit 1 and the indoor unit 2. Then, the refrigerant is circulated between the outdoor unit and the relay unit, and a heat medium such as water and brine is circulated between the relay unit and the indoor unit, and the relay unit performs heat exchange between the refrigerant and the heat medium. The present invention can also be applied to an air conditioner that performs air conditioning, and has the same effect. In such an air conditioner, installation of the liquid separator 18 becomes unnecessary.
 1 室外機、2,2a,2b,2c,2d 室内機、4a 第1バイパス配管、4b 第2バイパス配管、5 延長配管、6 室外空間、7 室内空間、9 建物、10 圧縮機、11 冷媒流路切替装置、12 熱源側熱交換器、13 過冷却熱交換器、14a,14b,14c,14d 絞り装置、15 アキュムレータ、16,16a,16b,16c,16d 絞り装置、17,17a,17b,17c,17d 利用側熱交換器、18 液分離器、19 第2冷媒流路切替装置、21 吐出冷媒温度検出装置、22 高圧検出装置、23 低圧検出装置、24 液冷媒温度検出装置、25 過冷却熱交換器入口冷媒温度検出装置、26 過冷却熱交換器出口冷媒温度検出装置、27 利用側熱交換器液冷媒温度検出装置、28 利用側熱交換器ガス冷媒温度検出装置、50 制御装置、100 空気調和装置。 1 outdoor unit, 2, 2a, 2b, 2c, 2d indoor unit, 4a first bypass piping, 4b second bypass piping, 5 extension piping, 6 outdoor space, 7 indoor space, 9 building, 10 compressor, 11 refrigerant flow Path switching device, 12 heat source side heat exchanger, 13 supercooling heat exchanger, 14a, 14b, 14c, 14d expansion device, 15 accumulator, 16, 16a, 16b, 16c, 16d expansion device, 17, 17a, 17b, 17c , 17d use side heat exchanger, 18 liquid separator, 19 second refrigerant flow switching device, 21 discharge refrigerant temperature detection device, 22 high pressure detection device, 23 low pressure detection device, 24 liquid refrigerant temperature detection device, 25 supercooling heat Exchanger inlet refrigerant temperature detection device, 26 Supercooling heat exchanger outlet refrigerant temperature detection device, 27 Usage side heat exchanger liquid refrigerant temperature detection device, 28 Use-side heat exchanger gas refrigerant temperature detecting unit, 50 control unit, 100 air conditioner.

Claims (16)

  1.  圧縮室および該圧縮室の内部に冷媒を導入するインジェクションポートを有し、冷媒を圧縮して吐出する圧縮機と、
     前記冷媒の熱交換を行う第1熱交換器と、
     該第1熱交換器を凝縮器とするか蒸発器とするかを切り替える冷媒流路切替装置と、
     第1流路と第2流路とを有し、各流路を通過する前記冷媒を熱交換させて前記第1流路を流れる冷媒を過冷却する過冷却熱交換器と、
     前記冷媒の熱交換を行う第2熱交換器と、
     該第2熱交換器を通過する冷媒の圧力を調整する第1絞り装置と
    を配管接続して冷媒を循環させる冷媒回路を構成し、
     前記第1熱交換器と前記第2熱交換器との間の配管と前記過冷却熱交換器の前記第2流路の冷媒流入側および前記過冷却熱交換器の前記第2流路の冷媒流出側と前記圧縮機の冷媒吸入側の配管とを接続する第1バイパス配管と、
     該第1バイパス配管において、前記第1熱交換器と前記第2熱交換器との間の配管から前記過冷却熱交換器の前記第2流路に流れる前記冷媒の圧力を調整する第2絞り装置と、
     該第1バイパス配管において、前記過冷却熱交換器の前記第2流路から前記圧縮機の冷媒吸入側の配管に流れる前記冷媒の圧力を調整する第3絞り装置と、
     前記過冷却熱交換器の前記第2流路の冷媒流出側と前記インジェクションポートとを接続する第2バイパス配管と、
     該第2バイパス配管を流れる前記冷媒の流量を調整する第4絞り装置とを備え、
     前記第1熱交換器が凝縮器として作用しているときに、前記第2絞り装置および前記第3絞り装置を介して前記第1バイパス配管を通過させて前記圧縮機の吸入側配管に冷媒を流しつつ、前記第4絞り装置を介して前記第2バイパス配管を通過させて前記圧縮室内に冷媒を導入させるように制御し、前記第1熱交換器が蒸発器として作用しているときに、前記第4絞り装置を介して前記第2バイパス配管を通過させて前記圧縮室内に冷媒を導入させ、かつ、前記第3絞り装置の開度を全閉または冷媒がほとんど流れない開度に制御する空気調和装置。
    A compressor having a compression chamber and an injection port for introducing the refrigerant into the compression chamber, and compressing and discharging the refrigerant;
    A first heat exchanger that performs heat exchange of the refrigerant;
    A refrigerant flow switching device for switching whether the first heat exchanger is a condenser or an evaporator;
    A supercooling heat exchanger that has a first flow path and a second flow path, heat-exchanges the refrigerant that passes through each flow path, and supercools the refrigerant that flows through the first flow path;
    A second heat exchanger for exchanging heat of the refrigerant;
    A refrigerant circuit for circulating the refrigerant by connecting a pipe to the first expansion device that adjusts the pressure of the refrigerant passing through the second heat exchanger;
    The piping between the first heat exchanger and the second heat exchanger, the refrigerant inflow side of the second flow path of the supercooling heat exchanger, and the refrigerant of the second flow path of the supercooling heat exchanger A first bypass pipe connecting the outflow side and the refrigerant suction side pipe of the compressor;
    In the first bypass pipe, a second throttle for adjusting the pressure of the refrigerant flowing from the pipe between the first heat exchanger and the second heat exchanger to the second flow path of the supercooling heat exchanger. Equipment,
    A third expansion device that adjusts the pressure of the refrigerant flowing from the second flow path of the supercooling heat exchanger to the refrigerant suction side pipe of the compressor in the first bypass pipe;
    A second bypass pipe connecting the refrigerant outflow side of the second flow path of the supercooling heat exchanger and the injection port;
    A fourth expansion device that adjusts the flow rate of the refrigerant flowing through the second bypass pipe,
    When the first heat exchanger acts as a condenser, the first bypass pipe is passed through the second throttling device and the third throttling device to supply the refrigerant to the suction side pipe of the compressor. While flowing, controlling the refrigerant to be introduced into the compression chamber through the second bypass pipe through the fourth expansion device, and when the first heat exchanger acts as an evaporator, The refrigerant is introduced into the compression chamber through the second bypass pipe through the fourth expansion device, and the opening of the third expansion device is controlled to be fully closed or the amount of refrigerant hardly flows. Air conditioner.
  2.  前記圧縮機の冷媒吐出側における冷媒の温度である吐出温度が、同条件においてR410Aよりも高温になる冷媒を冷媒に用い、
     前記過冷却熱交換器の第1流路の冷媒流出側の冷媒の過冷却度を目標値に近づけるように前記第2絞り装置の開度を制御し、前記吐出温度を目標値に近づけるように前記第4絞り装置の開度を制御する制御装置をさらに備える請求項1に記載の空気調和装置。
    A refrigerant whose discharge temperature, which is the temperature of the refrigerant on the refrigerant discharge side of the compressor, is higher than R410A under the same conditions, is used as the refrigerant.
    The opening degree of the second expansion device is controlled so that the degree of supercooling of the refrigerant on the refrigerant outflow side of the first flow path of the supercooling heat exchanger is close to the target value, and the discharge temperature is made close to the target value. The air conditioning apparatus according to claim 1, further comprising a control device that controls an opening degree of the fourth throttle device.
  3.  前記圧縮機の吐出温度を検出する吐出温度検出手段と、
     前記圧縮機の冷媒吐出側における前記冷媒の圧力を検出する高圧検出手段と、
     前記過冷却熱交換器の第1流路の冷媒流出側における冷媒の温度を検出する液冷媒温度検出手段と
    をさらに備え、
     前記制御装置は、前記高圧検出手段の検出に係る圧力の飽和温度と前記液冷媒温度検出装置の検出に係る温度との温度差である過冷却度を目標値に近づけるように前記第2絞り装置の開度を制御し、前記吐出温度検出手段の検出に係る吐出温度を目標値に近づけるように前記第4絞り装置の開度を制御する請求項2に記載の空気調和装置。
    A discharge temperature detecting means for detecting a discharge temperature of the compressor;
    High pressure detecting means for detecting the pressure of the refrigerant on the refrigerant discharge side of the compressor;
    Liquid refrigerant temperature detection means for detecting the temperature of the refrigerant on the refrigerant outflow side of the first flow path of the supercooling heat exchanger,
    The control device is configured to adjust the degree of supercooling, which is a temperature difference between the saturation temperature of the pressure related to detection by the high pressure detection means and the temperature related to detection by the liquid refrigerant temperature detection device, to a target value. The air conditioning apparatus according to claim 2, wherein the opening degree of the fourth throttle device is controlled so that the discharge temperature related to detection by the discharge temperature detecting means approaches a target value.
  4.  前記圧縮機の吐出温度を検出する吐出温度検出手段と、
     前記圧縮機の冷媒吐出側における前記冷媒の圧力を検出する高圧検出手段と、
     前記過冷却熱交換器の第1流路の冷媒流出側における冷媒の温度を検出する液冷媒温度検出手段と
    をさらに備え、
     前記制御装置は、前記高圧検出手段の検出に係る圧力の飽和温度と前記液冷媒温度検出装置の検出に係る温度との温度差である過冷却度を目標値に近づけるように前記第2絞り装置の開度を制御し、前記第1熱交換器が凝縮器として作用しているときは、前記吐出温度検出手段の検出に係る吐出温度を目標値に近づけるように前記第4絞り装置の開度を制御し、前記第1熱交換器が蒸発器として作用しているときは、前記吐出温度と前記高圧検出手段の検出に係る圧力の飽和温度との差である吐出過熱度を目標値に近づけるように前記第4絞り装置の開度を制御する請求項2に記載の空気調和装置。
    A discharge temperature detecting means for detecting a discharge temperature of the compressor;
    High pressure detecting means for detecting the pressure of the refrigerant on the refrigerant discharge side of the compressor;
    Liquid refrigerant temperature detection means for detecting the temperature of the refrigerant on the refrigerant outflow side of the first flow path of the supercooling heat exchanger,
    The control device is configured to adjust the degree of supercooling, which is a temperature difference between the saturation temperature of the pressure related to detection by the high pressure detection means and the temperature related to detection by the liquid refrigerant temperature detection device, to a target value. When the first heat exchanger is acting as a condenser, the opening of the fourth expansion device is adjusted so that the discharge temperature related to detection by the discharge temperature detecting means approaches the target value. When the first heat exchanger functions as an evaporator, the discharge superheat degree, which is the difference between the discharge temperature and the saturation temperature of the pressure detected by the high pressure detection means, is brought close to the target value. The air conditioner according to claim 2, wherein the opening degree of the fourth throttle device is controlled as described above.
  5.  前記制御装置は、前記第4絞り装置に連動して前記第3絞り装置を制御し、前記第4絞り装置の制御後における開度若しくは開度の変化量または開口面積若しくは開口面積の変化量に基づいて、前記第3絞り装置の開度若しくは開度の変化量または開口面積若しくは開口面積の変化量を演算する請求項3または請求項4に記載の空気調和装置。 The control device controls the third diaphragm device in conjunction with the fourth diaphragm device, and adjusts the opening degree, the change amount of the opening degree, or the opening area or the change amount of the opening area after the control of the fourth diaphragm device. 5. The air conditioner according to claim 3, wherein the air conditioner calculates an opening degree, a change amount of the opening degree, an opening area, or a change amount of the opening area based on the third expansion device.
  6.  前記制御装置は、前記第4絞り装置の開口面積を大きくする制御を行うときは、前記第3絞り装置の開口面積を小さくする制御を行い、前記第4絞り装置の開口面積を小さくする制御を行うときは、前記第3絞り装置の開口面積を大きくする制御を行う請求項5に記載の空気調和装置。 When the control device performs control to increase the aperture area of the fourth diaphragm device, the control device performs control to reduce the aperture area of the third diaphragm device, and performs control to reduce the aperture area of the fourth diaphragm device. The air conditioner according to claim 5, wherein when performing, control is performed to increase an opening area of the third expansion device.
  7.  前記制御装置は、前記第3絞り装置の開口面積と前記第4絞り装置の開口面積との合計が、前記第3絞り装置の開口面積と前記第4絞り装置の開口面積とを加えた値の±20%の範囲内に収まるように前記第3絞り装置の開度を設定する、または、前記第3絞り装置の開度と前記第4開度との合計が、前記第3絞り装置の開度と前記第4絞り装置の開度とを加えた値の±20%の範囲内に収まるように前記第3絞り装置の開度を設定することを特徴とする請求項6に記載の空気調和装置。 In the control device, the sum of the aperture area of the third aperture device and the aperture area of the fourth aperture device is a value obtained by adding the aperture area of the third aperture device and the aperture area of the fourth aperture device. The opening of the third throttling device is set so as to be within a range of ± 20%, or the sum of the opening of the third throttling device and the fourth opening is the opening of the third throttling device. 7. The air conditioner according to claim 6, wherein the opening degree of the third throttling device is set to fall within a range of ± 20% of a value obtained by adding the degree and the opening degree of the fourth throttling device. apparatus.
  8.  前記制御装置は、前記第3絞り装置の開口面積と前記第4絞り装置の開口面積との合計が、前記第3絞り装置の開口面積と前記第4絞り装置の開口面積とを加えた値の±10%の範囲内に収まるように前記第3絞り装置の開度を設定する、または、前記第3絞り装置の開度と前記第4開度との合計が、前記第3絞り装置の開度と前記第4絞り装置の開度とを加えた値の±10%の範囲内に収まるように前記第3絞り装置の開度を設定することを特徴とする請求項7に記載の空気調和装置。 In the control device, the sum of the aperture area of the third aperture device and the aperture area of the fourth aperture device is a value obtained by adding the aperture area of the third aperture device and the aperture area of the fourth aperture device. The opening of the third throttling device is set so as to be within a range of ± 10%, or the sum of the opening of the third throttling device and the fourth opening is the opening of the third throttling device. 8. The air conditioner according to claim 7, wherein the opening degree of the third throttling device is set so as to be within a range of ± 10% of a value obtained by adding the degree and the opening degree of the fourth throttling device. apparatus.
  9.  前記制御装置は、前記第3絞り装置の開口面積と前記第4絞り装置の開口面積との合計が、前記第3絞り装置の開口面積と前記第4絞り装置の開口面積とを加えた値の±1%の範囲内に収まるように前記第3絞り装置の開度を設定する、または、前記第3絞り装置の開度と前記第4開度との合計が、前記第3絞り装置の開度と前記第4絞り装置の開度とを加えた値の±1%の範囲内に収まるように前記第3絞り装置の開度を設定することを特徴とする請求項8に記載の空気調和装置。 In the control device, the sum of the aperture area of the third aperture device and the aperture area of the fourth aperture device is a value obtained by adding the aperture area of the third aperture device and the aperture area of the fourth aperture device. The opening of the third throttling device is set so as to be within a range of ± 1%, or the sum of the opening of the third throttling device and the fourth opening is the opening of the third throttling device. 9. The air conditioner according to claim 8, wherein the opening degree of the third throttling device is set to be within a range of ± 1% of a value obtained by adding the degree and the opening degree of the fourth throttling device. apparatus.
  10.  R32または質量比率においてR32を62%以上含む混合冷媒を用いる請求項1から請求項9のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 9, wherein a mixed refrigerant containing R32 or 62% or more of R32 in mass ratio is used.
  11.  前記制御装置は、前記吐出温度の目標値を、100℃から120℃の間の値に設定し、前記吐出温度の目標値に基づいて、前記第4絞り装置の開度を調整する請求項2から請求項10のいずれか一項に記載の空気調和装置。 The control device sets the target value of the discharge temperature to a value between 100 ° C. and 120 ° C., and adjusts the opening of the fourth expansion device based on the target value of the discharge temperature. The air conditioning apparatus according to any one of claims 10 to 10.
  12.  前記制御装置は、前記吐出温度の目標値を、100℃から110℃の間の値に設定し、前記吐出温度の目標値に基づいて、前記第4絞り装置の開度を調整する請求項11に記載の空気調和装置。 The control device sets the target value of the discharge temperature to a value between 100 ° C. and 110 ° C., and adjusts the opening of the fourth throttle device based on the target value of the discharge temperature. The air conditioning apparatus described in 1.
  13.  前記冷媒回路において、前記圧縮機の吸入側と接続され、余剰冷媒を貯留するアキュムレータをさらに備え、前記第1バイパス配管を、前記アキュムレータの冷媒流入側の配管と接続し、
     前記圧縮機、前記アキュムレータ、前記過冷却熱交換器、前記第2絞り装置、前記第3絞り装置、前記第4絞り装置、前記第1熱交換器、前記第1バイパス配管および前記第2バイパス配管を室外機に収容する請求項1から請求項12のいずれか一項に記載の空気調和装置
    The refrigerant circuit further includes an accumulator that is connected to the suction side of the compressor and stores excess refrigerant, the first bypass pipe is connected to a refrigerant inflow side of the accumulator,
    The compressor, the accumulator, the supercooling heat exchanger, the second expansion device, the third expansion device, the fourth expansion device, the first heat exchanger, the first bypass pipe, and the second bypass pipe The air conditioning apparatus according to any one of claims 1 to 12, wherein the air conditioner is accommodated in an outdoor unit.
  14.  前記第1熱交換器と前記第2熱交換器との間の流路に、通過する冷媒から液冷媒を分離可能な液分離器をさらに備え、
     該液分離器が分離した液冷媒の一部を前記第1バイパス配管に通過させる請求項1から請求項13のいずれか一項に記載の空気調和装置。
    A liquid separator capable of separating the liquid refrigerant from the refrigerant passing through the flow path between the first heat exchanger and the second heat exchanger;
    The air conditioning apparatus according to any one of claims 1 to 13, wherein a part of the liquid refrigerant separated by the liquid separator is passed through the first bypass pipe.
  15.  前記過冷却熱交換器の第2流路の冷媒流出側に、二相冷媒を前記第1バイパス配管と前記第2バイパス配管とに均等に分配する二相冷媒分岐部をさらに備える請求項1から請求項14のいずれか一項に記載の空気調和装置。 From the refrigerant | coolant outflow side of the 2nd flow path of the said supercooling heat exchanger, the two-phase refrigerant | coolant branch part which distributes a two-phase refrigerant | coolant equally to a said 1st bypass piping and a said 2nd bypass piping is further provided. The air conditioning apparatus according to claim 14.
  16.  二相冷媒分岐部は、T型またはY型の継手であり、重力方向においてほぼ下側から上側に向かって冷媒が流入し、重力方向においてほぼ同じ高さで分配されるような向きに設置する請求項15に記載の空気調和装置。 The two-phase refrigerant branch is a T-type or Y-type joint, and is installed in such a direction that the refrigerant flows from the lower side to the upper side in the direction of gravity and is distributed at substantially the same height in the direction of gravity. The air conditioning apparatus according to claim 15.
PCT/JP2013/073341 2013-08-30 2013-08-30 Air conditioner WO2015029220A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015533895A JP6017048B2 (en) 2013-08-30 2013-08-30 Air conditioner
PCT/JP2013/073341 WO2015029220A1 (en) 2013-08-30 2013-08-30 Air conditioner
GB1521701.1A GB2533042B (en) 2013-08-30 2013-08-30 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073341 WO2015029220A1 (en) 2013-08-30 2013-08-30 Air conditioner

Publications (1)

Publication Number Publication Date
WO2015029220A1 true WO2015029220A1 (en) 2015-03-05

Family

ID=52585834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073341 WO2015029220A1 (en) 2013-08-30 2013-08-30 Air conditioner

Country Status (3)

Country Link
JP (1) JP6017048B2 (en)
GB (1) GB2533042B (en)
WO (1) WO2015029220A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106288080A (en) * 2016-08-19 2017-01-04 广东美的暖通设备有限公司 Air injection enthalpy-increasing air conditioning system
EP3290825A4 (en) * 2015-04-28 2018-12-19 Daikin Industries, Ltd. Refrigeration apparatus
WO2020202466A1 (en) * 2019-04-02 2020-10-08 三菱電機株式会社 Heat source-side unit and refrigeration cycle device
CN113646593A (en) * 2019-04-05 2021-11-12 三菱电机株式会社 Refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111059681A (en) * 2019-11-20 2020-04-24 珠海格力电器股份有限公司 Compressor air-supplementing enthalpy-increasing system with enthalpy-increasing function and control method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106368A (en) * 2003-09-30 2005-04-21 Daikin Ind Ltd Cooling medium distribution mechanism, and air conditioner
WO2007105511A1 (en) * 2006-03-06 2007-09-20 Daikin Industries, Ltd. Refrigerating apparatus
JP2007263443A (en) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp Air conditioner
JP2008180420A (en) * 2007-01-23 2008-08-07 Mitsubishi Electric Corp Operation control method for air conditioning system, and air conditioning system
WO2009154149A1 (en) * 2008-06-16 2009-12-23 三菱電機株式会社 Non‑azeotropic refrigerant mixture and refrigeration cycle device
JP2011252637A (en) * 2010-06-01 2011-12-15 Panasonic Corp Refrigeration cycle device and its control method
JP2012189238A (en) * 2011-03-09 2012-10-04 Mitsubishi Electric Corp Refrigerating air conditioning apparatus
WO2013001688A1 (en) * 2011-06-29 2013-01-03 三菱電機株式会社 Refrigeration-cycle device
WO2013069044A1 (en) * 2011-11-07 2013-05-16 三菱電機株式会社 Air-conditioning apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252637A (en) * 2000-03-13 2001-09-18 Idemitsu Kosan Co Ltd Method for treating halogenated organic compound- containing contaminated sold
WO2014128831A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
WO2014141375A1 (en) * 2013-03-12 2014-09-18 三菱電機株式会社 Air conditioner
CN105008820B (en) * 2013-03-12 2017-03-08 三菱电机株式会社 Air-conditioning device
JP5968519B2 (en) * 2013-03-12 2016-08-10 三菱電機株式会社 Air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106368A (en) * 2003-09-30 2005-04-21 Daikin Ind Ltd Cooling medium distribution mechanism, and air conditioner
WO2007105511A1 (en) * 2006-03-06 2007-09-20 Daikin Industries, Ltd. Refrigerating apparatus
JP2007263443A (en) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp Air conditioner
JP2008180420A (en) * 2007-01-23 2008-08-07 Mitsubishi Electric Corp Operation control method for air conditioning system, and air conditioning system
WO2009154149A1 (en) * 2008-06-16 2009-12-23 三菱電機株式会社 Non‑azeotropic refrigerant mixture and refrigeration cycle device
JP2011252637A (en) * 2010-06-01 2011-12-15 Panasonic Corp Refrigeration cycle device and its control method
JP2012189238A (en) * 2011-03-09 2012-10-04 Mitsubishi Electric Corp Refrigerating air conditioning apparatus
WO2013001688A1 (en) * 2011-06-29 2013-01-03 三菱電機株式会社 Refrigeration-cycle device
WO2013069044A1 (en) * 2011-11-07 2013-05-16 三菱電機株式会社 Air-conditioning apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3290825A4 (en) * 2015-04-28 2018-12-19 Daikin Industries, Ltd. Refrigeration apparatus
CN106288080A (en) * 2016-08-19 2017-01-04 广东美的暖通设备有限公司 Air injection enthalpy-increasing air conditioning system
CN106288080B (en) * 2016-08-19 2019-02-19 广东美的暖通设备有限公司 Air injection enthalpy-increasing air-conditioning system
WO2020202466A1 (en) * 2019-04-02 2020-10-08 三菱電機株式会社 Heat source-side unit and refrigeration cycle device
CN113646593A (en) * 2019-04-05 2021-11-12 三菱电机株式会社 Refrigeration cycle device
CN113646593B (en) * 2019-04-05 2022-11-15 三菱电机株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
GB2533042A (en) 2016-06-08
GB2533042B (en) 2020-08-12
JP6017048B2 (en) 2016-10-26
GB201521701D0 (en) 2016-01-20
JPWO2015029220A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP5855312B2 (en) Air conditioner
JP5992089B2 (en) Air conditioner
JP6685409B2 (en) Air conditioner
JP6005255B2 (en) Air conditioner
JP5657030B2 (en) Air conditioner
JP5992088B2 (en) Air conditioner
WO2015029160A1 (en) Air conditioner
US10208987B2 (en) Heat pump with an auxiliary heat exchanger for compressor discharge temperature control
JP5968519B2 (en) Air conditioner
JPWO2014192140A1 (en) Air conditioner
WO2013179334A1 (en) Air conditioning device
WO2013069351A1 (en) Air-conditioning apparatus
EP3109566B1 (en) Air conditioning device
JP6017048B2 (en) Air conditioner
JP6017049B2 (en) Air conditioner
JP5885753B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015533895

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201521701

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20130830

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892189

Country of ref document: EP

Kind code of ref document: A1