JP2007263443A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2007263443A
JP2007263443A JP2006088394A JP2006088394A JP2007263443A JP 2007263443 A JP2007263443 A JP 2007263443A JP 2006088394 A JP2006088394 A JP 2006088394A JP 2006088394 A JP2006088394 A JP 2006088394A JP 2007263443 A JP2007263443 A JP 2007263443A
Authority
JP
Japan
Prior art keywords
control device
refrigerant
stage compressor
flow rate
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006088394A
Other languages
Japanese (ja)
Other versions
JP4675810B2 (en
Inventor
Daisuke Shimamoto
大祐 嶋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006088394A priority Critical patent/JP4675810B2/en
Publication of JP2007263443A publication Critical patent/JP2007263443A/en
Application granted granted Critical
Publication of JP4675810B2 publication Critical patent/JP4675810B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To bring out higher heating capability by conducting the control to increase the quantity of a refrigerant sucked in a high stage compressor and a low stage compressor to solve a problem with a prior art wherein it is difficult to individually control a sub-cool quantity in heating a plurality of interior units to cause insufficient capability of individual interior units. <P>SOLUTION: This air conditioner includes a refrigerant circuit having the low stage compressor 1a, the high stage compressor 1b and a plurality of interior units , wherein the air condition further includes: an injection piping 18 diverging from the refrigerant circuit from first and second flow control devices 4A, 4B to be connected to the suction side of the high stage compressor 1b; a second flow control device 6 disposed in the injection piping 18; a third flow control device 13 disposed in the refrigerant circuit to the heat source side heat exchanger 3; a first pressure detecting means 10 for detecting the refrigerant pressure of the refrigerant circuit to the third flow control device 13; and a control device 20 for controlling the opening of the third flow control device 13 based on the detection value of the first pressure detecting means 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、低段側圧縮機と高段側圧縮機の間に凝縮器で凝縮された冷媒の一部を流入させる空気調和装置に関するものである。   The present invention relates to an air conditioner that allows a part of refrigerant condensed by a condenser to flow between a low-stage compressor and a high-stage compressor.

従来この種の空気調和装置は例えば下記の特許文献1に記載されたものが知られている。特許文献1に記載の空気調和装置を図9に示す。この空気調和装置は、第1圧縮室103および第2圧縮室104を有する圧縮機101、利用側熱交換器(凝縮器)110、流量制御装置111、気液分離機125、流量制御装置114、および、熱源機側熱交換器(蒸発器)115を順次環状に配管接続してなる冷媒回路を有している。また、第1圧縮室の吐出口105を第2圧縮室の吸入口107と圧縮機101内に通じる配管とに切り換え可能に接続する切り換え手段118と、圧縮機101の並列運転時に第1圧縮室103をバイパスさせて冷媒を流すバイパス回路122とを備えている。   Conventionally, an air conditioner of this type is known, for example, described in Patent Document 1 below. The air conditioning apparatus described in Patent Document 1 is shown in FIG. This air conditioner includes a compressor 101 having a first compression chamber 103 and a second compression chamber 104, a use side heat exchanger (condenser) 110, a flow rate control device 111, a gas-liquid separator 125, a flow rate control device 114, And it has the refrigerant circuit which connects the heat-source-unit side heat exchanger (evaporator) 115 by cyclic | annular piping connection. Further, switching means 118 that connects the discharge port 105 of the first compression chamber to the suction port 107 of the second compression chamber and a pipe that communicates with the compressor 101, and the first compression chamber when the compressor 101 is operated in parallel. And a bypass circuit 122 that causes the refrigerant to flow by bypassing 103.

特開平5−149634号公報JP-A-5-149634

上記従来の空気調和装置においては、複数の室内機を個別に暖房時サブクール量を制御するシステムであって室外機と室内機の間に高低差がある場合や配管長が長い場合に、流量制御装置111と流量制御装置114の間の圧力が上がりすぎたとき、流量制御装置111前後の圧力差が小さくなり複数の室内機の暖房時サブクール量を個別にコントロールすることが困難で、個別室内機の暖房能力不足につながるおそれがある。また、逆に流量制御装置111と流量制御装置114の間の圧力が下がり過ぎると、弁124から圧縮機101へ戻る冷媒量が低下して暖房能力不足につながることもある。   In the conventional air conditioner described above, the flow control is performed when there is a difference in height between the outdoor unit and the indoor unit, or when the piping length is long, in a system that individually controls the subcooling amount during heating of a plurality of indoor units. When the pressure between the device 111 and the flow control device 114 increases too much, the pressure difference between the front and rear of the flow control device 111 becomes small, and it is difficult to individually control the heating subcooling amounts of the plurality of indoor units. May lead to insufficient heating capacity. Conversely, if the pressure between the flow control device 111 and the flow control device 114 decreases too much, the amount of refrigerant returning from the valve 124 to the compressor 101 may decrease, leading to insufficient heating capacity.

また、複数の室内機が運転と停止を繰り返した場合は、圧縮機の起動と停止が頻繁となり、弁24を任意の時間閉状態にしないと、室内機で凝縮できなかったガス冷媒が圧縮機へ戻るため、圧縮機の吐出温度が上昇して運転が安定しないという不具合があった。 In addition, when a plurality of indoor units are repeatedly operated and stopped, the compressor is frequently started and stopped, and the gas refrigerant that cannot be condensed in the indoor unit unless the valve 24 is closed for an arbitrary time. Therefore, there is a problem that the discharge temperature of the compressor rises and the operation is not stable.

上記した課題を解決するために、この発明に係る空気調和装置は、低段側圧縮機と、上記低段側圧縮機からの冷媒を圧縮し吐出する高段側圧縮機と、並列接続された利用側熱交換器および第1の流量制御装置の複数セットと、熱源機側熱交換器とが順次環状に接続された冷媒回路を有するとともに、上記第1の流量制御装置から上記熱源機側熱交換器までの冷媒回路より分岐して上記高段側圧縮機の吸込側につながるインジェクション配管と、上記インジェクション配管に設けられた第2の流量制御装置と、上記インジェクション配管の分岐位置から上記熱源機側熱交換器までの冷媒回路に設けられた第3の流量制御装置と、上記インジェクション配管の分岐位置から上記第3の流量制御装置までの冷媒回路の冷媒圧力を検知する第1の圧力検知手段と、上記第1の圧力検知手段の検知値を当該第1の圧力検知手段の制御目標値に近づけるように上記第3の流量制御装置の開度を制御する流量制御装置制御手段とを備えた構成にしてある。 In order to solve the above-described problems, an air conditioner according to the present invention is connected in parallel with a low-stage compressor and a high-stage compressor that compresses and discharges the refrigerant from the low-stage compressor. A plurality of sets of use side heat exchangers and first flow rate control devices, and a heat source machine side heat exchanger have a refrigerant circuit sequentially connected in an annular shape, and the heat source machine side heat from the first flow rate control device. An injection pipe branched from the refrigerant circuit to the exchanger and connected to the suction side of the high-stage compressor, a second flow rate control device provided in the injection pipe, and the heat source unit from the branch position of the injection pipe A third flow control device provided in the refrigerant circuit to the side heat exchanger, and a first pressure for detecting the refrigerant pressure in the refrigerant circuit from the branch position of the injection pipe to the third flow control device And a flow control device control means for controlling the opening of the third flow control device so that the detection value of the first pressure detection device approaches the control target value of the first pressure detection device. It has a configuration provided.

この発明の空気調和装置によれば、第1の流量制御装置から上記熱源機側熱交換器までの冷媒回路と高段側圧縮機の吸込側とを第2の流量制御装置を有するインジェクション配管でつなぎ、インジェクション配管の分岐位置から熱源機側熱交換器までの冷媒回路に第3の流量制御装置を設け、インジェクション配管の分岐位置から第3の流量制御装置までの冷媒回路の冷媒圧力を第1の圧力検知手段で検知し、第1の圧力検知手段の検知値を第1の圧力検知手段の制御目標値に近づけるように第3の流量制御装置の開度を制御するようになっているので、利用側熱交換器での凝縮温度が低く暖房能力が高くない場合に、第3の流量制御装置の開度を絞ってインジェクション配管への冷媒流入量を多くすることにより、高段側圧縮機および低段側圧縮機に吸い込ませる冷媒の量を多くする制御が可能となって、より高い暖房能力を引き出すことができる。   According to the air conditioner of the present invention, the refrigerant circuit from the first flow rate control device to the heat source unit side heat exchanger and the suction side of the high stage compressor are injected by the injection pipe having the second flow rate control device. The third flow rate control device is provided in the refrigerant circuit from the branch position of the injection pipe to the heat source unit side heat exchanger, and the refrigerant pressure of the refrigerant circuit from the branch position of the injection pipe to the third flow rate control device is set to the first. And the opening degree of the third flow control device is controlled so that the detected value of the first pressure detecting means approaches the control target value of the first pressure detecting means. When the condensing temperature in the use side heat exchanger is low and the heating capacity is not high, the high flow side compressor is reduced by reducing the opening of the third flow control device and increasing the amount of refrigerant flowing into the injection pipe. And low stage Making it possible to control to increase the amount of refrigerant that sucked into the compressor, it is possible to draw a higher heating capacity.

実施の形態1.
以下、この発明に係る実施形態1を説明する。
図1はこの発明の実施形態1に係る空気調和装置の冷媒回路を中心とする全体構成の一例を示すものである。
図1において、この空気調和装置は、低段側圧縮機1aと、低段側圧縮機1aからの冷媒を更に圧縮して吐出する高段側圧縮機1bと、冷媒回路の冷媒流路を暖房用と冷房用に切り換える四方弁2と、並列接続された、利用側熱交換器5Aおよび第1の流量制御装置4Aのセット並びに利用側熱交換器5Bおよび第1の流量制御装置4Bのセットと、気液分離器14と、第3の流量制御装置13と、熱源機側熱交換器3とがこれらの順で環状に配管接続された冷媒回路を有している。
Embodiment 1 FIG.
Embodiment 1 according to the present invention will be described below.
FIG. 1 shows an example of an overall configuration centering on a refrigerant circuit of an air-conditioning apparatus according to Embodiment 1 of the present invention.
In FIG. 1, this air conditioner heats a low-stage compressor 1a, a high-stage compressor 1b that further compresses and discharges the refrigerant from the low-stage compressor 1a, and a refrigerant flow path of the refrigerant circuit. A four-way valve 2 for switching between cooling and cooling, a set of the use side heat exchanger 5A and the first flow rate control device 4A, and a set of the use side heat exchanger 5B and the first flow rate control device 4B connected in parallel. The gas-liquid separator 14, the third flow rate control device 13, and the heat-source-unit-side heat exchanger 3 have a refrigerant circuit that is pipe-connected in this order.

第1の流量制御装置4A,4Bから熱源機側熱交換器3までの冷媒回路に配置された気液分離器14からは、インジェクション配管18が分岐し低段側圧縮機1a吐出側と高段側圧縮機1b吸込側とを接続する接続配管22につながっている。インジェクション配管18の管端開口18aは気液分離装置14内の液冷媒吸上げ位置に配置されている。インジェクション配管18には第2の流量制御装置6と逆止弁12が設けられている。逆止弁12は冷媒を接続配管22へ向かう方向にのみ流通を許容する向きでインジェクション配管18に配置されている。第2の流量制御装置6と逆止弁12の間のインジェクション配管18には、インジェクション配管18の熱交換部7Bを通る冷媒を、気液分離器14から熱源機側熱交換器3までの冷媒回路の熱交換部7Aを通る冷媒と熱交換させる例えば二重管式のインジェクション用熱交換器7が設けられている。インジェクション用熱交換器7の熱交換部7Bと逆止弁12の間のインジェクション配管18は、電磁弁11を有する接続配管19を介して低段側圧縮機1a吸込側の冷媒回路と接続されている。インジェクション用熱交換器7から第3の流量制御装置13までの冷媒回路には、その位置の冷媒圧力を検知する第1の圧力検知手段10が設けられている。 From the gas-liquid separator 14 arranged in the refrigerant circuit from the first flow rate control devices 4A, 4B to the heat source unit side heat exchanger 3, the injection pipe 18 branches and the low stage side compressor 1a discharge side and the high stage are branched. It is connected to a connecting pipe 22 that connects the side compressor 1b suction side. The pipe end opening 18 a of the injection pipe 18 is disposed at the liquid refrigerant suction position in the gas-liquid separator 14. The injection pipe 18 is provided with a second flow rate control device 6 and a check valve 12. The check valve 12 is arranged in the injection pipe 18 in such a direction that allows the refrigerant to flow only in the direction toward the connection pipe 22. In the injection pipe 18 between the second flow control device 6 and the check valve 12, the refrigerant passing through the heat exchanging portion 7 </ b> B of the injection pipe 18 is transferred from the gas-liquid separator 14 to the heat source unit side heat exchanger 3. For example, a double-pipe type heat exchanger 7 for injection is provided to exchange heat with the refrigerant passing through the heat exchanger 7A of the circuit. The injection pipe 18 between the heat exchanging part 7B of the heat exchanger 7 for injection and the check valve 12 is connected to a refrigerant circuit on the suction side of the low-stage compressor 1a via a connection pipe 19 having the solenoid valve 11. Yes. The refrigerant circuit from the heat exchanger for injection 7 to the third flow rate control device 13 is provided with first pressure detecting means 10 for detecting the refrigerant pressure at that position.

また、高段側圧縮機1bの吐出側には、高圧冷媒圧力を検知する第2の圧力検知手段8と、高圧冷媒温度を検知する第1の温度検知手段15が設けられている。そして、第1の流量制御装置4A,4Bにはそれぞれの開度を検知する絞り開度検知手段21A,21Bが配備されている。利用側熱交換器5A、5Bと第1の流量制御装置4A,4Bの間の冷媒回路には第2の温度検知手段16A,16Bがそれぞれ設けられている。室外機の外部には室外温度を検知する第3の温度検知手段17が配備されている。そして、制御装置20は本実施形態に係る制御を行なう装置である。
尚、この空気調和装置において、圧縮機1a,1b、四方弁2、熱源機側熱交換器3、気液分離器14、制御装置20などは熱源機に配備されている。また、第1の流量制御装置4Aおよび利用側熱交換器5Aのセットは一方の室内機に配備され、第1の流量制御装置4Bおよび利用側熱交換器5Bのセットは他方の室内機に配備されている。
Further, on the discharge side of the high-stage compressor 1b, a second pressure detecting means 8 for detecting the high-pressure refrigerant pressure and a first temperature detecting means 15 for detecting the high-pressure refrigerant temperature are provided. The first flow rate control devices 4A and 4B are provided with throttle opening degree detection means 21A and 21B for detecting the respective opening degrees. Second temperature detection means 16A and 16B are provided in the refrigerant circuit between the use side heat exchangers 5A and 5B and the first flow rate control devices 4A and 4B, respectively. A third temperature detection means 17 for detecting the outdoor temperature is provided outside the outdoor unit. The control device 20 is a device that performs control according to the present embodiment.
In this air conditioner, the compressors 1a and 1b, the four-way valve 2, the heat source device side heat exchanger 3, the gas-liquid separator 14, the control device 20 and the like are arranged in the heat source device. In addition, the set of the first flow control device 4A and the use side heat exchanger 5A is provided in one indoor unit, and the set of the first flow control device 4B and the use side heat exchanger 5B is provided in the other indoor unit. Has been.

上記した制御装置20は、図2に示すように、汎用のCPU23、メモリM、データバス24などを備えている。CPU23は、いずれも後で詳述する、流量制御装置制御手段25、第1の圧力目標値設定手段26、第2の圧力目標値設定手段27、第3の圧力目標値設定手段28、サブクール量検知手段29、流量制御装置閉止手段30の各機能を備えている。尚、前記の各機能を有する制御装置20は、熱源機でなく、いずれかの室内機に設けても構わない。   As shown in FIG. 2, the control device 20 includes a general-purpose CPU 23, a memory M, a data bus 24, and the like. The CPU 23 controls the flow rate control device control means 25, the first pressure target value setting means 26, the second pressure target value setting means 27, the third pressure target value setting means 28, and the subcool amount, all of which will be described in detail later. Each function of the detection means 29 and the flow control device closing means 30 is provided. In addition, you may provide the control apparatus 20 which has each said function not in a heat source machine but in any indoor unit.

次に、図1に示した冷媒回路の冷媒の流れを図3で説明する。本発明において「冷房のみの運転」は直接関係ないが、参考までに冷房運転を説明しておく。低段側圧縮機1aから吐出され更に高段側圧縮機1bで圧縮されて吐出された高温高圧のガス冷媒は、四方弁2を経由後に熱源機側熱交換器3で室外空気と熱交換して凝縮液化し、全開になっている第3の流量制御装置13を経由してインジェクション用熱交換器7の熱交換部7Aで更に冷却される。熱交換部7Aで冷却された冷媒は気液分離器14で気液に分離した後にその一部が第1の流量制御装置4A,4Bで減圧され、利用側熱交換器5A,5Bで室内空気と熱交換して蒸発ガス化し、四方弁2を経由した後、低段側圧縮機1aの吸入側に戻る。一方、気液分離器14で分離された冷媒の一部は、第2の流量制御装置6で減圧され、インジェクション用熱交換器7の熱交換部7Bで熱交換部7Aの冷媒と熱交換して蒸発し、開状態にある電磁弁11を経由して低段側圧縮機1aの吸入側へ流入する。尚、電磁弁11が開いている場合は、圧力状態に起因して冷媒は逆止弁12は通らない。   Next, the flow of the refrigerant in the refrigerant circuit shown in FIG. 1 will be described with reference to FIG. In the present invention, “cooling only operation” is not directly related, but the cooling operation will be described for reference. The high-temperature and high-pressure gas refrigerant discharged from the low-stage compressor 1a and further compressed and discharged by the high-stage compressor 1b passes through the four-way valve 2 and exchanges heat with outdoor air in the heat source apparatus-side heat exchanger 3. Then, the liquid is condensed and liquefied, and further cooled by the heat exchange section 7A of the heat exchanger 7 for injection via the third flow rate control device 13 which is fully opened. The refrigerant cooled by the heat exchange unit 7A is separated into gas and liquid by the gas / liquid separator 14, and then a part of the refrigerant is depressurized by the first flow control devices 4A and 4B, and the indoor air is used by the use side heat exchangers 5A and 5B. After evaporating and gasifying through heat exchange and passing through the four-way valve 2, it returns to the suction side of the low-stage compressor 1a. On the other hand, a part of the refrigerant separated by the gas-liquid separator 14 is decompressed by the second flow rate control device 6 and exchanges heat with the refrigerant of the heat exchange unit 7A by the heat exchange unit 7B of the heat exchanger 7 for injection. It evaporates and flows into the suction side of the low-stage compressor 1a via the electromagnetic valve 11 in the open state. When the electromagnetic valve 11 is open, the refrigerant does not pass through the check valve 12 due to the pressure state.

一方で、本実施形態に係る「暖房運転」では、図3のように、高段側圧縮機1bを吐出した冷媒は、四方弁2を経由後、利用側熱交換器5A,5Bで室内空気と熱交換して凝縮液化し、第1の流量制御装置4A,4Bで減圧されて気液二相状態となる。気液二相状態の冷媒は、気液分離器14で分離後その一部が気相の割合が多くなった状態でインジェクション用熱交換器7の熱交換部7Aでインジェクション用熱交換器の冷却側7Bに冷却され、第3の流量制御装置13で減圧された後に熱源機側熱交換器3で室外空気と熱交換して蒸発ガス化し、四方弁2を経由後に低段側圧縮機1aの吸入側に戻る。一方、気液分離器14で分離されて液相の多くなった冷媒の一部は、インジェクション配管18の第2の流量制御装置6で減圧され、インジェクション用熱交換器7の熱交換部7Bで熱交換部7Aの冷媒と熱交換して蒸発し、閉状態である電磁弁11は通らずに逆止弁12を経て高段側圧縮機1bの吸込側へ流入する。尚、第2の流量制御装置6を閉じておく運転を実施することもできる。この場合は、電磁弁11を開状態にして逆止弁12を自励振動させないようにしておく。また、第3の流量制御装置13の開度を制御することで第1の圧力検知手段10の検知値を制御できる。また、第2の流量制御装置6を制御することで高段側圧縮機1bの吐出側のスーパーヒート量を制御することができる。尚、高段側圧縮機1b吐出側のスーパーヒート量は第1の温度検知手段15の検知値から第2の圧力検知手段8の検知値より換算して得た飽和温度を引いた値である。また、第1の流量制御装置4A,4Bをそれぞれ制御することで、利用側熱交換器5A,5B出口部のサブクール量をそれぞれ制御することができる。尚、利用側熱交換器5A,5B出口部のサブクール量は第2の圧力検知手段8の検知値から換算して得た飽和温度から第2の温度検知手段16A,16Bの検知値をそれぞれ引いた値である。 On the other hand, in the “heating operation” according to the present embodiment, as shown in FIG. 3, the refrigerant discharged from the high-stage compressor 1 b passes through the four-way valve 2 and then passes through the indoor air in the use-side heat exchangers 5A and 5B. Heat-condensed into condensed liquid and decompressed by the first flow rate control devices 4A and 4B to be in a gas-liquid two-phase state. The refrigerant in the gas-liquid two-phase state is cooled by the heat exchanger 7A of the injection heat exchanger 7 in a state where a part of the gas phase is increased after being separated by the gas-liquid separator 14. After being cooled to the side 7B and depressurized by the third flow rate control device 13, the heat source unit side heat exchanger 3 exchanges heat with outdoor air to evaporate gas, and after passing through the four-way valve 2, the low stage side compressor 1a Return to the suction side. On the other hand, a part of the refrigerant which has been separated by the gas-liquid separator 14 and whose liquid phase has increased is depressurized by the second flow rate control device 6 of the injection pipe 18, and the heat exchange unit 7 B of the injection heat exchanger 7. The refrigerant exchanges heat with the refrigerant in the heat exchanging section 7A to evaporate, and does not pass through the closed solenoid valve 11 but flows into the suction side of the high stage compressor 1b through the check valve 12. In addition, the operation | movement which closes the 2nd flow control apparatus 6 can also be implemented. In this case, the solenoid valve 11 is opened so that the check valve 12 is not vibrated. Further, the detection value of the first pressure detection means 10 can be controlled by controlling the opening of the third flow control device 13. Further, the superheat amount on the discharge side of the high stage compressor 1b can be controlled by controlling the second flow rate control device 6. The superheat amount on the discharge side of the high-stage compressor 1b is a value obtained by subtracting the saturation temperature obtained by conversion from the detection value of the first temperature detection means 15 from the detection value of the second pressure detection means 8. . Further, by controlling the first flow rate control devices 4A and 4B, the subcooling amounts at the outlet portions of the use side heat exchangers 5A and 5B can be controlled. The subcool amounts at the outlets of the use side heat exchangers 5A and 5B are obtained by subtracting the detection values of the second temperature detection means 16A and 16B from the saturation temperature obtained by conversion from the detection value of the second pressure detection means 8, respectively. Value.

次に、本実施形態による「暖房時制御方法」の一例について図4により説明する。
図4において、まず、暖房運転開始または霜取終了を行なう(ステップ1)。この時、制御装置20は、第1の流量制御装置4A,4Bを任意の開度とし、第2の流量制御装置6を全閉にし、第3の流量制御装置13を全開にしておく。このように、暖房運転開始または霜取り運転から暖房運転への復帰に先立って、制御装置20の流量制御装置閉止手段30が第2の流量制御装置6を全閉にしておくことで、短時間で圧縮機1a,1bの起動、停止を繰り返した場合でも、第2の流量制御装置6から高段側圧縮機1bの吸入側へ流入する高温ガス冷媒流入による高段側圧縮機1bの吐出冷媒温度の上昇を防止できる。因みに、圧縮機起動時は利用側熱交換器5A,5Bでガス冷媒が十分凝縮できず、第2の流量制御装置6にも高温ガスが流入する。また、第3の流量制御装置13は全開にしておくことで、圧縮機起動後の低圧低下による圧縮機容量増加不足を防止することができる。
Next, an example of the “heating control method” according to the present embodiment will be described with reference to FIG.
In FIG. 4, first, heating operation start or defrosting end is performed (step 1). At this time, the control device 20 sets the first flow rate control devices 4A and 4B to an arbitrary opening degree, fully closes the second flow rate control device 6, and keeps the third flow rate control device 13 fully open. Thus, prior to the start of the heating operation or the return from the defrosting operation to the heating operation, the flow rate control device closing means 30 of the control device 20 keeps the second flow rate control device 6 fully closed, thereby shortening the time. Even when the compressors 1a and 1b are repeatedly started and stopped, the discharge refrigerant temperature of the high-stage compressor 1b due to the inflow of the high-temperature gas refrigerant flowing from the second flow rate control device 6 to the suction side of the high-stage compressor 1b. Can be prevented. Incidentally, the gas refrigerant cannot be sufficiently condensed by the use side heat exchangers 5 </ b> A and 5 </ b> B when the compressor is activated, and the high temperature gas also flows into the second flow rate control device 6. In addition, the third flow rate control device 13 can be fully opened to prevent the compressor capacity from being insufficiently increased due to the low pressure drop after the compressor is started.

次に、圧縮機運転開始または霜取終了後から10分経過したかを判断する(ステップ2)。この条件を満たした場合、第2の流量制御装置6を所定の開度まで開き、第3の流量制御装置13を所定の開度まで絞る(ステップ3)。その後、第1の圧力検知手段10の制御目標値および高段側圧縮機1aの吐出スーパーヒート量の制御目標値をそれぞれ設定する(ステップ4)。尚、制御初期は任意の目標値を設定しておく。その後、制御装置20の流量制御装置制御手段25は、ステップ4で設定された第1の圧力検知手段10の制御目標値に従って第3の流量制御装置13の開度を制御するとともに、高段側圧縮機1aの吐出スーパーヒート量目標値に従って第2の流量制御装置6を制御する(ステップ5)。前回のステップ4の目標値設定から1分経過後(ステップ5)に、第1の圧力検知手段10の制御目標値および吐出スーパーヒート量目標値をそれぞれ再設定する。尚、本実施形態では第1の圧力検知手段10の制御目標値および高段側圧縮機1aの吐出スーパーヒート量の制御目標値の設定を同時に実施するようにしたが、これらの設定を別々のタイミングで実施してもよい。   Next, it is determined whether 10 minutes have elapsed since the start of compressor operation or the end of defrosting (step 2). When this condition is satisfied, the second flow control device 6 is opened to a predetermined opening, and the third flow control device 13 is throttled to a predetermined opening (step 3). Thereafter, the control target value of the first pressure detection means 10 and the control target value of the discharge superheat amount of the high stage compressor 1a are set (step 4). An arbitrary target value is set at the initial stage of control. Thereafter, the flow rate control device control means 25 of the control device 20 controls the opening degree of the third flow rate control device 13 according to the control target value of the first pressure detection means 10 set in step 4, and the higher stage side. The second flow rate control device 6 is controlled in accordance with the discharge superheat amount target value of the compressor 1a (step 5). After 1 minute has elapsed since the previous setting of the target value in step 4 (step 5), the control target value and the discharge superheat amount target value of the first pressure detection means 10 are reset. In the present embodiment, the control target value of the first pressure detector 10 and the control target value of the discharge superheat amount of the high stage compressor 1a are set simultaneously. It may be performed at the timing.

ステップ4における第1の圧力検知手段10の目標値は、例えば第2の圧力検知手段8の検知値から第1の圧力検知手段10の検知値を引いた差が2MPa未満の場合は、第1の圧力検知手段10の目標値を1.4MPaとし、第2の圧力検知手段8の検知値から第1の圧力検知手段10の検知値を引いた差が2MPa以上4MPa未満の場合は第1の圧力検知手段10の目標値を1.7MPaとし、第2の圧力検知手段8の検知値から第1の圧力検知手段10の検知値を引いた差が4MPa以上の場合は第1の圧力検知手段10の目標値を2.0MPaとする。これにより、第1の流量制御装置4A,4Bの前後差圧が小さいと判断した場合は第1の圧力検知手段10の目標値を低く、第1の流量制御装置4A,4Bの前後差圧が大きいと判断した場合は第1の圧力検知手段10の目標値を高くすることで、すべての第1の流量制御装置4A,4Bが制御可能な範囲で、第2の流量制御装置6を通過する冷媒量をできるだけ増やすようにすることができる。尚、第1の圧力検知手段10の目標値は予め第1の流量制御装置4A,4Bが制御可能な範囲となる任意の値に設定しておいても構わない。   The target value of the first pressure detection means 10 in step 4 is, for example, the first value when the difference obtained by subtracting the detection value of the first pressure detection means 10 from the detection value of the second pressure detection means 8 is less than 2 MPa. When the target value of the pressure detection means 10 is 1.4 MPa and the difference obtained by subtracting the detection value of the first pressure detection means 10 from the detection value of the second pressure detection means 8 is 2 MPa or more and less than 4 MPa, the first value When the target value of the pressure detection means 10 is 1.7 MPa and the difference obtained by subtracting the detection value of the first pressure detection means 10 from the detection value of the second pressure detection means 8 is 4 MPa or more, the first pressure detection means A target value of 10 is set to 2.0 MPa. Accordingly, when it is determined that the differential pressure across the first flow rate control devices 4A and 4B is small, the target value of the first pressure detection means 10 is lowered, and the differential pressure across the first flow rate control devices 4A and 4B is reduced. If it is determined that the flow rate is large, the target value of the first pressure detection means 10 is increased, and the second flow rate control device 6 passes through the control range of all the first flow rate control devices 4A and 4B. The amount of refrigerant can be increased as much as possible. Note that the target value of the first pressure detecting means 10 may be set in advance to an arbitrary value that is within the controllable range of the first flow rate control devices 4A and 4B.

ステップ4における高段側圧縮機1bの圧縮機吐出スーパーヒート量の目標値は、例えば低段側圧縮機1aと高段側圧縮機1bの容量変化を示すインバータ電源周波数(圧縮機周波数)を変えることにより変更する。例えば、前記の圧縮機周波数が70Hz以上の場合は圧縮機吐出スーパーヒート量の目標値を10とし、圧縮機周波数が40Hz以上70Hz未満の場合は圧縮機吐出スーパーヒート量の目標値を30とし、圧縮機周波数が40Hz未満の場合は圧縮機吐出スーパーヒート量の目標値を50とするのである。尚、本実施形態では低段側圧縮機1aと高段側圧縮機1bの圧縮機周波数は同一制御としているが、別の実施形態として別々の圧縮機周波数で低段側圧縮機1aと高段側圧縮機1bを運転しても良い。 The target value of the compressor discharge superheat amount of the high-stage compressor 1b in step 4 is, for example, changing the inverter power supply frequency (compressor frequency) indicating the capacity change of the low-stage compressor 1a and the high-stage compressor 1b. To change. For example, when the compressor frequency is 70 Hz or more, the target value of the compressor discharge superheat amount is 10, and when the compressor frequency is 40 Hz or more and less than 70 Hz, the target value of the compressor discharge superheat amount is 30, When the compressor frequency is less than 40 Hz, the target value of the compressor discharge superheat amount is set to 50. In this embodiment, the compressor frequencies of the low-stage compressor 1a and the high-stage compressor 1b are controlled in the same way. However, as another embodiment, the low-stage compressor 1a and the high-stage compressor 1b are used at different compressor frequencies. The side compressor 1b may be operated.

以上のように、この実施形態1に係る空気調和装置は、第1の圧力検知手段10の検知値を第1の圧力検知手段10の制御目標値に近づけるように、制御装置20の流量制御装置制御手段25が第3の流量制御装置13の開度を制御するようになっているので、利用側熱交換器3での凝縮温度が低く暖房能力が高くない場合に、第3の流量制御装置13の開度を絞ってインジェクション配管18への冷媒流入量を多くすることができる。これにより、高段側圧縮機1bおよび低段側圧縮機1aに吸い込ませる冷媒の量を多くする制御が可能となり、より高い暖房能力を引き出すことができる。すなわち、第1の圧力検知手段10の検知値を上げすぎたことにより、第1の流量制御装置10前後の圧力差が小さくなって複数の第1の流量制御装置4A,4Bが個別に制御できなくなるといった不具合を防ぐことができる。また逆に、第1の圧力検知手段10の検知値を下げすぎることによるシステム全体の暖房能力低下も防止できる。   As described above, the air conditioner according to the first embodiment is configured to control the flow rate control device of the control device 20 so that the detection value of the first pressure detection means 10 approaches the control target value of the first pressure detection means 10. Since the control means 25 controls the opening degree of the third flow rate control device 13, the third flow rate control device is used when the condensation temperature in the use side heat exchanger 3 is low and the heating capacity is not high. The amount of refrigerant flowing into the injection pipe 18 can be increased by narrowing the opening 13. Thereby, it is possible to control to increase the amount of refrigerant sucked into the high-stage compressor 1b and the low-stage compressor 1a, and higher heating capacity can be extracted. That is, when the detection value of the first pressure detection means 10 is increased too much, the pressure difference between the first flow control device 10 and the first flow control device 10 becomes small, and the plurality of first flow control devices 4A and 4B can be individually controlled. It is possible to prevent problems such as disappearance. Conversely, it is possible to prevent the heating capacity of the entire system from being lowered due to the detection value of the first pressure detection means 10 being too low.

また、この空気調和装置は、制御装置20の流量制御装置閉止手段30が低段側圧縮機1aおよび高段側圧縮機1bの起動または霜取り運転から暖房運転への復帰に先立って第2の流量制御装置6を予め閉めておくようにしているため、十分な暖房性能を発揮できる運転状態にまで到達できないといった不具合を防ぐことができる。   Further, in this air conditioner, the flow rate control device closing means 30 of the control device 20 has the second flow rate prior to the start of the low stage compressor 1a and the high stage compressor 1b or the return from the defrosting operation to the heating operation. Since the control device 6 is closed in advance, it is possible to prevent a problem that it is not possible to reach an operation state in which sufficient heating performance can be exhibited.

そして、この空気調和装置は、第1の流量制御装置4A,4Bと第3の流量制御装置13の間の冷媒回路に気液分離器14を設け、気液分離器14で分離した液冷媒をインジェクション用配管18から高段側圧縮機1bの吸込側に流すようになっているので、多量の冷媒を高段側圧縮機1bの吸込側へ流入させることができ、圧縮機から吐出される冷媒量を多くすることができる。 In this air conditioner, the gas-liquid separator 14 is provided in the refrigerant circuit between the first flow control devices 4A and 4B and the third flow control device 13, and the liquid refrigerant separated by the gas-liquid separator 14 is supplied. Since it is made to flow from the injection pipe 18 to the suction side of the high-stage compressor 1b, a large amount of refrigerant can flow into the suction side of the high-stage compressor 1b, and the refrigerant discharged from the compressor The amount can be increased.

更に、この空気調和装置は、第2の流量制御装置6からのインジェクション配管18に、このインジェクション配管18を通る冷媒と、気液分離器14から第3の流量制御装置13の間の冷媒回路を通る冷媒と熱交換させるインジェクション用熱交換器7を設けているので、効率の良い暖房運転を行なうことができる。 Further, the air conditioner is configured such that a refrigerant passing through the injection pipe 18 and a refrigerant circuit between the gas-liquid separator 14 and the third flow control apparatus 13 are connected to the injection pipe 18 from the second flow control device 6. Since the injection heat exchanger 7 for exchanging heat with the passing refrigerant is provided, an efficient heating operation can be performed.

尚、本実施形態では、第1の圧力検知手段10の制御目標値の設定は流量制御装置制御手段25によって第2の圧力検知手段8の検知値と第1の圧力検知手段10の検知値との差に基づいて変更するようにしたが、別の実施形態として、複数の室内機の第1の流量制御装置4A,4Bの開度を絞り開度検知手段21A,21Bでそれぞれ検知し、制御装置20の第1の圧力目標値設定手段26が、検知した開度の中から最大開度を選択し、選択した最大開度により第1の流量制御装置4A,4Bの制御限界を判定することで、第1の圧力検知手段10の制御目標値をメモリMに設定変更するようにしても良い。
このように、検知した第1の流量制御装置4A,4Bの開度の中から選択した最大の開度検知値に基づいて第1の圧力検知手段10の検知値の制御目標値を設定変更するようにすると、第1の流量制御装置4A,4Bが制御できている否かを確認しながら第1の圧力検知手段10の検知値を制御することができる。これにより、すべての第1の流量制御装置4A,4Bが制御可能な範囲で可能な限り第2の流量制御装置6の流量を増やして暖房能力を増加させることができる。
In the present embodiment, the control target value of the first pressure detection means 10 is set by the flow control device control means 25 with the detection value of the second pressure detection means 8 and the detection value of the first pressure detection means 10. However, as another embodiment, the apertures of the first flow control devices 4A and 4B of a plurality of indoor units are detected by the throttle aperture detection means 21A and 21B, respectively. The first pressure target value setting means 26 of the device 20 selects the maximum opening from the detected opening, and determines the control limit of the first flow control devices 4A and 4B based on the selected maximum opening. Thus, the control target value of the first pressure detection means 10 may be set and changed in the memory M.
As described above, the control target value of the detection value of the first pressure detection means 10 is set and changed based on the maximum opening detection value selected from the detected opening amounts of the first flow control devices 4A and 4B. By doing so, it is possible to control the detection value of the first pressure detection means 10 while confirming whether or not the first flow control devices 4A and 4B can be controlled. Thereby, the flow capacity of the 2nd flow control device 6 can be increased as much as possible within the range which all the 1st flow control devices 4A and 4B can control, and heating capacity can be increased.

また、別の実施形態として、複数の室内機の第1の流量制御装置4A,4Bのサブクール量を制御装置20のサブクール量検知手段29がそれぞれ検知し、制御装置20の第2の圧力目標値設定手段27が、検知したサブクール量の最大検知値により第1の流量制御装置4A,4Bの制御限界を判定することで、第1の圧力検知手段10の制御目標値をメモリMに設定変更するようにしても構わない。
このように、検知した第1の流量制御装置4A,4Bによるサブクール量の中から選択した最大の開度検知値に基づいて第1の圧力検知手段10の検知値の制御目標値を設定変更するようにすると、第1の流量制御装置4A,4Bが制御できている否かを確認しながら第1の圧力検知手段10の検知値を制御することができる。これにより、すべての第1の流量制御装置4A,4Bが制御可能な範囲で可能な限り第2の流量制御装置6の流量を増やして暖房能力を増加させる制御を、より迅速に行なうことが可能となる。
Further, as another embodiment, the subcool amount detection means 29 of the control device 20 detects the subcool amounts of the first flow control devices 4A and 4B of the plurality of indoor units, respectively, and the second pressure target value of the control device 20 is detected. The setting means 27 changes the control target value of the first pressure detection means 10 to the memory M by determining the control limit of the first flow control devices 4A and 4B based on the detected maximum detected value of the subcool amount. It doesn't matter if you do.
In this way, the control target value of the detection value of the first pressure detection means 10 is changed based on the maximum opening detection value selected from the detected subcool amounts by the first flow control devices 4A and 4B. By doing so, it is possible to control the detection value of the first pressure detection means 10 while confirming whether or not the first flow control devices 4A and 4B can be controlled. As a result, it is possible to perform the control for increasing the heating capacity by increasing the flow rate of the second flow rate control device 6 as much as possible within the controllable range of all the first flow rate control devices 4A and 4B. It becomes.

また、別の実施形態として、第2の圧力検知手段8による検知値と第1の圧力検知手段10による検知値との差に基づいて、第3の圧力目標値設定手段28が第1の圧力検知手段10の制御目標値をメモリMに設定変更するようにすることも可能である。
このように、第1の圧力検知手段10の検知値と第2の圧力検知手段8の検知値との差によって第1の圧力検知手段10の制御目標値を変更するようにすると、予め第1の流量制御装置4A,4Bを制御可能な範囲に制御でき、暖房能力の低下を防止することができる。
As another embodiment, the third pressure target value setting means 28 is based on the difference between the detection value by the second pressure detection means 8 and the detection value by the first pressure detection means 10. It is also possible to change the setting of the control target value of the detection means 10 in the memory M.
Thus, if the control target value of the first pressure detection means 10 is changed by the difference between the detection value of the first pressure detection means 10 and the detection value of the second pressure detection means 8, the first The flow rate control devices 4A and 4B can be controlled within a controllable range, and a decrease in heating capacity can be prevented.

実施の形態2.
以下、この発明に係る実施形態2について説明する。
図5はこの発明の実施形態2に係る空気調和装置の冷媒回路を中心とする全体構成の一例を示すものである。また、図6、図7、図8は図5の空気調和装置における冷暖房運転時の動作状態を示したもので、図6は冷房のみまたは暖房のみの運転動作状態図、図7は冷暖房同時運転での暖房主体運転(暖房運転容量が冷房運転容量より大きい場合)を示す運転動作状態図、図8は冷暖房同時運転での冷房主体運転(冷房運転容量が暖房運転容量より大きい場合)を示す運転動作状態図である。尚、この実施形態では、熱源機1台に対し室内機3台を接続した場合について説明するが、2台または4台以上の室内機を接続した場合も同様である。
図5において、Aは熱源機である。B,C,Dは後述するように互いに並列接続された室内機であってそれぞれ同じ構成となっている。Eは後で詳述する、第1の分岐部70、第4の流量制御装置73、第2の分岐部71、第1の気液分離装置72、第1の熱交換部79、第5の流量制御装置75を内蔵した中継機である。
Embodiment 2. FIG.
The second embodiment according to the present invention will be described below.
FIG. 5 shows an example of the overall configuration centering on the refrigerant circuit of the air-conditioning apparatus according to Embodiment 2 of the present invention. 6, 7, and 8 show operation states during the cooling / heating operation in the air conditioner of FIG. 5, FIG. 6 is an operation state diagram of only cooling or heating, and FIG. 7 is a simultaneous cooling / heating operation. FIG. 8 is an operation state diagram showing a heating main operation (when the heating operation capacity is larger than the cooling operation capacity), and FIG. 8 is an operation showing a cooling main operation (when the cooling operation capacity is larger than the heating operation capacity) in the simultaneous cooling and heating operation. It is an operation state diagram. In this embodiment, a case where three indoor units are connected to one heat source unit will be described, but the same applies to the case where two or four or more indoor units are connected.
In FIG. 5, A is a heat source machine. B, C, and D are indoor units connected in parallel as will be described later, and have the same configuration. E is a first branch 70, a fourth flow rate controller 73, a second branch 71, a first gas-liquid separator 72, a first heat exchanger 79, a fifth, which will be described in detail later. It is a repeater with a built-in flow rate control device 75.

そして、1aは容量可変な低段側圧縮機、1bは低段側圧縮機1aからの冷媒を更に圧縮して吐出する容量可変な高段側圧縮機、2はこの空気調和装置の冷媒回路の冷媒流通方向を切り換える四方弁、3は熱源機側熱交換器、64はアキュムレータ、80は熱源機側熱交換器3に室外空気を送風する送風量可変の熱源機側送風機、27は冷媒流通方向を制限する切換弁、8は高段側圧縮機1bの吐出側に設けられた第2の圧力検知手段であり、これらによって熱源機Aは構成される。5は3台の室内機B,C,Dに設けられた利用側熱交換器、66は熱源機Aの四方弁2と中継機Eを接続する太径の第1の接続配管、66b,66c,66dはそれぞれ室内機B,C,Dの利用側熱交換器5と中継機Eとを接続するもので第1の接続配管66に対応する室内機側の第1の接続配管、67は熱源機Aの熱源機側熱交換器3と中継機Eとを接続し第1の接続配管66よりも細径の第2の接続配管、67b,67c,67dはそれぞれ室内機B,C,Dの利用側熱交換器5と中継機Eとを第1の接続配管66を介して接続するもので第2の接続配管67に対応する室内機側の第2の接続配管、68は室内機側の第1の接続配管66b,66c,66dを第1の接続配管66側または第2の接続配管67側に切換可能に接続する三方切換弁、4は各利用側熱交換器5の近傍に接続され利用側熱交換器5の出口側の冷房時はスーパーヒート量により暖房時はサブクール量により制御される第1の流量制御装置であって室内機側の第2の接続配管67b,67c,67dと接続される。70は室内機側の第1の接続配管66b,66c,66dを第1の接続配管66側または第2の接続配管67側に切換可能に接続する三方切換弁68,68,68よりなる第1の分岐部、71は室内機側の第2の接続配管67b,67c,67dと第2の接続配管67よりなる第2の分岐部、72は第2の接続配管67の途中に設けられた第1の気液分離装置であり、その気相部は各三方切換弁68の第1弁8aに接続され、その液相部は第2の分岐部71に接続されている。   1a is a variable-capacity low-stage compressor, 1b is a variable-capacity high-stage compressor that further compresses and discharges the refrigerant from the low-stage compressor 1a, and 2 is a refrigerant circuit of the air conditioner. Four-way valve for switching the refrigerant flow direction, 3 is a heat source machine side heat exchanger, 64 is an accumulator, 80 is a heat source machine side fan that blows outdoor air to the heat source machine side heat exchanger 3, and 27 is a refrigerant flow direction The switching valve 8 for limiting the pressure is a second pressure detecting means provided on the discharge side of the high stage compressor 1b, and the heat source unit A is constituted by these. 5 is a use side heat exchanger provided in the three indoor units B, C, D, 66 is a first connecting pipe with a large diameter connecting the four-way valve 2 of the heat source unit A and the relay E, 66b, 66c , 66d connect the use side heat exchanger 5 of the indoor units B, C, and D and the relay E, respectively, the first connection pipe on the indoor unit side corresponding to the first connection pipe 66, and 67 the heat source The second connection pipes 67b, 67c, and 67d, which have a smaller diameter than the first connection pipe 66, are connected to the indoor units B, C, and D, respectively. The use side heat exchanger 5 and the relay E are connected via the first connection pipe 66. The second connection pipe on the indoor unit side corresponding to the second connection pipe 67, 68 is the indoor unit side. Three-way connection of the first connection pipes 66b, 66c, 66d to the first connection pipe 66 side or the second connection pipe 67 side in a switchable manner The valve 4 is connected to the vicinity of each use side heat exchanger 5 and is a first flow control device that is controlled by the superheat amount during cooling on the outlet side of the use side heat exchanger 5 and by the subcool amount during heating. Are connected to the second connection pipes 67b, 67c, 67d on the indoor unit side. 70 is a first three-way switching valve 68, 68, 68 that connects the first connection pipes 66b, 66c, 66d on the indoor unit side to the first connection pipe 66 side or the second connection pipe 67 side so as to be switchable. , 71 is a second branching section made up of the second connecting pipes 67b, 67c, 67d and the second connecting pipe 67 on the indoor unit side, and 72 is a second branching pipe provided in the middle of the second connecting pipe 67. The gas phase part is connected to the first valve 8 a of each three-way switching valve 68, and the liquid phase part is connected to the second branch part 71.

また、73は第1の気液分離装置72と第2の分岐部71との間に配備された電気式膨張弁などの開閉自在な第4の流量制御装置、74は第2の分岐部71と第1の接続配管66とを結ぶ第1のバイパス配管、75は第1のバイパス配管74の途中に設けられた電気式膨張弁などの第5の流量制御装置、76は第1のバイパス配管74の途中に設けられた第5の流量制御装置75の下流側に設けられ、第2の接続配管67の第4の流量制御装置73より下流の部分との間でそれぞれ熱交換を行う第2の熱交換部、79は第1のバイパス配管74の途中に設けられた第2の熱交換部76の下流に設けられ、第2の接続配管67の第4の流量制御装置73より上流の部分との間でそれぞれ熱交換を行う第1の熱交換部、50c,50c,50dはそれぞれ第2の分岐部71の室内機側の第2の接続配管67b,67c,67dの途中に設けられた第7の逆止弁であり、第2の接続配管67から室内機側の第2の接続配管67b,67c,67dへのみ冷媒冷媒流通を許容する。51は第2の分岐部71の室内機側の第2の接続配管67b,67c,67dの途中に設けられた第7の逆止弁50c,50c,50dの下流部と第2の接続配管67の途中に設けられた第4の流量制御装置73の下流側かつ第2の熱交換部76の上流側の配管部とを接続する第2のバイパス配管であり、第2のバイパス配管51中の室内機側第2の接続配管67b,67c,67dに接続する配管と第2のバイパス配管51中の第2の接続配管67に接続する配管とが途中で合流する。52c,52c,52dは、第2のバイパス配管51の途中の室内機側第2の接続配管67b,67c,67dに接続する配管が第2のバイパス配管51中の第2の接続配管67に接続する配管と合流する部分より上流部に設けられた第8の逆止弁であり、室内機側の第2の接続配管67b,67c,67dから第2の接続配管67へのみ冷媒流通を許容する。 73 is a fourth flow control device that can be opened and closed, such as an electric expansion valve, disposed between the first gas-liquid separator 72 and the second branch portion 71, and 74 is the second branch portion 71. The first bypass pipe connecting the first connecting pipe 66 and the first connecting pipe 66, 75 is a fifth flow control device such as an electric expansion valve provided in the middle of the first bypass pipe 74, and 76 is the first bypass pipe. 74 is provided on the downstream side of the fifth flow rate control device 75 provided in the middle of 74, and exchanges heat with the downstream portion of the second connection pipe 67 from the fourth flow rate control device 73. The heat exchanging part 79 is provided downstream of the second heat exchanging part 76 provided in the middle of the first bypass pipe 74, and is a part upstream of the fourth flow rate control device 73 of the second connecting pipe 67. The first heat exchanging units 50c, 50c, and 50d that exchange heat with each other These are seventh check valves provided in the middle of the second connection pipes 67b, 67c, 67d on the indoor unit side of the second branch part 71, and are connected to the indoor unit side from the second connection pipe 67. Refrigerant refrigerant flow is allowed only to the second connection pipes 67b, 67c, and 67d. Reference numeral 51 denotes a downstream portion of the seventh check valves 50c, 50c, 50d provided in the middle of the second connection pipes 67b, 67c, 67d on the indoor unit side of the second branch part 71 and the second connection pipe 67. Is a second bypass pipe that connects the downstream side of the fourth flow control device 73 and the upstream side of the second heat exchange unit 76 provided in the middle of the second bypass pipe 51. The pipes connected to the indoor unit side second connection pipes 67b, 67c, and 67d and the pipes connected to the second connection pipe 67 in the second bypass pipe 51 join in the middle. 52 c, 52 c, 52 d are connected to the second connection pipe 67 in the second bypass pipe 51 by pipes connected to the indoor unit side second connection pipes 67 b, 67 c, 67 d in the middle of the second bypass pipe 51. This is an eighth check valve provided upstream from the portion that joins the piping to be connected, and allows refrigerant flow only from the second connection piping 67b, 67c, 67d on the indoor unit side to the second connection piping 67. .

また、32は熱源機側熱交換器3と第2の接続配管67との間に設けられた第3の逆止弁であり、熱源機側熱交換器3から第2の接続配管67へのみ冷媒流通を許容する。33は四方弁2と第1の接続配管66との間に設けられた第4の逆止弁であり、第1の接続配管66から四方弁2へのみ冷媒流通を許容する。34は四方弁2と第2の接続配管67との間に設けられた第5の逆止弁であり、四方弁2から第2の接続配管67へのみ冷媒流通を許容する。35は熱源機側熱交換器3と第1の接続配管66との間に設けられた第6の逆止弁であり、第1の接続配管66から熱源機側熱交換器3へのみ冷媒流通を許容する。第3,第4,第5,第6の逆止弁32,33,34,35で流路切換え装置40が構成される。この流路切り替え装置40は、熱源機側熱交換器3が凝縮器となる運転時には凝縮器の冷媒出口側から第2の接続配管67側にのみ冷媒を流通させるとともに第1の接続配管66から四方弁2側にのみ冷媒を流通させ、かつ、熱源機側熱交換器3が蒸発器となる運転時には第1の接続配管66から蒸発器の冷媒流入側にのみ冷媒を流通させるとともに四方弁2から第2の接続配管67側にのみ冷媒を流通させるようになっている。また、85は第1の分岐部70と第4の流量制御装置73との間に設けられた第3の圧力検知手段、86は第4の流量制御装置73と第1の流量制御装置4との間に設けられた第4の圧力検知手段である。15,16は各利用側熱交換器5の両端に設けられた第1,第2の温度検知手段であり、第1の流量制御装置4側に接続されるものが第2の温度検知手段16、他端に接続されるものが第1の温度検知手段15である。 Reference numeral 32 denotes a third check valve provided between the heat source device side heat exchanger 3 and the second connection pipe 67, and only from the heat source device side heat exchanger 3 to the second connection pipe 67. Allow refrigerant flow. Reference numeral 33 denotes a fourth check valve provided between the four-way valve 2 and the first connection pipe 66, and allows the refrigerant to flow only from the first connection pipe 66 to the four-way valve 2. Reference numeral 34 denotes a fifth check valve provided between the four-way valve 2 and the second connection pipe 67, and permits refrigerant flow only from the four-way valve 2 to the second connection pipe 67. Reference numeral 35 denotes a sixth check valve provided between the heat source machine side heat exchanger 3 and the first connection pipe 66, and the refrigerant flows only from the first connection pipe 66 to the heat source machine side heat exchanger 3. Is acceptable. The third, fourth, fifth, and sixth check valves 32, 33, 34, and 35 constitute a flow path switching device 40. The flow path switching device 40 circulates the refrigerant only from the refrigerant outlet side of the condenser to the second connection pipe 67 side during the operation in which the heat source unit side heat exchanger 3 becomes a condenser, and from the first connection pipe 66. During operation in which the refrigerant is circulated only to the four-way valve 2 side and the heat source apparatus side heat exchanger 3 is an evaporator, the refrigerant is circulated only from the first connection pipe 66 to the refrigerant inflow side of the evaporator and the four-way valve 2. The refrigerant is circulated only to the second connection pipe 67 side. Reference numeral 85 denotes a third pressure detecting means provided between the first branch part 70 and the fourth flow control device 73, and 86 denotes the fourth flow control device 73 and the first flow control device 4. It is the 4th pressure detection means provided between. Reference numerals 15 and 16 denote first and second temperature detection means provided at both ends of each use-side heat exchanger 5, and the second temperature detection means 16 is connected to the first flow control device 4 side. The first temperature detection means 15 is connected to the other end.

また、熱源機側熱交換器3は、互いに並列に接続された、第1の熱源機側熱交換器41、および第1の熱源機側熱交換器41と同じ伝熱面積を有する第2の熱源機側熱交換器42、熱源機側バイパス路43、第1の熱源機側熱交換器41の四方弁2と接続する側の一端に設けられた第1の電磁開閉弁44、第1の熱源機側熱交換器41の他端に設けられた第2の電磁開閉弁45、第2の熱源機側熱交換器42の四方弁2と接続する側の一端に設けられた第3の電磁開閉弁46、第2の熱源機側熱交換器42の他端に設けられた第4の電磁開閉弁47、並びに、熱源機側バイパス路43の途中に設けられた第5の電磁開閉弁48によって構成されている。また、8は四方弁2と高段側圧縮機1bの吐出部とを接続する配管途中に設けられた第2の圧力検知手段である。80は熱源機側熱交換器3の熱交換容量を制御する熱源機側送風機である。また、第1の接続配管66には気液分離器14とインジェクション用熱交換器7の高圧側が配備されている。気液分離器14と高段側圧縮機1bおよび低段側圧縮機1aの間の配管22とは、第2の流量制御装置6およびインジェクション用熱交換器7の低圧側を有するインジェクション配管18で接続されている。また、第6の逆止弁35を含む配管40aには第3の流量制御装置13および第1の圧力検知手段10が配備されている。また、熱源機Aは、第1の圧力検知手段10の検知値をその第1の圧力検知手段10の制御目標値に近づけるように第3の流量制御装置13の開度を制御する流量制御装置制御手段25の機能を有する制御装置20を備えている。 In addition, the heat source device side heat exchanger 3 has the same heat transfer area as the first heat source device side heat exchanger 41 and the first heat source device side heat exchanger 41 connected in parallel to each other. A first electromagnetic on-off valve 44 provided at one end of the heat source machine side heat exchanger 42, the heat source machine side bypass path 43, the first heat source machine side heat exchanger 41 connected to the four-way valve 2; A second electromagnetic opening / closing valve 45 provided at the other end of the heat source device side heat exchanger 41 and a third electromagnetic valve provided at one end of the second heat source device side heat exchanger 42 connected to the four-way valve 2. The on-off valve 46, the fourth electromagnetic on-off valve 47 provided at the other end of the second heat source unit side heat exchanger 42, and the fifth electromagnetic on-off valve 48 provided in the middle of the heat source unit side bypass passage 43. It is constituted by. Reference numeral 8 denotes a second pressure detection means provided in the middle of the pipe connecting the four-way valve 2 and the discharge portion of the high-stage compressor 1b. Reference numeral 80 denotes a heat source machine side blower that controls the heat exchange capacity of the heat source machine side heat exchanger 3. The first connection pipe 66 is provided with the high-pressure side of the gas-liquid separator 14 and the injection heat exchanger 7. The gas-liquid separator 14 and the pipe 22 between the high-stage compressor 1b and the low-stage compressor 1a are injection pipes 18 having the low pressure side of the second flow control device 6 and the heat exchanger 7 for injection. It is connected. Further, the third flow control device 13 and the first pressure detection means 10 are provided in the pipe 40 a including the sixth check valve 35. Further, the heat source machine A is a flow rate control device that controls the opening of the third flow rate control device 13 so that the detection value of the first pressure detection means 10 approaches the control target value of the first pressure detection means 10. A control device 20 having the function of the control means 25 is provided.

このように構成された実施形態2の空気調和装置の動作について説明する。まず、図6を用いて「冷房運転のみ」の場合について説明する。
すなわち、同図に実線矢印で示すように、低段側圧縮機1aから吐出され更に高段側圧縮機1bで圧縮されて吐出された高温高圧の冷媒ガスは四方弁2を通り、熱源機側熱交換器3で送風量可変の熱源機側送風機80によって送風される室外空気と熱交換して凝縮液化された後、第3の逆止弁32、第2の接続配管67、第1の気液分離装置72、第4の流量制御装置73の順に通り、更に第2の分岐部71、室内機側の第2の接続配管67b,67c,67dを通り、各室内機B,C,Dに流入する。そして、各室内機B,C,Dに流入した冷媒は、各利用側熱交換器5出口のスーパーヒート量により制御される各第1の流量制御装置4により低圧まで減圧されて各利用側熱交換器5で、室内空気と熱交換して蒸発しガス化され室内を冷房する。そして、このガス状態となった冷媒は、室内機側の第1の接続配管66b,66c,66d、三方切換弁68,68,68、第1の分岐部70、第1の接続配管66、熱源機Aの気液分離器14、第4の逆止弁33、四方弁2、アキュムレータ64を経て低段側圧縮機1aに吸入される冷媒循環サイクルを構成し、冷房運転を行う。
Operation | movement of the air conditioning apparatus of Embodiment 2 comprised in this way is demonstrated. First, the case of “only cooling operation” will be described with reference to FIG.
That is, as indicated by solid line arrows in the figure, the high-temperature and high-pressure refrigerant gas discharged from the low-stage compressor 1a and further compressed and discharged by the high-stage compressor 1b passes through the four-way valve 2 and passes through the heat source machine side. After the heat exchanger 3 exchanges heat with the outdoor air blown by the heat source blower 80 with variable air flow, it is condensed and liquefied, and then the third check valve 32, the second connection pipe 67, the first air The liquid separation device 72 and the fourth flow rate control device 73 are passed in this order, and further passed through the second branch portion 71 and the second connection pipes 67b, 67c, and 67d on the indoor unit side to the indoor units B, C, and D. Inflow. And the refrigerant | coolant which flowed into each indoor unit B, C, D is pressure-reduced to low pressure by each 1st flow control device 4 controlled by the superheat amount of each utilization side heat exchanger 5 exit, and each utilization side heat | fever The exchanger 5 exchanges heat with room air, evaporates and gasifies, and cools the room. And the refrigerant | coolant which became this gas state is the 1st connection piping 66b, 66c, 66d by the side of an indoor unit, the three-way switching valves 68, 68, 68, the 1st branch part 70, the 1st connection piping 66, a heat source The refrigerant circulation cycle sucked into the low-stage compressor 1a through the gas-liquid separator 14, the fourth check valve 33, the four-way valve 2, and the accumulator 64 of the machine A is configured, and the cooling operation is performed.

この時、三方切換弁68の第1口8aは閉路に、第2口8bおよび第3口8cは閉路にされている。この場合、第1の接続配管66が低圧であり、第2の接続配管67が高圧であるため、必然的に第3の逆止弁32、第4の逆止弁33を流通する。尚、第3の流量制御装置13は全閉にはしないようにしておく。また、このサイクルの時、第4の流量制御装置73を通過した冷媒の一部が第1のバイパス配管74へ入り第5の流量制御装置75で低圧まで減圧されて第2の熱交換部76で第4の流量制御装置73の下流部の流路が別れる前の冷媒との間で熱交換し、更に第1の熱交換部79で第4の流量制御装置73に流入する冷媒との間で熱交換を行い蒸発した冷媒は、第1の接続配管66から熱源機Aの第4の逆止弁33へ入り、四方弁2、アキュムレータ64を経て低段側圧縮機1aに吸入される。一方、第1,2の熱交換部79,76で熱交換し、冷却されてサブクールを充分につけられた第2の分岐部71の冷媒は、第7の逆止弁50b,50c,50dを通って、冷房しようとしている室内機B,C,Dへ流入する。ここで、各利用側熱交換器5での蒸発温度および熱源機側熱交換器3での凝縮温度が予め定められた目標温度になるように、容量可変な圧縮機1a,1bの容量および熱源機側送風機80の送風量を制御することにより、各室内機B,C,Dでは目標とする冷房能力を得ることができる。尚、第2の流量制御装置6は全閉にしてインジェクション配管18へ冷媒が流れないようにしておく。 At this time, the first port 8a of the three-way switching valve 68 is closed, and the second port 8b and the third port 8c are closed. In this case, since the first connection pipe 66 is at a low pressure and the second connection pipe 67 is at a high pressure, the third check valve 32 and the fourth check valve 33 are necessarily circulated. Note that the third flow rate control device 13 is not fully closed. In addition, during this cycle, a part of the refrigerant that has passed through the fourth flow control device 73 enters the first bypass pipe 74 and is reduced to a low pressure by the fifth flow control device 75, and the second heat exchange unit 76. Thus, heat exchange is performed with the refrigerant before the flow path in the downstream portion of the fourth flow control device 73 is separated, and further with the refrigerant flowing into the fourth flow control device 73 at the first heat exchange portion 79. The refrigerant that has evaporated and exchanged heat enters the fourth check valve 33 of the heat source device A through the first connection pipe 66, and is sucked into the low-stage compressor 1a through the four-way valve 2 and the accumulator 64. On the other hand, the refrigerant in the second branch portion 71 that has been heat-exchanged by the first and second heat exchange portions 79 and 76 and has been sufficiently cooled and subcooled passes through the seventh check valves 50b, 50c, and 50d. Then, the air flows into the indoor units B, C, and D that are going to be cooled. Here, the capacity and heat source of the compressors 1a and 1b with variable capacity so that the evaporation temperature in each use-side heat exchanger 5 and the condensation temperature in the heat source apparatus-side heat exchanger 3 become a predetermined target temperature. By controlling the air volume of the air blower 80, the target cooling capacity can be obtained in each of the indoor units B, C, and D. The second flow control device 6 is fully closed so that the refrigerant does not flow to the injection pipe 18.

次に、同じく図6を用いて「暖房運転のみ」の場合について説明する。すなわち、同図に点線矢印で示すように、低段側圧縮機1aから吐出され更に高段側圧縮機1bで圧縮されて吐出された高温高圧の冷媒ガスは、四方弁2を通り、第5の逆止弁34、第2の接続配管67、第1の気液分離装置72を通り、第1の分岐部70、三方切換弁68、室内機側の第1の接続配管66b,66c,66dの順に通り、各室内機B,C,Dに流入し、室内空気と熱交換して凝縮液化し、室内を暖房する。そして、この状態となった冷媒は、各利用側熱交換器5出口のサブクール量により制御される各第1の流量制御装置4を通り、室内機側の第2の接続配管67b,67c,67dから第2の分岐部71に流入し、第8の逆止弁52b,52c,52dを通った後で合流し、更に第2の接続配管67途中の第4の流量制御装置73と第2の熱交換部76の間に入り、第5の流量制御装置75を通る。ここで、冷媒は、第1の流量制御装置4または第5の流量制御装置75で更に中間圧の気液二相まで減圧される。そして、中間圧まで減圧された冷媒は第1の接続配管66から熱源機Aの気液分離器14を経て配管40aの第3の流量制御装置13で減圧されて低圧冷媒となり、第6の逆止弁35から熱源機側熱交換器3に流入し、ここで送風量可変の熱源機側送風機80によって送風される室外空気と熱交換して蒸発しガス状態となる。ガス状態になった冷媒は、四方弁2、アキュムレータ64を経て低段側圧縮機1aに吸入される冷媒循環サイクルを構成し、暖房運転を行う。 Next, the case of “only heating operation” will be described with reference to FIG. That is, as indicated by a dotted arrow in the figure, the high-temperature and high-pressure refrigerant gas discharged from the low-stage compressor 1a and further compressed and discharged by the high-stage compressor 1b passes through the four-way valve 2 to The check valve 34, the second connection pipe 67, the first gas-liquid separator 72, the first branch section 70, the three-way switching valve 68, and the first connection pipes 66b, 66c, 66d on the indoor unit side. In this order, the air flows into each of the indoor units B, C, and D, exchanges heat with room air, condenses, and heats the room. And the refrigerant | coolant which became this state passes each 1st flow control device 4 controlled by the subcooling amount of each utilization side heat exchanger 5 exit, and 2nd connection piping 67b, 67c, 67d on the indoor unit side. Flow into the second branch portion 71, merge after passing through the eighth check valves 52 b, 52 c, 52 d, and the fourth flow rate control device 73 and the second flow rate in the middle of the second connection pipe 67. It enters between the heat exchangers 76 and passes through the fifth flow control device 75. Here, the refrigerant is further depressurized by the first flow rate control device 4 or the fifth flow rate control device 75 to a gas-liquid two-phase of intermediate pressure. Then, the refrigerant reduced to the intermediate pressure is reduced in pressure by the third flow control device 13 of the pipe 40a from the first connection pipe 66 through the gas-liquid separator 14 of the heat source machine A, and becomes a low-pressure refrigerant. It flows into the heat source apparatus side heat exchanger 3 from the stop valve 35, heat-exchanges with the outdoor air ventilated by the heat source apparatus side fan 80 with variable ventilation volume here, and evaporates to be in a gas state. The refrigerant in a gas state constitutes a refrigerant circulation cycle that is sucked into the low-stage compressor 1a through the four-way valve 2 and the accumulator 64, and performs a heating operation.

この時、三方切換弁68は、第2口8bが閉路に、第1口8aおよび第3口8cが開路にされている。また、冷媒はこの時、第1の接続配管66が低圧、第2の接続配管67が高圧であるため、必然的に第5の逆止弁34、第6の逆止弁35へ流通する。また、第7の逆止弁50b,50c,50dは室内機側の第2の接続配管67b,67c,67dが第2の接続配管67よりも高圧であるために、閉の状態となる。ここで、各利用側熱交換器5における凝縮温度および熱源機側熱交換器3における蒸発温度が予め定められた目標温度となるように、容量可変な圧縮機1a,1bの容量および熱源機側送風機80の送風量を制御することにより、各室内機で目標とする暖房能力を得ることができる。また、気液分離器14で分離された液冷媒の一部は第2の流量制御装置6で減圧され、インジェクション用熱交換器7で熱交換した後に低段側圧縮機1aと高段側圧縮機1bの間の配管22に流入する。尚、第1の圧力検知手段10の検知値の制御方法は、実施の形態1で示した第1の圧力検知手段10の場合と同様である。 At this time, in the three-way switching valve 68, the second port 8b is closed, and the first port 8a and the third port 8c are opened. At this time, the refrigerant inevitably flows to the fifth check valve 34 and the sixth check valve 35 because the first connection pipe 66 has a low pressure and the second connection pipe 67 has a high pressure. In addition, the seventh check valves 50b, 50c, and 50d are closed because the second connection pipes 67b, 67c, and 67d on the indoor unit side have a higher pressure than the second connection pipe 67. Here, the capacity of the compressors 1a and 1b with variable capacity and the heat source machine side so that the condensation temperature in each use side heat exchanger 5 and the evaporation temperature in the heat source machine side heat exchanger 3 become predetermined target temperatures. By controlling the amount of air blown from the blower 80, the target heating capacity of each indoor unit can be obtained. Further, a part of the liquid refrigerant separated by the gas-liquid separator 14 is decompressed by the second flow rate control device 6, and after heat exchange by the injection heat exchanger 7, the low-stage compressor 1 a and the high-stage compressor are compressed. It flows into the piping 22 between the machines 1b. The control method of the detection value of the first pressure detection means 10 is the same as that of the first pressure detection means 10 shown in the first embodiment.

続いて、冷暖房同時運転における「暖房主体」の場合について図7を用いて説明する。すなわち、同図に点線矢印で示すように、低段側圧縮機1aから吐出され更に高段側圧縮機1bで圧縮されて吐出された高温高圧の冷媒ガスは、四方弁2、第5の逆止弁34、第2の接続配管67を通って中継機Eへ送られ、第1の気液分離装置72を通り、第1の分岐部70、三方切換弁68、室内機側の第1の接続配管66b,66cの順に通り、暖房しようとする各室内機B,Cに流入し、利用側熱交換器5で室内空気と熱交換して凝縮液化され室内を暖房する。そして、この凝縮液化した冷媒は、各利用側熱交換器B,C出口のサブクール量により制御される各第1の流量制御装置4を通り、少し減圧されて第2の分岐部71に流入し、第8の逆止弁52b,52cを含む第2のバイパス配管51を通って第2の接続配管67に合流し、第2の熱交換部76で冷却される。そして、この第2の熱交換部76で冷却された冷媒の一部は、第7の逆止弁50d、室内機側の第2の接続配管67dを通り、冷房しようとする室内機Dに入り、利用側熱交換器5出口のスーパーヒート量により制御される第1の流量制御装置4で減圧された後に、利用側熱交換器5で熱交換して蒸発しガス状態となって室内を冷房し、三方切換弁68を介して第1の接続配管66に流入する。 Next, the case of “heating main” in the simultaneous cooling and heating operation will be described with reference to FIG. That is, as indicated by a dotted arrow in the figure, the high-temperature and high-pressure refrigerant gas discharged from the low-stage compressor 1a and further compressed by the high-stage compressor 1b is discharged from the four-way valve 2 and the fifth reverse valve. It is sent to the relay machine E through the stop valve 34 and the second connection pipe 67, passes through the first gas-liquid separator 72, the first branch part 70, the three-way switching valve 68, and the first on the indoor unit side. It passes through the connection pipes 66b and 66c in this order, flows into the indoor units B and C to be heated, and heats the indoor air in the use side heat exchanger 5 to be condensed and liquefied to heat the room. Then, the condensed and liquefied refrigerant passes through each first flow rate control device 4 controlled by the subcooling amount at each use-side heat exchanger B, C outlet, is slightly decompressed, and flows into the second branch portion 71. The second connection pipe 67 passes through the second bypass pipe 51 including the eighth check valves 52 b and 52 c, and is cooled by the second heat exchange unit 76. A part of the refrigerant cooled by the second heat exchange section 76 passes through the seventh check valve 50d and the second connection pipe 67d on the indoor unit side and enters the indoor unit D to be cooled. After the pressure is reduced by the first flow rate control device 4 controlled by the superheat amount at the outlet of the use side heat exchanger 5, heat is exchanged by the use side heat exchanger 5 to evaporate into a gas state to cool the room. Then, it flows into the first connection pipe 66 through the three-way switching valve 68.

一方、前記第2の熱交換部76で冷却された冷媒の残りは第3の圧力検知手段85の検知圧力と第4の圧力検知手段86の検知圧力との圧力差が所定範囲となるように制御される第5の流量制御装置75を通ったのち、第2の熱交換部76で暖房室内機B,Cから出てきた冷媒と熱交換して蒸発し、冷房室内機Dを通った冷媒と合流して第1の接続配管66から熱源機Aの気液分離器14を経て配管40aの第3の流量制御装置13で低圧まで減圧された後に第6の逆止弁35、熱源機側熱交換器3に流入し、ここで送風量可変の熱源機側送風機80によって送風される室外空気と熱交換して蒸発しガス状態となる。この際、冷房室内機Dの蒸発温度および暖房室内機B,Cの凝縮温度が予め定められた目標温度となるように容量可変な圧縮機1a,1bの容量および熱源機側送風機80の送風量を調節し、かつ、熱源機側熱交換器3における第1,第2の熱源機側熱交換器41,42の両端の第1,第2,第3,第4の電磁弁44,45,46,47を開閉して伝熱面積を調整し、かつ、熱源機側バイパス路43の電磁開閉弁48を開閉して第1,第2の熱源機側熱交換器41,42を流通する冷媒流量を調整することにより、熱源機側熱交換器3で任意量の熱交換量が得られるとともに、各室内機B,C,Dでは目標とする暖房能力または冷房能力を得ることができる。その後、冷媒は、四方弁2、アキュムレータ64を経て低段側圧縮機1aに吸入される冷媒循環サイクルを構成し、暖房主体運転を行う。 On the other hand, the remainder of the refrigerant cooled by the second heat exchange unit 76 is set so that the pressure difference between the detected pressure of the third pressure detecting means 85 and the detected pressure of the fourth pressure detecting means 86 falls within a predetermined range. After passing through the fifth flow control device 75 to be controlled, the second heat exchange unit 76 exchanges heat with the refrigerant that has come out of the heating indoor units B and C, evaporates, and passes through the cooling indoor unit D. And the sixth check valve 35 on the side of the heat source machine after the pressure is reduced from the first connection pipe 66 to the low pressure by the third flow rate control device 13 of the pipe 40a through the gas-liquid separator 14 of the heat source machine A. It flows into the heat exchanger 3, where it exchanges heat with the outdoor air blown by the heat source machine side blower 80 with variable ventilation volume, and evaporates into a gas state. At this time, the capacities of the compressors 1a and 1b whose capacity is variable so that the evaporating temperature of the cooling indoor unit D and the condensing temperature of the heating indoor units B and C become a predetermined target temperature, and the air flow rate of the heat source side fan 80 And the first, second, third and fourth electromagnetic valves 44, 45 at both ends of the first and second heat source side heat exchangers 41 and 42 in the heat source side heat exchanger 3 The refrigerant which adjusts the heat transfer area by opening and closing 46 and 47 and opens and closes the electromagnetic on-off valve 48 of the heat source unit side bypass passage 43 and flows through the first and second heat source unit side heat exchangers 41 and 42. By adjusting the flow rate, an arbitrary amount of heat exchange can be obtained in the heat source unit side heat exchanger 3, and the target heating capacity or cooling capacity can be obtained in each of the indoor units B, C, and D. Thereafter, the refrigerant constitutes a refrigerant circulation cycle that is sucked into the low-stage compressor 1a through the four-way valve 2 and the accumulator 64, and performs heating main operation.

この時、室内機B,Cに接続された各三方切換弁68の第2口8bは閉路に、第1口8aおよび第3口8cは開路にされており、室内機Dに対し三方切換弁68の第1口8aは閉路に、第2口8bおよび第3口8cは開路にされている。また、冷媒は、第1の接続配管66が低圧、第2の接続配管67が高圧であるため、必然的に第5の逆止弁34、第6の逆止弁35へ流通する。このとき、第4の流量制御装置73は閉じている。また、室内機側の第2の接続配管67b,67cは第2の接続配管67よりも圧力が高いため、第7の逆止弁50b,50cは閉となる。また室内機側の第2の接続配管67dは第2の接続配管67よりも圧力が低いため、第8の逆止弁52cは閉となる。これら第1,第8の逆止弁50,52の存在によって、暖房室内機B,Cを通った冷媒が第2の熱交換部76を通らずにサブクールが充分につかない状態で冷房室内機Dへ流れ込むことを防止している。また、気液分離器14で分離された液冷媒の一部は第2の流量制御装置6で減圧され、インジェクション用熱交換器7で熱交換後に低段側圧縮機1aと高段側圧縮機1bの間の配管22に流入する。尚、第1の圧力検知手段10の検知値の制御方法は、実施の形態1で示した第1の圧力検知手段10の制御方法と同様である。 At this time, the second port 8b of each three-way switching valve 68 connected to the indoor units B and C is closed, and the first port 8a and the third port 8c are opened, so that the three-way switching valve is connected to the indoor unit D. The first port 8a of 68 is closed, and the second port 8b and the third port 8c are open. The refrigerant inevitably flows to the fifth check valve 34 and the sixth check valve 35 because the first connection pipe 66 has a low pressure and the second connection pipe 67 has a high pressure. At this time, the fourth flow control device 73 is closed. Further, since the second connection pipes 67b and 67c on the indoor unit side have higher pressure than the second connection pipe 67, the seventh check valves 50b and 50c are closed. Moreover, since the pressure of the second connection pipe 67d on the indoor unit side is lower than that of the second connection pipe 67, the eighth check valve 52c is closed. Due to the presence of the first and eighth check valves 50 and 52, the cooling indoor unit D is in a state where the refrigerant that has passed through the heating indoor units B and C does not pass through the second heat exchanging unit 76 and is not sufficiently subcooled. Is prevented from flowing into. Further, a part of the liquid refrigerant separated by the gas-liquid separator 14 is decompressed by the second flow rate control device 6, and after the heat exchange by the injection heat exchanger 7, the low-stage compressor 1 a and the high-stage compressor It flows into the piping 22 between 1b. The control method of the detection value of the first pressure detection means 10 is the same as the control method of the first pressure detection means 10 shown in the first embodiment.

次に、冷暖房同時運転における「冷房主体」運転の場合について図8を用いて説明する。すなわち、同図に実線矢印で示すように、低段側圧縮機1aから吐出され更に高段側圧縮機1bで圧縮されて吐出された冷媒ガスは、四方弁2を経て熱源機側熱交換器3に流入し、ここで送風量可変の熱源機側送風機80によって送風される室外空気と熱交換して気液二相の高温高圧状態となる。ここで、利用側熱交換器5での蒸発温度および凝縮温度が予め定められた目標温度となるように容量可変な圧縮機1a,1bの容量および熱源機側送風機80の送風量を調節し、かつ、熱源機側熱交換器3における第1,第2の熱源機側熱交換器41,42の両端の第1,第2,第3,第4の電磁開閉弁44,45,46,47を開閉して伝熱面積を調整し、かつ、熱源機側バイパス路43の電磁開閉弁48を開閉して第1,第2の熱源機側熱交換器41,42を流通する冷媒流量を調整することにより熱源機側熱交換器3で任意量の熱交換量が得られろとともに、各室内機B,C,Dでは目標とする暖房能力または冷房能力を得ることができる。その後、気液二相で高温高圧状態の冷媒は第3の逆止弁32、第2の接続配管67を経て、中継機Eの第1の気液分離装置72へ送られる。ここで、気液二相の冷媒がガス冷媒と液冷媒とに分離され、分離されたガス冷媒は第1の分岐部70、三方切換弁68、室内機側の第1の接続配管66dの順に通り、暖房しようとする室内機Dに流入し、利用側熱交換器5で室内空気と熱交換して凝縮液化し、室内を暖房する。 Next, the case of the “cooling main” operation in the simultaneous cooling and heating operation will be described with reference to FIG. That is, as indicated by solid line arrows in the figure, the refrigerant gas discharged from the low-stage compressor 1a and further compressed and discharged by the high-stage compressor 1b passes through the four-way valve 2 to the heat source machine side heat exchanger. In this state, heat is exchanged with the outdoor air blown by the heat source side blower 80 with variable air flow, and a high-temperature and high-pressure state of gas-liquid two-phase is obtained. Here, the capacities of the compressors 1a and 1b having variable capacities and the air volume of the heat source side fan 80 are adjusted so that the evaporation temperature and the condensation temperature in the use side heat exchanger 5 become predetermined target temperatures, And the 1st, 2nd, 3rd, 4th electromagnetic on-off valve 44, 45, 46, 47 of the both ends of the 1st, 2nd heat source side heat exchanger 41, 42 in the heat source side heat exchanger 3 is shown. The heat transfer area is adjusted by opening and closing and the flow rate of the refrigerant flowing through the first and second heat source side heat exchangers 41 and 42 is adjusted by opening and closing the electromagnetic on-off valve 48 of the heat source side bypass path 43. As a result, the heat source unit side heat exchanger 3 can obtain an arbitrary amount of heat exchange, and each of the indoor units B, C, and D can have a target heating capacity or cooling capacity. Thereafter, the gas-liquid two-phase high-temperature and high-pressure refrigerant is sent to the first gas-liquid separator 72 of the relay E through the third check valve 32 and the second connection pipe 67. Here, the gas-liquid two-phase refrigerant is separated into a gas refrigerant and a liquid refrigerant, and the separated gas refrigerant is in the order of the first branch portion 70, the three-way switching valve 68, and the first connection pipe 66d on the indoor unit side. Then, the air flows into the indoor unit D to be heated, and heat is exchanged with the indoor air in the use side heat exchanger 5 to be condensed and liquefied to heat the room.

その後、利用側熱交換器5出口のサブクール量により制御された第1の流量制御装置4を通り、少し減圧されて第2の分岐部71に流入し、第8の逆止弁52dを含む第2のバイパス配管51を通って、第2の接続配管67の第4の流量制御装置73の下流部に流入する。一方、第1の気液分離装置72で分離された液冷媒は第3の圧力検知手段85の検知圧力と第4の圧力検知手段86の検知圧力とによって制御される第4の流量制御装置73を通って暖房室内機Dからの冷媒と合流し、第2の熱交換部76で冷却される。そして、第2の熱交換部76で冷却された冷媒の一部は、第7の逆止弁50b,50c、室内機側の第2の接続配管67b,67cを通り、冷房しようとする室内機B,Cに流入し、各利用側熱交換器5出口のスーパーヒート量により制御される各第1の流量制御装置4で減圧された後に、各利用側熱交換器5で熱交換して蒸発しガス状態となって室内を冷房し、各三方切換弁68を介して第1の接続配管66に流入する。
一方、第2の熱交換部76で冷却された冷媒の残りは第3の圧力検知手段85の検知圧力と第4の圧力検知手段86の検知圧力との圧力差が所定範囲となるように制御される第5の流量制御装置75を通って第2の熱交換部76および第1の熱交換部79で熱交換して蒸発した後、冷房室内機B,Dからの冷媒と接続配管66で合流し熱源機Aの気液分離器14を経て第6の逆止弁35から熱源機側熱交換器3に流入し、ここで送風量可変の熱源機側送風機80によって送風される空気と熱交換して蒸発しガス状態となる。このような冷媒循環サイクルを構成し、冷房主体運転を行う。
After that, the first flow control device 4 controlled by the subcooling amount at the outlet of the use side heat exchanger 5 is passed through the first flow rate control device 4 to be slightly depressurized and flows into the second branch portion 71, and includes the eighth check valve 52d. The second connection pipe 67 flows into the downstream portion of the fourth flow rate control device 73 through the second bypass pipe 51. On the other hand, the liquid refrigerant separated by the first gas-liquid separation device 72 is controlled by the detection pressure of the third pressure detection means 85 and the detection pressure of the fourth pressure detection means 86. It passes through the refrigerant from the heating indoor unit D and is cooled by the second heat exchange unit 76. Then, a part of the refrigerant cooled by the second heat exchange unit 76 passes through the seventh check valves 50b and 50c and the second connection pipes 67b and 67c on the indoor unit side to be cooled. After flowing into B and C and depressurizing by each first flow rate control device 4 controlled by the superheat amount at the outlet of each use side heat exchanger 5, heat is exchanged by each use side heat exchanger 5 and evaporated. The gas then enters the gas state, cools the room, and flows into the first connection pipe 66 through the three-way switching valve 68.
On the other hand, the remaining refrigerant cooled by the second heat exchange unit 76 is controlled so that the pressure difference between the detected pressure of the third pressure detecting means 85 and the detected pressure of the fourth pressure detecting means 86 falls within a predetermined range. The second heat exchanging unit 76 and the first heat exchanging unit 79 exchange heat through the fifth flow control device 75 and evaporate, and then the refrigerant from the cooling indoor units B and D and the connection pipe 66 are used. Air and heat blown by the heat source machine side blower 80 of variable amount of air flow from the sixth check valve 35 to the heat source machine side heat exchanger 3 through the gas-liquid separator 14 of the combined heat source machine A. It exchanges and evaporates and it will be in a gas state. Such a refrigerant circulation cycle is configured, and a cooling main operation is performed.

この際、室内機B,Cに接続された三方切換弁68の第1口8aは閉路に、第2口8bおよび第3口8cは開路にされており、室内機Dの第2口8bは閉路に、第1口8aおよび第3口8cは開路にされている。また、冷媒は、第1の接続配管66が低圧、第2の接続配管67が高圧であるため、必然的に第3の逆止弁32、第4の逆止弁33へ流入する。また、室内機側の第2の接続配管67b,67cは第2の接続配管67よりも圧力が低いため、第8の逆止弁52b,52cは閉となる。室内機側の第2の接続配管7dは第2の接続配管67よりも圧力が高いため、第7の逆止弁50cは閉となる。この第1,第8の逆止弁50,52の存在によって、暖房室内機B,Cを通った冷媒が第2の熱交換部76を通らずにサブクールが充分につかない状態で冷房室内機Dへ流れ込むことを防止している。尚、第2の流量制御装置6は全閉にしてインジェクション配管18へ冷媒が流れないようにしておく。 At this time, the first port 8a of the three-way switching valve 68 connected to the indoor units B and C is closed, the second port 8b and the third port 8c are opened, and the second port 8b of the indoor unit D is In the closed state, the first port 8a and the third port 8c are opened. The refrigerant inevitably flows into the third check valve 32 and the fourth check valve 33 because the first connection pipe 66 has a low pressure and the second connection pipe 67 has a high pressure. Further, since the second connection pipes 67b and 67c on the indoor unit side are lower in pressure than the second connection pipe 67, the eighth check valves 52b and 52c are closed. Since the second connecting pipe 7d on the indoor unit side has a higher pressure than the second connecting pipe 67, the seventh check valve 50c is closed. Due to the presence of the first and eighth check valves 50 and 52, the cooling indoor unit D in a state where the refrigerant that has passed through the heating indoor units B and C does not pass through the second heat exchange unit 76 and is not sufficiently subcooled. Is prevented from flowing into. The second flow control device 6 is fully closed so that the refrigerant does not flow to the injection pipe 18.

この実施形態2に係る空気調和装置は複数の切換弁や逆止弁により複数の室内機において冷房と暖房を同時に混在運転可能なものでありながら、制御装置20の流量制御装置制御手段25が、第1の圧力検知手段10の検知値をその第1の圧力検知手段10の制御目標値に近づけるように第3の流量制御装置13の開度を制御する。従って、実施形態1と同様の優れた効果を得ることができる。 While the air conditioner according to the second embodiment is capable of simultaneously operating cooling and heating in a plurality of indoor units by a plurality of switching valves and check valves, the flow control device control means 25 of the control device 20 includes: The opening degree of the third flow rate control device 13 is controlled so that the detection value of the first pressure detection means 10 approaches the control target value of the first pressure detection means 10. Therefore, the same excellent effect as that of the first embodiment can be obtained.

本発明の実施の形態1に係る空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る空気調和装置の制御装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the control apparatus of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る運転状態の冷媒の流れ図である。It is a flowchart of the refrigerant | coolant of the operation state which concerns on Embodiment 1 of this invention. 本発明の実施の形態1の制御の処理手順を示すフローチャートの図である。It is a figure of the flowchart which shows the process sequence of control of Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷房または暖房のみの運転状態を示す冷媒の流れ図である。It is a refrigerant | coolant flowchart which shows the driving | running state only of the air_conditioning | cooling or heating which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る暖房主体の運転状態を示す冷媒の流れ図である。It is a flowchart of the refrigerant | coolant which shows the operation state of the heating main body which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷房主体の運転状態を示す冷媒の流れ図である。It is a flowchart of the refrigerant | coolant which shows the driving | running state of the cooling main body which concerns on Embodiment 2 of this invention. 従来の空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the conventional air conditioning apparatus.

符号の説明Explanation of symbols

1a 低段側圧縮機、1b 高段側圧縮機、2 四方弁、3 熱源機側熱交換器、4,4A,4B 第1の流量制御装置、5,5A,5B 利用側熱交換器、6 第2の流量制御装置、7 インジェクション用熱交換器、8 第2の圧力検知手段、9 第3の圧力検知手段、10 第1の圧力検知手段、11 電磁弁、12 逆止弁、13 第3の流量制御装置、14 気液分離器、15 第1の温度検知手段、16A,16B 第2の温度検知手段、17 第3の温度検知手段、18 インジェクション配管、18a 管端開口、20 制御装置、21A,21B 絞り開度検知手段、25 流量制御装置制御手段、26 第1の圧力目標値設定手段、27 第2の圧力目標値設定手段、28 第3の圧力目標値設定手段、29 サブクール量検知手段、30 流量制御装置閉止手段、40 流路切換え装置、64 アキュムレータ、66 第1の接続配管、67 第2の接続配管、70 第1の分岐部、71 第2の分岐部、73 第4の流量制御装置、74 第1のバイパス配管、75 第5の流量制御装置。 DESCRIPTION OF SYMBOLS 1a Low stage side compressor, 1b High stage side compressor, 2 Four-way valve, 3 Heat source side heat exchanger, 4, 4A, 4B 1st flow control device, 5, 5A, 5B Use side heat exchanger, 6 2nd flow control device, 7 heat exchanger for injection, 8 2nd pressure detection means, 9 3rd pressure detection means, 10 1st pressure detection means, 11 solenoid valve, 12 check valve, 13 3rd 14 gas-liquid separator, 15 first temperature detection means, 16A, 16B second temperature detection means, 17 third temperature detection means, 18 injection pipe, 18a pipe end opening, 20 control apparatus, 21A, 21B Aperture opening degree detection means, 25 Flow rate control device control means, 26 First pressure target value setting means, 27 Second pressure target value setting means, 28 Third pressure target value setting means, 29 Subcool amount detection Means, 30 Flow control device closing means, 40 flow path switching device, 64 accumulator, 66 first connection piping, 67 second connection piping, 70 first branch portion, 71 second branch portion, 73 fourth flow control device , 74 1st bypass piping, 75 5th flow control apparatus.

Claims (8)

低段側圧縮機と、上記低段側圧縮機からの冷媒を圧縮し吐出する高段側圧縮機と、並列接続された利用側熱交換器および第1の流量制御装置の複数セットと、熱源機側熱交換器とが順次環状に接続された冷媒回路を有するとともに、上記第1の流量制御装置から上記熱源機側熱交換器までの冷媒回路より分岐して上記高段側圧縮機の吸込側につながるインジェクション配管と、上記インジェクション配管に設けられた第2の流量制御装置と、上記インジェクション配管の分岐位置から上記熱源機側熱交換器までの冷媒回路に設けられた第3の流量制御装置と、上記インジェクション配管の分岐位置から上記第3の流量制御装置までの冷媒回路の冷媒圧力を検知する第1の圧力検知手段と、上記第1の圧力検知手段の検知値を当該第1の圧力検知手段の制御目標値に近づけるように上記第3の流量制御装置の開度を制御する流量制御装置制御手段とを備えていることを特徴とする空気調和装置。 A low-stage compressor, a high-stage compressor that compresses and discharges refrigerant from the low-stage compressor, a plurality of sets of a use-side heat exchanger and a first flow rate controller connected in parallel, and a heat source A refrigerant circuit sequentially connected to the machine-side heat exchanger in an annular manner, and is branched from the refrigerant circuit from the first flow rate control device to the heat source machine-side heat exchanger to suck the high-stage compressor Injection pipe connected to the side, a second flow rate control device provided in the injection pipe, and a third flow rate control device provided in the refrigerant circuit from the branch position of the injection pipe to the heat source side heat exchanger A first pressure detecting means for detecting a refrigerant pressure in the refrigerant circuit from the branch position of the injection pipe to the third flow rate control device, and a detected value of the first pressure detecting means as the first pressure. Inspection An air conditioning apparatus characterized in that it comprises a flow control device controlling means for controlling the opening of the flow control device to the third to approach the control target value of the means. 複数の第1の流量制御装置の開度をそれぞれ検知する絞り開度検知手段と、上記検知された複数の開度の中の最大値に基づいて第1の圧力検知手段の制御目標値を設定変更する第1の圧力目標値設定手段とを備えていることを特徴とする請求項1に記載の空気調和装置。 The throttle opening degree detecting means for detecting the opening degree of each of the plurality of first flow control devices, and the control target value of the first pressure detecting means is set based on the maximum value among the detected plurality of opening degrees. 2. The air conditioner according to claim 1, further comprising first pressure target value setting means for changing. 複数の第1の流量制御装置によるサブクール量をそれぞれ検知するサブクール量検知手段と、上記検知された複数のサブクール量の中の最大値に基づいて第1の圧力検知手段の制御目標値を設定変更する第2の圧力目標値設定手段とを備えていることを特徴とする請求項1に記載の空気調和装置。 Subcool amount detection means for detecting subcool amounts by the plurality of first flow control devices respectively, and setting change of the control target value of the first pressure detection means based on the maximum value among the detected plurality of subcool amounts The air conditioner according to claim 1, further comprising second pressure target value setting means. 高段側圧縮機の吐出側の冷媒圧力を検知する第2の圧力検知手段と、上記第2の圧力検知手段による検知値と第1の圧力検知手段による検知値との差に基づいて上記第1の圧力検知手段の制御目標値を設定変更する第3の圧力目標値設定手段とを備えていることを特徴とする請求項1に記載の空気調和装置。 Based on the difference between the second pressure detection means for detecting the refrigerant pressure on the discharge side of the high stage compressor and the detection value by the second pressure detection means and the detection value by the first pressure detection means. The air conditioner according to claim 1, further comprising third pressure target value setting means for changing the setting of the control target value of one pressure detection means. 低段側圧縮機と、上記低段側圧縮機からの冷媒を圧縮し吐出する高段側圧縮機と、並列接続された利用側熱交換器および第1の流量制御装置の複数セットと、熱源機側熱交換器とが順次環状に接続された冷媒回路を有するとともに、上記第1の流量制御装置から上記熱源機側熱交換器までの冷媒回路より分岐して上記高段側圧縮機の吸込側につながるインジェクション配管と、上記インジェクション配管に設けられた第2の流量制御装置と、上記低段側圧縮機および上記高段側圧縮機の起動または霜取り運転から暖房運転への復帰に先立って、予め第2の流量制御装置を閉めておく流量制御装置閉止手段とを備えていることを特徴とする空気調和装置。 A low-stage compressor, a high-stage compressor that compresses and discharges refrigerant from the low-stage compressor, a plurality of sets of a use-side heat exchanger and a first flow rate controller connected in parallel, and a heat source A refrigerant circuit sequentially connected to the machine-side heat exchanger in an annular manner, and is branched from the refrigerant circuit from the first flow rate control device to the heat source machine-side heat exchanger to suck the high-stage compressor Prior to returning from the start-up or defrosting operation to the heating operation of the low-stage compressor and the high-stage compressor, the injection pipe connected to the side, the second flow rate control device provided in the injection pipe, An air conditioner comprising: a flow control device closing means for closing the second flow control device in advance. 低段側圧縮機と、上記低段側圧縮機からの冷媒を圧縮し吐出する高段側圧縮機と、並列接続された室内側熱交換器および第1の流量制御装置の複数セットと、熱源機側熱交換器とが順次環状に接続された冷媒回路を有するとともに、上記第1の流量制御装置から上記熱源機側熱交換器までの冷媒回路より分岐して上記高段側圧縮機の吸込側につながるインジェクション配管と、上記インジェクション配管に設けられた第2の流量制御装置と、上記冷媒回路における上記インジェクション配管の分岐位置に設けられた気液分離装置とを備えて成り、上記インジェクション配管の管端開口を上記気液分離装置内の液冷媒吸上げ位置に配置して、上記気液分離装置で分離した液冷媒を上記インジェクション配管および第2の流量制御装置を通して上記高段側圧縮機の吸込側に流入させるように構成したことを特徴とする空気調和装置。 A low-stage compressor, a high-stage compressor that compresses and discharges refrigerant from the low-stage compressor, a plurality of sets of indoor-side heat exchangers and first flow rate controllers connected in parallel, and a heat source A refrigerant circuit sequentially connected to the machine-side heat exchanger in an annular manner, and is branched from the refrigerant circuit from the first flow rate control device to the heat source machine-side heat exchanger to suck the high-stage compressor An injection pipe connected to the side, a second flow rate control device provided in the injection pipe, and a gas-liquid separation device provided at a branch position of the injection pipe in the refrigerant circuit. A pipe end opening is arranged at the liquid refrigerant suction position in the gas-liquid separator, and the liquid refrigerant separated by the gas-liquid separator is passed through the injection pipe and the second flow rate controller. An air conditioning apparatus characterized by being configured so as to flow into the suction side of the high-stage compressor. 第2の流量制御装置から高段側圧縮機の吸込側までのインジェクション配管に、上記インジェクション配管を通る冷媒を、上記インジェクション配管の分岐位置から熱源機側熱交換器までの冷媒回路を通る冷媒と熱交換させるインジェクション用熱交換器を設けたことを特徴とする請求項6に記載の空気調和装置。 A refrigerant that passes through the injection pipe to the injection pipe from the second flow rate control device to the suction side of the high-stage compressor, and a refrigerant that passes through a refrigerant circuit from the branch position of the injection pipe to the heat source side heat exchanger; The air conditioner according to claim 6, further comprising an injection heat exchanger for heat exchange. 低段側圧縮機、上記低段側圧縮機からの冷媒を圧縮し吐出する高段側圧縮機、四方弁、熱源機側熱交換器、アキュムレータ等よりなる熱源機と、室内側熱交換器および第1の流量制御装置等からなっていて並列接続される複数の室内機とを、第1の接続配管および第2の接続配管を介して接続し、上記複数の室内機の上記利用側熱交換器の少なくともひとつを上記第1の接続配管または上記第2の接続配管に切り換え可能に接続する第1の分岐部と、上記複数の室内機の上記利用側熱交換器の残りを上記第1の流量制御装置を介して上記第2の接続配管に接続する第2の分岐部との間を、第4の流量制御装置を有する配管で接続し、上記第2の分岐部と上記第1の接続配管との間を、第5の流量制御装置を有するバイパス配管で接続し、上記熱源機側熱交換器が凝縮器となる運転時には上記凝縮器の冷媒出口側から上記第2の接続配管側にのみ冷媒を流通させるとともに上記第1の接続配管から上記四方弁側にのみ冷媒を流通させ、かつ、上記熱源機側熱交換器が蒸発器となる運転時には上記第1の接続配管から上記蒸発器の冷媒流入側にのみ冷媒を流通させるとともに上記四方弁から第2の接続配管側にのみ冷媒を流通させる流路切換え装置を有する空気調和装置において、上記第1の接続配管より分岐して上記高段側圧縮機の吸込側につながるインジェクション配管と、上記インジェクション配管に設けられた第2の流量制御装置と、上記インジェクション配管の分岐位置から上記熱源機側熱交換器に向かう流路切り替え装置の配管に設けられた第3の流量制御装置と、上記インジェクション配管の分岐位置から上記第3の流量制御装置までの冷媒回路の冷媒圧力を検知する第1の圧力検知手段と、上記第1の圧力検知手段の検知値を当該第1の圧力検知手段の制御目標値に近づけるように上記第3の流量制御装置の開度を制御する流量制御装置制御手段とを備えていることを特徴とする空気調和装置。 A low-stage compressor, a high-stage compressor that compresses and discharges the refrigerant from the low-stage compressor, a four-way valve, a heat source apparatus-side heat exchanger, an accumulator, a heat source apparatus, an indoor heat exchanger, and A plurality of indoor units composed of a first flow control device or the like and connected in parallel are connected via a first connection pipe and a second connection pipe, and the use side heat exchange of the plurality of indoor units A first branch section that connects at least one of the units to the first connection pipe or the second connection pipe in a switchable manner, and the rest of the use-side heat exchangers of the plurality of indoor units. A pipe having a fourth flow rate control device is connected between the second branch portion connected to the second connection pipe via a flow rate control device, and the second branch portion and the first connection are connected. Connected to the pipe with a bypass pipe having a fifth flow control device, During operation in which the source-side heat exchanger is a condenser, the refrigerant is circulated only from the refrigerant outlet side of the condenser to the second connection pipe side and from the first connection pipe to the four-way valve side only. The refrigerant is circulated only from the first connection pipe to the refrigerant inflow side of the evaporator during the operation in which the heat source apparatus side heat exchanger is an evaporator and the four-way valve is connected to the second connection pipe side. In the air conditioner having the flow path switching device for circulating the refrigerant only in the first pipe, an injection pipe branched from the first connection pipe and connected to the suction side of the high-stage compressor, and a first pipe provided in the injection pipe 2, a third flow rate control device provided in the pipe of the flow path switching device from the branch position of the injection pipe to the heat source machine side heat exchanger, A first pressure detecting means for detecting a refrigerant pressure in the refrigerant circuit from the branch position of the jet pipe to the third flow rate control device, and a detected value of the first pressure detecting means as the first pressure detecting means. An air conditioner comprising flow rate control device control means for controlling the opening of the third flow rate control device so as to approach the control target value.
JP2006088394A 2006-03-28 2006-03-28 Air conditioner Expired - Fee Related JP4675810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006088394A JP4675810B2 (en) 2006-03-28 2006-03-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006088394A JP4675810B2 (en) 2006-03-28 2006-03-28 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007263443A true JP2007263443A (en) 2007-10-11
JP4675810B2 JP4675810B2 (en) 2011-04-27

Family

ID=38636602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088394A Expired - Fee Related JP4675810B2 (en) 2006-03-28 2006-03-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP4675810B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107693A1 (en) * 2008-02-29 2009-09-03 ダイキン工業株式会社 Air conditioner and refrigerant amount determining method
JP2010139215A (en) * 2008-12-15 2010-06-24 Mitsubishi Electric Corp Air conditioning device
JP2010139205A (en) * 2008-12-15 2010-06-24 Mitsubishi Electric Corp Air conditioning device
JP2010156493A (en) * 2008-12-26 2010-07-15 Daikin Ind Ltd Heating/cooling simultaneous operation type air conditioner
JP2010276239A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Refrigerating air-conditioning device
WO2012104890A1 (en) * 2011-01-31 2012-08-09 三菱電機株式会社 Air-conditioning device
WO2012104892A1 (en) * 2011-01-31 2012-08-09 三菱電機株式会社 Air-conditioning device
US8320191B2 (en) 2007-08-30 2012-11-27 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
JP2013015264A (en) * 2011-07-04 2013-01-24 Mitsubishi Electric Corp Air conditioner
KR101321547B1 (en) * 2009-11-18 2013-10-25 엘지전자 주식회사 Air conditioning system
KR101321548B1 (en) 2009-11-18 2013-10-25 엘지전자 주식회사 Air conditioning system
WO2013175912A1 (en) * 2012-05-23 2013-11-28 ダイキン工業株式会社 Freezer
KR101353185B1 (en) * 2012-03-02 2014-01-20 한국교통대학교산학협력단 Heat-Pump
JPWO2012160597A1 (en) * 2011-05-23 2014-07-31 三菱電機株式会社 Air conditioner
KR20140123821A (en) * 2013-04-15 2014-10-23 엘지전자 주식회사 Air Conditioner and Controlling method for the same
KR20140123824A (en) * 2013-04-15 2014-10-23 엘지전자 주식회사 Air Conditioner and Controlling method for the same
KR20140123820A (en) * 2013-04-15 2014-10-23 엘지전자 주식회사 Air Conditioner
WO2015029220A1 (en) * 2013-08-30 2015-03-05 三菱電機株式会社 Air conditioner
WO2015029223A1 (en) * 2013-08-30 2015-03-05 三菱電機株式会社 Air conditioner
JP2015059719A (en) * 2013-09-19 2015-03-30 ダイキン工業株式会社 Refrigerating device
JP5855284B2 (en) * 2012-12-28 2016-02-09 三菱電機株式会社 Air conditioner
JP2016106211A (en) * 2016-01-20 2016-06-16 三菱電機株式会社 Air conditioner
AU2015271968B2 (en) * 2012-05-23 2016-07-07 Daikin Industries, Ltd. Refrigeration apparatus
US9518754B2 (en) 2012-01-24 2016-12-13 Mitsubishi Electric Corporation Air-conditioning apparatus
US9709304B2 (en) 2012-01-23 2017-07-18 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2021048898A1 (en) * 2019-09-09 2021-03-18 三菱電機株式会社 Outdoor unit and refrigeration cycle device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2905552B1 (en) 2012-10-01 2019-04-17 Mitsubishi Electric Corporation Air conditioning device
WO2014054090A1 (en) 2012-10-01 2014-04-10 三菱電機株式会社 Air conditioning device
US10161647B2 (en) 2012-10-02 2018-12-25 Mitsubishi Electric Corporation Air-conditioning apparatus

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217755A (en) * 1990-12-17 1992-08-07 Matsushita Refrig Co Ltd Multiroom type air-conditioner
JPH0611205A (en) * 1992-06-25 1994-01-21 Matsushita Refrig Co Ltd Air conditioning apparatus
JPH07234037A (en) * 1994-02-18 1995-09-05 Yamaha Motor Co Ltd Heat pump equipment
JPH1089780A (en) * 1996-09-13 1998-04-10 Mitsubishi Electric Corp Refrigerating system
JP2001208441A (en) * 2000-01-31 2001-08-03 Sanyo Electric Co Ltd Air conditioning apparatus
JP2001317820A (en) * 2000-05-08 2001-11-16 Hitachi Ltd Refrigerating cycle apparatus
JP2002130850A (en) * 2000-10-26 2002-05-09 Hitachi Ltd Refrigerating plant
JP2003279174A (en) * 2002-03-26 2003-10-02 Mitsubishi Electric Corp Air conditioning device
JP2004085019A (en) * 2002-08-26 2004-03-18 Hitachi Ltd Air conditioner
JP2004170023A (en) * 2002-11-21 2004-06-17 Fujitsu General Ltd Control method for multicellular air-conditioner
JP2004183913A (en) * 2002-11-29 2004-07-02 Mitsubishi Electric Corp Air conditioner
JP2004278825A (en) * 2003-03-13 2004-10-07 Hitachi Ltd Air conditioner

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217755A (en) * 1990-12-17 1992-08-07 Matsushita Refrig Co Ltd Multiroom type air-conditioner
JPH0611205A (en) * 1992-06-25 1994-01-21 Matsushita Refrig Co Ltd Air conditioning apparatus
JPH07234037A (en) * 1994-02-18 1995-09-05 Yamaha Motor Co Ltd Heat pump equipment
JPH1089780A (en) * 1996-09-13 1998-04-10 Mitsubishi Electric Corp Refrigerating system
JP2001208441A (en) * 2000-01-31 2001-08-03 Sanyo Electric Co Ltd Air conditioning apparatus
JP2001317820A (en) * 2000-05-08 2001-11-16 Hitachi Ltd Refrigerating cycle apparatus
JP2002130850A (en) * 2000-10-26 2002-05-09 Hitachi Ltd Refrigerating plant
JP2003279174A (en) * 2002-03-26 2003-10-02 Mitsubishi Electric Corp Air conditioning device
JP2004085019A (en) * 2002-08-26 2004-03-18 Hitachi Ltd Air conditioner
JP2004170023A (en) * 2002-11-21 2004-06-17 Fujitsu General Ltd Control method for multicellular air-conditioner
JP2004183913A (en) * 2002-11-29 2004-07-02 Mitsubishi Electric Corp Air conditioner
JP2004278825A (en) * 2003-03-13 2004-10-07 Hitachi Ltd Air conditioner

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9030877B2 (en) 2007-08-30 2015-05-12 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
US8320191B2 (en) 2007-08-30 2012-11-27 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
JP2009210149A (en) * 2008-02-29 2009-09-17 Daikin Ind Ltd Air conditioner and refrigerant amount determining method
AU2009218157B2 (en) * 2008-02-29 2012-01-19 Daikin Industries, Ltd. Air conditioning apparatus and refrigerant quantity determination method
US9459032B2 (en) 2008-02-29 2016-10-04 Daikin Industries, Ltd. Air conditioning apparatus and refrigerant quantity determination method
WO2009107693A1 (en) * 2008-02-29 2009-09-03 ダイキン工業株式会社 Air conditioner and refrigerant amount determining method
JP2010139215A (en) * 2008-12-15 2010-06-24 Mitsubishi Electric Corp Air conditioning device
JP2010139205A (en) * 2008-12-15 2010-06-24 Mitsubishi Electric Corp Air conditioning device
JP2010156493A (en) * 2008-12-26 2010-07-15 Daikin Ind Ltd Heating/cooling simultaneous operation type air conditioner
JP2010276239A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Refrigerating air-conditioning device
KR101321547B1 (en) * 2009-11-18 2013-10-25 엘지전자 주식회사 Air conditioning system
KR101321548B1 (en) 2009-11-18 2013-10-25 엘지전자 주식회사 Air conditioning system
JP5657030B2 (en) * 2011-01-31 2015-01-21 三菱電機株式会社 Air conditioner
WO2012104890A1 (en) * 2011-01-31 2012-08-09 三菱電機株式会社 Air-conditioning device
WO2012104892A1 (en) * 2011-01-31 2012-08-09 三菱電機株式会社 Air-conditioning device
AU2011358037B2 (en) * 2011-01-31 2015-01-22 Mitsubishi Electric Corporation Air-conditioning apparatus
AU2011358039B2 (en) * 2011-01-31 2015-01-22 Mitsubishi Electric Corporation Air-conditioning apparatus
CN103261814A (en) * 2011-01-31 2013-08-21 三菱电机株式会社 Air-conditioning device
US9671119B2 (en) 2011-01-31 2017-06-06 Mitsubishi Electric Corporation Air-conditioning apparatus
US9599378B2 (en) 2011-01-31 2017-03-21 Mitsubishi Electric Corporation Air-conditioning apparatus
JPWO2012160597A1 (en) * 2011-05-23 2014-07-31 三菱電機株式会社 Air conditioner
US9494348B2 (en) 2011-05-23 2016-11-15 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2013015264A (en) * 2011-07-04 2013-01-24 Mitsubishi Electric Corp Air conditioner
US9709304B2 (en) 2012-01-23 2017-07-18 Mitsubishi Electric Corporation Air-conditioning apparatus
US9518754B2 (en) 2012-01-24 2016-12-13 Mitsubishi Electric Corporation Air-conditioning apparatus
KR101353185B1 (en) * 2012-03-02 2014-01-20 한국교통대학교산학협력단 Heat-Pump
WO2013175912A1 (en) * 2012-05-23 2013-11-28 ダイキン工業株式会社 Freezer
AU2016202008B2 (en) * 2012-05-23 2016-10-06 Daikin Industries, Ltd Refrigeration apparatus
US20150096321A1 (en) * 2012-05-23 2015-04-09 Daikin Industries, Ltd. Refrigeration apparatus
US10197321B2 (en) 2012-05-23 2019-02-05 Daikin Industries, Ltd. Refrigeration apparatus
AU2013264129B2 (en) * 2012-05-23 2016-04-28 Daikin Industries, Ltd. Refrigeration apparatus
US9958191B2 (en) 2012-05-23 2018-05-01 Daikin Industries, Ltd. Refrigeration apparatus
US20170336120A1 (en) * 2012-05-23 2017-11-23 Daikin Industries, Ltd. Refrigeration apparatus
JP2014001917A (en) * 2012-05-23 2014-01-09 Daikin Ind Ltd Refrigerator
KR101634483B1 (en) * 2012-05-23 2016-06-28 다이킨 고교 가부시키가이샤 Freezer
AU2015271968B2 (en) * 2012-05-23 2016-07-07 Daikin Industries, Ltd. Refrigeration apparatus
KR20150020219A (en) * 2012-05-23 2015-02-25 다이킨 고교 가부시키가이샤 Freezer
JP5855284B2 (en) * 2012-12-28 2016-02-09 三菱電機株式会社 Air conditioner
KR20140123824A (en) * 2013-04-15 2014-10-23 엘지전자 주식회사 Air Conditioner and Controlling method for the same
KR102103360B1 (en) 2013-04-15 2020-05-29 엘지전자 주식회사 Air Conditioner and Controlling method for the same
KR102163859B1 (en) 2013-04-15 2020-10-12 엘지전자 주식회사 Air Conditioner and Controlling method for the same
KR102122252B1 (en) * 2013-04-15 2020-06-12 엘지전자 주식회사 Air Conditioner
KR20140123820A (en) * 2013-04-15 2014-10-23 엘지전자 주식회사 Air Conditioner
KR20140123821A (en) * 2013-04-15 2014-10-23 엘지전자 주식회사 Air Conditioner and Controlling method for the same
GB2533042B (en) * 2013-08-30 2020-08-12 Mitsubishi Electric Corp Air-conditioning apparatus
WO2015029223A1 (en) * 2013-08-30 2015-03-05 三菱電機株式会社 Air conditioner
GB2533042A (en) * 2013-08-30 2016-06-08 Mitsubishi Electric Corp Air conditioner
GB2533041A (en) * 2013-08-30 2016-06-08 Mitsubishi Electric Corp Air conditioner
GB2533041B (en) * 2013-08-30 2020-06-24 Mitsubishi Electric Corp Air conditioning apparatus
JP6017049B2 (en) * 2013-08-30 2016-10-26 三菱電機株式会社 Air conditioner
JP6017048B2 (en) * 2013-08-30 2016-10-26 三菱電機株式会社 Air conditioner
WO2015029220A1 (en) * 2013-08-30 2015-03-05 三菱電機株式会社 Air conditioner
JP2015059719A (en) * 2013-09-19 2015-03-30 ダイキン工業株式会社 Refrigerating device
JP2016106211A (en) * 2016-01-20 2016-06-16 三菱電機株式会社 Air conditioner
WO2021048898A1 (en) * 2019-09-09 2021-03-18 三菱電機株式会社 Outdoor unit and refrigeration cycle device
JPWO2021048898A1 (en) * 2019-09-09 2021-03-18
GB2602893A (en) * 2019-09-09 2022-07-20 Mitsubishi Electric Corp Outdoor unit and refrigeration cycle device
JP7155440B2 (en) 2019-09-09 2022-10-18 三菱電機株式会社 Outdoor unit and refrigeration cycle equipment
GB2602893B (en) * 2019-09-09 2023-05-17 Mitsubishi Electric Corp Outdoor unit and refrigeration cycle apparatus
JP7378561B2 (en) 2019-09-09 2023-11-13 三菱電機株式会社 Outdoor unit and refrigeration cycle equipment

Also Published As

Publication number Publication date
JP4675810B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP4675810B2 (en) Air conditioner
KR101552618B1 (en) air conditioner
JP4752765B2 (en) Air conditioner
JP6223469B2 (en) Air conditioner
JP6880204B2 (en) Air conditioner
US20100206000A1 (en) Air conditioner and method of controlling the same
US11874039B2 (en) Refrigeration cycle apparatus
JP2008157557A (en) Air-conditioning system
JP5875710B2 (en) Air conditioner
JP6644131B2 (en) Air conditioner
JP5872052B2 (en) Air conditioner
KR20100096857A (en) Air conditioner
JP2007147203A (en) Air conditioner
KR20190088692A (en) Method for controlling multi-type air conditioner
JP2875507B2 (en) Air conditioner
JP2008267653A (en) Refrigerating device
JP3829340B2 (en) Air conditioner
JP2944507B2 (en) Air conditioner
KR101692243B1 (en) Heat pump with cascade refrigerating cycle
JP6591071B2 (en) Air conditioner
JP5279768B2 (en) Air conditioner
KR20190088693A (en) Method for controlling multi-type air conditioner
JP5537906B2 (en) Air conditioner
JP7258129B2 (en) air conditioner
JP2718308B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4675810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees