JP4715561B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4715561B2
JP4715561B2 JP2006059482A JP2006059482A JP4715561B2 JP 4715561 B2 JP4715561 B2 JP 4715561B2 JP 2006059482 A JP2006059482 A JP 2006059482A JP 2006059482 A JP2006059482 A JP 2006059482A JP 4715561 B2 JP4715561 B2 JP 4715561B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
pressure
gas
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006059482A
Other languages
Japanese (ja)
Other versions
JP2007240026A (en
Inventor
昌弘 山田
貴弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006059482A priority Critical patent/JP4715561B2/en
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to KR1020087020571A priority patent/KR100960196B1/en
Priority to PCT/JP2007/054186 priority patent/WO2007102463A1/en
Priority to EP07737771.1A priority patent/EP1992887A4/en
Priority to CN2007800052131A priority patent/CN101384862B/en
Priority to US12/224,661 priority patent/US20100229582A1/en
Priority to AU2007223486A priority patent/AU2007223486B2/en
Publication of JP2007240026A publication Critical patent/JP2007240026A/en
Application granted granted Critical
Publication of JP4715561B2 publication Critical patent/JP4715561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Description

本発明は、中間圧のガス冷媒を圧縮機へ供給してガスインジェクションを行う冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus that performs gas injection by supplying an intermediate-pressure gas refrigerant to a compressor.

従来より、圧縮機への入力の削減を目的として、いわゆるガスインジェクション(即ち、中間圧のガス冷媒を圧縮機へ供給する動作)を行う冷凍装置が知られている。例えば、特許文献1の図1には、単段圧縮冷凍サイクルを行う冷凍装置であって、圧縮機における圧縮途中の圧縮室へ中間圧のガス冷媒を供給するものが開示されている。また、特許文献1の図13には、二段圧縮冷凍サイクルを行う冷凍装置であって低段圧縮機と高段圧縮機の間に中間圧のガス冷媒を供給するものが開示されている。   2. Description of the Related Art Conventionally, a refrigeration apparatus that performs so-called gas injection (that is, an operation of supplying an intermediate-pressure gas refrigerant to a compressor) is known for the purpose of reducing the input to the compressor. For example, FIG. 1 of Patent Document 1 discloses a refrigeration apparatus that performs a single-stage compression refrigeration cycle and that supplies an intermediate-pressure gas refrigerant to a compression chamber in the middle of compression in a compressor. FIG. 13 of Patent Document 1 discloses a refrigeration apparatus that performs a two-stage compression refrigeration cycle and that supplies a gas refrigerant having an intermediate pressure between a low-stage compressor and a high-stage compressor.

ガスインジェクションを行うには、中間圧のガス冷媒を発生させなければならない。そのため、例えば特許文献1の図1に記載された冷凍装置では、中間圧冷媒を液冷媒とガス冷媒に分離する気液分離器を冷媒回路に設け、この気液分離器から圧縮機へ中間圧のガス冷媒を供給している。また、特許文献1の図9に記載された冷凍装置では、中間圧熱交換器で中間圧冷媒を高圧液冷媒と熱交換させることによって蒸発させ、この中間圧熱交換器から圧縮機へ中間圧のガス冷媒を供給している。
特開2001−033117号公報
In order to perform gas injection, an intermediate-pressure gas refrigerant must be generated. Therefore, for example, in the refrigeration apparatus described in FIG. 1 of Patent Document 1, a gas-liquid separator that separates the intermediate pressure refrigerant into liquid refrigerant and gas refrigerant is provided in the refrigerant circuit, and the intermediate pressure is supplied from the gas-liquid separator to the compressor. The gas refrigerant is supplied. Moreover, in the refrigeration apparatus described in FIG. 9 of Patent Document 1, the intermediate pressure refrigerant is evaporated by exchanging heat with the high pressure liquid refrigerant in the intermediate pressure heat exchanger, and the intermediate pressure is transferred from the intermediate pressure heat exchanger to the compressor. The gas refrigerant is supplied.
JP 2001-033117 A

ところで、上記冷凍装置では、冷媒回路に設けられた圧縮機や熱交換器等の構成機器が互いに離れた位置に配置されたり、互いに異なる高さに配置される場合がある。例えば、冷凍装置の一種である空調機は、室外ユニットと室内ユニットを連絡配管で接続することによって構成される場合が多い。そして、空調機をビルなどに設置するような場合は、連絡配管の長さが100m近くに達したり、室外ユニットと室内ユニットの間に20〜30m程度の高低差がつくこともある。   By the way, in the said refrigeration apparatus, component apparatuses, such as a compressor provided in a refrigerant circuit, and a heat exchanger, may be arrange | positioned in the position which mutually separated, and may be arrange | positioned in mutually different height. For example, an air conditioner that is a type of refrigeration apparatus is often configured by connecting an outdoor unit and an indoor unit with a communication pipe. And when installing an air conditioner in a building etc., the length of connection piping may reach near 100 m, and the height difference of about 20-30 m may be made between an outdoor unit and an indoor unit.

このように、冷凍装置の設置状況は、その用途などによって様々である。そして、上記のガスインジェクションを行う冷凍装置については、その設置状況によっては円滑な運転ができなくなるおそれがあった。以下では、この問題点について説明する。   As described above, the installation status of the refrigeration apparatus varies depending on the application. And about the freezing apparatus which performs said gas injection, there existed a possibility that a smooth driving | operation could not be performed depending on the installation condition. Hereinafter, this problem will be described.

上述したように、ガスインジェクションを行う冷凍装置では、気液分離器から圧縮機へ中間圧のガス冷媒を供給する場合がある。気液分離器内では液冷媒とガス冷媒が共存しているため、気液分離器から送り出される液冷媒は飽和状態となっている。この種の冷凍装置が対象物を冷却する動作を行う際には、気液分離器から流出した飽和状態の液冷媒が利用側熱交換器へ送られる。ところが、利用側熱交換器が気液分離器から遠く離れていたり、利用側熱交換器が気液分離器よりも高い位置に設置されていると、気液分離器から利用側熱交換器へ向けて配管内を流れる間に冷媒の圧力が低下し、冷媒の一部が蒸発してしまうことがある。このため、利用側熱交換器への液冷媒の流入量が減少し、利用側熱交換器で得られる冷却能力が減少するおそれがある。   As described above, in a refrigeration apparatus that performs gas injection, an intermediate-pressure gas refrigerant may be supplied from a gas-liquid separator to a compressor. Since the liquid refrigerant and the gas refrigerant coexist in the gas-liquid separator, the liquid refrigerant sent out from the gas-liquid separator is in a saturated state. When this type of refrigeration apparatus performs an operation of cooling an object, saturated liquid refrigerant that has flowed out of the gas-liquid separator is sent to the use-side heat exchanger. However, if the usage-side heat exchanger is far away from the gas-liquid separator or the usage-side heat exchanger is installed at a higher position than the gas-liquid separator, the gas-liquid separator will transfer to the usage-side heat exchanger. The refrigerant pressure may decrease while flowing in the pipe toward the outside, and a part of the refrigerant may evaporate. For this reason, the inflow amount of the liquid refrigerant to the use side heat exchanger decreases, and there is a possibility that the cooling capacity obtained by the use side heat exchanger may decrease.

また、ガスインジェクションを行う冷凍装置では、中間圧熱交換器で中間圧冷媒を高圧液冷媒と熱交換させ、中間圧熱交換器で蒸発した中間圧冷媒を圧縮機へ供給する場合がある。この種の冷凍装置が対象物を加熱する動作を行う際には、利用側熱交換器で凝縮した冷媒の一部が中間圧にまで減圧されて中間圧熱交換器へ導入される。ところが、中間圧熱交換器が利用側熱交換器から遠く離れていたり、中間圧熱交換器が利用側熱交換器よりも高い位置に設置されていると、利用側熱交換器から中間圧熱交換器へ向けて配管内を流れる間に冷媒の圧力が低下し、冷媒の一部が蒸発して冷媒の温度が低下することがある。このため、中間圧熱交換器で互いに熱交換する高圧冷媒と中間圧冷媒の温度差が小さくなり、中間圧熱交換器で中間圧冷媒を確実にガス化できなくなるおそれがある。   Further, in a refrigeration apparatus that performs gas injection, the intermediate pressure refrigerant may be subjected to heat exchange with the high pressure liquid refrigerant in the intermediate pressure heat exchanger, and the intermediate pressure refrigerant evaporated in the intermediate pressure heat exchanger may be supplied to the compressor. When this type of refrigeration apparatus performs an operation of heating an object, a part of the refrigerant condensed in the use side heat exchanger is reduced to an intermediate pressure and introduced into the intermediate pressure heat exchanger. However, if the intermediate pressure heat exchanger is far away from the use side heat exchanger, or if the intermediate pressure heat exchanger is installed at a higher position than the use side heat exchanger, the intermediate pressure heat exchanger While flowing through the piping toward the exchanger, the pressure of the refrigerant may decrease, and a part of the refrigerant may evaporate, resulting in a decrease in the temperature of the refrigerant. For this reason, the temperature difference between the high-pressure refrigerant and the intermediate-pressure refrigerant that exchange heat with each other in the intermediate-pressure heat exchanger is reduced, and there is a possibility that the intermediate-pressure refrigerant cannot be reliably gasified with the intermediate-pressure heat exchanger.

本発明は、かかる点に鑑みてなされたものであり、いわゆるガスインジェクションを行う冷凍装置において、その設置状況や運転状態に拘わらず円滑な運転を可能とすることにある。   The present invention has been made in view of this point, and is to enable a smooth operation in a refrigeration apparatus that performs so-called gas injection regardless of the installation state and operation state thereof.

第1の発明は、圧縮機(31,34)と熱源側熱交換器(36)と利用側熱交換器(71)とが接続されて冷凍サイクルを行うと共に、上記熱源側熱交換器(36)が凝縮器となって上記利用側熱交換器(71)が蒸発器となる冷却動作と、上記利用側熱交換器(71)が凝縮器となって上記熱源側熱交換器(36)が蒸発器となる加熱動作とが切り換え可能な冷媒回路(20)を備える冷凍装置を対象としている。そして、上記冷媒回路(20)は、高圧液冷媒の一部を減圧して得られた中間圧冷媒を上記圧縮機(31,34)へ供給するインジェクション通路(43)と、上記インジェクション通路(43)を上記圧縮機(31,34)へ向けて流れる中間圧冷媒を高圧液冷媒と熱交換させて蒸発させる中間圧熱交換器(40)と、高圧液冷媒を減圧して得られた中間圧冷媒を液冷媒とガス冷媒に分離する気液分離器(51)とを備え、上記冷却動作中には上記インジェクション通路(43)を流れる中間圧のガス冷媒が、上記加熱動作中には上記気液分離器(51)から流出した中間圧のガス冷媒がそれぞれ上記圧縮機(31,34)へ供給されるように冷媒の流通経路が変更可能となっているものである。   In the first invention, the compressor (31, 34), the heat source side heat exchanger (36), and the use side heat exchanger (71) are connected to perform a refrigeration cycle, and the heat source side heat exchanger (36 ) Becomes a condenser and the use side heat exchanger (71) becomes an evaporator, and the use side heat exchanger (71) becomes a condenser and the heat source side heat exchanger (36) A refrigeration apparatus including a refrigerant circuit (20) capable of switching between a heating operation as an evaporator is intended. The refrigerant circuit (20) includes an injection passage (43) for supplying intermediate pressure refrigerant obtained by decompressing a part of the high-pressure liquid refrigerant to the compressor (31, 34), and the injection passage (43 ) And the intermediate pressure heat exchanger (40) for evaporating the intermediate pressure refrigerant flowing toward the compressor (31, 34) by heat exchange with the high pressure liquid refrigerant, and the intermediate pressure obtained by decompressing the high pressure liquid refrigerant. A gas-liquid separator (51) for separating the refrigerant into a liquid refrigerant and a gas refrigerant, and the intermediate-pressure gas refrigerant flowing through the injection passage (43) during the cooling operation and the gas refrigerant during the heating operation. The refrigerant flow path can be changed so that the intermediate-pressure gas refrigerant flowing out of the liquid separator (51) is supplied to the compressor (31, 34).

第1の発明では、冷却動作中と加熱動作中とで圧縮機(31,34)に対する中間圧冷媒の供給元が変更される。冷却動作中には、中間圧熱交換器(40)で蒸発した中間圧冷媒が圧縮機(31,34)へ供給される。その際、中間圧熱交換器(40)では、高圧液冷媒が中間圧冷媒との熱交換によって冷却されるため、高圧液冷媒の過冷却度が大きくなる。このため、中間圧熱交換器(40)から利用側熱交換器(71)へ至るまでに高圧冷媒の圧力がある程度低下しても、利用側熱交換器(71)へ供給される高圧冷媒は液状態に保たれ、あるいは利用側熱交換器(71)へ供給される高圧冷媒のうち途中で蒸発する量が少なくなる。一方、加熱動作中には、中間圧冷媒が気液分離器(51)へ導入され、気液分離器(51)内のガス冷媒が圧縮機(31,34)へ供給される。このため、利用側熱交換器(71)から気液分離器(51)へ至るまでに冷媒の圧力がある程度低下して冷媒の一部が蒸発しても、気液分離器(51)ではガス冷媒と液冷媒が分離されるため、圧縮機(31,34)へは中間圧のガス冷媒が確実に供給される。   In the first invention, the supply source of the intermediate pressure refrigerant to the compressor (31, 34) is changed between the cooling operation and the heating operation. During the cooling operation, the intermediate pressure refrigerant evaporated in the intermediate pressure heat exchanger (40) is supplied to the compressor (31, 34). At that time, in the intermediate pressure heat exchanger (40), since the high pressure liquid refrigerant is cooled by heat exchange with the intermediate pressure refrigerant, the degree of supercooling of the high pressure liquid refrigerant is increased. For this reason, even if the pressure of the high pressure refrigerant drops to some extent from the intermediate pressure heat exchanger (40) to the use side heat exchanger (71), the high pressure refrigerant supplied to the use side heat exchanger (71) The amount of high-pressure refrigerant that is kept in a liquid state or is supplied to the use-side heat exchanger (71) is reduced in the middle. On the other hand, during the heating operation, the intermediate pressure refrigerant is introduced into the gas-liquid separator (51), and the gas refrigerant in the gas-liquid separator (51) is supplied to the compressor (31, 34). For this reason, even if a part of the refrigerant evaporates due to a certain decrease in the pressure of the refrigerant from the use side heat exchanger (71) to the gas-liquid separator (51), the gas-liquid separator (51) Since the refrigerant and the liquid refrigerant are separated, the intermediate-pressure gas refrigerant is reliably supplied to the compressors (31, 34).

第2の発明は、上記第1の発明において、上記冷媒回路(20)は、上記圧縮機(31,34)及び上記熱源側熱交換器(36)が設けられた熱源側回路(30)と上記利用側熱交換器(71)が設けられた利用側回路(70)とを連絡配管(21,22)で接続することによって構成され、上記インジェクション通路(43)、上記中間圧熱交換器(40)、及び上記気液分離器(51)が上記熱源側回路(30)に設けられるものである。   In a second aspect based on the first aspect, the refrigerant circuit (20) includes a heat source side circuit (30) provided with the compressor (31, 34) and the heat source side heat exchanger (36). The use side heat exchanger (71) provided with the use side circuit (70) is connected by connecting pipes (21, 22), and the injection passage (43), the intermediate pressure heat exchanger ( 40) and the gas-liquid separator (51) are provided in the heat source side circuit (30).

第2の発明では、冷媒回路(20)が熱源側回路(30)と利用側回路(70)と連絡配管(21,22)とによって構成される。冷却動作中には、中間圧熱交換器(40)を通過する際に冷却された高圧液冷媒が連絡配管(21)を通って利用側熱交換器(71)へ流入する。このため、連絡配管(21,22)が長い場合や、利用側回路(70)が熱源側回路(30)よりも高い位置に設置される場合であっても、利用側熱交換器(71)へ供給される高圧冷媒は液状態に保たれ、あるいは利用側熱交換器(71)へ供給される高圧冷媒のうち途中で蒸発する量が少なくなる。一方、加熱動作中には、利用側熱交換器(71)で凝縮した冷媒が連絡配管(21)を通って気液分離器(51)へ流入し、気液分離器(51)内のガス冷媒が圧縮機(31,34)へ供給される。このため、連絡配管(21,22)が長い場合や、熱源側回路(30)が利用側回路(70)よりも高い位置に設置される場合であっても、圧縮機(31,34)へガス冷媒が確実に供給される。   In 2nd invention, a refrigerant circuit (20) is comprised by the heat-source side circuit (30), the utilization side circuit (70), and connection piping (21, 22). During the cooling operation, the high-pressure liquid refrigerant cooled when passing through the intermediate pressure heat exchanger (40) flows into the use side heat exchanger (71) through the communication pipe (21). For this reason, even when the connecting pipe (21, 22) is long or when the use side circuit (70) is installed at a higher position than the heat source side circuit (30), the use side heat exchanger (71) The high-pressure refrigerant supplied to is kept in a liquid state, or the amount of vaporized in the middle of the high-pressure refrigerant supplied to the use side heat exchanger (71) is reduced. On the other hand, during the heating operation, the refrigerant condensed in the use side heat exchanger (71) flows into the gas-liquid separator (51) through the communication pipe (21), and the gas in the gas-liquid separator (51) The refrigerant is supplied to the compressor (31, 34). For this reason, even when the connecting pipe (21, 22) is long or when the heat source side circuit (30) is installed at a higher position than the use side circuit (70), it goes to the compressor (31, 34). A gas refrigerant is reliably supplied.

第3の発明は、上記第1の発明において、上記気液分離器(51)は、上記冷媒回路(20)のうち上記冷却動作中に上記熱源側熱交換器(36)の下流側となり且つ上記加熱動作中に上記利用側熱交換器(71)の下流側となる位置に配置された容器状部材(65)によって構成される一方、上記中間圧熱交換器(40)は、上記容器状部材(65)の内部に収容されて上記インジェクション通路(43)を流れる中間圧冷媒を上記容器状部材(65)内の液冷媒と熱交換させる熱交換用部材(66)によって構成されるものである。   In a third aspect based on the first aspect, the gas-liquid separator (51) is located downstream of the heat source side heat exchanger (36) during the cooling operation in the refrigerant circuit (20) and The intermediate pressure heat exchanger (40) is formed in the container shape while being constituted by the container-like member (65) disposed at a position downstream of the use side heat exchanger (71) during the heating operation. It is constituted by a heat exchange member (66) for exchanging heat with the liquid refrigerant in the container-like member (65) which is accommodated in the member (65) and flows through the injection passage (43). is there.

第3の発明では、気液分離器(51)が容器状部材(65)によって構成され、中間圧熱交換器(40)が熱交換用部材(66)によって構成される。冷却動作において、熱源側熱交換器(36)で凝縮した冷媒(高圧液冷媒)が容器状部材(65)へ流入する。また、高圧液冷媒の一部は、インジェクション通路(43)へ流入し、中間圧にまで減圧されて熱交換部材へ流入する。熱交換部材へ流入した中間圧冷媒は、容器状部材(65)内の高圧液冷媒と熱交換して蒸発し、その後に圧縮機(31,34)へ供給される。中間圧冷媒との熱交換によって冷却された容器状部材(65)内の高圧液冷媒は、利用側熱交換器(71)へ向けて容器状部材(65)から送り出される。一方、加熱動作において、容器状部材(65)には、利用側熱交換器(71)で凝縮した冷媒が中間圧にまで減圧されてから流入する。容器状部材(65)内では、流入した中間圧冷媒が液冷媒とガス冷媒に分離される。熱源側熱交換器(36)からは、液冷媒が熱源側熱交換器(36)へ向けて送り出され、ガス冷媒がインジェクション通路(43)を通じて圧縮機(31,34)へ供給される。   In the third invention, the gas-liquid separator (51) is constituted by the container-like member (65), and the intermediate pressure heat exchanger (40) is constituted by the heat exchange member (66). In the cooling operation, the refrigerant (high-pressure liquid refrigerant) condensed in the heat source side heat exchanger (36) flows into the container-like member (65). A part of the high-pressure liquid refrigerant flows into the injection passage (43), is reduced to an intermediate pressure, and flows into the heat exchange member. The intermediate-pressure refrigerant flowing into the heat exchange member evaporates by exchanging heat with the high-pressure liquid refrigerant in the container-like member (65), and then supplied to the compressor (31, 34). The high-pressure liquid refrigerant in the container-like member (65) cooled by heat exchange with the intermediate-pressure refrigerant is sent out from the container-like member (65) toward the use side heat exchanger (71). On the other hand, in the heating operation, the refrigerant condensed in the use side heat exchanger (71) flows into the container-like member (65) after being reduced to an intermediate pressure. In the container-like member (65), the flowing intermediate pressure refrigerant is separated into liquid refrigerant and gas refrigerant. From the heat source side heat exchanger (36), the liquid refrigerant is sent out toward the heat source side heat exchanger (36), and the gas refrigerant is supplied to the compressors (31, 34) through the injection passage (43).

第4の発明は、上記第1の発明において、上記冷媒回路(20)のうち上記冷却動作中に上記中間圧熱交換器(40)の下流側となる位置には、高圧液冷媒の一部を低圧にまで減圧して得られた低圧冷媒と熱交換させることによって高圧液冷媒を冷却する過冷却熱交換器(60)が設けられるものである。   According to a fourth invention, in the first invention, a part of the high-pressure liquid refrigerant is located at a position downstream of the intermediate pressure heat exchanger (40) during the cooling operation in the refrigerant circuit (20). A supercooling heat exchanger (60) is provided for cooling the high-pressure liquid refrigerant by exchanging heat with the low-pressure refrigerant obtained by reducing the pressure to a low pressure.

第4の発明では、過冷却熱交換器(60)が冷媒回路(20)に設けられる。冷却動作中において、過冷却熱交換器(60)では、中間圧熱交換器(40)を通過した高圧液冷媒が、高圧液冷媒の一部を減圧して得られた低圧冷媒と熱交換することによって冷却される。つまり、過冷却熱交換器(60)では、高圧液冷媒の過冷却度が大きくなる。過冷却熱交換器(60)で冷却された高圧液冷媒は、利用側熱交換器(71)へ送られる。   In the fourth invention, the supercooling heat exchanger (60) is provided in the refrigerant circuit (20). During the cooling operation, in the supercooling heat exchanger (60), the high-pressure liquid refrigerant that has passed through the intermediate-pressure heat exchanger (40) exchanges heat with the low-pressure refrigerant obtained by decompressing a part of the high-pressure liquid refrigerant. To be cooled. That is, in the supercooling heat exchanger (60), the degree of supercooling of the high-pressure liquid refrigerant is increased. The high-pressure liquid refrigerant cooled by the supercooling heat exchanger (60) is sent to the use side heat exchanger (71).

第5の発明は、上記第1の発明において、上記冷媒回路(20)では、単段圧縮冷凍サイクルが行われる一方、上記圧縮機(31)は、圧縮途中の圧縮室へ中間圧のガス冷媒が流入するように構成されるものである。   In a fifth aspect based on the first aspect, in the refrigerant circuit (20), a single-stage compression refrigeration cycle is performed, while the compressor (31) is an intermediate-pressure gas refrigerant to a compression chamber in the middle of compression. Is configured to flow in.

第5の発明では、圧縮機(31)における圧縮途中の圧縮室へ中間圧のガス冷媒が導入される。圧縮機(31)は、利用側熱交換器(71)と熱源側熱交換器(36)のうち蒸発器となっている方で蒸発した低圧冷媒と、中間圧熱交換器(40)又は気液分離器(51)から供給された中間圧冷媒とを吸入して圧縮する。   In the fifth invention, the intermediate-pressure gas refrigerant is introduced into the compression chamber in the middle of compression in the compressor (31). The compressor (31) includes a low-pressure refrigerant that has evaporated in the use side heat exchanger (71) and the heat source side heat exchanger (36), and an intermediate pressure heat exchanger (40) or an air The intermediate pressure refrigerant supplied from the liquid separator (51) is sucked and compressed.

第6の発明は、上記第1の発明において、上記冷媒回路(20)では、低段側の圧縮機(33)と高段側の圧縮機(34)が直列に接続されて二段圧縮冷凍サイクルが行われる一方、上記冷媒回路(20)は、上記高段側の圧縮機(34)の吸入側へ中間圧のガス冷媒を供給するように構成されるものである。   In a sixth aspect based on the first aspect, in the refrigerant circuit (20), a low-stage compressor (33) and a high-stage compressor (34) are connected in series to form a two-stage compression refrigeration. While the cycle is performed, the refrigerant circuit (20) is configured to supply intermediate-pressure gas refrigerant to the suction side of the high-stage compressor (34).

第6の発明では、高段側の圧縮機(34)の吸入側に中間圧のガス冷媒が導入される。高段側の圧縮機(34)は、低段側の圧縮機(33)で圧縮された冷媒と、中間圧熱交換器(40)や気液分離器(51)から送られてきたガス冷媒とを吸入する。   In the sixth aspect of the invention, the intermediate-pressure gas refrigerant is introduced into the suction side of the high-stage compressor (34). The high-stage compressor (34) includes a refrigerant compressed by the low-stage compressor (33) and a gas refrigerant sent from the intermediate pressure heat exchanger (40) and the gas-liquid separator (51). And inhale.

本発明では、冷却動作中には中間圧熱交換器(40)で蒸発させた中間圧冷媒を圧縮機(31,34)へ供給し、中間圧熱交換器(40)で冷却された高圧液冷媒を利用側熱交換器(71)へ送るようにしている。このため、利用側熱交換器(71)が中間圧熱交換器(40)から遠く離れた位置に配置されていたり、利用側熱交換器(71)が中間圧熱交換器(40)よりも高い位置に配置されていて、中間圧熱交換器(40)から利用側熱交換器(71)へ至るまでに高圧冷媒の圧力がかなり低下するような設置状況であっても、利用側熱交換器(71)へ供給される高圧冷媒を液状態に保つことができ、あるいは利用側熱交換器(71)へ供給される高圧冷媒のうち途中で蒸発する量を削減することができる。その結果、冷却動作中に利用側熱交換器(71)へ供給される液冷媒の量を確保することができ、利用側熱交換器(71)の冷却能力を充分に発揮させることができる。   In the present invention, during the cooling operation, the intermediate pressure refrigerant evaporated by the intermediate pressure heat exchanger (40) is supplied to the compressor (31, 34), and the high pressure liquid cooled by the intermediate pressure heat exchanger (40) is supplied. The refrigerant is sent to the use side heat exchanger (71). For this reason, the use side heat exchanger (71) is located far from the intermediate pressure heat exchanger (40), or the use side heat exchanger (71) is more than the intermediate pressure heat exchanger (40). Even if the high-pressure refrigerant pressure drops considerably from the intermediate pressure heat exchanger (40) to the use side heat exchanger (71), the use side heat exchange The high-pressure refrigerant supplied to the vessel (71) can be kept in a liquid state, or the amount of vaporization in the middle of the high-pressure refrigerant supplied to the use side heat exchanger (71) can be reduced. As a result, the amount of liquid refrigerant supplied to the use side heat exchanger (71) during the cooling operation can be ensured, and the cooling ability of the use side heat exchanger (71) can be fully exhibited.

また、本発明では、加熱動作中には気液分離器(51)から圧縮機(31,34)へ中間圧のガス冷媒を供給している。このため、気液分離器(51)が利用側熱交換器(71)から遠く離れた位置に配置されていたり、気液分離器(51)が利用側熱交換器(71)よりも高い位置に配置されていて、利用側熱交換器(71)から気液分離器(51)へ至るまでに冷媒の圧力がかなり低下するような設置状況であっても、中間圧のガス冷媒を圧縮機(31,34)へ確実に供給することができる。その結果、中間圧の液冷媒が圧縮機(31,34)へ流入してしまって圧縮機(31,34)の破損を招くといった事態を回避できる。   In the present invention, the gas refrigerant of intermediate pressure is supplied from the gas-liquid separator (51) to the compressor (31, 34) during the heating operation. For this reason, the gas-liquid separator (51) is arranged at a position far away from the use side heat exchanger (71), or the gas-liquid separator (51) is higher than the use side heat exchanger (71). Even in an installation where the refrigerant pressure drops considerably from the use side heat exchanger (71) to the gas-liquid separator (51), the intermediate-pressure gas refrigerant is (31, 34) can be reliably supplied. As a result, it is possible to avoid a situation in which the intermediate-pressure liquid refrigerant flows into the compressor (31, 34) and causes damage to the compressor (31, 34).

このように、本発明によれば、冷凍装置(10)がどの様な状態で設置されている場合であっても、冷却動作中と加熱動作中の両方において冷凍装置(10)を円滑に運転することが可能となる。   Thus, according to the present invention, the refrigeration apparatus (10) can be smoothly operated during both the cooling operation and the heating operation, regardless of the state in which the refrigeration apparatus (10) is installed. It becomes possible to do.

上記第2の発明では、冷媒回路(20)を熱源側回路(30)と利用側回路(70)と連絡配管(21,22)とによって構成している。この場合には、中間圧熱交換器(40)や気液分離器(51)が設けられた熱源側回路(30)と、利用側熱交換器(71)が設けられた利用側回路(70)とが遠く離れた位置に配置されたり、両者が異なる高さに設置されることが多い。従って、この発明のような構成の冷媒回路(20)を備える冷凍装置(10)において、上述したように冷却動作中と加熱動作中で圧縮機(31,34)に対する中間圧冷媒の供給元を変更すると、冷凍装置(10)の設置状況に関する制約を緩和することができる。   In the said 2nd invention, the refrigerant circuit (20) is comprised by the heat-source side circuit (30), the utilization side circuit (70), and connection piping (21, 22). In this case, the heat source side circuit (30) provided with the intermediate pressure heat exchanger (40) and the gas-liquid separator (51) and the use side circuit (70 provided with the use side heat exchanger (71)) ) Are often arranged at distant positions, or they are installed at different heights. Therefore, in the refrigeration apparatus (10) including the refrigerant circuit (20) configured as in the present invention, the supply source of the intermediate pressure refrigerant to the compressor (31, 34) is being cooled and heated as described above. If it changes, the restriction | limiting regarding the installation condition of a freezing apparatus (10) can be eased.

上記第3の発明では、中間圧熱交換器(40)を構成する熱交換用部材(66)が気液分離器(51)を構成する容器状部材(65)の内部に収容されている。つまり、内部に熱交換用部材(66)が収容された容器状部材(65)を冷媒回路(20)に接続すれば、気液分離器(51)と中間圧熱交換器(40)の両方を冷媒回路(20)に設置したことになる。従って、この発明によれば、気液分離器(51)と中間圧熱交換器(40)をそれぞれ個別に形成する場合に比べ、冷媒回路(20)の構成を簡素化することができる。   In the said 3rd invention, the member (66) for heat exchange which comprises an intermediate pressure heat exchanger (40) is accommodated in the inside of the container-like member (65) which comprises a gas-liquid separator (51). That is, if the container-like member (65) in which the heat exchange member (66) is accommodated is connected to the refrigerant circuit (20), both the gas-liquid separator (51) and the intermediate pressure heat exchanger (40) Is installed in the refrigerant circuit (20). Therefore, according to this invention, compared with the case where a gas-liquid separator (51) and an intermediate pressure heat exchanger (40) are each formed separately, the structure of a refrigerant circuit (20) can be simplified.

上記第4の発明では、冷媒回路(20)に過冷却熱交換器(60)を設け、冷却動作中に利用側熱交換器(71)へ送られる高圧液冷媒の過冷却度を増大させている。このため、中間圧熱交換器(40)から利用側熱交換器(71)へ至るまでに高圧冷媒の圧力がある程度低下するような設置状況であっても、利用側熱交換器(71)へ供給される高圧冷媒を一層確実に液状態に保つことができ、あるいは利用側熱交換器(71)へ供給される高圧冷媒のうち途中で蒸発する量を一層削減することができる。   In the fourth aspect of the invention, the supercooling heat exchanger (60) is provided in the refrigerant circuit (20) to increase the degree of supercooling of the high-pressure liquid refrigerant sent to the use side heat exchanger (71) during the cooling operation. Yes. For this reason, even in an installation situation where the pressure of the high-pressure refrigerant drops to some extent from the intermediate pressure heat exchanger (40) to the usage side heat exchanger (71), the usage side heat exchanger (71) The high-pressure refrigerant to be supplied can be more reliably maintained in a liquid state, or the amount of the high-pressure refrigerant supplied to the use side heat exchanger (71) can be further reduced.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

《発明の実施形態1》
本発明の実施形態1について説明する。本実施形態は、本発明に係る冷凍装置によって構成された空調機(10)である。
Embodiment 1 of the Invention
A first embodiment of the present invention will be described. The present embodiment is an air conditioner (10) configured by a refrigeration apparatus according to the present invention.

図1に示すように、本実施形態の空調機(10)は、1台の室外ユニット(11)と、2台の室内ユニット(12)とを備えている。なお、室内ユニット(12)の台数は、単なる例示である。室外ユニット(11)には、熱源側回路(30)である室外回路(30)が収容されている。各室内ユニット(12)には、利用側回路である室内回路(70)が収容されている。   As shown in FIG. 1, the air conditioner (10) of the present embodiment includes one outdoor unit (11) and two indoor units (12). The number of indoor units (12) is merely an example. The outdoor unit (11) accommodates an outdoor circuit (30) that is a heat source side circuit (30). Each indoor unit (12) accommodates an indoor circuit (70) which is a use side circuit.

空調機(10)では、室外回路(30)と室内回路(70)を液側連絡配管(21)及びガス側連絡配管(22)で接続することによって冷媒回路(20)が形成されている。この冷媒回路(20)では、1つの室外回路(30)に対して2つの室内回路(70)が互いに並列に接続されている。   In the air conditioner (10), the refrigerant circuit (20) is formed by connecting the outdoor circuit (30) and the indoor circuit (70) by the liquid side connecting pipe (21) and the gas side connecting pipe (22). In this refrigerant circuit (20), two indoor circuits (70) are connected in parallel to one outdoor circuit (30).

各室内回路(70)には、利用側熱交換器である室内熱交換器(71)と、室内膨張弁(72)とが1つずつ設けられている。室内熱交換器(71)は、室内空気と冷媒を熱交換させる空気熱交換器である。各室内回路(70)において、室内熱交換器(71)と室内膨張弁(72)は互いに直列に接続されている。各室内回路(70)では、室内膨張弁(72)側の端部に液側連絡配管(21)が接続され、室内熱交換器(71)側の端部にガス側連絡配管(22)が接続されている。   Each indoor circuit (70) is provided with one indoor heat exchanger (71), which is a use side heat exchanger, and one indoor expansion valve (72). The indoor heat exchanger (71) is an air heat exchanger that exchanges heat between indoor air and the refrigerant. In each indoor circuit (70), the indoor heat exchanger (71) and the indoor expansion valve (72) are connected in series with each other. In each indoor circuit (70), the liquid side communication pipe (21) is connected to the end on the indoor expansion valve (72) side, and the gas side communication pipe (22) is connected to the end on the indoor heat exchanger (71) side. It is connected.

室外回路(30)には、圧縮機(31)と、四方切換弁(35)と、熱源側熱交換器である室外熱交換器(36)と、室外膨張弁(37)と、アキュームレータ(38)とが設けられている。また、この室外熱交換器(36)には、中間圧熱交換器(40)と、気液分離器(51)と、バイパス配管(50)と、インジェクション配管(43)と、中間圧ガス配管(52)とが設けられている。   The outdoor circuit (30) includes a compressor (31), a four-way switching valve (35), an outdoor heat exchanger (36) as a heat source side heat exchanger, an outdoor expansion valve (37), and an accumulator (38 ) And are provided. The outdoor heat exchanger (36) includes an intermediate pressure heat exchanger (40), a gas-liquid separator (51), a bypass pipe (50), an injection pipe (43), and an intermediate pressure gas pipe. (52) is provided.

圧縮機(31)は、容積型の圧縮機(31)であって、圧縮室へ吸入した冷媒を圧縮するように構成されている。圧縮機(31)には、圧縮途中の圧縮室へ中間圧の冷媒を導入するための中間圧ポート(32)が設けられている。この圧縮機(31)は、その吐出側が四方切換弁(35)の第1のポートに、その吸入側がアキュームレータ(38)を介して四方切換弁(35)の第2のポートにそれぞれ接続されている。なお、本実施形態では室外回路(30)に圧縮機(31)を1台だけ設けているが、複数台の圧縮機を並列に設けてもよい。   The compressor (31) is a positive displacement compressor (31) and is configured to compress the refrigerant sucked into the compression chamber. The compressor (31) is provided with an intermediate pressure port (32) for introducing an intermediate pressure refrigerant into the compression chamber in the middle of compression. The compressor (31) has its discharge side connected to the first port of the four-way switching valve (35) and its suction side connected to the second port of the four-way switching valve (35) via the accumulator (38). Yes. In the present embodiment, only one compressor (31) is provided in the outdoor circuit (30), but a plurality of compressors may be provided in parallel.

室外熱交換器(36)は、室外空気と冷媒を熱交換させる空気熱交換器である。中間圧熱交換器(40)は、二重管式熱交換器やプレート式熱交換器等の冷媒同士を熱交換させる熱交換器である。この中間圧熱交換器(40)には、第1流路(41)と第2流路(42)とが形成されている。室外熱交換器(36)は、その一端が四方切換弁(35)の第3のポートに、他端が室外膨張弁(37)を介して中間圧熱交換器(40)の第1流路(41)の一端にそれぞれ接続されている。中間圧熱交換器(40)の第1流路(41)の他端は、第1逆止弁(45)を介して液側連絡配管(21)に接続されている。第1逆止弁(45)は、中間圧熱交換器(40)から液側連絡配管(21)へ向かう冷媒の流通だけを許容するように配置されている。   The outdoor heat exchanger (36) is an air heat exchanger that exchanges heat between the outdoor air and the refrigerant. The intermediate pressure heat exchanger (40) is a heat exchanger that exchanges heat between refrigerants such as a double-pipe heat exchanger and a plate heat exchanger. The intermediate pressure heat exchanger (40) is formed with a first channel (41) and a second channel (42). The outdoor heat exchanger (36) has one end connected to the third port of the four-way switching valve (35) and the other end connected to the first flow path of the intermediate pressure heat exchanger (40) via the outdoor expansion valve (37). (41) is connected to one end of each. The other end of the first flow path (41) of the intermediate pressure heat exchanger (40) is connected to the liquid side communication pipe (21) via the first check valve (45). The first check valve (45) is disposed so as to allow only the refrigerant to flow from the intermediate pressure heat exchanger (40) to the liquid side communication pipe (21).

インジェクション配管(43)は、インジェクション通路を形成している。このインジェクション配管(43)は、その始端が中間圧熱交換器(40)と第1逆止弁(45)の間に、終端が圧縮機(31)の中間圧ポート(32)にそれぞれ接続されている。中間圧熱交換器(40)の第2流路(42)は、このインジェクション配管(43)の途中に配置されている。インジェクション配管(43)では、その始端と中間圧熱交換器(40)の第2流路(42)との間にインジェクション用膨張弁(44)が設けられている。   The injection pipe (43) forms an injection passage. The injection pipe (43) has a start end connected between the intermediate pressure heat exchanger (40) and the first check valve (45), and an end connected to the intermediate pressure port (32) of the compressor (31). ing. The 2nd flow path (42) of an intermediate pressure heat exchanger (40) is arrange | positioned in the middle of this injection piping (43). In the injection pipe (43), an injection expansion valve (44) is provided between the start end thereof and the second flow path (42) of the intermediate pressure heat exchanger (40).

気液分離器(51)は、縦長の筒状に形成された密閉容器である。この気液分離器(51)は、その下端部がバイパス配管(50)の途中に配置されている。バイパス配管(50)は、その始端が第1逆止弁(45)と液側連絡配管(21)の間に、終端が中間圧熱交換器(40)の第1流路(41)と室外膨張弁(37)の間にそれぞれ接続されている。また、バイパス配管(50)では、その終端と気液分離器(51)の間に第2逆止弁(55)が設けられている。第2逆止弁(55)は、気液分離器(51)から流出する方向の冷媒の流通だけを許容するように配置されている。   The gas-liquid separator (51) is a sealed container formed in a vertically long cylindrical shape. The gas-liquid separator (51) has a lower end disposed in the middle of the bypass pipe (50). The bypass pipe (50) has a start end between the first check valve (45) and the liquid side connection pipe (21), and a terminal end of the first flow path (41) of the intermediate pressure heat exchanger (40). Each is connected between the expansion valves (37). In the bypass pipe (50), a second check valve (55) is provided between the end of the bypass pipe (50) and the gas-liquid separator (51). The second check valve (55) is disposed so as to allow only the refrigerant to flow out of the gas-liquid separator (51).

気液分離器(51)の頂部には、中間圧ガス配管(52)の一端が接続されている。中間圧ガス配管(52)の他端は、インジェクション配管(43)における中間圧熱交換器(40)の第2流路(42)と圧縮機(31)との間に接続されている。この中間圧ガス配管(52)の途中には、電磁弁(53)が設けられている。   One end of an intermediate pressure gas pipe (52) is connected to the top of the gas-liquid separator (51). The other end of the intermediate pressure gas pipe (52) is connected between the second flow path (42) of the intermediate pressure heat exchanger (40) and the compressor (31) in the injection pipe (43). A solenoid valve (53) is provided in the middle of the intermediate pressure gas pipe (52).

上述したように、四方切換弁(35)は、その第1のポートが圧縮機(31)の吐出側に、第2のポートがアキュームレータ(38)に、第3のポートが室外熱交換器(36)にそれぞれ接続されている。また、四方切換弁(35)の第4のポートは、ガス側連絡配管(22)に接続されている。この四方切換弁(35)は、第1のポートと第3のポートが連通して第2のポートと第4のポートが連通する第1状態(図1(A)に示す状態)と、第1のポートと第4のポートが連通して第2のポートと第3のポートが連通する第2状態(図1(B)に示す状態)とに切り換わる。   As described above, the four-way selector valve (35) has a first port on the discharge side of the compressor (31), a second port on the accumulator (38), and a third port on the outdoor heat exchanger ( 36) each connected. The fourth port of the four-way switching valve (35) is connected to the gas side communication pipe (22). The four-way switching valve (35) has a first state (the state shown in FIG. 1A) in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other, The first port and the fourth port communicate with each other, and the second port and the third port communicate with each other (the state shown in FIG. 1B).

−運転動作−
上記空調機(10)では、冷房運転と暖房運転が切り換え可能となっている。
-Driving action-
The air conditioner (10) can be switched between a cooling operation and a heating operation.

〈冷房運転〉
冷房運転時の運転動作について、図1(A)を参照しながら説明する。冷房運転時の冷媒回路(20)では、室外熱交換器(36)が凝縮器となって室内熱交換器(71)が蒸発器となるように冷媒が循環する。つまり、冷媒回路(20)では、冷却動作が行われる。
<Cooling operation>
The operation during cooling operation will be described with reference to FIG. In the refrigerant circuit (20) during the cooling operation, the refrigerant circulates so that the outdoor heat exchanger (36) serves as a condenser and the indoor heat exchanger (71) serves as an evaporator. That is, a cooling operation is performed in the refrigerant circuit (20).

具体的に、冷房運転時には、四方切換弁(35)が第1状態に設定される。また、室外膨張弁(37)が全開状態に設定され、インジェクション用膨張弁(44)と室内膨張弁(72)の開度がそれぞれ適宜調節されると共に、電磁弁(53)が閉じられる。   Specifically, during the cooling operation, the four-way switching valve (35) is set to the first state. In addition, the outdoor expansion valve (37) is set to a fully open state, the opening degrees of the injection expansion valve (44) and the indoor expansion valve (72) are adjusted as appropriate, and the electromagnetic valve (53) is closed.

圧縮機(31)から吐出された高圧ガス冷媒は、室外熱交換器(36)で室外空気へ放熱して凝縮する。室外熱交換器(36)から出た高圧液冷媒は、中間圧熱交換器(40)の第1流路(41)を通過する間に第2流路(42)の冷媒に対して放熱する。中間圧熱交換器(40)の第1流路(41)から流出した高圧液冷媒は、その一部がインジェクション配管(43)へ流入し、残りが液側連絡配管(21)を通って各室内回路(70)へ分配される。   The high-pressure gas refrigerant discharged from the compressor (31) dissipates heat to the outdoor air and condenses in the outdoor heat exchanger (36). The high-pressure liquid refrigerant discharged from the outdoor heat exchanger (36) dissipates heat to the refrigerant in the second flow path (42) while passing through the first flow path (41) of the intermediate pressure heat exchanger (40). . Part of the high-pressure liquid refrigerant that has flowed out of the first flow path (41) of the intermediate pressure heat exchanger (40) flows into the injection pipe (43), and the rest passes through the liquid side connection pipe (21). It is distributed to the indoor circuit (70).

各室内回路(70)では、流入した高圧液冷媒が室内膨張弁(72)を通過する際に減圧され、その後に室内熱交換器(71)で室内空気から吸熱して蒸発する。室内熱交換器(71)で蒸発した冷媒は、ガス側連絡配管(22)を通って室外回路(30)へ戻り、アキュームレータ(38)を通って圧縮機(31)へ吸入される。   In each indoor circuit (70), the high-pressure liquid refrigerant that has flowed in is reduced in pressure when passing through the indoor expansion valve (72), and then is absorbed by the indoor heat exchanger (71) from the indoor air and evaporated. The refrigerant evaporated in the indoor heat exchanger (71) returns to the outdoor circuit (30) through the gas side communication pipe (22), and is sucked into the compressor (31) through the accumulator (38).

一方、インジェクション配管(43)へ流入した高圧液冷媒は、インジェクション用膨張弁(44)を通過する際に中間圧にまで減圧されて気液二相状態の中間圧冷媒となる。この中間圧冷媒は、中間圧熱交換器(40)の第2流路(42)を流れる間に第1流路(41)の冷媒から吸熱して蒸発する。中間圧熱交換器(40)の第2流路(42)から出た中間圧ガス冷媒は、圧縮機(31)の中間圧ポート(32)へ送られる。   On the other hand, the high-pressure liquid refrigerant flowing into the injection pipe (43) is reduced to an intermediate pressure when passing through the injection expansion valve (44) to become an intermediate-pressure refrigerant in a gas-liquid two-phase state. This intermediate pressure refrigerant absorbs heat from the refrigerant in the first flow path (41) and evaporates while flowing through the second flow path (42) of the intermediate pressure heat exchanger (40). The intermediate pressure gas refrigerant that has exited from the second flow path (42) of the intermediate pressure heat exchanger (40) is sent to the intermediate pressure port (32) of the compressor (31).

圧縮機(31)は、アキュームレータ(38)を通じて低圧冷媒を圧縮室へ吸入して圧縮する。また、圧縮途中の圧縮室へは、中間圧ポート(32)から流入した中間圧ガス冷媒が導入される。そして、圧縮機(31)は、圧縮室内の冷媒を高圧にまで圧縮して吐出する。   The compressor (31) sucks and compresses the low-pressure refrigerant into the compression chamber through the accumulator (38). In addition, the intermediate pressure gas refrigerant flowing from the intermediate pressure port (32) is introduced into the compression chamber in the middle of compression. The compressor (31) compresses the refrigerant in the compression chamber to a high pressure and discharges it.

このように、冷房運転中には、中間圧熱交換器(40)を通過する際に冷却されて過冷却度の大きくなった高圧液冷媒が、液側連絡配管(21)を通じて室内回路(70)へ送られる。このため、液側連絡配管(21)の長さがある程度以上であったり、室内回路(70)が室外回路(30)よりもある程度以上高い位置に配置されていたりして、室外回路(30)から液側連絡配管(21)へ送り込まれる液冷媒が飽和状態だとすると室内回路(70)に達するまでに高圧液冷媒の一部が蒸発してしまうような場合であっても、室内回路(70)へ流入する高圧冷媒が液単相状態に保たれる。また、室内回路(70)に達するまでに高圧液冷媒の一部が蒸発したとしても、室外回路(30)から液側連絡配管(21)へ送り込まれる液冷媒が飽和状態である場合に比べれば、蒸発する高圧液冷媒の量は減少する。   Thus, during the cooling operation, the high-pressure liquid refrigerant that has been cooled when passing through the intermediate pressure heat exchanger (40) and has a high degree of supercooling passes through the liquid side connection pipe (21) to the indoor circuit (70 ). For this reason, the length of the liquid side connecting pipe (21) is more than a certain length, or the indoor circuit (70) is placed at a position that is higher than the outdoor circuit (30) to a certain degree. If the liquid refrigerant sent to the liquid side communication pipe (21) is saturated, even if some of the high-pressure liquid refrigerant evaporates before reaching the indoor circuit (70), the indoor circuit (70) The high-pressure refrigerant flowing into the liquid is kept in a liquid single-phase state. Even if a part of the high-pressure liquid refrigerant evaporates before reaching the indoor circuit (70), the liquid refrigerant sent from the outdoor circuit (30) to the liquid side connecting pipe (21) is saturated. The amount of high-pressure liquid refrigerant that evaporates decreases.

〈暖房運転〉
暖房運転時の運転動作について、図1(B)を参照しながら説明する。暖房運転時の冷媒回路(20)では、室内熱交換器(71)が凝縮器となって室外熱交換器(36)が蒸発器となるように冷媒が循環する。つまり、冷媒回路(20)では、加熱動作が行われる。
<Heating operation>
The operation during heating operation will be described with reference to FIG. In the refrigerant circuit (20) during the heating operation, the refrigerant circulates so that the indoor heat exchanger (71) serves as a condenser and the outdoor heat exchanger (36) serves as an evaporator. That is, a heating operation is performed in the refrigerant circuit (20).

具体的に、暖房運転時には、四方切換弁(35)が第2状態に設定される。また、室外膨張弁(37)と室内膨張弁(72)の開度がそれぞれ適宜調節され、インジェクション用膨張弁(44)が全閉状態に設定されると共に、電磁弁(53)が開かれる。   Specifically, during the heating operation, the four-way selector valve (35) is set to the second state. In addition, the opening degrees of the outdoor expansion valve (37) and the indoor expansion valve (72) are adjusted as appropriate, the injection expansion valve (44) is set to a fully closed state, and the electromagnetic valve (53) is opened.

圧縮機(31)から吐出された高圧ガス冷媒は、ガス側連絡配管(22)を通って各室内回路(70)へ分配される。各室内回路(70)の室内熱交換器(71)では、高圧ガス冷媒が室内空気へ放熱して凝縮する。各室内回路(70)において、室内熱交換器(71)から流出した冷媒は、室内膨張弁(72)を通過する際に減圧されて気液二相状態の中間圧冷媒となる。各室内回路(70)から流出した中間圧冷媒は、液側連絡配管(21)を通って室外回路(30)へ戻り、バイパス配管(50)を通って気液分離器(51)へ流入する。   The high-pressure gas refrigerant discharged from the compressor (31) is distributed to each indoor circuit (70) through the gas side communication pipe (22). In the indoor heat exchanger (71) of each indoor circuit (70), the high-pressure gas refrigerant dissipates heat to the indoor air and condenses. In each indoor circuit (70), the refrigerant flowing out of the indoor heat exchanger (71) is reduced in pressure when passing through the indoor expansion valve (72) to become a gas-liquid two-phase intermediate pressure refrigerant. The intermediate pressure refrigerant flowing out from each indoor circuit (70) returns to the outdoor circuit (30) through the liquid side connection pipe (21) and flows into the gas-liquid separator (51) through the bypass pipe (50). .

気液分離器(51)へ流入した中間圧冷媒は、そのうちの液冷媒が気液分離器(51)の下部に溜まり、ガス冷媒が気液分離器(51)の上部に溜まる。気液分離器(51)内の中間圧の液冷媒は、再びバイパス配管(50)を流れ、室外膨張弁(37)を通過する際に減圧されてから室外熱交換器(36)へ導入される。室外熱交換器(36)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換器(36)で蒸発した冷媒は、アキュームレータ(38)を通って圧縮機(31)へ吸入される。一方、気液分離器(51)内の中間圧のガス冷媒は、中間圧ガス配管(52)とインジェクション配管(43)を順に通って圧縮機(31)の中間圧ポート(32)へ導入される。   Among the intermediate pressure refrigerant that has flowed into the gas-liquid separator (51), the liquid refrigerant of the intermediate is stored in the lower part of the gas-liquid separator (51), and the gas refrigerant is stored in the upper part of the gas-liquid separator (51). The intermediate-pressure liquid refrigerant in the gas-liquid separator (51) flows again through the bypass pipe (50) and is reduced in pressure when passing through the outdoor expansion valve (37) before being introduced into the outdoor heat exchanger (36). The In the outdoor heat exchanger (36), the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant evaporated in the outdoor heat exchanger (36) is sucked into the compressor (31) through the accumulator (38). On the other hand, the intermediate-pressure gas refrigerant in the gas-liquid separator (51) is introduced into the intermediate pressure port (32) of the compressor (31) through the intermediate pressure gas pipe (52) and the injection pipe (43) in this order. The

圧縮機(31)は、アキュームレータ(38)を通じて低圧冷媒を圧縮室へ吸入して圧縮する。また、圧縮途中の圧縮室へは、中間圧ポート(32)から流入した中間圧ガス冷媒が導入される。そして、圧縮機(31)は、圧縮室内の冷媒を高圧にまで圧縮して吐出する。   The compressor (31) sucks and compresses the low-pressure refrigerant into the compression chamber through the accumulator (38). In addition, the intermediate pressure gas refrigerant flowing from the intermediate pressure port (32) is introduced into the compression chamber in the middle of compression. The compressor (31) compresses the refrigerant in the compression chamber to a high pressure and discharges it.

このように、暖房運転中には、液側連絡配管(21)を通って室外回路(30)へ戻ってきた冷媒を気液分離器(51)へ導入して液冷媒とガス冷媒に分離し、気液分離器(51)内のガス冷媒だけを圧縮機(31)の中間圧ポート(32)へ供給している。つまり、室外回路(30)へ流入する冷媒が気液二相状態であっても、圧縮機(31)の中間圧ポート(32)へは確実にガス冷媒だけが供給される。このため、液側連絡配管(21)の長さがある程度以上であったり、室外回路(30)が室内回路(70)よりもある程度以上高い位置に配置されていたりして、室内回路(70)に達するまでに冷媒の一部が蒸発してしまうような場合であっても、圧縮機(31)の中間圧ポート(32)へ流入する冷媒がガス単相状態に保たれる。   Thus, during the heating operation, the refrigerant that has returned to the outdoor circuit (30) through the liquid side connection pipe (21) is introduced into the gas-liquid separator (51) to be separated into liquid refrigerant and gas refrigerant. Only the gas refrigerant in the gas-liquid separator (51) is supplied to the intermediate pressure port (32) of the compressor (31). That is, even if the refrigerant flowing into the outdoor circuit (30) is in a gas-liquid two-phase state, only the gas refrigerant is reliably supplied to the intermediate pressure port (32) of the compressor (31). For this reason, the length of the liquid side connecting pipe (21) is longer than a certain level, or the outdoor circuit (30) is located at a position higher than the indoor circuit (70) to a certain degree. Even when a part of the refrigerant evaporates before reaching the value, the refrigerant flowing into the intermediate pressure port (32) of the compressor (31) is kept in the gas single-phase state.

−実施形態1の効果−
上記空調機(10)の冷房運転中には、中間圧熱交換器(40)で蒸発させた中間圧冷媒を圧縮機(31)の中間圧ポート(32)へ供給し、中間圧熱交換器(40)で冷却された高圧液冷媒を室内回路(70)へ供給している。このため、室外回路(30)と室内回路(70)を繋ぐ液側連絡配管(21)が極めて長かったり、室内回路(70)が室外回路(30)よりも高い位置に配置されていて、液側連絡配管(21)を流れる間に冷媒の圧力が大幅に低下するような設置状況であっても、室内回路(70)へ供給される高圧冷媒を液状態に保つことができ、あるいは室内回路(70)へ供給される高圧冷媒のうち途中で蒸発する量を削減することができる。その結果、冷房運転中に室内回路(70)へ供給される液冷媒の量を確保することができ、室内ユニット(12)の冷房能力を充分に発揮させることができる。
-Effect of Embodiment 1-
During the cooling operation of the air conditioner (10), the intermediate pressure refrigerant evaporated by the intermediate pressure heat exchanger (40) is supplied to the intermediate pressure port (32) of the compressor (31), and the intermediate pressure heat exchanger The high-pressure liquid refrigerant cooled in (40) is supplied to the indoor circuit (70). For this reason, the liquid side connecting pipe (21) connecting the outdoor circuit (30) and the indoor circuit (70) is extremely long, or the indoor circuit (70) is arranged at a position higher than the outdoor circuit (30). Even in installation situations where the refrigerant pressure drops significantly while flowing through the side connecting pipe (21), the high-pressure refrigerant supplied to the indoor circuit (70) can be kept in a liquid state, or the indoor circuit Of the high-pressure refrigerant supplied to (70), the amount of evaporation in the middle can be reduced. As a result, the amount of liquid refrigerant supplied to the indoor circuit (70) during the cooling operation can be ensured, and the cooling capacity of the indoor unit (12) can be fully exhibited.

ここで、上記空調機(10)のように、複数の室内回路(70)が互いに並列接続されている場合には、各室内ユニット(12)の冷房能力を適切に調節するため、各室内回路(70)の室内膨張弁(72)の開度を個別に制御して室内回路(70)への冷媒の分配割合を調節している。ところが、室内膨張弁(72)を通過する冷媒が気液二相状態になると、室内膨張弁(72)の流量特性が不安定となり、各室内回路(70)に対する冷媒の分配割合を適切に制御できなくなるおそれがある。これに対し、本実施形態の空調機(10)では、冷房運転時に室内回路(70)へ流入する冷媒を液状態に保持しやすくなる。従って、本実施形態によれば、複数の室内ユニット(12)を備える空調機(10)において、各室内ユニット(12)の冷房能力を的確に制御することが可能となる。   Here, when a plurality of indoor circuits (70) are connected in parallel to each other as in the air conditioner (10), in order to appropriately adjust the cooling capacity of each indoor unit (12), each indoor circuit The distribution ratio of the refrigerant to the indoor circuit (70) is adjusted by individually controlling the opening degree of the indoor expansion valve (72) of (70). However, when the refrigerant passing through the indoor expansion valve (72) becomes a gas-liquid two-phase state, the flow characteristics of the indoor expansion valve (72) become unstable, and the distribution ratio of the refrigerant to each indoor circuit (70) is controlled appropriately. There is a risk that it will not be possible. On the other hand, in the air conditioner (10) of the present embodiment, the refrigerant flowing into the indoor circuit (70) during the cooling operation can be easily held in a liquid state. Therefore, according to the present embodiment, in the air conditioner (10) including a plurality of indoor units (12), the cooling capacity of each indoor unit (12) can be accurately controlled.

また、上記空調機(10)の加熱動作中には、室内回路(70)から室外回路(30)へ戻ってきた冷媒を気液分離器(51)で液冷媒とガス冷媒に分離し、気液分離器(51)から圧縮機(31)へ中間圧のガス冷媒だけを供給している。このため、室外回路(30)と室内回路(70)を繋ぐ液側連絡配管(21)が極めて長かったり、室外回路(30)が室内回路(70)よりも高い位置に配置されていて、液側連絡配管(21)を流れる間に冷媒の圧力が大幅に低下するような設置状況であっても、圧縮機(31)の中間圧ポート(32)へはガス冷媒だけを確実に供給することができる。その結果、中間圧の液冷媒が圧縮機(31)へ流入してしまって圧縮機(31)の破損を招くといった事態を回避できる。   During the heating operation of the air conditioner (10), the refrigerant returned from the indoor circuit (70) to the outdoor circuit (30) is separated into liquid refrigerant and gas refrigerant by the gas-liquid separator (51). Only the intermediate-pressure gas refrigerant is supplied from the liquid separator (51) to the compressor (31). For this reason, the liquid side connecting pipe (21) connecting the outdoor circuit (30) and the indoor circuit (70) is extremely long, or the outdoor circuit (30) is arranged at a position higher than the indoor circuit (70). Ensure that only gas refrigerant is supplied to the intermediate pressure port (32) of the compressor (31) even in installation situations where the refrigerant pressure drops significantly while flowing through the side connecting pipe (21) Can do. As a result, it is possible to avoid a situation in which the intermediate-pressure liquid refrigerant flows into the compressor (31) and causes damage to the compressor (31).

このように、本実施形態によれば、空調機(10)がどの様な状態で設置されている場合であっても、冷房運転中と暖房運転中の両方において空調機(10)を円滑に運転することが可能となる。   Thus, according to the present embodiment, the air conditioner (10) can be smoothly moved both during the cooling operation and during the heating operation, regardless of the state of the air conditioner (10). It becomes possible to drive.

《発明の実施形態2》
本発明の実施形態2について説明する。本実施形態は、上記実施形態1の空調機(10)に過冷却熱交換器(60)と過冷却用配管(63)とを追加したものである。ここでは、本実施形態の空調機(10)について、上記実施形態1と異なる点を説明する。
<< Embodiment 2 of the Invention >>
A second embodiment of the present invention will be described. In this embodiment, a supercooling heat exchanger (60) and a supercooling pipe (63) are added to the air conditioner (10) of the first embodiment. Here, about the air conditioner (10) of this embodiment, a different point from the said Embodiment 1 is demonstrated.

図2に示すように、過冷却熱交換器(60)は、室外回路(30)に設けられている。過冷却熱交換器(60)は、二重管式熱交換器やプレート式熱交換器等の冷媒同士を熱交換させる熱交換器である。この過冷却熱交換器(60)には、第1流路(61)と第2流路(62)とが形成されている。過冷却熱交換器(60)の第1流路(61)は、室外回路(30)における中間圧熱交換器(40)と第1逆止弁(45)の間に設けられている。   As shown in FIG. 2, the supercooling heat exchanger (60) is provided in the outdoor circuit (30). The supercooling heat exchanger (60) is a heat exchanger that exchanges heat between refrigerants such as a double-pipe heat exchanger and a plate heat exchanger. The supercooling heat exchanger (60) has a first flow path (61) and a second flow path (62). The first flow path (61) of the supercooling heat exchanger (60) is provided between the intermediate pressure heat exchanger (40) and the first check valve (45) in the outdoor circuit (30).

過冷却用配管(63)は、その始端が過冷却熱交換器(60)と第1逆止弁(45)の間に、終端がアキュームレータ(38)と四方切換弁(35)の間にそれぞれ接続されている。過冷却熱交換器(60)の第2流路(62)は、この過冷却用配管(63)の途中に配置されている。過冷却用配管(63)では、その始端と過冷却熱交換器(60)の第2流路(62)との間に過冷却用膨張弁(64)が設けられている。   The supercooling pipe (63) has its starting end between the supercooling heat exchanger (60) and the first check valve (45), and its end between the accumulator (38) and the four-way selector valve (35). It is connected. The second flow path (62) of the supercooling heat exchanger (60) is disposed in the middle of the supercooling pipe (63). In the supercooling pipe (63), a supercooling expansion valve (64) is provided between the starting end thereof and the second flow path (62) of the supercooling heat exchanger (60).

−運転動作−
〈冷房運転〉
図2(A)に示すように、冷房運転時の冷媒回路(20)では、上記実施形態1の場合と概ね同様に冷媒が循環する。具体的には、中間圧熱交換器(40)から流出した高圧液冷媒が過冷却熱交換器(60)を通過後に液側連絡配管(21)へ流入する点と、高圧液冷媒の一部が過冷却用配管(63)へ流入する点だけが、上記実施形態1における冷媒の循環経路と異なっている。
-Driving action-
<Cooling operation>
As shown in FIG. 2A, in the refrigerant circuit (20) during the cooling operation, the refrigerant circulates in substantially the same manner as in the first embodiment. Specifically, the high-pressure liquid refrigerant that has flowed out of the intermediate pressure heat exchanger (40) flows into the liquid side communication pipe (21) after passing through the supercooling heat exchanger (60), and a part of the high-pressure liquid refrigerant. Is different from the refrigerant circulation path in the first embodiment only in that the refrigerant flows into the supercooling pipe (63).

本実施形態の空調機(10)の冷房運転では、過冷却用膨張弁(64)の開度が適宜調節される。中間圧熱交換器(40)の第1流路(41)から流出した高圧液冷媒は、過冷却熱交換器(60)の第1流路(61)を通過する間に第2流路(62)の冷媒に対して放熱する。過冷却熱交換器(60)の第1流路(61)から流出した高圧液冷媒は、その一部が過冷却用配管(63)へ流入し、残りが液側連絡配管(21)を通って各室内回路(70)へ分配される。つまり、室内回路(70)へは、中間圧熱交換器(40)と過冷却熱交換器(60)の両方で冷却された高圧液冷媒が供給される。   In the cooling operation of the air conditioner (10) of the present embodiment, the opening degree of the supercooling expansion valve (64) is appropriately adjusted. The high-pressure liquid refrigerant flowing out of the first flow path (41) of the intermediate pressure heat exchanger (40) passes through the first flow path (61) of the supercooling heat exchanger (60) while passing through the second flow path ( Dissipates heat to the refrigerant in 62). Part of the high-pressure liquid refrigerant that has flowed out of the first flow path (61) of the supercooling heat exchanger (60) flows into the supercooling pipe (63), and the rest passes through the liquid side connecting pipe (21). Distributed to each indoor circuit (70). That is, the high-pressure liquid refrigerant cooled by both the intermediate pressure heat exchanger (40) and the supercooling heat exchanger (60) is supplied to the indoor circuit (70).

一方、過冷却用配管(63)へ流入した高圧液冷媒は、過冷却用膨張弁(64)を通過する際に低圧にまで減圧されて気液二相状態の低圧冷媒となる。この低圧冷媒は、過冷却熱交換器(60)の第2流路(62)を流れる間に第1流路(61)の冷媒から吸熱して蒸発する。過冷却熱交換器(60)の第2流路(62)から出た低圧ガス冷媒は、室内回路(70)からガス側連絡配管(22)を通って室外回路(30)へ戻ってきた低圧冷媒と共に圧縮機(31)へ吸入される。   On the other hand, the high-pressure liquid refrigerant that has flowed into the supercooling pipe (63) is reduced to a low pressure when passing through the supercooling expansion valve (64) to become a low-pressure refrigerant in a gas-liquid two-phase state. This low-pressure refrigerant absorbs heat from the refrigerant in the first channel (61) and evaporates while flowing through the second channel (62) of the supercooling heat exchanger (60). The low-pressure gas refrigerant that has exited from the second flow path (62) of the supercooling heat exchanger (60) returns from the indoor circuit (70) to the outdoor circuit (30) through the gas-side connecting pipe (22). It is sucked into the compressor (31) together with the refrigerant.

〈暖房運転〉
図2(B)に示すように、暖房運転時の冷媒回路(20)では、上記実施形態1の場合と全く同様に冷媒が循環する。具体的に、暖房運転時には、過冷却用膨張弁(64)が全閉される。そして、液側連絡配管(21)から室外回路(30)へ流入した中間圧冷媒は、バイパス配管(50)を通って気液分離器(51)へ流入し、液冷媒とガス冷媒に分離される。
<Heating operation>
As shown in FIG. 2 (B), in the refrigerant circuit (20) during the heating operation, the refrigerant circulates in the same manner as in the first embodiment. Specifically, during the heating operation, the supercooling expansion valve (64) is fully closed. The intermediate pressure refrigerant flowing from the liquid side connection pipe (21) into the outdoor circuit (30) flows into the gas-liquid separator (51) through the bypass pipe (50), and is separated into liquid refrigerant and gas refrigerant. The

−実施形態2の効果−
本実施形態では、室外回路(30)に過冷却熱交換器(60)を設け、冷房運転中に室内回路(70)へ送られる高圧液冷媒の過熱度を増大させている。このため、室外回路(30)から室内回路(70)へ至るまでに高圧冷媒の圧力が低下するような設置状況であっても、室内回路(70)へ供給される高圧冷媒を一層確実に液状態に保つことができ、あるいは室内回路(70)へ供給される高圧冷媒のうち途中で蒸発する量を一層削減することができる。
-Effect of Embodiment 2-
In this embodiment, the supercooling heat exchanger (60) is provided in the outdoor circuit (30) to increase the degree of superheat of the high-pressure liquid refrigerant sent to the indoor circuit (70) during the cooling operation. For this reason, even in an installation situation in which the pressure of the high-pressure refrigerant decreases from the outdoor circuit (30) to the indoor circuit (70), the high-pressure refrigerant supplied to the indoor circuit (70) is more surely liquid. The state can be maintained, or the amount of high-pressure refrigerant supplied to the indoor circuit (70) that evaporates in the middle can be further reduced.

《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.

−第1変形例−
上記の各実施形態では、気液分離器(51)と中間圧熱交換器(40)を一体化してもよい。ここでは、本変形例を上記実施形態2の空調機(10)に適用したものについて、図3を参照しながら説明する。
-First modification-
In each of the above embodiments, the gas-liquid separator (51) and the intermediate pressure heat exchanger (40) may be integrated. Here, what applied this modification to the air conditioner (10) of the said Embodiment 2 is demonstrated, referring FIG.

本変形例の気液分離器(51)は、やや縦長の筒状に形成された容器状部材(65)によって構成されている。気液分離器(51)を構成する容器状部材(65)は、その底部が室外回路(30)のうち室外膨張弁(37)と過冷却熱交換器(60)の間の部分に接続されている。なお、本変形例の室外回路(30)では、バイパス配管(50)と第1逆止弁(45)と第2逆止弁(55)とが省略されている。   The gas-liquid separator (51) of this modification is configured by a container-like member (65) formed in a slightly vertically long cylindrical shape. The bottom of the container-like member (65) constituting the gas-liquid separator (51) is connected to a portion of the outdoor circuit (30) between the outdoor expansion valve (37) and the supercooling heat exchanger (60). ing. In the outdoor circuit (30) of this modification, the bypass pipe (50), the first check valve (45), and the second check valve (55) are omitted.

容器状部材(65)の内部には、伝熱管をコイルばね状に成形した熱交換用部材(66)が設けられている。熱交換用部材(66)は、容器状部材(65)内に溜まった液冷媒に浸かるように、容器状部材(65)内の底部に配置されている。熱交換用部材(66)は、インジェクション配管(43)におけるインジェクション用膨張弁(44)の下流側に配置されている。本変形例では、この熱交換用部材(66)が中間圧熱交換器(40)を構成している。   Inside the container-like member (65), a heat exchange member (66) in which a heat transfer tube is formed in a coil spring shape is provided. The heat exchange member (66) is disposed at the bottom of the container-like member (65) so as to be immersed in the liquid refrigerant accumulated in the container-like member (65). The heat exchange member (66) is disposed on the downstream side of the injection expansion valve (44) in the injection pipe (43). In this modification, this heat exchange member (66) constitutes an intermediate pressure heat exchanger (40).

冷房運転時の動作について説明する。冷房運転時には、上記実施形態2の場合と同様に、インジェクション用膨張弁(44)と過冷却用膨張弁(64)の開度が適宜調節され、電磁弁(53)が閉じられる。   The operation during cooling operation will be described. During the cooling operation, as in the case of the second embodiment, the opening degrees of the injection expansion valve (44) and the supercooling expansion valve (64) are adjusted as appropriate, and the electromagnetic valve (53) is closed.

冷房運転時において、室外熱交換器(36)で凝縮した冷媒は、全開状態の室外膨張弁(37)を通過して容器状部材(65)へ流入する。容器状部材(65)内の高圧液冷媒は、熱交換用部材(66)内を流れる中間圧冷媒へ放熱する。つまり、容器状部材(65)内では、高圧液冷媒が熱交換用部材(66)内の中間圧冷媒との熱交換によって冷却され、高圧液冷媒の過冷却度が大きくなる。容器状部材(65)内で冷却された高圧液冷媒は、その一部がインジェクション配管(43)へ流入し、残りが過冷却熱交換器(60)の第1流路(61)を通過する間に更に冷却される。   During the cooling operation, the refrigerant condensed in the outdoor heat exchanger (36) passes through the fully opened outdoor expansion valve (37) and flows into the container-like member (65). The high-pressure liquid refrigerant in the container-like member (65) radiates heat to the intermediate-pressure refrigerant flowing in the heat exchange member (66). That is, in the container-like member (65), the high-pressure liquid refrigerant is cooled by heat exchange with the intermediate-pressure refrigerant in the heat exchange member (66), and the degree of supercooling of the high-pressure liquid refrigerant increases. Part of the high-pressure liquid refrigerant cooled in the container-like member (65) flows into the injection pipe (43), and the rest passes through the first flow path (61) of the supercooling heat exchanger (60). It is further cooled in between.

過冷却熱交換器(60)で冷却された高圧液冷媒は、液側連絡配管(21)を通じて室内回路(70)へ供給される。一方、インジェクション配管(43)へ流入した高圧液冷媒は、インジェクション用膨張弁(44)を通過する際に中間圧にまで減圧され、中間圧冷媒となって熱交換用部材(66)へ送られる。熱交換用部材(66)へ流入した中間圧冷媒は、容器状部材(65)内の高圧液冷媒から吸熱して蒸発し、その後に圧縮機(31)の中間圧ポート(32)へ供給される。   The high-pressure liquid refrigerant cooled by the supercooling heat exchanger (60) is supplied to the indoor circuit (70) through the liquid side connection pipe (21). On the other hand, the high-pressure liquid refrigerant flowing into the injection pipe (43) is reduced to an intermediate pressure when passing through the injection expansion valve (44), and is sent to the heat exchange member (66) as an intermediate-pressure refrigerant. . The intermediate pressure refrigerant flowing into the heat exchange member (66) absorbs heat from the high-pressure liquid refrigerant in the container-like member (65) and evaporates, and is then supplied to the intermediate pressure port (32) of the compressor (31). The

暖房運転時の動作について説明する。暖房運転時には、上記実施形態2の場合と同様に、インジェクション用膨張弁(44)と過冷却用膨張弁(64)が全閉され、電磁弁(53)が開かれる。   The operation during the heating operation will be described. During the heating operation, as in the case of the second embodiment, the injection expansion valve (44) and the supercooling expansion valve (64) are fully closed, and the electromagnetic valve (53) is opened.

暖房運転時において、室内熱交換器(71)で凝縮した冷媒は、室内膨張弁(72)を通過する際に中間圧にまで減圧され、その後に液側連絡配管(21)と過冷却熱交換器(60)の第1流路(61)とを順に通過して容器状部材(65)へ流入する。容器状部材(65)内では、気液二相状態の中間圧冷媒が液冷媒とガス冷媒に分離される。そして、容器状部材(65)内の上部に溜まった中間圧のガス冷媒は、インジェクション配管(43)を通じて圧縮機(31)の中間圧ポート(32)へ供給される。また、容器状部材(65)内の下部に溜まった中間圧の液冷媒は、室外膨張弁(37)を通過する際に低圧にまで減圧されてから室外熱交換器(36)へ導入される。   During heating operation, the refrigerant condensed in the indoor heat exchanger (71) is depressurized to an intermediate pressure when passing through the indoor expansion valve (72), and then supercooled heat exchange with the liquid side communication pipe (21) It passes through the first flow path (61) of the vessel (60) in order and flows into the container-like member (65). In the container-like member (65), the gas-liquid two-phase intermediate pressure refrigerant is separated into liquid refrigerant and gas refrigerant. The intermediate-pressure gas refrigerant accumulated in the upper part of the container-like member (65) is supplied to the intermediate-pressure port (32) of the compressor (31) through the injection pipe (43). The intermediate-pressure liquid refrigerant accumulated in the lower part of the container-like member (65) is reduced to a low pressure when passing through the outdoor expansion valve (37) and then introduced into the outdoor heat exchanger (36). .

上述したように、本変形例では、中間圧熱交換器(40)を構成する熱交換用部材(66)が気液分離器(51)を構成する容器状部材(65)の内部に収容されている。つまり、内部に熱交換用部材(66)を収容する容器状部材(65)を室外回路(30)に接続すれば、気液分離器(51)と中間圧熱交換器(40)の両方を室外回路(30)に設置したことになる。従って、本変形例によれば、気液分離器(51)と中間圧熱交換器(40)をそれぞれ個別に形成する場合に比べ、室外回路(30)の構成を簡素化することができる。   As described above, in this modification, the heat exchange member (66) constituting the intermediate pressure heat exchanger (40) is accommodated inside the container-like member (65) constituting the gas-liquid separator (51). ing. In other words, if the container-like member (65) containing the heat exchange member (66) is connected to the outdoor circuit (30), both the gas-liquid separator (51) and the intermediate pressure heat exchanger (40) are connected. It is installed in the outdoor circuit (30). Therefore, according to this modification, the configuration of the outdoor circuit (30) can be simplified as compared with the case where the gas-liquid separator (51) and the intermediate pressure heat exchanger (40) are individually formed.

−第2変形例−
上記の各実施形態では、室外回路(30)に低段側圧縮機(33)と高段側圧縮機(34)を設置し、冷媒回路(20)で二段圧縮冷凍サイクルを行うようにしてもよい。ここでは、本変形例を上記実施形態2の空調機(10)に適用したものについて、図4を参照しながら説明する。
-Second modification-
In each of the above embodiments, the low-stage compressor (33) and the high-stage compressor (34) are installed in the outdoor circuit (30), and the refrigerant circuit (20) performs the two-stage compression refrigeration cycle. Also good. Here, what applied this modification to the air conditioner (10) of the said Embodiment 2 is demonstrated, referring FIG.

本変形例の室外回路(30)では、低段側圧縮機(33)と高段側圧縮機(34)が直列に接続される。具体的に、低段側圧縮機(33)の吸入側は、アキュームレータ(38)を介して四方切換弁(35)の第2のポートに接続されている。低段側圧縮機(33)の吐出側は、高段側圧縮機(34)の吸入側に接続されている。高段側圧縮機(34)の吐出側は、四方切換弁(35)の第1のポートに接続されている。また、本変形例において、インジェクション配管(43)の終端は、低段側圧縮機(33)の吐出側と高段側圧縮機(34)の吸入側を繋ぐ配管に接続されている。そして、インジェクション配管(43)を流れる中間圧のガス冷媒は、低段側圧縮機(33)から吐出された中間圧冷媒と共に高段側圧縮機(34)へ吸入される。   In the outdoor circuit (30) of this modification, the low-stage compressor (33) and the high-stage compressor (34) are connected in series. Specifically, the suction side of the low-stage compressor (33) is connected to the second port of the four-way switching valve (35) via the accumulator (38). The discharge side of the low stage compressor (33) is connected to the suction side of the high stage compressor (34). The discharge side of the high-stage compressor (34) is connected to the first port of the four-way switching valve (35). In the present modification, the end of the injection pipe (43) is connected to a pipe connecting the discharge side of the low-stage compressor (33) and the suction side of the high-stage compressor (34). The intermediate-pressure gas refrigerant flowing through the injection pipe (43) is sucked into the high-stage compressor (34) together with the intermediate-pressure refrigerant discharged from the low-stage compressor (33).

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、中間圧のガス冷媒を圧縮機へ供給してガスインジェクションを行う冷凍装置について有用である。   As described above, the present invention is useful for a refrigeration apparatus that performs gas injection by supplying an intermediate-pressure gas refrigerant to a compressor.

実施形態1における空調機の冷媒回路の構成を示す配管系統図であって、(A)は冷房運転時の状態を示しており、(B)は暖房運転時の状態を示している。It is a piping system diagram which shows the structure of the refrigerant circuit of the air conditioner in Embodiment 1, Comprising: (A) has shown the state at the time of cooling operation, (B) has shown the state at the time of heating operation. 実施形態2における空調機の冷媒回路の構成を示す配管系統図であって、(A)は冷房運転時の状態を示しており、(B)は暖房運転時の状態を示している。It is a piping system diagram which shows the structure of the refrigerant circuit of the air conditioner in Embodiment 2, Comprising: (A) has shown the state at the time of cooling operation, (B) has shown the state at the time of heating operation. その他の実施形態の第1変形例における空調機の冷媒回路の構成を示す配管系統図であって、(A)は冷房運転時の状態を示しており、(B)は暖房運転時の状態を示している。It is a piping system diagram which shows the structure of the refrigerant circuit of the air conditioner in the 1st modification of other embodiment, Comprising: (A) has shown the state at the time of cooling operation, (B) has shown the state at the time of heating operation Show. その他の実施形態の第2変形例における空調機の冷媒回路の構成を示す配管系統図であって、(A)は冷房運転時の状態を示しており、(B)は暖房運転時の状態を示している。It is a piping system figure showing the composition of the refrigerant circuit of the air-conditioner in the 2nd modification of other embodiments, (A) shows the state at the time of cooling operation, and (B) shows the state at the time of heating operation. Show.

符号の説明Explanation of symbols

20 冷媒回路
21 液側連絡配管
22 ガス側連絡配管
30 室外回路(熱源側回路)
31 圧縮機
33 低段側圧縮機
34 高段側圧縮機
36 室外熱交換器(熱源側熱交換器)
40 中間圧熱交換器
43 インジェクション配管(インジェクション通路)
51 気液分離器
65 容器状部材
66 熱交換用部材
70 室内回路(利用側回路)
71 室内熱交換器(利用側熱交換器)
20 Refrigerant circuit
21 Liquid side connection piping
22 Gas side communication piping
30 Outdoor circuit (heat source side circuit)
31 Compressor
33 Low stage compressor
34 High stage compressor
36 Outdoor heat exchanger (heat source side heat exchanger)
40 Intermediate pressure heat exchanger
43 Injection piping (injection passage)
51 Gas-liquid separator
65 Container
66 Heat exchange components
70 Indoor circuit (use side circuit)
71 Indoor heat exchanger (use side heat exchanger)

Claims (6)

圧縮機(31,34)と熱源側熱交換器(36)と利用側熱交換器(71)とが接続されて冷凍サイクルを行うと共に、上記熱源側熱交換器(36)が凝縮器となって上記利用側熱交換器(71)が蒸発器となる冷却動作と、上記利用側熱交換器(71)が凝縮器となって上記熱源側熱交換器(36)が蒸発器となる加熱動作とが切り換え可能な冷媒回路(20)を備える冷凍装置であって、
上記冷媒回路(20)は、
高圧液冷媒の一部を減圧して得られた中間圧冷媒を上記圧縮機(31,34)へ供給するインジェクション通路(43)と、上記インジェクション通路(43)を上記圧縮機(31,34)へ向けて流れる中間圧冷媒を高圧液冷媒と熱交換させて蒸発させる中間圧熱交換器(40)と、高圧液冷媒を減圧して得られた中間圧冷媒を液冷媒とガス冷媒に分離する気液分離器(51)とを備え、
上記冷却動作中には上記インジェクション通路(43)を流れる中間圧のガス冷媒が、上記加熱動作中には上記気液分離器(51)から流出した中間圧のガス冷媒がそれぞれ上記圧縮機(31,34)へ供給されるように冷媒の流通経路が変更可能となっている
ことを特徴とする冷凍装置。
The compressor (31, 34), the heat source side heat exchanger (36) and the use side heat exchanger (71) are connected to perform a refrigeration cycle, and the heat source side heat exchanger (36) serves as a condenser. The cooling operation in which the use side heat exchanger (71) becomes an evaporator, and the heating operation in which the use side heat exchanger (71) becomes a condenser and the heat source side heat exchanger (36) becomes an evaporator And a refrigeration apparatus comprising a switchable refrigerant circuit (20),
The refrigerant circuit (20)
An injection passage (43) for supplying intermediate pressure refrigerant obtained by decompressing a part of the high-pressure liquid refrigerant to the compressor (31, 34), and the injection passage (43) are connected to the compressor (31, 34). An intermediate pressure heat exchanger (40) for evaporating the intermediate pressure refrigerant flowing toward the high pressure liquid refrigerant by heat exchange with the high pressure liquid refrigerant, and separating the intermediate pressure refrigerant obtained by depressurizing the high pressure liquid refrigerant into liquid refrigerant and gas refrigerant A gas-liquid separator (51),
The intermediate pressure gas refrigerant flowing through the injection passage (43) during the cooling operation and the intermediate pressure gas refrigerant flowing out from the gas-liquid separator (51) during the heating operation are respectively compressed by the compressor (31 , 34), the refrigerant flow path can be changed.
請求項1において、
上記冷媒回路(20)は、上記圧縮機(31,34)及び上記熱源側熱交換器(36)が設けられた熱源側回路(30)と上記利用側熱交換器(71)が設けられた利用側回路(70)とを連絡配管(21,22)で接続することによって構成され、
上記インジェクション通路(43)、上記中間圧熱交換器(40)、及び上記気液分離器(51)が上記熱源側回路(30)に設けられている
ことを特徴とする冷凍装置。
In claim 1,
The refrigerant circuit (20) is provided with a heat source side circuit (30) provided with the compressor (31, 34) and the heat source side heat exchanger (36) and a use side heat exchanger (71). It is configured by connecting the user side circuit (70) with the connecting pipe (21, 22),
The refrigeration apparatus, wherein the injection passage (43), the intermediate pressure heat exchanger (40), and the gas-liquid separator (51) are provided in the heat source side circuit (30).
請求項1において、
上記気液分離器(51)は、上記冷媒回路(20)のうち上記冷却動作中に上記熱源側熱交換器(36)の下流側となり且つ上記加熱動作中に上記利用側熱交換器(71)の下流側となる位置に配置された容器状部材(65)によって構成される一方、
上記中間圧熱交換器(40)は、上記容器状部材(65)の内部に収容されて上記インジェクション通路(43)を流れる中間圧冷媒を上記容器状部材(65)内の液冷媒と熱交換させる熱交換用部材(66)によって構成されている
ことを特徴とする冷凍装置。
In claim 1,
The gas-liquid separator (51) is located downstream of the heat source side heat exchanger (36) during the cooling operation in the refrigerant circuit (20), and the use side heat exchanger (71) during the heating operation. While being constituted by a container-like member (65) arranged at a position downstream of
The intermediate pressure heat exchanger (40) exchanges heat with the liquid refrigerant in the container-like member (65), which is accommodated in the container-like member (65) and flows through the injection passage (43). A refrigeration apparatus comprising a heat exchanging member (66).
請求項1において、
上記冷媒回路(20)のうち上記冷却動作中に上記中間圧熱交換器(40)の下流側となる位置には、高圧液冷媒の一部を低圧にまで減圧して得られた低圧冷媒と熱交換させることによって高圧液冷媒を冷却する過冷却熱交換器(60)が設けられている
ことを特徴とする冷凍装置。
In claim 1,
In the refrigerant circuit (20), at a position downstream of the intermediate pressure heat exchanger (40) during the cooling operation, a low-pressure refrigerant obtained by reducing a part of the high-pressure liquid refrigerant to a low pressure, A refrigeration apparatus comprising a supercooling heat exchanger (60) for cooling the high-pressure liquid refrigerant by heat exchange.
請求項1において、
上記冷媒回路(20)では、単段圧縮冷凍サイクルが行われる一方、
上記圧縮機(31)は、圧縮途中の圧縮室へ中間圧のガス冷媒が流入するように構成されている
ことを特徴とする冷凍装置。
In claim 1,
In the refrigerant circuit (20), a single-stage compression refrigeration cycle is performed,
The compressor (31) is configured so that an intermediate-pressure gas refrigerant flows into a compression chamber in the middle of compression.
請求項1において、
上記冷媒回路(20)では、低段側の圧縮機(33)と高段側の圧縮機(34)が直列に接続されて二段圧縮冷凍サイクルが行われる一方、
上記冷媒回路(20)は、上記高段側の圧縮機(34)の吸入側へ中間圧のガス冷媒を供給するように構成されている
ことを特徴とする冷凍装置。
In claim 1,
In the refrigerant circuit (20), a low-stage compressor (33) and a high-stage compressor (34) are connected in series to perform a two-stage compression refrigeration cycle,
The refrigeration apparatus, wherein the refrigerant circuit (20) is configured to supply an intermediate-pressure gas refrigerant to the suction side of the high-stage compressor (34).
JP2006059482A 2006-03-06 2006-03-06 Refrigeration equipment Expired - Fee Related JP4715561B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006059482A JP4715561B2 (en) 2006-03-06 2006-03-06 Refrigeration equipment
PCT/JP2007/054186 WO2007102463A1 (en) 2006-03-06 2007-03-05 Refrigeration device
EP07737771.1A EP1992887A4 (en) 2006-03-06 2007-03-05 Refrigeration device
CN2007800052131A CN101384862B (en) 2006-03-06 2007-03-05 Refrigeration device
KR1020087020571A KR100960196B1 (en) 2006-03-06 2007-03-05 Refrigeration device
US12/224,661 US20100229582A1 (en) 2006-03-06 2007-03-05 Refrigeration System
AU2007223486A AU2007223486B2 (en) 2006-03-06 2007-03-05 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006059482A JP4715561B2 (en) 2006-03-06 2006-03-06 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2007240026A JP2007240026A (en) 2007-09-20
JP4715561B2 true JP4715561B2 (en) 2011-07-06

Family

ID=38474891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006059482A Expired - Fee Related JP4715561B2 (en) 2006-03-06 2006-03-06 Refrigeration equipment

Country Status (7)

Country Link
US (1) US20100229582A1 (en)
EP (1) EP1992887A4 (en)
JP (1) JP4715561B2 (en)
KR (1) KR100960196B1 (en)
CN (1) CN101384862B (en)
AU (1) AU2007223486B2 (en)
WO (1) WO2007102463A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150594A (en) * 2007-12-19 2009-07-09 Mitsubishi Heavy Ind Ltd Refrigeration device
JP4989511B2 (en) * 2008-02-22 2012-08-01 三菱電機株式会社 Air conditioner
JP5186949B2 (en) * 2008-02-28 2013-04-24 ダイキン工業株式会社 Refrigeration equipment
CN101922823A (en) * 2010-09-02 2010-12-22 广州德能热源设备有限公司 Secondary air injection high-efficiency ultralow temperature heat pump unit
CN103238034B (en) * 2011-01-31 2015-04-01 三菱电机株式会社 Air-conditioning device
DE102011014943A1 (en) * 2011-03-24 2012-09-27 Airbus Operations Gmbh Multifunctional refrigerant container and method for operating such a refrigerant container
DE202011102503U1 (en) * 2011-06-03 2012-09-04 Glen Dimplex Deutschland Gmbh heat pump system
JP5906440B2 (en) * 2011-07-05 2016-04-20 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
JP5240332B2 (en) * 2011-09-01 2013-07-17 ダイキン工業株式会社 Refrigeration equipment
JP5447499B2 (en) * 2011-12-28 2014-03-19 ダイキン工業株式会社 Refrigeration equipment
AU2013259907B2 (en) * 2012-05-11 2017-08-17 Hill Phoenix, Inc. CO2 refrigeration system with integrated air conditioning module
JP5516712B2 (en) * 2012-05-28 2014-06-11 ダイキン工業株式会社 Refrigeration equipment
JP6029879B2 (en) * 2012-07-10 2016-11-24 シャープ株式会社 Heat pump type heating device
KR102103360B1 (en) * 2013-04-15 2020-05-29 엘지전자 주식회사 Air Conditioner and Controlling method for the same
US11118817B2 (en) * 2018-04-03 2021-09-14 Heatcraft Refrigeration Products Llc Cooling system
US10864993B2 (en) * 2018-10-22 2020-12-15 Hamilton Sunstrand Corporation Liquid vapor separator
KR102294499B1 (en) * 2019-12-31 2021-08-27 엘지전자 주식회사 Multistage compression type frozen apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102656U (en) * 1987-12-25 1989-07-11
JPH06331223A (en) * 1993-05-21 1994-11-29 Mitsubishi Electric Corp Refrigerating cycle unit
JPH10220898A (en) * 1997-02-10 1998-08-21 Daikin Ind Ltd Air conditioner
JPH11118266A (en) * 1997-10-21 1999-04-30 Daikin Ind Ltd Refrigerant circuit
JP2003279169A (en) * 2002-03-25 2003-10-02 Mitsubishi Electric Corp Refrigerating plant
JP2006090563A (en) * 2004-09-21 2006-04-06 Hitachi Ltd Refrigerating device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2510881A (en) * 1946-07-10 1950-06-06 Carrier Corp Refrigeration system
US3151469A (en) * 1961-10-02 1964-10-06 Lester K Quick Heat reclaiming system
JPS60262A (en) * 1983-06-17 1985-01-05 株式会社日立製作所 Refrigeration cycle
JPH01102656A (en) * 1987-10-15 1989-04-20 Fujitsu Ltd Estimation processing system for system performance
US4791790A (en) * 1987-12-24 1988-12-20 Yazaki Corporation Air-cooled absorption-type water cooling and heating apparatus
US5174123A (en) * 1991-08-23 1992-12-29 Thermo King Corporation Methods and apparatus for operating a refrigeration system
US5222378A (en) * 1991-12-09 1993-06-29 Chuan Pan C Filter/separator for a vehicle air conditioning system
US6321542B1 (en) * 1997-04-02 2001-11-27 Daikin Industries, Ltd. Method for cleaning pipe and pipe cleaning apparatus for refrigerating apparatus
JPH10318614A (en) * 1997-05-16 1998-12-04 Matsushita Electric Ind Co Ltd Air conditioner
US6892553B1 (en) * 2003-10-24 2005-05-17 Carrier Corporation Combined expansion device and four-way reversing valve in economized heat pumps
US7272948B2 (en) * 2004-09-16 2007-09-25 Carrier Corporation Heat pump with reheat and economizer functions
JP4797715B2 (en) * 2006-03-09 2011-10-19 ダイキン工業株式会社 Refrigeration equipment
JP4904908B2 (en) * 2006-04-28 2012-03-28 ダイキン工業株式会社 Air conditioner
EP2021703A4 (en) * 2006-06-01 2012-02-15 Carrier Corp Multi-stage compressor unit for a refrigeration system
DE102006031197B4 (en) * 2006-07-03 2012-09-27 Visteon Global Technologies Inc. Internal heat exchanger with accumulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102656U (en) * 1987-12-25 1989-07-11
JPH06331223A (en) * 1993-05-21 1994-11-29 Mitsubishi Electric Corp Refrigerating cycle unit
JPH10220898A (en) * 1997-02-10 1998-08-21 Daikin Ind Ltd Air conditioner
JPH11118266A (en) * 1997-10-21 1999-04-30 Daikin Ind Ltd Refrigerant circuit
JP2003279169A (en) * 2002-03-25 2003-10-02 Mitsubishi Electric Corp Refrigerating plant
JP2006090563A (en) * 2004-09-21 2006-04-06 Hitachi Ltd Refrigerating device

Also Published As

Publication number Publication date
US20100229582A1 (en) 2010-09-16
CN101384862B (en) 2010-08-18
KR100960196B1 (en) 2010-05-27
WO2007102463A1 (en) 2007-09-13
CN101384862A (en) 2009-03-11
EP1992887A4 (en) 2015-12-16
AU2007223486B2 (en) 2010-03-04
JP2007240026A (en) 2007-09-20
AU2007223486A1 (en) 2007-09-13
EP1992887A1 (en) 2008-11-19
KR20080087902A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP4715561B2 (en) Refrigeration equipment
JP4888500B2 (en) Refrigeration equipment
JP4899489B2 (en) Refrigeration equipment
JP4475278B2 (en) Refrigeration apparatus and air conditioner
JP4640142B2 (en) Refrigeration equipment
JP2007240025A (en) Refrigerating device
KR100846567B1 (en) Refrigerating apparatus
WO2006003967A1 (en) Air conditioner
US7908878B2 (en) Refrigerating apparatus
JP3861913B1 (en) Refrigeration equipment
JP2011214753A (en) Refrigerating device
WO2013146415A1 (en) Heat pump-type heating device
WO2011099323A1 (en) Reversible receiver, and air conditioner
WO2017010007A1 (en) Air conditioner
JP5163161B2 (en) Auxiliary heating unit and air conditioner
JP2010078165A (en) Refrigeration and air conditioning device
JP2008116135A (en) Heat exchanger and refrigeration device
WO2007040031A1 (en) Liquid gas heat exchanger for air conditioner
JP4661725B2 (en) Refrigeration equipment
JP2007147227A (en) Refrigerating device
KR100606277B1 (en) heat-pump air-conditioner
JP4779609B2 (en) Refrigeration equipment
CN214039017U (en) Air conditioner and outdoor unit
JP2024017109A (en) Refrigeration cycle equipment
JP2007147213A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R151 Written notification of patent or utility model registration

Ref document number: 4715561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees