WO2017010007A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2017010007A1
WO2017010007A1 PCT/JP2015/070441 JP2015070441W WO2017010007A1 WO 2017010007 A1 WO2017010007 A1 WO 2017010007A1 JP 2015070441 W JP2015070441 W JP 2015070441W WO 2017010007 A1 WO2017010007 A1 WO 2017010007A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat source
source side
heat exchanger
pipe
Prior art date
Application number
PCT/JP2015/070441
Other languages
French (fr)
Japanese (ja)
Inventor
侑哉 森下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/070441 priority Critical patent/WO2017010007A1/en
Publication of WO2017010007A1 publication Critical patent/WO2017010007A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to an air conditioner used for a building multi air conditioner or the like.
  • a receiver As an air conditioner used in a conventional multi air conditioner for buildings, for example, a receiver is provided as an excess refrigerant storage device, and the amount of refrigerant circulating in the refrigerant circuit can be adjusted according to the operating capacity of the indoor unit.
  • the thing is known (for example, patent document 1).
  • the air conditioner of Patent Document 1 for example, when the cooling operation is performed in a temperature environment where the outside air is 25 ° C. or less, the amount of refrigerant circulating in the refrigerant circuit becomes excessive, and the pressure in the outdoor unit increases. . Therefore, in the air conditioner of Patent Document 1, depending on the temperature condition of the cooling operation, the compressor input increases due to an increase in the pressure in the outdoor unit, which may reduce the operating efficiency of the air conditioner.
  • the present invention has been made to solve the above-described problems, and provides an air conditioner capable of efficiently operating by appropriately adjusting the input of the compressor according to the temperature condition of the outside air during cooling. For the purpose.
  • An air conditioner according to the present invention is divided into a compressor that compresses a refrigerant, a heat source side heat exchanger that is divided into a plurality of regions that perform heat exchange between the refrigerant and outside air, and each of the plurality of regions.
  • a refrigerant flow switching device that changes the flow direction of the refrigerant passing through the heat source side heat exchanger, a decompression device that depressurizes the refrigerant, and a load side heat exchanger that exchanges heat between the refrigerant and the indoor space.
  • a refrigeration cycle circuit that circulates refrigerant by connecting a pipe, and is provided in the middle of the refrigerant pipe that branches from the refrigerant pipe between the heat source side heat exchanger and the load side heat exchanger and leads to the suction side of the compressor
  • the refrigerant is stored in the refrigerant pipe between the heat source side heat exchanger and the load side heat exchanger, and is connected to the inlet side of the receiver.
  • the heat source side divided into the plurality of regions A control device that uses only some of the heat source side heat exchangers of the heat exchanger and performs control to store the refrigerant in the receiver.
  • the air conditioning apparatus which can reduce energy consumption can be provided.
  • FIG. 3 is a schematic refrigerant circuit diagram illustrating an example of a refrigerant flow in the first cooling operation mode (normal cooling operation) of the air-conditioning apparatus 1 according to Embodiment 1 of the present invention.
  • FIG. 1 is a schematic diagram illustrating an installation example of the air-conditioning apparatus 1 according to the first embodiment.
  • the dimensional relationship and shape of each component may be different from the actual one.
  • the same or similar members or parts are denoted by the same reference numerals, or the reference numerals are omitted.
  • the air conditioner 1 includes an outdoor unit 100 (for example, an outdoor unit that is a heat source unit), and a plurality of indoor units 200 (for example, indoor units) arranged in parallel to the outdoor unit 100. Is provided.
  • the outdoor unit 100 and the plurality of indoor units 200 are configured as separate housings.
  • the outdoor unit 100 and the indoor unit 200 are connected by a first communication pipe 300 and a second communication pipe 400.
  • the first connection pipe 300 and the second connection pipe 400 may be local pipes that are existing pipes.
  • the outdoor unit 100 (heat source side unit) is usually disposed in an outdoor space 600 (for example, the rooftop of a building 500 such as a building), and the indoor unit passes through the first communication pipe 300 or the second communication pipe 400. 200 is supplied with cold or warm heat.
  • the indoor unit 200 (load-side unit) supplies air for cooling or heating to an indoor space 700 (for example, a living room of the building 500).
  • the indoor unit 200 is a ceiling cassette type room as shown in FIG. Can be configured as a machine.
  • the outdoor unit 100 can be configured to supply warm heat to the underfloor pipe 800 in the indoor space 700 to provide floor heating for the indoor space 700.
  • FIG. 2 is a schematic refrigerant circuit diagram illustrating an example of the air-conditioning apparatus 1 according to the first embodiment.
  • one outdoor unit 100 and one indoor unit 200 are connected by a first connecting pipe 300 and a second connecting pipe 400.
  • the air conditioner 1 of the first embodiment includes a compressor 2, an oil separator 4, a first refrigerant flow switching device 6, a second refrigerant flow switching device 7, and a heat source side heat exchanger.
  • the supercooling heat exchanger 10 the first heat source side pressure reducing device 12, the load side pressure reducing device 14, the load side heat exchanger 16, and the accumulator 18 are connected via a refrigerant pipe, A refrigeration cycle circuit for circulation is provided.
  • Compressor 2, oil separator 4, first refrigerant flow switching device 6, second refrigerant flow switching device 7, heat source side heat exchanger 8, supercooling heat exchanger 10, first heat source side pressure reducing device 12 and the accumulator 18 are accommodated in the outdoor unit 100.
  • the load-side decompressor 14 and the load-side heat exchanger 16 are accommodated in the indoor unit 200.
  • the oil separator 4, the supercooling heat exchanger 10, and the accumulator 18 are not essential components and may not be provided depending on the application of the air conditioner 1. Further, FIG. 2 shows an example of mounting each unit, but each element does not necessarily have to be mounted as shown in FIG.
  • Compressor 2 compresses the sucked low-pressure refrigerant and discharges it as a high-pressure refrigerant.
  • the compressor 2 for example, a scroll compressor or a rotary compressor capable of capacity control (frequency control) by an inverter is used.
  • the oil separator 4 separates and removes refrigeration oil contained in the high-pressure refrigerant discharged from the compressor 2 to reduce the amount of refrigeration oil contained in the high-pressure refrigerant.
  • the separated and removed refrigeration oil is returned to the compressor 2 via an oil return pipe (not shown).
  • the first refrigerant flow switching device 6 is a device configured to switch the refrigerant flow channel inside the first refrigerant flow switching device 6.
  • the first refrigerant flow switching device 6 is controlled so as to supply cold heat from the outdoor unit 100 to the indoor unit 200 via the first communication pipe 300 during the cooling operation.
  • the first refrigerant flow switching device 6 is controlled so as to supply heat from the outdoor unit 100 to the indoor unit 200 via the second communication pipe 400 during the heating operation.
  • the second refrigerant flow switching device 7 is a device configured to switch the refrigerant flow path inside the second refrigerant flow switching device 7, similarly to the first refrigerant flow switching device 6.
  • the second refrigerant flow switching device 7 is controlled to supply cold heat from the outdoor unit 100 to the indoor unit 200 via the first communication pipe 300 during the cooling operation.
  • the second refrigerant flow switching device 7 is controlled so as to supply heat from the outdoor unit 100 to the indoor unit 200 via the second communication pipe 400 during the heating operation.
  • a four-way valve is used as the first refrigerant flow switching device 6 and the second refrigerant flow switching device 7.
  • a terminal member 7a for blocking the refrigerant flow path is connected to one end of the refrigerant flow path inside the second refrigerant flow switching device 7.
  • the “cooling operation” is an operation for supplying a low-temperature and low-pressure refrigerant to the load-side heat exchanger 16, and an operation for supplying air for cooling to the indoor space 700 in FIG.
  • the “heating operation” is an operation for supplying a high-temperature and high-pressure refrigerant to the load-side heat exchanger 16, and an operation for supplying heating air to the indoor space 700 of FIG.
  • a two-way valve or a three-way valve may be used as the first refrigerant flow switching device 6 and the second refrigerant flow switching device 7.
  • the heat source side heat exchanger 8 is a heat exchanger that functions as a radiator (condenser) during cooling operation and functions as an evaporator (cooler) during heating operation.
  • the heat source side heat exchanger 8 includes a refrigerant flowing inside the heat source side heat exchanger 8 and outside air (for example, outdoor air in the outdoor space 600 of FIG. 1) blown by a heat source side fan (not shown). It is configured to perform heat exchange.
  • a cross fin type fin-and-tube heat exchanger composed of a heat transfer tube and a plurality of fins is used.
  • the heat source side heat exchanger 8 is divided into two heat exchange regions, region A and region B.
  • One end of a heat transfer tube (not shown) in the region A of the heat source side heat exchanger 8 is connected to a plurality of first header branch tubes 82 branched from the first header main tube 81.
  • the other end of the heat transfer tube in the region A of the heat source side heat exchanger 8 is connected to a plurality of second header branch tubes 83 branched from the second header main tube 84.
  • the heat source side heat exchanger 8 is configured to be divided into two heat exchange regions, region A and region B, but may be configured to be divided into three or more heat exchange regions. .
  • one end of a heat transfer tube (not shown) of the heat source side heat exchanger 8 in the region B is connected to a plurality of third header branch tubes 86 branched from the third header main tube 85.
  • the other end portion of the heat transfer pipe of the heat source side heat exchanger 8 in the region B is connected to a plurality of fourth header branch pipes 87 branched from the fourth header main pipe 88.
  • the supercooling heat exchanger 10 is a heat exchanger that further cools the high-pressure refrigerant flowing from the heat source side heat exchanger 8 during the cooling operation.
  • the supercooling heat exchanger 10 is, for example, a double-tube heat exchanger having an inner pipe (not shown) and an outer pipe (not shown) arranged concentrically when viewed from the end of the inner pipe. It is possible to perform heat exchange between the high-pressure refrigerant flowing in the inner pipe and the decompressed refrigerant flowing in the outer pipe.
  • the supercooling heat exchanger 10 is a double-pipe heat exchanger, during the heating operation, the supercooling heat exchanger 10 functions as a part of the refrigerant pipe constituting the refrigeration cycle circuit.
  • a specific configuration of the refrigerant circuit when the supercooling heat exchanger 10 is a double-pipe heat exchanger will be described later.
  • the first heat source side decompression device 12 expands and decompresses the high-pressure refrigerant during the cooling operation, and flows into the first communication pipe 300 as a refrigerant having a pressure lower than the design pressure of the first communication pipe 300. It functions as a (squeezing device for liquid equalization between outdoor units). For example, when the first connecting pipe 300 is an existing pipe, the design pressure of the first connecting pipe 300 is set to the pressure resistance reference value of the first connecting pipe 300. Further, the first heat source side decompression device 12 functions as a throttle device that expands and decompresses the refrigerant flowing from the first communication pipe 300 and flows into the heat source side heat exchanger 8 during the heating operation. As the first heat source side pressure reducing device 12, an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple stages or continuously is used.
  • LEV linear electronic expansion valve
  • the load side decompression device 14 further expands and decompresses the refrigerant having a pressure lower than the design pressure of the first communication pipe 300 flowing from the first communication pipe 300 and flows into the load side heat exchanger 16. It functions as an expansion device (indoor expansion device). Further, the load-side decompression device 14 is a throttling device that expands and decompresses the high-pressure refrigerant during the heating operation, and flows into the first communication pipe 300 as a refrigerant having a pressure lower than the design pressure of the first communication pipe 300. Function.
  • the load side pressure reducing device 14 is configured as an electronic expansion valve such as a linear electronic expansion valve whose opening degree can be adjusted in multiple stages or continuously.
  • the load side heat exchanger 16 (use side heat exchanger) is a heat exchanger that functions as an evaporator (cooler) during cooling operation and as a radiator (condenser) during heating operation.
  • the load-side heat exchanger 16 is configured to exchange heat between, for example, a refrigerant flowing inside the load-side heat exchanger 16 and outside air (for example, indoor air in the indoor space 700 in FIG. 1).
  • a cross fin type fin-and-tube heat exchanger composed of a heat transfer tube and a plurality of fins is used.
  • the load side heat exchanger 16 can be comprised so that external air may be supplied by the ventilation from a load side ventilation fan (not shown).
  • the accumulator 18 is a storage container having a refrigerant storage function for storing excess refrigerant generated due to a difference in refrigerant amount during heating operation and cooling operation. Further, the accumulator 18 retains the liquid refrigerant that is temporarily generated when the operation state of the air conditioner 1 is changed, such as a transient operation change, so that a large amount of liquid refrigerant flows into the compressor 2. It is also a storage container having a gas-liquid separation function to prevent this.
  • a discharge pipe (not shown) of the compressor 2 and the inlet of the oil separator 4 are connected by a first heat source side refrigerant pipe 21.
  • the refrigerant outlet of the oil separator 4 and the first refrigerant flow switching device 6 are connected by a second heat source side refrigerant pipe 22.
  • a check valve 41 is disposed in the second heat source side refrigerant pipe 22 to prevent the high-pressure refrigerant from flowing back to the compressor 2.
  • coolant piping 22 located between the non-return valve 41 and the 1st refrigerant
  • the heat source side refrigerant pipe 25 is branched and connected.
  • the first refrigerant flow switching device 6 and the first header main pipe 81 are connected by a third heat source side refrigerant pipe 23.
  • the second refrigerant flow switching device 7 and the third header main pipe 85 are connected by a sixth heat source side refrigerant pipe 26.
  • One end of the fourth heat source side refrigerant pipe 24 is connected to the second header main pipe 84.
  • One end of the seventh heat source side refrigerant pipe 27 is connected to the fourth header main pipe 88.
  • the other one end of the fourth heat source side refrigerant pipe 24 and the seventh heat source side refrigerant pipe 27 joins the fourth heat source side refrigerant pipe 24 and the seventh heat source side refrigerant pipe 27 during the cooling operation.
  • It is connected to a connecting member 43 that functions as a merger.
  • the connecting member 43 is a member that functions as a distributor for diverting the refrigerant to the fourth heat source side refrigerant pipe 24 and the seventh heat source side refrigerant pipe 27 during the heating operation.
  • the connecting member 43 and the supercooling heat exchanger 10 are connected by an eighth heat source side refrigerant pipe 28.
  • the subcooling heat exchanger 10 and the first communication pipe 300 are connected by a ninth heat source side refrigerant pipe 29.
  • the first heat source side decompression device 12 is disposed in the ninth heat source side refrigerant pipe 29.
  • a first heat source side connection valve 47a is disposed at the end of the ninth heat source side refrigerant pipe 29 on the first communication pipe 300 side, and the first heat source side connection valve 47a has a first end.
  • a first joint portion 49a such as a flare joint is attached to the connecting pipe 300 side.
  • the ninth heat source side refrigerant pipe 29 is connected to the first communication pipe 300 at the first joint portion 49a.
  • the first heat source side connection valve 47a is constituted by, for example, a two-way valve such as a two-way electromagnetic valve that can be switched between open and closed. Further, in the ninth heat source side refrigerant pipe 29, a position between the first heat source side pressure reducing device 12 and the first heat source side connection valve 47a is used to scavenge dust, impurities, etc. contained in the refrigerant.
  • the 1st strainer 45a which is a filter is arrange
  • the first refrigerant flow switching device 6 and the second communication pipe 400 are connected by a tenth heat source side refrigerant pipe 30.
  • a second heat source side connection valve 47b is disposed at the end of the tenth heat source side refrigerant pipe 30 on the second communication pipe 400 side, and the second connection pipe of the second heat source side connection valve 47b.
  • a second joint portion 49b such as a flare joint is attached.
  • coolant piping 30 is connected with the 2nd connection piping 400 by the 2nd coupling part 49b.
  • the second heat source side connection valve 47b is configured by, for example, a two-way valve such as a two-way electromagnetic valve that can be switched between open and closed.
  • a position between the first refrigerant flow switching device 6 and the second heat source side connection valve 47b removes dust, impurities, and the like contained in the refrigerant.
  • the 2nd strainer 45b which is a filter of this is arrange
  • the first refrigerant flow switching device 6 and the first branch portion 32a of the twelfth heat source side refrigerant pipe 32 are connected by an eleventh heat source side refrigerant pipe 31.
  • the twelfth heat source side refrigerant pipe 32 is a refrigerant pipe that connects the second refrigerant flow switching device 7 and the inlet of the accumulator 18.
  • the inlet of the accumulator 18 and the suction pipe (not shown) of the compressor 2 are connected by a thirteenth heat source side refrigerant pipe 33.
  • the first communication pipe 300 and the load side heat exchanger 16 are connected by a first load side refrigerant pipe 35.
  • the load side decompression device 14 is disposed in the first load side refrigerant pipe 35.
  • a joint portion such as a flare joint is provided on the first communication pipe 300 side of the first load-side refrigerant pipe 35, and is connected to the first communication pipe 300 at the joint portion. Has been.
  • the load side heat exchanger 16 and the second communication pipe 400 are connected by a second load side refrigerant pipe 36.
  • a joint portion (not shown) such as a flare joint is provided on the second load-side refrigerant pipe 36 on the second communication pipe 400 side, and is connected to the second communication pipe 400 at the joint. Yes.
  • any kind of refrigerant can be selected as the refrigerant that circulates through the refrigerant pipe described above depending on the application of the air-conditioning apparatus 1.
  • a single refrigerant such as R22, R134a, R32, HFO1234yf, HFO1234ze, or HFO1123
  • a pseudo-azeotropic refrigerant mixture such as R410A or R404A
  • a non-azeotropic refrigerant mixture such as R407C
  • a refrigerant with a low global warming potential such as CF 3 CF ⁇ CH 2 containing a double bond in the chemical formula can be used.
  • the above-mentioned refrigerant may be used as a mixture in which two or more kinds are mixed.
  • it is possible to use natural refrigerant such as CO 2 or propane.
  • the supercooling heat exchanger 10 can be configured as a double-pipe heat exchanger.
  • the double-tube supercooling heat exchanger 10 has an inner tube (not shown) and an outer tube (not shown) arranged concentrically when viewed from the end of the inner tube. The heat exchange is performed between the high-pressure refrigerant flowing in the inner pipe and the decompressed refrigerant flowing in the outer pipe.
  • FIG. 1 The ninth heat source side refrigerant pipe 29 whose one end is connected to the first connecting pipe 300 has the other end connected to the other end of the inner pipe of the supercooling heat exchanger 10.
  • a first heat source side branch refrigerant pipe 51 is connected to the end on the side refrigerant pipe 29 side.
  • One end of the second heat source side branch refrigerant pipe 53 is connected to the end of the outer pipe of the supercooling heat exchanger 10 on the side of the eighth heat source side refrigerant pipe 28.
  • the other end of the second heat source side branch refrigerant pipe 53 is connected to the second branch part 32 b of the twelfth heat source side refrigerant pipe 32 connected to the inlet of the accumulator 18.
  • the second heat source side decompression device 13 is disposed in the first heat source side branch refrigerant pipe 51.
  • the second heat source-side decompression device 13 expands and decompresses the high-pressure refrigerant that flows from the branch portion 29a of the ninth heat source-side refrigerant pipe 29 to the first heat source-side branch refrigerant pipe 51 during cooling operation.
  • it functions as a throttle device (heat source side throttle device) that causes the decompressed refrigerant to flow into the outer tube of the supercooling heat exchanger 10.
  • the second heat source side pressure reducing device 13 is configured as an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple stages or continuously.
  • LEV linear electronic expansion valve
  • the seventh heat source side refrigerant pipe 27 is a refrigerant pipe connected between the fourth header main pipe 88 and the connecting member 43.
  • the fourth header main pipe 88 is a refrigerant pipe connected to a heat transfer pipe (not shown) of the heat source side heat exchanger 8 in the region B via a plurality of fourth header branch pipes 87.
  • one end of the second heat source side branch refrigerant pipe 53 is connected to the refrigerant outlet side end of the outer tube of the supercooling heat exchanger 10 and the other one end is the twelfth. It is the refrigerant
  • the twelfth heat source side refrigerant pipe 32 is a refrigerant pipe connected to the inflow port of the accumulator 18.
  • a flow path switching valve 55 is disposed in the seventh heat source side refrigerant pipe 27.
  • the flow path switching valve 55 and the branch portion 53 a of the second heat source side branch refrigerant pipe 53 are connected by a third heat source side branch refrigerant pipe 57.
  • the flow path switching valve 55 switches the refrigerant flow path inside the flow path switching valve 55 during the cooling operation, and connects the connection destination of the seventh heat source side refrigerant pipe 27 on the fourth header main pipe 88 side to the connecting member 43.
  • the second heat source side refrigerant pipe 27 or the second heat source side branch refrigerant pipe 53 is switched to two directions.
  • the flow path switching valve 55 is configured to connect the seventh heat source side refrigerant pipe 27 on the connecting member 43 side and the seventh heat source side refrigerant pipe 27 on the fourth header main pipe 88 side during the heating operation. Is done.
  • a three-way valve is used as the flow path switching valve 55.
  • FIG. 3 is a schematic diagram schematically showing the configuration and arrangement of the receiver 60 of the air-conditioning apparatus 1 according to Embodiment 1.
  • the flow direction of the refrigerant is indicated by white block arrows.
  • the receiver 60 includes a storage 60a that is a casing that stores liquid refrigerant, an inflow pipe 60b that is a refrigerant pipe that flows the refrigerant into the storage 60a, an outflow pipe 60c that is a refrigerant pipe that causes the refrigerant to flow out of the storage 60a, and a storage And a leg portion 60d which is a support member for supporting the bottom portion of 60a.
  • the receiver 60 is configured as a vertical-type surplus liquid refrigerant storage container.
  • the branch portion 28 a of the eighth heat source side refrigerant pipe 28 and the end portion on the inlet side of the inflow pipe 60 b of the receiver 60 are connected by a fourth heat source side branch refrigerant pipe 61. Yes.
  • the fifth heat source side branch is provided between the end portion on the outlet side of the outlet pipe 60 c of the receiver 60 and the third branch portion 32 c of the twelfth heat source side refrigerant pipe 32.
  • the refrigerant pipe 65 connects.
  • the eighth heat source side refrigerant pipe 28 is a refrigerant pipe connecting the connecting member 43 and the inner pipe of the supercooling heat exchanger 10, and the twelfth heat source side refrigerant pipe 32 is the accumulator 18. It is refrigerant piping connected to the inflow port.
  • the branching portion 28 a of the eighth heat source side refrigerant pipe 28 is arranged so as to be located above the end of the inlet of the inflow pipe 60 b of the receiver 60.
  • the fourth heat source side branch refrigerant pipe 61 is connected to the branch portion 28 a of the eighth heat source side refrigerant pipe 28 so as to be positioned below the eighth heat source side refrigerant pipe 28.
  • the inflow pipe 60b of the receiver 60 is arrange
  • the liquid refrigerant flowing into the fourth heat source side branch refrigerant pipe 61 from the branch portion 28a of the eighth heat source side refrigerant pipe 28 flows into the receiver 60 by its own weight.
  • the pipe 60b is surely introduced and stored in the storage 60a.
  • the outflow pipe 60c of the receiver 60 is disposed at the bottom of the storage 60a, and the end of the outflow pipe 60c on the inlet side communicates with the internal space below the storage 60a. Therefore, the receiver 60 according to the first embodiment can cause the liquid refrigerant stored at the bottom of the storage 60a to flow into the fifth heat source side branch refrigerant pipe 65 from the outflow pipe 60c.
  • an electromagnetic valve 63 is arranged in the fourth heat source side branch refrigerant pipe 61.
  • the solenoid valve 63 is a valve on the refrigerant inflow side to the receiver 60 that opens or closes the refrigerant flow path of the fourth heat source side branched refrigerant pipe 61 by supplying power or stopping power.
  • an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple steps or continuously may be used.
  • a flow rate adjustment valve 67 is arranged in the fifth heat source side branch refrigerant pipe 65.
  • the flow rate adjusting valve 67 is a valve that adjusts the amount of refrigerant returned to the refrigeration cycle circuit by storing the refrigerant in the accumulator 18 through the fifth heat source side branched refrigerant pipe 65.
  • an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple stages or continuously is used.
  • FIG. 3 shows a second temperature sensor 74 that is a liquid refrigerant temperature detection sensor. The second temperature sensor 74 will be described later.
  • the air conditioner 1 includes a first pressure sensor 70, a second pressure sensor 71, a first temperature sensor 73, a second temperature sensor 74, and a third temperature sensor. 75, a fourth temperature sensor 76, and a refrigerant leakage detection sensor 78.
  • the first pressure sensor 70 is disposed in the second heat source side refrigerant pipe 22.
  • the first pressure sensor 70 is a high-pressure sensor that detects the pressure of the high-temperature and high-pressure refrigerant that flows into the second heat source side refrigerant pipe 22 from the discharge pipe of the compressor 2 via the oil separator 4.
  • the second pressure sensor 71 is disposed in the twelfth heat source side refrigerant pipe 32.
  • the second pressure sensor 71 is a low-pressure sensor that detects the pressure of the low-pressure refrigerant flowing into the suction port of the compressor 2 from the twelfth heat source side refrigerant pipe 32 via the accumulator 18.
  • first pressure sensor 70 and the second pressure sensor 71 a crystal piezoelectric pressure sensor, a semiconductor sensor, a pressure transducer, or the like is used.
  • the first pressure sensor 70 and the second pressure sensor 71 may be the same type or different types.
  • the first temperature sensor 73 is disposed, for example, on the upstream side of a heat source side fan (not shown), and is sucked by the heat source side fan and is sent to the heat source side heat exchanger 8 (for example, outside air shown in FIG. 1).
  • This is an outdoor temperature sensor that detects the temperature of the outdoor air in the outdoor space 600.
  • the second temperature sensor 74 is disposed in the eighth heat source side refrigerant pipe 28.
  • the second temperature sensor 74 detects the temperature of the liquid refrigerant flowing from the heat source side heat exchanger 8 into the eighth heat source side refrigerant pipe 28 via the eighth heat source side refrigerant pipe 28 during the cooling operation. It is a temperature sensor (liquid refrigerant temperature detection sensor).
  • the second temperature sensor 74 is a temperature sensor that detects the temperature of the two-phase refrigerant decompressed by the first heat source side decompression device 12 via the eighth heat source side refrigerant pipe 28 during the heating operation. is there.
  • the third temperature sensor 75 is disposed in the first load side refrigerant pipe 35.
  • the third temperature sensor 75 is a temperature sensor (use side heat exchanger) that detects the temperature of the two-phase refrigerant decompressed by the load side decompression device 14 via the first load side refrigerant pipe 35 during the cooling operation. Liquid side sensor). Further, the third temperature sensor 75 detects the temperature of the liquid refrigerant flowing from the load-side heat exchanger 16 to the first load-side refrigerant pipe 35 via the first load-side refrigerant pipe 35 during the heating operation. It is a temperature sensor.
  • the fourth temperature sensor 76 is disposed in the second load side refrigerant pipe 36.
  • the third temperature sensor 75 detects the temperature of the low-pressure refrigerant flowing from the load-side heat exchanger 16 to the second load-side refrigerant pipe 36 through the second load-side refrigerant pipe 36 during the cooling operation.
  • Sensor use side heat exchanger gas side sensor.
  • the fourth temperature sensor 76 determines the temperature of the high-temperature and high-pressure refrigerant flowing into the second load-side refrigerant pipe 36 from the discharge pipe of the compressor 2 through the oil separator 4 during the heating operation. It is a temperature sensor detected via the load side refrigerant
  • Examples of materials for the first temperature sensor 73, the second temperature sensor 74, the third temperature sensor 75, and the fourth temperature sensor 76 include a semiconductor (for example, a thermistor) or a metal (for example, a resistance temperature detector). Is used.
  • the first temperature sensor 73, the second temperature sensor 74, the third temperature sensor 75, and the fourth temperature sensor 76 may be made of the same material or different materials. Good.
  • the refrigerant leakage detection sensor 78 is disposed in the indoor unit 200 and detects refrigerant leakage from the indoor unit 200.
  • the refrigerant leakage detection sensor 78 is disposed in the indoor space 700 of FIG. 1 in order to prevent, for example, refrigerant leakage into the indoor space 700 of FIG. 1 (for example, the living room of the building 500).
  • a gas sensor such as a semiconductor gas sensor or a hot wire semiconductor gas sensor is used.
  • Two or more refrigerant leakage detection sensors 78 may be arranged in the indoor space 700 in order to prevent refrigerant leakage into the indoor space 700. Further, for example, in a portion where the refrigerant leakage inside the indoor unit 200 is likely to occur, such as a connection portion between the first load side refrigerant pipe 35 or the second load side refrigerant pipe 36 and the load side heat exchanger 16. You may arrange.
  • control device 90 of the air-conditioning apparatus 1 according to Embodiment 1 will be described with reference to FIG.
  • the control device 90 controls the operation of the entire air conditioner 1 including driving or stopping of the outdoor unit 100. Further, as shown in FIG. 2, the control device 90 is also connected to an indoor unit control device 95 (indoor control device) that controls the operation of the indoor unit 200 via a transmission line 98. It is comprised so that it can communicate. In addition, you may comprise so that communication between the control apparatus 90 and the indoor unit control apparatus 95 can be performed by radio
  • the control device 90 and the indoor unit control device 95 have a microcomputer having a CPU that functions as a calculation unit, a memory (for example, ROM, RAM, etc.) that functions as a storage unit, an I / O port that functions as a communication unit, and the like. is doing.
  • the indoor unit controller 95 receives the electrical signal of the temperature information in the indoor unit 200 detected by the third temperature sensor 75 and the fourth temperature sensor 76 or the electrical signal of the refrigerant leak detected by the refrigerant leak detection sensor 78. , And configured to transmit to the control device 90 via the transmission line 98. Further, the indoor unit control device 95 is configured to transmit information related to the operating state of the indoor unit 200 to the control device 90 via the transmission line 98.
  • the information related to the operating state of the indoor unit 200 includes information on driving or stopping of the indoor unit 200, power consumption of the indoor unit 200, information on the operating capacity of the indoor unit 200, information on switching between cooling operation and heating operation, etc. It is included.
  • the control device 90 receives the electrical signal of the pressure information detected by the first pressure sensor 70 and the second pressure sensor 71 and the electrical signal of the temperature information detected by the first temperature sensor 73 and the second temperature sensor 74. Configured to receive. In addition, the control device 90 is configured to receive temperature information or an electric signal of refrigerant leakage transmitted from the indoor unit control device 95 via the transmission line 98 and information related to the operating state of the indoor unit 200. The control device 90 controls operations of various actuators of the air conditioning device 1 based on the received information.
  • the various actuators of the air conditioner 1 include, for example, the compressor 2, the first refrigerant flow switching device 6, the second refrigerant flow switching device 7, the first heat source side pressure reducing device 12, and the second heat source side.
  • the pressure reducing device 13, the load side pressure reducing device 14, the flow path switching valve 55, the electromagnetic valve 63, and the flow rate adjusting valve 67 are included.
  • the control device 90 and the first pressure sensor 70, the second pressure sensor 71, the first temperature sensor 73, and the second temperature sensor 74 are connected by a communication line (not shown). Can be configured. Similarly, the indoor unit control device 95, the third temperature sensor 75, the fourth temperature sensor 76, and the refrigerant leakage detection sensor 78 can be connected by a communication line (not shown). In addition to the memory such as ROM and RAM, the control device 90 may be configured to have a storage unit (not shown) that can store various data such as a standard outside air temperature range.
  • Normal cooling operation means, for example, a cooling operation under the cooling condition defined in the JIS standard (JIS B 8616) of the package air conditioner.
  • the “normal cooling operation” is referred to as a first cooling operation mode.
  • the outside air temperature is in the standard temperature range
  • the indoor unit 200 is in the standard operation capacity range
  • the air is discharged from the compressor 2 detected by the first pressure sensor 70.
  • This refers to a cooling operation performed by the air-conditioning apparatus 1 according to Embodiment 1 when the pressure of the high-temperature and high-pressure gas refrigerant is within the range of the standard high-pressure.
  • the standard temperature range of the outside air temperature is, for example, a temperature range of 25 ° C. to 43 ° C.
  • the lower limit value of the standard operating capacity range is, for example, 50% operating capacity when the total operating capacity of the indoor unit 200 in the air conditioner 1 is 100%.
  • the upper limit value of the standard high pressure range is, for example, 36 kg / cm 2 .
  • FIG. 4 is a schematic refrigerant circuit diagram showing a refrigerant flow in the first cooling operation mode (normal cooling operation) of the air-conditioning apparatus 1 according to Embodiment 1.
  • the flow direction of the refrigerant is indicated by solid line arrows.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the oil separator 4 via the first heat source side refrigerant pipe 21.
  • the oil separator 4 the components of the refrigerating machine oil are separated and removed from the high-temperature and high-pressure gas refrigerant discharged from the compressor 2.
  • a part of the high-temperature and high-pressure gas refrigerant from which the components of the refrigerating machine oil are separated and removed by the oil separator 4 includes the second heat source side refrigerant pipe 22, the first refrigerant flow switching device 6, and the third heat source side refrigerant pipe. 23, the first header main pipe 81, and the plurality of first header branch pipes 82 flow into the region A of the heat source side heat exchanger 8.
  • the remaining portion of the high-temperature and high-pressure gas refrigerant from which the components of the refrigeration oil are separated and removed by the oil separator 4 is the second heat source side refrigerant pipe 22, the fifth heat source side refrigerant pipe 25, and the second refrigerant flow. It flows into the region B of the heat source side heat exchanger 8 via the path switching device 7, the sixth heat source side refrigerant pipe 26, the third header main pipe 85, and the plurality of third header branch pipes 86. .
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 8 is heat-exchanged by releasing heat to a low-temperature medium such as outdoor air in the outdoor space 600 in FIG. 1, and the high-temperature and high-pressure gas refrigerant is condensed and liquefied. And high pressure liquid refrigerant.
  • the high-pressure liquid refrigerant condensed and liquefied in the region A of the heat source side heat exchanger 8 passes through the plurality of second header branch pipes 83 and the second header main pipe 84 to form a fourth heat source side refrigerant pipe. 24.
  • the high-pressure liquid refrigerant condensed and liquefied in the region B of the heat source side heat exchanger 8 passes through the fourth header branch pipe 87 and the fourth header main pipe 88 to the seventh heat source side. It flows into the refrigerant pipe 27.
  • the high-pressure liquid refrigerant flowing through the fourth heat source side refrigerant pipe 24 and the seventh heat source side refrigerant pipe 27 is joined by the connecting member 43 and flows into the eighth heat source side refrigerant pipe 28.
  • the high-pressure liquid refrigerant flowing through the eighth heat source side refrigerant pipe 28 flows into the inner pipe of the supercooling heat exchanger 10 and is heat-exchanged with the refrigerant flowing through the outer pipe of the supercooling heat exchanger 10 to be supercooled.
  • the high-pressure liquid refrigerant becomes a supercooled high-pressure liquid refrigerant and flows into the ninth heat source side refrigerant pipe 29.
  • the refrigerant flowing through the outer pipe of the supercooling heat exchanger 10 is divided by the branch portion 29a of the ninth heat source side refrigerant pipe 29, and the first heat source side branched refrigerant.
  • the liquid refrigerant or the two-phase refrigerant flows into the pipe 51 and is expanded and depressurized by the second heat source side decompression device 13 (for example, medium pressure).
  • the liquid refrigerant or the two-phase refrigerant that has been expanded and depressurized by the second heat source side pressure reducing device 13 (for example, medium pressure) is connected to the inner pipe of the supercooling heat exchanger 10 by the outer pipe of the supercooling heat exchanger 10. Heat exchange with the flowing high-pressure liquid refrigerant results in a high-temperature gas refrigerant or a two-phase refrigerant with high dryness.
  • the high-temperature gas refrigerant or the two-phase refrigerant having a high dryness flowing from the outer pipe of the supercooling heat exchanger 10 into the second heat source side branch refrigerant pipe 53 passes through the twelfth heat source side refrigerant pipe 32 to be an accumulator. 18 is injected.
  • the high-pressure liquid refrigerant that was supercooled by the supercooling heat exchanger 10 and flowed into the ninth heat source side refrigerant pipe 29 was expanded and depressurized by the first heat source side decompression device 12 to be depressurized (for example, (Pressure) liquid refrigerant or two-phase refrigerant.
  • the decompressed liquid refrigerant or two-phase refrigerant flows out of the outdoor unit 100 and flows into the indoor unit 200 via the first connection pipe 300.
  • the liquid refrigerant or the two-phase refrigerant that has flowed into the indoor unit 200 flows into the load-side decompression device 14 via the first load-side refrigerant pipe 35.
  • the liquid refrigerant or two-phase refrigerant that has flowed into the load-side decompression device 14 is further expanded and decompressed by the load-side decompression device 14 to become a low-temperature and low-pressure two-phase refrigerant.
  • the low-temperature and low-pressure two-phase refrigerant flows into the load-side heat exchanger 16 and is heat-exchanged by absorbing heat from a high-temperature medium such as indoor air in the indoor space 700 of FIG.
  • the gas is evaporated and becomes a two-phase refrigerant or gas refrigerant having a low temperature and low pressure and high dryness, and flows into the second load side refrigerant pipe 36.
  • the low-temperature and low-pressure two-phase refrigerant or low-temperature and low-pressure gas refrigerant that has flowed into the second load-side refrigerant pipe 36 flows out of the indoor unit 200 and passes through the second connecting pipe 400 to the outdoor unit. 100 flows in.
  • the low-temperature and low-pressure two-phase refrigerant or gas refrigerant flowing into the outdoor unit 100 includes a tenth heat source side refrigerant pipe 30, a first refrigerant flow switching device 6, an eleventh heat source side refrigerant pipe 31, and It is injected into the accumulator 18 via the twelfth heat source side refrigerant pipe 32.
  • the liquid phase component of the refrigerant injected from the twelfth heat source side refrigerant pipe 32 is separated and stored, and the low-temperature and low-pressure gas refrigerant flows into the thirteenth heat source side refrigerant pipe 33 from the accumulator 18, and the compressor 2 is inhaled.
  • the refrigerant sucked into the compressor 2 is compressed to become a high-temperature and high-pressure gas refrigerant and is discharged from the compressor 2.
  • the above cycle is repeated.
  • control processing of the control device 90 of the air-conditioning apparatus 1 according to Embodiment 1 in the first cooling operation mode will be described.
  • the control device 90 causes the refrigerant to flow through the refrigerant flow path inside the first refrigerant flow switching device 6 from the second heat source side refrigerant pipe 22 to the third heat source side refrigerant pipe 23, and the tenth heat source side refrigerant.
  • the pipe 30 communicates with the eleventh heat source side refrigerant pipe 31 so that the refrigerant flows.
  • the control device 90 causes the refrigerant flow path inside the second refrigerant flow switching device 7 to communicate so that the refrigerant flows from the fifth heat source side refrigerant pipe 25 to the sixth heat source side refrigerant pipe 26.
  • control device 90 causes the refrigerant flow path inside the second refrigerant flow switching device 7 to which the termination member 7a is connected to communicate with the twelfth heat source side refrigerant pipe 32, and the twelfth heat source side refrigerant pipe 32.
  • the refrigerant is prevented from flowing backward in the direction opposite to the inlet direction of the accumulator 18.
  • the controller 90 connects the refrigerant flow path of the flow path switching valve 55 provided in the seventh heat source side refrigerant pipe 27 from the seventh heat source side refrigerant pipe 27 on the fourth header main pipe 88 side.
  • the refrigerant is communicated with the seventh heat source side refrigerant pipe 27 on the 43 side so that the refrigerant flows.
  • control device 90 performs control to close the electromagnetic valve 63 and block the flow of high-pressure liquid refrigerant from the fourth heat source side branch refrigerant pipe 61 to the receiver 60. Further, the control device 90 opens the flow rate adjustment valve 67 to a predetermined opening degree (for example, when the fully open state opening degree of the flow rate adjustment valve 67 is 1 and the opening degree of the closed state is 0, the opening degree is about 1/8. And the refrigerant stored in the storage 60 a of the receiver 60 passes through the fifth heat source side branch refrigerant pipe 65 and the twelfth heat source side refrigerant pipe 32 due to the pressure difference generated by the flow rate adjustment valve 67. , Control to flow to the accumulator 18.
  • the cooling load is high and the amount of refrigerant used in the refrigeration cycle circuit is increased. Control is performed to return the refrigerant stored in the receiver 60 to the refrigeration cycle circuit.
  • the control device 90 calculates the saturation temperature (evaporation temperature) in the load-side heat exchanger 16 from the refrigerant suction pressure detected by the second pressure sensor 71.
  • the control device 90 subtracts the refrigerant temperature detected by the fourth temperature sensor 76 from the calculated evaporation temperature, calculates the degree of superheat in the refrigeration cycle circuit of the air conditioner 1, and the degree of superheat is a predetermined temperature range (for example, 5 ° C.), the opening degree of the load side decompression device 14 is controlled. Further, the control device 90 controls the operation frequency of the compressor 2 so that the evaporation temperature becomes the target temperature.
  • the target value of the evaporation temperature may be a fixed value (for example, ⁇ 30 ° C.), or an indoor temperature sensor (not shown) is arranged in the indoor space 700 of FIG. 1, and the temperature detected by the indoor temperature sensor and the user
  • the control device 90 may be configured to change the target temperature by calculating the maximum value of the set temperature difference set by the control device 90.
  • the “second cooling operation mode” means that the outside air temperature is less than the lower limit (for example, less than 25 ° C.) of the standard temperature range of the outside air temperature in the first cooling operation mode, and the indoor unit In the case where 200 operating capacity is less than the lower limit value of the standard operating capacity range (for example, operating capacity less than 50% of the total operating capacity) (in the cooling intermediate load condition), the first embodiment is used. The cooling operation performed with the air conditioning apparatus 1 which concerns is said.
  • FIG. 5 is a schematic refrigerant circuit diagram showing a refrigerant flow in the second cooling operation mode of the air-conditioning apparatus 1 according to Embodiment 1.
  • the flow direction of the refrigerant is indicated by solid arrows.
  • the air conditioner 1 is discharged from the compressor 2, passes through the oil separator 4, and the high-temperature high-pressure gas refrigerant flowing into the second heat source side refrigerant pipe 22 is the first Only the region A of the heat source side heat exchanger 8 passes through the refrigerant flow switching device 6, the third heat source side refrigerant pipe 23, the first header main pipe 81, and the plurality of first header branch pipes 82. Configured to flow into. That is, in the second cooling operation mode, the refrigerant flow inside the second refrigerant flow switching device 7 that communicates with the fifth heat source side refrigerant pipe 25 branched from the branch portion 22a of the second heat source side refrigerant pipe 22.
  • control processing of the control device 90 of the air-conditioning apparatus 1 according to Embodiment 1 in the second cooling operation mode will be described.
  • the control device 90 changes the refrigerant flow path in the first refrigerant flow switching device 6 from the second heat source side refrigerant pipe 22 to the third heat source side refrigerant pipe 23.
  • the refrigerant flows and communicates so that the refrigerant flows from the tenth heat source side refrigerant pipe 30 to the eleventh heat source side refrigerant pipe 31.
  • the control device 90 causes the refrigerant flow path inside the second refrigerant flow switching device 7 to which the termination member 7a is connected to communicate with the fifth heat source side refrigerant pipe 25 so that the high temperature and high pressure Control is performed so that the gas refrigerant does not flow into the region B of the heat source side heat exchanger 8.
  • control device 90 moves the refrigerant flow path of the flow path switching valve 55 provided in the seventh heat source side refrigerant pipe 27 from the seventh heat source side refrigerant pipe 27 to the third header main pipe 88 side.
  • the heat source side branch refrigerant pipe 57 is communicated so that the refrigerant flows.
  • the refrigerant that stays (sleeps) in the region B of the heat source side heat exchanger 8 is changed to the second heat source side branch refrigerant pipe 53, the third heat source side branch refrigerant pipe 57, And it can return to the accumulator 18 via the 12th heat source side refrigerant
  • the second cooling operation mode it is possible to prevent an increase in high pressure due to the refrigerant staying in the region B of the heat source side heat exchanger 8 (high stopping), and the compressor is reduced by reducing the high pressure. Therefore, the energy consumption of the air conditioner 1 can be reduced.
  • control of the operation frequency of the compressor 2 and the control of the opening degree of the load side pressure reducing device 14 in the control device 90 are the same as the control processing in the first cooling operation mode.
  • FIG. 6 is a flowchart illustrating an example of a control process in the second cooling operation mode in the control device 90 of the air-conditioning apparatus 1 according to Embodiment 1. It is assumed that the cooling operation in the first cooling operation mode is performed in the air conditioner 1 at the start of control processing of the electromagnetic valve 63 and the flow rate adjustment valve 67.
  • step S11 whether or not the outside air temperature T detected by the first temperature sensor 73 is less than the lower limit value T0 of the standard temperature range of the outside air temperature, or the operating capacity V of the indoor unit 200 is standard. It is determined in control device 90 whether or not the lower limit value V0 of the range of the correct operating capacity.
  • the lower limit value T0 of the standard temperature range of the outside air temperature is set to 25 ° C.
  • the lower limit value V0 of the standard operating capacity range is set to 50% of the total operating capacity.
  • the operation in the first cooling operation mode is continued, The determination process is performed regularly (for example, once an hour).
  • the outside temperature T detected by the first temperature sensor 73 is less than the lower limit value T0 of the standard temperature range of the outside temperature, or the operating capacity V of the indoor unit 200 is the lower limit of the standard operating capacity range.
  • the control device 90 opens the electromagnetic valve 63 and opens the flow rate adjustment valve 67 at a predetermined opening.
  • the predetermined opening is an opening at which the amount of refrigerant flowing out from the receiver 60 is smaller than the amount of refrigerant flowing into the receiver 60.
  • the refrigerant flows out from the outflow pipe 60c, the refrigerant is stored in the storage 60a of the receiver 60. The amount can be prevented from decreasing.
  • the opening degree of the flow rate adjusting valve 67 can be set to about 1/8 when the opening degree of the flow rate adjusting valve 67 is 1 and the opening degree of the closed state is 0.
  • the refrigerant temperature detected by the second temperature sensor 74 is subtracted from the saturation temperature (condensation temperature) calculated from the pressure detected by the first pressure sensor 70, thereby causing an excess in the heat source side heat exchanger 8.
  • the degree of cooling ⁇ T is calculated, and the opening degree of the flow rate adjusting valve 67 is controlled so that the degree of supercooling ⁇ T becomes a predetermined temperature width ⁇ T0 (for example, 3 ° C.).
  • step S ⁇ b> 12 the refrigerant can be stored in the storage 60 a of the receiver 60 by the dead weight of the refrigerant by opening the electromagnetic valve 63 and the pressure difference generated in the flow rate adjustment valve 67 by opening the flow rate adjustment valve 67.
  • step S13 the control device 90 subtracts the refrigerant temperature detected by the second temperature sensor 74 from the saturation temperature (condensation temperature) calculated from the pressure detected by the first pressure sensor 70.
  • the degree of supercooling ⁇ T in the heat source side heat exchanger 8 is calculated.
  • the control device 90 determines whether or not the degree of supercooling ⁇ T in the heat source side heat exchanger 8 is less than a predetermined temperature range ⁇ T0 (for example, 3 ° C.). That is, the control device 90 determines how much the refrigerant in the region A of the heat source side heat exchanger 8 becomes liquid refrigerant and exists in the refrigerant circuit as a surplus, based on the degree of supercooling ⁇ T in the heat source side heat exchanger 8. To do.
  • a predetermined temperature range ⁇ T0 for example, 3 ° C.
  • the predetermined temperature range ⁇ T0 may not be a fixed value.
  • the predetermined temperature range ⁇ T0 may be decreased as the value of the outside air temperature T detected by the first temperature sensor 73 decreases. Further, the predetermined temperature range ⁇ T0 may be decreased as the operating capacity of the indoor unit 200 decreases.
  • step S15 whether or not the outside air temperature T detected by the first temperature sensor 73 is less than the lower limit value T0 of the standard temperature range of the outside air temperature, or the operating capacity V of the indoor unit 200 is standard. It is determined in the control device 90 whether or not the lower limit value V0 of the operating capacity range.
  • the outside temperature T detected by the first temperature sensor 73 is less than the lower limit value T0 of the standard temperature range of the outside temperature, or the operating capacity V of the indoor unit 200 is the lower limit of the standard operating capacity range.
  • the control device 90 performs the determination process in step S13 again.
  • the outside temperature T detected by the first temperature sensor 73 is not less than the lower limit value T0 of the standard temperature range of the outside temperature, or the operating capacity V of the indoor unit 200 is the lower limit of the standard operating capacity range. If it is determined that the value is equal to or greater than V0, in step S17, the control device 90 closes the electromagnetic valve 63, opens the flow rate adjustment valve 67 at a predetermined opening degree, and the cooling operation is performed in the first cooling mode. Thus, the control process ends.
  • step S13 When it is determined in step S13 that the degree of supercooling ⁇ T is less than the predetermined temperature range ⁇ T0, the controller 90 closes the electromagnetic valve 63, closes the flow rate adjustment valve 67, and closes the receiver 60 in step S14.
  • the refrigerant is confined in the storage 60a.
  • the amount of refrigerant flowing through the area A of the heat source side heat exchanger 8 is an appropriate amount.
  • step S16 whether or not the outside air temperature T detected by the first temperature sensor 73 is less than the lower limit value T0 of the standard temperature range of the outside air temperature, or the operating capacity V of the indoor unit 200 is standard. It is determined in the control device 90 whether or not the lower limit value V0 of the operating capacity range.
  • the outside temperature T detected by the first temperature sensor 73 is less than the lower limit value T0 of the standard temperature range of the outside temperature, or the operating capacity V of the indoor unit 200 is the lower limit of the standard operating capacity range.
  • the control device 90 closes the electromagnetic valve 63 and maintains the flow rate adjustment valve 67, and the determination process of step S16 is performed again.
  • the outside temperature T detected by the first temperature sensor 73 is not less than the lower limit value T0 of the standard temperature range of the outside temperature, or the operating capacity V of the indoor unit 200 is the lower limit of the standard operating capacity range. If it is determined that the value is equal to or greater than V0, in step S17, the control device 90 closes the electromagnetic valve 63, opens the flow rate adjustment valve 67 at a predetermined opening degree, and the cooling operation is performed in the first cooling mode. Thus, the control process ends.
  • the air conditioner 1 includes a compressor 2 that compresses a refrigerant, and heat source side heat that is divided into a plurality of regions (for example, a region A and a region B) that perform heat exchange between the refrigerant and outside air.
  • Exchanger 8 a refrigerant flow switching device (first refrigerant flow switching) that changes the flow direction of refrigerant passing through the heat source side heat exchanger 8 divided into a plurality of regions (for example, region A and region B).
  • Device 6 second refrigerant flow switching device 7
  • a decompression device first heat source side decompression device 12, load side decompression device 14 for decompressing the refrigerant, and heat exchange between the refrigerant and the indoor space 700.
  • coolant piping 65) and the heat source side heat exchanger 8 and the load side heat exchanger 16 is provided.
  • a first valve for example, an electromagnetic valve 63
  • a refrigerant pipe fourth heat source side branch refrigerant pipe 61
  • a second valve for example, a flow rate adjusting valve 67
  • a refrigerant pipe for example, a refrigerant pipe 65
  • the cooling load of the heat exchanger 16 is smaller than a predetermined value, only the lower heat source side heat exchanger (part of the region A of the heat source side heat exchanger 8) of the heat source side heat exchanger 8 is used.
  • the receiver 60 includes a control device 90 that performs control for storing the refrigerant.
  • the control device 90 determines that the cooling load is small from the outside air temperature and the capacity of the indoor unit 200, and also determines that the amount of refrigerant in the heat source side heat exchanger 8 is large.
  • the refrigerant can be stored in the storage 60 a of the receiver 60 by opening the electromagnetic valve 63 and setting the flow rate adjustment valve 67 to a predetermined opening degree.
  • the air conditioner 1 of the first embodiment by storing the refrigerant in the storage 60a of the receiver 60, the refrigerant amount of the heat source side heat exchanger 8 is made appropriate, the high pressure is reduced, and the operating load of the compressor 2 ( Input) can be reduced.
  • the air conditioner 1 can be operated efficiently, and the air conditioner 1 that can reduce the energy consumption of the air conditioner 1 can be provided. Further, when the cooling load of the load side heat exchanger 16 is smaller than a predetermined value, the volume of the heat source side heat exchanger 8 through which the refrigerant flows can be reduced by using only the area A of the heat source side heat exchanger 8. Can be reduced.
  • the control device 90 sets the first valve (for example, the electromagnetic valve 63) when the cooling load of the load-side heat exchanger 16 is smaller than a predetermined value.
  • the second valve for example, the flow rate adjusting valve 67
  • the liquid refrigerant flowing from the heat source side heat exchanger 8 can be stored in the receiver 60 due to the weight of the refrigerant and the pressure difference between the receiver 60 and the suction side of the compressor 2.
  • FIG. 2 In the second embodiment of the present invention, a third cooling operation mode that is a modification of the cooling operation mode in the air-conditioning apparatus 1 according to the above-described first embodiment will be described.
  • the configuration of the air conditioner 1 and the operation of the refrigeration cycle circuit according to Embodiment 2 of the present invention are the same as those in the first cooling operation mode of Embodiment 1 described above.
  • the outside air temperature exceeds the upper limit (for example, 43 ° C.) of the standard temperature range of the outside air temperature in the first cooling operation mode, and the high pressure is standard.
  • a control process of the control device 90 of the air-conditioning apparatus 1 according to Embodiment 2 in the third cooling operation mode will be described.
  • the control device 90 the first refrigerant flow switching device 6, the second refrigerant flow switching device 7, the flow switching valve 55, the operating frequency of the compressor 2, and the opening degree of the load side pressure reducing device 14 are set.
  • the control is the same as the control process in the first cooling operation mode.
  • FIG. 7 is a flowchart illustrating an example of a control process in the third cooling operation mode in the control device 90 of the air-conditioning apparatus 1 according to Embodiment 2. It is assumed that the cooling operation in the first cooling operation mode is performed in the air conditioner 1 when the control process by the control device 90 is started.
  • step S21 whether or not the outside air temperature T detected by the first temperature sensor 73 exceeds the upper limit value T1 of the standard temperature range of the outside air temperature, and the high pressure detected by the first pressure sensor 70.
  • the controller 90 determines whether or not the pressure P exceeds the upper limit value P1 of the standard high pressure range.
  • the upper limit value T1 of the standard temperature range of the outside air temperature is set to 43 ° C.
  • the upper limit value P1 of the standard high pressure range is set to 36 kg / cm 2 .
  • the outside temperature T detected by the first temperature sensor 73 exceeds the upper limit value T1 of the standard temperature range of the outside temperature, and the high pressure P detected by the first pressure sensor 70 is the standard high pressure. If it is determined that the upper limit value P1 of the pressure range is exceeded, in step S22, the control device 90 opens the electromagnetic valve 63 and opens the flow rate adjustment valve 67 at a predetermined opening.
  • the predetermined opening is an opening at which the amount of refrigerant flowing out from the receiver 60 is smaller than the amount of refrigerant flowing into the receiver 60.
  • the refrigerant flows out from the outflow pipe 60c, the refrigerant is stored in the storage 60a of the receiver 60. Prevent the amount from decreasing.
  • the opening degree of the flow rate adjusting valve 67 can be set to about 1/8 when the opening degree of the flow rate adjusting valve 67 is 1 and the opening degree of the closed state is 0. Further, the opening degree of the flow rate adjustment valve 67 can be adjusted so that the value of the high pressure detected by the first pressure sensor 70 is reduced to the upper limit value P1 or less.
  • the refrigerant can be stored in the storage 60 a of the receiver 60 by the dead weight of the refrigerant by opening the electromagnetic valve 63 and the pressure difference generated in the flow rate adjustment valve 67 by opening the flow rate adjustment valve 67.
  • step S23 the controller 90 determines whether or not the high pressure P detected by the first pressure sensor 70 is equal to or lower than the upper limit value P1 of the standard high pressure range. When it is determined that the high pressure P detected by the first pressure sensor 70 exceeds the upper limit value P1 of the standard high pressure range, the control device 90 periodically performs the determination process in step S23.
  • step S24 the control device 90 closes the electromagnetic valve 63.
  • the flow regulating valve 67 is closed and the refrigerant is confined in the storage 60 a of the receiver 60.
  • step S25 the controller 90 determines whether or not the high pressure P detected by the first pressure sensor 70 is equal to or lower than the upper limit value P1 of the standard high pressure range.
  • the control device 90 performs the control process of step S22 and sets the electromagnetic valve 63.
  • the flow control valve 67 is opened at a predetermined opening.
  • step S25 determines whether or not the outside temperature T detected by the first temperature sensor 73 exceeds the upper limit value T1 of the standard temperature range of the outside temperature in step S26. Is determined by the control device 90. When it is determined that the outside air temperature T detected by the first temperature sensor 73 exceeds the upper limit value T1 of the standard temperature range of the outside air temperature, the control device 90 closes the electromagnetic valve 63 and the flow rate adjusting valve. 67 is kept closed, and the determination process in step S25 is periodically performed.
  • step S27 the control device 90 causes the electromagnetic valve 63 to Is closed, the flow rate adjustment valve 67 is opened at a predetermined opening, the cooling operation is in the first cooling mode, and the control process is terminated.
  • the control device 90 in the air-conditioning apparatus 1 has the cooling load on the load side heat exchanger 16 and the receiver 60 receives the air temperature when the outside air temperature is higher than a predetermined value. It controls to store the refrigerant.
  • the control device 90 determines that suppression of the high pressure is necessary based on the information on the outside air temperature by the first temperature sensor 73 and the information on the high pressure by the first pressure sensor 70.
  • the refrigerant can be stored in the storage 60 a of the receiver 60 by opening the electromagnetic valve 63 and setting the flow rate adjustment valve 67 to a predetermined opening.
  • the amount of refrigerant in the heat source side heat exchanger 8 is reduced, an increase in high pressure is suppressed, and air conditioning is caused by a high pressure abnormality (for example, a pressure of 38.5 kg / cm 2 or more).
  • the apparatus 1 can be prevented from abnormally stopping.
  • FIG. 8 is a schematic refrigerant circuit diagram illustrating a refrigerant flow in the heating operation mode of the air-conditioning apparatus 1 according to Embodiment 3.
  • the flow direction of the refrigerant is indicated by solid line arrows.
  • Compressor 2 sucks and compresses low-temperature and low-pressure refrigerant and discharges high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows from the outdoor unit 100 into the indoor unit 200 through the first refrigerant flow switching device 6.
  • the refrigerant flowing into the indoor unit 200 is condensed and liquefied while dissipating heat to the indoor space 700, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is decompressed and expanded when passing through the load-side decompression device 14, and becomes a low-temperature and low-pressure (gas-liquid) two-phase refrigerant.
  • the two-phase refrigerant flows from the indoor unit 200 to the outdoor unit 100.
  • the refrigerant that has flowed into the outdoor unit 100 flows into the heat source side heat exchanger 8 (including both the region A and the region B) that functions as an evaporator.
  • the refrigerant that has flowed into the heat source side heat exchanger 8 absorbs heat from the outside air in the heat source side heat exchanger 8, and becomes a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant that has flowed out of the heat source side heat exchanger 8 is again sucked into the compressor 2 via the first refrigerant flow switching device 6, the second refrigerant flow switching device 7, and the accumulator 18. .
  • control processing of the control device 90 of the air-conditioning apparatus 1 according to Embodiment 3 in the heating operation mode will be described.
  • the control device 90 causes the refrigerant to flow through the refrigerant flow path inside the first refrigerant flow switching device 6 from the second heat source side refrigerant pipe 22 to the tenth heat source side refrigerant pipe 30, and thereby the third heat source side refrigerant.
  • the pipe 23 is connected to the eleventh heat source side refrigerant pipe 31 so that the refrigerant flows.
  • the control device 90 causes the refrigerant flow path inside the second refrigerant flow switching device 7 to communicate so that the refrigerant flows from the sixth heat source side refrigerant pipe 26 to the twelfth heat source side refrigerant pipe 32.
  • the controller 90 connects the refrigerant flow path of the flow path switching valve 55 provided in the seventh heat source side refrigerant pipe 27 from the seventh heat source side refrigerant pipe 27 on the fourth header main pipe 88 side.
  • the refrigerant is communicated with the seventh heat source side refrigerant pipe 27 on the 43 side so that the refrigerant flows.
  • the control device 90 causes the refrigerant flow path inside the second refrigerant flow switching device 7 to which the termination member 7a is connected to communicate with the fifth heat source side refrigerant pipe 25 to thereby provide a fifth heat source side refrigerant pipe 25. The refrigerant flow is blocked.
  • control device 90 opens the electromagnetic valve 63 and fully opens the flow rate adjustment valve 67, thereby passing the inflow pipe 60 b of the receiver 60, the storage 60 a of the receiver 60, and the outflow pipe 60 c of the receiver 60 to the accumulator 18.
  • a refrigerant flow path for returning the refrigerant is formed. That is, the control device 90 opens the electromagnetic valve 63 and fully opens the flow rate adjustment valve 67, so that a part of the refrigerant that leaves the load side heat exchanger 16 and goes to the heat source side heat exchanger 8 is heated to the heat source side heat. Control is performed to return the refrigerant to the accumulator 18 without going through the exchanger 8.
  • the control device 90 calculates a saturation temperature (condensation temperature) in the load-side heat exchanger 16 from the pressure detected by the first pressure sensor 70.
  • the controller 90 subtracts the refrigerant temperature detected by the third temperature sensor 75 from the calculated condensation temperature, calculates the degree of supercooling in the refrigeration cycle circuit of the air conditioner 1, and the degree of supercooling is a predetermined temperature range. (For example, 5 degreeC)
  • the opening degree of the load side decompression device 14 is controlled. Further, the control device 90 controls the operating frequency of the compressor 2 so that the condensation temperature becomes the target temperature.
  • the target value of the condensation temperature may be a fixed value (for example, 30 ° C.), or an indoor temperature sensor (not shown) is arranged in the indoor space 700 of FIG.
  • the controller 90 may be configured to change the target temperature by calculating the maximum value of the set temperature difference to be set by the controller 90.
  • the 2nd heat-source side decompression device 13 may be open
  • the control device 90 is a part of the refrigerant that has come out of the load-side heat exchanger 16. Is returned to the compressor 2 via the receiver 60 without passing through the heat source side heat exchanger 8.
  • the pressure loss due to passing through the heat source side heat exchanger 8 can be reduced, so that the low pressure reduction can be suppressed, frost formation due to the low pressure reduction and the circulation amount discharged from the compressor 2 can be suppressed. Reduction can be suppressed.
  • Embodiment 4 FIG.
  • the refrigerant recovery mode when the refrigerant leaks into the indoor space 700 in the air-conditioning apparatus 1 according to the first embodiment described above will be described.
  • the configuration of the air-conditioning apparatus 1 and the operation of the refrigeration cycle circuit according to Embodiment 4 of the present invention are the same as those in the first cooling operation mode of Embodiment 1 described above.
  • a refrigerant leak signal is transmitted to the control device 90 via the transmission line 98.
  • the control device 90 passes through the first refrigerant flow switching device 6 and the second refrigerant flow switching device 7 of the outdoor unit 100 so that the refrigerant discharged from the compressor 2 flows into the heat source side heat exchanger 8. Switch to the same refrigerant flow path as in the first cooling operation mode.
  • the control device 90 moves the refrigerant flow path of the flow path switching valve 55 provided in the seventh heat source side refrigerant pipe 27 from the seventh heat source side refrigerant pipe 27 on the fourth header main pipe 88 side to the connection member 43.
  • the refrigerant is communicated with the seventh heat source side refrigerant pipe 27 so that the refrigerant flows.
  • the control device 90 opens the electromagnetic valve 63, and the flow rate adjustment valve 67 has a predetermined opening degree (for example, when the opening degree of the flow adjustment valve 67 is 1 and the opening degree of the closed state is 0, 1 / 8). Further, the control device 90 determines the flow rate adjustment valve based on the difference in the refrigerant temperature detected by the second temperature sensor 74 from the saturation temperature (condensation temperature) calculated from the pressure detected by the first pressure sensor 70. The opening degree of 67 can be changed. The first heat source side decompression device 12 is closed. The load side decompression device 14 is fully opened.
  • the compressor 2 sucks low-temperature and low-pressure refrigerant and discharges high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the heat source side heat exchanger 8 via the first refrigerant flow switching device 6 and the second refrigerant flow switching device 7. Since the first heat source side decompression device 12 is closed, the refrigerant is stored in the heat source side heat exchanger 8. Since there is no refrigerant flowing into the indoor unit 200, the refrigerant in the indoor unit 200 is collected by the outdoor unit 100. Further, the refrigerant collected in the outdoor unit 100 is also stored in the storage 60 a of the receiver 60 via the electromagnetic valve 63 and the inflow pipe 60 b of the receiver 60.
  • the control device 90 when the control device 90 detects that the refrigerant is leaking in the indoor space 700, the heat source side heat exchanger 8 and the receiver 60 Both are controlled to store the refrigerant.
  • the control device 90 when the indoor unit control device 95 detects refrigerant leakage from the refrigerant leakage detection sensor 78, the control device 90 supplies the refrigerant to the receiver 60 in addition to the heat source side heat exchanger 8. Can be stored. Therefore, according to the configuration of the fourth embodiment, in the refrigerant recovery mode, it is possible to recover a large amount of refrigerant in the outdoor unit 100 and reduce the refrigerant flowing out into the indoor space 700.
  • the installation position of the control device 90 is not particularly limited.
  • the outdoor unit 100 or the indoor unit 200 may be used.
  • the air conditioning apparatus 1 of the above-described embodiment may include two or more control devices 90.
  • the control device 90 closes the electromagnetic valve 63 in step S17 in the first cooling operation mode, the second cooling operation mode, or step S27 in the third cooling operation mode.
  • the electromagnetic valve 63 may be opened for a certain period.
  • the pressure difference generated by the flow rate adjustment valve 67 increases, so that the refrigerant stored in the storage 60 a of the receiver 60 is transferred to the fifth heat source side branch refrigerant pipe 65 and the twelfth heat source side refrigerant pipe 32. It is possible to increase the flow rate of the refrigerant flowing through the accumulator 18 via.

Abstract

An air conditioner is provided with: a refrigeration cycle circuit for circulating a refrigerant through pipelines connecting a compressor, a heat-source-side heat exchanger that is divided into a plurality of regions for performing heat exchange between the refrigerant and outside air, a refrigerant flow path switching device for changing the direction in which the refrigerant flows through the heat-source-side heat exchanger divided into the plurality of regions, a decompressor, and a load-side heat exchanger; a receiver for storing the refrigerant, the receiver branching from the refrigerant pipeline between the heat-source-side heat exchanger and the load-side heat exchanger, and being provided partway along the refrigerant pipeline linked to the intake side of the compressor; a first valve branching from the refrigerant pipeline between the heat-source-side heat exchanger and the load-side heat exchanger, the first valve being provided to the refrigerant pipeline connected to the flow-in side of the receiver; a second valve connected to the flow-out side of the receiver, the second valve being provided to the refrigerant pipeline linked to the flow-in side of the compressor; and a control device for using only a part of the heat-source-side heat exchanger when the air-cooling load of the load-side heat exchanger is less than a predetermined value, and controlling the storage of refrigerant in the receiver.

Description

空気調和装置Air conditioner
 本発明は、ビル用マルチエアコン等に用いられる空気調和装置に関する。 The present invention relates to an air conditioner used for a building multi air conditioner or the like.
 従来のビル用マルチエアコン等に用いられる空気調和装置としては、例えば、余剰冷媒貯留装置としてレシーバを備え、室内機の運転容量に応じて冷媒回路を循環する冷媒の量を調整することが可能なものが知られている(例えば、特許文献1)。 As an air conditioner used in a conventional multi air conditioner for buildings, for example, a receiver is provided as an excess refrigerant storage device, and the amount of refrigerant circulating in the refrigerant circuit can be adjusted according to the operating capacity of the indoor unit. The thing is known (for example, patent document 1).
国際公開第2012/120868号International Publication No. 2012/120868
 しかしながら、特許文献1の空気調和装置では、例えば、外気が25℃以下の温度環境下で冷房運転を行う場合には、冷媒回路を循環する冷媒の量が過剰となり、室外機における圧力が上昇する。したがって、特許文献1の空気調和装置では、冷房運転の温度条件によっては、室外機における圧力の上昇により圧縮機入力が増加するため、空気調和装置の運転効率が低下する可能性がある。 However, in the air conditioner of Patent Document 1, for example, when the cooling operation is performed in a temperature environment where the outside air is 25 ° C. or less, the amount of refrigerant circulating in the refrigerant circuit becomes excessive, and the pressure in the outdoor unit increases. . Therefore, in the air conditioner of Patent Document 1, depending on the temperature condition of the cooling operation, the compressor input increases due to an increase in the pressure in the outdoor unit, which may reduce the operating efficiency of the air conditioner.
 本発明は、上述の課題を解決するためになされたものであり、冷房時の外気の温度条件に応じて圧縮機の入力を適宜調整し、効率のよい運転が可能な空気調和装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides an air conditioner capable of efficiently operating by appropriately adjusting the input of the compressor according to the temperature condition of the outside air during cooling. For the purpose.
 本発明に係る空気調和装置は、冷媒を圧縮する圧縮機、前記冷媒と外気との間で熱交換を行う複数の領域に分割された熱源側熱交換器、各々の前記複数の領域に分割された熱源側熱交換器を通る前記冷媒の流れ方向を変更する冷媒流路切替装置、前記冷媒を減圧する減圧装置、及び前記冷媒と室内空間との間で熱交換を行う負荷側熱交換器を配管接続して冷媒を循環させる冷凍サイクル回路と、前記熱源側熱交換器と前記負荷側熱交換器との間の冷媒配管から分岐し、前記圧縮機の吸入側に繋がる冷媒配管の途中に設けられた、前記冷媒を貯蔵するレシーバと、前記熱源側熱交換器と前記負荷側熱交換器との間の冷媒配管から分岐し、前記レシーバの流入口側に接続される冷媒配管に設けられた第1の弁と、前記レシーバの流出口側に接続され、前記圧縮機の吸入側に繋がる冷媒配管に設けられた第2の弁と、前記負荷側熱交換器の冷房負荷が予め定めた値より小さいとき、前記複数の領域に分割された熱源側熱交換器のうちの一部の熱源側熱交換器のみを使用し、前記レシーバに冷媒を貯蔵する制御を行う制御装置とを備える。 An air conditioner according to the present invention is divided into a compressor that compresses a refrigerant, a heat source side heat exchanger that is divided into a plurality of regions that perform heat exchange between the refrigerant and outside air, and each of the plurality of regions. A refrigerant flow switching device that changes the flow direction of the refrigerant passing through the heat source side heat exchanger, a decompression device that depressurizes the refrigerant, and a load side heat exchanger that exchanges heat between the refrigerant and the indoor space. A refrigeration cycle circuit that circulates refrigerant by connecting a pipe, and is provided in the middle of the refrigerant pipe that branches from the refrigerant pipe between the heat source side heat exchanger and the load side heat exchanger and leads to the suction side of the compressor The refrigerant is stored in the refrigerant pipe between the heat source side heat exchanger and the load side heat exchanger, and is connected to the inlet side of the receiver. Connected to the first valve and the outlet side of the receiver When the cooling load of the second valve provided on the refrigerant pipe connected to the suction side of the compressor and the load side heat exchanger is smaller than a predetermined value, the heat source side divided into the plurality of regions A control device that uses only some of the heat source side heat exchangers of the heat exchanger and performs control to store the refrigerant in the receiver.
 本発明によれば、冷房時の外気の温度条件に応じて圧縮機の入力を適宜調整するようになっているので、効率のよい運転が実現できる。したがって、本発明によれば、エネルギー消費量を低減可能な空気調和装置を提供することができる。 According to the present invention, since the input of the compressor is appropriately adjusted according to the temperature condition of the outside air during cooling, an efficient operation can be realized. Therefore, according to this invention, the air conditioning apparatus which can reduce energy consumption can be provided.
本発明の実施の形態1に係る空気調和装置1の設置例を示す概略図である。It is the schematic which shows the example of installation of the air conditioning apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置1の一例を示す概略的な冷媒回路図である。It is a schematic refrigerant circuit diagram which shows an example of the air conditioning apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置1のレシーバ60の構成及び配置を簡略的に示す概略図である。It is the schematic which shows simply the structure and arrangement | positioning of the receiver 60 of the air conditioning apparatus 1 which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置1の第1の冷房運転モード(通常の冷房運転)における、冷媒の流れの一例を示す概略的な冷媒回路図である。FIG. 3 is a schematic refrigerant circuit diagram illustrating an example of a refrigerant flow in the first cooling operation mode (normal cooling operation) of the air-conditioning apparatus 1 according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る空気調和装置1の第2の冷房運転モードにおける、冷媒の流れを示した概略的な冷媒回路図である。It is the schematic refrigerant circuit figure which showed the flow of the refrigerant | coolant in the 2nd air_conditionaing | cooling operation mode of the air conditioning apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置1の制御装置90における、第2の冷房運転モードでの制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control processing in 2nd air_conditionaing | cooling operation mode in the control apparatus 90 of the air conditioning apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和装置1の制御装置90における、第3の冷房運転モードでの制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control processing in the 3rd air_conditionaing | cooling operation mode in the control apparatus 90 of the air conditioning apparatus 1 which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る空気調和装置1の暖房運転モードにおける、冷媒の流れを示した概略的な冷媒回路図である。It is the schematic refrigerant circuit figure which showed the flow of the refrigerant | coolant in the heating operation mode of the air conditioning apparatus 1 which concerns on Embodiment 3 of this invention.
実施の形態1.
 本発明の実施の形態1に係る空気調和装置1について説明する。図1は、本実施の形態1に係る空気調和装置1の設置例を示す概略図である。なお、図1を含む以下の図面では各構成部材の寸法の関係及び形状が、実際のものとは異なる場合がある。また、図1を含む以下の図面では、同一の又は類似する部材又は部分には、同一の符号を付すか、又は符号を付すことを省略している。
Embodiment 1 FIG.
An air conditioner 1 according to Embodiment 1 of the present invention will be described. FIG. 1 is a schematic diagram illustrating an installation example of the air-conditioning apparatus 1 according to the first embodiment. In the following drawings including FIG. 1, the dimensional relationship and shape of each component may be different from the actual one. Further, in the following drawings including FIG. 1, the same or similar members or parts are denoted by the same reference numerals, or the reference numerals are omitted.
 図1に示すように、空気調和装置1は、室外ユニット100(例えば、熱源機である室外機)と、室外ユニット100に対し並列に配置された複数の室内ユニット200(例えば、室内機)とを備える。本実施の形態1に係る空気調和装置1においては、室外ユニット100と複数の室内ユニット200とは、それぞれ別個の筐体として構成されている。室外ユニット100と室内ユニット200との間は、第1の連絡配管300及び第2の連絡配管400で接続されている。なお、図1の空気調和装置1では、室内ユニット200を2台接続した構成としているが、室内ユニット200を1台接続した構成としてもよいし、3台以上接続した構成としてもよい。また、第1の連絡配管300及び第2の連絡配管400は、既設配管である現地配管であってもよい。 As shown in FIG. 1, the air conditioner 1 includes an outdoor unit 100 (for example, an outdoor unit that is a heat source unit), and a plurality of indoor units 200 (for example, indoor units) arranged in parallel to the outdoor unit 100. Is provided. In the air conditioning apparatus 1 according to Embodiment 1, the outdoor unit 100 and the plurality of indoor units 200 are configured as separate housings. The outdoor unit 100 and the indoor unit 200 are connected by a first communication pipe 300 and a second communication pipe 400. In addition, in the air conditioning apparatus 1 of FIG. 1, although it is set as the structure which connected the two indoor units 200, it is good also as a structure which connected the one indoor unit 200, and good also as a structure connected three or more. Further, the first connection pipe 300 and the second connection pipe 400 may be local pipes that are existing pipes.
 室外ユニット100(熱源側ユニット)は、通常、室外空間600(例えば、ビル等の建物500の屋上等)に配置され、第1の連絡配管300又は第2の連絡配管400を経由して室内ユニット200に冷熱又は温熱を供給するものである。室内ユニット200(負荷側ユニット)は、室内空間700(例えば、建物500の居室等)に冷房用又は暖房用の空気を供給するものであり、例えば、図1に示すような天井カセット型の室内機として構成できる。また、図1に示すように、室外ユニット100は、室内空間700の床下配管800に温熱を供給して、室内空間700用の床暖房を提供するように構成できる。 The outdoor unit 100 (heat source side unit) is usually disposed in an outdoor space 600 (for example, the rooftop of a building 500 such as a building), and the indoor unit passes through the first communication pipe 300 or the second communication pipe 400. 200 is supplied with cold or warm heat. The indoor unit 200 (load-side unit) supplies air for cooling or heating to an indoor space 700 (for example, a living room of the building 500). For example, the indoor unit 200 is a ceiling cassette type room as shown in FIG. Can be configured as a machine. Further, as shown in FIG. 1, the outdoor unit 100 can be configured to supply warm heat to the underfloor pipe 800 in the indoor space 700 to provide floor heating for the indoor space 700.
 図2は、本実施の形態1に係る空気調和装置1の一例を示す概略的な冷媒回路図である。図2では1台の室外ユニット100と1台の室内ユニット200が第1の連絡配管300及び第2の連絡配管400で接続されている。 FIG. 2 is a schematic refrigerant circuit diagram illustrating an example of the air-conditioning apparatus 1 according to the first embodiment. In FIG. 2, one outdoor unit 100 and one indoor unit 200 are connected by a first connecting pipe 300 and a second connecting pipe 400.
 本実施の形態1の空気調和装置1は、圧縮機2と、油分離器4と、第1の冷媒流路切替装置6と、第2の冷媒流路切替装置7と、熱源側熱交換器8と、過冷却熱交換器10と、第1の熱源側減圧装置12と、負荷側減圧装置14と、負荷側熱交換器16と、アキュムレータ18とを冷媒配管を介して接続し、冷媒を循環させる冷凍サイクル回路を備えている。圧縮機2、油分離器4、第1の冷媒流路切替装置6、第2の冷媒流路切替装置7、熱源側熱交換器8、過冷却熱交換器10、第1の熱源側減圧装置12、及びアキュムレータ18は、室外ユニット100に収容されている。負荷側減圧装置14及び負荷側熱交換器16は、室内ユニット200に収容されている。なお、油分離器4、過冷却熱交換器10、及びアキュムレータ18は、必須の構成ではなく、空気調和装置1の用途によっては備えていなくてもよい。また、図2では、各ユニットの搭載例を示しているが、必ずしも図2に示すように各要素が搭載されていなくてもよい。 The air conditioner 1 of the first embodiment includes a compressor 2, an oil separator 4, a first refrigerant flow switching device 6, a second refrigerant flow switching device 7, and a heat source side heat exchanger. 8, the supercooling heat exchanger 10, the first heat source side pressure reducing device 12, the load side pressure reducing device 14, the load side heat exchanger 16, and the accumulator 18 are connected via a refrigerant pipe, A refrigeration cycle circuit for circulation is provided. Compressor 2, oil separator 4, first refrigerant flow switching device 6, second refrigerant flow switching device 7, heat source side heat exchanger 8, supercooling heat exchanger 10, first heat source side pressure reducing device 12 and the accumulator 18 are accommodated in the outdoor unit 100. The load-side decompressor 14 and the load-side heat exchanger 16 are accommodated in the indoor unit 200. The oil separator 4, the supercooling heat exchanger 10, and the accumulator 18 are not essential components and may not be provided depending on the application of the air conditioner 1. Further, FIG. 2 shows an example of mounting each unit, but each element does not necessarily have to be mounted as shown in FIG.
 圧縮機2は、吸入した低圧の冷媒を圧縮し、高圧の冷媒として吐出する。圧縮機2としては、例えば、インバータにより容量制御(周波数制御)が可能なスクロール圧縮機又はロータリ圧縮機が用いられる。 Compressor 2 compresses the sucked low-pressure refrigerant and discharges it as a high-pressure refrigerant. As the compressor 2, for example, a scroll compressor or a rotary compressor capable of capacity control (frequency control) by an inverter is used.
 油分離器4は、圧縮機2から吐出された高圧冷媒に含まれる冷凍機油を分離除去して、高圧冷媒に含まれる冷凍機油の量を低減するものである。分離除去された冷凍機油は、返油管(図示せず)を経由して圧縮機2に戻される。 The oil separator 4 separates and removes refrigeration oil contained in the high-pressure refrigerant discharged from the compressor 2 to reduce the amount of refrigeration oil contained in the high-pressure refrigerant. The separated and removed refrigeration oil is returned to the compressor 2 via an oil return pipe (not shown).
 第1の冷媒流路切替装置6は、第1の冷媒流路切替装置6の内部の冷媒流路を切り替えるように構成された装置である。第1の冷媒流路切替装置6は、冷房運転時に室外ユニット100から第1の連絡配管300を経由して室内ユニット200に冷熱を供給するように制御される。また、第1の冷媒流路切替装置6は、暖房運転時に室外ユニット100から第2の連絡配管400を経由して室内ユニット200に温熱を供給するように制御される。 The first refrigerant flow switching device 6 is a device configured to switch the refrigerant flow channel inside the first refrigerant flow switching device 6. The first refrigerant flow switching device 6 is controlled so as to supply cold heat from the outdoor unit 100 to the indoor unit 200 via the first communication pipe 300 during the cooling operation. In addition, the first refrigerant flow switching device 6 is controlled so as to supply heat from the outdoor unit 100 to the indoor unit 200 via the second communication pipe 400 during the heating operation.
 第2の冷媒流路切替装置7は、第1の冷媒流路切替装置6と同様に、第2の冷媒流路切替装置7の内部の冷媒流路を切り替えるように構成された装置である。第2の冷媒流路切替装置7は、冷房運転時に室外ユニット100から第1の連絡配管300を経由して室内ユニット200に冷熱を供給するように制御される。また、第2の冷媒流路切替装置7は、暖房運転時に室外ユニット100から第2の連絡配管400を経由して室内ユニット200に温熱を供給するように制御される。 The second refrigerant flow switching device 7 is a device configured to switch the refrigerant flow path inside the second refrigerant flow switching device 7, similarly to the first refrigerant flow switching device 6. The second refrigerant flow switching device 7 is controlled to supply cold heat from the outdoor unit 100 to the indoor unit 200 via the first communication pipe 300 during the cooling operation. In addition, the second refrigerant flow switching device 7 is controlled so as to supply heat from the outdoor unit 100 to the indoor unit 200 via the second communication pipe 400 during the heating operation.
 第1の冷媒流路切替装置6及び第2の冷媒流路切替装置7としては、例えば四方弁が用いられる。本実施の形態1においては、第2の冷媒流路切替装置7の内部の冷媒流路の1つの末端部には、冷媒流路を遮断するための終端部材7aが接続されている。なお、「冷房運転」とは、負荷側熱交換器16に低温低圧の冷媒を供給する運転のことであり、図1の室内空間700に冷房用の空気を供給する運転のことである。「暖房運転」とは、負荷側熱交換器16に高温高圧の冷媒を供給する運転のことであり、図1の室内空間700に暖房用の空気を供給する運転のことである。また、第1の冷媒流路切替装置6及び第2の冷媒流路切替装置7として、二方弁又は三方弁を用いてもよい。 For example, a four-way valve is used as the first refrigerant flow switching device 6 and the second refrigerant flow switching device 7. In the first embodiment, a terminal member 7a for blocking the refrigerant flow path is connected to one end of the refrigerant flow path inside the second refrigerant flow switching device 7. The “cooling operation” is an operation for supplying a low-temperature and low-pressure refrigerant to the load-side heat exchanger 16, and an operation for supplying air for cooling to the indoor space 700 in FIG. The “heating operation” is an operation for supplying a high-temperature and high-pressure refrigerant to the load-side heat exchanger 16, and an operation for supplying heating air to the indoor space 700 of FIG. Further, as the first refrigerant flow switching device 6 and the second refrigerant flow switching device 7, a two-way valve or a three-way valve may be used.
 熱源側熱交換器8は、冷房運転時において放熱器(凝縮器)として機能し、暖房運転時において蒸発器(冷却器)として機能する熱交換器である。熱源側熱交換器8は、熱源側熱交換器8の内部を流れる冷媒と、熱源側送風ファン(図示せず)によって送風される外気(例えば、図1の室外空間600における室外空気)との熱交換を行うように構成される。熱源側熱交換器8としては、例えば、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器が用いられる。 The heat source side heat exchanger 8 is a heat exchanger that functions as a radiator (condenser) during cooling operation and functions as an evaporator (cooler) during heating operation. The heat source side heat exchanger 8 includes a refrigerant flowing inside the heat source side heat exchanger 8 and outside air (for example, outdoor air in the outdoor space 600 of FIG. 1) blown by a heat source side fan (not shown). It is configured to perform heat exchange. As the heat source side heat exchanger 8, for example, a cross fin type fin-and-tube heat exchanger composed of a heat transfer tube and a plurality of fins is used.
 図2において、熱源側熱交換器8は、領域Aと領域Bとの2つの熱交換領域に分割されている。熱源側熱交換器8の領域Aの伝熱管(図示せず)の一方の末端部は、第1のヘッダ主管81から分岐した複数の第1のヘッダ枝管82に接続されている。また、熱源側熱交換器8の領域Aの伝熱管の他の一方の末端部には、第2のヘッダ主管84から分岐した複数の第2のヘッダ枝管83に接続されている。なお、図2においては、熱源側熱交換器8は、領域Aと領域Bとの2つの熱交換領域に分割される構成としたが、3以上の熱交換領域に分割される構成としてもよい。 2, the heat source side heat exchanger 8 is divided into two heat exchange regions, region A and region B. One end of a heat transfer tube (not shown) in the region A of the heat source side heat exchanger 8 is connected to a plurality of first header branch tubes 82 branched from the first header main tube 81. The other end of the heat transfer tube in the region A of the heat source side heat exchanger 8 is connected to a plurality of second header branch tubes 83 branched from the second header main tube 84. In FIG. 2, the heat source side heat exchanger 8 is configured to be divided into two heat exchange regions, region A and region B, but may be configured to be divided into three or more heat exchange regions. .
 一方、領域Bにある熱源側熱交換器8の伝熱管(図示せず)の一方の末端部は、第3のヘッダ主管85から分岐した複数の第3のヘッダ枝管86に接続されている。また、領域Bにある熱源側熱交換器8の伝熱管の他の一方の末端部には、第4のヘッダ主管88から分岐した複数の第4のヘッダ枝管87に接続されている。 On the other hand, one end of a heat transfer tube (not shown) of the heat source side heat exchanger 8 in the region B is connected to a plurality of third header branch tubes 86 branched from the third header main tube 85. . The other end portion of the heat transfer pipe of the heat source side heat exchanger 8 in the region B is connected to a plurality of fourth header branch pipes 87 branched from the fourth header main pipe 88.
 過冷却熱交換器10は、冷房運転時において、熱源側熱交換器8から流入する高圧冷媒更に冷却させる熱交換器である。過冷却熱交換器10は、例えば内管(図示せず)と、内管の端部から視て同心円状に配置された外管(図示せず)とを有する二重管式の熱交換器にでき、内管を流れる高圧冷媒と、外管を流れる減圧された冷媒との間で熱交換を行うように構成できる。過冷却熱交換器10を二重管式の熱交換器とした場合、暖房運転時は、過冷却熱交換器10は冷凍サイクル回路を構成する冷媒配管の一部として機能する。過冷却熱交換器10を二重管式の熱交換器としたときの冷媒回路の具体的な構成については後述する。なお、過冷却熱交換器10をプレート式熱交換器で構成してもよい。 The supercooling heat exchanger 10 is a heat exchanger that further cools the high-pressure refrigerant flowing from the heat source side heat exchanger 8 during the cooling operation. The supercooling heat exchanger 10 is, for example, a double-tube heat exchanger having an inner pipe (not shown) and an outer pipe (not shown) arranged concentrically when viewed from the end of the inner pipe. It is possible to perform heat exchange between the high-pressure refrigerant flowing in the inner pipe and the decompressed refrigerant flowing in the outer pipe. When the supercooling heat exchanger 10 is a double-pipe heat exchanger, during the heating operation, the supercooling heat exchanger 10 functions as a part of the refrigerant pipe constituting the refrigeration cycle circuit. A specific configuration of the refrigerant circuit when the supercooling heat exchanger 10 is a double-pipe heat exchanger will be described later. In addition, you may comprise the supercooling heat exchanger 10 with a plate type heat exchanger.
 第1の熱源側減圧装置12は、冷房運転時においては、高圧冷媒を膨張及び減圧させて、第1の連絡配管300の設計圧未満の冷媒として、第1の連絡配管300に流入させる絞り装置(室外機間均液用絞り装置)として機能する。例えば、第1の連絡配管300が既設配管である場合、第1の連絡配管300の設計圧は、第1の連絡配管300の耐圧基準値に設定される。また、第1の熱源側減圧装置12は、暖房運転時においては、第1の連絡配管300から流入する冷媒を膨張及び減圧させて、熱源側熱交換器8に流入させる絞り装置として機能する。第1の熱源側減圧装置12としては、例えば多段階又は連続的に開度を調節可能なリニア電子膨張弁(LEV)等の電子膨張弁が用いられる。 The first heat source side decompression device 12 expands and decompresses the high-pressure refrigerant during the cooling operation, and flows into the first communication pipe 300 as a refrigerant having a pressure lower than the design pressure of the first communication pipe 300. It functions as a (squeezing device for liquid equalization between outdoor units). For example, when the first connecting pipe 300 is an existing pipe, the design pressure of the first connecting pipe 300 is set to the pressure resistance reference value of the first connecting pipe 300. Further, the first heat source side decompression device 12 functions as a throttle device that expands and decompresses the refrigerant flowing from the first communication pipe 300 and flows into the heat source side heat exchanger 8 during the heating operation. As the first heat source side pressure reducing device 12, an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple stages or continuously is used.
 負荷側減圧装置14は、冷房運転時においては、第1の連絡配管300から流入する第1の連絡配管300の設計圧未満の冷媒を更に膨張及び減圧させて、負荷側熱交換器16に流入させる絞り装置(室内側絞り装置)として機能する。また、負荷側減圧装置14は、暖房運転時においては、高圧冷媒を膨張及び減圧させて、第1の連絡配管300の設計圧未満の冷媒として、第1の連絡配管300に流入させる絞り装置として機能する。負荷側減圧装置14は、例えば多段階又は連続的に開度を調節可能なリニア電子膨張弁等の電子膨張弁として構成される。 During the cooling operation, the load side decompression device 14 further expands and decompresses the refrigerant having a pressure lower than the design pressure of the first communication pipe 300 flowing from the first communication pipe 300 and flows into the load side heat exchanger 16. It functions as an expansion device (indoor expansion device). Further, the load-side decompression device 14 is a throttling device that expands and decompresses the high-pressure refrigerant during the heating operation, and flows into the first communication pipe 300 as a refrigerant having a pressure lower than the design pressure of the first communication pipe 300. Function. The load side pressure reducing device 14 is configured as an electronic expansion valve such as a linear electronic expansion valve whose opening degree can be adjusted in multiple stages or continuously.
 負荷側熱交換器16(利用側熱交換器)は、冷房運転時においては、蒸発器(冷却器)として、暖房運転時には放熱器(凝縮器)として機能する熱交換器である。負荷側熱交換器16は、例えば、負荷側熱交換器16の内部を流れる冷媒と、外気(例えば、図1の室内空間700における室内空気)との熱交換を行うように構成される。負荷側熱交換器16としては、例えば、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器が用いられる。また、負荷側熱交換器16は、負荷側送風ファン(図示せず)からの送風によって、外気が供給されるように構成できる。 The load side heat exchanger 16 (use side heat exchanger) is a heat exchanger that functions as an evaporator (cooler) during cooling operation and as a radiator (condenser) during heating operation. The load-side heat exchanger 16 is configured to exchange heat between, for example, a refrigerant flowing inside the load-side heat exchanger 16 and outside air (for example, indoor air in the indoor space 700 in FIG. 1). As the load side heat exchanger 16, for example, a cross fin type fin-and-tube heat exchanger composed of a heat transfer tube and a plurality of fins is used. Moreover, the load side heat exchanger 16 can be comprised so that external air may be supplied by the ventilation from a load side ventilation fan (not shown).
 アキュムレータ18は、暖房運転時と冷房運転時の冷媒量の違いにより生じる余剰の冷媒を貯留する冷媒貯留機能を有する貯留容器である。また、アキュムレータ18は、過渡的な運転の変化等、空気調和装置1の運転状態が変化する際に一時的に発生する液冷媒を滞留させることにより、圧縮機2に大量の液冷媒が流入するのを防ぐ気液分離機能とを有する貯留容器でもある。 The accumulator 18 is a storage container having a refrigerant storage function for storing excess refrigerant generated due to a difference in refrigerant amount during heating operation and cooling operation. Further, the accumulator 18 retains the liquid refrigerant that is temporarily generated when the operation state of the air conditioner 1 is changed, such as a transient operation change, so that a large amount of liquid refrigerant flows into the compressor 2. It is also a storage container having a gas-liquid separation function to prevent this.
 次に、本実施の形態1の空気調和装置1における、室外ユニット100の冷媒配管について説明する。 Next, the refrigerant piping of the outdoor unit 100 in the air conditioner 1 of Embodiment 1 will be described.
 室外ユニット100においては、圧縮機2の吐出管(図示せず)と油分離器4の流入口との間は、第1の熱源側冷媒配管21によって接続されている。油分離器4の冷媒流出口と第1の冷媒流路切替装置6との間は、第2の熱源側冷媒配管22によって接続されている。第2の熱源側冷媒配管22には、逆止弁41が配置されており、圧縮機2への高圧冷媒の逆流を阻止している。逆止弁41と第1の冷媒流路切替装置6との間に位置する第2の熱源側冷媒配管22の分岐部22aと、第2の冷媒流路切替装置7との間は第5の熱源側冷媒配管25によって分岐接続されている。 In the outdoor unit 100, a discharge pipe (not shown) of the compressor 2 and the inlet of the oil separator 4 are connected by a first heat source side refrigerant pipe 21. The refrigerant outlet of the oil separator 4 and the first refrigerant flow switching device 6 are connected by a second heat source side refrigerant pipe 22. A check valve 41 is disposed in the second heat source side refrigerant pipe 22 to prevent the high-pressure refrigerant from flowing back to the compressor 2. Between the branch part 22a of the 2nd heat source side refrigerant | coolant piping 22 located between the non-return valve 41 and the 1st refrigerant | coolant flow path switching apparatus 6, and the 2nd refrigerant | coolant flow path switching apparatus 7, it is 5th. The heat source side refrigerant pipe 25 is branched and connected.
 第1の冷媒流路切替装置6と第1のヘッダ主管81との間は、第3の熱源側冷媒配管23によって接続されている。また、第2の冷媒流路切替装置7と第3のヘッダ主管85との間は、第6の熱源側冷媒配管26によって接続されている。第2のヘッダ主管84には、第4の熱源側冷媒配管24の一方の端部が接続されている。第4のヘッダ主管88には、第7の熱源側冷媒配管27の一方の端部が接続されている。第4の熱源側冷媒配管24及び第7の熱源側冷媒配管27の他の一方の端部は、冷房運転時には、第4の熱源側冷媒配管24及び第7の熱源側冷媒配管27を合流させる合流器として機能する連結部材43に接続されている。連結部材43は、暖房運転時には、第4の熱源側冷媒配管24及び第7の熱源側冷媒配管27に冷媒を分流させる分配器として機能する部材である。 The first refrigerant flow switching device 6 and the first header main pipe 81 are connected by a third heat source side refrigerant pipe 23. The second refrigerant flow switching device 7 and the third header main pipe 85 are connected by a sixth heat source side refrigerant pipe 26. One end of the fourth heat source side refrigerant pipe 24 is connected to the second header main pipe 84. One end of the seventh heat source side refrigerant pipe 27 is connected to the fourth header main pipe 88. The other one end of the fourth heat source side refrigerant pipe 24 and the seventh heat source side refrigerant pipe 27 joins the fourth heat source side refrigerant pipe 24 and the seventh heat source side refrigerant pipe 27 during the cooling operation. It is connected to a connecting member 43 that functions as a merger. The connecting member 43 is a member that functions as a distributor for diverting the refrigerant to the fourth heat source side refrigerant pipe 24 and the seventh heat source side refrigerant pipe 27 during the heating operation.
 連結部材43と、過冷却熱交換器10との間は、第8の熱源側冷媒配管28によって接続されている。過冷却熱交換器10と第1の連絡配管300との間は、第9の熱源側冷媒配管29によって接続されている。第9の熱源側冷媒配管29には、第1の熱源側減圧装置12が配置されている。また、第9の熱源側冷媒配管29の第1の連絡配管300側の端部には、第1の熱源側接続バルブ47aが配置されており、第1の熱源側接続バルブ47aの第1の連絡配管300側には、フレア継手等の第1の継手部49aが取付けられている。第9の熱源側冷媒配管29は、第1の継手部49aで第1の連絡配管300と接続されている。第1の熱源側接続バルブ47aは、例えば、開放及び閉止の切り替えが可能な二方向電磁弁等の二方弁で構成されている。また、第9の熱源側冷媒配管29における、第1の熱源側減圧装置12と第1の熱源側接続バルブ47aとの間の位置には、冷媒に含まれる塵埃、不純物等を漉し取るための濾過器である第1のストレーナ45aが配置されている。 The connecting member 43 and the supercooling heat exchanger 10 are connected by an eighth heat source side refrigerant pipe 28. The subcooling heat exchanger 10 and the first communication pipe 300 are connected by a ninth heat source side refrigerant pipe 29. The first heat source side decompression device 12 is disposed in the ninth heat source side refrigerant pipe 29. In addition, a first heat source side connection valve 47a is disposed at the end of the ninth heat source side refrigerant pipe 29 on the first communication pipe 300 side, and the first heat source side connection valve 47a has a first end. A first joint portion 49a such as a flare joint is attached to the connecting pipe 300 side. The ninth heat source side refrigerant pipe 29 is connected to the first communication pipe 300 at the first joint portion 49a. The first heat source side connection valve 47a is constituted by, for example, a two-way valve such as a two-way electromagnetic valve that can be switched between open and closed. Further, in the ninth heat source side refrigerant pipe 29, a position between the first heat source side pressure reducing device 12 and the first heat source side connection valve 47a is used to scavenge dust, impurities, etc. contained in the refrigerant. The 1st strainer 45a which is a filter is arrange | positioned.
 第1の冷媒流路切替装置6と第2の連絡配管400との間は、第10の熱源側冷媒配管30によって接続されている。第10の熱源側冷媒配管30の第2の連絡配管400側の端部には、第2の熱源側接続バルブ47bが配置されており、第2の熱源側接続バルブ47bの第2の連絡配管400側には、フレア継手等の第2の継手部49bが取付けられている。第10の熱源側冷媒配管30は、第2の継手部49bで第2の連絡配管400と接続されている。第2の熱源側接続バルブ47bは、例えば、開放及び閉止の切り替えが可能な二方向電磁弁等の二方弁で構成されている。また、第10の熱源側冷媒配管30における、第1の冷媒流路切替装置6と第2の熱源側接続バルブ47bとの間の位置には、冷媒に含まれる塵埃、不純物等を漉し取るための濾過器である第2のストレーナ45bが配置されている。 The first refrigerant flow switching device 6 and the second communication pipe 400 are connected by a tenth heat source side refrigerant pipe 30. A second heat source side connection valve 47b is disposed at the end of the tenth heat source side refrigerant pipe 30 on the second communication pipe 400 side, and the second connection pipe of the second heat source side connection valve 47b. On the 400 side, a second joint portion 49b such as a flare joint is attached. The 10th heat source side refrigerant | coolant piping 30 is connected with the 2nd connection piping 400 by the 2nd coupling part 49b. The second heat source side connection valve 47b is configured by, for example, a two-way valve such as a two-way electromagnetic valve that can be switched between open and closed. In addition, in the tenth heat source side refrigerant pipe 30, a position between the first refrigerant flow switching device 6 and the second heat source side connection valve 47b removes dust, impurities, and the like contained in the refrigerant. The 2nd strainer 45b which is a filter of this is arrange | positioned.
 第1の冷媒流路切替装置6と第12の熱源側冷媒配管32の第1の分岐部32aとの間は、第11の熱源側冷媒配管31によって接続されている。第12の熱源側冷媒配管32は、第2の冷媒流路切替装置7とアキュムレータ18の流入口との間を接続する冷媒配管である。アキュムレータ18の流入口と圧縮機2の吸入管(図示せず)との間は、第13の熱源側冷媒配管33によって接続されている。 The first refrigerant flow switching device 6 and the first branch portion 32a of the twelfth heat source side refrigerant pipe 32 are connected by an eleventh heat source side refrigerant pipe 31. The twelfth heat source side refrigerant pipe 32 is a refrigerant pipe that connects the second refrigerant flow switching device 7 and the inlet of the accumulator 18. The inlet of the accumulator 18 and the suction pipe (not shown) of the compressor 2 are connected by a thirteenth heat source side refrigerant pipe 33.
 次に、本実施の形態1の空気調和装置1における、室内ユニット200の冷媒配管について説明する。 Next, the refrigerant piping of the indoor unit 200 in the air conditioner 1 of the first embodiment will be described.
 第1の連絡配管300と負荷側熱交換器16との間は、第1の負荷側冷媒配管35によって接続されている。第1の負荷側冷媒配管35には、負荷側減圧装置14が配置されている。また、第1の負荷側冷媒配管35の第1の連絡配管300側には、フレア継手等の継手部(図示せず)が設けられており、該継手部で第1の連絡配管300と接続されている。 The first communication pipe 300 and the load side heat exchanger 16 are connected by a first load side refrigerant pipe 35. The load side decompression device 14 is disposed in the first load side refrigerant pipe 35. Further, a joint portion (not shown) such as a flare joint is provided on the first communication pipe 300 side of the first load-side refrigerant pipe 35, and is connected to the first communication pipe 300 at the joint portion. Has been.
 負荷側熱交換器16と第2の連絡配管400との間は、第2の負荷側冷媒配管36によって接続されている。第2の負荷側冷媒配管36の第2の連絡配管400側には、フレア継手等の継手部(図示せず)が設けられており、該継手部で第2の連絡配管400と接続されている。 The load side heat exchanger 16 and the second communication pipe 400 are connected by a second load side refrigerant pipe 36. A joint portion (not shown) such as a flare joint is provided on the second load-side refrigerant pipe 36 on the second communication pipe 400 side, and is connected to the second communication pipe 400 at the joint. Yes.
 本実施の形態1の空気調和装置1において、上述の冷媒配管を循環する冷媒は、空気調和装置1の用途に応じて任意の種類の冷媒を選択することが可能である。冷凍サイクル回路に循環させる冷媒としては、例えば、R22、R134a、R32、HFO1234yf、HFO1234ze、若しくはHFO1123等の単一冷媒、R410A若しくはR404A等の擬似共沸混合冷媒、R407C等の非共沸混合冷媒、又は化学式内に二重結合を含むCFCF=CH等の地球温暖化係数の低い冷媒を用いることができる。上述の冷媒は、2種以上が混合された混合物として用いてもよい。また、冷凍サイクル回路に循環させる冷媒としては、CO又はプロパン等の自然冷媒を用いることができる。 In the air-conditioning apparatus 1 according to the first embodiment, any kind of refrigerant can be selected as the refrigerant that circulates through the refrigerant pipe described above depending on the application of the air-conditioning apparatus 1. As the refrigerant to be circulated in the refrigeration cycle circuit, for example, a single refrigerant such as R22, R134a, R32, HFO1234yf, HFO1234ze, or HFO1123, a pseudo-azeotropic refrigerant mixture such as R410A or R404A, a non-azeotropic refrigerant mixture such as R407C, Alternatively, a refrigerant with a low global warming potential such as CF 3 CF═CH 2 containing a double bond in the chemical formula can be used. The above-mentioned refrigerant may be used as a mixture in which two or more kinds are mixed. As the refrigerant circulates in the refrigeration cycle, it is possible to use natural refrigerant such as CO 2 or propane.
 次に、本実施の形態1の空気調和装置1における、室外ユニット100に収容されている、過冷却熱交換器10の冷媒回路の具体的な構成について説明する。 Next, a specific configuration of the refrigerant circuit of the supercooling heat exchanger 10 housed in the outdoor unit 100 in the air conditioner 1 of Embodiment 1 will be described.
 上述したとおり、過冷却熱交換器10は、二重管式の熱交換器として構成できる。上述したとおり、二重管式の過冷却熱交換器10は、内管(図示せず)と、内管の端部から視て同心円状に配置された外管(図示せず)とを有し、内管を流れる高圧冷媒と、外管を流れる減圧された冷媒との間で熱交換を行うように構成される。 As described above, the supercooling heat exchanger 10 can be configured as a double-pipe heat exchanger. As described above, the double-tube supercooling heat exchanger 10 has an inner tube (not shown) and an outer tube (not shown) arranged concentrically when viewed from the end of the inner tube. The heat exchange is performed between the high-pressure refrigerant flowing in the inner pipe and the decompressed refrigerant flowing in the outer pipe.
 連結部材43に一方の端部が接続された第8の熱源側冷媒配管28は、他の一方の端部が過冷却熱交換器10の内管の一方の端部と接続されている。第1の連絡配管300に一方の端部が接続された第9の熱源側冷媒配管29は、他の一方の端部が過冷却熱交換器10の内管の他の一方の端部と接続されている。過冷却熱交換器10と第1の熱源側減圧装置12との間の位置にある第9の熱源側冷媒配管29の分岐部29aと、過冷却熱交換器10の外管の第9の熱源側冷媒配管29側の端部との間は、第1の熱源側分岐冷媒配管51によって接続されている。また、過冷却熱交換器10の外管の第8の熱源側冷媒配管28側の端部には、第2の熱源側分岐冷媒配管53の一方の端部が接続されている。第2の熱源側分岐冷媒配管53の他の一方の端部は、アキュムレータ18の流入口に接続された第12の熱源側冷媒配管32の第2の分岐部32bに接続されている。 As for the 8th heat source side refrigerant | coolant piping 28 by which one edge part was connected to the connection member 43, the other one edge part is connected with one edge part of the inner tube | pipe of the supercooling heat exchanger 10. FIG. The ninth heat source side refrigerant pipe 29 whose one end is connected to the first connecting pipe 300 has the other end connected to the other end of the inner pipe of the supercooling heat exchanger 10. Has been. The branch portion 29a of the ninth heat source side refrigerant pipe 29 located between the supercooling heat exchanger 10 and the first heat source side decompression device 12, and the ninth heat source of the outer pipe of the supercooling heat exchanger 10 A first heat source side branch refrigerant pipe 51 is connected to the end on the side refrigerant pipe 29 side. One end of the second heat source side branch refrigerant pipe 53 is connected to the end of the outer pipe of the supercooling heat exchanger 10 on the side of the eighth heat source side refrigerant pipe 28. The other end of the second heat source side branch refrigerant pipe 53 is connected to the second branch part 32 b of the twelfth heat source side refrigerant pipe 32 connected to the inlet of the accumulator 18.
 第1の熱源側分岐冷媒配管51には、第2の熱源側減圧装置13が配置されている。第2の熱源側減圧装置13は、冷房運転時において、第9の熱源側冷媒配管29の分岐部29aから第1の熱源側分岐冷媒配管51に分岐して流入する高圧冷媒を膨張及び減圧させて、減圧された冷媒を過冷却熱交換器10の外管に流入させる絞り装置(熱源側絞り装置)として機能する。第2の熱源側減圧装置13は、例えば多段階又は連続的に開度を調節可能なリニア電子膨張弁(LEV)等の電子膨張弁として構成される。 The second heat source side decompression device 13 is disposed in the first heat source side branch refrigerant pipe 51. The second heat source-side decompression device 13 expands and decompresses the high-pressure refrigerant that flows from the branch portion 29a of the ninth heat source-side refrigerant pipe 29 to the first heat source-side branch refrigerant pipe 51 during cooling operation. Thus, it functions as a throttle device (heat source side throttle device) that causes the decompressed refrigerant to flow into the outer tube of the supercooling heat exchanger 10. The second heat source side pressure reducing device 13 is configured as an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple stages or continuously.
 次に、本実施の形態1の空気調和装置1の室外ユニット100において、第7の熱源側冷媒配管27と第2の熱源側分岐冷媒配管53との間に設けられたバイパス冷媒回路の構成について説明する。 Next, in the outdoor unit 100 of the air-conditioning apparatus 1 according to Embodiment 1, the configuration of the bypass refrigerant circuit provided between the seventh heat source side refrigerant pipe 27 and the second heat source side branch refrigerant pipe 53 is described. explain.
 上述したとおり、第7の熱源側冷媒配管27は、第4のヘッダ主管88と連結部材43との間に接続された冷媒配管である。第4のヘッダ主管88は、複数の第4のヘッダ枝管87を経由して領域Bにある熱源側熱交換器8の伝熱管(図示せず)に接続された冷媒配管である。 As described above, the seventh heat source side refrigerant pipe 27 is a refrigerant pipe connected between the fourth header main pipe 88 and the connecting member 43. The fourth header main pipe 88 is a refrigerant pipe connected to a heat transfer pipe (not shown) of the heat source side heat exchanger 8 in the region B via a plurality of fourth header branch pipes 87.
 また、上述したとおり、第2の熱源側分岐冷媒配管53は、一方の端部が過冷却熱交換器10の外管の冷媒出口側端部に接続され、他の一方の端部が第12の熱源側冷媒配管32の第2の分岐部32bに接続された冷媒配管である。第12の熱源側冷媒配管32は、アキュムレータ18の流入口に接続された冷媒配管である。 Further, as described above, one end of the second heat source side branch refrigerant pipe 53 is connected to the refrigerant outlet side end of the outer tube of the supercooling heat exchanger 10 and the other one end is the twelfth. It is the refrigerant | coolant piping connected to the 2nd branch part 32b of the heat source side refrigerant | coolant piping 32 of this. The twelfth heat source side refrigerant pipe 32 is a refrigerant pipe connected to the inflow port of the accumulator 18.
 第7の熱源側冷媒配管27には、流路切替弁55が配置されている。流路切替弁55と第2の熱源側分岐冷媒配管53の分岐部53aとの間は、第3の熱源側分岐冷媒配管57によって接続されている。流路切替弁55は、冷房運転時に、流路切替弁55の内部の冷媒流路を切り替えて、第4のヘッダ主管88側の第7の熱源側冷媒配管27の接続先を、連結部材43側の第7の熱源側冷媒配管27又は第2の熱源側分岐冷媒配管53の二方向に切り替えるものである。流路切替弁55は、暖房運転時においては、連結部材43側の第7の熱源側冷媒配管27と第4のヘッダ主管88側の第7の熱源側冷媒配管27とを接続するように構成される。流路切替弁55としては、例えば三方弁が用いられる。 A flow path switching valve 55 is disposed in the seventh heat source side refrigerant pipe 27. The flow path switching valve 55 and the branch portion 53 a of the second heat source side branch refrigerant pipe 53 are connected by a third heat source side branch refrigerant pipe 57. The flow path switching valve 55 switches the refrigerant flow path inside the flow path switching valve 55 during the cooling operation, and connects the connection destination of the seventh heat source side refrigerant pipe 27 on the fourth header main pipe 88 side to the connecting member 43. The second heat source side refrigerant pipe 27 or the second heat source side branch refrigerant pipe 53 is switched to two directions. The flow path switching valve 55 is configured to connect the seventh heat source side refrigerant pipe 27 on the connecting member 43 side and the seventh heat source side refrigerant pipe 27 on the fourth header main pipe 88 side during the heating operation. Is done. For example, a three-way valve is used as the flow path switching valve 55.
 次に、本実施の形態1に係る空気調和装置1の室外ユニット100に配置されるレシーバ60(受液器)の構成について図2及び図3を用いて説明する。 Next, the configuration of the receiver 60 (liquid receiver) disposed in the outdoor unit 100 of the air-conditioning apparatus 1 according to Embodiment 1 will be described with reference to FIGS.
 図3は、本実施の形態1に係る空気調和装置1のレシーバ60の構成及び配置を簡略的に示す概略図である。図3では、冷媒の流れ方向を白抜きのブロック矢印で示している。 FIG. 3 is a schematic diagram schematically showing the configuration and arrangement of the receiver 60 of the air-conditioning apparatus 1 according to Embodiment 1. In FIG. 3, the flow direction of the refrigerant is indicated by white block arrows.
 レシーバ60は、液冷媒を貯蔵する筐体である貯蔵庫60aと、貯蔵庫60aに冷媒を流入する冷媒配管である流入管60bと、貯蔵庫60aから冷媒を流出させる冷媒配管である流出管60cと、貯蔵庫60aの底部を支持する支持部材である脚部60dとを備える。レシーバ60は、縦置型の余剰液冷媒貯蔵容器として構成される。 The receiver 60 includes a storage 60a that is a casing that stores liquid refrigerant, an inflow pipe 60b that is a refrigerant pipe that flows the refrigerant into the storage 60a, an outflow pipe 60c that is a refrigerant pipe that causes the refrigerant to flow out of the storage 60a, and a storage And a leg portion 60d which is a support member for supporting the bottom portion of 60a. The receiver 60 is configured as a vertical-type surplus liquid refrigerant storage container.
 図3に示すように、第8の熱源側冷媒配管28の分岐部28aと、レシーバ60の流入管60bの流入口側の端部とは、第4の熱源側分岐冷媒配管61によって接続されている。また、図3に示すように、レシーバ60の流出管60cの流出口側の端部と、第12の熱源側冷媒配管32の第3の分岐部32cとの間は、第5の熱源側分岐冷媒配管65によって接続されている。上述したとおり、第8の熱源側冷媒配管28は、連結部材43と過冷却熱交換器10の内管との間を接続する冷媒配管であり、第12の熱源側冷媒配管32は、アキュムレータ18の流入口に接続された冷媒配管である。 As shown in FIG. 3, the branch portion 28 a of the eighth heat source side refrigerant pipe 28 and the end portion on the inlet side of the inflow pipe 60 b of the receiver 60 are connected by a fourth heat source side branch refrigerant pipe 61. Yes. As shown in FIG. 3, the fifth heat source side branch is provided between the end portion on the outlet side of the outlet pipe 60 c of the receiver 60 and the third branch portion 32 c of the twelfth heat source side refrigerant pipe 32. The refrigerant pipe 65 connects. As described above, the eighth heat source side refrigerant pipe 28 is a refrigerant pipe connecting the connecting member 43 and the inner pipe of the supercooling heat exchanger 10, and the twelfth heat source side refrigerant pipe 32 is the accumulator 18. It is refrigerant piping connected to the inflow port.
 図3に示すように、第8の熱源側冷媒配管28の分岐部28aは、レシーバ60の流入管60bの流入口の端部よりも上部に位置するように配置されている。また、第4の熱源側分岐冷媒配管61は、第8の熱源側冷媒配管28の下側に位置するよう第8の熱源側冷媒配管28の分岐部28aに接続される。また、レシーバ60の流入管60bは貯蔵庫60aの頂部に配置され、流入管60bの流出口側の端部が貯蔵庫60aの内部空間と連通している。したがって、本実施の形態1に係るレシーバ60は、第8の熱源側冷媒配管28の分岐部28aから第4の熱源側分岐冷媒配管61に流入した液冷媒を、冷媒の自重によりレシーバ60の流入管60bに確実に流入させ、貯蔵庫60aに貯蔵するようになっている。 As shown in FIG. 3, the branching portion 28 a of the eighth heat source side refrigerant pipe 28 is arranged so as to be located above the end of the inlet of the inflow pipe 60 b of the receiver 60. The fourth heat source side branch refrigerant pipe 61 is connected to the branch portion 28 a of the eighth heat source side refrigerant pipe 28 so as to be positioned below the eighth heat source side refrigerant pipe 28. Moreover, the inflow pipe 60b of the receiver 60 is arrange | positioned at the top part of the storage 60a, and the edge part by the side of the outflow port of the inflow pipe 60b is connected with the internal space of the storage 60a. Therefore, in the receiver 60 according to the first embodiment, the liquid refrigerant flowing into the fourth heat source side branch refrigerant pipe 61 from the branch portion 28a of the eighth heat source side refrigerant pipe 28 flows into the receiver 60 by its own weight. The pipe 60b is surely introduced and stored in the storage 60a.
 また、本実施の形態1においては、レシーバ60の流出管60cは、貯蔵庫60aの底部に配置され、流出管60cの流入口側の端部が貯蔵庫60aの下方の内部空間と連通している。したがって、本実施の形態1に係るレシーバ60は、貯蔵庫60aの底部に貯蔵された液冷媒を流出管60cから第5の熱源側分岐冷媒配管65に流入させることが可能となっている。 In the first embodiment, the outflow pipe 60c of the receiver 60 is disposed at the bottom of the storage 60a, and the end of the outflow pipe 60c on the inlet side communicates with the internal space below the storage 60a. Therefore, the receiver 60 according to the first embodiment can cause the liquid refrigerant stored at the bottom of the storage 60a to flow into the fifth heat source side branch refrigerant pipe 65 from the outflow pipe 60c.
 第4の熱源側分岐冷媒配管61には、電磁弁63が配置されている。電磁弁63は、電力供給又は電力停止によって、第4の熱源側分岐冷媒配管61の冷媒流路を開放又は閉止するレシーバ60への冷媒流入側のバルブである。なお、本実施の形態1においては、電磁弁63の代わりに、多段階又は連続的に開度を調節可能なリニア電子膨張弁(LEV)等の電子膨張弁を用いてもよい。 In the fourth heat source side branch refrigerant pipe 61, an electromagnetic valve 63 is arranged. The solenoid valve 63 is a valve on the refrigerant inflow side to the receiver 60 that opens or closes the refrigerant flow path of the fourth heat source side branched refrigerant pipe 61 by supplying power or stopping power. In the first embodiment, instead of the electromagnetic valve 63, an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple steps or continuously may be used.
 第5の熱源側分岐冷媒配管65には、流量調整弁67が配置されている。流量調整弁67は、冷媒が第5の熱源側分岐冷媒配管65を通ってアキュムレータ18に貯留されることにより、冷凍サイクル回路に戻される冷媒の量を調整するバルブである。流量調整弁67としては、例えば、多段階又は連続的に開度を調節可能なリニア電子膨張弁(LEV)等の電子膨張弁が用いられる。 A flow rate adjustment valve 67 is arranged in the fifth heat source side branch refrigerant pipe 65. The flow rate adjusting valve 67 is a valve that adjusts the amount of refrigerant returned to the refrigeration cycle circuit by storing the refrigerant in the accumulator 18 through the fifth heat source side branched refrigerant pipe 65. As the flow rate adjusting valve 67, for example, an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple stages or continuously is used.
 なお、図3には、第8の熱源側冷媒配管28の配置を明確にするために、第4の熱源側冷媒配管24、第7の熱源側冷媒配管27、連結部材43、第2のヘッダ枝管83、及び第2のヘッダ主管84が図示されているが、これらの構成要素については既に説明済みであるため説明を省略する。また、図3には、液冷媒温度検知センサである第2の温度センサ74が図示されているが、第2の温度センサ74については後述する。 In FIG. 3, in order to clarify the arrangement of the eighth heat source side refrigerant pipe 28, the fourth heat source side refrigerant pipe 24, the seventh heat source side refrigerant pipe 27, the connecting member 43, and the second header are shown. Although the branch pipe 83 and the second header main pipe 84 are shown in the drawing, the description thereof is omitted because these components have already been described. FIG. 3 shows a second temperature sensor 74 that is a liquid refrigerant temperature detection sensor. The second temperature sensor 74 will be described later.
 次に、本実施の形態1に係る空気調和装置1に配置されるセンサについて図2を用いて説明する。 Next, the sensor arranged in the air conditioner 1 according to the first embodiment will be described with reference to FIG.
 本実施の形態1に係る空気調和装置1は、第1の圧力センサ70と、第2の圧力センサ71と、第1の温度センサ73と、第2の温度センサ74と、第3の温度センサ75と、第4の温度センサ76と、冷媒漏洩検知センサ78とを備える。 The air conditioner 1 according to Embodiment 1 includes a first pressure sensor 70, a second pressure sensor 71, a first temperature sensor 73, a second temperature sensor 74, and a third temperature sensor. 75, a fourth temperature sensor 76, and a refrigerant leakage detection sensor 78.
 第1の圧力センサ70は、第2の熱源側冷媒配管22に配置されている。第1の圧力センサ70は、圧縮機2の吐出管から油分離器4を経由して第2の熱源側冷媒配管22に流入する高温高圧の冷媒の圧力を検知する高圧センサである。 The first pressure sensor 70 is disposed in the second heat source side refrigerant pipe 22. The first pressure sensor 70 is a high-pressure sensor that detects the pressure of the high-temperature and high-pressure refrigerant that flows into the second heat source side refrigerant pipe 22 from the discharge pipe of the compressor 2 via the oil separator 4.
 第2の圧力センサ71は、第12の熱源側冷媒配管32に配置されている。第2の圧力センサ71は、第12の熱源側冷媒配管32からアキュムレータ18を経由して圧縮機2の吸入口に流入する低圧の冷媒の圧力を検知する低圧センサである。 The second pressure sensor 71 is disposed in the twelfth heat source side refrigerant pipe 32. The second pressure sensor 71 is a low-pressure sensor that detects the pressure of the low-pressure refrigerant flowing into the suction port of the compressor 2 from the twelfth heat source side refrigerant pipe 32 via the accumulator 18.
 第1の圧力センサ70及び第2の圧力センサ71としては、水晶圧電式圧力センサ、半導体センサ、又は圧力トランスデューサ等が用いられる。なお、第1の圧力センサ70及び第2の圧力センサ71は、同種類のもので構成してもよいし、異なる種類のもので構成してもよい。 As the first pressure sensor 70 and the second pressure sensor 71, a crystal piezoelectric pressure sensor, a semiconductor sensor, a pressure transducer, or the like is used. The first pressure sensor 70 and the second pressure sensor 71 may be the same type or different types.
 第1の温度センサ73は、例えば熱源側送風ファン(図示せず)の上流側に配置され、熱源側送風ファンによって吸い込まれ、熱源側熱交換器8に送風される外気(例えば、図1の室外空間600における室外空気)の温度を検知する外気温度センサである。 The first temperature sensor 73 is disposed, for example, on the upstream side of a heat source side fan (not shown), and is sucked by the heat source side fan and is sent to the heat source side heat exchanger 8 (for example, outside air shown in FIG. 1). This is an outdoor temperature sensor that detects the temperature of the outdoor air in the outdoor space 600.
 第2の温度センサ74は、第8の熱源側冷媒配管28に配置されている。第2の温度センサ74は、冷房運転時においては、熱源側熱交換器8から第8の熱源側冷媒配管28に流入する液冷媒の温度を第8の熱源側冷媒配管28を介して検知する温度センサ(液冷媒温度検知センサ)である。また、第2の温度センサ74は、暖房運転時においては、第1の熱源側減圧装置12で減圧された二相冷媒の温度を第8の熱源側冷媒配管28を介して検知する温度センサである。 The second temperature sensor 74 is disposed in the eighth heat source side refrigerant pipe 28. The second temperature sensor 74 detects the temperature of the liquid refrigerant flowing from the heat source side heat exchanger 8 into the eighth heat source side refrigerant pipe 28 via the eighth heat source side refrigerant pipe 28 during the cooling operation. It is a temperature sensor (liquid refrigerant temperature detection sensor). The second temperature sensor 74 is a temperature sensor that detects the temperature of the two-phase refrigerant decompressed by the first heat source side decompression device 12 via the eighth heat source side refrigerant pipe 28 during the heating operation. is there.
 第3の温度センサ75は、第1の負荷側冷媒配管35に配置されている。第3の温度センサ75は、冷房運転時においては、負荷側減圧装置14で減圧された二相冷媒の温度を第1の負荷側冷媒配管35を介して検知する温度センサ(利用側熱交換器液側センサ)である。また、第3の温度センサ75は、暖房運転時においては、負荷側熱交換器16から第1の負荷側冷媒配管35に流れる液冷媒の温度を第1の負荷側冷媒配管35を介して検知する温度センサである。 The third temperature sensor 75 is disposed in the first load side refrigerant pipe 35. The third temperature sensor 75 is a temperature sensor (use side heat exchanger) that detects the temperature of the two-phase refrigerant decompressed by the load side decompression device 14 via the first load side refrigerant pipe 35 during the cooling operation. Liquid side sensor). Further, the third temperature sensor 75 detects the temperature of the liquid refrigerant flowing from the load-side heat exchanger 16 to the first load-side refrigerant pipe 35 via the first load-side refrigerant pipe 35 during the heating operation. It is a temperature sensor.
 第4の温度センサ76は、第2の負荷側冷媒配管36に配置されている。第3の温度センサ75は、冷房運転時においては、負荷側熱交換器16から第2の負荷側冷媒配管36に流れる低圧冷媒の温度を第2の負荷側冷媒配管36を介して検知する温度センサ(利用側熱交換器ガス側センサ)である。また、第4の温度センサ76は、暖房運転時においては、圧縮機2の吐出管から油分離器4を介して第2の負荷側冷媒配管36に流入する高温高圧の冷媒の温度を第2の負荷側冷媒配管36を介して検知する温度センサである。 The fourth temperature sensor 76 is disposed in the second load side refrigerant pipe 36. The third temperature sensor 75 detects the temperature of the low-pressure refrigerant flowing from the load-side heat exchanger 16 to the second load-side refrigerant pipe 36 through the second load-side refrigerant pipe 36 during the cooling operation. Sensor (use side heat exchanger gas side sensor). Further, the fourth temperature sensor 76 determines the temperature of the high-temperature and high-pressure refrigerant flowing into the second load-side refrigerant pipe 36 from the discharge pipe of the compressor 2 through the oil separator 4 during the heating operation. It is a temperature sensor detected via the load side refrigerant | coolant piping 36.
 第1の温度センサ73、第2の温度センサ74、第3の温度センサ75、及び第4の温度センサ76の材料としては、半導体(例えば、サーミスタ)又は金属(例えば、測温抵抗体)等が用いられる。なお、第1の温度センサ73、第2の温度センサ74、第3の温度センサ75、及び第4の温度センサ76は、同一の材料で構成してもよいし、異なる材料で構成してもよい。 Examples of materials for the first temperature sensor 73, the second temperature sensor 74, the third temperature sensor 75, and the fourth temperature sensor 76 include a semiconductor (for example, a thermistor) or a metal (for example, a resistance temperature detector). Is used. The first temperature sensor 73, the second temperature sensor 74, the third temperature sensor 75, and the fourth temperature sensor 76 may be made of the same material or different materials. Good.
 冷媒漏洩検知センサ78は、室内ユニット200に配置され、室内ユニット200からの冷媒漏れを検知するものである。冷媒漏洩検知センサ78は、例えば、図1の室内空間700(例えば、建物500の居室等)への冷媒漏れを防止するために、図1の室内空間700に配置される。冷媒漏洩検知センサ78としては、例えば、半導体式ガスセンサ、熱線型半導体式ガスセンサ等のガスセンサが用いられる。 The refrigerant leakage detection sensor 78 is disposed in the indoor unit 200 and detects refrigerant leakage from the indoor unit 200. The refrigerant leakage detection sensor 78 is disposed in the indoor space 700 of FIG. 1 in order to prevent, for example, refrigerant leakage into the indoor space 700 of FIG. 1 (for example, the living room of the building 500). As the refrigerant leakage detection sensor 78, for example, a gas sensor such as a semiconductor gas sensor or a hot wire semiconductor gas sensor is used.
 なお、冷媒漏洩検知センサ78は、室内空間700への冷媒漏れを防止するために、室内空間700に2つ以上配置してもよい。また、例えば、第1の負荷側冷媒配管35又は第2の負荷側冷媒配管36と、負荷側熱交換器16との接続部位等、室内ユニット200内部の冷媒漏れの生じる可能性の高い部位に配置してもよい。 Two or more refrigerant leakage detection sensors 78 may be arranged in the indoor space 700 in order to prevent refrigerant leakage into the indoor space 700. Further, for example, in a portion where the refrigerant leakage inside the indoor unit 200 is likely to occur, such as a connection portion between the first load side refrigerant pipe 35 or the second load side refrigerant pipe 36 and the load side heat exchanger 16. You may arrange.
 次に、本実施の形態1に係る空気調和装置1の制御装置90について図2を用いて説明する。 Next, the control device 90 of the air-conditioning apparatus 1 according to Embodiment 1 will be described with reference to FIG.
 本実施の形態1に係る制御装置90は、室外ユニット100の駆動又は停止を含む空気調和装置1全体の動作を制御するものである。また、制御装置90は、図2に示すように、室内ユニット200の動作を制御する室内ユニット制御装置95(室内側制御装置)とも伝送線98を介して接続され、制御信号の送受信等、相互に通信を行うことができるように構成される。なお、制御装置90と室内ユニット制御装置95との間の通信は無線で行うことができるように構成してもよい。 The control device 90 according to the first embodiment controls the operation of the entire air conditioner 1 including driving or stopping of the outdoor unit 100. Further, as shown in FIG. 2, the control device 90 is also connected to an indoor unit control device 95 (indoor control device) that controls the operation of the indoor unit 200 via a transmission line 98. It is comprised so that it can communicate. In addition, you may comprise so that communication between the control apparatus 90 and the indoor unit control apparatus 95 can be performed by radio | wireless.
 制御装置90及び室内ユニット制御装置95は、演算部として機能するCPU、記憶部として機能するメモリ(例えば、ROM、RAM等)、通信部として機能するI/Oポート等を備えたマイクロコンピュータを有している。 The control device 90 and the indoor unit control device 95 have a microcomputer having a CPU that functions as a calculation unit, a memory (for example, ROM, RAM, etc.) that functions as a storage unit, an I / O port that functions as a communication unit, and the like. is doing.
 室内ユニット制御装置95は、第3の温度センサ75及び第4の温度センサ76で検知した室内ユニット200における温度情報の電気信号、又は冷媒漏洩検知センサ78で検知した冷媒漏洩の電気信号を受信し、伝送線98を介して制御装置90に送信するように構成される。また、室内ユニット制御装置95は、室内ユニット200の運転状態に関する情報を伝送線98を介して制御装置90に送信するように構成される。室内ユニット200の運転状態に関する情報には、室内ユニット200の駆動若しくは停止の情報、室内ユニット200の消費電力等、室内ユニット200の運転容量に関する情報、又は冷房運転と暖房運転との切り替えに関する情報等が含まれている。 The indoor unit controller 95 receives the electrical signal of the temperature information in the indoor unit 200 detected by the third temperature sensor 75 and the fourth temperature sensor 76 or the electrical signal of the refrigerant leak detected by the refrigerant leak detection sensor 78. , And configured to transmit to the control device 90 via the transmission line 98. Further, the indoor unit control device 95 is configured to transmit information related to the operating state of the indoor unit 200 to the control device 90 via the transmission line 98. The information related to the operating state of the indoor unit 200 includes information on driving or stopping of the indoor unit 200, power consumption of the indoor unit 200, information on the operating capacity of the indoor unit 200, information on switching between cooling operation and heating operation, etc. It is included.
 制御装置90は、第1の圧力センサ70及び第2の圧力センサ71で検知した圧力情報の電気信号、並びに第1の温度センサ73及び第2の温度センサ74で検知した温度情報の電気信号を受信するように構成される。また、制御装置90は、室内ユニット制御装置95から伝送線98を介して送信された温度情報又は冷媒漏洩の電気信号、及び室内ユニット200の運転状態に関する情報を受信するように構成される。制御装置90は、受信した情報に基づき、空気調和装置1の各種アクチュエータの動作を制御する。空気調和装置1の各種アクチュエータには、例えば、圧縮機2、第1の冷媒流路切替装置6、第2の冷媒流路切替装置7、第1の熱源側減圧装置12、第2の熱源側減圧装置13、負荷側減圧装置14、流路切替弁55、電磁弁63、及び流量調整弁67が含まれる。 The control device 90 receives the electrical signal of the pressure information detected by the first pressure sensor 70 and the second pressure sensor 71 and the electrical signal of the temperature information detected by the first temperature sensor 73 and the second temperature sensor 74. Configured to receive. In addition, the control device 90 is configured to receive temperature information or an electric signal of refrigerant leakage transmitted from the indoor unit control device 95 via the transmission line 98 and information related to the operating state of the indoor unit 200. The control device 90 controls operations of various actuators of the air conditioning device 1 based on the received information. The various actuators of the air conditioner 1 include, for example, the compressor 2, the first refrigerant flow switching device 6, the second refrigerant flow switching device 7, the first heat source side pressure reducing device 12, and the second heat source side. The pressure reducing device 13, the load side pressure reducing device 14, the flow path switching valve 55, the electromagnetic valve 63, and the flow rate adjusting valve 67 are included.
 なお、制御装置90と、第1の圧力センサ70、第2の圧力センサ71、第1の温度センサ73、及び第2の温度センサ74との間は、通信線(図示せず)で接続された構成にできる。同様に、室内ユニット制御装置95と、第3の温度センサ75、第4の温度センサ76、及び冷媒漏洩検知センサ78との間は、通信線(図示せず)で接続された構成にできる。また、制御装置90は、ROM、RAM等のメモリの他に、標準的な外気温度の範囲等の各種データを保管できる記憶部(図示せず)を有するように構成してもよい。 The control device 90 and the first pressure sensor 70, the second pressure sensor 71, the first temperature sensor 73, and the second temperature sensor 74 are connected by a communication line (not shown). Can be configured. Similarly, the indoor unit control device 95, the third temperature sensor 75, the fourth temperature sensor 76, and the refrigerant leakage detection sensor 78 can be connected by a communication line (not shown). In addition to the memory such as ROM and RAM, the control device 90 may be configured to have a storage unit (not shown) that can store various data such as a standard outside air temperature range.
 次に、本実施の形態1に係る空気調和装置1の通常の冷房運転時の冷凍サイクル回路の動作について説明する。 Next, the operation of the refrigeration cycle circuit during normal cooling operation of the air-conditioning apparatus 1 according to Embodiment 1 will be described.
 「通常の冷房運転」とは、例えば、パッケージエアコンディショナのJIS規格(JIS B 8616)で定められた冷房条件での冷房運転のことをいう。本実施の形態1を含む以降の実施の形態においては、「通常の冷房運転」のことを第1の冷房運転モードと称する。第1の冷房運転モードとは、外気温度が標準的な温度範囲にあり、室内ユニット200が標準的な運転容量の範囲にあり、第1の圧力センサ70で検知される圧縮機2から吐出される高温高圧のガス冷媒の圧力が、標準的な高圧圧力の範囲にある場合に、本実施の形態1に係る空気調和装置1で行われる冷房運転をいう。 “Normal cooling operation” means, for example, a cooling operation under the cooling condition defined in the JIS standard (JIS B 8616) of the package air conditioner. In the subsequent embodiments including the first embodiment, the “normal cooling operation” is referred to as a first cooling operation mode. In the first cooling operation mode, the outside air temperature is in the standard temperature range, the indoor unit 200 is in the standard operation capacity range, and the air is discharged from the compressor 2 detected by the first pressure sensor 70. This refers to a cooling operation performed by the air-conditioning apparatus 1 according to Embodiment 1 when the pressure of the high-temperature and high-pressure gas refrigerant is within the range of the standard high-pressure.
 本実施の形態1を含む以降の実施の形態では、外気温度の標準的な温度範囲は、例えば、25℃~43℃の温度範囲とする。また、標準的な運転容量の範囲の下限値は、例えば、空気調和装置1における室内ユニット200の全運転容量を100%とした場合に、50%の運転容量とする。また、標準的な高圧圧力の範囲の上限値は、例えば、36kg/cmとする。 In the following embodiments including the first embodiment, the standard temperature range of the outside air temperature is, for example, a temperature range of 25 ° C. to 43 ° C. The lower limit value of the standard operating capacity range is, for example, 50% operating capacity when the total operating capacity of the indoor unit 200 in the air conditioner 1 is 100%. In addition, the upper limit value of the standard high pressure range is, for example, 36 kg / cm 2 .
 図4は、本実施の形態1に係る空気調和装置1の第1の冷房運転モード(通常の冷房運転)における、冷媒の流れを示した概略的な冷媒回路図である。図4では、冷媒の流れ方向を実線の矢印で示している。 FIG. 4 is a schematic refrigerant circuit diagram showing a refrigerant flow in the first cooling operation mode (normal cooling operation) of the air-conditioning apparatus 1 according to Embodiment 1. In FIG. 4, the flow direction of the refrigerant is indicated by solid line arrows.
 圧縮機2から吐出された高温高圧のガス冷媒は、第1の熱源側冷媒配管21を経由して油分離器4に流入する。油分離器4では、圧縮機2から吐出された高温高圧のガス冷媒から、冷凍機油の成分が分離除去される。油分離器4で冷凍機油の成分が分離除去された高温高圧のガス冷媒の一部は、第2の熱源側冷媒配管22、第1の冷媒流路切替装置6、第3の熱源側冷媒配管23、第1のヘッダ主管81、及び複数の第1のヘッダ枝管82を経由して、熱源側熱交換器8の領域Aの部分に流入する。また、油分離器4で冷凍機油の成分が分離除去された高温高圧のガス冷媒の残余の部分は、第2の熱源側冷媒配管22、第5の熱源側冷媒配管25、第2の冷媒流路切替装置7、第6の熱源側冷媒配管26、第3のヘッダ主管85、及び複数の第3のヘッダ枝管86を経由して、熱源側熱交換器8の領域Bの部分に流入する。熱源側熱交換器8に流入した高温高圧のガス冷媒は、図1の室外空間600における室外空気等の低温の媒体に熱を放出することによって熱交換され、高温高圧のガス冷媒は凝縮液化されて高圧の液冷媒となる。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the oil separator 4 via the first heat source side refrigerant pipe 21. In the oil separator 4, the components of the refrigerating machine oil are separated and removed from the high-temperature and high-pressure gas refrigerant discharged from the compressor 2. A part of the high-temperature and high-pressure gas refrigerant from which the components of the refrigerating machine oil are separated and removed by the oil separator 4 includes the second heat source side refrigerant pipe 22, the first refrigerant flow switching device 6, and the third heat source side refrigerant pipe. 23, the first header main pipe 81, and the plurality of first header branch pipes 82 flow into the region A of the heat source side heat exchanger 8. The remaining portion of the high-temperature and high-pressure gas refrigerant from which the components of the refrigeration oil are separated and removed by the oil separator 4 is the second heat source side refrigerant pipe 22, the fifth heat source side refrigerant pipe 25, and the second refrigerant flow. It flows into the region B of the heat source side heat exchanger 8 via the path switching device 7, the sixth heat source side refrigerant pipe 26, the third header main pipe 85, and the plurality of third header branch pipes 86. . The high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 8 is heat-exchanged by releasing heat to a low-temperature medium such as outdoor air in the outdoor space 600 in FIG. 1, and the high-temperature and high-pressure gas refrigerant is condensed and liquefied. And high pressure liquid refrigerant.
 熱源側熱交換器8の領域Aの部分で凝縮液化された高圧の液冷媒は、複数の第2のヘッダ枝管83及び第2のヘッダ主管84を経由して、第4の熱源側冷媒配管24に流入する。また、熱源側熱交換器8の領域Bの部分で凝縮液化された高圧の液冷媒は、複数の第4のヘッダ枝管87及び第4のヘッダ主管88を経由して、第7の熱源側冷媒配管27に流入する。第4の熱源側冷媒配管24及び第7の熱源側冷媒配管27を流れる高圧の液冷媒は、連結部材43で合流され、第8の熱源側冷媒配管28に流入する。 The high-pressure liquid refrigerant condensed and liquefied in the region A of the heat source side heat exchanger 8 passes through the plurality of second header branch pipes 83 and the second header main pipe 84 to form a fourth heat source side refrigerant pipe. 24. In addition, the high-pressure liquid refrigerant condensed and liquefied in the region B of the heat source side heat exchanger 8 passes through the fourth header branch pipe 87 and the fourth header main pipe 88 to the seventh heat source side. It flows into the refrigerant pipe 27. The high-pressure liquid refrigerant flowing through the fourth heat source side refrigerant pipe 24 and the seventh heat source side refrigerant pipe 27 is joined by the connecting member 43 and flows into the eighth heat source side refrigerant pipe 28.
 第8の熱源側冷媒配管28を流れる高圧の液冷媒は、過冷却熱交換器10の内管に流入し、過冷却熱交換器10の外管を流れる冷媒と熱交換されて過冷却され、高圧の液冷媒は、過冷却された高圧の液冷媒となり、第9の熱源側冷媒配管29に流入する。本実施の形態1の空気調和装置1においては、過冷却熱交換器10の外管を流れる冷媒は、第9の熱源側冷媒配管29の分岐部29aで分流され、第1の熱源側分岐冷媒配管51に流入し、第2の熱源側減圧装置13によって、膨張及び減圧された(例えば、中圧の)液冷媒又は二相冷媒である。第2の熱源側減圧装置13によって、膨張及び減圧された(例えば、中圧の)液冷媒又は二相冷媒は、過冷却熱交換器10の外管で過冷却熱交換器10の内管を流れる高圧の液冷媒と熱交換され、高温のガス冷媒又は乾き度の高い二相冷媒となる。過冷却熱交換器10の外管から第2の熱源側分岐冷媒配管53へ流入する高温のガス冷媒又は乾き度の高い二相冷媒は、第12の熱源側冷媒配管32を経由して、アキュムレータ18に注入される。 The high-pressure liquid refrigerant flowing through the eighth heat source side refrigerant pipe 28 flows into the inner pipe of the supercooling heat exchanger 10 and is heat-exchanged with the refrigerant flowing through the outer pipe of the supercooling heat exchanger 10 to be supercooled. The high-pressure liquid refrigerant becomes a supercooled high-pressure liquid refrigerant and flows into the ninth heat source side refrigerant pipe 29. In the air conditioner 1 of the first embodiment, the refrigerant flowing through the outer pipe of the supercooling heat exchanger 10 is divided by the branch portion 29a of the ninth heat source side refrigerant pipe 29, and the first heat source side branched refrigerant. The liquid refrigerant or the two-phase refrigerant flows into the pipe 51 and is expanded and depressurized by the second heat source side decompression device 13 (for example, medium pressure). The liquid refrigerant or the two-phase refrigerant that has been expanded and depressurized by the second heat source side pressure reducing device 13 (for example, medium pressure) is connected to the inner pipe of the supercooling heat exchanger 10 by the outer pipe of the supercooling heat exchanger 10. Heat exchange with the flowing high-pressure liquid refrigerant results in a high-temperature gas refrigerant or a two-phase refrigerant with high dryness. The high-temperature gas refrigerant or the two-phase refrigerant having a high dryness flowing from the outer pipe of the supercooling heat exchanger 10 into the second heat source side branch refrigerant pipe 53 passes through the twelfth heat source side refrigerant pipe 32 to be an accumulator. 18 is injected.
 過冷却熱交換器10で過冷却され、第9の熱源側冷媒配管29に流入した高圧の液冷媒は、第1の熱源側減圧装置12で膨張及び減圧されて、減圧された(例えば、中圧の)液冷媒又は二相冷媒となる。減圧された液冷媒又は二相冷媒は、室外ユニット100から流出し、第1の連絡配管300を経由して、室内ユニット200に流入する。 The high-pressure liquid refrigerant that was supercooled by the supercooling heat exchanger 10 and flowed into the ninth heat source side refrigerant pipe 29 was expanded and depressurized by the first heat source side decompression device 12 to be depressurized (for example, (Pressure) liquid refrigerant or two-phase refrigerant. The decompressed liquid refrigerant or two-phase refrigerant flows out of the outdoor unit 100 and flows into the indoor unit 200 via the first connection pipe 300.
 室内ユニット200に流入した液冷媒又は二相冷媒は、第1の負荷側冷媒配管35を経由して負荷側減圧装置14に流入する。負荷側減圧装置14に流入した液冷媒又は二相冷媒は、負荷側減圧装置14で更に膨張及び減圧されて、低温低圧の二相冷媒となる。低温低圧の二相冷媒は、負荷側熱交換器16に流入し、図1の室内空間700における室内空気等の高温の媒体から熱を吸収することによって熱交換され、低温低圧の二相冷媒は蒸発ガス化されて、低温低圧の乾き度の高い二相冷媒又はガス冷媒となり、第2の負荷側冷媒配管36に流入する。第2の負荷側冷媒配管36に流入した、低温低圧の乾き度の高い二相冷媒又は低温低圧のガス冷媒は、室内ユニット200から流出し、第2の連絡配管400を経由して、室外ユニット100に流入する。室外ユニット100に流入した低温低圧の乾き度の高い二相冷媒又はガス冷媒は、第10の熱源側冷媒配管30、第1の冷媒流路切替装置6、第11の熱源側冷媒配管31、及び第12の熱源側冷媒配管32を経由して、アキュムレータ18に注入される。アキュムレータ18では、第12の熱源側冷媒配管32から注入された冷媒の液相成分が分離貯留され、低温低圧のガス冷媒は、アキュムレータ18から第13の熱源側冷媒配管33に流入し、圧縮機2に吸入される。圧縮機2に吸入された冷媒は圧縮されて、高温高圧のガス冷媒となり、圧縮機2から吐出される。空気調和装置1の冷房運転では以上のサイクルが繰り返される。 The liquid refrigerant or the two-phase refrigerant that has flowed into the indoor unit 200 flows into the load-side decompression device 14 via the first load-side refrigerant pipe 35. The liquid refrigerant or two-phase refrigerant that has flowed into the load-side decompression device 14 is further expanded and decompressed by the load-side decompression device 14 to become a low-temperature and low-pressure two-phase refrigerant. The low-temperature and low-pressure two-phase refrigerant flows into the load-side heat exchanger 16 and is heat-exchanged by absorbing heat from a high-temperature medium such as indoor air in the indoor space 700 of FIG. The gas is evaporated and becomes a two-phase refrigerant or gas refrigerant having a low temperature and low pressure and high dryness, and flows into the second load side refrigerant pipe 36. The low-temperature and low-pressure two-phase refrigerant or low-temperature and low-pressure gas refrigerant that has flowed into the second load-side refrigerant pipe 36 flows out of the indoor unit 200 and passes through the second connecting pipe 400 to the outdoor unit. 100 flows in. The low-temperature and low-pressure two-phase refrigerant or gas refrigerant flowing into the outdoor unit 100 includes a tenth heat source side refrigerant pipe 30, a first refrigerant flow switching device 6, an eleventh heat source side refrigerant pipe 31, and It is injected into the accumulator 18 via the twelfth heat source side refrigerant pipe 32. In the accumulator 18, the liquid phase component of the refrigerant injected from the twelfth heat source side refrigerant pipe 32 is separated and stored, and the low-temperature and low-pressure gas refrigerant flows into the thirteenth heat source side refrigerant pipe 33 from the accumulator 18, and the compressor 2 is inhaled. The refrigerant sucked into the compressor 2 is compressed to become a high-temperature and high-pressure gas refrigerant and is discharged from the compressor 2. In the cooling operation of the air conditioner 1, the above cycle is repeated.
 次に、第1の冷房運転モードにおける、本実施の形態1に係る空気調和装置1の制御装置90の制御処理について説明する。 Next, control processing of the control device 90 of the air-conditioning apparatus 1 according to Embodiment 1 in the first cooling operation mode will be described.
 制御装置90は、第1の冷媒流路切替装置6の内部の冷媒流路を、第2の熱源側冷媒配管22から第3の熱源側冷媒配管23に冷媒が流れ、第10の熱源側冷媒配管30から第11の熱源側冷媒配管31に冷媒が流れるように連通させる。また、制御装置90は、第2の冷媒流路切替装置7の内部の冷媒流路を、第5の熱源側冷媒配管25から第6の熱源側冷媒配管26に冷媒が流れるように連通させる。また、制御装置90は、終端部材7aが接続された第2の冷媒流路切替装置7の内部の冷媒流路を第12の熱源側冷媒配管32に連通させ、第12の熱源側冷媒配管32において、アキュムレータ18の流入口方向と逆方向に冷媒が逆流するのを防止している。また、制御装置90は、第7の熱源側冷媒配管27に設けられた流路切替弁55の冷媒流路を、第4のヘッダ主管88の側の第7の熱源側冷媒配管27から連結部材43の側の第7の熱源側冷媒配管27に冷媒が流れるように連通させる。 The control device 90 causes the refrigerant to flow through the refrigerant flow path inside the first refrigerant flow switching device 6 from the second heat source side refrigerant pipe 22 to the third heat source side refrigerant pipe 23, and the tenth heat source side refrigerant. The pipe 30 communicates with the eleventh heat source side refrigerant pipe 31 so that the refrigerant flows. In addition, the control device 90 causes the refrigerant flow path inside the second refrigerant flow switching device 7 to communicate so that the refrigerant flows from the fifth heat source side refrigerant pipe 25 to the sixth heat source side refrigerant pipe 26. In addition, the control device 90 causes the refrigerant flow path inside the second refrigerant flow switching device 7 to which the termination member 7a is connected to communicate with the twelfth heat source side refrigerant pipe 32, and the twelfth heat source side refrigerant pipe 32. The refrigerant is prevented from flowing backward in the direction opposite to the inlet direction of the accumulator 18. Further, the controller 90 connects the refrigerant flow path of the flow path switching valve 55 provided in the seventh heat source side refrigerant pipe 27 from the seventh heat source side refrigerant pipe 27 on the fourth header main pipe 88 side. The refrigerant is communicated with the seventh heat source side refrigerant pipe 27 on the 43 side so that the refrigerant flows.
 また、制御装置90は、電磁弁63を閉止し、第4の熱源側分岐冷媒配管61からレシーバ60に高圧の液冷媒が流入するのを遮断する制御を行う。また、制御装置90は、流量調整弁67を所定の開度(例えば、流量調整弁67の全開放状態の開度を1、閉止状態の開度を0とした場合、1/8程度の開度)に維持し、流量調整弁67で生じる圧力差によって、レシーバ60の貯蔵庫60aに貯蔵された冷媒が、第5の熱源側分岐冷媒配管65及び第12の熱源側冷媒配管32を経由して、アキュムレータ18に流れるように制御する。 Further, the control device 90 performs control to close the electromagnetic valve 63 and block the flow of high-pressure liquid refrigerant from the fourth heat source side branch refrigerant pipe 61 to the receiver 60. Further, the control device 90 opens the flow rate adjustment valve 67 to a predetermined opening degree (for example, when the fully open state opening degree of the flow rate adjustment valve 67 is 1 and the opening degree of the closed state is 0, the opening degree is about 1/8. And the refrigerant stored in the storage 60 a of the receiver 60 passes through the fifth heat source side branch refrigerant pipe 65 and the twelfth heat source side refrigerant pipe 32 due to the pressure difference generated by the flow rate adjustment valve 67. , Control to flow to the accumulator 18.
 以上のとおり、第1の冷房運転モードで空気調和装置1が駆動される場合は、冷房負荷が高く、冷凍サイクル回路において使用される冷媒量が多くなるため、レシーバ60に冷媒を貯蔵せず、レシーバ60に貯蔵された冷媒を冷凍サイクル回路に戻す制御が行われる。 As described above, when the air-conditioning apparatus 1 is driven in the first cooling operation mode, the cooling load is high and the amount of refrigerant used in the refrigeration cycle circuit is increased. Control is performed to return the refrigerant stored in the receiver 60 to the refrigeration cycle circuit.
 なお、制御装置90は、第2の圧力センサ71で検知された冷媒の吸入圧力から負荷側熱交換器16における飽和温度(蒸発温度)を演算する。制御装置90は、演算した蒸発温度から第4の温度センサ76で検知された冷媒温度を減算し、空気調和装置1の冷凍サイクル回路における過熱度を演算し、過熱度が所定の温度幅(例えば、5℃)となるように、負荷側減圧装置14の開度を制御する。また、制御装置90は、蒸発温度が目標温度となるように圧縮機2の運転周波数を制御する。蒸発温度の目標値は固定値(例えば、-30℃)としてもよいし、図1の室内空間700に室内温度センサ(図示せず)を配置し、室内温度センサで検知した温度と、利用者が設定する設定温度の差の最大値を制御装置90で演算することにより、制御装置90が目標温度を変更するように構成してもよい。 The control device 90 calculates the saturation temperature (evaporation temperature) in the load-side heat exchanger 16 from the refrigerant suction pressure detected by the second pressure sensor 71. The control device 90 subtracts the refrigerant temperature detected by the fourth temperature sensor 76 from the calculated evaporation temperature, calculates the degree of superheat in the refrigeration cycle circuit of the air conditioner 1, and the degree of superheat is a predetermined temperature range (for example, 5 ° C.), the opening degree of the load side decompression device 14 is controlled. Further, the control device 90 controls the operation frequency of the compressor 2 so that the evaporation temperature becomes the target temperature. The target value of the evaporation temperature may be a fixed value (for example, −30 ° C.), or an indoor temperature sensor (not shown) is arranged in the indoor space 700 of FIG. 1, and the temperature detected by the indoor temperature sensor and the user The control device 90 may be configured to change the target temperature by calculating the maximum value of the set temperature difference set by the control device 90.
 次に、本実施の形態1に係る空気調和装置1の第2の冷房運転モード(冷房中間負荷条件時の冷房運転モード)における冷凍サイクル回路の動作について説明する。「第2の冷房運転モード」とは、外気温度が、第1の冷房運転モードにおける外気温度の標準的な温度範囲の下限値未満(例えば、25℃未満)となっており、かつ、室内ユニット200の運転容量が標準的な運転容量の範囲の下限値未満(例えば、全運転容量の50%未満の運転容量)となっている場合(冷房中間負荷条件時)に、本実施の形態1に係る空気調和装置1で行われる冷房運転をいう。 Next, the operation of the refrigeration cycle circuit in the second cooling operation mode (the cooling operation mode under the cooling intermediate load condition) of the air-conditioning apparatus 1 according to Embodiment 1 will be described. The “second cooling operation mode” means that the outside air temperature is less than the lower limit (for example, less than 25 ° C.) of the standard temperature range of the outside air temperature in the first cooling operation mode, and the indoor unit In the case where 200 operating capacity is less than the lower limit value of the standard operating capacity range (for example, operating capacity less than 50% of the total operating capacity) (in the cooling intermediate load condition), the first embodiment is used. The cooling operation performed with the air conditioning apparatus 1 which concerns is said.
 図5は、本実施の形態1に係る空気調和装置1の第2の冷房運転モードにおける、冷媒の流れを示した概略的な冷媒回路図である。図5では、冷媒の流れ方向を実線の矢印で示している。 FIG. 5 is a schematic refrigerant circuit diagram showing a refrigerant flow in the second cooling operation mode of the air-conditioning apparatus 1 according to Embodiment 1. In FIG. 5, the flow direction of the refrigerant is indicated by solid arrows.
 第2の冷房運転モードでは、空気調和装置1は、圧縮機2から吐出され、油分離器4を経由し、第2の熱源側冷媒配管22に流入した高温高圧のガス冷媒が、第1の冷媒流路切替装置6、第3の熱源側冷媒配管23、第1のヘッダ主管81、及び複数の第1のヘッダ枝管82を経由して、熱源側熱交換器8の領域Aの部分のみに流入するように構成される。すなわち、第2の冷房運転モードでは、第2の熱源側冷媒配管22の分岐部22aから分岐した第5の熱源側冷媒配管25と連通する第2の冷媒流路切替装置7の内部の冷媒流路は、第2の冷媒流路切替装置7に接続された終端部材7aによって遮断されている。したがって、第2の冷房運転モードにおいては、第2の熱源側冷媒配管22に流入した高温高圧のガス冷媒は、熱源側熱交換器8の領域Bには流入しない構成となっている。その他の冷凍サイクル回路の動作は、第1の冷房運転モードにおける動作と同一である。 In the second cooling operation mode, the air conditioner 1 is discharged from the compressor 2, passes through the oil separator 4, and the high-temperature high-pressure gas refrigerant flowing into the second heat source side refrigerant pipe 22 is the first Only the region A of the heat source side heat exchanger 8 passes through the refrigerant flow switching device 6, the third heat source side refrigerant pipe 23, the first header main pipe 81, and the plurality of first header branch pipes 82. Configured to flow into. That is, in the second cooling operation mode, the refrigerant flow inside the second refrigerant flow switching device 7 that communicates with the fifth heat source side refrigerant pipe 25 branched from the branch portion 22a of the second heat source side refrigerant pipe 22. The path is blocked by a termination member 7 a connected to the second refrigerant flow switching device 7. Therefore, in the second cooling operation mode, the high-temperature and high-pressure gas refrigerant that has flowed into the second heat source side refrigerant pipe 22 does not flow into the region B of the heat source side heat exchanger 8. Other operations of the refrigeration cycle circuit are the same as those in the first cooling operation mode.
 次に、第2の冷房運転モードにおける、本実施の形態1に係る空気調和装置1の制御装置90の制御処理について説明する。 Next, control processing of the control device 90 of the air-conditioning apparatus 1 according to Embodiment 1 in the second cooling operation mode will be described.
 制御装置90は、第1の冷房運転モードと同様に、第1の冷媒流路切替装置6の内部の冷媒流路を、第2の熱源側冷媒配管22から第3の熱源側冷媒配管23に冷媒が流れ、第10の熱源側冷媒配管30から第11の熱源側冷媒配管31に冷媒が流れるように連通させる。また、上述したように、制御装置90は、終端部材7aが接続された第2の冷媒流路切替装置7の内部の冷媒流路を第5の熱源側冷媒配管25に連通させ、高温高圧のガス冷媒は、熱源側熱交換器8の領域Bには流入しないように制御する。 As in the first cooling operation mode, the control device 90 changes the refrigerant flow path in the first refrigerant flow switching device 6 from the second heat source side refrigerant pipe 22 to the third heat source side refrigerant pipe 23. The refrigerant flows and communicates so that the refrigerant flows from the tenth heat source side refrigerant pipe 30 to the eleventh heat source side refrigerant pipe 31. Further, as described above, the control device 90 causes the refrigerant flow path inside the second refrigerant flow switching device 7 to which the termination member 7a is connected to communicate with the fifth heat source side refrigerant pipe 25 so that the high temperature and high pressure Control is performed so that the gas refrigerant does not flow into the region B of the heat source side heat exchanger 8.
 また、制御装置90は、第7の熱源側冷媒配管27に設けられた流路切替弁55の冷媒流路を、第4のヘッダ主管88の側の第7の熱源側冷媒配管27から第3の熱源側分岐冷媒配管57に冷媒が流れるように連通させる。流路切替弁55の流路の切り替えによって、熱源側熱交換器8の領域Bに滞留する(寝込む)冷媒を、第2の熱源側分岐冷媒配管53、第3の熱源側分岐冷媒配管57、及び第12の熱源側冷媒配管32を経由して、アキュムレータ18に戻すことができる。したがって、第2の冷房運転モードにおいては、熱源側熱交換器8の領域Bに滞留する冷媒による高圧圧力の上昇(高止まり)を防止することができ、高圧圧力が低減することにより、圧縮機2の運転負荷が減少するため、空気調和装置1のエネルギー消費量を削減することができる。 Further, the control device 90 moves the refrigerant flow path of the flow path switching valve 55 provided in the seventh heat source side refrigerant pipe 27 from the seventh heat source side refrigerant pipe 27 to the third header main pipe 88 side. The heat source side branch refrigerant pipe 57 is communicated so that the refrigerant flows. By switching the flow path of the flow path switching valve 55, the refrigerant that stays (sleeps) in the region B of the heat source side heat exchanger 8 is changed to the second heat source side branch refrigerant pipe 53, the third heat source side branch refrigerant pipe 57, And it can return to the accumulator 18 via the 12th heat source side refrigerant | coolant piping 32. FIG. Therefore, in the second cooling operation mode, it is possible to prevent an increase in high pressure due to the refrigerant staying in the region B of the heat source side heat exchanger 8 (high stopping), and the compressor is reduced by reducing the high pressure. Therefore, the energy consumption of the air conditioner 1 can be reduced.
 なお、制御装置90における、圧縮機2の運転周波数の制御及び負荷側減圧装置14の開度の制御については、第1の冷房運転モードにおける制御処理と同一である。 The control of the operation frequency of the compressor 2 and the control of the opening degree of the load side pressure reducing device 14 in the control device 90 are the same as the control processing in the first cooling operation mode.
 次に、第2の冷房運転モードにおける、本実施の形態1に係る空気調和装置1の制御装置90による電磁弁63及び流量調整弁67の制御処理について図6を用いて説明する。図6は、本実施の形態1に係る空気調和装置1の制御装置90における、第2の冷房運転モードでの制御処理の一例を示すフローチャートである。電磁弁63及び流量調整弁67の制御処理の開始時は、空気調和装置1では第1の冷房運転モードでの冷房運転が行われているものとする。 Next, control processing of the electromagnetic valve 63 and the flow rate adjustment valve 67 by the control device 90 of the air-conditioning apparatus 1 according to Embodiment 1 in the second cooling operation mode will be described with reference to FIG. FIG. 6 is a flowchart illustrating an example of a control process in the second cooling operation mode in the control device 90 of the air-conditioning apparatus 1 according to Embodiment 1. It is assumed that the cooling operation in the first cooling operation mode is performed in the air conditioner 1 at the start of control processing of the electromagnetic valve 63 and the flow rate adjustment valve 67.
 ステップS11においては、第1の温度センサ73で検知される外気温度Tが、外気温度の標準的な温度範囲の下限値T0未満であるか否か、又は室内ユニット200の運転容量Vが標準的な運転容量の範囲の下限値V0未満であるか否かが制御装置90において判定される。例えば、外気温度の標準的な温度範囲の下限値T0は25℃に設定される。また、標準的な運転容量の範囲の下限値V0は全運転容量の50%に設定される。外気温度Tが下限値T0以上であるか、又は室内ユニット200の運転容量Vが下限値V0以上であると判定された場合は、第1の冷房運転モードでの運転が継続され、ステップS11の判定処理が定期的に(例えば、1時間に1回)行われる。 In step S11, whether or not the outside air temperature T detected by the first temperature sensor 73 is less than the lower limit value T0 of the standard temperature range of the outside air temperature, or the operating capacity V of the indoor unit 200 is standard. It is determined in control device 90 whether or not the lower limit value V0 of the range of the correct operating capacity. For example, the lower limit value T0 of the standard temperature range of the outside air temperature is set to 25 ° C. The lower limit value V0 of the standard operating capacity range is set to 50% of the total operating capacity. When it is determined that the outside air temperature T is equal to or higher than the lower limit value T0 or the operating capacity V of the indoor unit 200 is equal to or higher than the lower limit value V0, the operation in the first cooling operation mode is continued, The determination process is performed regularly (for example, once an hour).
 第1の温度センサ73で検知される外気温度Tが、外気温度の標準的な温度範囲の下限値T0未満であるか、又は室内ユニット200の運転容量Vが標準的な運転容量の範囲の下限値V0未満であると判定された場合、ステップS12においては、制御装置90は、電磁弁63を開放し、流量調整弁67を所定の開度で開放する。所定の開度は、レシーバ60への冷媒の流入量よりレシーバ60からの冷媒の流出量が少なくなる開度とし、流出管60cから冷媒が流出することにより、レシーバ60の貯蔵庫60aの冷媒の貯蔵量が減少することを防ぐことができる。例えば、流量調整弁67の開度は、流量調整弁67の全開放状態の開度を1、閉止状態の開度を0とした場合、1/8程度の開度にできる。また、第1の圧力センサ70により検知される圧力から演算された飽和温度(凝縮温度)から、第2の温度センサ74で検知される冷媒温度を減算することにより熱源側熱交換器8における過冷却度ΔTを演算し、過冷却度ΔTが所定の温度幅ΔT0(例えば、3℃)となるように、流量調整弁67の開度を制御する。ステップS12においては、電磁弁63を開放することによる冷媒の自重と、流量調整弁67の開放により流量調整弁67で生じる圧力差とによって、レシーバ60の貯蔵庫60aに冷媒を貯蔵することができる。 The outside temperature T detected by the first temperature sensor 73 is less than the lower limit value T0 of the standard temperature range of the outside temperature, or the operating capacity V of the indoor unit 200 is the lower limit of the standard operating capacity range. When it is determined that the value is less than the value V0, in step S12, the control device 90 opens the electromagnetic valve 63 and opens the flow rate adjustment valve 67 at a predetermined opening. The predetermined opening is an opening at which the amount of refrigerant flowing out from the receiver 60 is smaller than the amount of refrigerant flowing into the receiver 60. When the refrigerant flows out from the outflow pipe 60c, the refrigerant is stored in the storage 60a of the receiver 60. The amount can be prevented from decreasing. For example, the opening degree of the flow rate adjusting valve 67 can be set to about 1/8 when the opening degree of the flow rate adjusting valve 67 is 1 and the opening degree of the closed state is 0. In addition, the refrigerant temperature detected by the second temperature sensor 74 is subtracted from the saturation temperature (condensation temperature) calculated from the pressure detected by the first pressure sensor 70, thereby causing an excess in the heat source side heat exchanger 8. The degree of cooling ΔT is calculated, and the opening degree of the flow rate adjusting valve 67 is controlled so that the degree of supercooling ΔT becomes a predetermined temperature width ΔT0 (for example, 3 ° C.). In step S <b> 12, the refrigerant can be stored in the storage 60 a of the receiver 60 by the dead weight of the refrigerant by opening the electromagnetic valve 63 and the pressure difference generated in the flow rate adjustment valve 67 by opening the flow rate adjustment valve 67.
 ステップS13においては、制御装置90は、第1の圧力センサ70により検知される圧力から演算された飽和温度(凝縮温度)から、第2の温度センサ74で検知される冷媒温度を減算することにより、熱源側熱交換器8における過冷却度ΔTを演算する。 In step S13, the control device 90 subtracts the refrigerant temperature detected by the second temperature sensor 74 from the saturation temperature (condensation temperature) calculated from the pressure detected by the first pressure sensor 70. The degree of supercooling ΔT in the heat source side heat exchanger 8 is calculated.
 そして、熱源側熱交換器8における過冷却度ΔTが所定の温度幅ΔT0(例えば、3℃)未満であるか否かが制御装置90において判定される。すなわち、制御装置90は、熱源側熱交換器8における過冷却度ΔTによって、熱源側熱交換器8の領域Aの部分にある冷媒がどれだけ液冷媒となり、冷媒回路に余剰として存在するか判断する。過冷却度ΔTが大きければ大きいほど余剰な冷媒が冷媒回路の熱源側熱交換器8の領域Aの部分にあると判断できるため、この差が所定の値となるまで、電磁弁63、流量調整弁67の動作を維持する。なお、所定の温度幅ΔT0は、固定値でなくてもよい。例えば第1の温度センサ73で検知した外気温度Tの値が小さくなるにつれて、所定の温度幅ΔT0を小さくしてもよい。また、室内ユニット200の運転容量が小さくなるにつれて所定の温度幅ΔT0を小さくしてもよい。 Then, the control device 90 determines whether or not the degree of supercooling ΔT in the heat source side heat exchanger 8 is less than a predetermined temperature range ΔT0 (for example, 3 ° C.). That is, the control device 90 determines how much the refrigerant in the region A of the heat source side heat exchanger 8 becomes liquid refrigerant and exists in the refrigerant circuit as a surplus, based on the degree of supercooling ΔT in the heat source side heat exchanger 8. To do. Since it can be determined that the larger the degree of supercooling ΔT is, the more excess refrigerant is in the region A of the heat source side heat exchanger 8 of the refrigerant circuit, the electromagnetic valve 63 and the flow rate adjustment until this difference reaches a predetermined value. The operation of the valve 67 is maintained. The predetermined temperature range ΔT0 may not be a fixed value. For example, the predetermined temperature range ΔT0 may be decreased as the value of the outside air temperature T detected by the first temperature sensor 73 decreases. Further, the predetermined temperature range ΔT0 may be decreased as the operating capacity of the indoor unit 200 decreases.
 ステップS13において過冷却度ΔTが所定の温度幅ΔT0以上であると判定された場合は、電磁弁63は開放のまま維持されており、流量調整弁67は所定の開度で開放のまま維持されている。ステップS15では、第1の温度センサ73で検知される外気温度Tが、外気温度の標準的な温度範囲の下限値T0未満であるか否か、又は室内ユニット200の運転容量Vが標準的な運転容量の範囲の下限値V0未満であるか否かが制御装置90において判定される。第1の温度センサ73で検知される外気温度Tが、外気温度の標準的な温度範囲の下限値T0未満であるか、又は室内ユニット200の運転容量Vが標準的な運転容量の範囲の下限値V0未満であると判定された場合には、制御装置90ではステップS13の判定処理が再度行われる。第1の温度センサ73で検知される外気温度Tが、外気温度の標準的な温度範囲の下限値T0以上であるか、又は室内ユニット200の運転容量Vが標準的な運転容量の範囲の下限値V0以上であると判定された場合には、ステップS17において、制御装置90は、電磁弁63を閉止し、流量調整弁67を所定の開度で開放し、冷房運転は第1の冷房モードとなり、制御処理は終了する。 When it is determined in step S13 that the degree of supercooling ΔT is equal to or greater than the predetermined temperature range ΔT0, the electromagnetic valve 63 is maintained open and the flow rate adjustment valve 67 is maintained open at a predetermined opening. ing. In step S15, whether or not the outside air temperature T detected by the first temperature sensor 73 is less than the lower limit value T0 of the standard temperature range of the outside air temperature, or the operating capacity V of the indoor unit 200 is standard. It is determined in the control device 90 whether or not the lower limit value V0 of the operating capacity range. The outside temperature T detected by the first temperature sensor 73 is less than the lower limit value T0 of the standard temperature range of the outside temperature, or the operating capacity V of the indoor unit 200 is the lower limit of the standard operating capacity range. If it is determined that the value is less than the value V0, the control device 90 performs the determination process in step S13 again. The outside temperature T detected by the first temperature sensor 73 is not less than the lower limit value T0 of the standard temperature range of the outside temperature, or the operating capacity V of the indoor unit 200 is the lower limit of the standard operating capacity range. If it is determined that the value is equal to or greater than V0, in step S17, the control device 90 closes the electromagnetic valve 63, opens the flow rate adjustment valve 67 at a predetermined opening degree, and the cooling operation is performed in the first cooling mode. Thus, the control process ends.
 ステップS13において過冷却度ΔTが所定の温度幅ΔT0未満であると判定された場合は、制御装置90は、ステップS14において、電磁弁63を閉止し、流量調整弁67を閉止し、レシーバ60の貯蔵庫60aに冷媒を閉じ込める。なお、ステップS14の制御処理の時点で、熱源側熱交換器8の領域Aの部分を流れる冷媒量は、適切な量となっている。 When it is determined in step S13 that the degree of supercooling ΔT is less than the predetermined temperature range ΔT0, the controller 90 closes the electromagnetic valve 63, closes the flow rate adjustment valve 67, and closes the receiver 60 in step S14. The refrigerant is confined in the storage 60a. At the time of the control process in step S14, the amount of refrigerant flowing through the area A of the heat source side heat exchanger 8 is an appropriate amount.
 ステップS16では、第1の温度センサ73で検知される外気温度Tが、外気温度の標準的な温度範囲の下限値T0未満であるか否か、又は室内ユニット200の運転容量Vが標準的な運転容量の範囲の下限値V0未満であるか否かが制御装置90において判定される。第1の温度センサ73で検知される外気温度Tが、外気温度の標準的な温度範囲の下限値T0未満であるか、又は室内ユニット200の運転容量Vが標準的な運転容量の範囲の下限値V0未満であると判定された場合には、制御装置90は、電磁弁63を閉止し、流量調整弁67を閉止した状態を維持し、ステップS16の判定処理が再度行われる。第1の温度センサ73で検知される外気温度Tが、外気温度の標準的な温度範囲の下限値T0以上であるか、又は室内ユニット200の運転容量Vが標準的な運転容量の範囲の下限値V0以上であると判定された場合には、ステップS17において、制御装置90は、電磁弁63を閉止し、流量調整弁67を所定の開度で開放し、冷房運転は第1の冷房モードとなり、制御処理は終了する。 In step S16, whether or not the outside air temperature T detected by the first temperature sensor 73 is less than the lower limit value T0 of the standard temperature range of the outside air temperature, or the operating capacity V of the indoor unit 200 is standard. It is determined in the control device 90 whether or not the lower limit value V0 of the operating capacity range. The outside temperature T detected by the first temperature sensor 73 is less than the lower limit value T0 of the standard temperature range of the outside temperature, or the operating capacity V of the indoor unit 200 is the lower limit of the standard operating capacity range. When it is determined that the value is less than the value V0, the control device 90 closes the electromagnetic valve 63 and maintains the flow rate adjustment valve 67, and the determination process of step S16 is performed again. The outside temperature T detected by the first temperature sensor 73 is not less than the lower limit value T0 of the standard temperature range of the outside temperature, or the operating capacity V of the indoor unit 200 is the lower limit of the standard operating capacity range. If it is determined that the value is equal to or greater than V0, in step S17, the control device 90 closes the electromagnetic valve 63, opens the flow rate adjustment valve 67 at a predetermined opening degree, and the cooling operation is performed in the first cooling mode. Thus, the control process ends.
 次に、本実施の形態1による本発明の効果を説明する。 Next, the effect of the present invention according to the first embodiment will be described.
 本実施の形態1の空気調和装置1は、冷媒を圧縮する圧縮機2、冷媒と外気との間で熱交換を行う複数の領域(例えば、領域A、領域B)に分割された熱源側熱交換器8、各々の複数の領域(例えば、領域A、領域B)に分割された熱源側熱交換器8を通る冷媒の流れ方向を変更する冷媒流路切替装置(第1の冷媒流路切替装置6、第2の冷媒流路切替装置7)、冷媒を減圧する減圧装置(第1の熱源側減圧装置12、負荷側減圧装置14)、及び冷媒と室内空間700との間で熱交換を行う負荷側熱交換器16を配管接続して冷媒を循環させる冷凍サイクル回路と、熱源側熱交換器8と負荷側熱交換器16との間の冷媒配管(第8の熱源側冷媒配管28)から分岐し、圧縮機2の吸入側に繋がる冷媒配管(第4の熱源側分岐冷媒配管61、第5の熱源側分岐冷媒配管65)の途中に設けられた、冷媒を貯蔵するレシーバ60と、熱源側熱交換器8と負荷側熱交換器16との間の冷媒配管(第8の熱源側冷媒配管28)から分岐し、レシーバ60の流入管60b側に接続される冷媒配管(第4の熱源側分岐冷媒配管61)に設けられた第1の弁(例えば、電磁弁63)と、レシーバ60の流出口側に接続され、圧縮機2の吸入側に繋がる冷媒配管(第5の熱源側分岐冷媒配管65)に設けられた第2の弁(例えば、流量調整弁67)と、負荷側熱交換器16の冷房負荷が予め定めた値より小さいとき、熱源側熱交換器8のうちの下側熱源側熱交換器(熱源側熱交換器8の領域Aの部分)のみを使用し、レシーバ60に冷媒を貯蔵する制御を行う制御装置90とを備える。 The air conditioner 1 according to the first embodiment includes a compressor 2 that compresses a refrigerant, and heat source side heat that is divided into a plurality of regions (for example, a region A and a region B) that perform heat exchange between the refrigerant and outside air. Exchanger 8, a refrigerant flow switching device (first refrigerant flow switching) that changes the flow direction of refrigerant passing through the heat source side heat exchanger 8 divided into a plurality of regions (for example, region A and region B). Device 6, second refrigerant flow switching device 7), a decompression device (first heat source side decompression device 12, load side decompression device 14) for decompressing the refrigerant, and heat exchange between the refrigerant and the indoor space 700. Refrigeration cycle circuit for circulating the refrigerant by connecting the load side heat exchanger 16 to be piped, and refrigerant pipe between the heat source side heat exchanger 8 and the load side heat exchanger 16 (eighth heat source side refrigerant pipe 28) From the refrigerant pipe connected to the suction side of the compressor 2 (fourth heat source side branch refrigerant pipe 61 The refrigerant | coolant piping (8th heat source side) between the receiver 60 provided in the middle of the 5th heat source side branch refrigerant | coolant piping 65) and the heat source side heat exchanger 8 and the load side heat exchanger 16 is provided. A first valve (for example, an electromagnetic valve 63) provided in a refrigerant pipe (fourth heat source side branch refrigerant pipe 61) branched from the refrigerant pipe 28) and connected to the inflow pipe 60b side of the receiver 60; A second valve (for example, a flow rate adjusting valve 67) provided in a refrigerant pipe (fifth heat source side branch refrigerant pipe 65) connected to the outlet side of the compressor 60 and connected to the suction side of the compressor 2; When the cooling load of the heat exchanger 16 is smaller than a predetermined value, only the lower heat source side heat exchanger (part of the region A of the heat source side heat exchanger 8) of the heat source side heat exchanger 8 is used. The receiver 60 includes a control device 90 that performs control for storing the refrigerant.
 本実施の形態1の構成によれば、制御装置90が、外気温度及び室内ユニット200の容量から、冷房負荷が小さいと判断した場合、かつ熱源側熱交換器8の冷媒量が多いと判断した場合に、電磁弁63を開、流量調整弁67を所定の開度とすることでレシーバ60の貯蔵庫60aに冷媒を貯蔵することができる。本実施の形態1の空気調和装置1では、レシーバ60の貯蔵庫60aに冷媒を貯蔵することにより、熱源側熱交換器8の冷媒量を適正にし、高圧を減少させて圧縮機2の運転負荷(入力)を低減することができる。したがって、本実施の形態1の構成によれば、空気調和装置1の効率の良い運転が可能となり、空気調和装置1のエネルギー消費量の削減を図ることが可能な空気調和装置1を提供できる。また、負荷側熱交換器16の冷房負荷が予め定めた値より小さいとき、熱源側熱交換器8の領域Aの部分のみを使用することで、冷媒が流れる熱源側熱交換器8の体積を減少させることができる。 According to the configuration of the first embodiment, the control device 90 determines that the cooling load is small from the outside air temperature and the capacity of the indoor unit 200, and also determines that the amount of refrigerant in the heat source side heat exchanger 8 is large. In this case, the refrigerant can be stored in the storage 60 a of the receiver 60 by opening the electromagnetic valve 63 and setting the flow rate adjustment valve 67 to a predetermined opening degree. In the air conditioner 1 of the first embodiment, by storing the refrigerant in the storage 60a of the receiver 60, the refrigerant amount of the heat source side heat exchanger 8 is made appropriate, the high pressure is reduced, and the operating load of the compressor 2 ( Input) can be reduced. Therefore, according to the configuration of the first embodiment, the air conditioner 1 can be operated efficiently, and the air conditioner 1 that can reduce the energy consumption of the air conditioner 1 can be provided. Further, when the cooling load of the load side heat exchanger 16 is smaller than a predetermined value, the volume of the heat source side heat exchanger 8 through which the refrigerant flows can be reduced by using only the area A of the heat source side heat exchanger 8. Can be reduced.
 また、本実施の形態1の空気調和装置1において、制御装置90は、負荷側熱交換器16の冷房負荷が予め定めた値より小さいときに、第1の弁(例えば、電磁弁63)を開放し、第2の弁(例えば、流量調整弁67)を予め定めた開度に開放するものである。上述の構成によれば、冷媒の自重と、レシーバ60と圧縮機2の吸入側との間の圧力差により、熱源側熱交換器8から流れる液冷媒をレシーバ60に貯蔵することができる。 Moreover, in the air conditioning apparatus 1 of the first embodiment, the control device 90 sets the first valve (for example, the electromagnetic valve 63) when the cooling load of the load-side heat exchanger 16 is smaller than a predetermined value. The second valve (for example, the flow rate adjusting valve 67) is opened to a predetermined opening degree. According to the above-described configuration, the liquid refrigerant flowing from the heat source side heat exchanger 8 can be stored in the receiver 60 due to the weight of the refrigerant and the pressure difference between the receiver 60 and the suction side of the compressor 2.
実施の形態2.
 本発明の実施の形態2では、上述の実施の形態1に係る空気調和装置1における冷房運転モードの変形例である第3の冷房運転モードについて説明する。なお、本発明の実施の形態2に係る空気調和装置1の構成及び冷凍サイクル回路の動作については、上述の実施の形態1の第1の冷房運転モードのものと同一である。
Embodiment 2. FIG.
In the second embodiment of the present invention, a third cooling operation mode that is a modification of the cooling operation mode in the air-conditioning apparatus 1 according to the above-described first embodiment will be described. The configuration of the air conditioner 1 and the operation of the refrigeration cycle circuit according to Embodiment 2 of the present invention are the same as those in the first cooling operation mode of Embodiment 1 described above.
 「第3の冷房運転モード」とは、外気温度が、第1の冷房運転モードにおける外気温度の標準的な温度範囲の上限値(例えば、43℃)を超えており、かつ、高圧圧力が標準的な高圧圧力の範囲の上限値(例えば、36kg/cm)を超える場合に、本実施の形態1に係る空気調和装置1で行われる冷房運転をいう。 In the “third cooling operation mode”, the outside air temperature exceeds the upper limit (for example, 43 ° C.) of the standard temperature range of the outside air temperature in the first cooling operation mode, and the high pressure is standard. The cooling operation performed by the air-conditioning apparatus 1 according to Embodiment 1 when the upper limit (for example, 36 kg / cm 2 ) of the range of a typical high pressure is exceeded.
 第3の冷房運転モードにおける、本実施の形態2に係る空気調和装置1の制御装置90の制御処理について説明する。なお、制御装置90における、第1の冷媒流路切替装置6、第2の冷媒流路切替装置7、流路切替弁55、圧縮機2の運転周波数、及び負荷側減圧装置14の開度の制御については、第1の冷房運転モードにおける制御処理と同一である。 A control process of the control device 90 of the air-conditioning apparatus 1 according to Embodiment 2 in the third cooling operation mode will be described. In the control device 90, the first refrigerant flow switching device 6, the second refrigerant flow switching device 7, the flow switching valve 55, the operating frequency of the compressor 2, and the opening degree of the load side pressure reducing device 14 are set. The control is the same as the control process in the first cooling operation mode.
 以下に、第3の冷房運転モードにおける、本実施の形態2に係る空気調和装置1の制御装置90の電磁弁63及び流量調整弁67の制御処理について図7を用いて説明する。図7は、本実施の形態2に係る空気調和装置1の制御装置90における、第3の冷房運転モードでの制御処理の一例を示すフローチャートである。なお、制御装置90による制御処理の開始時は、空気調和装置1では第1の冷房運転モードでの冷房運転が行われているものとする。 Hereinafter, control processing of the electromagnetic valve 63 and the flow rate adjustment valve 67 of the control device 90 of the air-conditioning apparatus 1 according to Embodiment 2 in the third cooling operation mode will be described with reference to FIG. FIG. 7 is a flowchart illustrating an example of a control process in the third cooling operation mode in the control device 90 of the air-conditioning apparatus 1 according to Embodiment 2. It is assumed that the cooling operation in the first cooling operation mode is performed in the air conditioner 1 when the control process by the control device 90 is started.
 ステップS21においては、第1の温度センサ73で検知される外気温度Tが、外気温度の標準的な温度範囲の上限値T1を超えるか否か、及び第1の圧力センサ70で検知される高圧圧力Pが、標準的な高圧圧力の範囲の上限値P1を超えるか否かが制御装置90において判定される。例えば、外気温度の標準的な温度範囲の上限値T1は43℃に設定される。また、標準的な高圧圧力の範囲の上限値P1は36kg/cmに設定される。外気温度Tが上限値T1以下であり、高圧圧力Pが上限値P1以下であると判定された場合は、第1の冷房運転モードでの運転が継続され、ステップS21の判定処理が定期的に(例えば、1時間に1回)行われる。 In step S21, whether or not the outside air temperature T detected by the first temperature sensor 73 exceeds the upper limit value T1 of the standard temperature range of the outside air temperature, and the high pressure detected by the first pressure sensor 70. The controller 90 determines whether or not the pressure P exceeds the upper limit value P1 of the standard high pressure range. For example, the upper limit value T1 of the standard temperature range of the outside air temperature is set to 43 ° C. The upper limit value P1 of the standard high pressure range is set to 36 kg / cm 2 . When it is determined that the outside air temperature T is equal to or lower than the upper limit value T1 and the high pressure P is equal to or lower than the upper limit value P1, the operation in the first cooling operation mode is continued, and the determination process in step S21 is periodically performed. (For example, once an hour).
 第1の温度センサ73で検知される外気温度Tが、外気温度の標準的な温度範囲の上限値T1を超え、及び第1の圧力センサ70で検知される高圧圧力Pが、標準的な高圧圧力の範囲の上限値P1を超えると判定された場合は、ステップS22において、制御装置90は、電磁弁63を開放し、流量調整弁67を所定の開度で開放する。所定の開度は、レシーバ60への冷媒の流入量よりレシーバ60からの冷媒の流出量が少なくなる開度とし、流出管60cから冷媒が流出することにより、レシーバ60の貯蔵庫60aの冷媒の貯蔵量が減少することを防ぐ。例えば、流量調整弁67の開度は、流量調整弁67の全開放状態の開度を1、閉止状態の開度を0とした場合、1/8程度の開度にできる。また、第1の圧力センサ70により検知される高圧圧力の値が上限値P1以下に低減するように、流量調整弁67の開度を調整することができる。ステップS22においては、電磁弁63を開放することによる冷媒の自重と、流量調整弁67の開放により流量調整弁67で生じる圧力差とによって、レシーバ60の貯蔵庫60aに冷媒を貯蔵することができる。 The outside temperature T detected by the first temperature sensor 73 exceeds the upper limit value T1 of the standard temperature range of the outside temperature, and the high pressure P detected by the first pressure sensor 70 is the standard high pressure. If it is determined that the upper limit value P1 of the pressure range is exceeded, in step S22, the control device 90 opens the electromagnetic valve 63 and opens the flow rate adjustment valve 67 at a predetermined opening. The predetermined opening is an opening at which the amount of refrigerant flowing out from the receiver 60 is smaller than the amount of refrigerant flowing into the receiver 60. When the refrigerant flows out from the outflow pipe 60c, the refrigerant is stored in the storage 60a of the receiver 60. Prevent the amount from decreasing. For example, the opening degree of the flow rate adjusting valve 67 can be set to about 1/8 when the opening degree of the flow rate adjusting valve 67 is 1 and the opening degree of the closed state is 0. Further, the opening degree of the flow rate adjustment valve 67 can be adjusted so that the value of the high pressure detected by the first pressure sensor 70 is reduced to the upper limit value P1 or less. In step S <b> 22, the refrigerant can be stored in the storage 60 a of the receiver 60 by the dead weight of the refrigerant by opening the electromagnetic valve 63 and the pressure difference generated in the flow rate adjustment valve 67 by opening the flow rate adjustment valve 67.
 ステップS23においては、第1の圧力センサ70で検知される高圧圧力Pが、標準的な高圧圧力の範囲の上限値P1以下となるか否かが制御装置90において判定される。第1の圧力センサ70で検知される高圧圧力Pが、標準的な高圧圧力の範囲の上限値P1を超えると判定された場合、制御装置90ではステップS23の判定処理が定期的に行われる。 In step S23, the controller 90 determines whether or not the high pressure P detected by the first pressure sensor 70 is equal to or lower than the upper limit value P1 of the standard high pressure range. When it is determined that the high pressure P detected by the first pressure sensor 70 exceeds the upper limit value P1 of the standard high pressure range, the control device 90 periodically performs the determination process in step S23.
 第1の圧力センサ70で検知される高圧圧力Pが、標準的な高圧圧力の範囲の上限値P1以下であると判定された場合、ステップS24において、制御装置90は、電磁弁63を閉止し、流量調整弁67を閉止し、レシーバ60の貯蔵庫60aに冷媒を閉じ込める。 When it is determined that the high pressure P detected by the first pressure sensor 70 is equal to or lower than the upper limit value P1 of the standard high pressure range, in step S24, the control device 90 closes the electromagnetic valve 63. The flow regulating valve 67 is closed and the refrigerant is confined in the storage 60 a of the receiver 60.
 ステップS25においては、第1の圧力センサ70で検知される高圧圧力Pが、標準的な高圧圧力の範囲の上限値P1以下となるか否かが制御装置90において判定される。第1の圧力センサ70で検知される高圧圧力Pが、標準的な高圧圧力の範囲の上限値P1を超えると判定された場合、制御装置90ではステップS22の制御処理を行い、電磁弁63を開放し、流量調整弁67を所定の開度で開放する。 In step S25, the controller 90 determines whether or not the high pressure P detected by the first pressure sensor 70 is equal to or lower than the upper limit value P1 of the standard high pressure range. When it is determined that the high pressure P detected by the first pressure sensor 70 exceeds the upper limit value P1 of the standard high pressure range, the control device 90 performs the control process of step S22 and sets the electromagnetic valve 63. The flow control valve 67 is opened at a predetermined opening.
 一方、ステップS25の判定が「Yes」の場合は、ステップS26において、第1の温度センサ73で検知される外気温度Tが、外気温度の標準的な温度範囲の上限値T1を超えるか否かが制御装置90において判定される。第1の温度センサ73で検知される外気温度Tが、外気温度の標準的な温度範囲の上限値T1を超えると判定された場合、制御装置90は、電磁弁63を閉止し、流量調整弁67を閉止したまま維持し、ステップS25の判定処理が定期的に行われる。第1の温度センサ73で検知される外気温度Tが、外気温度の標準的な温度範囲の上限値T1以下であると判定された場合には、ステップS27において、制御装置90は、電磁弁63を閉止し、流量調整弁67を所定の開度で開放し、冷房運転は第1の冷房モードとなり、制御処理は終了する。 On the other hand, if the determination in step S25 is “Yes”, whether or not the outside temperature T detected by the first temperature sensor 73 exceeds the upper limit value T1 of the standard temperature range of the outside temperature in step S26. Is determined by the control device 90. When it is determined that the outside air temperature T detected by the first temperature sensor 73 exceeds the upper limit value T1 of the standard temperature range of the outside air temperature, the control device 90 closes the electromagnetic valve 63 and the flow rate adjusting valve. 67 is kept closed, and the determination process in step S25 is periodically performed. When it is determined that the outside air temperature T detected by the first temperature sensor 73 is equal to or lower than the upper limit value T1 of the standard temperature range of the outside air temperature, in step S27, the control device 90 causes the electromagnetic valve 63 to Is closed, the flow rate adjustment valve 67 is opened at a predetermined opening, the cooling operation is in the first cooling mode, and the control process is terminated.
 以上に説明したように、本実施の形態2の空気調和装置1における、制御装置90は、負荷側熱交換器16に冷房負荷があり、外気温度が予め定めた値より高いとき、レシーバ60に冷媒を貯蔵する制御を行うものである。本実施の形態2の構成によれば、制御装置90が、第1の温度センサ73による外気温度の情報及び第1の圧力センサ70による高圧圧力の情報により、高圧圧力の抑制が必要と判断した場合、電磁弁63を開、流量調整弁67を所定の開度とすることでレシーバ60の貯蔵庫60aに冷媒を貯蔵することが出来る。したがって、本実施の形態2によれば、熱源側熱交換器8の冷媒量を減少させ、高圧上昇を抑制し、高圧圧力異常(例えば、38.5kg/cm以上となる圧力)で空気調和装置1が異常停止することを抑制することができる。 As described above, the control device 90 in the air-conditioning apparatus 1 according to the second embodiment has the cooling load on the load side heat exchanger 16 and the receiver 60 receives the air temperature when the outside air temperature is higher than a predetermined value. It controls to store the refrigerant. According to the configuration of the second embodiment, the control device 90 determines that suppression of the high pressure is necessary based on the information on the outside air temperature by the first temperature sensor 73 and the information on the high pressure by the first pressure sensor 70. In this case, the refrigerant can be stored in the storage 60 a of the receiver 60 by opening the electromagnetic valve 63 and setting the flow rate adjustment valve 67 to a predetermined opening. Therefore, according to the second embodiment, the amount of refrigerant in the heat source side heat exchanger 8 is reduced, an increase in high pressure is suppressed, and air conditioning is caused by a high pressure abnormality (for example, a pressure of 38.5 kg / cm 2 or more). The apparatus 1 can be prevented from abnormally stopping.
実施の形態3.
 本発明の実施の形態3では、上述の実施の形態1に係る空気調和装置1における暖房運転モードについて説明する。図8は、本実施の形態3に係る空気調和装置1の暖房運転モードにおける、冷媒の流れを示した概略的な冷媒回路図である。図8では、冷媒の流れ方向を実線の矢印で示している。
Embodiment 3 FIG.
In Embodiment 3 of the present invention, a heating operation mode in the air-conditioning apparatus 1 according to Embodiment 1 described above will be described. FIG. 8 is a schematic refrigerant circuit diagram illustrating a refrigerant flow in the heating operation mode of the air-conditioning apparatus 1 according to Embodiment 3. In FIG. 8, the flow direction of the refrigerant is indicated by solid line arrows.
 本実施の形態3に係る空気調和装置1の暖房運転時の冷凍サイクル回路の動作の一例について図8を用いて説明する。 An example of the operation of the refrigeration cycle circuit during the heating operation of the air-conditioning apparatus 1 according to Embodiment 3 will be described with reference to FIG.
 圧縮機2が低温低圧の冷媒を吸入して圧縮し、高温高圧のガス冷媒を吐出する。圧縮機2から吐出された高温高圧のガス冷媒は、第1の冷媒流路切替装置6を通って室外ユニット100から室内ユニット200に流入する。室内ユニット200に流入した冷媒は室内空間700に放熱しながら凝縮液化し、高圧の液冷媒となる。高圧の液冷媒は負荷側減圧装置14を通過するときに減圧膨張させられて、低温低圧の(気液)二相冷媒となる。二相冷媒は室内ユニット200から室外ユニット100へ流入する。室外ユニット100へ流入した冷媒は、蒸発器として機能する熱源側熱交換器8(領域Aと領域Bとの両方を含む)に流入する。 Compressor 2 sucks and compresses low-temperature and low-pressure refrigerant and discharges high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows from the outdoor unit 100 into the indoor unit 200 through the first refrigerant flow switching device 6. The refrigerant flowing into the indoor unit 200 is condensed and liquefied while dissipating heat to the indoor space 700, and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is decompressed and expanded when passing through the load-side decompression device 14, and becomes a low-temperature and low-pressure (gas-liquid) two-phase refrigerant. The two-phase refrigerant flows from the indoor unit 200 to the outdoor unit 100. The refrigerant that has flowed into the outdoor unit 100 flows into the heat source side heat exchanger 8 (including both the region A and the region B) that functions as an evaporator.
 熱源側熱交換器8に流入した冷媒は、熱源側熱交換器8において外気から吸熱して、低温低圧のガス冷媒となる。熱源側熱交換器8から流出した低温低圧のガス冷媒は、第1の冷媒流路切替装置6、第2の冷媒流路切替装置7、及びアキュムレータ18を介して圧縮機2へ再度吸入される。 The refrigerant that has flowed into the heat source side heat exchanger 8 absorbs heat from the outside air in the heat source side heat exchanger 8, and becomes a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant that has flowed out of the heat source side heat exchanger 8 is again sucked into the compressor 2 via the first refrigerant flow switching device 6, the second refrigerant flow switching device 7, and the accumulator 18. .
 次に、暖房運転モードにおける、本実施の形態3に係る空気調和装置1の制御装置90の制御処理について説明する。 Next, control processing of the control device 90 of the air-conditioning apparatus 1 according to Embodiment 3 in the heating operation mode will be described.
 制御装置90は、第1の冷媒流路切替装置6の内部の冷媒流路を、第2の熱源側冷媒配管22から第10の熱源側冷媒配管30に冷媒が流れ、第3の熱源側冷媒配管23から第11の熱源側冷媒配管31に冷媒が流れるように連通させる。また、制御装置90は、第2の冷媒流路切替装置7の内部の冷媒流路を、第6の熱源側冷媒配管26から第12の熱源側冷媒配管32に冷媒が流れるように連通させる。また、制御装置90は、第7の熱源側冷媒配管27に設けられた流路切替弁55の冷媒流路を、第4のヘッダ主管88の側の第7の熱源側冷媒配管27から連結部材43の側の第7の熱源側冷媒配管27に冷媒が流れるように連通させる。また、制御装置90は、終端部材7aが接続された第2の冷媒流路切替装置7の内部の冷媒流路を第5の熱源側冷媒配管25に連通させ、第5の熱源側冷媒配管25における冷媒の流れを遮断している。 The control device 90 causes the refrigerant to flow through the refrigerant flow path inside the first refrigerant flow switching device 6 from the second heat source side refrigerant pipe 22 to the tenth heat source side refrigerant pipe 30, and thereby the third heat source side refrigerant. The pipe 23 is connected to the eleventh heat source side refrigerant pipe 31 so that the refrigerant flows. In addition, the control device 90 causes the refrigerant flow path inside the second refrigerant flow switching device 7 to communicate so that the refrigerant flows from the sixth heat source side refrigerant pipe 26 to the twelfth heat source side refrigerant pipe 32. Further, the controller 90 connects the refrigerant flow path of the flow path switching valve 55 provided in the seventh heat source side refrigerant pipe 27 from the seventh heat source side refrigerant pipe 27 on the fourth header main pipe 88 side. The refrigerant is communicated with the seventh heat source side refrigerant pipe 27 on the 43 side so that the refrigerant flows. In addition, the control device 90 causes the refrigerant flow path inside the second refrigerant flow switching device 7 to which the termination member 7a is connected to communicate with the fifth heat source side refrigerant pipe 25 to thereby provide a fifth heat source side refrigerant pipe 25. The refrigerant flow is blocked.
 また、制御装置90は、電磁弁63を開放し、流量調整弁67を全開放することによって、レシーバ60の流入管60b、レシーバ60の貯蔵庫60a、レシーバ60の流出管60cを通ってアキュムレータ18に冷媒を返す冷媒流路が形成する。すなわち、制御装置90は、電磁弁63を開放し、流量調整弁67を全開放することによって、負荷側熱交換器16を出て熱源側熱交換器8に向かう冷媒の一部を熱源側熱交換器8を介さずに、アキュムレータ18に冷媒を返す制御を行っている。 Further, the control device 90 opens the electromagnetic valve 63 and fully opens the flow rate adjustment valve 67, thereby passing the inflow pipe 60 b of the receiver 60, the storage 60 a of the receiver 60, and the outflow pipe 60 c of the receiver 60 to the accumulator 18. A refrigerant flow path for returning the refrigerant is formed. That is, the control device 90 opens the electromagnetic valve 63 and fully opens the flow rate adjustment valve 67, so that a part of the refrigerant that leaves the load side heat exchanger 16 and goes to the heat source side heat exchanger 8 is heated to the heat source side heat. Control is performed to return the refrigerant to the accumulator 18 without going through the exchanger 8.
 なお、制御装置90は、第1の圧力センサ70で検知された圧力から負荷側熱交換器16における飽和温度(凝縮温度)を演算する。制御装置90は、演算した凝縮温度から第3の温度センサ75で検知された冷媒温度を減算し、空気調和装置1の冷凍サイクル回路における過冷却度を演算し、過冷却度が所定の温度幅(例えば、5℃)となるように、負荷側減圧装置14の開度を制御する。また、制御装置90は、凝縮温度が目標温度となるように圧縮機2の運転周波数を制御する。凝縮温度の目標値は固定値(例えば、30℃)としてもよいし、図1の室内空間700に室内温度センサ(図示せず)を配置し、室内温度センサで検知した温度と、利用者が設定する設定温度の差の最大値を制御装置90で演算することにより、制御装置90が目標温度を変更するように構成してもよい。また、第2の熱源側減圧装置13は、開放していてもよいし、閉止していてもよい。 The control device 90 calculates a saturation temperature (condensation temperature) in the load-side heat exchanger 16 from the pressure detected by the first pressure sensor 70. The controller 90 subtracts the refrigerant temperature detected by the third temperature sensor 75 from the calculated condensation temperature, calculates the degree of supercooling in the refrigeration cycle circuit of the air conditioner 1, and the degree of supercooling is a predetermined temperature range. (For example, 5 degreeC) The opening degree of the load side decompression device 14 is controlled. Further, the control device 90 controls the operating frequency of the compressor 2 so that the condensation temperature becomes the target temperature. The target value of the condensation temperature may be a fixed value (for example, 30 ° C.), or an indoor temperature sensor (not shown) is arranged in the indoor space 700 of FIG. The controller 90 may be configured to change the target temperature by calculating the maximum value of the set temperature difference to be set by the controller 90. Moreover, the 2nd heat-source side decompression device 13 may be open | released and may be closed.
 以上に説明したとおり、本実施の形態3の空気調和装置1においては、制御装置90は、負荷側熱交換器16に暖房負荷があるとき、負荷側熱交換器16から出た冷媒の一部を、熱源側熱交換器8を通さずに、レシーバ60を介して圧縮機2に返す制御を行うものである。本実施の形態3によれば、熱源側熱交換器8を通ることによる圧力損失を減少させることで、低圧減少の抑制ができ、低圧減少による着霜や圧縮機2から吐出される循環量の減少を抑制することができる。 As described above, in the air-conditioning apparatus 1 of Embodiment 3, when the load-side heat exchanger 16 has a heating load, the control device 90 is a part of the refrigerant that has come out of the load-side heat exchanger 16. Is returned to the compressor 2 via the receiver 60 without passing through the heat source side heat exchanger 8. According to the third embodiment, the pressure loss due to passing through the heat source side heat exchanger 8 can be reduced, so that the low pressure reduction can be suppressed, frost formation due to the low pressure reduction and the circulation amount discharged from the compressor 2 can be suppressed. Reduction can be suppressed.
実施の形態4.
 本発明の実施の形態4では、上述の実施の形態1に係る空気調和装置1における室内空間700に冷媒が漏れた場合の冷媒回収モードについて説明する。なお、本発明の実施の形態4に係る空気調和装置1の構成及び冷凍サイクル回路の動作については、上述の実施の形態1の第1の冷房運転モードのものと同一である。
Embodiment 4 FIG.
In the fourth embodiment of the present invention, the refrigerant recovery mode when the refrigerant leaks into the indoor space 700 in the air-conditioning apparatus 1 according to the first embodiment described above will be described. Note that the configuration of the air-conditioning apparatus 1 and the operation of the refrigeration cycle circuit according to Embodiment 4 of the present invention are the same as those in the first cooling operation mode of Embodiment 1 described above.
 室内ユニット制御装置95が、室内空間700に冷媒が漏洩していること冷媒漏洩検知センサ78からの信号で検知した場合、伝送線98を介して制御装置90に冷媒漏洩の信号が送信される。 When the indoor unit control device 95 detects from the signal from the refrigerant leak detection sensor 78 that the refrigerant is leaking into the indoor space 700, a refrigerant leak signal is transmitted to the control device 90 via the transmission line 98.
 制御装置90は、室外ユニット100の第1の冷媒流路切替装置6及び第2の冷媒流路切替装置7を、圧縮機2から吐出された冷媒が熱源側熱交換器8に流入するように第1の冷房運転モードと同一の冷媒流路に切替える。制御装置90は、第7の熱源側冷媒配管27に設けられた流路切替弁55の冷媒流路を、第4のヘッダ主管88の側の第7の熱源側冷媒配管27から連結部材43の側の第7の熱源側冷媒配管27に冷媒が流れるように連通させる。 The control device 90 passes through the first refrigerant flow switching device 6 and the second refrigerant flow switching device 7 of the outdoor unit 100 so that the refrigerant discharged from the compressor 2 flows into the heat source side heat exchanger 8. Switch to the same refrigerant flow path as in the first cooling operation mode. The control device 90 moves the refrigerant flow path of the flow path switching valve 55 provided in the seventh heat source side refrigerant pipe 27 from the seventh heat source side refrigerant pipe 27 on the fourth header main pipe 88 side to the connection member 43. The refrigerant is communicated with the seventh heat source side refrigerant pipe 27 so that the refrigerant flows.
 制御装置90は、電磁弁63は開放し、流量調整弁67は所定の開度(例えば、流量調整弁67の全開放状態の開度を1、閉止状態の開度を0とした場合、1/8程度の開度)で固定する。また、制御装置90は、第1の圧力センサ70にて検知される圧力から演算される飽和温度(凝縮温度)から、第2の温度センサ74で検知される冷媒温度の差により、流量調整弁67の開度を変更するように構成できる。第1の熱源側減圧装置12は閉止する。負荷側減圧装置14は全開放とする。 The control device 90 opens the electromagnetic valve 63, and the flow rate adjustment valve 67 has a predetermined opening degree (for example, when the opening degree of the flow adjustment valve 67 is 1 and the opening degree of the closed state is 0, 1 / 8). Further, the control device 90 determines the flow rate adjustment valve based on the difference in the refrigerant temperature detected by the second temperature sensor 74 from the saturation temperature (condensation temperature) calculated from the pressure detected by the first pressure sensor 70. The opening degree of 67 can be changed. The first heat source side decompression device 12 is closed. The load side decompression device 14 is fully opened.
 冷媒回収モードでは、圧縮機2が低温低圧の冷媒を吸入して高温及び高圧のガス冷媒を吐出する。圧縮機2から吐出された高温高圧のガス冷媒は第1の冷媒流路切替装置6及び第2の冷媒流路切替装置7を経由して熱源側熱交換器8に流入する。第1の熱源側減圧装置12を閉止しているため、熱源側熱交換器8に冷媒が貯蔵されていく。室内ユニット200へ流入する冷媒はないため、室内ユニット200にある冷媒は室外ユニット100に回収される。また、室外ユニット100に回収された冷媒は、電磁弁63及びレシーバ60の流入管60bを経由してレシーバ60の貯蔵庫60aにも貯蔵される。 In the refrigerant recovery mode, the compressor 2 sucks low-temperature and low-pressure refrigerant and discharges high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the heat source side heat exchanger 8 via the first refrigerant flow switching device 6 and the second refrigerant flow switching device 7. Since the first heat source side decompression device 12 is closed, the refrigerant is stored in the heat source side heat exchanger 8. Since there is no refrigerant flowing into the indoor unit 200, the refrigerant in the indoor unit 200 is collected by the outdoor unit 100. Further, the refrigerant collected in the outdoor unit 100 is also stored in the storage 60 a of the receiver 60 via the electromagnetic valve 63 and the inflow pipe 60 b of the receiver 60.
 以上に説明したとおり、本実施の形態4の空気調和装置1において、制御装置90は、室内空間700で冷媒が漏洩していることを検知した場合、熱源側熱交換器8とレシーバ60との両方に冷媒を貯蔵する制御を行うものである。本実施の形態4の構成によれば、室内ユニット制御装置95が、冷媒漏洩検知センサ78から冷媒の漏洩を検知した場合、制御装置90は熱源側熱交換器8に加え、レシーバ60に冷媒を貯蔵することができる。したがって、本実施の形態4の構成によれば、冷媒回収モードにおいて、室外ユニット100で多くの冷媒を回収することが可能となり、室内空間700に流出する冷媒を減らすことが可能となる。 As described above, in the air-conditioning apparatus 1 according to the fourth embodiment, when the control device 90 detects that the refrigerant is leaking in the indoor space 700, the heat source side heat exchanger 8 and the receiver 60 Both are controlled to store the refrigerant. According to the configuration of the fourth embodiment, when the indoor unit control device 95 detects refrigerant leakage from the refrigerant leakage detection sensor 78, the control device 90 supplies the refrigerant to the receiver 60 in addition to the heat source side heat exchanger 8. Can be stored. Therefore, according to the configuration of the fourth embodiment, in the refrigerant recovery mode, it is possible to recover a large amount of refrigerant in the outdoor unit 100 and reduce the refrigerant flowing out into the indoor space 700.
その他の実施の形態.
 上述の実施の形態に限らず種々の変形が可能である。例えば、上述の実施の形態では、制御装置90の設置位置については特に限定するものではなく、例えば室外ユニット100であってもよいし、室内ユニット200であってもよい。また、上述の実施の形態の空気調和装置1は、2以上の制御装置90を有していてもよい。
Other embodiments.
The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the above-described embodiment, the installation position of the control device 90 is not particularly limited. For example, the outdoor unit 100 or the indoor unit 200 may be used. Moreover, the air conditioning apparatus 1 of the above-described embodiment may include two or more control devices 90.
 また、上述の実施の形態においては、制御装置90は、第1の冷房運転モード、第2の冷房運転モードのステップS17、又は第3の冷房運転モードのステップS27においては、電磁弁63を閉止するものとしたが、一定の期間、電磁弁63を開放するようにしてもよい。電磁弁63を開放すると、流量調整弁67で生じる圧力差が大きくなるため、レシーバ60の貯蔵庫60aに貯蔵された冷媒が、第5の熱源側分岐冷媒配管65及び第12の熱源側冷媒配管32を経由して、アキュムレータ18に流れる冷媒の流量を増加させることができる。 In the above-described embodiment, the control device 90 closes the electromagnetic valve 63 in step S17 in the first cooling operation mode, the second cooling operation mode, or step S27 in the third cooling operation mode. However, the electromagnetic valve 63 may be opened for a certain period. When the electromagnetic valve 63 is opened, the pressure difference generated by the flow rate adjustment valve 67 increases, so that the refrigerant stored in the storage 60 a of the receiver 60 is transferred to the fifth heat source side branch refrigerant pipe 65 and the twelfth heat source side refrigerant pipe 32. It is possible to increase the flow rate of the refrigerant flowing through the accumulator 18 via.
 また、上述の実施の形態は互いに組み合わせて用いることが可能である。 Further, the above-described embodiments can be used in combination with each other.
 1 空気調和装置、2 圧縮機、4 油分離器、6 第1の冷媒流路切替装置、7 第2の冷媒流路切替装置、7a 終端部材、8 熱源側熱交換器、10 過冷却熱交換器、12 第1の熱源側減圧装置、13 第2の熱源側減圧装置、14 負荷側減圧装置、16 負荷側熱交換器、18 アキュムレータ、20 制御装置、21 第1の熱源側冷媒配管、22 第2の熱源側冷媒配管、22a 第2の熱源側冷媒配管の分岐部、23 第3の熱源側冷媒配管、24 第4の熱源側冷媒配管、25 第5の熱源側冷媒配管、26 第6の熱源側冷媒配管、27 第7の熱源側冷媒配管、28 第8の熱源側冷媒配管、28a 第8の熱源側冷媒配管の分岐部、29 第9の熱源側冷媒配管、29a 第9の熱源側冷媒配管の分岐部、30 第10の熱源側冷媒配管、31 第11の熱源側冷媒配管、32 第12の熱源側冷媒配管、32a 第12の熱源側冷媒配管の第1の分岐部、32b 第12の熱源側冷媒配管の第2の分岐部、32c 第12の熱源側冷媒配管の第3の分岐部、33 第13の熱源側冷媒配管、35 第1の負荷側冷媒配管、36 第2の負荷側冷媒配管、41 逆止弁、43 連結部材、45a 第1のストレーナ、45b 第2のストレーナ、47a 第1の熱源側接続バルブ、47b 第2の熱源側接続バルブ、49a 第1の継手部、49b 第2の継手部、51 第1の熱源側分岐冷媒配管、53 第2の熱源側分岐冷媒配管、53a 分岐部、55 流路切替弁、57 第3の熱源側分岐冷媒配管、60 レシーバ、60a 貯蔵庫、60b 流入管、60c 流出管、60d 脚部、61 第4の熱源側分岐冷媒配管、63 電磁弁、65 第5の熱源側分岐冷媒配管、67 流量調整弁、70 第1の圧力センサ、71 第2の圧力センサ、73 第1の温度センサ、74 第2の温度センサ、75 第3の温度センサ、76 第4の温度センサ、78 冷媒漏洩検知センサ、81 第1のヘッダ主管、82 第1のヘッダ枝管、83 第2のヘッダ枝管、84 第2のヘッダ主管、85 第3のヘッダ主管、86 第3のヘッダ枝管、87 第4のヘッダ枝管、88 第4のヘッダ主管、90 制御装置、95 室内ユニット制御装置、98 伝送線、100 室外ユニット、200 室内ユニット、300 第1の連絡配管、400 第2の連絡配管、500 建物、600 室外空間、700 室内空間、800 床下配管。 1 air conditioner, 2 compressor, 4 oil separator, 6 first refrigerant flow switching device, 7 second refrigerant flow switching device, 7a termination member, 8 heat source side heat exchanger, 10 supercooling heat exchange 12, 1st heat source side pressure reducing device, 13 2nd heat source side pressure reducing device, 14 load side pressure reducing device, 16 load side heat exchanger, 18 accumulator, 20 control device, 21 1st heat source side refrigerant piping, 22 2nd heat source side refrigerant pipe, 22a Branch part of 2nd heat source side refrigerant pipe, 23 3rd heat source side refrigerant pipe, 24 4th heat source side refrigerant pipe, 25 5th heat source side refrigerant pipe, 26 6th Heat source side refrigerant piping, 27 seventh heat source side refrigerant piping, 28 eighth heat source side refrigerant piping, 28a branching portion of eighth heat source side refrigerant piping, 29 ninth heat source side refrigerant piping, 29a ninth heat source Branch of side refrigerant piping, 3 10th heat source side refrigerant pipe, 31 eleventh heat source side refrigerant pipe, 32 twelfth heat source side refrigerant pipe, 32a first branch portion of twelfth heat source side refrigerant pipe, 32b twelfth heat source side refrigerant pipe 2nd branch part, 32c 3rd branch part of 12th heat source side refrigerant pipe, 33 13th heat source side refrigerant pipe, 35 1st load side refrigerant pipe, 36 2nd load side refrigerant pipe, 41 reverse Stop valve, 43 connecting member, 45a first strainer, 45b second strainer, 47a first heat source side connection valve, 47b second heat source side connection valve, 49a first joint part, 49b second joint part , 51 1st heat source side branch refrigerant pipe, 53 2nd heat source side branch refrigerant pipe, 53a branching section, 55 flow path switching valve, 57 3rd heat source side branch refrigerant pipe, 60 receiver, 60a storage, 6 b Inflow pipe, 60c Outflow pipe, 60d Leg, 61 Fourth heat source side branch refrigerant pipe, 63 Solenoid valve, 65 Fifth heat source side branch refrigerant pipe, 67 Flow control valve, 70 First pressure sensor, 71st 2 pressure sensors, 73 first temperature sensor, 74 second temperature sensor, 75 third temperature sensor, 76 fourth temperature sensor, 78 refrigerant leakage detection sensor, 81 first header main pipe, 82 first Header branch pipe, 83 Second header branch pipe, 84 Second header main pipe, 85 Third header main pipe, 86 Third header branch pipe, 87 Fourth header branch pipe, 88 Fourth header main pipe, 90 Control device, 95 indoor unit control device, 98 transmission line, 100 outdoor unit, 200 indoor unit, 300 first communication piping, 400 second communication piping, 500 building, 6 00 outdoor space, 700 indoor space, 800 under floor piping.

Claims (5)

  1.  冷媒を圧縮する圧縮機、前記冷媒と外気との間で熱交換を行う複数の領域に分割された熱源側熱交換器、各々の前記複数の領域に分割された熱源側熱交換器を通る前記冷媒の流れ方向を変更する冷媒流路切替装置、前記冷媒を減圧する減圧装置、及び前記冷媒と室内空間との間で熱交換を行う負荷側熱交換器を配管接続して冷媒を循環させる冷凍サイクル回路と、
     前記熱源側熱交換器と前記負荷側熱交換器との間の冷媒配管から分岐し、前記圧縮機の吸入側に繋がる冷媒配管の途中に設けられた、前記冷媒を貯蔵するレシーバと、
     前記熱源側熱交換器と前記負荷側熱交換器との間の冷媒配管から分岐し、前記レシーバの流入口側に接続される冷媒配管に設けられた第1の弁と、
     前記レシーバの流出口側に接続され、前記圧縮機の吸入側に繋がる冷媒配管に設けられた第2の弁と、
     前記負荷側熱交換器の冷房負荷が予め定めた値より小さいとき、前記複数の領域に分割された熱源側熱交換器のうちの一部の熱源側熱交換器のみを使用し、前記レシーバに冷媒を貯蔵する制御を行う制御装置と
    を備える空気調和装置。
    The compressor that compresses the refrigerant, the heat source side heat exchanger that is divided into a plurality of regions that perform heat exchange between the refrigerant and the outside air, and the heat source side heat exchanger that is divided into the plurality of regions. A refrigerant flow switching device that changes the flow direction of the refrigerant, a decompression device that depressurizes the refrigerant, and a refrigeration that circulates the refrigerant by piping connection to a load-side heat exchanger that exchanges heat between the refrigerant and the indoor space A cycle circuit;
    A receiver for storing the refrigerant, which is branched from a refrigerant pipe between the heat source side heat exchanger and the load side heat exchanger and provided in the middle of the refrigerant pipe connected to the suction side of the compressor;
    A first valve provided in the refrigerant pipe branched from the refrigerant pipe between the heat source side heat exchanger and the load side heat exchanger and connected to the inlet side of the receiver;
    A second valve provided in a refrigerant pipe connected to the outlet side of the receiver and connected to the suction side of the compressor;
    When the cooling load of the load side heat exchanger is smaller than a predetermined value, only a part of the heat source side heat exchanger divided into the plurality of regions is used, and the receiver An air conditioning apparatus comprising: a control device that performs control for storing refrigerant.
  2.  前記制御装置は、前記負荷側熱交換器の冷房負荷が予め定めた値より小さいときに、前記第1の弁を開放し、前記第2の弁を予め定めた開度に開放するものである請求項1に記載の空気調和装置。 The control device opens the first valve and opens the second valve to a predetermined opening when a cooling load of the load-side heat exchanger is smaller than a predetermined value. The air conditioning apparatus according to claim 1.
  3.  前記制御装置は、前記負荷側熱交換器に冷房負荷があり、外気温度が予め定めた値より高いとき、前記レシーバに冷媒を貯蔵する制御を行う請求項1に記載の空気調和装置。 The air conditioner according to claim 1, wherein the control device performs control to store the refrigerant in the receiver when the load-side heat exchanger has a cooling load and an outside air temperature is higher than a predetermined value.
  4.  前記制御装置は、前記負荷側熱交換器に暖房負荷があるとき、前記負荷側熱交換器から出た冷媒の一部を、前記熱源側熱交換器を通さずに、前記レシーバを介して前記圧縮機に返す制御を行う請求項1に記載の空気調和装置。 When there is a heating load in the load side heat exchanger, the control device passes a part of the refrigerant from the load side heat exchanger through the receiver without passing through the heat source side heat exchanger. The air conditioning apparatus according to claim 1, wherein control for returning to the compressor is performed.
  5.  前記制御装置は、前記室内空間で前記冷媒が漏洩していることを検知した場合、前記熱源側熱交換器と前記レシーバとの両方に冷媒を貯蔵する制御を行う請求項1~4のいずれか一項に記載の空気調和装置。 5. The control device according to claim 1, wherein, when detecting that the refrigerant leaks in the indoor space, the control device performs control to store the refrigerant in both the heat source side heat exchanger and the receiver. The air conditioning apparatus according to one item.
PCT/JP2015/070441 2015-07-16 2015-07-16 Air conditioner WO2017010007A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070441 WO2017010007A1 (en) 2015-07-16 2015-07-16 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070441 WO2017010007A1 (en) 2015-07-16 2015-07-16 Air conditioner

Publications (1)

Publication Number Publication Date
WO2017010007A1 true WO2017010007A1 (en) 2017-01-19

Family

ID=57757159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070441 WO2017010007A1 (en) 2015-07-16 2015-07-16 Air conditioner

Country Status (1)

Country Link
WO (1) WO2017010007A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017040464A (en) * 2014-09-03 2017-02-23 三星電子株式会社Samsung Electronics Co.,Ltd. Refrigerant amount detection device
JP2019207088A (en) * 2018-05-30 2019-12-05 株式会社前川製作所 Heat pump system
CN114110739A (en) * 2020-08-28 2022-03-01 Lg电子株式会社 One-driving-multiple refrigerating and heating air conditioner
CN114251719A (en) * 2020-09-23 2022-03-29 Lg电子株式会社 Multi-split air conditioner for refrigerating and heating

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338865A (en) * 1986-08-04 1988-02-19 三菱電機株式会社 Refrigeration cycle device
JPH02140574A (en) * 1988-11-18 1990-05-30 Sanyo Electric Co Ltd Air conditioning apparatus
JPH0350466A (en) * 1989-07-14 1991-03-05 Sanyo Electric Co Ltd Air conditioner
JPH1047799A (en) * 1996-07-26 1998-02-20 Toshiba Corp Freezing cycle device
JP2000292037A (en) * 1999-04-06 2000-10-20 Sanyo Electric Co Ltd Air conditioner
JP2005308392A (en) * 2005-07-08 2005-11-04 Mitsubishi Electric Corp Air conditioner
JP2006234239A (en) * 2005-02-23 2006-09-07 Mitsubishi Heavy Ind Ltd Accumulator liquid refrigerant detecting method for air conditioning system, receiver liquid refrigerant detecting method, refrigerant amount adjusting method and air conditioning system
JP2008051425A (en) * 2006-08-25 2008-03-06 Samsung Electronics Co Ltd Air conditioner
JP2010127531A (en) * 2008-11-27 2010-06-10 Mitsubishi Electric Corp Refrigeration air conditioner
JP2013122354A (en) * 2011-12-12 2013-06-20 Samsung Electronics Co Ltd Air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338865A (en) * 1986-08-04 1988-02-19 三菱電機株式会社 Refrigeration cycle device
JPH02140574A (en) * 1988-11-18 1990-05-30 Sanyo Electric Co Ltd Air conditioning apparatus
JPH0350466A (en) * 1989-07-14 1991-03-05 Sanyo Electric Co Ltd Air conditioner
JPH1047799A (en) * 1996-07-26 1998-02-20 Toshiba Corp Freezing cycle device
JP2000292037A (en) * 1999-04-06 2000-10-20 Sanyo Electric Co Ltd Air conditioner
JP2006234239A (en) * 2005-02-23 2006-09-07 Mitsubishi Heavy Ind Ltd Accumulator liquid refrigerant detecting method for air conditioning system, receiver liquid refrigerant detecting method, refrigerant amount adjusting method and air conditioning system
JP2005308392A (en) * 2005-07-08 2005-11-04 Mitsubishi Electric Corp Air conditioner
JP2008051425A (en) * 2006-08-25 2008-03-06 Samsung Electronics Co Ltd Air conditioner
JP2010127531A (en) * 2008-11-27 2010-06-10 Mitsubishi Electric Corp Refrigeration air conditioner
JP2013122354A (en) * 2011-12-12 2013-06-20 Samsung Electronics Co Ltd Air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017040464A (en) * 2014-09-03 2017-02-23 三星電子株式会社Samsung Electronics Co.,Ltd. Refrigerant amount detection device
JP2019207088A (en) * 2018-05-30 2019-12-05 株式会社前川製作所 Heat pump system
CN114110739A (en) * 2020-08-28 2022-03-01 Lg电子株式会社 One-driving-multiple refrigerating and heating air conditioner
US11892209B2 (en) 2020-08-28 2024-02-06 Lg Electronics Inc. Multi-air conditioner for heating and cooling including a shut-off valve between indoor and outdoor units and control method thereof
CN114110739B (en) * 2020-08-28 2024-02-13 Lg电子株式会社 One-driving-multiple refrigerating and heating air conditioner
CN114251719A (en) * 2020-09-23 2022-03-29 Lg电子株式会社 Multi-split air conditioner for refrigerating and heating
US11898782B2 (en) 2020-09-23 2024-02-13 Lg Electronics Inc. Multi-air conditioner for heating and cooling operations

Similar Documents

Publication Publication Date Title
US9068766B2 (en) Air-conditioning and hot water supply combination system
JP5847366B1 (en) Air conditioner
JP4475278B2 (en) Refrigeration apparatus and air conditioner
WO2014128830A1 (en) Air conditioning device
US8020405B2 (en) Air conditioning apparatus
WO2012077166A1 (en) Air conditioner
JP5595521B2 (en) Heat pump equipment
WO2014128831A1 (en) Air conditioning device
WO2013179334A1 (en) Air conditioning device
WO2008059737A1 (en) Air conditioning apparatus
JPWO2011052042A1 (en) Air conditioner
KR101901540B1 (en) Air conditioning device
JP6067178B2 (en) Heat source side unit and air conditioner
JP3781046B2 (en) Air conditioner
JP6038382B2 (en) Air conditioner
JP2011242048A (en) Refrigerating cycle device
WO2017010007A1 (en) Air conditioner
CN114270113B (en) Heat source unit and refrigerating device
JPWO2004013549A1 (en) Refrigeration equipment
WO2014129361A1 (en) Air conditioner
CN113439188B (en) Air conditioner
JP6017048B2 (en) Air conditioner
JP2005114253A (en) Air conditioner
WO2019064441A1 (en) Air conditioner
JP6017049B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15898319

Country of ref document: EP

Kind code of ref document: A1