WO2019064441A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2019064441A1
WO2019064441A1 PCT/JP2017/035261 JP2017035261W WO2019064441A1 WO 2019064441 A1 WO2019064441 A1 WO 2019064441A1 JP 2017035261 W JP2017035261 W JP 2017035261W WO 2019064441 A1 WO2019064441 A1 WO 2019064441A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
load
compressor
injection
heat exchanger
Prior art date
Application number
PCT/JP2017/035261
Other languages
French (fr)
Japanese (ja)
Inventor
傑 鳩村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/035261 priority Critical patent/WO2019064441A1/en
Priority to JP2019545501A priority patent/JP6880213B2/en
Priority to CN201780095028.XA priority patent/CN111133258B/en
Priority to EP17927771.0A priority patent/EP3690349B1/en
Priority to US16/643,332 priority patent/US20210055024A1/en
Publication of WO2019064441A1 publication Critical patent/WO2019064441A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0311Pressure sensors near the expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the present invention relates to an air conditioner applied to, for example, a multi-air conditioner for buildings.
  • An air conditioner such as a multi-air-conditioner for a building is connected, for example, between an outdoor unit (outdoor unit), which is a heat source device disposed outside the building, and an indoor unit (indoor unit) disposed in the building, through piping.
  • the air conditioner has a refrigerant circuit that circulates a refrigerant. In the refrigerant circuit, heating or cooling of a space to be air-conditioned, which is a load, is performed by heating or cooling air using heat release or heat absorption of the refrigerant.
  • a throttling device for bypass a refrigerant heat exchanger, an open / close valve, and an injection port of a compressor are sequentially connected by an injection pipe in which liquid piping is branched between a refrigerant heat exchanger and a load side throttling device.
  • An air conditioner has been proposed (see, for example, Patent Document 1).
  • this air conditioner by injecting a refrigerant having a low degree of dryness at an intermediate pressure in the compression process of the compressor, it is possible to suppress an abnormal increase in discharge temperature while increasing the flow rate of the refrigerant. Therefore, in the heating operation in which the outside air temperature where the discharge temperature rises is low, the driving frequency of the compressor can be increased, and the heating capacity can be maintained.
  • a refrigerant is additionally sealed according to the length of connection piping between an outdoor unit and an indoor unit and the number of indoor units connected at the installation location. At this time, the amount of refrigerant may be sealed more than the specified value. If the amount of refrigerant sealed in the refrigerant circuit is excessive, the liquid level of the accumulator will be high. For this reason, liquid back (return) may occur. Excessive liquid bag may cause damage to the compressor and the like, and the reliability of the air conditioner may not be maintained.
  • the present invention solves the problems as described above, and an object of the present invention is to provide an air conditioner that can maintain the ability to a load and ensure reliability without reducing the performance of the air conditioner.
  • An air conditioner according to the present invention has an injection port for introducing a refrigerant into a suction chamber, a compressor for compressing and discharging the refrigerant, a heat source side heat exchanger for heat exchange of the refrigerant, and an accumulator for accumulating the refrigerant.
  • the outdoor unit having the above, at least one load-side expansion device for decompressing the refrigerant, and at least one load-side heat exchanger for performing heat exchange between the load and the refrigerant are connected by piping, and the refrigerant is circulated
  • An air conditioner comprising a refrigerant circuit, wherein the outdoor unit in the refrigerant circuit has one end connected between the heat source side heat exchanger and the load side expansion device, and the other end connected to the injection port, When the refrigerant flows from the load-side throttling device to the heat-source-side heat exchanger in the injection pipe that allows part of the refrigerant flowing through the refrigerant circuit to pass toward the injection port and the refrigerant circuit And an outdoor throttling device installed downstream of the one end of the injection piping to decompress the passing refrigerant and adjust the flow rate, and an injection throttling device adjusting the amount of the refrigerant flowing through the injection piping. And a controller for controlling an opening degree of the outdoor-
  • the control device 60 since the control device 60 reduces the amount of refrigerant flowing into the accumulator and prevents excess refrigerant from accumulating, the liquid level of the accumulator can be lowered, and the overflow of the accumulator can be prevented. Can. Therefore, excessive liquid back to the compressor can be prevented, damage to the compressor can be prevented, and the reliability of the air conditioner can be ensured.
  • FIG. 7 is a Mollier diagram showing the state of the refrigerant when the injection is performed to the compressor 10 in the cooling operation mode in the air conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 7 is a Mollier diagram showing the state of the refrigerant when the injection is performed to the compressor 10 in the cooling operation mode in the air conditioning apparatus 100 according to Embodiment 1 of the present invention. It is a figure which shows an example of a structure of the air conditioning apparatus 100 which concerns on Embodiment 2 of this invention.
  • FIG. 18 is a diagram for explaining the flow of the refrigerant in the cooling only operation mode of the air conditioning apparatus 100 according to Embodiment 3.
  • FIG. 18 is a diagram for explaining the flow of the refrigerant in the cooling-dominated operation mode of the air conditioning apparatus 100 according to Embodiment 3.
  • FIG. 17 is a diagram for explaining the flow of the refrigerant in the heating only operation mode of the air conditioning apparatus 100 according to Embodiment 3.
  • FIG. 16 is a diagram for explaining the flow of the refrigerant in the heating main operation mode of the air conditioning apparatus 100 according to Embodiment 3. It is a figure which shows an example of a structure of the air conditioning apparatus 100 which concerns on Embodiment 4 of this invention. It is a figure which shows an example of a structure of the air conditioning apparatus 100 which concerns on Embodiment 5 of this invention.
  • FIG. 1 is a diagram showing an example of the configuration of an air conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the air conditioning apparatus 100 of Embodiment 1 has a configuration in which an outdoor unit 1 and an indoor unit 2 are connected via, for example, two main pipes 5.
  • the air conditioner 100 also has a main refrigerant circuit through which the refrigerant flows and an injection flow channel.
  • the main refrigerant circuit according to the first embodiment includes an accumulator 19, a compressor 10, a refrigerant flow switching device 11, a heat source heat exchanger 12, an outdoor throttling device 45, a load throttling device 25 and a load heat exchanger 26.
  • the injection flow path is from the refrigerant pipe 4 located between the outdoor expansion device 45 and the load-side expansion device 25 to the compressor suction chamber which is a chamber just before compression is started in the compressor 10. The refrigerant flows.
  • the outdoor unit 1 includes a compressor 10, a refrigerant flow switching device 11, a heat source side heat exchanger 12, an accumulator 19, an injection pipe 41, a heat source side fan 18, an outdoor outside expansion device 45, and an injection expansion device 42.
  • the compressor 10 constituting the main refrigerant circuit, the refrigerant flow switching device 11, the heat source side heat exchanger 12, the accumulator 19 and the outdoor expansion device 45 are connected by the refrigerant pipe 4 in the outdoor unit 1. ing.
  • the compressor 10 sucks and compresses the refrigerant, and discharges it in a state of high temperature and high pressure.
  • the compressor 10 is configured of, for example, an inverter compressor or the like whose capacity can be controlled.
  • As the compressor 10, for example, a low pressure shell structure is used.
  • the compressor of the low pressure shell structure has a compression chamber in the closed container, and the inside of the closed container becomes a low pressure refrigerant pressure atmosphere, and sucks and compresses the low pressure refrigerant in the closed container.
  • the compressor 10 of Embodiment 1 is a structure which has the injection port 17 which can make a refrigerant
  • the refrigerant can be introduced from the injection port 17 into the compressor suction chamber which is a chamber just before the compression of the compressor 10 is started.
  • the refrigerant By causing the refrigerant to flow from the outside into the compressor suction chamber, the discharge temperature is prevented from rising above the resistance of the compressor 10.
  • the refrigerant flow switching device 11 is a device that switches between the refrigerant flow in the heating operation mode and the refrigerant flow in the cooling operation mode.
  • the refrigerant flow switching device 11 has, for example, a four-way valve.
  • the cooling operation mode is an operation mode in which the heat source side heat exchanger 12 acts as a condenser or a gas cooler.
  • the heating operation mode is an operation mode in which the heat source side heat exchanger 12 acts as an evaporator.
  • the heat source side heat exchanger 12 functions as an evaporator in the heating operation mode. Further, in the cooling operation mode, it functions as a condenser or a gas cooler (in the first embodiment, a condenser).
  • the heat source side heat exchanger 12 in the first embodiment performs heat exchange between the air supplied by the heat source side fan 18 and the refrigerant. However, it is not limited to this. Heat exchange may be performed between the refrigerant and the water. In this case, the heat source side heat exchanger 12 is a water refrigerant heat exchanger.
  • the accumulator 19 is provided at the suction portion of the compressor 10.
  • the accumulator 19 stores an excess refrigerant generated due to a difference in the amount of refrigerant required between the heating operation mode and the cooling operation mode or an excess refrigerant for a transient operation change.
  • the oil return mechanism 20 is a through hole opened at the lower part of the pipe in the accumulator 19 here. The refrigeration oil and liquid refrigerant accumulated in the lower part of the accumulator 19 pass through the oil return mechanism 20 and are led to the suction side piping of the compressor 10.
  • the outdoor-side expansion device 45 is located in the main refrigerant circuit between the heat source side heat exchanger 12 and the load-side expansion device 25 of the indoor unit 2 and is provided in the outdoor unit 1.
  • the outdoor side throttle device 45 is, for example, a device capable of arbitrarily controlling the opening degree (opening area) of an electronic expansion valve or the like.
  • the outdoor throttling device 45 raises the pressure of the refrigerant between the outdoor throttling device 45 and the indoor unit 2 and decompresses the refrigerant flowing from the indoor unit 2 into the outdoor unit 1 via the main pipe 5 in the heating operation mode. And inflate. Further, the outdoor-side expansion device 45 adjusts the amount of refrigerant stored in the accumulator 19 by adjusting the opening degree.
  • the injection pipe 41 is a pipe that constitutes an injection flow path.
  • one end of the injection pipe 41 is connected to the refrigerant pipe 4, and the other end is connected to the injection port 17 of the compressor 10.
  • a liquid refrigerant or a gas-liquid two-phase refrigerant is caused to flow into the compressor suction chamber of the compressor 10.
  • the liquid refrigerant or the gas-liquid two-phase refrigerant is a high pressure or medium pressure refrigerant.
  • the medium pressure is lower than the high pressure in the refrigeration cycle (for example, the refrigerant pressure in the condenser or the discharge pressure of the compressor 10), and the low pressure in the refrigeration cycle (for example, the refrigerant pressure in the evaporator or the suction pressure of the compressor 10) The pressure is higher than).
  • the injection throttle device 42 is installed in the injection pipe 41.
  • the injection throttle device 42 adjusts the amount and pressure of the refrigerant flowing through the injection pipe 41 and flowing into the injection port 17 of the compressor 10.
  • the injection throttling device 42 can adjust the opening degree continuously or in multiple steps based on, for example, the control of the control device 60 described later.
  • a discharge temperature sensor 43 detects the temperature of the refrigerant discharged by the compressor 10, and outputs a discharge temperature detection signal.
  • the discharge pressure sensor 40 detects the pressure of the refrigerant discharged by the compressor 10, and outputs a discharge pressure detection signal.
  • the outdoor temperature sensor 46 is installed at the air inflow portion of the heat source side heat exchanger 12 in the outdoor unit 1.
  • the outside air temperature sensor 46 detects, for example, the outside air temperature that is the temperature around the outdoor unit 1 and outputs an outside air temperature detection signal.
  • the pressure detection sensor 44 detects the pressure (intermediate pressure) of the refrigerant between the outdoor throttle device 45 and the accumulator 19 and outputs an intermediate pressure detection signal.
  • a pressure sensor not only a pressure sensor but also a temperature sensor can be used as the pressure detection sensor 44.
  • the control device 60 described later sets the calculated saturation pressure as an intermediate pressure based on the temperature detected by the pressure detection sensor 44.
  • the indoor unit 2 has a load-side heat exchanger 26 and a load-side throttling device 25.
  • the load-side heat exchanger 26 functions as a condenser or a gas cooler (in the first embodiment, a condenser) in the heating operation mode. Also, in the cooling operation mode, it functions as an evaporator.
  • the load side heat exchanger 26 performs heat exchange between the load to be heat exchanged and the refrigerant. In the first embodiment, the air in the space to be air-conditioned supplied by the load-side fan 28 is the load.
  • the load-side expansion device 25 is installed at a position upstream of the load-side heat exchanger 26 in the flow of the refrigerant in the cooling operation mode of the main refrigerant circuit.
  • the load side throttle device 25 has functions as a pressure reducing valve and an expansion valve, which decompresses and expands the refrigerant.
  • the load-side throttling device 25 can adjust the opening degree continuously or in multiple steps based on, for example, the control of the control device 60 described later.
  • the load-side throttling device 25 is, for example, a device capable of arbitrarily controlling the opening degree of an electronic expansion valve or the like.
  • the indoor unit 2 is provided with an inlet temperature sensor 31 and an outlet temperature sensor 32.
  • the inlet side temperature sensor 31 and the outlet side temperature sensor 32 have thermistors and the like.
  • the inlet-side temperature sensor 31 is installed in the pipe on the refrigerant inflow side of the load-side heat exchanger 26 in the flow of the refrigerant in the cooling operation mode of the main refrigerant circuit. Then, the inlet-side temperature sensor 31 detects the temperature of the refrigerant flowing into the load-side heat exchanger 26, and outputs an inflow-side detection signal.
  • the outlet-side temperature sensor 32 is installed in a pipe on the refrigerant outflow side of the load-side heat exchanger 26 in the flow of the refrigerant in the cooling operation mode of the main refrigerant circuit. Then, the outlet-side temperature sensor 32 detects the temperature of the refrigerant flowing out of the load-side heat exchanger 26, and outputs an outlet-side detection signal.
  • the air conditioning apparatus 100 has a control device 60.
  • the control device 60 controls the overall operation of the air conditioning device 100 based on detection signals sent from the various sensors described above and an instruction from a remote controller (not shown). For example, the control device 60 controls the drive frequency of the compressor 10, controls the number of rotations of the heat source fan 18 and the load fan 28 (including on or off), and controls the flow path switching by the refrigerant flow switching device 11. I do. Further, the control device 60 performs opening degree control of the outdoor side throttle device 45, the injection throttle device 42, and the load side throttle device 25, and the like. The control device 60 performs these controls to execute each operation mode of the air conditioner 100.
  • the control device 60 has a microcomputer.
  • the microcomputer has, for example, a control processing unit such as a CPU (Central Processing Unit). It also has an I / O port that manages input and output.
  • the microcomputer also has a storage device 61.
  • the storage device 61 is, for example, a volatile storage device (not shown) such as a random access memory (RAM) capable of temporarily storing data and a hard disk, and a nonvolatile auxiliary storage such as a flash memory capable of storing data over a long period of time. It is an apparatus (not shown).
  • the storage device 61 has data in which the processing procedure performed by the control processing unit is a program.
  • control arithmetic processing unit performs processing based on data of a program, and realizes processing of each part.
  • each device may be configured by a dedicated device (hardware).
  • the control device 60 is installed in the outdoor unit 1 in the air conditioning apparatus 100 according to the first embodiment, the present invention is not limited to this.
  • the control device 60 may be installed in the indoor unit 2.
  • a plurality of control devices 60 may be installed by dividing functions into the outdoor unit 1 and the indoor unit 2 or the like.
  • the control device 60 of the air conditioning apparatus 100 can execute a heating operation mode in which the indoor unit 2 performs cooling operation or a heating operation mode in which the indoor unit 2 performs heating operation based on an instruction from the indoor unit 2. At this time, the control device 60 can determine whether to perform injection. Each operation mode will be described together with the flow of the refrigerant.
  • FIG. 2 is a diagram for explaining the flow of the refrigerant in the cooling operation mode of the air conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 2 a case where a cooling load is generated in the load-side heat exchanger 26 will be described as an example, and the flow of the refrigerant other than the refrigerant flow in the injection in the cooling operation mode will be described.
  • the direction in which the refrigerant flows is indicated by a solid arrow.
  • the low temperature and low pressure refrigerant is sucked and compressed by the compressor 10. Then, the high temperature and high pressure gas refrigerant is discharged from the compressor 10.
  • the high temperature and high pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 through the refrigerant flow switching device 11.
  • the gas refrigerant that has flowed into the heat source side heat exchanger 12 condenses while radiating to the outdoor air supplied by the heat source side fan 18, becomes high pressure liquid refrigerant, and flows out from the heat source side heat exchanger 12.
  • the high-pressure liquid refrigerant flowing out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the outdoor expansion device 45. Then, the high pressure liquid refrigerant flows into the indoor unit 2 through the main pipe 5.
  • the high-pressure refrigerant flowing into the indoor unit 2 is expanded by the load-side throttling device 25 to be a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the refrigerant in the gas-liquid two-phase state flows into the load side heat exchanger 26 acting as an evaporator.
  • the gas-liquid two-phase refrigerant that has flowed into the load-side heat exchanger 26 absorbs heat from the room air to become low-temperature and low-pressure gas refrigerant while cooling the room air, and flows out from the load-side heat exchanger 26 .
  • the degree of opening of the load-side expansion device 25 is controlled by the control device 60 so that the superheat (degree of superheat) becomes constant.
  • Superheat is a value of a temperature difference obtained as a difference between the temperature detected by the inlet temperature sensor 31 and the temperature detected by the outlet temperature sensor 32.
  • the gas refrigerant flowing out of the load-side heat exchanger 26 flows out of the indoor unit 2.
  • the refrigerant flowing out of the indoor unit 2 flows into the outdoor unit 1 again through the main pipe 5.
  • the refrigerant flowing into the outdoor unit 1 passes through the refrigerant flow switching device 11 and the accumulator 19. At this time, the low temperature and low pressure refrigerant passes through the accumulator 19. Then, the low temperature and low pressure refrigerant is again drawn into the compressor 10.
  • FIG. 3 is a view for explaining the flow of the refrigerant in the heating operation mode of the air conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the case where the thermal load is generated in the load-side heat exchanger 26 is taken as an example, and the flow of the refrigerant other than the refrigerant flow in the injection in the heating operation mode will be described.
  • the direction in which the refrigerant flows is indicated by a solid arrow.
  • the low temperature and low pressure refrigerant is sucked and compressed by the compressor 10. Then, the high temperature and high pressure gas refrigerant is discharged from the compressor 10.
  • the high temperature and high pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11.
  • the high temperature and high pressure gas refrigerant flowing out of the outdoor unit 1 flows into the indoor unit 2 through the main pipe 5.
  • the high-temperature and high-pressure gas refrigerant flowing into the indoor unit 2 flows into the load-side heat exchanger 26.
  • the gas refrigerant that has flowed into the load-side heat exchanger 26 dissipates heat into the room air, thereby becoming room temperature liquid refrigerant while flowing through the load-side heat exchanger 26.
  • the liquid refrigerant that has flowed out of the load-side heat exchanger 26 is expanded by the load-side throttling device 25 to become a medium-temperature and medium-pressure gas-liquid two-phase refrigerant, and flows out of the indoor unit 2.
  • the refrigerant flowing out of the indoor unit 2 flows into the outdoor unit 1 again through the main pipe 5.
  • the medium-temperature and medium-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12.
  • the gas-liquid two-phase refrigerant that has flowed into the heat source side heat exchanger 12 absorbs heat from the outdoor air to become low temperature and low pressure gas refrigerant while cooling the outdoor air, and flows out from the heat source side heat exchanger 12 .
  • the low temperature and low pressure gas refrigerant flowing out of the heat source side heat exchanger 12 passes through the refrigerant flow switching device 11 and the accumulator 19. At this time, the low temperature and low pressure refrigerant passes through the accumulator 19. Then, the low temperature and low pressure refrigerant is again drawn into the compressor 10.
  • the control device 60 controls the injection throttle device 42 to an opening degree at which the injection throttle device 42 is fully closed. Therefore, the refrigerant does not flow in the injection pipe 41. Also, when the injection throttle device 42 is fully closed, the compressor suction chamber of the compressor 10 is at the lowest pressure in the refrigerant circuit. As described above, the compressor 10 in the first embodiment has a structure that allows the refrigerant to flow into the compressor suction chamber.
  • the injection piping between the injection throttle device 42 and the compressor suction chamber of the compressor 10 from the compressor suction chamber of the compressor 10 At 41 the refrigerant does not leak. Therefore, the efficiency of the compressor 10 is not deteriorated due to the leakage of the refrigerant. It is possible to suppress the performance degradation of the device due to the refrigerant leak.
  • the control device 60 controls the injection throttle device 42 and the outdoor throttle device 45 to adjust the flow rate of the refrigerant flowing through the injection pipe 41.
  • FIG. 4 is a Mollier chart showing the state of the refrigerant when the injection is performed to the compressor 10 in the cooling operation mode in the air conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the horizontal axis of FIG. 4 represents specific enthalpy h [kJ / kg].
  • shaft of FIG. 4 represents the pressure P [MPa]. The effect of the injection in the cooling operation mode in the air conditioning apparatus 100 according to Embodiment 1 will be described using FIG. 4.
  • the liquid refrigerant that has flowed out of the heat source side heat exchanger 12 is in the state at point (c).
  • the liquid refrigerant is decompressed by the outdoor throttling device 45 to be in the state of liquid or two-phase refrigerant indicated by point (d).
  • a part of the refrigerant or the two-phase refrigerant that has been depressurized flows into the compressor suction chamber of the compressor 10 via the injection pipe 41 and the injection throttle device 42.
  • the remaining refrigerant of the decompressed liquid or the two-phase refrigerant is decompressed by the load-side throttling device 25 to be in the state of the two-phase refrigerant shown at point (g).
  • the load side heat exchanger 26 it becomes a low temperature and low pressure gas refrigerant indicated by point (e).
  • the gas refrigerant flows into the compressor 10 via the main pipe 5, the refrigerant flow switching device 11 and the accumulator 19.
  • the gas refrigerant flowing into the compressor 10 merges with the liquid or two-phase refrigerant flowing through the injection port 17 in the compressor suction chamber.
  • the state of the refrigerant in the compressor suction chamber is a two-phase refrigerant of high dryness and low pressure, as indicated by point (g).
  • the state of the refrigerant discharged by the compressor 10 is a high-pressure gas refrigerant indicated by point (b).
  • the discharge temperature of the high-pressure gas refrigerant indicated by the point (b) is lower than that of the high-pressure gas refrigerant indicated by the point (b1) discharged without injection. Therefore, deterioration of the refrigeration oil and burning of the compressor 10 can be prevented.
  • Control of the injection throttle device 42 by the controller 60 in the cooling operation mode will be described.
  • the control device 60 controls the opening degree of the injection throttle device 42 based on the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43.
  • the opening degree of the injection throttle device 42 is increased, the flow rate of the refrigerant flowing into the compressor 10a is increased. Therefore, the discharge temperature of the refrigerant discharged from the compressor 10 is reduced.
  • the opening degree of the injection throttle device 42 is reduced, the flow rate of the refrigerant flowing into the compressor 10 a decreases. Therefore, the discharge temperature of the refrigerant discharged from the compressor 10 rises.
  • the control device 60 determines whether the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43 is equal to or less than the discharge temperature threshold value.
  • the controller 60 determines that the discharge temperature is equal to or lower than the discharge temperature threshold value
  • the controller 60 controls the injection throttle device 42 so that the amount of refrigerant injected is reduced.
  • the discharge temperature threshold value is set in accordance with the limit value of the discharge temperature of the compressor 10.
  • control device 60 determines that the discharge temperature is higher than the discharge temperature threshold value
  • the control device 60 controls the injection throttle device 42 so that the amount of refrigerant injected increases.
  • the control device 60 controls the injection throttle device 42 so that the discharge temperature becomes the discharge temperature threshold value.
  • control device 60 stores data indicating the relationship between the discharge temperature and the degree of opening of injection throttle device 42 in storage device 61 in the form of a table. Then, the control device 60 controls the injection throttle device 42 by determining the opening degree of the injection throttle device 42 corresponding to the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43.
  • control device 60 may store, for example, an equation having the discharge temperature as a variable in the storage device 61 instead of the data in the form of a table.
  • the controller 60 calculates the opening degree of the injection throttle device 42 based on the discharge temperature, and controls the injection throttle device 42.
  • control device 60 performs the determination related to the control of the injection throttle device 42 based on the discharge temperature and the discharge temperature threshold value
  • the present invention is not limited to this.
  • the determination related to the control of the injection throttle device 42 can be performed.
  • the degree of discharge superheat of the compressor 10 is the difference between the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43 and the saturation temperature calculated from the discharge pressure sensor 40.
  • the injection enthalpy of the refrigerant in the compressor suction chamber of the compressor 10 can be reduced by performing the injection. Therefore, the discharge temperature of the compressor 10 can be suppressed so as not to be excessively high. For this reason, deterioration of refrigeration oil can be suppressed and breakage of the compressor 10 can be prevented. Therefore, the reliability of the entire air conditioning apparatus 100 can be secured. Further, by suppressing the rise of the discharge temperature of the compressor 10, the driving frequency of the compressor 10 can be increased. Therefore, a large amount of cooling capacity can be secured, and a large air conditioning load can be coped with. And, the user's comfort can be maintained.
  • the discharge temperature of the compressor 10 is equal to or higher than the discharge temperature threshold when the driving frequency of the compressor 10 is increased, not only when the discharge temperature is high but the outside air temperature is low. It can be Therefore, in order to secure the heating capacity, injection is required when raising the drive frequency.
  • control for reducing the discharge temperature will be described in order to prevent deterioration of refrigeration oil caused by the discharge temperature of the compressor 10 becoming high, burnout of the compressor 10 and the like.
  • FIG. 5 is a Mollier chart showing the state of the refrigerant when the injection is performed to the compressor 10 in the cooling operation mode in the air conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the horizontal axis of FIG. 5 represents specific enthalpy h [kJ / kg].
  • shaft of FIG. 5 represents the pressure P [MPa]. The effect of the injection in the heating operation mode in the air conditioning apparatus 100 according to Embodiment 1 will be described with reference to FIG. 5.
  • the liquid refrigerant that has flowed out of the load-side heat exchanger 26 is in the state at point (c).
  • the liquid refrigerant is decompressed by the load-side throttling device 25 to be in the state of a medium pressure and medium temperature two-phase refrigerant indicated by point (d).
  • the decompressed medium pressure and medium temperature two-phase refrigerant passes through the main pipe 5 and the refrigerant pipe 4.
  • a part of the depressurized medium pressure and medium temperature two-phase refrigerant flows into the compressor suction chamber of the compressor 10 through the injection pipe 41 and the injection throttle device 42.
  • the remaining refrigerant of the medium pressure and medium temperature two-phase refrigerant is depressurized by the outdoor expansion device 45 to be in the state of the two-phase refrigerant indicated by point (g).
  • the outdoor expansion device 45 To flow.
  • the heat source side heat exchanger 12 by absorbing heat from the outside air, it becomes a low temperature and low pressure gas refrigerant indicated by the point (e).
  • the gas refrigerant flows into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19.
  • the gas refrigerant flowing into the compressor 10 merges with the liquid or two-phase refrigerant flowing through the injection port 17 in the compressor suction chamber.
  • the state of the refrigerant in the compressor suction chamber is a two-phase refrigerant of high dryness and low pressure, as indicated by point (g).
  • the state of the refrigerant discharged by the compressor 10 is a high-pressure gas refrigerant indicated by point (b).
  • the discharge temperature of the high-pressure gas refrigerant indicated by the point (b) is lower than that of the high-pressure gas refrigerant indicated by the point (b1) discharged without injection. Therefore, deterioration of the refrigeration oil and burning of the compressor 10 can be prevented.
  • the decompressed medium-pressure and medium-temperature two-phase refrigerant as shown by the point (d) has been described as passing through the injection pipe 41, it is not limited to this.
  • a gas-liquid separator may be installed at the connection portion between the injection pipe 41 and the refrigerant pipe 4 so that the liquid refrigerant flows through the injection pipe 41.
  • the flow of the liquid refrigerant into the injection pipe 41 makes it possible to stabilize the control of the injection throttle device 42.
  • the controller 60 controls the outdoor throttling device 45 and the injection throttling device 42 such that the refrigerant flows from the injection pipe 41 into the compressor suction chamber of the compressor 10. By performing the injection, the discharge temperature of the refrigerant discharged by the compressor 10 can be reduced, and the air conditioner 100 can be used safely.
  • the control of the injection throttle device 42 in the heating operation mode is similar to the control in the cooling operation mode.
  • the control device 60 performs processing such as determination based on the discharge temperature and the discharge temperature threshold value, and controls the injection throttle device 42.
  • the control of the injection throttle device 42 may be performed based on the discharge superheat degree of the compressor 10 and the superheat degree threshold value.
  • Control of the outdoor throttle device 45 in the heating operation mode In the heating operation mode, in order to flow a sufficient amount of liquid or two-phase refrigerant into the suction chamber of the compressor 10, it is necessary to increase the saturation temperature of the medium pressure and medium temperature liquid or two-phase refrigerant. Therefore, the control device 60 controls the outdoor-side throttling device 45 so that the refrigerant on the upstream side of the outdoor-side throttling device 45 becomes a medium-pressure refrigerant.
  • the degree of opening of the outdoor side throttle device 45 When the degree of opening of the outdoor side throttle device 45 is small, the amount of refrigerant flowing out of the outdoor side throttle device 45 decreases. On the other hand, the amount of refrigerant in the refrigerant pipe 4 between the load-side expansion device 25 and the outdoor-side expansion device 45 increases. Therefore, the pressure of the medium pressure and medium temperature liquid or two-phase refrigerant passing through the injection pipe 41 is increased.
  • the opening degree of the outdoor side expansion device 45 when the opening degree of the outdoor side expansion device 45 is large, the amount of refrigerant flowing out of the outdoor side expansion device 45 increases. On the other hand, the amount of refrigerant in the refrigerant pipe 4 between the load-side expansion device 25 and the outdoor-side expansion device 45 decreases. Therefore, the pressure of the medium pressure and medium temperature liquid or two-phase refrigerant passing through the injection pipe 41 is reduced.
  • the control device 60 calculates the saturation temperature of the medium-temperature and medium-pressure gas-liquid two-phase refrigerant that has flowed out of the load-side throttling device 25 based on the pressure detected by the pressure detection sensor 44. Then, the opening degree of the outdoor-side throttling device 45 is adjusted so that the saturation temperature approaches a predetermined value capable of securing the flow rate necessary for injection. This predetermined value is taken as the injection temperature value.
  • the injection temperature value is, for example, a temperature of 10 ° C. or more.
  • the low-pressure and low-temperature gas refrigerant flowing out of the accumulator 19 and the liquid or two-phase refrigerant passing through the injection flow path are mixed in the compressor suction chamber of the compressor 10.
  • the mixed refrigerant becomes a low-pressure two-phase refrigerant with high dryness.
  • the compressor 10 compresses a high-dry low-pressure gas-liquid two-phase refrigerant.
  • the injection enthalpy of the refrigerant in the compressor suction chamber of the compressor 10 can be reduced by performing the injection. Therefore, the discharge temperature of the compressor 10 can be suppressed so as not to be excessively high. For this reason, deterioration of refrigeration oil can be suppressed and breakage of the compressor 10 can be prevented. Therefore, the reliability of the entire air conditioning apparatus 100 can be secured. Further, by suppressing the rise of the discharge temperature of the compressor 10, the driving frequency of the compressor 10 can be increased. Therefore, a large amount of cooling capacity can be secured, and a large air conditioning load can be coped with. And, the user's comfort can be maintained.
  • the opening degree of the outdoor throttling device 45 For example, there is an air conditioner which uses a low pressure shell type compressor and injects into a pipe located on the suction side of the compressor. In such an air conditioner, when a large amount of liquid or two-phase refrigerant is injected into a pipe located on the suction side of the compressor, the liquid refrigerant stagnates in the lower part of the shell of the compressor. For this reason, the refrigeration oil is diluted by the liquid refrigerant and the concentration decreases. If the concentration of refrigeration oil decreases, the scroll in the compressor may be burnt out. Therefore, in order to suppress the amount of refrigerant to be injected, it is necessary to use a small valve in the outdoor expansion device. If a small-sized valve is used for the outdoor-side throttling device, dust etc. may be clogged in the valve and the outdoor-side throttling device may malfunction.
  • the air conditioner 100 of the first embodiment has a structure in which the compressor 10 has a low pressure shell structure and injects into a compressor suction chamber which is a chamber just before compression is started. Therefore, even if the amount of refrigerant related to the injection increases, the refrigerant injected into the scroll portion of the compressor 10 can be made to flow. Therefore, the liquid or two-phase refrigerant injected into the lower part of the shell does not stay. Therefore, refrigeration oil is not diluted and the concentration does not decrease. In addition, the amount of refrigerant related to injection can be increased. Therefore, it is not necessary to use a small-sized valve for the outdoor-side throttling device 45, and it is possible to prevent the operation failure due to the clogging of dust etc. in the valve.
  • the amount of refrigerant additionally enclosed in the refrigerant circuit may be more than a prescribed amount of refrigerant determined based on the length of the main pipe 5 or the like. is there.
  • the amount of surplus refrigerant generated in the heating operation mode becomes larger than the amount of refrigerant that can be accumulated by the accumulator 19, the accumulator 19 overflows. Therefore, it is necessary to prevent a liquid back (return) in which the liquid refrigerant to the compressor 10 is excessively returned to prevent the overflow.
  • control device 60 stores data indicating the relationship between the discharge temperature of compressor 10 and the liquid back ratio according to the liquid level of accumulator 19 in the form of a table in storage device 61 when injection is not performed. Keep it. More specifically, regarding this relationship, the discharge temperature of the compressor 10 determined by the liquid back amount at a predetermined liquid level height of the accumulator 19 and the driving frequency, suction state, discharge state, etc. of the compressor 10 Relationship with The predetermined liquid level height is, for example, a height at a refrigerant amount of 2/3 of the volume of the accumulator 19 or the like. The discharge temperature obtained in such a relationship is the liquid level adjustment threshold when injection is not performed. The liquid level adjustment threshold value is the discharge temperature of the compressor 10 which is lowered by the liquid back rate according to the liquid level height of the accumulator 19.
  • the control device 60 sets a value obtained by adding the discharge temperature decrease width when the refrigerant is added by the injection to the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43 as the liquid level adjustment threshold value.
  • the liquid level adjustment threshold or the like is set based on the discharge temperature of the compressor 10, but the discharge superheat degree may be used instead of the discharge temperature.
  • control device 60 may store, as data in the storage device 61, for example, a mathematical expression having the discharge temperature or the discharge superheat degree as a variable instead of the data in the form of a table.
  • the control device 60 substitutes the discharge temperature or the discharge superheat degree into the equation to calculate the liquid level adjustment threshold value.
  • the control device 60 determines whether the discharge temperature or discharge superheat degree of the compressor 10, which is lowered by the liquid back from the accumulator 19, is equal to or less than a predetermined liquid level adjustment threshold value.
  • the control device 60 controls the opening degree of the outdoor side throttling device 45 so as to become higher than the liquid level adjustment threshold value when determining that the discharge temperature or the discharge superheat degree is equal to or less than the liquid level adjustment threshold value. .
  • the control device 60 reduces the opening degree of the outdoor side throttling device 45 to lower the liquid level of the accumulator 19.
  • the control device 60 performs the control described above to set the fluid or the fluid in the main pipe 5 positioned between the load-side throttling device 25 and the outdoor-side throttling device 45.
  • the phase refrigerant is allowed to stay.
  • the amount of refrigerant flowing into the accumulator 19 is reduced so that excess refrigerant does not accumulate. Therefore, the liquid level of the accumulator 19 can be lowered and overflow of the accumulator 19 can be prevented. Therefore, the dilution of the refrigerator oil due to the liquid bag in the compressor 10 can be suppressed, and damage to the compressor 10 can be prevented. And the reliability of the air conditioning apparatus 100 can be ensured.
  • FIG. 6 is a diagram showing an example of the configuration of an air conditioning apparatus 100 according to Embodiment 2 of the present invention.
  • the air conditioning apparatus 100 of Embodiment 2 has a plurality of outdoor units 1 connected by piping in parallel to constitute a refrigerant circuit.
  • two outdoor units 1 are connected in parallel.
  • ⁇ Outdoor unit 1a and outdoor unit 1b> The configurations of the outdoor unit 1a and the outdoor unit 1b shown in FIG. 6 are the same as those of the outdoor unit 1 described in the first embodiment. Further, the operation in the heating operation mode and the cooling operation mode, the operation in the case of performing the injection, and the like are basically the same as the outdoor unit 1 described in the first embodiment. Therefore, when there is no need to distinguish between the outdoor unit 1a, the outdoor unit 1b, and the devices included in the outdoor unit 1a and the outdoor unit 1b, subscripts are omitted.
  • the outdoor unit 1a includes a compressor 10a, a refrigerant flow switching device 11a, a heat source heat exchanger 12a, an accumulator 19a, an injection pipe 41a, a heat source fan 18a, an outdoor throttling device 45a, and an injection throttling device 42a.
  • the compressor 10a, the refrigerant flow switching device 11a, the heat source side heat exchanger 12a, the accumulator 19a and the outdoor expansion device 45a are connected by the refrigerant pipe 4a in the outdoor unit 1a.
  • the injection pipe 41a and the injection throttle device 42a form an injection flow path.
  • a discharge temperature sensor 43a, a discharge pressure sensor 40a, an outside air temperature sensor 46a, and a pressure detection sensor 44a are provided.
  • the outdoor unit 1b includes the compressor 10b, the refrigerant flow switching device 11b, the heat source side heat exchanger 12b, the accumulator 19b, the injection pipe 41b, the heat source side fan 18b, the outdoor side expansion device 45b and the injection expansion device 42b. doing.
  • the compressor 10b, the refrigerant flow switching device 11b, the heat source side heat exchanger 12b, the accumulator 19b, and the outdoor expansion device 45b are connected by a refrigerant pipe 4b in the outdoor unit 1b.
  • the injection pipe 41b and the injection throttle device 42b form an injection flow path.
  • a discharge temperature sensor 43b, a discharge pressure sensor 40b, an outside air temperature sensor 46b, and a pressure detection sensor 44b are provided.
  • the air conditioning apparatus 100 determines the amount of refrigerant sealed in the refrigerant circuit based on the cooling operation mode. In the heating operation mode, there is an operation state in which the amount of refrigerant required is smaller than that in the cooling operation mode. Therefore, the surplus refrigerant amount, which is the difference between the refrigerant amount in the refrigerant circuit and the refrigerant amount necessary in the heating operation mode, is accumulated in the accumulator 19.
  • the amount of surplus refrigerant accumulated in the accumulator 19 of each outdoor unit 1 may not be evenly distributed, but may be accumulated unevenly.
  • the surplus refrigerant is concentrated in one of the accumulators 19, an overflow occurs when the surplus refrigerant in the accumulator 19 exceeds the capacity of the accumulator 19.
  • the overflow occurs, a large amount of refrigerant may be liquid-backed to the compressor 10, the refrigeration oil may be diluted, and burnout of the scroll portion of the compressor 10 may occur. Therefore, it is necessary to adjust the degree of opening of the outdoor-side expansion device 45 so that the amount of surplus refrigerant accumulated in each accumulator 19 is equal to or less than the capacity of each accumulator 19.
  • each accumulator 19 is provided with an oil return mechanism 20 (20a, 20b) for returning the oil outside the system to the compressor 10.
  • the accumulator 19 having a large amount of surplus refrigerant is more frozen than the other accumulator 19 via the oil return mechanism 20 from the accumulator 19
  • the machine oil is returned to the corresponding compressor 10.
  • the discharge temperature of the refrigerant in the compressor 10 with a large amount of refrigeration oil is lower than the discharge temperature of the refrigerant in the compressor 10 with a small amount of refrigeration oil.
  • control device 60 which has a large amount of surplus refrigerant remaining in the accumulator 19 and returns a large amount of refrigeration oil, performs control to reduce the opening degree of the outdoor-side throttling device 45. As a result, the amount of liquid refrigerant flowing into the accumulator 19 having a large amount of surplus refrigerant is reduced.
  • the control device 60 which has a small amount of surplus refrigerant remaining in the accumulator 19 and a small amount of returned oil from the refrigerator oil, increases or does not change the opening degree of the outdoor side expansion device 45. As a result, the amount of liquid refrigerant flowing into the accumulator 19 with a smaller amount of surplus refrigerant is increased.
  • the refrigerant accumulated in the accumulators 19 of the two outdoor units 1 is controlled to be equal. By evenly accumulating the refrigerant in the accumulators 19 of the two outdoor units 1, overflow can be suppressed.
  • a compressor 10a mounted on the outdoor unit 1a will be described as an example.
  • the controller 60a determines that the discharge temperature or the discharge superheat degree of the compressor 10a is higher than the target discharge temperature threshold value or the superheat degree threshold value
  • the controller 60a increases the opening degree of the injection throttle device 42a. Take control. By increasing the opening degree of the injection throttle device 42a, the discharge temperature of the compressor is lowered.
  • the discharge temperature of the compressor 10a when injection is not performed is determined from the discharge pressure and the efficiency of the compressor 10a, such as the drive frequency of the compressor 10a, the pressure and temperature of the suction side of the compressor 10 when injection is not performed, etc. It can be predicted.
  • the flow rate and enthalpy of the refrigerant by the injection, and the flow rate and the enthalpy of the refrigerant sucked into the compressor 10a when the injection is not performed are synthesized.
  • the enthalpy of the refrigerant in the compressor suction chamber can be calculated.
  • the refrigerant in the compressor suction chamber has a lower enthalpy than in the case where injection is not performed, and is in a two-phase state of high dryness. Then, from the difference between the discharge temperature calculated from the state of the enthalpy of the refrigerant in the compressor suction chamber and the discharge temperature when injection is not performed, the width of the decrease in discharge temperature when the refrigerant is added by injection is predicted. be able to.
  • the control device 60 adjusts the outdoor-side throttling device 45a according to the predicted liquid level.
  • the control device 60 performs control to make the outdoor-side expansion device 45a smaller.
  • the flow rate of the refrigerant flowing into the accumulator 19a is reduced, and the amount of surplus refrigerant accumulated in the accumulator 19a is reduced to lower the liquid level.
  • the liquid level adjustment threshold value becomes the value of the discharge temperature of the compressor 10 which is lowered by the liquid back rate according to the liquid level height of the accumulator 19 .
  • the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43 is a value obtained by adding the discharge temperature decrease width when the refrigerant is added by the injection.
  • the control device 60 causes the discharge temperature of the compressor 10 to be higher than the liquid level adjustment threshold value, and the outdoor-side throttling so that the liquid level of the accumulator 19a becomes equal to or less than the target liquid level.
  • the opening degree of the device 45 is controlled.
  • each injection throttle device 42 in each outdoor unit 1 is opened when injection is performed to lower the discharge temperature of the compressor 10.
  • the difference of degrees may be calculated. Based on the difference in the degree of opening of the injection throttle device 42, the difference in the amount of surplus refrigerant of the accumulator 19 mounted on each outdoor unit 1 is predicted, and the degree of opening of the outdoor side throttle device 45 is adjusted.
  • the discharge temperatures of the respective compressors 10 are substantially equal (for example, ⁇ 1 ° C.), and the temperatures detected by the respective pressure detection sensors 44 are also substantially equal.
  • the opening degree of the injection throttle device 42a is larger than the opening degree of the injection throttle device 42b
  • the liquid back amount from the accumulator 19b is larger than the liquid back amount from the accumulator 19a. It will be a lot. Therefore, it can be determined that the liquid level of the accumulator 19b is high.
  • the discharge temperature of the compressor 10b is smaller than the liquid level adjustment threshold, the liquid level of the accumulator 19b can be lowered by closing the opening degree of the outdoor throttling device 45b.
  • the controller 60 can predict the liquid level difference between the accumulators 19 more accurately.
  • the compressor 10 in the second embodiment has a low pressure shell structure. Moreover, it is the structure which makes injection flow in into a compressor suction chamber. Therefore, even if the injection amount is increased, the refrigerant injected into the scroll portion of the compressor 10 can be made to flow. Therefore, the liquid or the two-phase refrigerant injected into the lower part of the shell does not stay. Therefore, the refrigeration oil is not diluted by the liquid refrigerant. In addition, since the injection amount can be increased, the degree of opening of the outdoor expansion device 45a can be increased.
  • FIG. 7 is a diagram showing an example of control performed by the control device 60 in the air-conditioning apparatus 100 according to Embodiment 2 of the present invention.
  • FIG. 7 shows an example of a flowchart relating to the liquid equalization control of each accumulator 19 while performing injection.
  • the processing operation of the control device 60 at the time of injection will be described with reference to FIG.
  • each control device 60 of each outdoor unit 1 performs the processing of steps CT1 to CT7.
  • step CT100 it is assumed that one of the control devices 60 of the control devices 60 of each outdoor unit 1 performs the process based on the data sent from the other control devices 60.
  • processing such as determination is performed based on the discharge temperature of the compressor 10 here, the processing may be performed by calculating the discharge superheat degree instead of the discharge temperature.
  • Step CT1 The control device 60 starts the operation of the air conditioner 100 when there is an operation request such as the cooling operation or the heating operation from the indoor unit 2. Thereafter, the process proceeds to step CT2.
  • Step CT2 The control device 60 acquires the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43. Then, the discharge temperature of the compressor 10 is compared with the discharge temperature threshold value.
  • the discharge temperature threshold is, for example, 110 ° C. If it is determined by comparison that the discharge temperature of the compressor 10 is equal to or lower than the discharge temperature threshold, the process proceeds to step CT4. Here, if it is a temperature within a temperature range (for example, 110 ° C. ⁇ 1 ° C.) including the discharge temperature threshold, it is assumed to be the same as the discharge temperature threshold. If it is determined that the discharge temperature of the compressor 10 is higher than the discharge temperature threshold value, the process proceeds to step CT3.
  • Step CT3, Step CT4 The control device 60 controls the opening degree of the injection throttle device 42 so that the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43 approaches the discharge temperature threshold value. For example, when the control device 60 determines that the discharge temperature of the compressor 10 is higher than the discharge temperature threshold value, the controller 60 increases the opening degree of the injection throttle device 42 (step CT3). Further, when it is determined that the discharge temperature of the compressor 10 is lower than the discharge temperature threshold value, the control device 60 reduces the opening degree of the injection throttle device 42. Then, when determining that the discharge temperature of the compressor 10 is the same as the discharge temperature threshold value, the control device 60 maintains the opening degree of the injection throttle device 42 (step CT4). When the control of the opening of the injection throttle device 42 is performed, the control device 60 proceeds to the process of step CT5.
  • Step CT5 The controller 60 acquires an intermediate pressure that is the pressure of the refrigerant passing through the injection pipe 41 detected by the pressure detection sensor 44. Then, the intermediate pressure is compared with the intermediate pressure threshold.
  • the intermediate pressure threshold is, for example, 1.1 MPa when the refrigerant is R410A. Further, it is determined whether or not control to increase the opening degree of the outdoor-side expansion device 45 is performed by the process of step CT100 described later. If it is determined that the control is not performed to make the control equal to or lower than the intermediate pressure threshold or to increase the opening degree of the outdoor throttling device 45, the process proceeds to step CT7.
  • step CT6 If it is a pressure within the pressure range (1.1 MPa ⁇ 0.05 MPa) including the intermediate pressure threshold, it is assumed to be the same as the intermediate pressure threshold. If it is determined that the intermediate pressure is higher than the intermediate pressure threshold and the control for increasing the opening degree of the outdoor throttling device 45 is performed, the process proceeds to step CT6.
  • Step CT6, Step CT7 The controller 60 controls the opening degree of the outdoor-side throttling device 45 such that the intermediate pressure detected by the pressure detection sensor 44 approaches the intermediate pressure threshold. For example, when the control device 60 determines that the intermediate pressure is higher than the intermediate pressure threshold and the control to increase the opening degree of the outdoor expansion device 45 is performed, the control device 60 increases the opening degree of the outdoor expansion device 45 (Step CT6). In addition, when the control device 60 determines that the intermediate pressure is lower than the intermediate pressure threshold value, the control device 60 reduces the opening degree of the outdoor-side throttling device 45.
  • control device 60 has the discharge temperature of the compressor 10 equal to the discharge temperature threshold, or the intermediate pressure is higher than the intermediate pressure threshold, and the opening degree of the outdoor-side throttling device 45 is increased. If it is not determined, the opening degree of the injection throttle device 42 is maintained (step CT7). When the control of the opening of the injection throttle device 42 is performed, the control device 60 proceeds to the process of step CT100.
  • Step CT100 Liquid equalization control of accumulator 19 of each outdoor unit 1>
  • Step CT100 is a step which performs liquid equalization control so that the amount of surplus refrigerant which accumulator 19 which each outdoor unit 1 mounts becomes below in amount set up beforehand.
  • the surplus refrigerant amount of the amount set in advance is, for example, an amount that is equal to or less than the liquid level height of 2/3 of the volume for each accumulator 19.
  • Step CT101 The control device 60 acquires the discharge temperatures of the compressor 10a and the compressor 10b detected by the discharge temperature sensor 43a and the discharge temperature sensor 43b. Then, it is determined whether the discharge temperature of the compressor 10a is smaller than the liquid level adjustment threshold described above, and whether the discharge temperature of the compressor 10b is equal to or higher than the liquid level adjustment threshold. If it is determined that the discharge temperature of the compressor 10a is smaller than the liquid level adjustment threshold and the discharge temperature of the compressor 10b is equal to or higher than the liquid level adjustment threshold, the process proceeds to step CT102. Otherwise, the process proceeds to step CT103.
  • Step CT102 The controller 60 controls the outdoor-side throttle device 45a and the outdoor-side throttle so that the discharge temperatures of the compressor 10a and the compressor 10b detected by the discharge temperature sensor 43a and the discharge temperature sensor 43b approach the liquid level adjustment threshold.
  • the opening degree of the device 45b is controlled. Since the discharge temperature of the compressor 10a is less than the liquid level adjustment threshold value, the control device 60a performs control to reduce the opening degree of the outdoor side expansion device 45a. Further, since the discharge temperature of the compressor 10b is equal to or higher than the liquid level adjustment threshold value, the control device 60b performs control to increase the opening degree of the outdoor side expansion device 45b. However, if the discharge temperature of the compressor 10b is a temperature within a temperature range (for example, 100 ° C. ⁇ 1 ° C.) including the liquid level adjustment threshold, control is performed assuming that it is the same as the liquid level adjustment threshold The device 60b performs control to maintain the opening degree of the outdoor-side throttle device 45b. Then, the process proceeds to step CT2.
  • Step CT103 The controller 60 determines whether the discharge temperature of the compressor 10a is equal to or higher than the above-described liquid level adjustment threshold with respect to the discharge temperature of each compressor 10 detected by each discharge temperature sensor 43, and the compressor 10b. It is determined whether the discharge temperature of the fluid is smaller than the liquid level adjustment threshold. If it is determined that the discharge temperature of the compressor 10a is equal to or higher than the liquid level adjustment threshold and the discharge temperature of the compressor 10b is smaller than the liquid level adjustment threshold, the process proceeds to step CT104. Otherwise, the process proceeds to step CT105.
  • Step CT104 Since the discharge temperature of the compressor 10a is equal to or higher than the liquid level adjustment threshold value, the control device 60a performs control to increase the opening degree of the outdoor side expansion device 45a. However, if the discharge temperature of the compressor 10a is a temperature within a temperature range (for example, 100 ° C. ⁇ 1 ° C.) including the liquid level adjustment threshold, control is performed assuming that it is the same as the liquid level adjustment threshold The device 60a performs control to maintain the opening degree of the outdoor-side throttle device 45a. Further, since the discharge temperature of the compressor 10b is smaller than the liquid level adjustment threshold value, the control device 60b performs control to reduce the opening degree of the outdoor side expansion device 45b. Then, the process proceeds to step CT2.
  • a temperature range for example, 100 ° C. ⁇ 1 ° C.
  • Step CT105 The control device 60 controls the discharge temperature of the compressor 10a and the compressor 10b for the discharge temperature of the compressor 10a and the compressor 10b detected by the discharge temperature sensor 43a and the discharge temperature sensor 43b to be the liquid level adjustment threshold described above. Determine if it is less. If it is determined that the discharge temperature of the compressor 10a and the compressor 10b is smaller than the liquid level adjustment threshold value, the process proceeds to step CT106. Otherwise, the process proceeds to step CT107.
  • Step CT106 The control devices 60a and 60b perform control to reduce the opening degree of the outdoor side throttle device 45a and the outdoor side throttle device 45b because the discharge temperatures of the compressor 10a and the compressor 10b are smaller than the liquid level adjustment threshold. . Then, the process proceeds to step CT2.
  • Step CT107 Since the control devices 60a and 60b have discharge temperatures of the compressor 10a and the compressor 10b equal to or higher than the liquid level adjustment threshold value, control to increase the opening degree of the outdoor expansion device 45a and the outdoor expansion device 45b is performed. Do. However, if the discharge temperature of compressor 10a or compressor 10b is a temperature within a temperature range (for example, 100 ° C. ⁇ 1 ° C.) including the liquid level adjustment threshold, it is the same as the liquid level adjustment threshold It shall be. Then, the control device 60a or the control device 60b performs control to maintain the opening degree of the outdoor side throttle device 45a or the outdoor side throttle device 45b. Then, the process proceeds to step CT2.
  • a temperature range for example, 100 ° C. ⁇ 1 ° C.
  • the discharge temperature threshold value and the liquid level adjustment threshold value have been described as being fixed values set in advance, but are not limited thereto.
  • the setting may be changed to a value corresponding to the compression ratio, which is a value obtained by dividing the discharge pressure by the suction pressure, the drive frequency of the compressor 10, and the like, based on data of a formula and a table format.
  • the threshold value By changing the threshold value, the detection accuracy of the liquid back from the accumulator 19 according to the operating state of the compressor 10 can be increased.
  • step CT100 the discharge temperature of the compressor 10a, the discharge temperature of the compressor 10b, and the magnitude relationship between the liquid level adjustment threshold value are divided into four patterns, and the outdoor-side throttling device 45a and the outdoor-side throttling The opening control of the device 45b was performed.
  • the discharge temperature of each compressor 10 satisfies the liquid level adjustment threshold in the opening degree control of each outdoor side expansion device 45 by a combination like step CT100, the amount of liquid refrigerant is stored in each accumulator 19 Even when there is a bias, the refrigerant can be dispersed to make the liquid uniform. For this reason, the risk of refrigerant overflow from the accumulator 19 can be reduced.
  • the opening degree control of the outdoor throttling device 45a is performed based on the comparison between the discharge temperature of the compressor 10a and the liquid level adjustment threshold, and the discharge temperature of the compressor 10b is compared based on the liquid level adjustment threshold.
  • the opening control of the outdoor-side throttling device 45b may be performed to perform independent control.
  • the control device 60 can adjust the liquid level of the accumulator 19 mounted on the plurality of outdoor units 1 while performing injection to ensure high performance. Therefore, by preventing the overflow of the accumulator 19 while maintaining the comfort of the user, it is possible to perform the liquid equalization control of the accumulator 19 and to prevent the liquid back to the compressor 10. Therefore, breakage or the like of the compressor 10 can be prevented, and the reliability of the entire air conditioning apparatus 100 can be secured.
  • FIG. 8 is a diagram showing an example of the configuration of the air conditioning apparatus 100 according to Embodiment 3 of the present invention.
  • an air conditioner according to Embodiment 3 of the present invention will be described.
  • the same reference numerals are given to devices having the same functions and operations as the first embodiment and the second embodiment.
  • the air conditioning apparatus 100 includes two outdoor units 1 (1a, 1b) that are heat source units, a plurality of indoor units 2 (2a, 2b, 2c, 2d), and the outdoor unit 1 And the indoor units 2a to 2d, and has a relay device 3 provided with an opening / closing device.
  • the outdoor unit 1 and the relay device 3 are connected by a plurality of main pipes 5 through which the refrigerant flows.
  • the relay device 3 and each of the indoor units 2a to 2d are connected by a plurality of branch pipes 8 through which the refrigerant flows. Cold heat or heat generated by the outdoor unit 1 is supplied to the indoor units 2a to 2d via the relay device 3.
  • the outdoor unit 1 and the relay device 3 are connected using two main pipes 5, and the relay device 3 and the indoor units 2a to 2d each use two branch pipes 8. It is connected.
  • installation of the air conditioner 100 is achieved by connecting the outdoor unit 1 and the relay device 3 and between the relay device 3 and the indoor units 2a to 2d using two pipes. It can be done easily.
  • the outdoor unit 1 includes the compressor 10, the refrigerant flow switching device 11, the heat source side heat exchanger 12, the heat source side fan 18, and the accumulator 19, as in the first embodiment and the like. Further, it has an outdoor-side throttle device 45, an injection throttle device 42, an outdoor-side throttle device 45, an injection pipe 41 and the like.
  • the outdoor unit 1 according to the third embodiment is further provided with a first connection pipe 6, a second connection pipe 7, and first backflow prevention devices 13, 14, 15 and 16.
  • check valves are used as the first backflow prevention devices 13-16.
  • the first backflow prevention device 13 prevents the high temperature and high pressure gas refrigerant from flowing back from the first connection pipe 6 to the heat source side heat exchanger 12 in the heating only operation mode and the heating main operation mode. is there.
  • the first backflow prevention device 14 prevents the high pressure liquid or the gas-liquid two-phase refrigerant from backflowing from the first connection pipe 6 to the accumulator 19 in the cooling only operation mode and the cooling main operation mode It is a thing.
  • the first backflow prevention device 15 prevents the high pressure liquid or the gas-liquid two-phase refrigerant from backflowing from the second connection pipe 7 to the accumulator 19 in the cooling only operation mode and the cooling main operation mode It is a thing.
  • the first backflow prevention device 16 prevents the high temperature and high pressure gas refrigerant from flowing back from the flow path on the discharge side of the compressor 10 to the second connection pipe 7 in the heating only operation mode and heating only operation mode It is
  • the flow of the refrigerant to be made to flow into the relay device 3 can be obtained regardless of the operation requested by the indoor unit 2. It can be in a fixed direction.
  • check valves are used as the first backflow prevention devices 13 to 16 here, the configuration of the first backflow prevention devices 13 to 16 is not limited thereto as long as it can prevent the backflow of the refrigerant. .
  • the first backflow prevention devices 13 to 16 it is also possible to use an opening / closing device or a throttling device having a fully closed function.
  • the refrigerant can pass through the injection throttle device 42 and the outdoor throttle device 45 when in the heating only operation mode and the heating main operation mode. Therefore, injection and the like are not performed in the cooling only operation mode and the cooling main operation mode.
  • the plurality of indoor units 2a to 2d have, for example, the same configuration.
  • the indoor units 2a to 2d respectively include load side heat exchangers 26a, 26b, 26c, 26d and load side expansion devices 25a, 25b, 25c, 25d.
  • Each of the load side heat exchangers 26a to 26d is connected to the outdoor unit 1 via the branch pipe 8, the relay device 3 and the main pipe 5.
  • heating air or cooling air to be supplied to the indoor space is generated by heat exchange between the air supplied by the load side fan (not shown) and the refrigerant. Ru.
  • the load-side throttling devices 25a to 25d are, for example, capable of variably adjusting the opening degree continuously or in multiple steps.
  • As the load side throttle devices 25a to 25d for example, electronic expansion valves or the like are used.
  • the load-side throttling devices 25a to 25d have functions as pressure reducing valves and expansion valves, and decompress and expand the refrigerant.
  • the load-side expansion devices 25a to 25d are provided upstream of the load-side heat exchangers 26a to 26d in the refrigerant flow in the cooling operation mode (for example, the all-cooling operation mode).
  • the indoor unit 2 also has inlet side temperature sensors 31a to 31d for detecting the temperature of the refrigerant flowing into the load side heat exchangers 26a to 26d. Further, it has outlet side temperature sensors 32a to 32d for detecting the temperature of the refrigerant flowing out of the load side heat exchangers 26a to 26d.
  • the inlet temperature sensors 31a to 31d and the outlet temperature sensors 32a to 32d are, for example, thermistors or the like. Each of the inlet temperature sensors 31a to 31d and the outlet temperature sensors 32a to 32d outputs a detection signal to the control device 60.
  • the number of indoor units connected may be two, three, or five or more.
  • the relay device 3 includes a gas-liquid separator 29, a first relay throttling device 30, and a second relay throttling device 27.
  • the gas-liquid separator 29 separates the high-pressure gas-liquid two-phase refrigerant generated by the outdoor unit 1 into liquid refrigerant and gas refrigerant in the cooling-heating mixed operation mode in which the cooling load is large.
  • the gas-liquid separator 29 allows the separated liquid refrigerant to flow into the lower pipe in the drawing, and supplies cold heat to some of the indoor units 2 and causes the separated gas refrigerant to flow into the upper pipe in the drawing. , Supply heat to some other indoor units 2.
  • the gas-liquid separator 29 is provided at the inlet of the relay device 3 in the flow of the refrigerant.
  • the first relay throttle device 30 has functions as a pressure reducing valve and an on-off valve.
  • the first relay expansion device 30 decompresses the liquid refrigerant to adjust it to a predetermined pressure, and opens and closes a flow path of the liquid refrigerant.
  • the first relay throttle device 30 is, for example, capable of variably adjusting the opening degree continuously or in multiple steps.
  • an electronic expansion valve or the like is used as the first relay device throttle device 30, for example.
  • the first relay expansion device 30 is provided on a pipe from which the liquid refrigerant flows out from the gas-liquid separator 29.
  • the second relay throttle device 27 has functions as a pressure reducing valve and an on-off valve.
  • the second relay expansion device 27 opens and closes the refrigerant flow path in the heating only operation mode, and adjusts the bypass liquid flow rate in accordance with the indoor load in the heating main operation mode.
  • the second relay throttling device 27 is, for example, capable of variably adjusting the opening degree continuously or in multiple steps.
  • an electronic expansion valve or the like is used as the second relay throttle device 27, for example.
  • the plurality of first opening / closing devices 23a to 23d are provided for each of the plurality of indoor units 2a to 2d (in this case, four in total).
  • the first opening and closing devices 23a to 23d open and close the flow paths of the high-temperature and high-pressure gas refrigerant supplied to the indoor units 2a to 2d, respectively.
  • the first opening and closing devices 23a to 23d are configured by, for example, solenoid valves or the like.
  • the first opening and closing devices 23a to 23d are connected to the gas side piping of the gas-liquid separator 29, respectively.
  • the first opening and closing devices 23a to 23d may be an expansion device having a fully closing function as long as they can open and close the flow path.
  • the plurality of second opening / closing devices 24a to 24d are provided for each of the plurality of indoor units 2a to 2d (in this case, four in total).
  • the second open / close devices 24a to 24d open and close the flow paths of the low-pressure and low-temperature gas refrigerant flowing out of the indoor units 2a to 2d, respectively.
  • the second opening and closing devices 24a to 24d are configured by, for example, solenoid valves or the like.
  • the second opening and closing devices 24a to 24d are connected to low pressure pipes which conduct to the outlet side of the relay device 3, respectively.
  • the second opening / closing devices 24a to 24d may be an expansion device having a fully closing function as long as they can open and close the flow path.
  • a plurality of second backflow prevention devices 21a to 21d are provided for each of the plurality of indoor units 2a to 2d (four in total in the third embodiment).
  • the second backflow prevention devices 21a to 21d allow high pressure liquid refrigerant to flow into the indoor unit 2 performing the cooling operation, and are connected to the piping on the outlet side of the first relay device expansion device 30.
  • the medium-temperature and medium-pressure liquid or gas-liquid two-phase refrigerant whose degree of supercooling can not be sufficiently ensured from the load-side expansion device 25 of the heating indoor unit 2 However, it can be prevented from flowing into the load-side expansion device 25 of the indoor unit 2 being cooled.
  • check valves are used as the second backflow prevention devices 21a to 21d, but the configuration of the second backflow prevention devices 21a to 21d is limited to this as long as the backflow of the refrigerant can be prevented. Absent.
  • the second backflow prevention devices 21a to 21d it is also possible to use an open / close device or a throttling device having a fully closed function.
  • the plurality of third backflow prevention devices 22a to 22d are provided for each of the plurality of indoor units 2a to 2d (in this case, four in total).
  • the third backflow prevention devices 22a to 22d allow the high pressure liquid refrigerant to flow into the indoor unit 2 performing the cooling operation, and are connected to the piping on the outlet side of the first relay device expansion device 30.
  • the third relay device 22a to 22d receives a medium-temperature and medium-pressure liquid or a two-phase refrigerant from the first relay device expansion device 30 that does not have a sufficient degree of subcooling. It prevents the flow to the load-side expansion device 25 of the indoor unit 2 being cooled.
  • the check valves are used as the third backflow prevention devices 22a to 22d, but the configuration of the third backflow prevention devices 22a to 22d is limited to this as long as the backflow of the refrigerant can be prevented. Absent.
  • the third backflow prevention devices 22a to 22d it is also possible to use an open / close device or a throttling device having a fully closed function.
  • a throttling device inlet side pressure sensor 33 is provided at the inlet side of the first relay throttling device 30 in the relay device 3.
  • the throttling device inlet side pressure sensor 33 detects the pressure of the high pressure refrigerant.
  • a throttle device outlet side pressure sensor 34 is provided on the outlet side of the first relay throttle device 30.
  • the expansion device outlet side pressure sensor 34 detects the intermediate pressure of the liquid refrigerant on the outlet side of the first relay expansion device 30 in the cooling main operation mode.
  • the control device 60 controls the overall operation of the air conditioning apparatus 100 based on detection signals from various sensors and an instruction from the remote controller. For example, the control device 60 performs control of the drive frequency of the compressor 10 and rotation number control (including on and off control) of the heat source fan 18 and the load fan. Further, the control device 60 performs flow path switching of the refrigerant flow switching device 11, opening degree control of the injection throttle device 42, opening degree control or opening / closing control of the outdoor side throttle device 45.
  • the control device 60 controls the opening degree of the load side expansion device 25, the opening and closing control of the first opening and closing devices 23a to 23d, the opening and closing control of the second opening and closing devices 24a to 24d, the opening and closing control of the first relay device opening device 30; The opening and closing control and the like of the second relay throttle device 27 are performed. By these controls, control device 60 executes each operation mode.
  • the control device 60 is provided in the outdoor unit 1, the control device 60 may be provided in the indoor units 2 a to 2 d or may be provided in the relay device 3. Further, the control device 60 may be provided for each unit (for example, each of the outdoor unit 1, the indoor units 2a to 2d and the relay device 3). Then, the plurality of control devices 60 may combine the respective functions to perform the process related to the liquid back prevention and the like.
  • the control device 60 of the air conditioning apparatus 100 can perform the cooling operation or the heating operation independently in each of the indoor units 2a to 2d based on an instruction from each of the indoor units 2a to 2d. That is, the air conditioning apparatus 100 can perform the same operation (cooling operation or heating operation) in all the indoor units 2a to 2d, and can also perform different operations in each of the indoor units 2a to 2d.
  • the operation modes executed by the air conditioner 100 can be roughly classified into a cooling operation mode and a heating operation mode.
  • the cooling operation mode includes a cooling only operation mode and a cooling main operation mode.
  • the cooling only operation mode is an operation mode in which all the indoor units 2a to 2d not in the stopped state perform the cooling operation. That is, in the cooling only operation mode, all the load side heat exchangers 26a to 26d not in the stop state function as the evaporator.
  • the cooling main operation mode a part of the indoor units 2a to 2d performs the cooling operation, and the other part of the indoor units 2a to 2d performs the heating operation, and the cooling load is higher than the heating load. Is also a large operating mode. That is, in the cooling main operation mode, a part of the load side heat exchangers 26a to 26d functions as an evaporator, and another part of the load side heat exchangers 26a to 26d functions as a condenser.
  • the heating operation mode includes an all heating operation mode and a heating main operation mode.
  • the all heating operation mode is an operation mode in which all the indoor units 2a to 2d not in the stop state perform the heating operation. That is, in the heating only operation mode, all the load side heat exchangers 26a to 26d which are not in the stopped state function as the condenser.
  • the heating main operation mode is a cooling / heating mixed operation mode in which a part of the indoor units 2a to 2d performs the cooling operation and another part of the indoor units 2a to 2d performs the heating operation. Is also a large operating mode. Each operation mode will be described below.
  • FIG. 9 is a diagram for explaining the flow of the refrigerant in the cooling only operation mode of the air conditioning apparatus 100 according to the third embodiment.
  • the flow direction of the refrigerant is indicated by a solid arrow.
  • the control device 60 switches the refrigerant flow switching device 11 of the outdoor unit 1 so that the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as high-temperature and high-pressure gas refrigerant.
  • the high temperature and high pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11. Then, the heat is released to the outdoor air by the heat source side heat exchanger 12 and becomes a high pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flowing out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the first backflow prevention device 13 and flows into the relay device 3 through the main pipe 5.
  • the high-pressure liquid refrigerant flowing into the relay device 3 passes through the gas-liquid separator 29 and the first relay device throttling device 30, and most passes through the second backflow prevention devices 21a and 21b and the branch pipe 8, and the load side throttling It is expanded by the device 25 to become a low temperature and low pressure gas-liquid two-phase refrigerant.
  • the remaining part of the high-pressure refrigerant is expanded by the second relay throttling device 27 to become a low-temperature and low-pressure gas refrigerant or a refrigerant in a gas-liquid two-phase state. Then, it flows into the low pressure pipe on the outlet side of the relay device 3. At this time, the opening degree of the second relay expansion device 27 is controlled such that the subcool (degree of subcooling) of the refrigerant becomes constant.
  • the refrigerant in the gas-liquid two-phase state expanded by the load-side throttling devices 25a and 25b respectively flows into the load-side heat exchangers 26a and 26b acting as an evaporator, and absorbs room air by absorbing heat from room air. While cooling, it becomes a low temperature and low pressure gas refrigerant.
  • the load-side expansion device 25a is opened so that the superheat (degree of superheat) obtained as the difference between the temperature detected by the inlet temperature sensor 31a and the temperature detected by the outlet temperature sensor 32a becomes constant.
  • the degree is controlled.
  • the degree of opening of the load-side expansion device 25b is controlled such that the superheat obtained as the difference between the temperature detected by the inlet temperature sensor 31b and the temperature detected by the outlet temperature sensor 32b is constant. Ru.
  • the load side expansion device 25c or the load side expansion device 25d is opened to circulate the refrigerant.
  • the degree of opening of the load-side expansion device 25c or the load-side expansion device 25d is controlled in the same manner as the load-side expansion device 25a or 25b.
  • the superheat degree of superheat obtained as a difference between the temperature detected by the inlet temperature sensor 31c or 31d and the temperature detected by the outlet temperature sensor 32c or 32d is made constant.
  • FIG. 10 is a diagram for explaining the flow of the refrigerant in the cooling main operation mode of the air-conditioning apparatus 100 according to Embodiment 3.
  • the flow direction of the refrigerant is indicated by a solid arrow.
  • the control device 60 switches the refrigerant flow switching device 11 so that the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as high-temperature and high-pressure gas refrigerant.
  • the high temperature and high pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11.
  • the heat source side heat exchanger 12 releases the heat to the outdoor air and becomes a refrigerant in a gas-liquid two-phase state.
  • the refrigerant flowing out of the heat source side heat exchanger 12 flows into the relay device 3 through the first backflow prevention device 13 and the main pipe 5.
  • the refrigerant in the gas-liquid two-phase state that has flowed into the relay device 3 is separated into a high pressure gas refrigerant and a high pressure liquid refrigerant in the gas / liquid separator 29.
  • the high-pressure gas refrigerant flows into the load-side heat exchanger 26b acting as a condenser after passing through the first opening / closing device 23b and the branch pipe 8.
  • the high-pressure gas refrigerant releases the heat to the indoor air, thereby becoming a liquid refrigerant while heating the indoor air.
  • the load side expansion device 25b is a subcool obtained as a difference between a value obtained by converting the pressure detected by the expansion device inlet side pressure sensor 33 into a saturation temperature and the temperature detected by the inlet side temperature sensor 31b.
  • the opening degree is controlled so that the cooling degree) becomes constant.
  • the liquid refrigerant that has flowed out of the load-side heat exchanger 26b is expanded by the load-side throttling device 25b, and flows through the branch pipe 8 and the third backflow prevention device 22b.
  • the medium pressure liquid refrigerant that has been separated by the gas-liquid separator 29 and expanded to the intermediate pressure in the first relay device expansion device 30 merges with the liquid refrigerant that has passed through the third backflow prevention device 22b.
  • the pressure difference between the pressure detected by the throttle device inlet side pressure sensor 33 and the pressure detected by the throttle device outlet side pressure sensor 34 is a predetermined pressure difference (for example, The opening degree is controlled to be 0.3 MPa.
  • the combined liquid refrigerant is expanded by the load-side throttling device 25a via the second backflow prevention device 21a and the branch pipe 8, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the remaining part of the liquid refrigerant is expanded by the second relay throttling device 27 to become a low temperature and low pressure gas refrigerant or a refrigerant in a gas-liquid two-phase state.
  • the degree of opening of the second relay expansion device 27 is controlled such that the subcool (degree of subcooling) of the refrigerant becomes constant. Then, it flows into the low pressure pipe on the outlet side of the relay device 3.
  • the high-pressure liquid refrigerant separated in the gas-liquid separator 29 flows into the indoor unit 2a via the second backflow prevention device 21a.
  • the refrigerant in the gas-liquid two-phase state expanded by the load-side expansion device 25a of the indoor unit 2a flows into the load-side heat exchanger 26a acting as an evaporator, and cools room air by absorbing heat from room air. While becoming a low temperature and low pressure gas refrigerant.
  • the load-side expansion device 25a is opened so that the superheat (degree of superheat) obtained as the difference between the temperature detected by the inlet temperature sensor 31a and the temperature detected by the outlet temperature sensor 32b becomes constant. The degree is controlled.
  • the gas refrigerant that has flowed out of the load-side heat exchanger 26a flows out of the relay device 3 via the branch pipe 8 and the second opening / closing device 24a.
  • the refrigerant flowing out of the relay device 3 flows into the outdoor unit 1 again through the main pipe 5.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the first backflow prevention device 16 and is again drawn into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19.
  • the load side heat exchanger 26c and the load side heat exchanger 26d having no heat load, it is not necessary to flow the refrigerant, and the corresponding load side expansion devices 25c and 25d are closed. There is. Then, when a cold load is generated in the load side heat exchanger 26c or the load side heat exchanger 26d, the load side expansion device 25c or the load side expansion device 25d is opened to circulate the refrigerant. At this time, the opening degree of the load-side expansion device 25c or the load-side expansion device 25d is controlled.
  • the degree of opening of the load-side throttling device 25c or the load-side throttling device 25d is controlled so that the superheat (degree of superheat) becomes constant, similarly to the load-side throttling device 25a or 25b.
  • the superheat is the difference between the temperatures detected by the inlet temperature sensors 31c and 31d and the temperatures detected by the outlet temperature sensors 32c and 32d.
  • the heat source side heat exchanger 12 in one of the outdoor units 1 may become an evaporator.
  • the operation of the device in the case of performing the injection and the liquid back prevention and the liquid leveling control is the same as that described in the first embodiment and the second embodiment.
  • FIG. 11 is a diagram for explaining the flow of the refrigerant in the heating only operation mode of the air conditioning apparatus 100 according to the third embodiment.
  • the flow direction of the refrigerant is indicated by a solid arrow.
  • the control device 60 controls the refrigerant flow switching device 11 so that the heat source side refrigerant discharged from the compressor 10 flows into the relay device 3 without passing through the heat source side heat exchanger 12. Switch.
  • low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as high-temperature and high-pressure gas refrigerant.
  • the high temperature and high pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11 and the first backflow prevention device 14.
  • the high-temperature and high-pressure gas refrigerant flowing out of the outdoor unit 1 flows into the relay device 3 through the main pipe 5.
  • the high-temperature and high-pressure gas refrigerant flowing into the relay device 3 passes through the gas-liquid separator 29, the first opening / closing devices 23a and 23b, and the branch pipe 8, and then the load side heat exchanger 26a acting as a condenser and the load side. It flows into each of the heat exchangers 26b.
  • the refrigerant flowing into the load-side heat exchanger 26a and the load-side heat exchanger 26b dissipates heat into the room air, and thereby becomes a liquid refrigerant while heating the room air.
  • the liquid refrigerant that has flowed out from the load side heat exchanger 26a and the load side heat exchanger 26b is expanded by the load side expansion devices 25a and 25b, respectively.
  • the load-side expansion device 25a is a subcool obtained as a difference between a value obtained by converting the pressure detected by the expansion device inlet-side pressure sensor 33 into a saturation temperature and the temperature detected by the inlet-side temperature sensor 31a.
  • the opening degree is controlled so that the cooling degree) becomes constant.
  • the load-side expansion device 25b is a subcool obtained as a difference between a value obtained by converting the pressure detected by the expansion device inlet-side pressure sensor 33 into saturation temperature and the temperature detected by the inlet-side temperature sensor 31b.
  • the opening degree is controlled so that the cooling degree) becomes constant.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the first backflow prevention device 15 and becomes a low temperature and low pressure gas refrigerant while absorbing heat from the outdoor air in the heat source side heat exchanger 12, and the refrigerant flow switching device 11 and the accumulator It is again drawn into the compressor 10 via 19.
  • the load side expansion device 25c or the load side expansion device 25d is opened to circulate the refrigerant.
  • the degree of opening of the load-side expansion device 25c or the load-side expansion device 25d is controlled so that the superheat (degree of superheat) becomes constant, similarly to the load-side expansion device 25a or 25b described above. Ru.
  • the superheat is obtained as a difference between the temperature detected by the inlet temperature sensors 31c and 31d and the temperature detected by the outlet temperature sensors 32c and 32d.
  • the injection in the heating only operation mode, and the operation of the device in the case of performing the liquid back prevention and the liquid equalization control and the control of the control device 60 are the first embodiment and the embodiment. It is the same as that described in 2.
  • FIG. 12 is a diagram for explaining the flow of the refrigerant in the heating main operation mode of the air conditioning apparatus 100 according to the third embodiment.
  • the flow direction of the refrigerant is indicated by a solid arrow.
  • the control device 60 controls the refrigerant flow switching device 11 so that the heat source side refrigerant discharged from the compressor 10 flows into the relay device 3 without passing through the heat source side heat exchanger 12. Switch.
  • Low temperature and low pressure refrigerant is compressed by the compressor 10 and discharged as high temperature and high pressure gas refrigerant.
  • the high temperature and high pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11 and the first backflow prevention device 14.
  • the high-temperature and high-pressure gas refrigerant flowing out of the outdoor unit 1 flows into the relay device 3 through the main pipe 5.
  • the high temperature and high pressure gas refrigerant flowing into the relay device 3 flows through the gas-liquid separator 29, the first opening / closing device 23b and the branch pipe 8 and then flows into the load side heat exchanger 26b acting as a condenser.
  • the refrigerant that has flowed into the load-side heat exchanger 26b becomes a liquid refrigerant while heating room air by radiating heat to the room air.
  • the liquid refrigerant flowing out of the load-side heat exchanger 26b is expanded by the load-side throttling device 25b and passes through the branch pipe 8 and the third backflow prevention device 22b.
  • the liquid refrigerant is then expanded by the load-side throttling device 25a after passing mostly through the second backflow prevention device 21a and the branch pipe 8, and becomes a low temperature and low pressure gas-liquid two-phase refrigerant.
  • the remaining part of the liquid refrigerant is expanded by the second relay throttling device 27, which is also used as a bypass, to become a medium-temperature and medium-pressure liquid or a gas-liquid two-phase refrigerant.
  • the refrigerant in the liquid or gas-liquid two-phase state flows into the low pressure pipe on the outlet side of the relay device 3.
  • the refrigerant in the gas-liquid two-phase state expanded by the load-side expansion device 25a flows into the load-side heat exchanger 26a acting as an evaporator, absorbs heat from room air, and cools the room air, thereby reducing the temperature. And a medium-pressure gas-liquid two-phase refrigerant.
  • the refrigerant in the gas-liquid two-phase state which has flowed out of the load-side heat exchanger 26a flows out of the relay device 3 via the branch pipe 8 and the second opening / closing device 24a.
  • the refrigerant flowing out of the relay device 3 flows into the outdoor unit 1 again through the main pipe 5.
  • the refrigerant flowing into the outdoor unit 1 passes through the first backflow prevention device 15 and becomes a low temperature and low pressure gas refrigerant while absorbing heat from the outdoor air in the heat source side heat exchanger 12.
  • the gas refrigerant is again drawn into the compressor 10 through the refrigerant flow switching device 11 and the accumulator 19.
  • the load-side expansion device 25b is a subcool obtained as a difference between a value obtained by converting the pressure detected by the expansion device inlet-side pressure sensor 33 into a saturation temperature and the temperature detected by the inlet-side temperature sensor 31b.
  • the opening degree is controlled so that the cooling degree) becomes constant.
  • the load-side expansion device 25a has an opening degree such that the superheat (degree of superheat) obtained as a difference between the temperature detected by the inlet temperature sensor 31a and the temperature detected by the outlet temperature sensor 32b becomes constant. Is controlled.
  • the opening degree of the second relay expansion device 27 is controlled such that the subcool (degree of subcooling) of the refrigerant becomes constant.
  • the pressure difference between the pressure detected by the throttling device inlet side pressure sensor 33 and the pressure detected by the throttling device outlet side pressure sensor 34 is a predetermined pressure difference (for example, 0.
  • the opening degree is controlled to be 3 MPa).
  • the load side heat exchanger 26c and the load side heat exchanger 26d having no heat load, it is not necessary to flow the refrigerant, and the corresponding load side expansion devices 25c and 25d are closed. ing.
  • the load throttling device 25c or the load throttling device 25d is opened to circulate the refrigerant.
  • the operation in the case of performing the injection in the heating main operation mode and the liquid back prevention and the liquid equalization control and the control of the control device 60 are the first embodiment and the embodiment. It is the same as that described in 2.
  • Embodiment 1 and the embodiment are also applied to the air conditioner 100 of Embodiment 3 that can perform simultaneous heating and cooling by connecting a plurality of outdoor units 1 (1a and 1b) in parallel. Similar to 2, excessive liquid back can be prevented by injection and liquid equalization control.
  • FIG. 13 is a diagram showing an example of the configuration of an air conditioning apparatus 100 according to Embodiment 4 of the present invention.
  • the air conditioner 100 shown in FIG. 13 is a main pipe in which the refrigerant flows through the load-side heat exchanger 26a and the load-side heat exchanger 26b in which the outdoor unit 1 and the relay unit 3 are provided in the relay unit 3.
  • the relay device 3 and the indoor unit 2 are also connected by a heat medium pipe 70 in which a heat medium such as water or brine flows through the load heat exchanger 26a and the load heat exchanger 26b.
  • the same reference numerals as in FIGS. 1, 6 and 8 carry out the same operations as described in the first to third embodiments.
  • the refrigerant can pass through the injection throttle device 42 and the outdoor throttle device 45 in the all heating operation mode and the heating main operation mode. Therefore, injection and the like are not performed in the cooling only operation mode and the cooling main operation mode.
  • the relay device 3 includes two load side heat exchangers 26, two load side throttle devices 25, two opening / closing devices 50, and two relay unit refrigerant flow switching devices 51.
  • the relay device 3 includes two pumps 71, four first heat medium flow path switching devices 72, four second heat medium flow path switching devices 73, and four heat medium flow rate adjustment devices 75. It is mounted.
  • the two load side heat exchangers 26 (load side heat exchanger 26a, load side heat exchanger 26b) in the fourth embodiment function as a condenser (radiator) or an evaporator.
  • the load-side heat exchanger 26 performs heat exchange between the heat source side refrigerant and the heat medium, and transfers cold heat or heat generated by the outdoor unit 1 and stored in the heat source side refrigerant to the heat medium.
  • the load-side heat exchanger 26a is provided between the load-side expansion device 25a and the relay refrigerant flow switching device 51a in the refrigerant circuit, and serves to heat the heat medium in the cooling / heating mixed operation mode.
  • the load-side heat exchanger 26b is provided between the load-side expansion device 25b and the relay refrigerant flow switching device 51b in the refrigerant circuit, and serves to cool the heat medium in the cooling / heating mixed operation mode. It is.
  • the two load side throttling devices 25 have functions as pressure reducing valves and expansion valves, and decompress and expand the heat source side refrigerant.
  • the load side expansion device 25a is provided on the upstream side of the load side heat exchanger 26a in the flow of the heat source side refrigerant during the cooling operation.
  • the load-side expansion device 25b is provided upstream of the load-side heat exchanger 26b in the flow of the heat source-side refrigerant during the cooling operation.
  • the two load side throttling devices 25 may be configured by devices whose opening degree can be variably controlled, for example, an electronic expansion valve or the like.
  • the two opening and closing devices 50 are configured by two-way valves and the like, and open and close the refrigerant pipe 4.
  • the opening and closing device 50a is provided in the refrigerant pipe 4 on the inlet side of the heat source side refrigerant.
  • the opening and closing device 50b is provided in a pipe connecting the refrigerant pipe 4 on the inlet side and the outlet side of the heat source side refrigerant.
  • the two relay unit refrigerant flow switching devices 51 are configured by a four-way valve or the like, and switch the flow of the heat source side refrigerant according to the operation mode It is a thing.
  • the relay unit refrigerant flow switching device 51a is provided on the downstream side of the load side heat exchanger 26a in the flow of the heat source side refrigerant during the cooling operation.
  • the relay unit refrigerant flow switching device 51b is provided on the downstream side of the load side heat exchanger 26b in the flow of the heat source side refrigerant during the cooling only operation.
  • the two pumps 71 pressurize and circulate the heat medium flowing through the heat medium pipe 70.
  • the pump 71 a is provided in the heat medium pipe 70 between the load-side heat exchanger 26 a and the second heat medium channel switching device 73.
  • the pump 71 b is provided in the heat medium pipe 70 between the load-side heat exchanger 26 b and the second heat medium channel switching device 73.
  • the two pumps 71 may be configured by, for example, pumps whose displacement can be controlled.
  • the four first heat medium flow path switching devices 72 are configured by a three-way valve or the like, and switch the heat medium flow paths. It is a thing.
  • the first heat medium channel switching device 72 is provided in a number (here, four) according to the number of installed indoor units 2.
  • one of the three sides is the load side heat exchanger 26a
  • one of the three sides is the load side heat exchanger 26b
  • one of the three sides is the heat medium flow control device 75 are respectively connected, and are provided on the outlet side of the heat medium channel of the use side heat exchanger 76.
  • the first heat medium flow switching device 72a, the first heat medium flow switching device 72b, the first heat medium flow switching device 72c, and the first heat medium flow passage are arranged from the lower side of the drawing in correspondence to the indoor unit 2. It is illustrated as the switching device 72d.
  • the four second heat medium flow path switching devices 73 are constituted by a three-way valve or the like, and switch the heat medium flow paths. It is a thing.
  • the second heat medium flow path switching device 73 is provided in a number (four in this case) according to the number of installed indoor units 2.
  • one of the three sides is the load side heat exchanger 26a
  • one of the three sides is the load side heat exchanger 26b
  • one of the three sides is the use side heat exchanger 76 are respectively connected and provided on the inlet side of the heat medium channel of the use side heat exchanger 76.
  • the four heat medium flow rate adjusting devices 75 are constituted by a two-way valve or the like which can control the opening area, and control the flow rate flowing to the heat medium piping 70. It is a thing.
  • the number of the heat medium flow control devices 75 is four (here, four) according to the number of installed indoor units 2.
  • One of the heat medium flow control devices 75 is connected to the use side heat exchanger 76, and the other is connected to the first heat medium flow path switching device 72, and the heat medium flow path outlet side of the use side heat exchanger 76 is provided. It is provided.
  • the heat medium flow control device 75a, the heat medium flow control device 75b, the heat medium flow control device 75c, and the heat medium flow control device 75d are illustrated from the lower side of the drawing in correspondence with the indoor unit 2. Further, the heat medium flow control device 75 may be provided on the inlet side of the heat medium channel of the use side heat exchanger 76.
  • various sensors are installed in the relay device 3.
  • a signal related to detection of the sensor is sent to, for example, the control device 60.
  • the two first heat medium temperature sensors 37 are the heat medium flowing out of the load side heat exchanger 26, that is, at the outlet of the load side heat exchanger 26. The temperature of the heat medium is detected.
  • the first heat medium temperature sensor 37 is installed in the heat medium pipe 70 at the inlet side of each pump 71.
  • second heat medium temperature sensors 38 (second heat medium temperature sensors 38 a to second heat medium temperature sensors 38 d) are provided between the first heat medium flow path switching device 72 and the heat medium flow rate adjustment device 75. The temperature of the heat medium flowing out of the use side heat exchanger 76 is detected. The number (in this case, four) of the second heat medium temperature sensors 38 is provided according to the number of installed indoor units 2.
  • heat exchanger temperature sensors 35 (heat exchanger temperature sensor 35 a to heat exchanger temperature sensor 35 d) are provided on the inlet side or the outlet side of the heat source side refrigerant of the load side heat exchanger 26. It becomes the inlet side temperature sensor 31 or the outlet side temperature sensor 32 in the first embodiment and the second embodiment.
  • the pressure sensor 36 detects the pressure of the heat source side refrigerant flowing between the load side heat exchanger 26b and the load side expansion device 25b.
  • the operation mode of the air conditioner 100 is the same as that of the air conditioner 100 described in the third embodiment, that is, the all-cooling operation mode in which all the indoor units 2 being driven execute the cooling operation, and the indoors being driven.
  • the high temperature / high pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11, dissipates heat to the surrounding air, and condenses and condenses As a high pressure liquid refrigerant, it flows out of the outdoor unit 1 through the first backflow prevention device 13. Then, it flows into the relay device 3 through the main pipe 5.
  • the refrigerant flowing into the relay device 3 passes through the opening / closing device 50a, and is expanded by the load side expansion device 25a and the load side expansion device 25b to become a low temperature and low pressure two-phase refrigerant.
  • the two-phase refrigerant flows into each of the load side heat exchanger 26a and the load side heat exchanger 26b acting as an evaporator, absorbs heat from the heat medium circulating in the heat medium circulation circuit, and becomes a low temperature low pressure gas refrigerant.
  • the gas refrigerant flows out of the relay device 3 via the relay refrigerant flow switching device 51a and the relay refrigerant flow switching device 51b. Then, it flows into the outdoor unit 1 again through the main pipe 5.
  • the refrigerant flowing into the outdoor unit 1 passes through the first backflow prevention device 16 and is again drawn into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19.
  • the heat medium is cooled by the refrigerant in both the load side heat exchanger 26a and the load side heat exchanger 26b.
  • the cooled heat medium flows in the heat medium pipe 70 by the pump 71a and the pump 71b.
  • the heat medium that has flowed into the use side heat exchangers 76a to 76d via the second heat medium flow path switching devices 73a to 73d absorbs heat from indoor air.
  • the indoor air is cooled to cool the air-conditioned space.
  • the refrigerant that has flowed out of the use side heat exchangers 76a to 76d flows into the heat medium flow rate adjustment devices 75a to 75d.
  • the refrigerant flows into the load side heat exchanger 26a and the load side heat exchanger 26b through the first heat medium flow path switching devices 72a to 72d, is cooled, and is sucked into the pump 71a and the pump 71b again.
  • the heat medium flow control devices 75a to 75d corresponding to the use side heat exchangers 76a to 76d having no heat load are fully closed. Further, the heat medium flow control devices 75a to 75d corresponding to the use side heat exchangers 76a to 76d having the heat load adjust the opening degree, and adjust the heat load on the use side heat exchangers 76a to 76d.
  • the high temperature / high pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 through the refrigerant flow switching device 11, dissipates heat to surrounding air, and condenses, It becomes a two-phase refrigerant and flows out of the outdoor unit 1 through the first backflow prevention device 13. Then, it flows into the relay device 3 through the main pipe 5.
  • the refrigerant that has flowed into the relay device 3 flows into the load-side heat exchanger 26b that functions as a condenser through the relay-machine refrigerant flow switching device 51b, and dissipates heat to the heat medium circulating in the heat medium circulation circuit.
  • the high-pressure liquid refrigerant is expanded by the load-side throttling device 25 b to become a low-temperature low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows into the load-side heat exchanger 26a acting as an evaporator via the load-side throttling device 25a, absorbs heat from the heat medium circulating in the heat medium circulation circuit, and becomes a low pressure gas refrigerant. It flows out of the relay device 3 via the flow path switching device 51a. Then, it flows into the outdoor unit 1 again through the main pipe 5.
  • the refrigerant flowing into the outdoor unit 1 passes through the first backflow prevention device 16 and is again drawn into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19.
  • the heat of the refrigerant is transferred to the heat medium by the load-side heat exchanger 26b. Then, the heated heat medium flows in the heat medium pipe 70 by the pump 71 b.
  • the heat medium flowing into the use side heat exchangers 76a to 76d having a heating request by operating the first heat medium channel switching devices 72a to 72d and the second heat medium channel switching devices 73a to 73d dissipates heat into the indoor air Do.
  • the indoor air is heated to heat the air-conditioned space.
  • the cold heat of the refrigerant is transferred to the heat medium by the load side heat exchanger 26a. Then, the cooled heat medium flows in the heat medium pipe 70 by the pump 71 a.
  • the heat medium flowing into the use side heat exchangers 76a to 76d having a cooling request by operating the first heat medium channel switching devices 72a to 72d and the second heat medium channel switching devices 73a to 73d absorbs heat from indoor air Do.
  • the indoor air is cooled to cool the air-conditioned space.
  • the heat medium flow control devices 75a to 75d corresponding to the use side heat exchangers 76a to 76d having no heat load are fully closed. Further, the heat medium flow control devices 75a to 75d corresponding to the use side heat exchangers 76a to 76d having the heat load adjust the opening degree, and adjust the heat load on the use side heat exchangers 76a to 76d.
  • the heat source side heat exchanger 12 in one of the outdoor units 1 may become an evaporator.
  • the operation of the device in the case of performing the injection and the liquid back prevention and the liquid leveling control is the same as that described in the first embodiment and the second embodiment.
  • the high temperature / high pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first connection pipe 6 and the first backflow prevention device 14 through the refrigerant flow switching device 11 Do. Then, it flows into the relay device 3 through the main pipe 5.
  • the refrigerant that has flowed into the relay device 3 flows into the load-side heat exchanger 26a and the load-side heat exchanger 26b through the relay refrigerant flow switching device 51a and the relay refrigerant flow switching device 51b, and is thermally The heat is released to the heat medium circulating in the medium circulation circuit, and becomes a high pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is expanded by the load-side throttling device 25a and the load-side throttling device 25b to become a low-temperature, low-pressure two-phase refrigerant, and flows out of the relay device 3 through the opening / closing device 50b. Then, it flows into the outdoor unit 1 again through the main pipe 5.
  • the refrigerant having flowed into the outdoor unit 1 passes through the second connection pipe 7 and the first backflow prevention device 15, flows into the heat source side heat exchanger 12 acting as an evaporator, absorbs heat from the surrounding air, It becomes a gas refrigerant.
  • the gas refrigerant is again drawn into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19.
  • the operation of the heat medium in the heat medium circulation circuit is the same as that in the cooling only operation mode.
  • the heat medium is heated by the refrigerant in the load side heat exchanger 26a and the load side heat exchanger 26b, and dissipated to room air by the use side heat exchanger 76a and the use side heat exchanger 76b, Heating the air conditioning target space.
  • the injection in the heating only operation mode, and the operation of the device in the case of performing the liquid back prevention and the liquid equalization control and the control of the control device 60 are the first embodiment and the embodiment. It is the same as that described in 2.
  • Heating main operation mode In the heating main operation mode, the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the first connection pipe 6 and the first backflow prevention device 14 via the refrigerant flow switching device 11, and the outdoor unit 1 Flow out of Then, it flows into the relay device 3 through the main pipe 5.
  • the refrigerant that has flowed into the relay device 3 flows into the load-side heat exchanger 26b that functions as a condenser through the relay-machine refrigerant flow switching device 51b, and dissipates heat to the heat medium circulating in the heat medium circulation circuit. It becomes a liquid refrigerant.
  • the high-pressure liquid refrigerant is expanded by the load-side throttling device 25 b to become a low-temperature low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows into the load side heat exchanger 26a acting as an evaporator via the load side expansion device 25a, absorbs heat from the heat medium circulating in the heat medium circulation circuit, and the relay machine refrigerant flow switching device 51a It flows out from the relay device 3 via Then, it flows into the outdoor unit 1 again through the main pipe 5.
  • the refrigerant flowing into the outdoor unit 1 flows through the second connection pipe 7 and the first backflow prevention device 15 into the heat source side heat exchanger 12 acting as an evaporator, and absorbs heat from the surrounding air, so that the low temperature low pressure It becomes a gas refrigerant of The gas refrigerant is again drawn into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19.
  • the operations of the exchangers 76a to 76d are the same as in the cooling main operation mode.
  • Embodiment 4 the operation in the case of performing injection in the heating main operation mode, and liquid back prevention and liquid equalization control, and control of the control device 60 are described in Embodiment 1 and Embodiment. It is the same as that described in 2.
  • the air according to the fourth embodiment can perform simultaneous heating and cooling operation by connecting in parallel a plurality of outdoor units 1 having the heat medium circulation circuit and the refrigerant circuit and having the devices that constitute the refrigerant circuit. Also in the conditioning apparatus 100, as in the first and second embodiments, excessive liquid back can be prevented by injection and liquid equalization control.
  • the air conditioner 100 is not limited to the first to fourth embodiments, and various modifications are possible.
  • the discharge temperature threshold is the discharge temperature of the compressor 10. It may be set according to the limit value.
  • the controller 60 controls the operation of the compressor 10 so that the discharge temperature does not exceed 120 ° C.
  • the control device 60 performs control to lower the frequency of the compressor 10 to decelerate.
  • the temperature slightly lower than 110 ° C. which is the temperature (discharge temperature threshold) for lowering the frequency of the compressor 10
  • the target discharge temperature (liquid level adjustment threshold) may be set in advance to a temperature (e.g., 100 ° C., etc.) between the above.
  • the discharge temperature threshold is set to 90 ° C. or more and 120 ° C. or less (for example, 110 ° C.) do it.
  • Embodiments 1 to 4 the use of a refrigerant such as the R410A refrigerant or the R32 refrigerant has been described as an example, but other refrigerants may be used.
  • a mixed refrigerant non-azeotropic mixed refrigerant
  • a tetrafluoropropene-based refrigerant HFO1234yf, HFO1234ze, etc.
  • CF 3 CF CH 2
  • the discharge temperature is higher by 3 ° C. or more than when R410A refrigerant is used. For this reason, the effect obtained by lowering the discharge temperature by the above-described injection is large. Further, in the mixed refrigerant of R32 and HFO1234ze, when the mass ratio of R32 is 43% (43 wt%) or more, the discharge temperature is 3 ° C. or more higher than when the R410A refrigerant is used. For this reason, the effect obtained by lowering the discharge temperature by the above-described injection is large.
  • the type of refrigerant in the mixed refrigerant is not limited to this. Even when a mixed refrigerant containing a small amount of other refrigerant components is used, the discharge temperature is not greatly affected, and the same effect as described above is obtained. Further, for example, even in the case of using a mixed refrigerant containing a small amount of R32, HFO 1234yf and other refrigerants, the same effect as described above is obtained.
  • a refrigerant such as CO 2 (R744) which operates in a supercritical state on the high pressure side can also be used. Also in this case, since the discharge temperature needs to be reduced, the discharge temperature can be reduced by setting the air conditioner 100 to the refrigerant circuit configuration of the above-described embodiment.
  • the configuration in which the outdoor unit 1 and the relay device 3 are connected using the two main pipes 5 is illustrated.
  • the present invention can be applied to an air conditioner in which the outdoor unit 1 and the relay device 3 are connected using three main pipes 5 and can perform simultaneous heating and cooling operation.
  • it is possible to suppress an excessive rise in the temperature of the high-pressure and high-temperature gas refrigerant discharged from the compressor 10 as in the above-described embodiment.
  • the compressor 10 has been described as a low pressure shell type compressor, for example, a high pressure shell type compressor can also be used.
  • low pressure shell type compressors are effective for injection into the compressor suction chamber, the same effects as described above can be obtained even when high pressure shell type compressors are used.
  • the outdoor unit 1 has the heat source side fan 18, and the indoor unit 2 has the load side fan 28.
  • the load side fan 28 can be configured not to be mounted by using a load such as a panel heater using radiation as the load side heat exchanger 26.
  • FIG. 14 is a diagram showing an example of the configuration of the air conditioning apparatus 100 according to Embodiment 5 of the present invention.
  • the heat source side heat exchanger 12 it is possible to use a water refrigerant heat exchanger that performs heat exchange between the refrigerant that has passed through the water pipe 80 and a liquid such as antifreeze liquid.
  • the heat source side heat exchanger 12 and the load side heat exchanger 26 do not limit the heat exchange object as long as they can release or absorb heat of the refrigerant.
  • the refrigerant flow switching device 11 can be omitted.

Abstract

In this air conditioner , an outdoor unit that has a compressor which has an injection port for introducing the refrigerant into an intake chamber, a heat source-side heat exchanger that performs heat exchange with the refrigerant, an outdoor unit-side throttle device, and an accumulator; at least one load-side throttle device; and at least one load-side heat exchanger that performs heat exchange between a load and the refrigerant are connected by piping to constitute a refrigerant circuit for circulating the refrigerant. The outdoor unit is provided with: an injection pipe which has one end connected between the heat source-side heat exchanger and the load-side throttle device in the refrigerant circuit, and the other end connected to the injection port; the outdoor unit-side throttle device that is installed in a position downstream from the one end of the injection pipe when the refrigerant flows from the load-side throttle device to the heat source-side heat exchanger; and an injection throttle device that adjusts the amount of refrigerant flowing through the injection pipe. The outdoor unit further has a control device controls the opening degree of the outdoor unit-side throttle device and the opening degree of the injection throttle device.

Description

空気調和装置Air conditioner
 この発明は、たとえば、ビル用マルチエアコンなどに適用される空気調和装置に関するものである。 The present invention relates to an air conditioner applied to, for example, a multi-air conditioner for buildings.
 ビル用マルチエアコンなどの空気調和装置は、たとえば、建物外に配置した熱源機である室外機(室外ユニット)と建物内に配置した室内機(室内ユニット)との間を、配管を介して接続した冷媒回路を有している。空気調和装置は、冷媒を循環させる冷媒回路を有する。冷媒回路内では、冷媒の放熱または吸熱を利用して、空気を加熱または冷却することにより、負荷となる空調対象空間の暖房または冷房を行っている。 An air conditioner such as a multi-air-conditioner for a building is connected, for example, between an outdoor unit (outdoor unit), which is a heat source device disposed outside the building, and an indoor unit (indoor unit) disposed in the building, through piping. Has a refrigerant circuit. The air conditioner has a refrigerant circuit that circulates a refrigerant. In the refrigerant circuit, heating or cooling of a space to be air-conditioned, which is a load, is performed by heating or cooling air using heat release or heat absorption of the refrigerant.
 たとえば、冷媒熱交換器と負荷側絞り装置との間で液配管を分岐させたインジェクション管でバイパス用絞り装置、冷媒熱交換器、開閉弁および圧縮機のインジェクションポートを順次接続したインジェクション回路を備えた空気調和装置が提案されている(たとえば、特許文献1参照)。この空気調和装置では、圧縮機の圧縮過程で中間圧の乾き度が低い冷媒をインジェクションすることにより、冷媒流量を増加させつつ、吐出温度の異常上昇を抑制できる。このため、吐出温度が上昇する外気温度が低い暖房運転にて、圧縮機の駆動周波数を高くすることができ、暖房能力を維持することができる。 For example, it has an injection circuit in which a throttling device for bypass, a refrigerant heat exchanger, an open / close valve, and an injection port of a compressor are sequentially connected by an injection pipe in which liquid piping is branched between a refrigerant heat exchanger and a load side throttling device. An air conditioner has been proposed (see, for example, Patent Document 1). In this air conditioner, by injecting a refrigerant having a low degree of dryness at an intermediate pressure in the compression process of the compressor, it is possible to suppress an abnormal increase in discharge temperature while increasing the flow rate of the refrigerant. Therefore, in the heating operation in which the outside air temperature where the discharge temperature rises is low, the driving frequency of the compressor can be increased, and the heating capacity can be maintained.
特開2008-138921号公報JP 2008-138921 A
 ビル用マルチエアコンなどの空気調和装置では、設置場所において、室外機と室内機との接続配管の長さ、接続室内機数に応じて冷媒を追加封入する。このとき、冷媒量が規定値よりも多く封入されることがある。冷媒回路内に封入される冷媒量が過多となると、アキュムレーターの液面が高くなる。このため、液バック(返液)が生じる可能性がある。過度な液バックが生じると、圧縮機などの損傷につながり、空気調和装置の信頼性が保てない可能性がある。 In an air conditioning apparatus such as a building multi air conditioner, a refrigerant is additionally sealed according to the length of connection piping between an outdoor unit and an indoor unit and the number of indoor units connected at the installation location. At this time, the amount of refrigerant may be sealed more than the specified value. If the amount of refrigerant sealed in the refrigerant circuit is excessive, the liquid level of the accumulator will be high. For this reason, liquid back (return) may occur. Excessive liquid bag may cause damage to the compressor and the like, and the reliability of the air conditioner may not be maintained.
 この発明は、上述のような課題を解決するものであり、空気調和装置の性能を低下させず、負荷に対する能力を維持し、信頼性を確保できる空気調和装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention solves the problems as described above, and an object of the present invention is to provide an air conditioner that can maintain the ability to a load and ensure reliability without reducing the performance of the air conditioner.
 この発明に係る空気調和装置は、吸入室に冷媒を導入するインジェクションポートを有し、冷媒を圧縮して吐出する圧縮機、冷媒の熱交換を行う熱源側熱交換器および冷媒を溜めるアキュムレーターとを有する室外機と、冷媒を減圧する、少なくとも1台の負荷側絞り装置と、負荷と冷媒との熱交換を行う少なくとも1台の負荷側熱交換器とが配管で接続され、冷媒を循環させる冷媒回路を構成する空気調和装置であって、室外機は、冷媒回路において、一端が、熱源側熱交換器と負荷側絞り装置との間に接続され、他端が、インジェクションポートと接続され、冷媒回路を流れる冷媒の一部をインジェクションポートに向けて通過させるインジェクション配管と、冷媒回路において、負荷側絞り装置から熱源側熱交換器に冷媒が流れるときに、インジェクション配管の一端よりも下流側となる位置に設置され、通過する冷媒を減圧し、流量を調整する室外側絞り装置と、インジェクション配管を流れる冷媒の量を調整するインジェクション絞り装置とを備え、室外側絞り装置の開度およびインジェクション絞り装置の開度を制御する制御装置をさらに有するものである。 An air conditioner according to the present invention has an injection port for introducing a refrigerant into a suction chamber, a compressor for compressing and discharging the refrigerant, a heat source side heat exchanger for heat exchange of the refrigerant, and an accumulator for accumulating the refrigerant. The outdoor unit having the above, at least one load-side expansion device for decompressing the refrigerant, and at least one load-side heat exchanger for performing heat exchange between the load and the refrigerant are connected by piping, and the refrigerant is circulated An air conditioner comprising a refrigerant circuit, wherein the outdoor unit in the refrigerant circuit has one end connected between the heat source side heat exchanger and the load side expansion device, and the other end connected to the injection port, When the refrigerant flows from the load-side throttling device to the heat-source-side heat exchanger in the injection pipe that allows part of the refrigerant flowing through the refrigerant circuit to pass toward the injection port and the refrigerant circuit And an outdoor throttling device installed downstream of the one end of the injection piping to decompress the passing refrigerant and adjust the flow rate, and an injection throttling device adjusting the amount of the refrigerant flowing through the injection piping. And a controller for controlling an opening degree of the outdoor-side throttling device and an opening degree of the injection throttling device.
 この発明によれば、制御装置60が、アキュムレーターに流入する冷媒を少なくし、余剰冷媒が溜まらないようにするので、アキュムレーターの液面を低下させることができ、アキュムレーターのオーバーフローを防ぐことができる。したがって、圧縮機への過度な液バックを防止して、圧縮機の破損を防ぎ、空気調和装置の信頼性を確保することができる。 According to the present invention, since the control device 60 reduces the amount of refrigerant flowing into the accumulator and prevents excess refrigerant from accumulating, the liquid level of the accumulator can be lowered, and the overflow of the accumulator can be prevented. Can. Therefore, excessive liquid back to the compressor can be prevented, damage to the compressor can be prevented, and the reliability of the air conditioner can be ensured.
この発明の実施の形態1に係る空気調和装置100の構成の一例を示す図である。It is a figure which shows an example of a structure of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置100の冷房運転モードにおける冷媒の流れを説明する図である。It is a figure explaining the flow of the refrigerant in air conditioning operation mode of air harmony device 100 concerning Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置100の暖房運転モードにおける冷媒の流れを説明する図である。It is a figure explaining the flow of the refrigerant in heating operation mode of air harmony device 100 concerning Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置100において、冷房運転モード時における、圧縮機10にインジェクションを行った場合の冷媒の状態を示すモリエル線図を示す図である。FIG. 7 is a Mollier diagram showing the state of the refrigerant when the injection is performed to the compressor 10 in the cooling operation mode in the air conditioning apparatus 100 according to Embodiment 1 of the present invention. この発明の実施の形態1に係る空気調和装置100において、冷房運転モード時における、圧縮機10にインジェクションを行った場合の冷媒の状態を示すモリエル線図を示す図である。FIG. 7 is a Mollier diagram showing the state of the refrigerant when the injection is performed to the compressor 10 in the cooling operation mode in the air conditioning apparatus 100 according to Embodiment 1 of the present invention. この発明の実施の形態2に係る空気調和装置100の構成の一例を示す図である。It is a figure which shows an example of a structure of the air conditioning apparatus 100 which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る空気調和装置100において、制御装置60が行う制御の一例を示す図である。The air conditioning apparatus 100 which concerns on Embodiment 2 of this invention WHEREIN: It is a figure which shows an example of the control which the control apparatus 60 performs. この発明の実施の形態3に係る空気調和装置100の構成の一例を示す図である。It is a figure which shows an example of a structure of the air conditioning apparatus 100 which concerns on Embodiment 3 of this invention. 実施の形態3に係る空気調和装置100の全冷房運転モードにおける冷媒の流れを説明する図である。FIG. 18 is a diagram for explaining the flow of the refrigerant in the cooling only operation mode of the air conditioning apparatus 100 according to Embodiment 3. 実施の形態3に係る空気調和装置100の冷房主体運転モードにおける冷媒の流れを説明する図である。FIG. 18 is a diagram for explaining the flow of the refrigerant in the cooling-dominated operation mode of the air conditioning apparatus 100 according to Embodiment 3. 実施の形態3に係る空気調和装置100の全暖房運転モードにおける冷媒の流れを説明する図である。FIG. 17 is a diagram for explaining the flow of the refrigerant in the heating only operation mode of the air conditioning apparatus 100 according to Embodiment 3. 実施の形態3に係る空気調和装置100の暖房主体運転モードにおける冷媒の流れを説明する図である。FIG. 16 is a diagram for explaining the flow of the refrigerant in the heating main operation mode of the air conditioning apparatus 100 according to Embodiment 3. この発明の実施の形態4に係る空気調和装置100の構成の一例を示す図である。It is a figure which shows an example of a structure of the air conditioning apparatus 100 which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係る空気調和装置100の構成の一例を示す図である。It is a figure which shows an example of a structure of the air conditioning apparatus 100 which concerns on Embodiment 5 of this invention.
 以下、この発明の実施の形態について、図面を参照しつつ説明する。ここで、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適宜、適用することができる。そして、温度、圧力などの高低については、特に絶対的な値との関係で高低が定まっているものではなく、システム、装置などにおける状態、動作などにおいて相対的に定まるものとする。また、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, in the following drawings, what attached the same code is the same or it corresponds to this, and suppose that it is common in the whole text of the embodiment described below. Further, the form of the constituent elements shown in the entire specification is merely an example, and the present invention is not limited to these descriptions. In particular, the combination of components is not limited to only the combination in each embodiment, and the components described in the other embodiments can be applied as appropriate to other embodiments. With regard to the magnitude of temperature, pressure and the like, the magnitude is not particularly determined in relation to absolute values, but is relatively determined in the state and operation of the system, the device, and the like. Also, with respect to a plurality of similar devices distinguished by subscripts, etc., the subscripts and the like may be omitted and described, in particular, when it is not necessary to distinguish or specify.
実施の形態1.
 図1は、この発明の実施の形態1に係る空気調和装置100の構成の一例を示す図である。図1に示すように、実施の形態1の空気調和装置100は、室外機1と室内機2とが、たとえば、2本の主管5を介して接続された構成を有している。
Embodiment 1
FIG. 1 is a diagram showing an example of the configuration of an air conditioning apparatus 100 according to Embodiment 1 of the present invention. As shown in FIG. 1, the air conditioning apparatus 100 of Embodiment 1 has a configuration in which an outdoor unit 1 and an indoor unit 2 are connected via, for example, two main pipes 5.
 また、空気調和装置100は、冷媒が流れる主冷媒回路とインジェクション流路とを有している。実施の形態1の主冷媒回路は、アキュムレーター19、圧縮機10、冷媒流路切替装置11、熱源側熱交換器12、室外側絞り装置45、負荷側絞り装置25および負荷側熱交換器26を、主管5および冷媒配管で環状に接続して構成される回路である。また、インジェクション流路は、室外側絞り装置45と負荷側絞り装置25との間に位置する冷媒配管4から、圧縮機10内において、圧縮が開始される直前の室である圧縮機吸入室に冷媒が流れる。 The air conditioner 100 also has a main refrigerant circuit through which the refrigerant flows and an injection flow channel. The main refrigerant circuit according to the first embodiment includes an accumulator 19, a compressor 10, a refrigerant flow switching device 11, a heat source heat exchanger 12, an outdoor throttling device 45, a load throttling device 25 and a load heat exchanger 26. Are connected in a ring shape by the main pipe 5 and the refrigerant pipe. Further, the injection flow path is from the refrigerant pipe 4 located between the outdoor expansion device 45 and the load-side expansion device 25 to the compressor suction chamber which is a chamber just before compression is started in the compressor 10. The refrigerant flows.
<室外機1>
 室外機1は、圧縮機10、冷媒流路切替装置11、熱源側熱交換器12、アキュムレーター19、インジェクション配管41、熱源側ファン18、室外側絞り装置45およびインジェクション絞り装置42を有している。このうち、主冷媒回路を構成する圧縮機10、冷媒流路切替装置11、熱源側熱交換器12、アキュムレーター19および室外側絞り装置45は、室外機1内において、冷媒配管4で接続されている。
<Outdoor unit 1>
The outdoor unit 1 includes a compressor 10, a refrigerant flow switching device 11, a heat source side heat exchanger 12, an accumulator 19, an injection pipe 41, a heat source side fan 18, an outdoor outside expansion device 45, and an injection expansion device 42. There is. Among them, the compressor 10 constituting the main refrigerant circuit, the refrigerant flow switching device 11, the heat source side heat exchanger 12, the accumulator 19 and the outdoor expansion device 45 are connected by the refrigerant pipe 4 in the outdoor unit 1. ing.
 圧縮機10は、冷媒を吸入し圧縮して高温および高圧の状態にして吐出する。圧縮機10は、たとえば、容量制御可能なインバータ圧縮機などで構成されている。圧縮機10としては、たとえば、低圧シェル構造のものが使用される。低圧シェル構造の圧縮機は、密閉容器内に圧縮室を有し、密閉容器内が低圧の冷媒圧雰囲気になり、密閉容器内の低圧冷媒を吸入して圧縮する。また、実施の形態1の圧縮機10は、外部から圧縮室内に冷媒を流入させることができるインジェクションポート17を有する構造である。実施の形態1では、たとえば、圧縮機10の圧縮が開始される直前の室である圧縮機吸入室に、インジェクションポート17から冷媒を導入させることができる。圧縮機吸入室に、外部から冷媒を流入させることで、吐出温度が圧縮機10の耐力以上に上昇することを抑制する。 The compressor 10 sucks and compresses the refrigerant, and discharges it in a state of high temperature and high pressure. The compressor 10 is configured of, for example, an inverter compressor or the like whose capacity can be controlled. As the compressor 10, for example, a low pressure shell structure is used. The compressor of the low pressure shell structure has a compression chamber in the closed container, and the inside of the closed container becomes a low pressure refrigerant pressure atmosphere, and sucks and compresses the low pressure refrigerant in the closed container. Moreover, the compressor 10 of Embodiment 1 is a structure which has the injection port 17 which can make a refrigerant | coolant flow in into a compression chamber from the exterior. In the first embodiment, for example, the refrigerant can be introduced from the injection port 17 into the compressor suction chamber which is a chamber just before the compression of the compressor 10 is started. By causing the refrigerant to flow from the outside into the compressor suction chamber, the discharge temperature is prevented from rising above the resistance of the compressor 10.
 冷媒流路切替装置11は、暖房運転モードにおける冷媒流路と冷房運転モードにおける冷媒流路とを切り替える装置である。冷媒流路切替装置11は、たとえば、四方弁などを有している。ここで、冷房運転モードとは、熱源側熱交換器12が凝縮器またはガスクーラとして作用する運転モードである。また、暖房運転モードとは、熱源側熱交換器12が蒸発器として作用する運転モードである。 The refrigerant flow switching device 11 is a device that switches between the refrigerant flow in the heating operation mode and the refrigerant flow in the cooling operation mode. The refrigerant flow switching device 11 has, for example, a four-way valve. Here, the cooling operation mode is an operation mode in which the heat source side heat exchanger 12 acts as a condenser or a gas cooler. The heating operation mode is an operation mode in which the heat source side heat exchanger 12 acts as an evaporator.
 熱源側熱交換器12は、暖房運転モードでは、蒸発器として機能する。また、冷房運転モードでは、凝縮器またはガスクーラ(実施の形態1では、凝縮器とする)として機能する。実施の形態1における熱源側熱交換器12は、熱源側ファン18により供給される空気と冷媒との間で熱交換を行う。ただし、これに限定するものではない。冷媒と水との間で熱交換を行うようにしてもよい。この場合、熱源側熱交換器12は、水冷媒熱交換器となる。 The heat source side heat exchanger 12 functions as an evaporator in the heating operation mode. Further, in the cooling operation mode, it functions as a condenser or a gas cooler (in the first embodiment, a condenser). The heat source side heat exchanger 12 in the first embodiment performs heat exchange between the air supplied by the heat source side fan 18 and the refrigerant. However, it is not limited to this. Heat exchange may be performed between the refrigerant and the water. In this case, the heat source side heat exchanger 12 is a water refrigerant heat exchanger.
 アキュムレーター19は、圧縮機10の吸入部に設けられている。アキュムレーター19は、暖房運転モードと冷房運転モードとの間において必要となる冷媒量の違いにより生じる余剰冷媒または過渡的な運転の変化に対する余剰冷媒を蓄える。また、返油機構20は、ここでは、アキュムレーター19内における配管の下部に空けられた貫通穴である。返油機構20を介して、アキュムレーター19の下部に溜まった冷凍機油および液冷媒が通過し、圧縮機10の吸入側配管へ導かれる。 The accumulator 19 is provided at the suction portion of the compressor 10. The accumulator 19 stores an excess refrigerant generated due to a difference in the amount of refrigerant required between the heating operation mode and the cooling operation mode or an excess refrigerant for a transient operation change. Further, the oil return mechanism 20 is a through hole opened at the lower part of the pipe in the accumulator 19 here. The refrigeration oil and liquid refrigerant accumulated in the lower part of the accumulator 19 pass through the oil return mechanism 20 and are led to the suction side piping of the compressor 10.
 室外側絞り装置45は、主冷媒回路において、熱源側熱交換器12と、室内機2が有する負荷側絞り装置25との間に位置し、室外機1に設けられている。室外側絞り装置45は、たとえば、電子式膨張弁などの開度(開口面積)を任意に制御することができる装置である。室外側絞り装置45は、室外側絞り装置45と室内機2との間の冷媒の圧力を上昇させるとともに、暖房運転モード時に室内機2から主管5を介して室外機1に流入した冷媒を減圧し、膨張させる。また、室外側絞り装置45は、開度を調整することで、アキュムレーター19内に蓄えられる冷媒量を調整する。 The outdoor-side expansion device 45 is located in the main refrigerant circuit between the heat source side heat exchanger 12 and the load-side expansion device 25 of the indoor unit 2 and is provided in the outdoor unit 1. The outdoor side throttle device 45 is, for example, a device capable of arbitrarily controlling the opening degree (opening area) of an electronic expansion valve or the like. The outdoor throttling device 45 raises the pressure of the refrigerant between the outdoor throttling device 45 and the indoor unit 2 and decompresses the refrigerant flowing from the indoor unit 2 into the outdoor unit 1 via the main pipe 5 in the heating operation mode. And inflate. Further, the outdoor-side expansion device 45 adjusts the amount of refrigerant stored in the accumulator 19 by adjusting the opening degree.
 インジェクション配管41は、インジェクション流路を構成する配管である。インジェクション配管41は、室外機1内において、一端は冷媒配管4に接続され、他端は圧縮機10のインジェクションポート17に接続されている。液冷媒または気液二相冷媒を、圧縮機10の圧縮機吸入室に流入させる。このとき、液冷媒または気液二相冷媒は高圧または中圧の冷媒である。中圧とは、冷凍サイクルにおける高圧(たとえば、凝縮器内の冷媒圧力または圧縮機10の吐出圧力)よりも低く、冷凍サイクルにおける低圧(たとえば、蒸発器内の冷媒圧力または圧縮機10の吸入圧力)よりも高い圧力のことである。 The injection pipe 41 is a pipe that constitutes an injection flow path. In the outdoor unit 1, one end of the injection pipe 41 is connected to the refrigerant pipe 4, and the other end is connected to the injection port 17 of the compressor 10. A liquid refrigerant or a gas-liquid two-phase refrigerant is caused to flow into the compressor suction chamber of the compressor 10. At this time, the liquid refrigerant or the gas-liquid two-phase refrigerant is a high pressure or medium pressure refrigerant. The medium pressure is lower than the high pressure in the refrigeration cycle (for example, the refrigerant pressure in the condenser or the discharge pressure of the compressor 10), and the low pressure in the refrigeration cycle (for example, the refrigerant pressure in the evaporator or the suction pressure of the compressor 10) The pressure is higher than).
 インジェクション絞り装置42は、インジェクション配管41に設置される。インジェクション絞り装置42は、インジェクション配管41を通過し、圧縮機10のインジェクションポート17に流入する冷媒の量および圧力を調整する。インジェクション絞り装置42は、たとえば、後述する制御装置60の制御に基づいて、連続的または多段階で開度を調節することができる。 The injection throttle device 42 is installed in the injection pipe 41. The injection throttle device 42 adjusts the amount and pressure of the refrigerant flowing through the injection pipe 41 and flowing into the injection port 17 of the compressor 10. The injection throttling device 42 can adjust the opening degree continuously or in multiple steps based on, for example, the control of the control device 60 described later.
 また、室外機1には、吐出温度センサー43、吐出圧力センサー40、外気温度センサー46および圧力検出用センサー44が設置されている。吐出温度センサー43は、圧縮機10が吐出する冷媒の温度を検出し、吐出温度検出信号を出力する。吐出圧力センサー40は、圧縮機10が吐出する冷媒の圧力を検出し、吐出圧力検出信号を出力する。外気温度センサー46は、室外機1において、熱源側熱交換器12の空気流入部分に設置される。外気温度センサー46は、たとえば、室外機1の周囲の温度となる外気温度を検出し、外気温度検出信号を出力する。圧力検出用センサー44は、室外側絞り装置45とアキュムレーター19との間における冷媒の圧力(中間圧力)を検出し、中間圧力検出信号を出力する。ここで、圧力検出用センサー44には、圧力センサーだけでなく、温度センサーを使用することができる。圧力検出用センサー44として、温度センサーを使用する場合、後述する制御装置60は、圧力検出用センサー44が検出した温度に基づいて、算出した飽和圧力を、中間圧力とする。 Further, in the outdoor unit 1, a discharge temperature sensor 43, a discharge pressure sensor 40, an outside air temperature sensor 46, and a pressure detection sensor 44 are installed. The discharge temperature sensor 43 detects the temperature of the refrigerant discharged by the compressor 10, and outputs a discharge temperature detection signal. The discharge pressure sensor 40 detects the pressure of the refrigerant discharged by the compressor 10, and outputs a discharge pressure detection signal. The outdoor temperature sensor 46 is installed at the air inflow portion of the heat source side heat exchanger 12 in the outdoor unit 1. The outside air temperature sensor 46 detects, for example, the outside air temperature that is the temperature around the outdoor unit 1 and outputs an outside air temperature detection signal. The pressure detection sensor 44 detects the pressure (intermediate pressure) of the refrigerant between the outdoor throttle device 45 and the accumulator 19 and outputs an intermediate pressure detection signal. Here, not only a pressure sensor but also a temperature sensor can be used as the pressure detection sensor 44. When a temperature sensor is used as the pressure detection sensor 44, the control device 60 described later sets the calculated saturation pressure as an intermediate pressure based on the temperature detected by the pressure detection sensor 44.
<室内機2>
 室内機2は、負荷側熱交換器26および負荷側絞り装置25を有している。負荷側熱交換器26は、暖房運転モードでは、凝縮器またはガスクーラ(実施の形態1では、凝縮器とする)として機能する。また、冷房運転モードでは、蒸発器として機能する。負荷側熱交換器26は、熱交換対象となる負荷と冷媒との間で熱交換を行う。実施の形態1においては、負荷側ファン28により供給される空調対象空間の空気が負荷となる。
<Indoor unit 2>
The indoor unit 2 has a load-side heat exchanger 26 and a load-side throttling device 25. The load-side heat exchanger 26 functions as a condenser or a gas cooler (in the first embodiment, a condenser) in the heating operation mode. Also, in the cooling operation mode, it functions as an evaporator. The load side heat exchanger 26 performs heat exchange between the load to be heat exchanged and the refrigerant. In the first embodiment, the air in the space to be air-conditioned supplied by the load-side fan 28 is the load.
 負荷側絞り装置25は、主冷媒回路の冷房運転モードにおける冷媒の流れにおいて、負荷側熱交換器26の上流側となる位置に設置される。負荷側絞り装置25は、冷媒を減圧して膨張させる、減圧弁および膨張弁としての機能を有している。負荷側絞り装置25は、たとえば、後述する制御装置60の制御に基づいて、連続的または多段階で開度を調節することができる。負荷側絞り装置25は、たとえば、電子式膨張弁などの開度を任意に制御することができる装置である。 The load-side expansion device 25 is installed at a position upstream of the load-side heat exchanger 26 in the flow of the refrigerant in the cooling operation mode of the main refrigerant circuit. The load side throttle device 25 has functions as a pressure reducing valve and an expansion valve, which decompresses and expands the refrigerant. The load-side throttling device 25 can adjust the opening degree continuously or in multiple steps based on, for example, the control of the control device 60 described later. The load-side throttling device 25 is, for example, a device capable of arbitrarily controlling the opening degree of an electronic expansion valve or the like.
 また、室内機2には、入口側温度センサー31および出口側温度センサー32が設けられている。入口側温度センサー31および出口側温度センサー32は、サーミスターなどを有している。入口側温度センサー31は、主冷媒回路の冷房運転モードにおける冷媒の流れにおいて、負荷側熱交換器26の冷媒流入側の配管に設置される。そして、入口側温度センサー31は、負荷側熱交換器26に流入する冷媒の温度を検出し、流入側検出信号を出力する。出口側温度センサー32は、主冷媒回路の冷房運転モードにおける冷媒の流れにおいて、負荷側熱交換器26の冷媒流出側の配管に設置される。そして、出口側温度センサー32は、負荷側熱交換器26から流出した冷媒の温度を検出し、流出側検出信号を出力する。 Further, the indoor unit 2 is provided with an inlet temperature sensor 31 and an outlet temperature sensor 32. The inlet side temperature sensor 31 and the outlet side temperature sensor 32 have thermistors and the like. The inlet-side temperature sensor 31 is installed in the pipe on the refrigerant inflow side of the load-side heat exchanger 26 in the flow of the refrigerant in the cooling operation mode of the main refrigerant circuit. Then, the inlet-side temperature sensor 31 detects the temperature of the refrigerant flowing into the load-side heat exchanger 26, and outputs an inflow-side detection signal. The outlet-side temperature sensor 32 is installed in a pipe on the refrigerant outflow side of the load-side heat exchanger 26 in the flow of the refrigerant in the cooling operation mode of the main refrigerant circuit. Then, the outlet-side temperature sensor 32 detects the temperature of the refrigerant flowing out of the load-side heat exchanger 26, and outputs an outlet-side detection signal.
 そして、空気調和装置100は、制御装置60を有している。制御装置60は、前述した各種センサーから送られる検出信号およびリモートコントローラ(図示せず)からの指示に基づいて、空気調和装置100全体の動作を制御する。たとえば、制御装置60は、圧縮機10の駆動周波数の制御、熱源側ファン18および負荷側ファン28の回転数の制御(オンまたはオフを含む)および冷媒流路切替装置11による流路切り替えの制御を行う。また、制御装置60は、室外側絞り装置45、インジェクション絞り装置42および負荷側絞り装置25の開度制御などを行う。制御装置60は、これらの制御を行って、空気調和装置100の各運転モードを実行する。 And the air conditioning apparatus 100 has a control device 60. The control device 60 controls the overall operation of the air conditioning device 100 based on detection signals sent from the various sensors described above and an instruction from a remote controller (not shown). For example, the control device 60 controls the drive frequency of the compressor 10, controls the number of rotations of the heat source fan 18 and the load fan 28 (including on or off), and controls the flow path switching by the refrigerant flow switching device 11. I do. Further, the control device 60 performs opening degree control of the outdoor side throttle device 45, the injection throttle device 42, and the load side throttle device 25, and the like. The control device 60 performs these controls to execute each operation mode of the air conditioner 100.
 ここで、制御装置60は、マイクロコンピュータを有している。マイクロコンピュータは、たとえば、CPU(Central Processing Unit)などの制御演算処理装置を有している。また、入出力を管理するI/Oポートを有している。また、マイクロコンピュータは、記憶装置61を有している。記憶装置61は、たとえば、データを一時的に記憶できるランダムアクセスメモリ(RAM)などの揮発性記憶装置(図示せず)およびハードディスク、データを長期的に記憶できるフラッシュメモリなどの不揮発性の補助記憶装置(図示せず)である。記憶装置61には、制御演算処理装置が行う処理手順をプログラムとしたデータを有している。そして、制御演算処理装置がプログラムのデータに基づいて処理を実行して各部の処理を実現する。ただ、これに限定するものではなく、各装置を専用機器(ハードウェア)で構成してもよい。ここで、実施の形態1の空気調和装置100では、室外機1内に制御装置60を設置しているが、これに限定するものではない。制御装置60を室内機2に設置してもよい。また、室外機1および室内機2に機能を分けるなどして、複数の制御装置60を設置してもよい。 Here, the control device 60 has a microcomputer. The microcomputer has, for example, a control processing unit such as a CPU (Central Processing Unit). It also has an I / O port that manages input and output. The microcomputer also has a storage device 61. The storage device 61 is, for example, a volatile storage device (not shown) such as a random access memory (RAM) capable of temporarily storing data and a hard disk, and a nonvolatile auxiliary storage such as a flash memory capable of storing data over a long period of time. It is an apparatus (not shown). The storage device 61 has data in which the processing procedure performed by the control processing unit is a program. And a control arithmetic processing unit performs processing based on data of a program, and realizes processing of each part. However, the present invention is not limited to this, and each device may be configured by a dedicated device (hardware). Here, although the control device 60 is installed in the outdoor unit 1 in the air conditioning apparatus 100 according to the first embodiment, the present invention is not limited to this. The control device 60 may be installed in the indoor unit 2. In addition, a plurality of control devices 60 may be installed by dividing functions into the outdoor unit 1 and the indoor unit 2 or the like.
 次に、空気調和装置100が実行する各運転モードについて説明する。空気調和装置100の制御装置60は、室内機2からの指示に基づいて、室内機2で冷房運転を行う冷房運転モードまたは室内機2で暖房運転を行う暖房運転モードを実行することができる。このとき、制御装置60は、インジェクションを行うか否かを判定することができる。各運転モードについて、冷媒の流れとともに説明する。 Next, each operation mode performed by the air conditioning apparatus 100 will be described. The control device 60 of the air conditioning apparatus 100 can execute a heating operation mode in which the indoor unit 2 performs cooling operation or a heating operation mode in which the indoor unit 2 performs heating operation based on an instruction from the indoor unit 2. At this time, the control device 60 can determine whether to perform injection. Each operation mode will be described together with the flow of the refrigerant.
<冷房運転モード(インジェクションしない場合)>
 図2は、この発明の実施の形態1に係る空気調和装置100の冷房運転モードにおける冷媒の流れを説明する図である。図2では、負荷側熱交換器26で冷熱負荷が発生している場合を例に挙げ、冷房運転モードにおけるインジェクションにおける冷媒流れ以外の冷媒の流れについて説明する。ここで、図2では、冷媒が流れる方向を実線矢印で示している。
<Cooling operation mode (without injection)>
FIG. 2 is a diagram for explaining the flow of the refrigerant in the cooling operation mode of the air conditioning apparatus 100 according to Embodiment 1 of the present invention. In FIG. 2, a case where a cooling load is generated in the load-side heat exchanger 26 will be described as an example, and the flow of the refrigerant other than the refrigerant flow in the injection in the cooling operation mode will be described. Here, in FIG. 2, the direction in which the refrigerant flows is indicated by a solid arrow.
 図2に示すように、低温および低圧の冷媒は、圧縮機10によって吸入され圧縮される。そして、高温および高圧のガス冷媒が、圧縮機10から吐出される。圧縮機10から吐出された高温および高圧のガス冷媒は、冷媒流路切替装置11を通って、熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入したガス冷媒は、熱源側ファン18により供給される室外空気に放熱しながら凝縮し、高圧の液冷媒になって、熱源側熱交換器12から流出する。熱源側熱交換器12から流出した高圧の液冷媒は、室外側絞り装置45を介して、室外機1から流出する。そして、高圧の液冷媒は、主管5を通って室内機2に流入する。 As shown in FIG. 2, the low temperature and low pressure refrigerant is sucked and compressed by the compressor 10. Then, the high temperature and high pressure gas refrigerant is discharged from the compressor 10. The high temperature and high pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 through the refrigerant flow switching device 11. Then, the gas refrigerant that has flowed into the heat source side heat exchanger 12 condenses while radiating to the outdoor air supplied by the heat source side fan 18, becomes high pressure liquid refrigerant, and flows out from the heat source side heat exchanger 12. The high-pressure liquid refrigerant flowing out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the outdoor expansion device 45. Then, the high pressure liquid refrigerant flows into the indoor unit 2 through the main pipe 5.
 室内機2に流入した高圧冷媒は、負荷側絞り装置25で膨張させられて、低温および低圧の気液二相状態の冷媒になる。気液二相状態の冷媒は、蒸発器として作用する負荷側熱交換器26に流入する。負荷側熱交換器26に流入した気液二相冷媒は、室内空気から吸熱することにより、室内空気を冷却しながら、低温および低圧のガス冷媒になって、負荷側熱交換器26から流出する。 The high-pressure refrigerant flowing into the indoor unit 2 is expanded by the load-side throttling device 25 to be a low-temperature and low-pressure gas-liquid two-phase refrigerant. The refrigerant in the gas-liquid two-phase state flows into the load side heat exchanger 26 acting as an evaporator. The gas-liquid two-phase refrigerant that has flowed into the load-side heat exchanger 26 absorbs heat from the room air to become low-temperature and low-pressure gas refrigerant while cooling the room air, and flows out from the load-side heat exchanger 26 .
 ここで、負荷側絞り装置25は、制御装置60により、スーパーヒート(過熱度)が一定になるように、開度が制御される。スーパーヒートは、入口側温度センサー31が検出する温度と、出口側温度センサー32が検出する温度との差として得られる温度差の値である。 Here, the degree of opening of the load-side expansion device 25 is controlled by the control device 60 so that the superheat (degree of superheat) becomes constant. Superheat is a value of a temperature difference obtained as a difference between the temperature detected by the inlet temperature sensor 31 and the temperature detected by the outlet temperature sensor 32.
 負荷側熱交換器26から流出したガス冷媒は、室内機2を流出する。室内機2を流出した冷媒は、主管5を通って、再び室外機1に流入する。室外機1に流入した冷媒は、冷媒流路切替装置11およびアキュムレーター19を通過する。このとき、低温および低圧の冷媒がアキュムレーター19を通過する。そして、低温および低圧の冷媒が、圧縮機10に再度吸入される。 The gas refrigerant flowing out of the load-side heat exchanger 26 flows out of the indoor unit 2. The refrigerant flowing out of the indoor unit 2 flows into the outdoor unit 1 again through the main pipe 5. The refrigerant flowing into the outdoor unit 1 passes through the refrigerant flow switching device 11 and the accumulator 19. At this time, the low temperature and low pressure refrigerant passes through the accumulator 19. Then, the low temperature and low pressure refrigerant is again drawn into the compressor 10.
<暖房運転モード(インジェクションしない場合)>
 図3は、この発明の実施の形態1に係る空気調和装置100の暖房運転モードにおける冷媒の流れを説明する図である。図3では、負荷側熱交換器26で温熱負荷が発生している場合を例に挙げ、暖房運転モードのインジェクションの冷媒流れ以外の冷媒の流れについて説明する。ここで、図3では、冷媒が流れる方向を実線矢印で示している。
<Heating operation mode (when not injecting)>
FIG. 3 is a view for explaining the flow of the refrigerant in the heating operation mode of the air conditioning apparatus 100 according to Embodiment 1 of the present invention. In FIG. 3, the case where the thermal load is generated in the load-side heat exchanger 26 is taken as an example, and the flow of the refrigerant other than the refrigerant flow in the injection in the heating operation mode will be described. Here, in FIG. 3, the direction in which the refrigerant flows is indicated by a solid arrow.
 図3に示すように、低温および低圧の冷媒は、圧縮機10によって吸入され圧縮される。そして、高温および高圧のガス冷媒が、圧縮機10から吐出される。圧縮機10から吐出された高温および高圧のガス冷媒は、冷媒流路切替装置11を通って、室外機1から流出する。室外機1から流出した高温および高圧のガス冷媒は、主管5を通って、室内機2に流入する。 As shown in FIG. 3, the low temperature and low pressure refrigerant is sucked and compressed by the compressor 10. Then, the high temperature and high pressure gas refrigerant is discharged from the compressor 10. The high temperature and high pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11. The high temperature and high pressure gas refrigerant flowing out of the outdoor unit 1 flows into the indoor unit 2 through the main pipe 5.
 室内機2に流入した高温および高圧のガス冷媒は、負荷側熱交換器26に流入する。負荷側熱交換器26に流入したガス冷媒は、室内空気に放熱することにより、室内空気を加熱しながら液冷媒になって、負荷側熱交換器26から流出する。負荷側熱交換器26から流出した液冷媒は、負荷側絞り装置25で膨張させられて、中温および中圧の気液二相状態の冷媒になって、室内機2を流出する。室内機2を流出した冷媒は、主管5を通って、再び室外機1に流入する。 The high-temperature and high-pressure gas refrigerant flowing into the indoor unit 2 flows into the load-side heat exchanger 26. The gas refrigerant that has flowed into the load-side heat exchanger 26 dissipates heat into the room air, thereby becoming room temperature liquid refrigerant while flowing through the load-side heat exchanger 26. The liquid refrigerant that has flowed out of the load-side heat exchanger 26 is expanded by the load-side throttling device 25 to become a medium-temperature and medium-pressure gas-liquid two-phase refrigerant, and flows out of the indoor unit 2. The refrigerant flowing out of the indoor unit 2 flows into the outdoor unit 1 again through the main pipe 5.
 室外機1に流入した中温および中圧の気液二相冷媒は、熱源側熱交換器12に流入する。熱源側熱交換器12に流入した気液二相冷媒は、室外空気から吸熱することにより、室外空気を冷却しながら、低温および低圧のガス冷媒になって、熱源側熱交換器12から流出する。熱源側熱交換器12から流出した低温および低圧のガス冷媒は、冷媒流路切替装置11およびアキュムレーター19を通過する。このとき、低温および低圧の冷媒がアキュムレーター19を通過する。そして、低温および低圧の冷媒が、圧縮機10に再度吸入される。 The medium-temperature and medium-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12. The gas-liquid two-phase refrigerant that has flowed into the heat source side heat exchanger 12 absorbs heat from the outdoor air to become low temperature and low pressure gas refrigerant while cooling the outdoor air, and flows out from the heat source side heat exchanger 12 . The low temperature and low pressure gas refrigerant flowing out of the heat source side heat exchanger 12 passes through the refrigerant flow switching device 11 and the accumulator 19. At this time, the low temperature and low pressure refrigerant passes through the accumulator 19. Then, the low temperature and low pressure refrigerant is again drawn into the compressor 10.
<インジェクションしない場合の性能への影響>
 冷房運転モードおよび暖房運転モードにおいて、インジェクションをしない場合、制御装置60は、インジェクション絞り装置42を全閉となる開度に制御する。このため、インジェクション配管41には冷媒が流れない。また、インジェクション絞り装置42が全閉となっている場合に、圧縮機10の圧縮機吸入室は、冷媒回路内で、最も低圧となっている。前述したように、実施の形態1における圧縮機10は、圧縮機吸入室に冷媒を流入させることができる構造である。このため、圧縮機10の中間圧縮室にインジェクションポートがある場合と比較して、圧縮機10の圧縮機吸入室から、インジェクション絞り装置42と圧縮機10の圧縮機吸入室との間のインジェクション配管41に、冷媒が漏れることがない。したがって、冷媒の漏れによる圧縮機10の効率悪化はない。冷媒漏れによる装置の性能低下を抑制することができる。
<Impact on performance without injection>
In the cooling operation mode and the heating operation mode, when injection is not performed, the control device 60 controls the injection throttle device 42 to an opening degree at which the injection throttle device 42 is fully closed. Therefore, the refrigerant does not flow in the injection pipe 41. Also, when the injection throttle device 42 is fully closed, the compressor suction chamber of the compressor 10 is at the lowest pressure in the refrigerant circuit. As described above, the compressor 10 in the first embodiment has a structure that allows the refrigerant to flow into the compressor suction chamber. Therefore, compared with the case where the intermediate compression chamber of the compressor 10 has an injection port, the injection piping between the injection throttle device 42 and the compressor suction chamber of the compressor 10 from the compressor suction chamber of the compressor 10 At 41, the refrigerant does not leak. Therefore, the efficiency of the compressor 10 is not deteriorated due to the leakage of the refrigerant. It is possible to suppress the performance degradation of the device due to the refrigerant leak.
<冷房運転モード(インジェクション時の流れ)>
 (冷房運転モードにおけるインジェクションの必要性と効果概要)
 たとえば、R32などのように、R410A冷媒(以下、R410Aという)よりも、圧縮機10の吐出温度が高温になる冷媒がある。空気調和装置100に使用される冷媒が、吐出温度が高くなるような冷媒の場合、冷凍機油の劣化、圧縮機10aの焼損などを防ぐために、吐出温度を低下させる必要がある。そこで、吐出温度が高くなるような冷媒を使用した場合の冷房運転モードでは、熱源側熱交換器12側から流出した高圧の液冷媒の一部を、インジェクション配管41を介して、圧縮機10の圧縮機吸入室に流入させるインジェクションを行う。インジェクションを行う際には、制御装置60は、インジェクション絞り装置42および室外側絞り装置45を制御して、インジェクション配管41を流れる冷媒の流量を調整する。
<Cooling operation mode (flow at injection)>
(Necessity and effect outline of injection in cooling operation mode)
For example, as in R32, there is a refrigerant whose discharge temperature of the compressor 10 is higher than that of the R410A refrigerant (hereinafter referred to as R410A). In the case where the refrigerant used in the air conditioner 100 is a refrigerant whose discharge temperature is high, the discharge temperature needs to be lowered in order to prevent deterioration of refrigeration oil, burnout of the compressor 10 a and the like. Therefore, in the cooling operation mode when the refrigerant whose discharge temperature is high is used, part of the high-pressure liquid refrigerant that has flowed out from the heat source side heat exchanger 12 is transferred to the compressor 10 via the injection pipe 41. Injection is made to flow into the compressor suction chamber. When performing injection, the control device 60 controls the injection throttle device 42 and the outdoor throttle device 45 to adjust the flow rate of the refrigerant flowing through the injection pipe 41.
 図4は、この発明の実施の形態1に係る空気調和装置100において、冷房運転モード時における、圧縮機10にインジェクションを行った場合の冷媒の状態を示すモリエル線図を示す図である。図4の横軸は、比エンタルピh[kJ/kg]を表している。また、図4の縦軸は、圧力P[MPa]を表している。図4を用いて、実施の形態1に係る空気調和装置100における冷房運転モードにおけるインジェクションの効果について説明する。 FIG. 4 is a Mollier chart showing the state of the refrigerant when the injection is performed to the compressor 10 in the cooling operation mode in the air conditioning apparatus 100 according to Embodiment 1 of the present invention. The horizontal axis of FIG. 4 represents specific enthalpy h [kJ / kg]. Moreover, the vertical axis | shaft of FIG. 4 represents the pressure P [MPa]. The effect of the injection in the cooling operation mode in the air conditioning apparatus 100 according to Embodiment 1 will be described using FIG. 4.
 図4において、熱源側熱交換器12から流出した液冷媒は、(c)点における状態である。液冷媒は、室外側絞り装置45で減圧され、(d)点で示される液また二相冷媒の状態となる。減圧された液または二相冷媒のうち、一部の冷媒は、インジェクション配管41と、インジェクション絞り装置42を介して、圧縮機10の圧縮機吸入室に流入する。 In FIG. 4, the liquid refrigerant that has flowed out of the heat source side heat exchanger 12 is in the state at point (c). The liquid refrigerant is decompressed by the outdoor throttling device 45 to be in the state of liquid or two-phase refrigerant indicated by point (d). A part of the refrigerant or the two-phase refrigerant that has been depressurized flows into the compressor suction chamber of the compressor 10 via the injection pipe 41 and the injection throttle device 42.
 一方、減圧された液または二相冷媒のうち、残りの冷媒は、負荷側絞り装置25で減圧され、(g)点で示される二相冷媒の状態となって、負荷側熱交換器26に流入する。負荷側熱交換器26では、(e)点で示される低温および低圧のガス冷媒となる。ガス冷媒は、主管5、冷媒流路切替装置11およびアキュムレーター19を介して、圧縮機10に流入する。 On the other hand, the remaining refrigerant of the decompressed liquid or the two-phase refrigerant is decompressed by the load-side throttling device 25 to be in the state of the two-phase refrigerant shown at point (g). To flow. In the load side heat exchanger 26, it becomes a low temperature and low pressure gas refrigerant indicated by point (e). The gas refrigerant flows into the compressor 10 via the main pipe 5, the refrigerant flow switching device 11 and the accumulator 19.
 圧縮機10に流入したガス冷媒は、インジェクションポート17を介して流入した液または二相冷媒と圧縮機吸入室において合流する。圧縮機吸入室における冷媒の状態は、(g)点で示されるように、高乾き度および低圧の二相冷媒となる。そして、圧縮機10が吐出した冷媒の状態は、(b)点で示される高圧のガス冷媒となる。(b)点で示される高圧のガス冷媒は、インジェクションを行わずに吐出した(b1)点で示される高圧のガス冷媒よりも吐出温度が低くなる。したがって、冷凍機油の劣化や圧縮機10の焼損を防ぐことができる。 The gas refrigerant flowing into the compressor 10 merges with the liquid or two-phase refrigerant flowing through the injection port 17 in the compressor suction chamber. The state of the refrigerant in the compressor suction chamber is a two-phase refrigerant of high dryness and low pressure, as indicated by point (g). Then, the state of the refrigerant discharged by the compressor 10 is a high-pressure gas refrigerant indicated by point (b). The discharge temperature of the high-pressure gas refrigerant indicated by the point (b) is lower than that of the high-pressure gas refrigerant indicated by the point (b1) discharged without injection. Therefore, deterioration of the refrigeration oil and burning of the compressor 10 can be prevented.
<冷房運転モードにおけるインジェクション絞り装置42の制御>
 冷房運転モード時における制御装置60によるインジェクション絞り装置42の制御について説明する。制御装置60は、吐出温度センサー43が検出した圧縮機10の吐出温度に基づいて、インジェクション絞り装置42の開度を制御する。インジェクション絞り装置42の開度を大きくすると、圧縮機10aに流入する冷媒の流量が増加する。したがって、圧縮機10から吐出する冷媒の吐出温度が低下する。また、インジェクション絞り装置42の開度を小さくすると、圧縮機10aに流入する冷媒の流量が減少する。したがって、圧縮機10から吐出する冷媒の吐出温度が上昇する。
<Control of the injection throttle device 42 in the cooling operation mode>
Control of the injection throttle device 42 by the controller 60 in the cooling operation mode will be described. The control device 60 controls the opening degree of the injection throttle device 42 based on the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43. When the opening degree of the injection throttle device 42 is increased, the flow rate of the refrigerant flowing into the compressor 10a is increased. Therefore, the discharge temperature of the refrigerant discharged from the compressor 10 is reduced. In addition, when the opening degree of the injection throttle device 42 is reduced, the flow rate of the refrigerant flowing into the compressor 10 a decreases. Therefore, the discharge temperature of the refrigerant discharged from the compressor 10 rises.
 そこで、制御装置60は、吐出温度センサー43が検出した圧縮機10の吐出温度が、吐出温度しきい値以下であるか否かを判定する。制御装置60は、吐出温度が吐出温度しきい値以下であると判定すると、インジェクションされる冷媒量が少なくなるように、インジェクション絞り装置42を制御する。ここで、吐出温度しきい値は、圧縮機10の吐出温度の限界値に応じて設定される。 Therefore, the control device 60 determines whether the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43 is equal to or less than the discharge temperature threshold value. When the controller 60 determines that the discharge temperature is equal to or lower than the discharge temperature threshold value, the controller 60 controls the injection throttle device 42 so that the amount of refrigerant injected is reduced. Here, the discharge temperature threshold value is set in accordance with the limit value of the discharge temperature of the compressor 10.
 一方、制御装置60は、吐出温度が吐出温度しきい値よりも大きいと判定すると、インジェクションされる冷媒量が多くなるように、インジェクション絞り装置42を制御する。このとき、制御装置60は、吐出温度が吐出温度しきい値となるように、インジェクション絞り装置42を制御する。たとえば、制御装置60は、吐出温度とインジェクション絞り装置42の開度との関係を示すデータを、テーブル形式で記憶装置61に記憶する。そして、制御装置60は、吐出温度センサー43が検出した圧縮機10の吐出温度に対応するインジェクション絞り装置42の開度を決定して、インジェクション絞り装置42を制御する。ここで、制御装置60は、テーブル形式のデータの代わりに、たとえば、吐出温度を変数とする数式を、データとして記憶装置61に記憶しておいてもよい。制御装置60は、吐出温度に基づいて、インジェクション絞り装置42の開度を演算して、インジェクション絞り装置42を制御する。 On the other hand, when the control device 60 determines that the discharge temperature is higher than the discharge temperature threshold value, the control device 60 controls the injection throttle device 42 so that the amount of refrigerant injected increases. At this time, the control device 60 controls the injection throttle device 42 so that the discharge temperature becomes the discharge temperature threshold value. For example, control device 60 stores data indicating the relationship between the discharge temperature and the degree of opening of injection throttle device 42 in storage device 61 in the form of a table. Then, the control device 60 controls the injection throttle device 42 by determining the opening degree of the injection throttle device 42 corresponding to the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43. Here, the control device 60 may store, for example, an equation having the discharge temperature as a variable in the storage device 61 instead of the data in the form of a table. The controller 60 calculates the opening degree of the injection throttle device 42 based on the discharge temperature, and controls the injection throttle device 42.
 ここで、制御装置60は、吐出温度と吐出温度しきい値とに基づいて、インジェクション絞り装置42の制御に係る判定を行うようにしたが、これに限定するものではない。たとえば、圧縮機10の吐出過熱度(吐出スーパーヒート)と過熱度しきい値とに基づいて、インジェクション絞り装置42の制御に係る判定を行うことができる。ここで、圧縮機10の吐出過熱度は、吐出温度センサー43が検出する圧縮機10の吐出温度と、吐出圧力センサー40から算出された飽和温度との差である。 Here, although the control device 60 performs the determination related to the control of the injection throttle device 42 based on the discharge temperature and the discharge temperature threshold value, the present invention is not limited to this. For example, based on the discharge superheat degree (discharge superheat) of the compressor 10 and the superheat degree threshold value, the determination related to the control of the injection throttle device 42 can be performed. Here, the degree of discharge superheat of the compressor 10 is the difference between the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43 and the saturation temperature calculated from the discharge pressure sensor 40.
<冷房運転モード時のインジェクションの動作および効果>
 以上のように、インジェクションを行うことで、圧縮機10の圧縮機吸入室における冷媒の吸入エンタルピを減少させることができる。このため、圧縮機10の吐出温度が過度に高くならないように抑制することができる。このため、冷凍機油の劣化を抑制し、圧縮機10の破損を防ぐことができる。したがって、空気調和装置100全体の信頼性を確保することができる。また、圧縮機10の吐出温度の上昇を抑制することにより、圧縮機10の駆動周波数を高くすることができる。このため、冷房能力を多く確保することができ、大きな空調負荷にも対応することができる。そして、ユーザーの快適性を維持することができる。
<Operation and Effect of Injection in Cooling Operation Mode>
As described above, the injection enthalpy of the refrigerant in the compressor suction chamber of the compressor 10 can be reduced by performing the injection. Therefore, the discharge temperature of the compressor 10 can be suppressed so as not to be excessively high. For this reason, deterioration of refrigeration oil can be suppressed and breakage of the compressor 10 can be prevented. Therefore, the reliability of the entire air conditioning apparatus 100 can be secured. Further, by suppressing the rise of the discharge temperature of the compressor 10, the driving frequency of the compressor 10 can be increased. Therefore, a large amount of cooling capacity can be secured, and a large air conditioning load can be coped with. And, the user's comfort can be maintained.
<暖房運転モード(インジェクション時の流れ)>
<インジェクションの必要性と効果概要>
 暖房運転モードにおいては、吐出温度が高くなるような冷媒に限らず、外気温度が低い場合などに、圧縮機10の駆動周波数を高くすると、圧縮機10の吐出温度が、吐出温度しきい値以上となることがある。そこで、暖房能力を確保するために、駆動周波数を高くする際に、インジェクションが必要となる。暖房運転モードにおいて、圧縮機10の吐出温度が高温になることにより生じる冷凍機油の劣化、圧縮機10の焼損などを防ぐため、吐出温度を低下させる制御について説明する。
<Heating operation mode (flow at injection)>
<Necessity and effect outline of injection>
In the heating operation mode, the discharge temperature of the compressor 10 is equal to or higher than the discharge temperature threshold when the driving frequency of the compressor 10 is increased, not only when the discharge temperature is high but the outside air temperature is low. It can be Therefore, in order to secure the heating capacity, injection is required when raising the drive frequency. In the heating operation mode, control for reducing the discharge temperature will be described in order to prevent deterioration of refrigeration oil caused by the discharge temperature of the compressor 10 becoming high, burnout of the compressor 10 and the like.
 図5は、この発明の実施の形態1に係る空気調和装置100において、冷房運転モード時における、圧縮機10にインジェクションを行った場合の冷媒の状態を示すモリエル線図を示す図である。図5の横軸は、比エンタルピh[kJ/kg]を表している。また、図5の縦軸は、圧力P[MPa]を表している。図5を用いて、実施の形態1に係る空気調和装置100における暖房運転モードにおけるインジェクションの効果などについて説明する。 FIG. 5 is a Mollier chart showing the state of the refrigerant when the injection is performed to the compressor 10 in the cooling operation mode in the air conditioning apparatus 100 according to Embodiment 1 of the present invention. The horizontal axis of FIG. 5 represents specific enthalpy h [kJ / kg]. Moreover, the vertical axis | shaft of FIG. 5 represents the pressure P [MPa]. The effect of the injection in the heating operation mode in the air conditioning apparatus 100 according to Embodiment 1 will be described with reference to FIG. 5.
 図5において、負荷側熱交換器26から流出した液冷媒は、(c)点における状態である。液冷媒は、負荷側絞り装置25で減圧され、(d)点で示される中圧および中温の二相冷媒の状態となる。減圧された中圧および中温の二相冷媒は、主管5および冷媒配管4を通過する。減圧された中圧および中温の二相冷媒のうち、一部の冷媒は、インジェクション配管41と、インジェクション絞り装置42を介して、圧縮機10の圧縮機吸入室に流入する。 In FIG. 5, the liquid refrigerant that has flowed out of the load-side heat exchanger 26 is in the state at point (c). The liquid refrigerant is decompressed by the load-side throttling device 25 to be in the state of a medium pressure and medium temperature two-phase refrigerant indicated by point (d). The decompressed medium pressure and medium temperature two-phase refrigerant passes through the main pipe 5 and the refrigerant pipe 4. A part of the depressurized medium pressure and medium temperature two-phase refrigerant flows into the compressor suction chamber of the compressor 10 through the injection pipe 41 and the injection throttle device 42.
 一方、中圧および中温の二相冷媒のうち、残りの冷媒は、室外側絞り装置45で減圧され、(g)点で示される二相冷媒の状態となって、熱源側熱交換器12に流入する。熱源側熱交換器12では、外気から吸熱することで、(e)点で示される低温および低圧のガス冷媒となる。ガス冷媒は、冷媒流路切替装置11およびアキュムレーター19を介して、圧縮機10に流入する。 On the other hand, the remaining refrigerant of the medium pressure and medium temperature two-phase refrigerant is depressurized by the outdoor expansion device 45 to be in the state of the two-phase refrigerant indicated by point (g). To flow. In the heat source side heat exchanger 12, by absorbing heat from the outside air, it becomes a low temperature and low pressure gas refrigerant indicated by the point (e). The gas refrigerant flows into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19.
 圧縮機10に流入したガス冷媒は、インジェクションポート17を介して流入した液または二相冷媒と圧縮機吸入室において合流する。圧縮機吸入室における冷媒の状態は、(g)点で示されるように、高乾き度および低圧の二相冷媒となる。そして、圧縮機10が吐出した冷媒の状態は、(b)点で示される高圧のガス冷媒となる。(b)点で示される高圧のガス冷媒は、インジェクションを行わずに吐出した(b1)点で示される高圧のガス冷媒よりも吐出温度が低くなる。したがって、冷凍機油の劣化や圧縮機10の焼損を防ぐことができる。 The gas refrigerant flowing into the compressor 10 merges with the liquid or two-phase refrigerant flowing through the injection port 17 in the compressor suction chamber. The state of the refrigerant in the compressor suction chamber is a two-phase refrigerant of high dryness and low pressure, as indicated by point (g). Then, the state of the refrigerant discharged by the compressor 10 is a high-pressure gas refrigerant indicated by point (b). The discharge temperature of the high-pressure gas refrigerant indicated by the point (b) is lower than that of the high-pressure gas refrigerant indicated by the point (b1) discharged without injection. Therefore, deterioration of the refrigeration oil and burning of the compressor 10 can be prevented.
 ここで、(d)点で示されるような、減圧された中圧および中温の二相冷媒が、インジェクション配管41を通過するものとして説明したが、これに限定するものではない。たとえば、インジェクション配管41と冷媒配管4との接続部分に気液分離器を設置して、液冷媒が、インジェクション配管41を流れるようにしてもよい。インジェクション配管41に液冷媒が流れることで、インジェクション絞り装置42の制御を安定させることができる。 Here, although the decompressed medium-pressure and medium-temperature two-phase refrigerant as shown by the point (d) has been described as passing through the injection pipe 41, it is not limited to this. For example, a gas-liquid separator may be installed at the connection portion between the injection pipe 41 and the refrigerant pipe 4 so that the liquid refrigerant flows through the injection pipe 41. The flow of the liquid refrigerant into the injection pipe 41 makes it possible to stabilize the control of the injection throttle device 42.
 制御装置60は、インジェクション配管41から圧縮機10の圧縮機吸入室に、冷媒が流入するように、室外側絞り装置45およびインジェクション絞り装置42を制御する。インジェクションを行うことで、圧縮機10が吐出する冷媒の吐出温度を低下させることができ、空気調和装置100を安全に使用できるようになる。 The controller 60 controls the outdoor throttling device 45 and the injection throttling device 42 such that the refrigerant flows from the injection pipe 41 into the compressor suction chamber of the compressor 10. By performing the injection, the discharge temperature of the refrigerant discharged by the compressor 10 can be reduced, and the air conditioner 100 can be used safely.
<暖房運転モードにおけるインジェクション絞り装置42の制御>
 暖房運転モードにおけるインジェクション絞り装置42の制御は、冷房運転モードにおける制御と同様である。制御装置60は、吐出温度と吐出温度しきい値とに基づく判定などの処理を行い、インジェクション絞り装置42の制御を行う。ここで、圧縮機10の吐出過熱度と過熱度しきい値とに基づいて、インジェクション絞り装置42の制御を行うようにしてもよい。
<Control of Injection Throttle Device 42 in Heating Operation Mode>
The control of the injection throttle device 42 in the heating operation mode is similar to the control in the cooling operation mode. The control device 60 performs processing such as determination based on the discharge temperature and the discharge temperature threshold value, and controls the injection throttle device 42. Here, the control of the injection throttle device 42 may be performed based on the discharge superheat degree of the compressor 10 and the superheat degree threshold value.
<暖房運転モードにおける室外側絞り装置45の制御>
 暖房運転モードにおいて、圧縮機10の吸入室に、液または二相冷媒を十分な量に流入させるには、中圧および中温の液または二相冷媒における飽和温度を上昇させる必要がある。そこで、制御装置60は、室外側絞り装置45の上流側の冷媒が、中圧の冷媒となるように、室外側絞り装置45を制御する。
<Control of the outdoor throttle device 45 in the heating operation mode>
In the heating operation mode, in order to flow a sufficient amount of liquid or two-phase refrigerant into the suction chamber of the compressor 10, it is necessary to increase the saturation temperature of the medium pressure and medium temperature liquid or two-phase refrigerant. Therefore, the control device 60 controls the outdoor-side throttling device 45 so that the refrigerant on the upstream side of the outdoor-side throttling device 45 becomes a medium-pressure refrigerant.
 室外側絞り装置45の開度が小さい場合、室外側絞り装置45から流出する冷媒量が減少する。一方で、負荷側絞り装置25と室外側絞り装置45との間における冷媒配管4内の冷媒量が増加する。このため、インジェクション配管41を通過する中圧および中温の液または二相冷媒の圧力は上昇する。 When the degree of opening of the outdoor side throttle device 45 is small, the amount of refrigerant flowing out of the outdoor side throttle device 45 decreases. On the other hand, the amount of refrigerant in the refrigerant pipe 4 between the load-side expansion device 25 and the outdoor-side expansion device 45 increases. Therefore, the pressure of the medium pressure and medium temperature liquid or two-phase refrigerant passing through the injection pipe 41 is increased.
 また、室外側絞り装置45の開度が大きい場合、室外側絞り装置45から流出する冷媒量が増加する。一方で、負荷側絞り装置25と室外側絞り装置45との間における冷媒配管4内の冷媒量が減少する。このため、インジェクション配管41を通過する中圧および中温の液または二相冷媒の圧力は低下する。 Further, when the opening degree of the outdoor side expansion device 45 is large, the amount of refrigerant flowing out of the outdoor side expansion device 45 increases. On the other hand, the amount of refrigerant in the refrigerant pipe 4 between the load-side expansion device 25 and the outdoor-side expansion device 45 decreases. Therefore, the pressure of the medium pressure and medium temperature liquid or two-phase refrigerant passing through the injection pipe 41 is reduced.
 そこで、制御装置60は、圧力検出用センサー44が検出した圧力に基づいて、負荷側絞り装置25を流出した中温および中圧の気液二相状態の冷媒の飽和温度を算出する。そして、飽和温度が、インジェクションに必要な流量を確保可能な所定値に近づくように、室外側絞り装置45の開度を調整する。この所定値を、インジェクション温度値とする。インジェクション温度値は、たとえば、10℃以上の温度である。 Therefore, the control device 60 calculates the saturation temperature of the medium-temperature and medium-pressure gas-liquid two-phase refrigerant that has flowed out of the load-side throttling device 25 based on the pressure detected by the pressure detection sensor 44. Then, the opening degree of the outdoor-side throttling device 45 is adjusted so that the saturation temperature approaches a predetermined value capable of securing the flow rate necessary for injection. This predetermined value is taken as the injection temperature value. The injection temperature value is, for example, a temperature of 10 ° C. or more.
 これにより、冷房運転モードと同様に、アキュムレーター19から流出した低圧および低温のガス冷媒とインジェクション流路を通過した液または二相冷媒とが、圧縮機10の圧縮機吸入室で混合する。混合した冷媒は、高乾き度の低圧の二相冷媒となる。圧縮機10は、高乾き度の低圧の気液二相冷媒を圧縮する。 Thus, as in the cooling operation mode, the low-pressure and low-temperature gas refrigerant flowing out of the accumulator 19 and the liquid or two-phase refrigerant passing through the injection flow path are mixed in the compressor suction chamber of the compressor 10. The mixed refrigerant becomes a low-pressure two-phase refrigerant with high dryness. The compressor 10 compresses a high-dry low-pressure gas-liquid two-phase refrigerant.
<暖房運転モード時のインジェクションの動作および効果>
 以上のように、インジェクションを行うことで、圧縮機10の圧縮機吸入室における冷媒の吸入エンタルピを減少させることができる。このため、圧縮機10の吐出温度が過度に高くならないように抑制することができる。このため、冷凍機油の劣化を抑制し、圧縮機10の破損を防ぐことができる。したがって、空気調和装置100全体の信頼性を確保することができる。また、圧縮機10の吐出温度の上昇を抑制することにより、圧縮機10の駆動周波数を高くすることができる。このため、冷房能力を多く確保することができ、大きな空調負荷にも対応することができる。そして、ユーザーの快適性を維持することができる。
<Operation and effect of injection in heating operation mode>
As described above, the injection enthalpy of the refrigerant in the compressor suction chamber of the compressor 10 can be reduced by performing the injection. Therefore, the discharge temperature of the compressor 10 can be suppressed so as not to be excessively high. For this reason, deterioration of refrigeration oil can be suppressed and breakage of the compressor 10 can be prevented. Therefore, the reliability of the entire air conditioning apparatus 100 can be secured. Further, by suppressing the rise of the discharge temperature of the compressor 10, the driving frequency of the compressor 10 can be increased. Therefore, a large amount of cooling capacity can be secured, and a large air conditioning load can be coped with. And, the user's comfort can be maintained.
<インジェクション構造のメリット、室外側絞り装置45の開度>
 たとえば、低圧シェル構造の圧縮機を使用し、圧縮機の吸入側に位置する配管にインジェクションをする空気調和装置がある。このような空気調和装置において、圧縮機の吸入側に位置する配管に、多量の液または二相冷媒をインジェクションすると、圧縮機のシェル下部に液冷媒が滞留する。このため、冷凍機油が液冷媒により希釈されて濃度が低下する。冷凍機油の濃度が低下すると、圧縮機内のスクロールが焼損するおそれがある。そこで、インジェクションする冷媒量を抑制するために、室外側絞り装置には、小型の弁を使用する必要がある。室外側絞り装置に小型の弁を使用すると、弁内にゴミなどが詰まり、室外側絞り装置が動作不良となることがある。
<The merit of the injection structure, the opening degree of the outdoor throttling device 45>
For example, there is an air conditioner which uses a low pressure shell type compressor and injects into a pipe located on the suction side of the compressor. In such an air conditioner, when a large amount of liquid or two-phase refrigerant is injected into a pipe located on the suction side of the compressor, the liquid refrigerant stagnates in the lower part of the shell of the compressor. For this reason, the refrigeration oil is diluted by the liquid refrigerant and the concentration decreases. If the concentration of refrigeration oil decreases, the scroll in the compressor may be burnt out. Therefore, in order to suppress the amount of refrigerant to be injected, it is necessary to use a small valve in the outdoor expansion device. If a small-sized valve is used for the outdoor-side throttling device, dust etc. may be clogged in the valve and the outdoor-side throttling device may malfunction.
 これに対し、実施の形態1の空気調和装置100は、圧縮機10が、低圧シェル構造かつ圧縮が開始される直前の室である圧縮機吸入室にインジェクションする構造である。したがって、インジェクションに係る冷媒量が増加しても、圧縮機10のスクロール部にインジェクションされた冷媒を流入させることができる。このため、シェル下部にインジェクションされた液または二相冷媒が滞留しない。したがって、冷凍機油が希釈されず、濃度が低下しない。また、インジェクションに係る冷媒量を増加することができる。このため、室外側絞り装置45に小型の弁を使用する必要がなくなり、弁内にゴミなどが詰まることによる動作不良を防ぐことができる。 On the other hand, the air conditioner 100 of the first embodiment has a structure in which the compressor 10 has a low pressure shell structure and injects into a compressor suction chamber which is a chamber just before compression is started. Therefore, even if the amount of refrigerant related to the injection increases, the refrigerant injected into the scroll portion of the compressor 10 can be made to flow. Therefore, the liquid or two-phase refrigerant injected into the lower part of the shell does not stay. Therefore, refrigeration oil is not diluted and the concentration does not decrease. In addition, the amount of refrigerant related to injection can be increased. Therefore, it is not necessary to use a small-sized valve for the outdoor-side throttling device 45, and it is possible to prevent the operation failure due to the clogging of dust etc. in the valve.
<液バック防止処理>
 ここで、たとえば、空気調和装置100の設置場所において、冷媒回路内に追加で封入される冷媒量が、主管5の長さなどに基づいて決定される規定の冷媒量よりも過多となることがある。このようなとき、暖房運転モードにおいて発生する余剰冷媒の量が、アキュムレーター19が溜めることができる冷媒量よりも多くなると、アキュムレーター19がオーバーフローする。そこで、圧縮機10への液冷媒が過度に戻される液バック(返液)が起きないようにし、オーバーフローを防ぐ必要がある。
<Liquid back prevention processing>
Here, for example, at the installation location of the air conditioning apparatus 100, the amount of refrigerant additionally enclosed in the refrigerant circuit may be more than a prescribed amount of refrigerant determined based on the length of the main pipe 5 or the like. is there. In such a case, when the amount of surplus refrigerant generated in the heating operation mode becomes larger than the amount of refrigerant that can be accumulated by the accumulator 19, the accumulator 19 overflows. Therefore, it is necessary to prevent a liquid back (return) in which the liquid refrigerant to the compressor 10 is excessively returned to prevent the overflow.
 たとえば、制御装置60は、インジェクションを行わない場合における圧縮機10の吐出温度とアキュムレーター19の液面高さに応じた液バック率との関係を示すデータを、テーブル形式で記憶装置61に記憶しておく。この関係について、より具体的には、アキュムレーター19の所定の液面高さにおける液バック量と、圧縮機10の駆動周波数、吸入状態、吐出状態などの運転状態により定まる圧縮機10の吐出温度との関係となる。所定の液面高さとは、たとえば、アキュムレーター19の容積の2/3の冷媒量における高さなどである。このような関係において得られた吐出温度が、インジェクションを行わない場合の液面調整しきい値となる。液面調整しきい値は、アキュムレーター19の液面高さに応じた液バック率により低下した、圧縮機10の吐出温度となる。 For example, control device 60 stores data indicating the relationship between the discharge temperature of compressor 10 and the liquid back ratio according to the liquid level of accumulator 19 in the form of a table in storage device 61 when injection is not performed. Keep it. More specifically, regarding this relationship, the discharge temperature of the compressor 10 determined by the liquid back amount at a predetermined liquid level height of the accumulator 19 and the driving frequency, suction state, discharge state, etc. of the compressor 10 Relationship with The predetermined liquid level height is, for example, a height at a refrigerant amount of 2/3 of the volume of the accumulator 19 or the like. The discharge temperature obtained in such a relationship is the liquid level adjustment threshold when injection is not performed. The liquid level adjustment threshold value is the discharge temperature of the compressor 10 which is lowered by the liquid back rate according to the liquid level height of the accumulator 19.
 また、インジェクションが行われている場合、たとえば、吐出温度センサー43が検出する圧縮機10の吐出温度は、インジェクションによって吸入エンタルピ低下分を含んで低下した吐出温度となる。このため、液バックによる吸入エンタルピ低下分の吐出温度を得るための演算を行って液面調整しきい値を得る。そこで、制御装置60は、吐出温度センサー43が検出した圧縮機10の吐出温度に、インジェクションによる冷媒が加わった場合の吐出温度低下幅を加えた値を、液面調整しきい値とする。ここでは、圧縮機10の吐出温度に基づいて液面調整しきい値などを設定したが、吐出温度の代わりに、吐出過熱度を用いてもよい。また、制御装置60は、テーブル形式のデータの代わりに、たとえば、吐出温度または吐出過熱度を変数とする数式を、データとして記憶装置61に記憶しておいてもよい。制御装置60は、吐出温度または吐出過熱度を数式に代入し、液面調整しきい値を算出などする。 Further, when the injection is performed, for example, the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43 becomes a discharge temperature which is lowered by the injection including a drop in the suction enthalpy. For this reason, the liquid level adjustment threshold value is obtained by performing an operation for obtaining the discharge temperature corresponding to the suction enthalpy reduction due to the liquid bag. Therefore, the control device 60 sets a value obtained by adding the discharge temperature decrease width when the refrigerant is added by the injection to the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43 as the liquid level adjustment threshold value. Here, the liquid level adjustment threshold or the like is set based on the discharge temperature of the compressor 10, but the discharge superheat degree may be used instead of the discharge temperature. Further, the control device 60 may store, as data in the storage device 61, for example, a mathematical expression having the discharge temperature or the discharge superheat degree as a variable instead of the data in the form of a table. The control device 60 substitutes the discharge temperature or the discharge superheat degree into the equation to calculate the liquid level adjustment threshold value.
 制御装置60は、アキュムレーター19からの液バックにより低下した圧縮機10の吐出温度または吐出過熱度が、あらかじめ定められた液面調整しきい値以下であるかどうかを判定する。制御装置60は、吐出温度または吐出過熱度が、液面調整しきい値以下であると判定すると、液面調整しきい値よりも高くなるように、室外側絞り装置45の開度を制御する。たとえば、制御装置60は、圧縮機10の吐出温度または吐出過熱度が低くなると、室外側絞り装置45の開度を小さくして、アキュムレーター19の液面高さを低くする。 The control device 60 determines whether the discharge temperature or discharge superheat degree of the compressor 10, which is lowered by the liquid back from the accumulator 19, is equal to or less than a predetermined liquid level adjustment threshold value. The control device 60 controls the opening degree of the outdoor side throttling device 45 so as to become higher than the liquid level adjustment threshold value when determining that the discharge temperature or the discharge superheat degree is equal to or less than the liquid level adjustment threshold value. . For example, when the discharge temperature or the discharge superheat degree of the compressor 10 becomes low, the control device 60 reduces the opening degree of the outdoor side throttling device 45 to lower the liquid level of the accumulator 19.
 実施の形態1の空気調和装置100によれば、制御装置60が、前述した制御を行って、負荷側絞り装置25と室外側絞り装置45との間に位置する主管5内に、液または二相冷媒を滞留させるようにする。そして、アキュムレーター19に流入する冷媒を少なくし、余剰冷媒が溜まらないようにする。このため、アキュムレーター19の液面を低下させることができ、アキュムレーター19のオーバーフローを防ぐことができる。したがって、圧縮機10内における液バックによる冷凍機油の希釈を抑制し、圧縮機10の破損を防ぐことができる。そして、空気調和装置100の信頼性を確保することができる。 According to the air conditioner 100 of the first embodiment, the control device 60 performs the control described above to set the fluid or the fluid in the main pipe 5 positioned between the load-side throttling device 25 and the outdoor-side throttling device 45. The phase refrigerant is allowed to stay. Then, the amount of refrigerant flowing into the accumulator 19 is reduced so that excess refrigerant does not accumulate. Therefore, the liquid level of the accumulator 19 can be lowered and overflow of the accumulator 19 can be prevented. Therefore, the dilution of the refrigerator oil due to the liquid bag in the compressor 10 can be suppressed, and damage to the compressor 10 can be prevented. And the reliability of the air conditioning apparatus 100 can be ensured.
実施の形態2.
 図6は、この発明の実施の形態2に係る空気調和装置100の構成の一例を示す図である。図6において、図1と同じ符号を付している機器などについては、実施の形態1において説明したことと同様の動作を行う。実施の形態2の空気調和装置100は、複数の室外機1を、並列に配管接続して冷媒回路を構成している。図6では、2台の室外機1が並列に接続されている。
Second Embodiment
FIG. 6 is a diagram showing an example of the configuration of an air conditioning apparatus 100 according to Embodiment 2 of the present invention. In FIG. 6, the same reference numerals as in FIG. 1 are used to perform the same operations as those described in the first embodiment. The air conditioning apparatus 100 of Embodiment 2 has a plurality of outdoor units 1 connected by piping in parallel to constitute a refrigerant circuit. In FIG. 6, two outdoor units 1 are connected in parallel.
<室外機1aおよび室外機1b>
 図6に示す室外機1aおよび室外機1bの機器などの構成は、それぞれ、実施の形態1で説明した室外機1と同様である。また、暖房運転モードおよび冷房運転モードにおける動作、インジェクションを行う場合の動作などについても、基本的には、実施の形態1において説明した室外機1と同様である。そこで、室外機1aおよび室外機1b並びに室外機1aおよび室外機1bが有する機器などについて、区別する必要がない場合には、添字を省略して記載する。
<Outdoor unit 1a and outdoor unit 1b>
The configurations of the outdoor unit 1a and the outdoor unit 1b shown in FIG. 6 are the same as those of the outdoor unit 1 described in the first embodiment. Further, the operation in the heating operation mode and the cooling operation mode, the operation in the case of performing the injection, and the like are basically the same as the outdoor unit 1 described in the first embodiment. Therefore, when there is no need to distinguish between the outdoor unit 1a, the outdoor unit 1b, and the devices included in the outdoor unit 1a and the outdoor unit 1b, subscripts are omitted.
 室外機1aは、圧縮機10a、冷媒流路切替装置11a、熱源側熱交換器12a、アキュムレーター19a、インジェクション配管41a、熱源側ファン18a、室外側絞り装置45aおよびインジェクション絞り装置42aを有している。圧縮機10a、冷媒流路切替装置11a、熱源側熱交換器12a、アキュムレーター19aおよび室外側絞り装置45aは、室外機1a内において、冷媒配管4aで接続されている。また、インジェクション配管41aおよびインジェクション絞り装置42aがインジェクション流路となる。そして、吐出温度センサー43a、吐出圧力センサー40a、外気温度センサー46aおよび圧力検出用センサー44aが設置されている。 The outdoor unit 1a includes a compressor 10a, a refrigerant flow switching device 11a, a heat source heat exchanger 12a, an accumulator 19a, an injection pipe 41a, a heat source fan 18a, an outdoor throttling device 45a, and an injection throttling device 42a. There is. The compressor 10a, the refrigerant flow switching device 11a, the heat source side heat exchanger 12a, the accumulator 19a and the outdoor expansion device 45a are connected by the refrigerant pipe 4a in the outdoor unit 1a. Further, the injection pipe 41a and the injection throttle device 42a form an injection flow path. A discharge temperature sensor 43a, a discharge pressure sensor 40a, an outside air temperature sensor 46a, and a pressure detection sensor 44a are provided.
 また、室外機1bは、圧縮機10b、冷媒流路切替装置11b、熱源側熱交換器12b、アキュムレーター19b、インジェクション配管41b、熱源側ファン18b、室外側絞り装置45bおよびインジェクション絞り装置42bを有している。圧縮機10b、冷媒流路切替装置11b、熱源側熱交換器12b、アキュムレーター19bおよび室外側絞り装置45bは、室外機1b内において、冷媒配管4bで接続されている。また、インジェクション配管41bおよびインジェクション絞り装置42bがインジェクション流路となる。そして、吐出温度センサー43b、吐出圧力センサー40b、外気温度センサー46bおよび圧力検出用センサー44bが設置されている。 Further, the outdoor unit 1b includes the compressor 10b, the refrigerant flow switching device 11b, the heat source side heat exchanger 12b, the accumulator 19b, the injection pipe 41b, the heat source side fan 18b, the outdoor side expansion device 45b and the injection expansion device 42b. doing. The compressor 10b, the refrigerant flow switching device 11b, the heat source side heat exchanger 12b, the accumulator 19b, and the outdoor expansion device 45b are connected by a refrigerant pipe 4b in the outdoor unit 1b. Further, the injection pipe 41b and the injection throttle device 42b form an injection flow path. A discharge temperature sensor 43b, a discharge pressure sensor 40b, an outside air temperature sensor 46b, and a pressure detection sensor 44b are provided.
 <暖房運転モードにおける均液制御(インジェクションなし)>
 空気調和装置100は、冷房運転モードに基づいて、冷媒回路に封入する冷媒量を決定している。そして、暖房運転モードでは、冷房運転モードよりも必要となる冷媒量が少なくなる運転状態がある。このため、冷媒回路内の冷媒量と暖房運転モードにおいて必要な冷媒量の差となる余剰冷媒量は、アキュムレーター19に溜められる。
<Solution control in heating operation mode (without injection)>
The air conditioning apparatus 100 determines the amount of refrigerant sealed in the refrigerant circuit based on the cooling operation mode. In the heating operation mode, there is an operation state in which the amount of refrigerant required is smaller than that in the cooling operation mode. Therefore, the surplus refrigerant amount, which is the difference between the refrigerant amount in the refrigerant circuit and the refrigerant amount necessary in the heating operation mode, is accumulated in the accumulator 19.
 ここで、2台の室外機1においては、各室外機1と接続する主管5の分岐の傾き具合、各室外機1における運転容量の違いなどがある。このため、各室外機1が有するアキュムレーター19に滞留する余剰冷媒量は、均等には分布せず、偏って滞留する場合がある。たとえば、一方のアキュムレーター19に余剰冷媒が偏って滞留した場合に、アキュムレーター19の余剰冷媒が、アキュムレーター19の容量を超えると、オーバーフローが生じる。オーバーフローが生じると、圧縮機10に多量の冷媒が液バックし、冷凍機油が希釈され、圧縮機10のスクロール部の焼損が生じることもある。そこで、各アキュムレーター19に滞留する余剰冷媒量が、各アキュムレーター19の容量以下となるように、室外側絞り装置45の開度を調整する必要がある。 Here, in the two outdoor units 1, there is the inclination of the branch of the main pipe 5 connected to each outdoor unit 1, the difference in operating capacity in each outdoor unit 1, and the like. For this reason, the amount of surplus refrigerant accumulated in the accumulator 19 of each outdoor unit 1 may not be evenly distributed, but may be accumulated unevenly. For example, in the case where the surplus refrigerant is concentrated in one of the accumulators 19, an overflow occurs when the surplus refrigerant in the accumulator 19 exceeds the capacity of the accumulator 19. When the overflow occurs, a large amount of refrigerant may be liquid-backed to the compressor 10, the refrigeration oil may be diluted, and burnout of the scroll portion of the compressor 10 may occur. Therefore, it is necessary to adjust the degree of opening of the outdoor-side expansion device 45 so that the amount of surplus refrigerant accumulated in each accumulator 19 is equal to or less than the capacity of each accumulator 19.
 また、圧縮機10からは、ガス冷媒とともに冷凍機油が吐出されて、冷媒回路を循環する。このような冷凍機油を系外流出油という。前述したように、各アキュムレーター19には、系外流出油を、圧縮機10に戻すための返油機構20(20a,20b)が設置されている。 In addition, refrigerant oil is discharged from the compressor 10 together with the gas refrigerant, and circulates in the refrigerant circuit. Such refrigeration oil is referred to as spilled oil from the system. As described above, each accumulator 19 is provided with an oil return mechanism 20 (20a, 20b) for returning the oil outside the system to the compressor 10.
 たとえば、各室外機1が有するアキュムレーター19に滞留する余剰冷媒量が均等でない場合、余剰冷媒量が多いアキュムレーター19から、返油機構20を介して、他のアキュムレーター19よりも多くの冷凍機油が、対応する圧縮機10に返油される。このとき、冷凍機油が多い圧縮機10における冷媒の吐出温度は、冷凍機油が少ない圧縮機10における冷媒の吐出温度よりも低い。 For example, when the amount of surplus refrigerant accumulated in the accumulator 19 of each outdoor unit 1 is not uniform, the accumulator 19 having a large amount of surplus refrigerant is more frozen than the other accumulator 19 via the oil return mechanism 20 from the accumulator 19 The machine oil is returned to the corresponding compressor 10. At this time, the discharge temperature of the refrigerant in the compressor 10 with a large amount of refrigeration oil is lower than the discharge temperature of the refrigerant in the compressor 10 with a small amount of refrigeration oil.
 そこで、アキュムレーター19に滞留する余剰冷媒量が多く、冷凍機油が多く返油される方の制御装置60は、室外側絞り装置45の開度を小さくする制御を行う。これにより、余剰冷媒量が多い方のアキュムレーター19に流入する液冷媒の量を少なくする。 Therefore, the control device 60, which has a large amount of surplus refrigerant remaining in the accumulator 19 and returns a large amount of refrigeration oil, performs control to reduce the opening degree of the outdoor-side throttling device 45. As a result, the amount of liquid refrigerant flowing into the accumulator 19 having a large amount of surplus refrigerant is reduced.
 一方、アキュムレーター19に滞留する余剰冷媒量が少なく、冷凍機油の返油が少ない方の制御装置60は、室外側絞り装置45の開度を大きくするかまたは変化させないようにする。これにより、余剰冷媒量が少ない方のアキュムレーター19に流入する液冷媒の量を多くする。以上のような制御を行うことで、2台の室外機1のアキュムレーター19に溜まる冷媒が均等になるように制御する。冷媒が、2台の室外機1のアキュムレーター19に均等に溜まることで、オーバーフローを抑制することができる。 On the other hand, the control device 60, which has a small amount of surplus refrigerant remaining in the accumulator 19 and a small amount of returned oil from the refrigerator oil, increases or does not change the opening degree of the outdoor side expansion device 45. As a result, the amount of liquid refrigerant flowing into the accumulator 19 with a smaller amount of surplus refrigerant is increased. By performing the control as described above, the refrigerant accumulated in the accumulators 19 of the two outdoor units 1 is controlled to be equal. By evenly accumulating the refrigerant in the accumulators 19 of the two outdoor units 1, overflow can be suppressed.
 (インジェクションを行う場合の均液制御)
 次に、暖房運転モードにおいて、インジェクションを行いつつ、アキュムレーター19に滞留する余剰冷媒量が均等になるように調整する制御について説明する。このような場合、インジェクションによる圧縮機10の吐出温度低下と、アキュムレーター19からの液バックによる吐出温度低下とを比較する。そして、アキュムレーター19に滞留する余剰冷媒量の大小を判定する。
(Soaking control when performing injection)
Next, in the heating operation mode, control will be described to adjust so that the amount of surplus refrigerant accumulated in the accumulator 19 becomes uniform while performing injection. In such a case, the decrease in discharge temperature of the compressor 10 due to injection and the decrease in discharge temperature due to liquid back from the accumulator 19 are compared. Then, the amount of surplus refrigerant remaining in the accumulator 19 is determined.
 ここで、たとえば、室外機1aに搭載されている圧縮機10aなどを例に説明する。まず、制御装置60aは、圧縮機10aの吐出温度または吐出過熱度が、目標となる吐出温度しきい値または過熱度しきい値よりも高いと判断すると、インジェクション絞り装置42aの開度を大きくする制御を行う。インジェクション絞り装置42aの開度を大きくすることで、圧縮機の吐出温度が低下する。 Here, for example, a compressor 10a mounted on the outdoor unit 1a will be described as an example. First, when the controller 60a determines that the discharge temperature or the discharge superheat degree of the compressor 10a is higher than the target discharge temperature threshold value or the superheat degree threshold value, the controller 60a increases the opening degree of the injection throttle device 42a. Take control. By increasing the opening degree of the injection throttle device 42a, the discharge temperature of the compressor is lowered.
 このとき、インジェクション絞り装置42aの開度および前後の圧力に基づき、インジェクションによる冷媒の流量とインジェクションされる冷媒のエンタルピとを予測することができる。また、圧縮機10aの駆動周波数、インジェクションを行わない場合の圧縮機10の吸入側の圧力、温度など、吐出圧力および圧縮機10aの効率から、インジェクションを行わない場合の圧縮機10aの吐出温度を予測することができる。 At this time, it is possible to predict the flow rate of the refrigerant by injection and the enthalpy of the refrigerant to be injected based on the opening degree of the injection throttle device 42a and the pressure before and after. Further, the discharge temperature of the compressor 10a when injection is not performed is determined from the discharge pressure and the efficiency of the compressor 10a, such as the drive frequency of the compressor 10a, the pressure and temperature of the suction side of the compressor 10 when injection is not performed, etc. It can be predicted.
 そして、インジェクションを行った場合は、インジェクションによる冷媒の流量およびエンタルピ並びにインジェクションを行わない場合の圧縮機10aに吸入される冷媒の流量およびエンタルピを合成する。合成により、圧縮機吸入室における冷媒のエンタルピを算出することができる。 Then, when the injection is performed, the flow rate and enthalpy of the refrigerant by the injection, and the flow rate and the enthalpy of the refrigerant sucked into the compressor 10a when the injection is not performed are synthesized. By the synthesis, the enthalpy of the refrigerant in the compressor suction chamber can be calculated.
 ここで、圧縮機吸入室における冷媒は、インジェクションを行わない場合よりもエンタルピが低く、高乾き度の二相状態となる。そして、圧縮機吸入室における冷媒のエンタルピの状態から算出された吐出温度とインジェクションを行わない場合の吐出温度との差から、インジェクションによる冷媒が加わった場合の吐出温度の低下分の幅を予測することができる。 Here, the refrigerant in the compressor suction chamber has a lower enthalpy than in the case where injection is not performed, and is in a two-phase state of high dryness. Then, from the difference between the discharge temperature calculated from the state of the enthalpy of the refrigerant in the compressor suction chamber and the discharge temperature when injection is not performed, the width of the decrease in discharge temperature when the refrigerant is added by injection is predicted. be able to.
 また、アキュムレーター19aの余剰冷媒量が多くなると、液面が上昇することで、液の圧力である液ヘッドが増加する。このため、液面が低い場合よりも、返油機構20からの液バック率が上昇する。したがって、圧縮機10aの吐出温度が低下する。このように、インジェクションによる冷媒が加わったときに、アキュムレーター19aの液面が上昇した場合、前述した液面調整しきい値が、アキュムレーター19aの液面高さに応じた液バック率により低下した圧縮機10aの吐出温度となる。そして、制御装置60は、予測される液面高さに応じて室外側絞り装置45aを調整する。そして、制御装置60は、液面調整しきい値よりも圧縮機10aの吐出温度または吐出過熱度が小さいと判定した場合は、室外側絞り装置45aを小さくする制御を行う。アキュムレーター19aに流入する冷媒流量を少なくし、アキュムレーター19aに滞留する余剰冷媒量を少なくして、液面を低下させる。 Further, when the surplus refrigerant amount of the accumulator 19a increases, the liquid level rises, and the liquid head, which is the pressure of the liquid, increases. For this reason, the liquid back rate from the oil return mechanism 20 is higher than when the liquid level is low. Therefore, the discharge temperature of the compressor 10a is reduced. As described above, when the liquid level of the accumulator 19a rises when the refrigerant is added by the injection, the liquid level adjustment threshold value described above decreases due to the liquid back rate according to the liquid level of the accumulator 19a. It becomes the discharge temperature of the compressor 10a. Then, the control device 60 adjusts the outdoor-side throttling device 45a according to the predicted liquid level. Then, when it is determined that the discharge temperature or the discharge superheat degree of the compressor 10a is smaller than the liquid level adjustment threshold value, the control device 60 performs control to make the outdoor-side expansion device 45a smaller. The flow rate of the refrigerant flowing into the accumulator 19a is reduced, and the amount of surplus refrigerant accumulated in the accumulator 19a is reduced to lower the liquid level.
 また、前述したように、液面調整しきい値は、インジェクションを行わない場合は、アキュムレーター19の液面高さに応じた液バック率により低下した、圧縮機10の吐出温度の値となる。インジェクションが行われている場合は、吐出温度センサー43が検出した圧縮機10の吐出温度に、インジェクションによる冷媒が加わった場合の吐出温度低下幅を加えた値となる。 Further, as described above, when the injection is not performed, the liquid level adjustment threshold value becomes the value of the discharge temperature of the compressor 10 which is lowered by the liquid back rate according to the liquid level height of the accumulator 19 . When injection is performed, the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43 is a value obtained by adding the discharge temperature decrease width when the refrigerant is added by the injection.
 制御装置60は、液面調整しきい値よりも圧縮機10の吐出温度が高くなるようにし、アキュムレーター19aの液面高さが、目標の液面高さ以下となるように、室外側絞り装置45の開度を制御する。 The control device 60 causes the discharge temperature of the compressor 10 to be higher than the liquid level adjustment threshold value, and the outdoor-side throttling so that the liquid level of the accumulator 19a becomes equal to or less than the target liquid level. The opening degree of the device 45 is controlled.
 また、各制御装置60における制御を簡単にするため、各室外機1において、圧縮機10の吐出温度を下げるためのインジェクションを行っているときの各室外機1におけるインジェクション絞り装置42のそれぞれの開度の差を算出してもよい。インジェクション絞り装置42の開度の差に基づいて、各室外機1が搭載するアキュムレーター19の余剰冷媒量の差を予測し、室外側絞り装置45の開度を調整する。 Further, in order to simplify the control in each control device 60, in each outdoor unit 1, each injection throttle device 42 in each outdoor unit 1 is opened when injection is performed to lower the discharge temperature of the compressor 10. The difference of degrees may be calculated. Based on the difference in the degree of opening of the injection throttle device 42, the difference in the amount of surplus refrigerant of the accumulator 19 mounted on each outdoor unit 1 is predicted, and the degree of opening of the outdoor side throttle device 45 is adjusted.
 たとえば、各圧縮機10の吐出温度が、ほぼ等しく(たとえば、±1℃)、各圧力検出用センサー44が検出する温度もほぼ等しい状態であるとする。このとき、たとえば、インジェクション絞り装置42aの開度が、インジェクション絞り装置42bの開度よりも大きい状態であると、アキュムレーター19aからの液バック量よりもアキュムレーター19bからの液バック量の方が多いことになる。したがって、アキュムレーター19bの液面が高いと判定することができる。このとき、圧縮機10bの吐出温度が、液面調整しきい値よりも小さい場合は、室外側絞り装置45bの開度を閉じることで、アキュムレーター19bの液面を低下させることができる。 For example, it is assumed that the discharge temperatures of the respective compressors 10 are substantially equal (for example, ± 1 ° C.), and the temperatures detected by the respective pressure detection sensors 44 are also substantially equal. At this time, for example, when the opening degree of the injection throttle device 42a is larger than the opening degree of the injection throttle device 42b, the liquid back amount from the accumulator 19b is larger than the liquid back amount from the accumulator 19a. It will be a lot. Therefore, it can be determined that the liquid level of the accumulator 19b is high. At this time, when the discharge temperature of the compressor 10b is smaller than the liquid level adjustment threshold, the liquid level of the accumulator 19b can be lowered by closing the opening degree of the outdoor throttling device 45b.
 このような場合において、たとえば、全開開度の1/5以上の開度にできるなど、インジェクション絞り装置42の開度をより大きく開けることができる方が、開度のバラツキによる誤検知を防止することができる。このため、制御装置60は、アキュムレーター19間の液面差を、より正確に予測することができる。 In such a case, for example, if the opening degree of the injection throttling device 42 can be made larger by, for example, making it an opening degree of 1⁄5 or more of the full opening degree, erroneous detection due to variations in the opening degree is prevented. be able to. Therefore, the controller 60 can predict the liquid level difference between the accumulators 19 more accurately.
 実施の形態2における圧縮機10は、低圧シェル構造である。また、圧縮機吸入室にインジェクションを流入させる構造である。このため、インジェクション量が増加しても、圧縮機10のスクロール部にインジェクションされた冷媒を流入させることができる。このため、シェル下部にインジェクションされた液または二相冷媒が滞留することはない。したがって、冷凍機油が液冷媒により希釈されることはない。また、インジェクション量を増加することができるため、室外側絞り装置45aの開度を大きくすることができる。 The compressor 10 in the second embodiment has a low pressure shell structure. Moreover, it is the structure which makes injection flow in into a compressor suction chamber. Therefore, even if the injection amount is increased, the refrigerant injected into the scroll portion of the compressor 10 can be made to flow. Therefore, the liquid or the two-phase refrigerant injected into the lower part of the shell does not stay. Therefore, the refrigeration oil is not diluted by the liquid refrigerant. In addition, since the injection amount can be increased, the degree of opening of the outdoor expansion device 45a can be increased.
(制御フローチャート)
 図7は、この発明の実施の形態2に係る空気調和装置100において、制御装置60が行う制御の一例を示す図である。図7は、インジェクションを行いつつ、制御装置60が、各アキュムレーター19の均液制御に関するフローチャートの一例を示している。図7を参照して、インジェクションを行う際の制御装置60の処理動作について説明する。ここで、ステップCT1~ステップCT7の処理については、各室外機1の各制御装置60がそれぞれ処理を行うものとする。そして、ステップCT100の処理については、各室外機1の制御装置60のうち、いずれか1台の制御装置60が、他の制御装置60から送られたデータに基づいて処理を行うものとする。また、ここでは、圧縮機10の吐出温度に基づいて判定などの処理を行うが、吐出温度の代わりに、吐出過熱度を算出して処理を行うようにしてもよい。
(Control flowchart)
FIG. 7 is a diagram showing an example of control performed by the control device 60 in the air-conditioning apparatus 100 according to Embodiment 2 of the present invention. FIG. 7 shows an example of a flowchart relating to the liquid equalization control of each accumulator 19 while performing injection. The processing operation of the control device 60 at the time of injection will be described with reference to FIG. Here, it is assumed that each control device 60 of each outdoor unit 1 performs the processing of steps CT1 to CT7. Then, with regard to the process of step CT100, it is assumed that one of the control devices 60 of the control devices 60 of each outdoor unit 1 performs the process based on the data sent from the other control devices 60. In addition, although processing such as determination is performed based on the discharge temperature of the compressor 10 here, the processing may be performed by calculating the discharge superheat degree instead of the discharge temperature.
(ステップCT1)
 制御装置60は、室内機2から冷房運転または暖房運転などの運転要求があった場合、空気調和装置100の運転を開始する。その後、ステップCT2の処理に移行する。
(Step CT1)
The control device 60 starts the operation of the air conditioner 100 when there is an operation request such as the cooling operation or the heating operation from the indoor unit 2. Thereafter, the process proceeds to step CT2.
(ステップCT2)
 制御装置60は、吐出温度センサー43で検出された圧縮機10の吐出温度を取得する。そして、圧縮機10の吐出温度と吐出温度しきい値とを比較する。吐出温度しきい値は、たとえば、110℃である。比較により、圧縮機10の吐出温度が、吐出温度しきい値と同じまたは吐出温度しきい値より低いと判定すると、ステップCT4の処理に移行する。ここで、吐出温度しきい値を含む温度範囲(たとえば、110℃±1℃)内の温度であれば、吐出温度しきい値と同じであるものとする。また、圧縮機10の吐出温度が、吐出温度しきい値よりも高いと判定すると、ステップCT3の処理に移行する。
(Step CT2)
The control device 60 acquires the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43. Then, the discharge temperature of the compressor 10 is compared with the discharge temperature threshold value. The discharge temperature threshold is, for example, 110 ° C. If it is determined by comparison that the discharge temperature of the compressor 10 is equal to or lower than the discharge temperature threshold, the process proceeds to step CT4. Here, if it is a temperature within a temperature range (for example, 110 ° C. ± 1 ° C.) including the discharge temperature threshold, it is assumed to be the same as the discharge temperature threshold. If it is determined that the discharge temperature of the compressor 10 is higher than the discharge temperature threshold value, the process proceeds to step CT3.
(ステップCT3、ステップCT4)
 制御装置60は、吐出温度センサー43で検出された圧縮機10の吐出温度が、吐出温度しきい値に近づくように、インジェクション絞り装置42の開度を制御する。たとえば、制御装置60は、圧縮機10の吐出温度が吐出温度しきい値よりも高いと判定すると、インジェクション絞り装置42の開度を大きくする(ステップCT3)。また、制御装置60は、圧縮機10の吐出温度が吐出温度しきい値よりも低いと判定すると、インジェクション絞り装置42の開度を小さくする。そして、制御装置60は、圧縮機10の吐出温度が吐出温度しきい値と同じであると判定すると、インジェクション絞り装置42の開度を維持する(ステップCT4)。制御装置60は、インジェクション絞り装置42の開度制御を行うと、ステップCT5の処理に移行する。
(Step CT3, Step CT4)
The control device 60 controls the opening degree of the injection throttle device 42 so that the discharge temperature of the compressor 10 detected by the discharge temperature sensor 43 approaches the discharge temperature threshold value. For example, when the control device 60 determines that the discharge temperature of the compressor 10 is higher than the discharge temperature threshold value, the controller 60 increases the opening degree of the injection throttle device 42 (step CT3). Further, when it is determined that the discharge temperature of the compressor 10 is lower than the discharge temperature threshold value, the control device 60 reduces the opening degree of the injection throttle device 42. Then, when determining that the discharge temperature of the compressor 10 is the same as the discharge temperature threshold value, the control device 60 maintains the opening degree of the injection throttle device 42 (step CT4). When the control of the opening of the injection throttle device 42 is performed, the control device 60 proceeds to the process of step CT5.
(ステップCT5)
 制御装置60は、圧力検出用センサー44で検出されたインジェクション配管41を通過する冷媒の圧力となる中間圧力を取得する。そして、中間圧力と中間圧力しきい値とを比較する。中間圧力しきい値は、たとえば、冷媒がR410Aの場合には、1.1MPaである。また、後述するステップCT100の処理により、室外側絞り装置45の開度を大きくする制御を行っているか否かを判定する。比較により、中間圧力しきい値と同じもしくは中間圧力しきい値より低いまたは室外側絞り装置45の開度を大きくする制御を行っていないと判定すると、ステップCT7の処理に移行する。ここで、中間圧力しきい値を含む圧力範囲(1.1MPa±0.05MPa)内の圧力であれば、中間圧力しきい値と同じであるものとする。中間圧力が中間圧力しきい値より高く、かつ、室外側絞り装置45の開度を大きくする制御を行っていると判定すると、ステップCT6の処理に移行する。
(Step CT5)
The controller 60 acquires an intermediate pressure that is the pressure of the refrigerant passing through the injection pipe 41 detected by the pressure detection sensor 44. Then, the intermediate pressure is compared with the intermediate pressure threshold. The intermediate pressure threshold is, for example, 1.1 MPa when the refrigerant is R410A. Further, it is determined whether or not control to increase the opening degree of the outdoor-side expansion device 45 is performed by the process of step CT100 described later. If it is determined that the control is not performed to make the control equal to or lower than the intermediate pressure threshold or to increase the opening degree of the outdoor throttling device 45, the process proceeds to step CT7. Here, if it is a pressure within the pressure range (1.1 MPa ± 0.05 MPa) including the intermediate pressure threshold, it is assumed to be the same as the intermediate pressure threshold. If it is determined that the intermediate pressure is higher than the intermediate pressure threshold and the control for increasing the opening degree of the outdoor throttling device 45 is performed, the process proceeds to step CT6.
(ステップCT6、ステップCT7)
 制御装置60は、圧力検出用センサー44で検出された中間圧力が、中間圧力しきい値に近づくように、室外側絞り装置45の開度を制御する。たとえば、制御装置60は、中間圧力が中間圧力しきい値よりも高く、室外側絞り装置45の開度を大きくする制御を行っていると判定すると、室外側絞り装置45の開度を大きくする(ステップCT6)。また、制御装置60は、中間圧力が中間圧力しきい値よりも低いと判定すると、室外側絞り装置45の開度を小さくする。そして、制御装置60は、圧縮機10の吐出温度が吐出温度しきい値と同じであるか、中間圧力が中間圧力しきい値より高く、かつ、室外側絞り装置45の開度を大きくしていないと判定すると、インジェクション絞り装置42の開度を維持する(ステップCT7)。制御装置60は、インジェクション絞り装置42の開度制御を行うと、ステップCT100の処理に移行する。
(Step CT6, Step CT7)
The controller 60 controls the opening degree of the outdoor-side throttling device 45 such that the intermediate pressure detected by the pressure detection sensor 44 approaches the intermediate pressure threshold. For example, when the control device 60 determines that the intermediate pressure is higher than the intermediate pressure threshold and the control to increase the opening degree of the outdoor expansion device 45 is performed, the control device 60 increases the opening degree of the outdoor expansion device 45 (Step CT6). In addition, when the control device 60 determines that the intermediate pressure is lower than the intermediate pressure threshold value, the control device 60 reduces the opening degree of the outdoor-side throttling device 45. Then, the control device 60 has the discharge temperature of the compressor 10 equal to the discharge temperature threshold, or the intermediate pressure is higher than the intermediate pressure threshold, and the opening degree of the outdoor-side throttling device 45 is increased. If it is not determined, the opening degree of the injection throttle device 42 is maintained (step CT7). When the control of the opening of the injection throttle device 42 is performed, the control device 60 proceeds to the process of step CT100.
<ステップCT100:各室外機1のアキュムレーター19の均液制御>
 ステップCT100は、各室外機1が搭載するアキュムレーター19が滞留する余剰冷媒量を、あらかじめ設定された量以下となるように、均液制御を行うステップである。ここで、あらかじめ設定された量の余剰冷媒量とは、たとえば、各アキュムレーター19について、容積の2/3の液面高さ以下となる量である。
<Step CT100: Liquid equalization control of accumulator 19 of each outdoor unit 1>
Step CT100 is a step which performs liquid equalization control so that the amount of surplus refrigerant which accumulator 19 which each outdoor unit 1 mounts becomes below in amount set up beforehand. Here, the surplus refrigerant amount of the amount set in advance is, for example, an amount that is equal to or less than the liquid level height of 2/3 of the volume for each accumulator 19.
(ステップCT101)
 制御装置60は、吐出温度センサー43aおよび吐出温度センサー43bで検出された圧縮機10aおよび圧縮機10bの吐出温度を取得する。そして、圧縮機10aの吐出温度が、前述した液面調整しきい値より小さいかどうか、かつ、圧縮機10bの吐出温度が液面調整しきい値以上であるかどうかを判定する。圧縮機10aの吐出温度が液面調整しきい値より小さく、かつ、圧縮機10bの吐出温度が液面調整しきい値以上であると判定すると、ステップCT102に移行する。それ以外の場合は、ステップCT103に移行する。
(Step CT101)
The control device 60 acquires the discharge temperatures of the compressor 10a and the compressor 10b detected by the discharge temperature sensor 43a and the discharge temperature sensor 43b. Then, it is determined whether the discharge temperature of the compressor 10a is smaller than the liquid level adjustment threshold described above, and whether the discharge temperature of the compressor 10b is equal to or higher than the liquid level adjustment threshold. If it is determined that the discharge temperature of the compressor 10a is smaller than the liquid level adjustment threshold and the discharge temperature of the compressor 10b is equal to or higher than the liquid level adjustment threshold, the process proceeds to step CT102. Otherwise, the process proceeds to step CT103.
(ステップCT102)
 制御装置60は、吐出温度センサー43aおよび吐出温度センサー43bで検出された圧縮機10aおよび圧縮機10bの吐出温度が、液面調整しきい値に近づくように、室外側絞り装置45aおよび室外側絞り装置45bの開度を制御する。制御装置60aは、圧縮機10aの吐出温度が液面調整しきい値未満であるため、室外側絞り装置45aの開度を小さくする制御を行う。また、制御装置60bは、圧縮機10bの吐出温度が液面調整しきい値以上であるため、室外側絞り装置45bの開度を大きくする制御を行う。ただし、圧縮機10bの吐出温度が、液面調整しきい値を含む温度範囲(たとえば、100℃±1℃)内の温度であれば、液面調整しきい値と同じであるものとして、制御装置60bは、室外側絞り装置45bの開度を維持する制御を行う。そして、ステップCT2の処理に移行する。
(Step CT102)
The controller 60 controls the outdoor-side throttle device 45a and the outdoor-side throttle so that the discharge temperatures of the compressor 10a and the compressor 10b detected by the discharge temperature sensor 43a and the discharge temperature sensor 43b approach the liquid level adjustment threshold. The opening degree of the device 45b is controlled. Since the discharge temperature of the compressor 10a is less than the liquid level adjustment threshold value, the control device 60a performs control to reduce the opening degree of the outdoor side expansion device 45a. Further, since the discharge temperature of the compressor 10b is equal to or higher than the liquid level adjustment threshold value, the control device 60b performs control to increase the opening degree of the outdoor side expansion device 45b. However, if the discharge temperature of the compressor 10b is a temperature within a temperature range (for example, 100 ° C. ± 1 ° C.) including the liquid level adjustment threshold, control is performed assuming that it is the same as the liquid level adjustment threshold The device 60b performs control to maintain the opening degree of the outdoor-side throttle device 45b. Then, the process proceeds to step CT2.
(ステップCT103)
 制御装置60は、各吐出温度センサー43で検出された各圧縮機10の吐出温度について、圧縮機10aの吐出温度が、前述した液面調整しきい値以上であるかどうか、かつ、圧縮機10bの吐出温度が液面調整しきい値より小さいかどうかを判定する。圧縮機10aの吐出温度が液面調整しきい値以上であり、かつ、圧縮機10bの吐出温度が液面調整しきい値より小さいと判定すると、ステップCT104に移行する。それ以外の場合は、ステップCT105に移行する。
(Step CT103)
The controller 60 determines whether the discharge temperature of the compressor 10a is equal to or higher than the above-described liquid level adjustment threshold with respect to the discharge temperature of each compressor 10 detected by each discharge temperature sensor 43, and the compressor 10b. It is determined whether the discharge temperature of the fluid is smaller than the liquid level adjustment threshold. If it is determined that the discharge temperature of the compressor 10a is equal to or higher than the liquid level adjustment threshold and the discharge temperature of the compressor 10b is smaller than the liquid level adjustment threshold, the process proceeds to step CT104. Otherwise, the process proceeds to step CT105.
(ステップCT104)
 制御装置60aは、圧縮機10aの吐出温度が液面調整しきい値以上であるため、室外側絞り装置45aの開度を大きくする制御を行う。ただし、圧縮機10aの吐出温度が、液面調整しきい値を含む温度範囲(たとえば、100℃±1℃)内の温度であれば、液面調整しきい値と同じであるものとして、制御装置60aは、室外側絞り装置45aの開度を維持する制御を行う。また、制御装置60bは、圧縮機10bの吐出温度が液面調整しきい値より小さいため、室外側絞り装置45bの開度を小さくする制御を行う。そして、ステップCT2の処理に移行する。
(Step CT104)
Since the discharge temperature of the compressor 10a is equal to or higher than the liquid level adjustment threshold value, the control device 60a performs control to increase the opening degree of the outdoor side expansion device 45a. However, if the discharge temperature of the compressor 10a is a temperature within a temperature range (for example, 100 ° C. ± 1 ° C.) including the liquid level adjustment threshold, control is performed assuming that it is the same as the liquid level adjustment threshold The device 60a performs control to maintain the opening degree of the outdoor-side throttle device 45a. Further, since the discharge temperature of the compressor 10b is smaller than the liquid level adjustment threshold value, the control device 60b performs control to reduce the opening degree of the outdoor side expansion device 45b. Then, the process proceeds to step CT2.
(ステップCT105)
 制御装置60は、吐出温度センサー43aおよび吐出温度センサー43bで検出された圧縮機10aおよび圧縮機10bの吐出温度について、圧縮機10aおよび圧縮機10bの吐出温度が、前述した液面調整しきい値より小さいかどうかを判定する。圧縮機10aおよび圧縮機10bの吐出温度が液面調整しきい値より小さいと判定すると、ステップCT106に移行する。それ以外の場合は、ステップCT107に移行する。
(Step CT105)
The control device 60 controls the discharge temperature of the compressor 10a and the compressor 10b for the discharge temperature of the compressor 10a and the compressor 10b detected by the discharge temperature sensor 43a and the discharge temperature sensor 43b to be the liquid level adjustment threshold described above. Determine if it is less. If it is determined that the discharge temperature of the compressor 10a and the compressor 10b is smaller than the liquid level adjustment threshold value, the process proceeds to step CT106. Otherwise, the process proceeds to step CT107.
(ステップCT106)
 制御装置60aおよび制御装置60bは、圧縮機10aおよび圧縮機10bの吐出温度が液面調整しきい値より小さいため、室外側絞り装置45aおよび室外側絞り装置45bの開度を小さくする制御を行う。そして、ステップCT2の処理に移行する。
(Step CT106)
The control devices 60a and 60b perform control to reduce the opening degree of the outdoor side throttle device 45a and the outdoor side throttle device 45b because the discharge temperatures of the compressor 10a and the compressor 10b are smaller than the liquid level adjustment threshold. . Then, the process proceeds to step CT2.
(ステップCT107)
 制御装置60aおよび制御装置60bは、圧縮機10aおよび圧縮機10bの吐出温度が液面調整しきい値以上であるため、室外側絞り装置45aおよび室外側絞り装置45bの開度を大きくする制御を行う。ただし、圧縮機10aまたは圧縮機10bの吐出温度が、液面調整しきい値を含む温度範囲(たとえば、100℃±1℃)内の温度であれば、液面調整しきい値と同じであるものとする。そして、制御装置60aまたは制御装置60bは、室外側絞り装置45aまたは室外側絞り装置45bの開度を維持する制御を行う。そして、ステップCT2の処理に移行する。
(Step CT107)
Since the control devices 60a and 60b have discharge temperatures of the compressor 10a and the compressor 10b equal to or higher than the liquid level adjustment threshold value, control to increase the opening degree of the outdoor expansion device 45a and the outdoor expansion device 45b is performed. Do. However, if the discharge temperature of compressor 10a or compressor 10b is a temperature within a temperature range (for example, 100 ° C. ± 1 ° C.) including the liquid level adjustment threshold, it is the same as the liquid level adjustment threshold It shall be. Then, the control device 60a or the control device 60b performs control to maintain the opening degree of the outdoor side throttle device 45a or the outdoor side throttle device 45b. Then, the process proceeds to step CT2.
 ここで、吐出温度しきい値および液面調整しきい値については、あらかじめ設定された固定値であるものとして説明したが、これに限定するものではない。たとえば、数式、テーブル形式のデータなどに基づき、吐出圧力を吸入圧力で除した値である圧縮比、圧縮機10の駆動周波数などに対応した値に設定を変化させるようにしてもよい。しきい値を変化させることで、圧縮機10の運転状態によるアキュムレーター19からの液バックの検出精度を高くすることができる。 Here, the discharge temperature threshold value and the liquid level adjustment threshold value have been described as being fixed values set in advance, but are not limited thereto. For example, the setting may be changed to a value corresponding to the compression ratio, which is a value obtained by dividing the discharge pressure by the suction pressure, the drive frequency of the compressor 10, and the like, based on data of a formula and a table format. By changing the threshold value, the detection accuracy of the liquid back from the accumulator 19 according to the operating state of the compressor 10 can be increased.
 また、前述したステップCT100では、圧縮機10aの吐出温度および圧縮機10bの吐出温度と液面調整しきい値との大小関係を組み合わせて4つのパターンに分け、室外側絞り装置45aおよび室外側絞り装置45bの開度制御を行った。ステップCT100のような、組み合わせによる各室外側絞り装置45の開度制御では、各圧縮機10の吐出温度が、液面調整しきい値を満たしているが、各アキュムレーター19に液冷媒量に偏りがある場合においても、冷媒を分散させて均液をはかることができる。このため、アキュムレーター19からの冷媒のオーバーフローのリスクを低減することができる。ただし、これに限定するものではない。たとえば、圧縮機10aの吐出温度と液面調整しきい値と比較に基づいて室外側絞り装置45aの開度制御を行い、圧縮機10bの吐出温度と液面調整しきい値と比較に基づいて室外側絞り装置45bの開度制御を行うようにして、それぞれ独立した制御を行ってもよい。 In step CT100 described above, the discharge temperature of the compressor 10a, the discharge temperature of the compressor 10b, and the magnitude relationship between the liquid level adjustment threshold value are divided into four patterns, and the outdoor-side throttling device 45a and the outdoor-side throttling The opening control of the device 45b was performed. Although the discharge temperature of each compressor 10 satisfies the liquid level adjustment threshold in the opening degree control of each outdoor side expansion device 45 by a combination like step CT100, the amount of liquid refrigerant is stored in each accumulator 19 Even when there is a bias, the refrigerant can be dispersed to make the liquid uniform. For this reason, the risk of refrigerant overflow from the accumulator 19 can be reduced. However, it is not limited to this. For example, the opening degree control of the outdoor throttling device 45a is performed based on the comparison between the discharge temperature of the compressor 10a and the liquid level adjustment threshold, and the discharge temperature of the compressor 10b is compared based on the liquid level adjustment threshold. The opening control of the outdoor-side throttling device 45b may be performed to perform independent control.
 また、ここでは、2台の室外機1を並列に接続した空気調和装置100の構成を例に説明した。しかしながら、室外機1の接続台数を3台以上にしても同様の効果を得ることができる。 Moreover, the structure of the air conditioning apparatus 100 which connected two outdoor units 1 in parallel was demonstrated to the example here. However, the same effect can be obtained even if the number of connected outdoor units 1 is three or more.
 以上のように、実施の形態2によれば、制御装置60が、インジェクションを行って高い能力を確保しながら、複数の室外機1が搭載するアキュムレーター19の液面を調整することができる。このため、ユーザーの快適性を維持しつつ、アキュムレーター19のオーバーフローを防止することで、アキュムレーター19の均液制御を行って圧縮機10への液バックを防ぐことができる。したがって、圧縮機10の破損などを防ぐことができ、空気調和装置100全体の信頼性を確保することができる。 As described above, according to the second embodiment, the control device 60 can adjust the liquid level of the accumulator 19 mounted on the plurality of outdoor units 1 while performing injection to ensure high performance. Therefore, by preventing the overflow of the accumulator 19 while maintaining the comfort of the user, it is possible to perform the liquid equalization control of the accumulator 19 and to prevent the liquid back to the compressor 10. Therefore, breakage or the like of the compressor 10 can be prevented, and the reliability of the entire air conditioning apparatus 100 can be secured.
実施の形態3.
 図8は、この発明の実施の形態3に係る空気調和装置100の構成の一例を示す図である。次に、この発明の実施の形態3に係る空気調和装置について説明する。ここで、実施の形態1および実施の形態2と同一の機能および作用を有する機器などについては、同一の符号を付す。
Third Embodiment
FIG. 8 is a diagram showing an example of the configuration of the air conditioning apparatus 100 according to Embodiment 3 of the present invention. Next, an air conditioner according to Embodiment 3 of the present invention will be described. Here, the same reference numerals are given to devices having the same functions and operations as the first embodiment and the second embodiment.
 図8に示すように、空気調和装置100は、熱源機である2台の室外機1(1a、1b)と、複数台の室内機2(2a、2b、2c、2d)と、室外機1と室内機2a~2dとの間に設けられ、開閉装置を備えた中継装置3とを有している。室外機1と中継装置3とは、冷媒が流通する複数本の主管5により接続されている。中継装置3と室内機2a~2dのそれぞれとは、冷媒が流通する複数本の枝管8により接続されている。室外機1で生成された冷熱または温熱は、中継装置3を介して室内機2a~2dに供給されるようになっている。 As shown in FIG. 8, the air conditioning apparatus 100 includes two outdoor units 1 (1a, 1b) that are heat source units, a plurality of indoor units 2 (2a, 2b, 2c, 2d), and the outdoor unit 1 And the indoor units 2a to 2d, and has a relay device 3 provided with an opening / closing device. The outdoor unit 1 and the relay device 3 are connected by a plurality of main pipes 5 through which the refrigerant flows. The relay device 3 and each of the indoor units 2a to 2d are connected by a plurality of branch pipes 8 through which the refrigerant flows. Cold heat or heat generated by the outdoor unit 1 is supplied to the indoor units 2a to 2d via the relay device 3.
 実施の形態3では、室外機1と中継装置3とは2本の主管5を用いて接続されており、中継装置3と室内機2a~2dのそれぞれとは2本の枝管8を用いて接続されている。このように、室外機1と中継装置3との間、および中継装置3と室内機2a~2dとの間がそれぞれ2本の配管を用いて接続されることにより、空気調和装置100の施工を容易に行うことができる。 In the third embodiment, the outdoor unit 1 and the relay device 3 are connected using two main pipes 5, and the relay device 3 and the indoor units 2a to 2d each use two branch pipes 8. It is connected. Thus, installation of the air conditioner 100 is achieved by connecting the outdoor unit 1 and the relay device 3 and between the relay device 3 and the indoor units 2a to 2d using two pipes. It can be done easily.
<室外機1>
 室外機1は、実施の形態1などと同様に、圧縮機10、冷媒流路切替装置11、熱源側熱交換器12、熱源側ファン18およびアキュムレーター19を有している。また、室外側絞り装置45、インジェクション絞り装置42、室外側絞り装置45、インジェクション配管41などを有している。
<Outdoor unit 1>
The outdoor unit 1 includes the compressor 10, the refrigerant flow switching device 11, the heat source side heat exchanger 12, the heat source side fan 18, and the accumulator 19, as in the first embodiment and the like. Further, it has an outdoor-side throttle device 45, an injection throttle device 42, an outdoor-side throttle device 45, an injection pipe 41 and the like.
 実施の形態3の室外機1には、さらに、第1接続配管6、第2接続配管7および第1逆流防止装置13、14、15および16が設けられている。ここでは、第1逆流防止装置13~16として、逆止弁が用いられている。第1逆流防止装置13は、全暖房運転モードおよび暖房主体運転モードの際に、第1接続配管6から熱源側熱交換器12に、高温および高圧のガス冷媒が逆流することを防止するものである。第1逆流防止装置14は、全冷房運転モードおよび冷房主体運転モードの際に、第1接続配管6からアキュムレーター19に、高圧の液または気液二相状態の冷媒が逆流することを防止するものである。第1逆流防止装置15は、全冷房運転モードおよび冷房主体運転モードの際に、第2接続配管7からアキュムレーター19に、高圧の液または気液二相状態の冷媒が逆流することを防止するものである。第1逆流防止装置16は、全暖房運転モードおよび暖房主体運転モードの際に、圧縮機10の吐出側の流路から第2接続配管7に、高温および高圧のガス冷媒が逆流することを防止するものである。 The outdoor unit 1 according to the third embodiment is further provided with a first connection pipe 6, a second connection pipe 7, and first backflow prevention devices 13, 14, 15 and 16. Here, check valves are used as the first backflow prevention devices 13-16. The first backflow prevention device 13 prevents the high temperature and high pressure gas refrigerant from flowing back from the first connection pipe 6 to the heat source side heat exchanger 12 in the heating only operation mode and the heating main operation mode. is there. The first backflow prevention device 14 prevents the high pressure liquid or the gas-liquid two-phase refrigerant from backflowing from the first connection pipe 6 to the accumulator 19 in the cooling only operation mode and the cooling main operation mode It is a thing. The first backflow prevention device 15 prevents the high pressure liquid or the gas-liquid two-phase refrigerant from backflowing from the second connection pipe 7 to the accumulator 19 in the cooling only operation mode and the cooling main operation mode It is a thing. The first backflow prevention device 16 prevents the high temperature and high pressure gas refrigerant from flowing back from the flow path on the discharge side of the compressor 10 to the second connection pipe 7 in the heating only operation mode and heating only operation mode It is
 このように、第1接続配管6、第2接続配管7および第1逆流防止装置13~16を設けることにより、室内機2の要求する運転に関わらず、中継装置3に流入させる冷媒の流れを一定方向にすることができる。なお、ここでは、第1逆流防止装置13~16として逆止弁が用いられているが、冷媒の逆流を防止できるものであれば第1逆流防止装置13~16の構成はこれに限られない。たとえば、第1逆流防止装置13~16として、開閉装置や全閉機能を有する絞り装置を用いることもできる。 As described above, by providing the first connection piping 6, the second connection piping 7, and the first backflow prevention devices 13 to 16, the flow of the refrigerant to be made to flow into the relay device 3 can be obtained regardless of the operation requested by the indoor unit 2. It can be in a fixed direction. Although check valves are used as the first backflow prevention devices 13 to 16 here, the configuration of the first backflow prevention devices 13 to 16 is not limited thereto as long as it can prevent the backflow of the refrigerant. . For example, as the first backflow prevention devices 13 to 16, it is also possible to use an opening / closing device or a throttling device having a fully closed function.
 ここで、実施の形態3の空気調和装置100において、インジェクション絞り装置42および室外側絞り装置45を冷媒が通過することができるのは、全暖房運転モードおよび暖房主体運転モードのときになる。したがって、全冷房運転モードおよび冷房主体運転モードにおいては、インジェクションなどは行われない。 Here, in the air conditioning apparatus 100 of the third embodiment, the refrigerant can pass through the injection throttle device 42 and the outdoor throttle device 45 when in the heating only operation mode and the heating main operation mode. Therefore, injection and the like are not performed in the cooling only operation mode and the cooling main operation mode.
<室内機2a~2d>
 複数の室内機2a~2dは、たとえば、互いに同一の構成を有している。室内機2a~2dは、それぞれ負荷側熱交換器26a、26b、26c、26d、および負荷側絞り装置25a、25b、25c、25dを備えている。負荷側熱交換器26a~26dのそれぞれは、枝管8、中継装置3および主管5を介して室外機1に接続されている。負荷側熱交換器26a~26dのそれぞれでは、不図示の負荷側ファンにより供給される空気と冷媒との間で熱交換によって、室内空間に供給するための暖房用空気または冷房用空気が生成される。負荷側絞り装置25a~25dは、たとえば、連続的または多段階で可変に開度を調節可能なものである。負荷側絞り装置25a~25dとしては、たとえば、電子式膨張弁などが用いられる。負荷側絞り装置25a~25dは、減圧弁および膨張弁としての機能を有しており、冷媒を減圧して膨張させるものである。負荷側絞り装置25a~25dは、冷房運転モード(たとえば、全冷房運転モード)での冷媒の流れにおいて、負荷側熱交換器26a~26dのそれぞれ上流側に設けられている。
<Indoor unit 2a to 2d>
The plurality of indoor units 2a to 2d have, for example, the same configuration. The indoor units 2a to 2d respectively include load side heat exchangers 26a, 26b, 26c, 26d and load side expansion devices 25a, 25b, 25c, 25d. Each of the load side heat exchangers 26a to 26d is connected to the outdoor unit 1 via the branch pipe 8, the relay device 3 and the main pipe 5. In each of the load side heat exchangers 26a to 26d, heating air or cooling air to be supplied to the indoor space is generated by heat exchange between the air supplied by the load side fan (not shown) and the refrigerant. Ru. The load-side throttling devices 25a to 25d are, for example, capable of variably adjusting the opening degree continuously or in multiple steps. As the load side throttle devices 25a to 25d, for example, electronic expansion valves or the like are used. The load-side throttling devices 25a to 25d have functions as pressure reducing valves and expansion valves, and decompress and expand the refrigerant. The load-side expansion devices 25a to 25d are provided upstream of the load-side heat exchangers 26a to 26d in the refrigerant flow in the cooling operation mode (for example, the all-cooling operation mode).
 また、室内機2には、各負荷側熱交換器26a~26dに流入する冷媒の温度を検出する入口側温度センサー31a~31dを有している。また、各負荷側熱交換器26a~26dから流出した冷媒の温度を検出する出口側温度センサー32a~32dを有している。入口側温度センサー31a~31dおよび出口側温度センサー32a~32dは、たとえば、サーミスターなどからなる。入口側温度センサー31a~31dおよび出口側温度センサー32a~32dのそれぞれは、検出信号を制御装置60に出力する。 The indoor unit 2 also has inlet side temperature sensors 31a to 31d for detecting the temperature of the refrigerant flowing into the load side heat exchangers 26a to 26d. Further, it has outlet side temperature sensors 32a to 32d for detecting the temperature of the refrigerant flowing out of the load side heat exchangers 26a to 26d. The inlet temperature sensors 31a to 31d and the outlet temperature sensors 32a to 32d are, for example, thermistors or the like. Each of the inlet temperature sensors 31a to 31d and the outlet temperature sensors 32a to 32d outputs a detection signal to the control device 60.
 なお、図8では4台の室内機2a~2dを例示しているが、室内機の接続台数は2台、3台、または5台以上であってもよい。 Although four indoor units 2a to 2d are illustrated in FIG. 8, the number of indoor units connected may be two, three, or five or more.
<中継装置3>
 中継装置3には、気液分離器29、第1中継機絞り装置30、第2中継機絞り装置27を有している。また、複数の第1開閉装置23a~23d、複数の第2開閉装置24a~24d、第2逆流防止装置21a~21d(たとえば、逆止弁)、第3逆流防止装置22a~22d(たとえば、逆止弁)を有している。
<Relaying device 3>
The relay device 3 includes a gas-liquid separator 29, a first relay throttling device 30, and a second relay throttling device 27. The plurality of first opening / closing devices 23a to 23d, the plurality of second opening / closing devices 24a to 24d, the second backflow prevention devices 21a to 21d (for example, check valves), the third backflow prevention devices 22a to 22d (for example, reverse) Stop valve).
 気液分離器29は、冷房負荷が大きい冷房暖房混在運転モードにおいて、室外機1で生成された高圧の気液二相状態の冷媒を液冷媒とガス冷媒とに分離する。気液分離器29は、分離した液冷媒を図中で下側の配管に流入させ、一部の室内機2に冷熱を供給するとともに、分離したガス冷媒を図中で上側の配管に流入させ、他の一部の室内機2に温熱を供給する。気液分離器29は、冷媒の流れにおいて中継装置3の入口部に設けられている。 The gas-liquid separator 29 separates the high-pressure gas-liquid two-phase refrigerant generated by the outdoor unit 1 into liquid refrigerant and gas refrigerant in the cooling-heating mixed operation mode in which the cooling load is large. The gas-liquid separator 29 allows the separated liquid refrigerant to flow into the lower pipe in the drawing, and supplies cold heat to some of the indoor units 2 and causes the separated gas refrigerant to flow into the upper pipe in the drawing. , Supply heat to some other indoor units 2. The gas-liquid separator 29 is provided at the inlet of the relay device 3 in the flow of the refrigerant.
 第1中継機絞り装置30は、減圧弁および開閉弁としての機能を有している。第1中継機絞り装置30は、液冷媒を減圧して所定の圧力に調節するとともに、液冷媒の流路を開閉するものである。第1中継機絞り装置30は、たとえば、連続的または多段階で可変に開度を調節可能なものである。第1中継機絞り装置30としては、たとえば、電子式膨張弁などが用いられる。第1中継機絞り装置30は、気液分離器29から液冷媒が流出する配管上に設けられている。 The first relay throttle device 30 has functions as a pressure reducing valve and an on-off valve. The first relay expansion device 30 decompresses the liquid refrigerant to adjust it to a predetermined pressure, and opens and closes a flow path of the liquid refrigerant. The first relay throttle device 30 is, for example, capable of variably adjusting the opening degree continuously or in multiple steps. As the first relay device throttle device 30, for example, an electronic expansion valve or the like is used. The first relay expansion device 30 is provided on a pipe from which the liquid refrigerant flows out from the gas-liquid separator 29.
 第2中継機絞り装置27は、減圧弁および開閉弁としての機能を有している。第2中継機絞り装置27は、全暖房運転モードにおいては冷媒流路を開閉するものであり、暖房主体運転モードにおいては室内側負荷に応じてバイパス液流量を調節するものである。第2中継機絞り装置27は、たとえば、連続的または多段階で可変に開度を調節可能なものである。第2中継機絞り装置27としては、たとえば、電子式膨張弁などが用いられる。 The second relay throttle device 27 has functions as a pressure reducing valve and an on-off valve. The second relay expansion device 27 opens and closes the refrigerant flow path in the heating only operation mode, and adjusts the bypass liquid flow rate in accordance with the indoor load in the heating main operation mode. The second relay throttling device 27 is, for example, capable of variably adjusting the opening degree continuously or in multiple steps. As the second relay throttle device 27, for example, an electronic expansion valve or the like is used.
 複数の第1開閉装置23a~23dは、複数の室内機2a~2d毎にそれぞれ1つ(ここでは、合計4つ)設けられている。第1開閉装置23a~23dは、それぞれ各室内機2a~2dに供給される高温および高圧のガス冷媒の流路を開閉するものである。第1開閉装置23a~23dは、たとえば、電磁弁などで構成されている。第1開閉装置23a~23dは、それぞれ気液分離器29のガス側配管に接続されている。なお、第1開閉装置23a~23dは流路の開閉を行うことができればよく、全閉機能を有する絞り装置であってもよい。 The plurality of first opening / closing devices 23a to 23d are provided for each of the plurality of indoor units 2a to 2d (in this case, four in total). The first opening and closing devices 23a to 23d open and close the flow paths of the high-temperature and high-pressure gas refrigerant supplied to the indoor units 2a to 2d, respectively. The first opening and closing devices 23a to 23d are configured by, for example, solenoid valves or the like. The first opening and closing devices 23a to 23d are connected to the gas side piping of the gas-liquid separator 29, respectively. The first opening and closing devices 23a to 23d may be an expansion device having a fully closing function as long as they can open and close the flow path.
 複数の第2開閉装置24a~24dは、複数の室内機2a~2d毎にそれぞれ1つ(ここでは、合計4つ)設けられている。第2開閉装置24a~24dは、それぞれ室内機2a~2dから流出した低圧および低温のガス冷媒の流路を開閉するものである。第2開閉装置24a~24dは、たとえば、電磁弁などで構成されている。第2開閉装置24a~24dは、それぞれ中継装置3の出口側に導通する低圧配管に接続されている。また、第2開閉装置24a~24dは流路の開閉を行うことができればよく、全閉機能を有する絞り装置であってもよい。 The plurality of second opening / closing devices 24a to 24d are provided for each of the plurality of indoor units 2a to 2d (in this case, four in total). The second open / close devices 24a to 24d open and close the flow paths of the low-pressure and low-temperature gas refrigerant flowing out of the indoor units 2a to 2d, respectively. The second opening and closing devices 24a to 24d are configured by, for example, solenoid valves or the like. The second opening and closing devices 24a to 24d are connected to low pressure pipes which conduct to the outlet side of the relay device 3, respectively. The second opening / closing devices 24a to 24d may be an expansion device having a fully closing function as long as they can open and close the flow path.
 複数の第2逆流防止装置21a~21dは、複数の室内機2a~2d毎にそれぞれ1つ(実施の形態3では、合計4つ)設けられている。第2逆流防止装置21a~21dは、冷房運転を行っている室内機2に高圧液冷媒を流入させるものであり、第1中継機絞り装置30の出口側の配管に接続されている。冷房主体運転モードおよび暖房主体運転モードでは、暖房中の室内機2の負荷側絞り装置25からの、過冷却度が十分に確保できていない中温および中圧の液または気液二相状態の冷媒が、冷房中の室内機2の負荷側絞り装置25に流入することを防ぐことができる。実施の形態3では、第2逆流防止装置21a~21dとして逆止弁が用いられているが、冷媒の逆流を防止できるものであれば第2逆流防止装置21a~21dの構成はこれに限られない。たとえば、第2逆流防止装置21a~21dとして、開閉装置や全閉機能を有する絞り装置を用いることもできる。 A plurality of second backflow prevention devices 21a to 21d are provided for each of the plurality of indoor units 2a to 2d (four in total in the third embodiment). The second backflow prevention devices 21a to 21d allow high pressure liquid refrigerant to flow into the indoor unit 2 performing the cooling operation, and are connected to the piping on the outlet side of the first relay device expansion device 30. In the cooling main operation mode and the heating main operation mode, the medium-temperature and medium-pressure liquid or gas-liquid two-phase refrigerant whose degree of supercooling can not be sufficiently ensured from the load-side expansion device 25 of the heating indoor unit 2 However, it can be prevented from flowing into the load-side expansion device 25 of the indoor unit 2 being cooled. In the third embodiment, check valves are used as the second backflow prevention devices 21a to 21d, but the configuration of the second backflow prevention devices 21a to 21d is limited to this as long as the backflow of the refrigerant can be prevented. Absent. For example, as the second backflow prevention devices 21a to 21d, it is also possible to use an open / close device or a throttling device having a fully closed function.
 複数の第3逆流防止装置22a~22dは、複数の室内機2a~2d毎にそれぞれ1つ(ここでは、合計4つ)設けられている。第3逆流防止装置22a~22dは、冷房運転を行っている室内機2に高圧液冷媒を流入させるものであり、第1中継機絞り装置30の出口側の配管に接続されている。第3逆流防止装置22a~22dは、冷房主体運転モードおよび暖房主体運転モードでは、第1中継機絞り装置30からの、過冷却度が十分でない中温および中圧の液または二相状態の冷媒が、冷房中の室内機2の負荷側絞り装置25に流入することを防止している。実施の形態3では、第3逆流防止装置22a~22dとして逆止弁が用いられているが、冷媒の逆流を防止できるものであれば第3逆流防止装置22a~22dの構成はこれに限られない。たとえば、第3逆流防止装置22a~22dとして、開閉装置や全閉機能を有する絞り装置を用いることもできる。 The plurality of third backflow prevention devices 22a to 22d are provided for each of the plurality of indoor units 2a to 2d (in this case, four in total). The third backflow prevention devices 22a to 22d allow the high pressure liquid refrigerant to flow into the indoor unit 2 performing the cooling operation, and are connected to the piping on the outlet side of the first relay device expansion device 30. In the cooling-dominated operation mode and the heating-dominated operation mode, the third relay device 22a to 22d receives a medium-temperature and medium-pressure liquid or a two-phase refrigerant from the first relay device expansion device 30 that does not have a sufficient degree of subcooling. It prevents the flow to the load-side expansion device 25 of the indoor unit 2 being cooled. In the third embodiment, the check valves are used as the third backflow prevention devices 22a to 22d, but the configuration of the third backflow prevention devices 22a to 22d is limited to this as long as the backflow of the refrigerant can be prevented. Absent. For example, as the third backflow prevention devices 22a to 22d, it is also possible to use an open / close device or a throttling device having a fully closed function.
 また、中継装置3において第1中継機絞り装置30の入口側には、絞り装置入口側圧力センサー33が設けられている。絞り装置入口側圧力センサー33は、高圧冷媒の圧力を検出するものである。第1中継機絞り装置30の出口側には、絞り装置出口側圧力センサー34が設けられている。絞り装置出口側圧力センサー34は、冷房主体運転モードにおいて、第1中継機絞り装置30の出口側の液冷媒の中間圧力を検出するものである。 Further, at the inlet side of the first relay throttling device 30 in the relay device 3, a throttling device inlet side pressure sensor 33 is provided. The throttling device inlet side pressure sensor 33 detects the pressure of the high pressure refrigerant. A throttle device outlet side pressure sensor 34 is provided on the outlet side of the first relay throttle device 30. The expansion device outlet side pressure sensor 34 detects the intermediate pressure of the liquid refrigerant on the outlet side of the first relay expansion device 30 in the cooling main operation mode.
 図8に示す空気調和装置100においても、制御装置60(60a,60b)は、各種センサーからの検出信号およびリモートコントローラからの指示に基づいて、空気調和装置100全体の動作を制御する。たとえば、制御装置60は、圧縮機10の駆動周波数の制御、熱源側ファン18および負荷側ファンの回転数制御(オンおよびオフの制御を含む)を行う。また、制御装置60は、冷媒流路切替装置11の流路切替え、インジェクション絞り装置42の開度制御、室外側絞り装置45の開度制御または開閉制御を行う。そして、制御装置60は、負荷側絞り装置25の開度制御、第1開閉装置23a~23dの開閉制御、第2開閉装置24a~24dの開閉制御、第1中継機絞り装置30の開閉制御、第2中継機絞り装置27の開閉制御などを行う。これらの制御により、制御装置60は、各運転モードを実行する。ここで、制御装置60は室外機1に設けられているが、制御装置60は、室内機2a~2dに設けられていてもよいし、中継装置3に設けられていてもよい。また、ユニット毎(たとえば、室外機1、室内機2a~2dおよび中継装置3のそれぞれ)に制御装置60が設けられていてもよい。そして、複数の制御装置60が、それぞれの機能を組み合わせて、液バック防止などに係る処理を行うようにしてもよい。 Also in the air conditioning apparatus 100 shown in FIG. 8, the control device 60 (60a, 60b) controls the overall operation of the air conditioning apparatus 100 based on detection signals from various sensors and an instruction from the remote controller. For example, the control device 60 performs control of the drive frequency of the compressor 10 and rotation number control (including on and off control) of the heat source fan 18 and the load fan. Further, the control device 60 performs flow path switching of the refrigerant flow switching device 11, opening degree control of the injection throttle device 42, opening degree control or opening / closing control of the outdoor side throttle device 45. The control device 60 controls the opening degree of the load side expansion device 25, the opening and closing control of the first opening and closing devices 23a to 23d, the opening and closing control of the second opening and closing devices 24a to 24d, the opening and closing control of the first relay device opening device 30; The opening and closing control and the like of the second relay throttle device 27 are performed. By these controls, control device 60 executes each operation mode. Here, although the control device 60 is provided in the outdoor unit 1, the control device 60 may be provided in the indoor units 2 a to 2 d or may be provided in the relay device 3. Further, the control device 60 may be provided for each unit (for example, each of the outdoor unit 1, the indoor units 2a to 2d and the relay device 3). Then, the plurality of control devices 60 may combine the respective functions to perform the process related to the liquid back prevention and the like.
 空気調和装置100で実行される各運転モードについて説明する。空気調和装置100の制御装置60は、各室内機2a~2dからの指示に基づいて、室内機2a~2dのそれぞれで独立して冷房運転または暖房運転を行うことが可能になっている。つまり、空気調和装置100は、全ての室内機2a~2dで同一の運転(冷房運転または暖房運転)を行うことができるとともに、室内機2a~2dのそれぞれで異なる運転を行うこともできる。 Each operation mode performed by the air conditioning apparatus 100 will be described. The control device 60 of the air conditioning apparatus 100 can perform the cooling operation or the heating operation independently in each of the indoor units 2a to 2d based on an instruction from each of the indoor units 2a to 2d. That is, the air conditioning apparatus 100 can perform the same operation (cooling operation or heating operation) in all the indoor units 2a to 2d, and can also perform different operations in each of the indoor units 2a to 2d.
 空気調和装置100で実行される運転モードには、大別して、冷房運転モードと暖房運転モードとがある。冷房運転モードには、全冷房運転モードと冷房主体運転モードとが含まれる。全冷房運転モードは、停止状態にない室内機2a~2dの全てが冷房運転を行う運転モードである。すなわち、全冷房運転モードでは、停止状態にない負荷側熱交換器26a~26dの全てが蒸発器として機能する。冷房主体運転モードは、室内機2a~2dの一部が冷房運転を行い、室内機2a~2dの他の一部が暖房運転を行う冷房暖房混在運転モードであって、冷房負荷が暖房負荷よりも大きい運転モードである。すなわち、冷房主体運転モードでは、負荷側熱交換器26a~26dの一部が蒸発器として機能し、負荷側熱交換器26a~26dの他の一部が凝縮器として機能する。 The operation modes executed by the air conditioner 100 can be roughly classified into a cooling operation mode and a heating operation mode. The cooling operation mode includes a cooling only operation mode and a cooling main operation mode. The cooling only operation mode is an operation mode in which all the indoor units 2a to 2d not in the stopped state perform the cooling operation. That is, in the cooling only operation mode, all the load side heat exchangers 26a to 26d not in the stop state function as the evaporator. In the cooling main operation mode, a part of the indoor units 2a to 2d performs the cooling operation, and the other part of the indoor units 2a to 2d performs the heating operation, and the cooling load is higher than the heating load. Is also a large operating mode. That is, in the cooling main operation mode, a part of the load side heat exchangers 26a to 26d functions as an evaporator, and another part of the load side heat exchangers 26a to 26d functions as a condenser.
 暖房運転モードには、全暖房運転モードと暖房主体運転モードとが含まれる。全暖房運転モードは、停止状態にない室内機2a~2dの全てが暖房運転を行う運転モードである。すなわち、全暖房運転モードでは、停止状態にない負荷側熱交換器26a~26dの全てが凝縮器として機能する。暖房主体運転モードは、室内機2a~2dの一部が冷房運転を行い、室内機2a~2dの他の一部が暖房運転を行う冷房暖房混在運転モードであって、暖房負荷が冷房負荷よりも大きい運転モードである。以下、各運転モードについて説明する。 The heating operation mode includes an all heating operation mode and a heating main operation mode. The all heating operation mode is an operation mode in which all the indoor units 2a to 2d not in the stop state perform the heating operation. That is, in the heating only operation mode, all the load side heat exchangers 26a to 26d which are not in the stopped state function as the condenser. The heating main operation mode is a cooling / heating mixed operation mode in which a part of the indoor units 2a to 2d performs the cooling operation and another part of the indoor units 2a to 2d performs the heating operation. Is also a large operating mode. Each operation mode will be described below.
<全冷房運転モード>
 図9は、実施の形態3に係る空気調和装置100の全冷房運転モードにおける冷媒の流れを説明する図である。図9では、冷媒の流れ方向を実線矢印で示している。ここで、負荷側熱交換器26aおよび負荷側熱交換器26bでのみ冷熱負荷が発生しているものとする。全冷房運転モードの場合、制御装置60は、室外機1の冷媒流路切替装置11を、圧縮機10から吐出された冷媒が熱源側熱交換器12へ流入するように切り替える。
<Full cooling operation mode>
FIG. 9 is a diagram for explaining the flow of the refrigerant in the cooling only operation mode of the air conditioning apparatus 100 according to the third embodiment. In FIG. 9, the flow direction of the refrigerant is indicated by a solid arrow. Here, it is assumed that a cold load is generated only in the load side heat exchanger 26a and the load side heat exchanger 26b. In the case of the cooling only operation mode, the control device 60 switches the refrigerant flow switching device 11 of the outdoor unit 1 so that the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
 まず、低温および低圧の冷媒が圧縮機10により圧縮され、高温および高圧のガス冷媒になって吐出される。圧縮機10から吐出された高温および高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら高圧液冷媒になる。熱源側熱交換器12から流出した高圧液冷媒は、第1逆流防止装置13を通って室外機1から流出し、主管5を通って中継装置3に流入する。 First, low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as high-temperature and high-pressure gas refrigerant. The high temperature and high pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11. Then, the heat is released to the outdoor air by the heat source side heat exchanger 12 and becomes a high pressure liquid refrigerant. The high-pressure liquid refrigerant flowing out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the first backflow prevention device 13 and flows into the relay device 3 through the main pipe 5.
 中継装置3に流入した高圧液冷媒は、気液分離器29および第1中継機絞り装置30を経由し、大部分は第2逆流防止装置21a、21bおよび枝管8を経由し、負荷側絞り装置25で膨張させられ、低温および低圧の気液二相状態の冷媒になる。高圧冷媒の残りの一部は第2中継機絞り装置27で膨張させられ、低温および低圧のガス冷媒または気液二相状態の冷媒になる。そして、中継装置3の出口側の低圧配管に流入する。このとき、第2中継機絞り装置27は、冷媒のサブクール(過冷却度)が一定になるように開度が制御される。 The high-pressure liquid refrigerant flowing into the relay device 3 passes through the gas-liquid separator 29 and the first relay device throttling device 30, and most passes through the second backflow prevention devices 21a and 21b and the branch pipe 8, and the load side throttling It is expanded by the device 25 to become a low temperature and low pressure gas-liquid two-phase refrigerant. The remaining part of the high-pressure refrigerant is expanded by the second relay throttling device 27 to become a low-temperature and low-pressure gas refrigerant or a refrigerant in a gas-liquid two-phase state. Then, it flows into the low pressure pipe on the outlet side of the relay device 3. At this time, the opening degree of the second relay expansion device 27 is controlled such that the subcool (degree of subcooling) of the refrigerant becomes constant.
 負荷側絞り装置25aおよび25bで膨張させられた気液二相状態の冷媒は、蒸発器として作用する負荷側熱交換器26aおよび26bにそれぞれ流入し、室内空気から吸熱することにより、室内空気を冷却しながら、低温および低圧のガス冷媒になる。この際、負荷側絞り装置25aは、入口側温度センサー31aで検出された温度と出口側温度センサー32aで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。同様に、負荷側絞り装置25bは、入口側温度センサー31bで検出された温度と出口側温度センサー32bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。 The refrigerant in the gas-liquid two-phase state expanded by the load- side throttling devices 25a and 25b respectively flows into the load- side heat exchangers 26a and 26b acting as an evaporator, and absorbs room air by absorbing heat from room air. While cooling, it becomes a low temperature and low pressure gas refrigerant. At this time, the load-side expansion device 25a is opened so that the superheat (degree of superheat) obtained as the difference between the temperature detected by the inlet temperature sensor 31a and the temperature detected by the outlet temperature sensor 32a becomes constant. The degree is controlled. Similarly, the degree of opening of the load-side expansion device 25b is controlled such that the superheat obtained as the difference between the temperature detected by the inlet temperature sensor 31b and the temperature detected by the outlet temperature sensor 32b is constant. Ru.
 負荷側熱交換器26aおよび26bからそれぞれ流出したガス冷媒は、枝管8および第2開閉装置24aおよび24bを経由して、中継装置3から流出する。中継装置3から流出した冷媒は、主管5を通って再び室外機1へ流入する。室外機1に流入した冷媒は、第1逆流防止装置16を通って、冷媒流路切替装置11、アキュムレーター19を経由して、圧縮機10へ再度吸入される。 The gas refrigerant that has flowed out of the load side heat exchangers 26a and 26b flows out of the relay device 3 via the branch pipe 8 and the second opening / closing devices 24a and 24b. The refrigerant flowing out of the relay device 3 flows into the outdoor unit 1 again through the main pipe 5. The refrigerant that has flowed into the outdoor unit 1 passes through the first backflow prevention device 16 and is again drawn into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19.
 なお、熱負荷がない負荷側熱交換器26cおよび負荷側熱交換器26dにおいては、冷媒を流す必要がなく、それぞれに対応する負荷側絞り装置25cと、負荷側絞り装置25dは閉状態になっている。そして、負荷側熱交換器26cまたは負荷側熱交換器26dで冷熱負荷が発生した場合には、負荷側絞り装置25cまたは負荷側絞り装置25dが開放されて冷媒が循環する。このとき、負荷側絞り装置25cまたは負荷側絞り装置25dは、負荷側絞り装置25aまたは負荷側絞り装置25bと同様に、開度が制御される。このとき、入口側温度センサー31cまたは31dで検出された温度と、出口側温度センサー32cまたは32dで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるようにする。 In the load side heat exchanger 26c and the load side heat exchanger 26d having no heat load, it is not necessary to flow the refrigerant, and the corresponding load side expansion devices 25c and 25d are closed. ing. Then, when a cold load is generated in the load side heat exchanger 26c or the load side heat exchanger 26d, the load side expansion device 25c or the load side expansion device 25d is opened to circulate the refrigerant. At this time, the degree of opening of the load-side expansion device 25c or the load-side expansion device 25d is controlled in the same manner as the load- side expansion device 25a or 25b. At this time, the superheat (degree of superheat) obtained as a difference between the temperature detected by the inlet temperature sensor 31c or 31d and the temperature detected by the outlet temperature sensor 32c or 32d is made constant.
<冷房主体運転モード>
 図10は、実施の形態3に係る空気調和装置100の冷房主体運転モードにおける冷媒の流れを説明する図である。図10では、冷媒の流れ方向を実線矢印で示している。ここで、負荷側熱交換器26aでのみ冷熱負荷が発生しており、負荷側熱交換器26bでのみ温熱負荷が発生しているものとする。冷房主体運転モードの場合、制御装置60は、冷媒流路切替装置11を、圧縮機10から吐出された冷媒が熱源側熱交換器12へ流入させるように切り替える。
<Cooling-based operation mode>
FIG. 10 is a diagram for explaining the flow of the refrigerant in the cooling main operation mode of the air-conditioning apparatus 100 according to Embodiment 3. In FIG. 10, the flow direction of the refrigerant is indicated by a solid arrow. Here, it is assumed that a cold load is generated only in the load side heat exchanger 26a, and a thermal load is generated only in the load side heat exchanger 26b. In the cooling main operation mode, the control device 60 switches the refrigerant flow switching device 11 so that the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
 まず、低温および低圧の冷媒が圧縮機10により圧縮され、高温および高圧のガス冷媒になって吐出される。圧縮機10から吐出された高温および高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら気液二相状態の冷媒になる。熱源側熱交換器12から流出した冷媒は、第1逆流防止装置13および主管5を通り中継装置3に流入する。 First, low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as high-temperature and high-pressure gas refrigerant. The high temperature and high pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 releases the heat to the outdoor air and becomes a refrigerant in a gas-liquid two-phase state. The refrigerant flowing out of the heat source side heat exchanger 12 flows into the relay device 3 through the first backflow prevention device 13 and the main pipe 5.
 中継装置3に流入した気液二相状態の冷媒は、気液分離器29で高圧ガス冷媒と高圧液冷媒に分離される。この高圧ガス冷媒は、第1開閉装置23bおよび枝管8を経由した後に、凝縮器として作用する負荷側熱交換器26bに流入する。高圧ガス冷媒は、室内空気に放熱することにより、室内空気を加熱しながら液冷媒になる。この際、負荷側絞り装置25bは、絞り装置入口側圧力センサー33で検出された圧力を飽和温度に換算した値と、入口側温度センサー31bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。負荷側熱交換器26bから流出した液冷媒は、負荷側絞り装置25bで膨張させられて、枝管8および第3逆流防止装置22bを流通する。 The refrigerant in the gas-liquid two-phase state that has flowed into the relay device 3 is separated into a high pressure gas refrigerant and a high pressure liquid refrigerant in the gas / liquid separator 29. The high-pressure gas refrigerant flows into the load-side heat exchanger 26b acting as a condenser after passing through the first opening / closing device 23b and the branch pipe 8. The high-pressure gas refrigerant releases the heat to the indoor air, thereby becoming a liquid refrigerant while heating the indoor air. At this time, the load side expansion device 25b is a subcool obtained as a difference between a value obtained by converting the pressure detected by the expansion device inlet side pressure sensor 33 into a saturation temperature and the temperature detected by the inlet side temperature sensor 31b. The opening degree is controlled so that the cooling degree) becomes constant. The liquid refrigerant that has flowed out of the load-side heat exchanger 26b is expanded by the load-side throttling device 25b, and flows through the branch pipe 8 and the third backflow prevention device 22b.
 その後、気液分離器29で分離された後に第1中継機絞り装置30において中間圧まで膨張させられた中圧液冷媒と、第3逆流防止装置22bを通ってきた液冷媒とが合流する。この際、第1中継機絞り装置30は、絞り装置入口側圧力センサー33で検出された圧力と、絞り装置出口側圧力センサー34で検出された圧力との圧力差が所定の圧力差(たとえば、0.3MPa)になるように開度が制御される。 After that, the medium pressure liquid refrigerant that has been separated by the gas-liquid separator 29 and expanded to the intermediate pressure in the first relay device expansion device 30 merges with the liquid refrigerant that has passed through the third backflow prevention device 22b. At this time, in the first relay throttle device 30, the pressure difference between the pressure detected by the throttle device inlet side pressure sensor 33 and the pressure detected by the throttle device outlet side pressure sensor 34 is a predetermined pressure difference (for example, The opening degree is controlled to be 0.3 MPa.
 合流した液冷媒は、大部分は第2逆流防止装置21aおよび枝管8を経由して負荷側絞り装置25aで膨張させられ、低温および低圧の気液二相状態の冷媒になる。液冷媒の残りの一部は、第2中継機絞り装置27で膨張させられ、低温および低圧のガス冷媒または気液二相状態の冷媒になる。この際、第2中継機絞り装置27は、冷媒のサブクール(過冷却度)が一定になるように開度が制御される。そして、中継装置3の出口側の低圧配管に流入する。 Most of the combined liquid refrigerant is expanded by the load-side throttling device 25a via the second backflow prevention device 21a and the branch pipe 8, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant. The remaining part of the liquid refrigerant is expanded by the second relay throttling device 27 to become a low temperature and low pressure gas refrigerant or a refrigerant in a gas-liquid two-phase state. At this time, the degree of opening of the second relay expansion device 27 is controlled such that the subcool (degree of subcooling) of the refrigerant becomes constant. Then, it flows into the low pressure pipe on the outlet side of the relay device 3.
 一方、気液分離器29において分離された高圧液冷媒は、第2逆流防止装置21aを経由して室内機2aに流入する。室内機2aの負荷側絞り装置25aで膨張させられた気液二相状態の冷媒は、蒸発器として作用する負荷側熱交換器26aに流入し、室内空気から吸熱することにより、室内空気を冷却しながら、低温および低圧のガス冷媒になる。この際、負荷側絞り装置25aは、入口側温度センサー31aで検出された温度と出口側温度センサー32bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。負荷側熱交換器26aから流出したガス冷媒は、枝管8、第2開閉装置24aを経由して、中継装置3から流出する。中継装置3から流出した冷媒は、主管5を通って再び室外機1へ流入する。室外機1に流入した冷媒は、第1逆流防止装置16を通って、冷媒流路切替装置11、アキュムレーター19を経由して、圧縮機10へ再度吸入される。 On the other hand, the high-pressure liquid refrigerant separated in the gas-liquid separator 29 flows into the indoor unit 2a via the second backflow prevention device 21a. The refrigerant in the gas-liquid two-phase state expanded by the load-side expansion device 25a of the indoor unit 2a flows into the load-side heat exchanger 26a acting as an evaporator, and cools room air by absorbing heat from room air. While becoming a low temperature and low pressure gas refrigerant. At this time, the load-side expansion device 25a is opened so that the superheat (degree of superheat) obtained as the difference between the temperature detected by the inlet temperature sensor 31a and the temperature detected by the outlet temperature sensor 32b becomes constant. The degree is controlled. The gas refrigerant that has flowed out of the load-side heat exchanger 26a flows out of the relay device 3 via the branch pipe 8 and the second opening / closing device 24a. The refrigerant flowing out of the relay device 3 flows into the outdoor unit 1 again through the main pipe 5. The refrigerant that has flowed into the outdoor unit 1 passes through the first backflow prevention device 16 and is again drawn into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19.
 なお、熱負荷がない負荷側熱交換器26cおよび負荷側熱交換器26dにおいては、冷媒を流す必要がなく、それぞれに対応する負荷側絞り装置25cおよび負荷側絞り装置25dは閉状態になっている。そして、負荷側熱交換器26cまたは負荷側熱交換器26dで冷熱負荷が発生した場合には、負荷側絞り装置25cまたは負荷側絞り装置25dが開放されて冷媒が循環する。この際、負荷側絞り装置25cまたは負荷側絞り装置25dは、開度が制御される。このとき、負荷側絞り装置25aまたは負荷側絞り装置25bと同様に、負荷側絞り装置25cまたは負荷側絞り装置25dは、スーパーヒート(過熱度)が一定になるように開度が制御される。スーパーヒートは、入口側温度センサー31cおよび31dで検出された温度と、出口側温度センサー32cおよび32dで検出された温度との差となる。 In the load side heat exchanger 26c and the load side heat exchanger 26d having no heat load, it is not necessary to flow the refrigerant, and the corresponding load side expansion devices 25c and 25d are closed. There is. Then, when a cold load is generated in the load side heat exchanger 26c or the load side heat exchanger 26d, the load side expansion device 25c or the load side expansion device 25d is opened to circulate the refrigerant. At this time, the opening degree of the load-side expansion device 25c or the load-side expansion device 25d is controlled. At this time, the degree of opening of the load-side throttling device 25c or the load-side throttling device 25d is controlled so that the superheat (degree of superheat) becomes constant, similarly to the load- side throttling device 25a or 25b. The superheat is the difference between the temperatures detected by the inlet temperature sensors 31c and 31d and the temperatures detected by the outlet temperature sensors 32c and 32d.
 実施の形態3の空気調和装置100の冷房主体運転モードにおいて、たとえば、一方の室外機1における熱源側熱交換器12が蒸発器となる可能性がある。このような室外機1において、インジェクション、および液バック防止および均液制御を行う場合の機器の動作などついては、実施の形態1および実施の形態2で説明したことと同様である。 In the cooling main operation mode of the air conditioning apparatus 100 of the third embodiment, for example, the heat source side heat exchanger 12 in one of the outdoor units 1 may become an evaporator. In the outdoor unit 1 described above, the operation of the device in the case of performing the injection and the liquid back prevention and the liquid leveling control is the same as that described in the first embodiment and the second embodiment.
<全暖房運転モード>
 図11は、実施の形態3に係る空気調和装置100の全暖房運転モードにおける冷媒の流れを説明する図である。図11では、冷媒の流れ方向を実線矢印で示している。ここで、負荷側熱交換器26aおよび負荷側熱交換器26bでのみ温熱負荷が発生しているものとする。全暖房運転モードの場合、制御装置60は、冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒が熱源側熱交換器12を経由せずに中継装置3へ流入するように切り替える。
<All heating operation mode>
FIG. 11 is a diagram for explaining the flow of the refrigerant in the heating only operation mode of the air conditioning apparatus 100 according to the third embodiment. In FIG. 11, the flow direction of the refrigerant is indicated by a solid arrow. Here, it is assumed that thermal load is generated only in the load side heat exchanger 26a and the load side heat exchanger 26b. In the case of the heating only operation mode, the control device 60 controls the refrigerant flow switching device 11 so that the heat source side refrigerant discharged from the compressor 10 flows into the relay device 3 without passing through the heat source side heat exchanger 12. Switch.
 まず、低温および低圧の冷媒が圧縮機10により圧縮され、高温および高圧のガス冷媒になって吐出される。圧縮機10から吐出された高温および高圧のガス冷媒は、冷媒流路切替装置11および第1逆流防止装置14を通り、室外機1から流出する。室外機1から流出した高温および高圧のガス冷媒は、主管5を通って中継装置3に流入する。 First, low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as high-temperature and high-pressure gas refrigerant. The high temperature and high pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11 and the first backflow prevention device 14. The high-temperature and high-pressure gas refrigerant flowing out of the outdoor unit 1 flows into the relay device 3 through the main pipe 5.
 中継装置3に流入した高温および高圧のガス冷媒は、気液分離器29、第1開閉装置23a、23bおよび枝管8を経由した後に、凝縮器として作用する負荷側熱交換器26aおよび負荷側熱交換器26bのそれぞれに流入する。負荷側熱交換器26aおよび負荷側熱交換器26bに流入した冷媒は、室内空気に放熱することにより、室内空気を加熱しながら液冷媒になる。負荷側熱交換器26aおよび負荷側熱交換器26bから流出した液冷媒は、負荷側絞り装置25a、25bでそれぞれ膨張させられる。そして、枝管8、第3逆流防止装置22a、22b開状態に制御された第2中継機絞り装置27および主管5を通って再び室外機1へ流入する。この際、負荷側絞り装置25aは、絞り装置入口側圧力センサー33で検出された圧力を飽和温度に換算した値と、入口側温度センサー31aで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。同様に、負荷側絞り装置25bは、絞り装置入口側圧力センサー33で検出された圧力を飽和温度に換算した値と、入口側温度センサー31bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。 The high-temperature and high-pressure gas refrigerant flowing into the relay device 3 passes through the gas-liquid separator 29, the first opening / closing devices 23a and 23b, and the branch pipe 8, and then the load side heat exchanger 26a acting as a condenser and the load side. It flows into each of the heat exchangers 26b. The refrigerant flowing into the load-side heat exchanger 26a and the load-side heat exchanger 26b dissipates heat into the room air, and thereby becomes a liquid refrigerant while heating the room air. The liquid refrigerant that has flowed out from the load side heat exchanger 26a and the load side heat exchanger 26b is expanded by the load side expansion devices 25a and 25b, respectively. Then, it flows into the outdoor unit 1 again through the branch pipe 8, the second relay throttling device 27 controlled to the open state of the third backflow prevention devices 22 a, 22 b, and the main pipe 5. At this time, the load-side expansion device 25a is a subcool obtained as a difference between a value obtained by converting the pressure detected by the expansion device inlet-side pressure sensor 33 into a saturation temperature and the temperature detected by the inlet-side temperature sensor 31a. The opening degree is controlled so that the cooling degree) becomes constant. Similarly, the load-side expansion device 25b is a subcool obtained as a difference between a value obtained by converting the pressure detected by the expansion device inlet-side pressure sensor 33 into saturation temperature and the temperature detected by the inlet-side temperature sensor 31b. The opening degree is controlled so that the cooling degree) becomes constant.
 室外機1に流入した冷媒は、第1逆流防止装置15を通り、熱源側熱交換器12で室外空気から吸熱しながら、低温および低圧のガス冷媒になり、冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。 The refrigerant that has flowed into the outdoor unit 1 passes through the first backflow prevention device 15 and becomes a low temperature and low pressure gas refrigerant while absorbing heat from the outdoor air in the heat source side heat exchanger 12, and the refrigerant flow switching device 11 and the accumulator It is again drawn into the compressor 10 via 19.
 なお、熱負荷がない負荷側熱交換器26cおよび負荷側熱交換器26dにおいては、冷媒を流す必要がなく、それぞれに対応する負荷側絞り装置25cおよび負荷側絞り装置25dは閉状態になっている。そして、負荷側熱交換器26cまたは負荷側熱交換器26dで冷熱負荷が発生した場合には、負荷側絞り装置25cまたは負荷側絞り装置25dが開放されて冷媒が循環する。この際、負荷側絞り装置25cまたは負荷側絞り装置25dは、上述した負荷側絞り装置25aまたは負荷側絞り装置25bと同様に、スーパーヒート(過熱度)が一定になるように開度が制御される。スーパーヒートは、入口側温度センサー31c、31dで検出された温度と、出口側温度センサー32c、32dで検出された温度との差として得られる。 In the load side heat exchanger 26c and the load side heat exchanger 26d having no heat load, it is not necessary to flow the refrigerant, and the corresponding load side expansion devices 25c and 25d are closed. There is. Then, when a cold load is generated in the load side heat exchanger 26c or the load side heat exchanger 26d, the load side expansion device 25c or the load side expansion device 25d is opened to circulate the refrigerant. At this time, the degree of opening of the load-side expansion device 25c or the load-side expansion device 25d is controlled so that the superheat (degree of superheat) becomes constant, similarly to the load- side expansion device 25a or 25b described above. Ru. The superheat is obtained as a difference between the temperature detected by the inlet temperature sensors 31c and 31d and the temperature detected by the outlet temperature sensors 32c and 32d.
 実施の形態3の空気調和装置100において、全暖房運転モードにおけるインジェクション、および液バック防止および均液制御を行う場合の機器の動作および制御装置60の制御については、実施の形態1および実施の形態2で説明したことと同様である。 In the air conditioning apparatus 100 of the third embodiment, the injection in the heating only operation mode, and the operation of the device in the case of performing the liquid back prevention and the liquid equalization control and the control of the control device 60 are the first embodiment and the embodiment. It is the same as that described in 2.
<暖房主体運転モード>
 図12は、実施の形態3に係る空気調和装置100の暖房主体運転モードにおける冷媒の流れを説明する図である。図12では、冷媒の流れ方向を実線矢印で示している。ここで、負荷側熱交換器26aでのみ冷熱負荷が発生し、負荷側熱交換器26bでのみ温熱負荷が発生しているものとする。暖房主体運転モードの場合、制御装置60は、冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒が熱源側熱交換器12を経由せずに中継装置3へ流入するように切り替える。
<Heating main operation mode>
FIG. 12 is a diagram for explaining the flow of the refrigerant in the heating main operation mode of the air conditioning apparatus 100 according to the third embodiment. In FIG. 12, the flow direction of the refrigerant is indicated by a solid arrow. Here, it is assumed that a cold load is generated only in the load side heat exchanger 26a, and a thermal load is generated only in the load side heat exchanger 26b. In the case of the heating main operation mode, the control device 60 controls the refrigerant flow switching device 11 so that the heat source side refrigerant discharged from the compressor 10 flows into the relay device 3 without passing through the heat source side heat exchanger 12. Switch.
 低温および低圧の冷媒が圧縮機10によって圧縮され、高温および高圧のガス冷媒になって吐出される。圧縮機10から吐出された高温および高圧のガス冷媒は、冷媒流路切替装置11、第1逆流防止装置14を通り、室外機1から流出する。室外機1から流出した高温および高圧のガス冷媒は、主管5を通って中継装置3に流入する。 Low temperature and low pressure refrigerant is compressed by the compressor 10 and discharged as high temperature and high pressure gas refrigerant. The high temperature and high pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11 and the first backflow prevention device 14. The high-temperature and high-pressure gas refrigerant flowing out of the outdoor unit 1 flows into the relay device 3 through the main pipe 5.
 中継装置3に流入した高温および高圧のガス冷媒は、気液分離器29、第1開閉装置23bおよび枝管8を経由した後に、凝縮器として作用する負荷側熱交換器26bに流入する。負荷側熱交換器26bに流入した冷媒は、室内空気に放熱することにより、室内空気を加熱しながら液冷媒になる。負荷側熱交換器26bから流出した液冷媒は、負荷側絞り装置25bで膨張させられて、枝管8および第3逆流防止装置22bを経由する。液冷媒は、その後、大部分は第2逆流防止装置21aおよび枝管8を経由した後に、負荷側絞り装置25aで膨張させられ、低温および低圧の気液二相状態の冷媒になる。液冷媒の残りの一部は、バイパスとしても使用する第2中継機絞り装置27で膨張させられ、中温および中圧の液または気液二相状態の冷媒になる。この液または気液二相状態の冷媒は、中継装置3の出口側の低圧配管に流入する。 The high temperature and high pressure gas refrigerant flowing into the relay device 3 flows through the gas-liquid separator 29, the first opening / closing device 23b and the branch pipe 8 and then flows into the load side heat exchanger 26b acting as a condenser. The refrigerant that has flowed into the load-side heat exchanger 26b becomes a liquid refrigerant while heating room air by radiating heat to the room air. The liquid refrigerant flowing out of the load-side heat exchanger 26b is expanded by the load-side throttling device 25b and passes through the branch pipe 8 and the third backflow prevention device 22b. The liquid refrigerant is then expanded by the load-side throttling device 25a after passing mostly through the second backflow prevention device 21a and the branch pipe 8, and becomes a low temperature and low pressure gas-liquid two-phase refrigerant. The remaining part of the liquid refrigerant is expanded by the second relay throttling device 27, which is also used as a bypass, to become a medium-temperature and medium-pressure liquid or a gas-liquid two-phase refrigerant. The refrigerant in the liquid or gas-liquid two-phase state flows into the low pressure pipe on the outlet side of the relay device 3.
 負荷側絞り装置25aで膨張させられた気液二相状態の冷媒は、蒸発器として作用する負荷側熱交換器26aに流入し、室内空気から吸熱することにより、室内空気を冷却しながら、低温および中圧の気液二相状態の冷媒になる。負荷側熱交換器26aから流出した気液二相状態の冷媒は、枝管8および第2開閉装置24aを経由して、中継装置3から流出する。中継装置3から流出した冷媒は、主管5を通って再び室外機1へ流入する。室外機1に流入した冷媒は、第1逆流防止装置15を通って、熱源側熱交換器12で室外空気から吸熱しながら、低温および低圧のガス冷媒になる。このガス冷媒は、冷媒流路切替装置11およびアキュムレーター19を通って圧縮機10へ再度吸入される。 The refrigerant in the gas-liquid two-phase state expanded by the load-side expansion device 25a flows into the load-side heat exchanger 26a acting as an evaporator, absorbs heat from room air, and cools the room air, thereby reducing the temperature. And a medium-pressure gas-liquid two-phase refrigerant. The refrigerant in the gas-liquid two-phase state which has flowed out of the load-side heat exchanger 26a flows out of the relay device 3 via the branch pipe 8 and the second opening / closing device 24a. The refrigerant flowing out of the relay device 3 flows into the outdoor unit 1 again through the main pipe 5. The refrigerant flowing into the outdoor unit 1 passes through the first backflow prevention device 15 and becomes a low temperature and low pressure gas refrigerant while absorbing heat from the outdoor air in the heat source side heat exchanger 12. The gas refrigerant is again drawn into the compressor 10 through the refrigerant flow switching device 11 and the accumulator 19.
 このとき、負荷側絞り装置25bは、絞り装置入口側圧力センサー33で検出された圧力を飽和温度に換算した値と、入口側温度センサー31bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。一方、負荷側絞り装置25aは、入口側温度センサー31aで検出された温度と出口側温度センサー32bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。 At this time, the load-side expansion device 25b is a subcool obtained as a difference between a value obtained by converting the pressure detected by the expansion device inlet-side pressure sensor 33 into a saturation temperature and the temperature detected by the inlet-side temperature sensor 31b. The opening degree is controlled so that the cooling degree) becomes constant. On the other hand, the load-side expansion device 25a has an opening degree such that the superheat (degree of superheat) obtained as a difference between the temperature detected by the inlet temperature sensor 31a and the temperature detected by the outlet temperature sensor 32b becomes constant. Is controlled.
 このとき、第2中継機絞り装置27は、冷媒のサブクール(過冷却度)が一定になるように開度が制御される。たとえば、第2中継機絞り装置27は、絞り装置入口側圧力センサー33で検出された圧力と絞り装置出口側圧力センサー34で検出された圧力との圧力差が所定の圧力差(たとえば、0.3MPa)になるように開度が制御される。 At this time, the opening degree of the second relay expansion device 27 is controlled such that the subcool (degree of subcooling) of the refrigerant becomes constant. For example, in the second relay throttling device 27, the pressure difference between the pressure detected by the throttling device inlet side pressure sensor 33 and the pressure detected by the throttling device outlet side pressure sensor 34 is a predetermined pressure difference (for example, 0. The opening degree is controlled to be 3 MPa).
 なお、熱負荷がない負荷側熱交換器26cおよび負荷側熱交換器26dにおいては、冷媒を流す必要がなく、それぞれに対応する負荷側絞り装置25cと、負荷側絞り装置25dは閉状態になっている。そして、負荷側熱交換器26cまたは負荷側熱交換器26dで熱負荷が発生した場合には、負荷側絞り装置25cまたは負荷側絞り装置25dが開放されて冷媒が循環する。 In the load side heat exchanger 26c and the load side heat exchanger 26d having no heat load, it is not necessary to flow the refrigerant, and the corresponding load side expansion devices 25c and 25d are closed. ing. When a heat load is generated in the load heat exchanger 26c or the load heat exchanger 26d, the load throttling device 25c or the load throttling device 25d is opened to circulate the refrigerant.
 実施の形態3の空気調和装置100において、暖房主体運転モードにおけるインジェクション、および液バック防止および均液制御を行う場合の機器の動作および制御装置60の制御については、実施の形態1および実施の形態2で説明したことと同様である。 In the air conditioner 100 of the third embodiment, the operation in the case of performing the injection in the heating main operation mode and the liquid back prevention and the liquid equalization control and the control of the control device 60 are the first embodiment and the embodiment. It is the same as that described in 2.
 以上のように、複数の室外機1(1a、1b)を並列に接続して、冷暖同時運転を行うことができる実施の形態3の空気調和装置100においても、実施の形態1および実施の形態2と同様に、インジェクションおよび均液制御による過度の液バック防止をはかることができる。 As described above, Embodiment 1 and the embodiment are also applied to the air conditioner 100 of Embodiment 3 that can perform simultaneous heating and cooling by connecting a plurality of outdoor units 1 (1a and 1b) in parallel. Similar to 2, excessive liquid back can be prevented by injection and liquid equalization control.
実施の形態4.
 図13は、この発明の実施の形態4に係る空気調和装置100の構成の一例を示す図である。図13に示す空気調和装置100は、室外機1と中継装置3とが、中継装置3に備えられている負荷側熱交換器26aおよび負荷側熱交換器26bを介して冷媒が内部を流れる主管5で接続されている。また、中継装置3と室内機2とも、負荷側熱交換器26aおよび負荷側熱交換器26bを介して水やブライン等の熱媒体が内部を流れる熱媒体配管70で接続されている。ここで、図13において、図1、図6および図8と同じ符号を付している機器などについては、実施の形態1~実施の形態3において説明したことと同様の動作を行う。
Fourth Embodiment
FIG. 13 is a diagram showing an example of the configuration of an air conditioning apparatus 100 according to Embodiment 4 of the present invention. The air conditioner 100 shown in FIG. 13 is a main pipe in which the refrigerant flows through the load-side heat exchanger 26a and the load-side heat exchanger 26b in which the outdoor unit 1 and the relay unit 3 are provided in the relay unit 3. Connected by 5 Further, the relay device 3 and the indoor unit 2 are also connected by a heat medium pipe 70 in which a heat medium such as water or brine flows through the load heat exchanger 26a and the load heat exchanger 26b. Here, in FIG. 13, the same reference numerals as in FIGS. 1, 6 and 8 carry out the same operations as described in the first to third embodiments.
 実施の形態4の空気調和装置100においても、インジェクション絞り装置42および室外側絞り装置45を冷媒が通過することができるのは、全暖房運転モードおよび暖房主体運転モードのときになる。したがって、全冷房運転モードおよび冷房主体運転モードにおいては、インジェクションなどは行われない。 Also in the air conditioning apparatus 100 of the fourth embodiment, the refrigerant can pass through the injection throttle device 42 and the outdoor throttle device 45 in the all heating operation mode and the heating main operation mode. Therefore, injection and the like are not performed in the cooling only operation mode and the cooling main operation mode.
<中継装置3>
 中継装置3には、2つの負荷側熱交換器26と、2つの負荷側絞り装置25と、2つの開閉装置50と、2つの中継機冷媒流路切替装置51を有している。また、中継装置3は、2つのポンプ71と、4つの第1熱媒体流路切替装置72と、4つの第2熱媒体流路切替装置73と、4つの熱媒体流量調整装置75と、が搭載されている。
<Relaying device 3>
The relay device 3 includes two load side heat exchangers 26, two load side throttle devices 25, two opening / closing devices 50, and two relay unit refrigerant flow switching devices 51. In addition, the relay device 3 includes two pumps 71, four first heat medium flow path switching devices 72, four second heat medium flow path switching devices 73, and four heat medium flow rate adjustment devices 75. It is mounted.
 実施の形態4における2つの負荷側熱交換器26(負荷側熱交換器26a、負荷側熱交換器26b)は、凝縮器(放熱器)または蒸発器として機能する。負荷側熱交換器26は、熱源側冷媒と熱媒体とで熱交換を行い、室外機1で生成され熱源側冷媒に貯えられた冷熱または温熱を熱媒体に伝達するものである。負荷側熱交換器26aは、冷媒回路における負荷側絞り装置25aと中継機冷媒流路切替装置51aとの間に設けられており、冷房暖房混在運転モード時において熱媒体の加熱に供するものである。また、負荷側熱交換器26bは、冷媒回路における負荷側絞り装置25bと中継機冷媒流路切替装置51bとの間に設けられており、冷房暖房混在運転モード時において熱媒体の冷却に供するものである。 The two load side heat exchangers 26 (load side heat exchanger 26a, load side heat exchanger 26b) in the fourth embodiment function as a condenser (radiator) or an evaporator. The load-side heat exchanger 26 performs heat exchange between the heat source side refrigerant and the heat medium, and transfers cold heat or heat generated by the outdoor unit 1 and stored in the heat source side refrigerant to the heat medium. The load-side heat exchanger 26a is provided between the load-side expansion device 25a and the relay refrigerant flow switching device 51a in the refrigerant circuit, and serves to heat the heat medium in the cooling / heating mixed operation mode. . Further, the load-side heat exchanger 26b is provided between the load-side expansion device 25b and the relay refrigerant flow switching device 51b in the refrigerant circuit, and serves to cool the heat medium in the cooling / heating mixed operation mode. It is.
 2つの負荷側絞り装置25(負荷側絞り装置25a、負荷側絞り装置25b)は、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。負荷側絞り装置25aは、冷房運転時の熱源側冷媒の流れにおいて負荷側熱交換器26aの上流側に設けられている。負荷側絞り装置25bは、冷房運転時の熱源側冷媒の流れにおいて負荷側熱交換器26bの上流側に設けられている。2つの負荷側絞り装置25は、開度が可変に制御可能なもの、たとえば、電子式膨張弁等で構成するとよい。 The two load side throttling devices 25 (load side throttling device 25a, load side throttling device 25b) have functions as pressure reducing valves and expansion valves, and decompress and expand the heat source side refrigerant. The load side expansion device 25a is provided on the upstream side of the load side heat exchanger 26a in the flow of the heat source side refrigerant during the cooling operation. The load-side expansion device 25b is provided upstream of the load-side heat exchanger 26b in the flow of the heat source-side refrigerant during the cooling operation. The two load side throttling devices 25 may be configured by devices whose opening degree can be variably controlled, for example, an electronic expansion valve or the like.
 2つの開閉装置50(開閉装置50a、開閉装置50b)は、二方弁等で構成されており、冷媒配管4を開閉するものである。開閉装置50aは、熱源側冷媒の入口側における冷媒配管4に設けられている。開閉装置50bは、熱源側冷媒の入口側と出口側の冷媒配管4を接続した配管に設けられている。2つの中継機冷媒流路切替装置51(中継機冷媒流路切替装置51a、中継機冷媒流路切替装置51b)は、四方弁等で構成され、運転モードに応じて熱源側冷媒の流れを切り替えるものである。中継機冷媒流路切替装置51aは、冷房運転時の熱源側冷媒の流れにおいて負荷側熱交換器26aの下流側に設けられている。中継機冷媒流路切替装置51bは、全冷房運転時の熱源側冷媒の流れにおいて負荷側熱交換器26bの下流側に設けられている。 The two opening and closing devices 50 (opening and closing devices 50a and 50b) are configured by two-way valves and the like, and open and close the refrigerant pipe 4. The opening and closing device 50a is provided in the refrigerant pipe 4 on the inlet side of the heat source side refrigerant. The opening and closing device 50b is provided in a pipe connecting the refrigerant pipe 4 on the inlet side and the outlet side of the heat source side refrigerant. The two relay unit refrigerant flow switching devices 51 (relay unit refrigerant flow switching unit 51a, relay unit refrigerant flow switching unit 51b) are configured by a four-way valve or the like, and switch the flow of the heat source side refrigerant according to the operation mode It is a thing. The relay unit refrigerant flow switching device 51a is provided on the downstream side of the load side heat exchanger 26a in the flow of the heat source side refrigerant during the cooling operation. The relay unit refrigerant flow switching device 51b is provided on the downstream side of the load side heat exchanger 26b in the flow of the heat source side refrigerant during the cooling only operation.
 2つのポンプ71(ポンプ71a、ポンプ71b)は、熱媒体配管70を導通する熱媒体を加圧して、循環させる。ポンプ71aは、負荷側熱交換器26aと第2熱媒体流路切替装置73との間における熱媒体配管70に設けられている。ポンプ71bは、負荷側熱交換器26bと第2熱媒体流路切替装置73との間における熱媒体配管70に設けられている。2つのポンプ71は、たとえば、容量制御可能なポンプ等で構成するとよい。 The two pumps 71 (pumps 71 a and 71 b) pressurize and circulate the heat medium flowing through the heat medium pipe 70. The pump 71 a is provided in the heat medium pipe 70 between the load-side heat exchanger 26 a and the second heat medium channel switching device 73. The pump 71 b is provided in the heat medium pipe 70 between the load-side heat exchanger 26 b and the second heat medium channel switching device 73. The two pumps 71 may be configured by, for example, pumps whose displacement can be controlled.
 4つの第1熱媒体流路切替装置72(第1熱媒体流路切替装置72a~第1熱媒体流路切替装置72d)は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第1熱媒体流路切替装置72は、室内機2の設置台数に応じた個数(ここでは、4つ)が設けられる。第1熱媒体流路切替装置72は、三方のうちの一つが負荷側熱交換器26aに、三方のうちの一つが負荷側熱交換器26bに、三方のうちの一つが熱媒体流量調整装置75に、それぞれ接続され、利用側熱交換器76の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から第1熱媒体流路切替装置72a、第1熱媒体流路切替装置72b、第1熱媒体流路切替装置72c、第1熱媒体流路切替装置72dとして図示している。 The four first heat medium flow path switching devices 72 (the first heat medium flow path switching device 72a to the first heat medium flow path switching device 72d) are configured by a three-way valve or the like, and switch the heat medium flow paths. It is a thing. The first heat medium channel switching device 72 is provided in a number (here, four) according to the number of installed indoor units 2. In the first heat medium flow switching device 72, one of the three sides is the load side heat exchanger 26a, one of the three sides is the load side heat exchanger 26b, and one of the three sides is the heat medium flow control device 75 are respectively connected, and are provided on the outlet side of the heat medium channel of the use side heat exchanger 76. The first heat medium flow switching device 72a, the first heat medium flow switching device 72b, the first heat medium flow switching device 72c, and the first heat medium flow passage are arranged from the lower side of the drawing in correspondence to the indoor unit 2. It is illustrated as the switching device 72d.
 4つの第2熱媒体流路切替装置73(第2熱媒体流路切替装置73a~第2熱媒体流路切替装置73d)は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第2熱媒体流路切替装置73は、室内機2の設置台数に応じた個数(ここでは、4つ)が設けられる。第2熱媒体流路切替装置73は、三方のうちの一つが負荷側熱交換器26aに、三方のうちの一つが負荷側熱交換器26bに、三方のうちの一つが利用側熱交換器76に、それぞれ接続され、利用側熱交換器76の熱媒体流路の入口側に設けられている。なお、室内機2に対応させて、紙面下側から第2熱媒体流路切替装置73a、第2熱媒体流路切替装置73b、第2熱媒体流路切替装置73c、第2熱媒体流路切替装置73dとして図示している。 The four second heat medium flow path switching devices 73 (the second heat medium flow path switching devices 73a to 73d) are constituted by a three-way valve or the like, and switch the heat medium flow paths. It is a thing. The second heat medium flow path switching device 73 is provided in a number (four in this case) according to the number of installed indoor units 2. In the second heat medium channel switching device 73, one of the three sides is the load side heat exchanger 26a, one of the three sides is the load side heat exchanger 26b, and one of the three sides is the use side heat exchanger 76 are respectively connected and provided on the inlet side of the heat medium channel of the use side heat exchanger 76. The second heat medium flow switching device 73a, the second heat medium flow switching device 73b, the second heat medium flow switching device 73c, and the second heat medium flow passage from the lower side of the drawing in correspondence with the indoor unit 2. It is illustrated as the switching device 73d.
 4つの熱媒体流量調整装置75(熱媒体流量調整装置75a~熱媒体流量調整装置75d)は、開口面積を制御できる二方弁等で構成されており、熱媒体配管70に流れる流量を制御するものである。熱媒体流量調整装置75は、室内機2の設置台数に応じた個数(ここでは、4つ)が設けられる。熱媒体流量調整装置75は、一方が利用側熱交換器76に、他方が第1熱媒体流路切替装置72に、それぞれ接続され、利用側熱交換器76の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から熱媒体流量調整装置75a、熱媒体流量調整装置75b、熱媒体流量調整装置75c、熱媒体流量調整装置75dとして図示している。また、熱媒体流量調整装置75を利用側熱交換器76の熱媒体流路の入口側に設けてもよい。 The four heat medium flow rate adjusting devices 75 (heat medium flow rate adjusting devices 75a to 75d) are constituted by a two-way valve or the like which can control the opening area, and control the flow rate flowing to the heat medium piping 70. It is a thing. The number of the heat medium flow control devices 75 is four (here, four) according to the number of installed indoor units 2. One of the heat medium flow control devices 75 is connected to the use side heat exchanger 76, and the other is connected to the first heat medium flow path switching device 72, and the heat medium flow path outlet side of the use side heat exchanger 76 is provided. It is provided. The heat medium flow control device 75a, the heat medium flow control device 75b, the heat medium flow control device 75c, and the heat medium flow control device 75d are illustrated from the lower side of the drawing in correspondence with the indoor unit 2. Further, the heat medium flow control device 75 may be provided on the inlet side of the heat medium channel of the use side heat exchanger 76.
 また、中継装置3には、各種センサーが設置されている。センサーの検出に係る信号は、たとえば、制御装置60に送られる。 In addition, various sensors are installed in the relay device 3. A signal related to detection of the sensor is sent to, for example, the control device 60.
 2つの第1熱媒体温度センサー37(第1熱媒体温度センサー37a、第1熱媒体温度センサー37b)は、負荷側熱交換器26から流出した熱媒体、つまり負荷側熱交換器26の出口における熱媒体の温度を検出する。第1熱媒体温度センサー37は、各ポンプ71の入口側における熱媒体配管70に設置されている。 The two first heat medium temperature sensors 37 (first heat medium temperature sensor 37 a, first heat medium temperature sensor 37 b) are the heat medium flowing out of the load side heat exchanger 26, that is, at the outlet of the load side heat exchanger 26. The temperature of the heat medium is detected. The first heat medium temperature sensor 37 is installed in the heat medium pipe 70 at the inlet side of each pump 71.
 4つの第2熱媒体温度センサー38(第2熱媒体温度センサー38a~第2熱媒体温度センサー38d)は、第1熱媒体流路切替装置72と熱媒体流量調整装置75との間に設けられ、利用側熱交換器76から流出した熱媒体の温度を検出する。第2熱媒体温度センサー38は、室内機2の設置台数に応じた個数(ここでは、4つ)が設けられる。 Four second heat medium temperature sensors 38 (second heat medium temperature sensors 38 a to second heat medium temperature sensors 38 d) are provided between the first heat medium flow path switching device 72 and the heat medium flow rate adjustment device 75. The temperature of the heat medium flowing out of the use side heat exchanger 76 is detected. The number (in this case, four) of the second heat medium temperature sensors 38 is provided according to the number of installed indoor units 2.
 4つの熱交換器温度センサー35(熱交換器温度センサー35a~熱交換器温度センサー35d)は、負荷側熱交換器26の熱源側冷媒の入口側または出口側に設けられる。実施の形態1および実施の形態2における入口側温度センサー31または出口側温度センサー32となる。 Four heat exchanger temperature sensors 35 (heat exchanger temperature sensor 35 a to heat exchanger temperature sensor 35 d) are provided on the inlet side or the outlet side of the heat source side refrigerant of the load side heat exchanger 26. It becomes the inlet side temperature sensor 31 or the outlet side temperature sensor 32 in the first embodiment and the second embodiment.
 圧力センサー36(圧力センサー36aおよび圧力センサー36b)は、負荷側熱交換器26bと負荷側絞り装置25bとの間を流れる熱源側冷媒の圧力を検出する。 The pressure sensor 36 (pressure sensor 36a and pressure sensor 36b) detects the pressure of the heat source side refrigerant flowing between the load side heat exchanger 26b and the load side expansion device 25b.
 空気調和装置100における運転モードは、実施の形態3で説明した空気調和装置100と同じように、駆動している室内機2の全てが冷房運転を実行する全冷房運転モードおよび駆動している室内機2の全てが暖房運転を実行する全暖房運転モードがある。また、冷房負荷の方が大きい場合に実行する冷房主体運転モードおよび暖房負荷の方が大きい場合に実行する暖房主体運転モードがある。 The operation mode of the air conditioner 100 is the same as that of the air conditioner 100 described in the third embodiment, that is, the all-cooling operation mode in which all the indoor units 2 being driven execute the cooling operation, and the indoors being driven. There is an all heating operation mode in which all of the units 2 perform the heating operation. Further, there are a cooling main operation mode to be executed when the cooling load is larger and a heating main operation mode to be executed when the heating load is larger.
<全冷房運転モード>
 全冷房運転モードの場合、圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して、熱源側熱交換器12へ流入し、周囲の空気に放熱して凝縮液化し、高圧液冷媒となり、第1逆流防止装置13を通って室外機1から流出する。そして、主管5を通って中継装置3に流入する。中継装置3に流入した冷媒は、開閉装置50aを通り、負荷側絞り装置25aおよび負荷側絞り装置25bで膨張して低温低圧の二相冷媒となる。二相冷媒は、蒸発器として作用する負荷側熱交換器26aおよび負荷側熱交換器26bのそれぞれに流入し、熱媒体循環回路を循環する熱媒体から吸熱し、低温低圧のガス冷媒となる。ガス冷媒は、中継機冷媒流路切替装置51aおよび中継機冷媒流路切替装置51bを介して中継装置3から流出する。そして、主管5を通って再び室外機1へ流入する。室外機1へ流入した冷媒は、第1逆流防止装置16を通って、冷媒流路切替装置11およびアキュムレーター19を介して、圧縮機10へ再度吸入される。
<Full cooling operation mode>
In the case of the cooling only operation mode, the high temperature / high pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11, dissipates heat to the surrounding air, and condenses and condenses As a high pressure liquid refrigerant, it flows out of the outdoor unit 1 through the first backflow prevention device 13. Then, it flows into the relay device 3 through the main pipe 5. The refrigerant flowing into the relay device 3 passes through the opening / closing device 50a, and is expanded by the load side expansion device 25a and the load side expansion device 25b to become a low temperature and low pressure two-phase refrigerant. The two-phase refrigerant flows into each of the load side heat exchanger 26a and the load side heat exchanger 26b acting as an evaporator, absorbs heat from the heat medium circulating in the heat medium circulation circuit, and becomes a low temperature low pressure gas refrigerant. The gas refrigerant flows out of the relay device 3 via the relay refrigerant flow switching device 51a and the relay refrigerant flow switching device 51b. Then, it flows into the outdoor unit 1 again through the main pipe 5. The refrigerant flowing into the outdoor unit 1 passes through the first backflow prevention device 16 and is again drawn into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19.
 熱媒体循環回路においては、熱媒体は、負荷側熱交換器26aおよび負荷側熱交換器26bの双方で冷媒により冷却される。冷却された熱媒体は、ポンプ71aおよびポンプ71bによって熱媒体配管70内を流動する。第2熱媒体流路切替装置73a~73dを介して、利用側熱交換器76a~76dに流入した熱媒体は、室内空気から吸熱する。室内空気は冷却されて空調対象空間の冷房を行う。利用側熱交換器76a~76dから流出した冷媒は、熱媒体流量調整装置75a~75dに流入する。そして、冷媒は、第1熱媒体流路切替装置72a~72dを通って、負荷側熱交換器26aおよび負荷側熱交換器26bへ流入して冷却され、再びポンプ71aおよびポンプ71bへ吸い込まれる。なお、熱負荷のない利用側熱交換器76a~76dに対応する熱媒体流量調整装置75a~75dは全閉とする。また、熱負荷のある利用側熱交換器76a~76dに対応する熱媒体流量調整装置75a~75dは開度を調整し、利用側熱交換器76a~76dでの熱負荷を調節する。 In the heat medium circulation circuit, the heat medium is cooled by the refrigerant in both the load side heat exchanger 26a and the load side heat exchanger 26b. The cooled heat medium flows in the heat medium pipe 70 by the pump 71a and the pump 71b. The heat medium that has flowed into the use side heat exchangers 76a to 76d via the second heat medium flow path switching devices 73a to 73d absorbs heat from indoor air. The indoor air is cooled to cool the air-conditioned space. The refrigerant that has flowed out of the use side heat exchangers 76a to 76d flows into the heat medium flow rate adjustment devices 75a to 75d. Then, the refrigerant flows into the load side heat exchanger 26a and the load side heat exchanger 26b through the first heat medium flow path switching devices 72a to 72d, is cooled, and is sucked into the pump 71a and the pump 71b again. The heat medium flow control devices 75a to 75d corresponding to the use side heat exchangers 76a to 76d having no heat load are fully closed. Further, the heat medium flow control devices 75a to 75d corresponding to the use side heat exchangers 76a to 76d having the heat load adjust the opening degree, and adjust the heat load on the use side heat exchangers 76a to 76d.
<冷房主体運転モード>
 冷房主体運転モードの場合、圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入し、周囲の空気に放熱して凝縮し、二相冷媒となり、第1逆流防止装置13を通って、室外機1から流出する。そして、主管5を通って中継装置3に流入する。中継装置3に流入した冷媒は、中継機冷媒流路切替装置51bを通って凝縮器として作用する負荷側熱交換器26bに流入し、熱媒体循環回路を循環する熱媒体に放熱して高圧の液冷媒となる。高圧の液冷媒は、負荷側絞り装置25bで膨張して低温低圧の二相冷媒となる。二相冷媒は、負荷側絞り装置25aを介して蒸発器として作用する負荷側熱交換器26aに流入し、熱媒体循環回路を循環する熱媒体から吸熱して低圧のガス冷媒となり、中継機冷媒流路切替装置51aを介して中継装置3から流出する。そして、主管5を通って再び室外機1へ流入する。室外機1へ流入した冷媒は、第1逆流防止装置16を通って、冷媒流路切替装置11およびアキュムレーター19を介して、圧縮機10へ再度吸入される。
<Cooling-based operation mode>
In the cooling main operation mode, the high temperature / high pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 through the refrigerant flow switching device 11, dissipates heat to surrounding air, and condenses, It becomes a two-phase refrigerant and flows out of the outdoor unit 1 through the first backflow prevention device 13. Then, it flows into the relay device 3 through the main pipe 5. The refrigerant that has flowed into the relay device 3 flows into the load-side heat exchanger 26b that functions as a condenser through the relay-machine refrigerant flow switching device 51b, and dissipates heat to the heat medium circulating in the heat medium circulation circuit. It becomes a liquid refrigerant. The high-pressure liquid refrigerant is expanded by the load-side throttling device 25 b to become a low-temperature low-pressure two-phase refrigerant. The two-phase refrigerant flows into the load-side heat exchanger 26a acting as an evaporator via the load-side throttling device 25a, absorbs heat from the heat medium circulating in the heat medium circulation circuit, and becomes a low pressure gas refrigerant. It flows out of the relay device 3 via the flow path switching device 51a. Then, it flows into the outdoor unit 1 again through the main pipe 5. The refrigerant flowing into the outdoor unit 1 passes through the first backflow prevention device 16 and is again drawn into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19.
 熱媒体循環回路においては、負荷側熱交換器26bで冷媒の温熱が熱媒体に伝えられる。そして、暖められた熱媒体はポンプ71bによって熱媒体配管70内を流動する。第1熱媒体流路切替装置72a~72dおよび第2熱媒体流路切替装置73a~73dを操作して暖房要求のある利用側熱交換器76a~76dに流入した熱媒体は、室内空気に放熱する。室内空気は加熱されて空調対象空間の暖房を行う。一方、負荷側熱交換器26aで冷媒の冷熱が熱媒体に伝えられる。そして、冷やされた熱媒体はポンプ71aによって熱媒体配管70内を流動する。第1熱媒体流路切替装置72a~72dおよび第2熱媒体流路切替装置73a~73dを操作して冷房要求のある利用側熱交換器76a~76dに流入した熱媒体は、室内空気から吸熱する。室内空気は冷却されて空調対象空間の冷房を行う。なお、熱負荷のない利用側熱交換器76a~76dに対応する熱媒体流量調整装置75a~75dは全閉とする。また、熱負荷のある利用側熱交換器76a~76dに対応する熱媒体流量調整装置75a~75dは開度を調整し、利用側熱交換器76a~76dでの熱負荷を調節する。 In the heat medium circulation circuit, the heat of the refrigerant is transferred to the heat medium by the load-side heat exchanger 26b. Then, the heated heat medium flows in the heat medium pipe 70 by the pump 71 b. The heat medium flowing into the use side heat exchangers 76a to 76d having a heating request by operating the first heat medium channel switching devices 72a to 72d and the second heat medium channel switching devices 73a to 73d dissipates heat into the indoor air Do. The indoor air is heated to heat the air-conditioned space. On the other hand, the cold heat of the refrigerant is transferred to the heat medium by the load side heat exchanger 26a. Then, the cooled heat medium flows in the heat medium pipe 70 by the pump 71 a. The heat medium flowing into the use side heat exchangers 76a to 76d having a cooling request by operating the first heat medium channel switching devices 72a to 72d and the second heat medium channel switching devices 73a to 73d absorbs heat from indoor air Do. The indoor air is cooled to cool the air-conditioned space. The heat medium flow control devices 75a to 75d corresponding to the use side heat exchangers 76a to 76d having no heat load are fully closed. Further, the heat medium flow control devices 75a to 75d corresponding to the use side heat exchangers 76a to 76d having the heat load adjust the opening degree, and adjust the heat load on the use side heat exchangers 76a to 76d.
 実施の形態4の空気調和装置100の冷房主体運転モードにおいて、たとえば、一方の室外機1における熱源側熱交換器12が蒸発器となる可能性がある。このような室外機1において、インジェクション、および液バック防止および均液制御を行う場合の機器の動作などついては、実施の形態1および実施の形態2で説明したことと同様である。 In the cooling main operation mode of the air conditioning apparatus 100 of the fourth embodiment, for example, the heat source side heat exchanger 12 in one of the outdoor units 1 may become an evaporator. In the outdoor unit 1 described above, the operation of the device in the case of performing the injection and the liquid back prevention and the liquid leveling control is the same as that described in the first embodiment and the second embodiment.
<全暖房運転モード>
 全暖房運転モードの場合、圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して第1接続配管6、第1逆流防止装置14を通り、室外機1から流出する。そして、主管5を通って中継装置3に流入する。中継装置3に流入した冷媒は、中継機冷媒流路切替装置51aおよび中継機冷媒流路切替装置51bを通って、負荷側熱交換器26aおよび負荷側熱交換器26bのそれぞれに流入し、熱媒体循環回路を循環する熱媒体に放熱し、高圧の液冷媒となる。高圧の液冷媒は、負荷側絞り装置25aおよび負荷側絞り装置25bで膨張して低温低圧の二相冷媒となり、開閉装置50bを通って、中継装置3から流出する。そして、主管5を通って再び室外機1へ流入する。室外機1へ流入した冷媒は、第2接続配管7および第1逆流防止装置15を通り、蒸発器として作用する熱源側熱交換器12に流入し、周囲の空気から吸熱して、低温低圧のガス冷媒となる。ガス冷媒は、冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。なお、熱媒体循環回路における熱媒体の動作は、全冷房運転モードの場合と同じである。全暖房運転モードでは、負荷側熱交換器26aおよび負荷側熱交換器26bにおいて、熱媒体が冷媒によって加熱され、利用側熱交換器76aおよび利用側熱交換器76bで室内空気に放熱して、空調対象空間の暖房を行う。
<All heating operation mode>
In the case of the heating only operation mode, the high temperature / high pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first connection pipe 6 and the first backflow prevention device 14 through the refrigerant flow switching device 11 Do. Then, it flows into the relay device 3 through the main pipe 5. The refrigerant that has flowed into the relay device 3 flows into the load-side heat exchanger 26a and the load-side heat exchanger 26b through the relay refrigerant flow switching device 51a and the relay refrigerant flow switching device 51b, and is thermally The heat is released to the heat medium circulating in the medium circulation circuit, and becomes a high pressure liquid refrigerant. The high-pressure liquid refrigerant is expanded by the load-side throttling device 25a and the load-side throttling device 25b to become a low-temperature, low-pressure two-phase refrigerant, and flows out of the relay device 3 through the opening / closing device 50b. Then, it flows into the outdoor unit 1 again through the main pipe 5. The refrigerant having flowed into the outdoor unit 1 passes through the second connection pipe 7 and the first backflow prevention device 15, flows into the heat source side heat exchanger 12 acting as an evaporator, absorbs heat from the surrounding air, It becomes a gas refrigerant. The gas refrigerant is again drawn into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19. The operation of the heat medium in the heat medium circulation circuit is the same as that in the cooling only operation mode. In the all heating operation mode, the heat medium is heated by the refrigerant in the load side heat exchanger 26a and the load side heat exchanger 26b, and dissipated to room air by the use side heat exchanger 76a and the use side heat exchanger 76b, Heating the air conditioning target space.
 実施の形態4の空気調和装置100において、全暖房運転モードにおけるインジェクション、および液バック防止および均液制御を行う場合の機器の動作および制御装置60の制御については、実施の形態1および実施の形態2で説明したことと同様である。 In the air conditioning apparatus 100 of the fourth embodiment, the injection in the heating only operation mode, and the operation of the device in the case of performing the liquid back prevention and the liquid equalization control and the control of the control device 60 are the first embodiment and the embodiment. It is the same as that described in 2.
<暖房主体運転モード>
 暖房主体運転モードの場合、圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して、第1接続配管6および第1逆流防止装置14を通って、室外機1から流出する。そして、主管5を通って中継装置3に流入する。中継装置3に流入した冷媒は、中継機冷媒流路切替装置51bを通って凝縮器として作用する負荷側熱交換器26bに流入し、熱媒体循環回路を循環する熱媒体に放熱して高圧の液冷媒となる。高圧の液冷媒は、負荷側絞り装置25bで膨張して低温低圧の二相冷媒となる。二相冷媒は、負荷側絞り装置25aを介して蒸発器として作用する負荷側熱交換器26aに流入し、熱媒体循環回路を循環する熱媒体から吸熱し、中継機冷媒流路切替装置51aを介して中継装置3から流出する。そして、主管5を通って再び室外機1へ流入する。室外機1へ流入した冷媒は、第2接続配管7および第1逆流防止装置15を通って、蒸発器として作用する熱源側熱交換器12に流入し、周囲の空気から吸熱して、低温低圧のガス冷媒となる。ガス冷媒は、冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。なお、熱媒体循環回路における熱媒体の動作、第1熱媒体流路切替装置72a~72d、第2熱媒体流路切替装置73a~73d、熱媒体流量調整装置75a~75d、および、利用側熱交換器76a~76d、の動作は冷房主体運転モードと同一である。
<Heating main operation mode>
In the heating main operation mode, the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the first connection pipe 6 and the first backflow prevention device 14 via the refrigerant flow switching device 11, and the outdoor unit 1 Flow out of Then, it flows into the relay device 3 through the main pipe 5. The refrigerant that has flowed into the relay device 3 flows into the load-side heat exchanger 26b that functions as a condenser through the relay-machine refrigerant flow switching device 51b, and dissipates heat to the heat medium circulating in the heat medium circulation circuit. It becomes a liquid refrigerant. The high-pressure liquid refrigerant is expanded by the load-side throttling device 25 b to become a low-temperature low-pressure two-phase refrigerant. The two-phase refrigerant flows into the load side heat exchanger 26a acting as an evaporator via the load side expansion device 25a, absorbs heat from the heat medium circulating in the heat medium circulation circuit, and the relay machine refrigerant flow switching device 51a It flows out from the relay device 3 via Then, it flows into the outdoor unit 1 again through the main pipe 5. The refrigerant flowing into the outdoor unit 1 flows through the second connection pipe 7 and the first backflow prevention device 15 into the heat source side heat exchanger 12 acting as an evaporator, and absorbs heat from the surrounding air, so that the low temperature low pressure It becomes a gas refrigerant of The gas refrigerant is again drawn into the compressor 10 via the refrigerant flow switching device 11 and the accumulator 19. The operation of the heat medium in the heat medium circulation circuit, the first heat medium flow path switching devices 72a to 72d, the second heat medium flow path switching devices 73a to 73d, the heat medium flow control devices 75a to 75d, and the use side heat The operations of the exchangers 76a to 76d are the same as in the cooling main operation mode.
 実施の形態4の空気調和装置100において、暖房主体運転モードにおけるインジェクション、および液バック防止および均液制御を行う場合の機器の動作および制御装置60の制御については、実施の形態1および実施の形態2で説明したことと同様である。 In the air-conditioning apparatus 100 of Embodiment 4, the operation in the case of performing injection in the heating main operation mode, and liquid back prevention and liquid equalization control, and control of the control device 60 are described in Embodiment 1 and Embodiment. It is the same as that described in 2.
<主管5および熱媒体配管70>
 実施の形態4における各運転モードにおいては、室外機1と中継装置3とを接続する主管5には冷媒が流れ、中継装置3と室内機2を接続する熱媒体配管70には水や不凍液等の熱媒体が流れている。
<Main pipe 5 and heat medium piping 70>
In each operation mode in the fourth embodiment, the refrigerant flows through the main pipe 5 connecting the outdoor unit 1 and the relay device 3, and the heat medium pipe 70 connecting the relay device 3 and the indoor unit 2 is water, antifreeze, etc. The heat transfer medium is flowing.
 利用側熱交換器76にて暖房負荷と冷房負荷とが混在して発生している場合は、暖房運転を行っている利用側熱交換器76に対応する第1熱媒体流路切替装置72および第2熱媒体流路切替装置73を加熱用の負荷側熱交換器26bに接続される流路へ切り替える。また、冷房運転を行っている利用側熱交換器76に対応する第1熱媒体流路切替装置72および第2熱媒体流路切替装置73を冷却用の負荷側熱交換器26aに接続される流路へ切り替える。このため、各室内機2にて、暖房運転、冷房運転を自由に行うことができる。 When the heating load and the cooling load are mixedly generated in the use side heat exchanger 76, the first heat medium flow path switching device 72 corresponding to the use side heat exchanger 76 performing the heating operation and The second heat medium channel switching device 73 is switched to the channel connected to the load side heat exchanger 26b for heating. Further, the first heat medium channel switching device 72 and the second heat medium channel switching device 73 corresponding to the use side heat exchanger 76 performing the cooling operation are connected to the load side heat exchanger 26a for cooling. Switch to the flow path. Therefore, the heating operation and the cooling operation can be freely performed in each indoor unit 2.
 以上のように、熱媒体循環回路と冷媒回路とを有し、冷媒回路を構成する機器を有する複数の室外機1を並列に接続し、冷暖同時運転を行うことができる実施の形態4の空気調和装置100においても、実施の形態1および実施の形態2と同様に、インジェクションおよび均液制御による過度の液バック防止をはかることができる。 As described above, the air according to the fourth embodiment can perform simultaneous heating and cooling operation by connecting in parallel a plurality of outdoor units 1 having the heat medium circulation circuit and the refrigerant circuit and having the devices that constitute the refrigerant circuit. Also in the conditioning apparatus 100, as in the first and second embodiments, excessive liquid back can be prevented by injection and liquid equalization control.
実施の形態5.
 この発明に係る空気調和装置100は、実施の形態1~実施の形態4に限らず、種々の変形が可能である。たとえば、上述した実施の形態では、冷房運転モードおよび暖房運転モードにおいて、吐出温度しきい値が110℃である場合について例示しているが、吐出温度しきい値は、圧縮機10の吐出温度の限界値に応じて設定されるものであればよい。たとえば、圧縮機10の吐出温度の限界値が120℃の場合、制御装置60により、吐出温度が120℃を超えないように圧縮機10の動作が制御されている。具体的には、吐出温度が110℃を超えた場合、制御装置60は、圧縮機10の周波数を低くして減速させるように制御する。
Embodiment 5
The air conditioner 100 according to the present invention is not limited to the first to fourth embodiments, and various modifications are possible. For example, in the embodiment described above, although the case where the discharge temperature threshold is 110 ° C. in the cooling operation mode and the heating operation mode is illustrated, the discharge temperature threshold is the discharge temperature of the compressor 10. It may be set according to the limit value. For example, when the limit value of the discharge temperature of the compressor 10 is 120 ° C., the controller 60 controls the operation of the compressor 10 so that the discharge temperature does not exceed 120 ° C. Specifically, when the discharge temperature exceeds 110 ° C., the control device 60 performs control to lower the frequency of the compressor 10 to decelerate.
 したがって、上述したインジェクションを行って圧縮機10の吐出温度を下げる場合、圧縮機10の周波数を低くする温度(吐出温度しきい値)である110℃よりも少し低い温度である90℃から105℃の間の温度(たとえば、100℃など)に、目標となる吐出温度(液面調整しきい値)をあらかじめ設定することがよい。たとえば、吐出温度が110℃を超えたときに圧縮機10の駆動周波数を低くしない場合には、吐出温度しきい値が90℃以上120℃以下(たとえば、110℃など)に設定されるようにすればよい。 Therefore, when the above-described injection is performed to lower the discharge temperature of the compressor 10, the temperature slightly lower than 110 ° C., which is the temperature (discharge temperature threshold) for lowering the frequency of the compressor 10, is 90 ° C. to 105 ° C. The target discharge temperature (liquid level adjustment threshold) may be set in advance to a temperature (e.g., 100 ° C., etc.) between the above. For example, if the drive frequency of the compressor 10 is not lowered when the discharge temperature exceeds 110 ° C., the discharge temperature threshold is set to 90 ° C. or more and 120 ° C. or less (for example, 110 ° C.) do it.
 また、実施の形態1~実施の形態4においては、R410A冷媒、R32冷媒などの冷媒を用いることを例に挙げたが、それ以外の冷媒を用いることもできる。たとえば、R32冷媒と、地球温暖化係数が小さく化学式CFCF=CHで表されるテトラフルオロプロペン系冷媒(HFO1234yf、HFO1234zeなど)と、の混合冷媒(非共沸混合冷媒)を使用してもよい。特に、冷媒としてR32を使用した場合には、R410Aを使用した場合と比較して、同一運転状態において吐出温度が約20℃上昇する。このため、R32冷媒を使用する場合には吐出温度を低下させる必要がある。したがって、実施の形態1などにおいて説明したインジェクションを行うことの効果が大きい。このように、吐出温度が高くなる冷媒を使用する場合に効果が特に大きくなる。 In Embodiments 1 to 4, the use of a refrigerant such as the R410A refrigerant or the R32 refrigerant has been described as an example, but other refrigerants may be used. For example, using a mixed refrigerant (non-azeotropic mixed refrigerant) of an R32 refrigerant and a tetrafluoropropene-based refrigerant (HFO1234yf, HFO1234ze, etc.) represented by the chemical formula CF 3 CF = CH 2 with a small global warming potential It is also good. In particular, when R32 is used as the refrigerant, the discharge temperature rises by about 20 ° C. in the same operating state as compared with the case where R410A is used. Therefore, it is necessary to lower the discharge temperature when using the R32 refrigerant. Therefore, the effect of performing the injection described in the first embodiment and the like is large. Thus, the effect is particularly enhanced when using a refrigerant whose discharge temperature is high.
 また、R32冷媒とHFO1234yfとの混合冷媒においては、R32の質量比率が62%(62wt%)以上である場合に、R410A冷媒を使用した場合よりも吐出温度が3℃以上高くなる。このため、上述したインジェクションにより吐出温度を低下させることによる効果が大きい。また、R32とHFO1234zeとの混合冷媒においては、R32の質量比率が43%(43wt%)以上である場合に、R410A冷媒を使用した場合よりも吐出温度が3℃以上高くなる。このため、上述したインジェクションにより吐出温度を低下させることによる効果が大きい。また、混合冷媒における冷媒種はこれに限るものではない。その他の冷媒成分を少量含んだ混合冷媒を使用した場合であっても、吐出温度には大きな影響がないため、上記と同様の効果を奏する。また、たとえば、R32とHFO1234yfとその他の冷媒を少量含んだ混合冷媒などを使用した場合であっても、上記と同様の効果を奏する。 In the mixed refrigerant of R32 refrigerant and HFO 1234yf, when the mass ratio of R32 is 62% (62 wt%) or more, the discharge temperature is higher by 3 ° C. or more than when R410A refrigerant is used. For this reason, the effect obtained by lowering the discharge temperature by the above-described injection is large. Further, in the mixed refrigerant of R32 and HFO1234ze, when the mass ratio of R32 is 43% (43 wt%) or more, the discharge temperature is 3 ° C. or more higher than when the R410A refrigerant is used. For this reason, the effect obtained by lowering the discharge temperature by the above-described injection is large. Further, the type of refrigerant in the mixed refrigerant is not limited to this. Even when a mixed refrigerant containing a small amount of other refrigerant components is used, the discharge temperature is not greatly affected, and the same effect as described above is obtained. Further, for example, even in the case of using a mixed refrigerant containing a small amount of R32, HFO 1234yf and other refrigerants, the same effect as described above is obtained.
 さらに、上述した実施の形態の冷媒として、CO(R744)などの高圧側が超臨界状態で動作する冷媒を使用することもできる。この場合にも吐出温度を低下させる必要があるため、空気調和装置100を、上述した実施の形態の冷媒回路構成とすることにより、吐出温度を低下させることができる。 Furthermore, as the refrigerant of the embodiment described above, a refrigerant such as CO 2 (R744) which operates in a supercritical state on the high pressure side can also be used. Also in this case, since the discharge temperature needs to be reduced, the discharge temperature can be reduced by setting the air conditioner 100 to the refrigerant circuit configuration of the above-described embodiment.
 たとえば、実施の形態3および実施の形態4の冷暖同時運転可能な空気調和装置では、室外機1と中継装置3との間を2本の主管5を使用して接続した構成を例示しているが、これに限らず、種々の公知の手法を用いることができる。たとえば、室外機1と中継装置3との間が3本の主管5を使用して接続され、冷暖同時運転を行うことができる空気調和装置に適用することができる。このような空気調和装置においても、上述した実施の形態と同様に、圧縮機10から吐出する高圧および高温のガス冷媒の温度の過度の上昇を抑制できる。 For example, in the air conditioners capable of simultaneous operation in heating and heating in the third embodiment and the fourth embodiment, the configuration in which the outdoor unit 1 and the relay device 3 are connected using the two main pipes 5 is illustrated. However, not only this but various well-known methods can be used. For example, the present invention can be applied to an air conditioner in which the outdoor unit 1 and the relay device 3 are connected using three main pipes 5 and can perform simultaneous heating and cooling operation. Also in such an air conditioning apparatus, it is possible to suppress an excessive rise in the temperature of the high-pressure and high-temperature gas refrigerant discharged from the compressor 10 as in the above-described embodiment.
 また、実施の形態1などにおいて、圧縮機10が低圧シェル型であるものとして説明したが、たとえば、高圧シェル型の圧縮機を使用することもできる。圧縮機吸入室にインジェクションを行うには、低圧シェル型の圧縮機が有効であるが、高圧シェル型の圧縮機を使用した場合であっても、上記と同様の効果が得られる。 In the first embodiment and the like, although the compressor 10 has been described as a low pressure shell type compressor, for example, a high pressure shell type compressor can also be used. Although low pressure shell type compressors are effective for injection into the compressor suction chamber, the same effects as described above can be obtained even when high pressure shell type compressors are used.
 また、上述した実施の形態1などにおいて、室外機1は、熱源側ファン18を有しており、室内機2は、負荷側ファン28を有しているものであった。しかしながら、これに限るものではない。たとえば、負荷側熱交換器26として、放射を利用したパネルヒータのようなものも用いることで、負荷側ファン28を搭載しない構成にすることができる。 Further, in the above-described Embodiment 1 and the like, the outdoor unit 1 has the heat source side fan 18, and the indoor unit 2 has the load side fan 28. However, it is not limited to this. For example, the load side fan 28 can be configured not to be mounted by using a load such as a panel heater using radiation as the load side heat exchanger 26.
 図14は、この発明の実施の形態5に係る空気調和装置100の構成の一例を示す図である。熱源側熱交換器12として、水配管80を通過した水、不凍液などの液体と冷媒との熱交換を行う水冷媒熱交換器を用いることができる。熱源側熱交換器12および負荷側熱交換器26は、冷媒の放熱または吸熱を行うことができれば、熱交換対象は限定しない。 FIG. 14 is a diagram showing an example of the configuration of the air conditioning apparatus 100 according to Embodiment 5 of the present invention. As the heat source side heat exchanger 12, it is possible to use a water refrigerant heat exchanger that performs heat exchange between the refrigerant that has passed through the water pipe 80 and a liquid such as antifreeze liquid. The heat source side heat exchanger 12 and the load side heat exchanger 26 do not limit the heat exchange object as long as they can release or absorb heat of the refrigerant.
 また、上述した実施の形態において、冷房専用または暖房専用の空気調和装置の場合には、冷媒流路切替装置11を省略することもできる。 Further, in the embodiment described above, in the case of the air conditioner dedicated to cooling or heating only, the refrigerant flow switching device 11 can be omitted.
 1,1a,1b 室外機、2,2a,2b,2c,2d 室内機、3 中継装置、4,4a,4b 冷媒配管、5 主管、6 第1接続配管、7 第2接続配管、8 枝管、10,10a,10b 圧縮機、11,11a,11b 冷媒流路切替装置、12,12a,12b 熱源側熱交換器、13,14,15,16 第1逆流防止装置、17,17a,17b インジェクションポート、18,18a,18b 熱源側ファン、19,19a,19b アキュムレーター、20,20a,20b 返油機構、21a,21b,21c,21d 第2逆流防止装置、22a,22b,22c,22d 第3逆流防止装置、23a,23b,23c,23d 第1開閉装置、24a,24b,24c,24d 第2開閉装置、25,25a,25b,25c,25d 負荷側絞り装置、26,26a,26b,26c,26d 負荷側熱交換器、27 第2中継機絞り装置、28 負荷側ファン、29 気液分離器、30 第1中継機絞り装置、31,31a,31b,31c,31d 入口側温度センサー、32,32a,32b,32c,32d 出口側温度センサー、33 絞り装置入口側圧力センサー、34 絞り装置出口側圧力センサー、35,35a,35b,35c,35d 熱交換器温度センサー、36,36a,36b 圧力センサー、37,37a,37b 第1熱媒体温度センサー、38,38a,38b 第2熱媒体温度センサー、40,40a,40b 吐出圧力センサー、41,41a,41b インジェクション配管、42,42a,42b インジェクション絞り装置、43,43a,43b 吐出温度センサー、44,44a,44b 圧力検出用センサー、45,45a,45b 室外側絞り装置、46,46a,46b 外気温度センサー、50,50a,50b 開閉装置、51,51a,51b 中継機冷媒流路切替装置、60,60a,60b 制御装置、61,61a,61b 記憶装置、70 熱媒体配管、71,71a,71b ポンプ、72,72a,72b,72c,72d 第1熱媒体流路切替装置、73,73a,73b,73c,73d 第2熱媒体流路切替装置、75,75a,75b,75c,75d 熱媒体流量調整装置、76,76a,76b,76c,76d 利用側熱交換器、80 水配管、100 空気調和装置。 1, 1a, 1b outdoor unit, 2, 2a, 2b, 2c, 2d indoor unit, 3 relay device, 4, 4a, 4b refrigerant piping, 5 main pipes, 6 first connection piping, 7 second connection piping, 8 branch pipes 10, 10a, 10b Compressor, 11, 11a, 11b Refrigerant flow switching device, 12, 12a, 12b Heat source side heat exchanger, 13, 14, 15, 16 First backflow prevention device, 17, 17a, 17b Injection Port, 18, 18a, 18b Heat source fan, 19, 19a, 19b Accumulator, 20, 20a, 20b Oil return mechanism, 21a, 21b, 21c, 21d Second backflow prevention device, 22a, 22b, 22c, 22d Third Backflow prevention device, 23a, 23b, 23c, 23d first switching device, 24a, 24b, 24c, 24d second switching device, 25, 25a 25b, 25c, 25d Load-side throttling device 26, 26, 26a, 26b, 26c, 26d Load-side heat exchanger, 27 second relay throttling device 28, 28 load-side fan, 29 gas-liquid separator, 30 first relay throttling Devices 31, 31a, 31b, 31c, 31d Inlet temperature sensors 32, 32, 32a, 32b, 32c, 32d Outlet temperature sensors, 33 throttle device inlet pressure sensors, 34 throttle device outlet pressure sensors, 35, 35a, 35b, 35c, 35d heat exchanger temperature sensor, 36, 36a, 36b pressure sensor, 37, 37a, 37b first heat medium temperature sensor, 38, 38a, 38b second heat medium temperature sensor, 40, 40a, 40b discharge pressure Sensor, 41, 41a, 41b Injection piping, 42, 42a, 42b a Jection throttle device, 43, 43a, 43b Discharge temperature sensor, 44, 44a, 44b Pressure detection sensor, 45, 45a, 45b Room outside throttle device, 46, 46a, 46b Outside air temperature sensor, 50, 50a, 50b Switchgear , 51, 51a, 51b relay machine refrigerant flow path switching device, 60, 60a, 60b control device, 61, 61a, 61b storage device, 70 heat medium piping, 71, 71a, 71b pump, 72, 72a, 72b, 72c, 72d first heat medium flow path switching device, 73, 73a, 73b, 73c, 73d second heat medium flow path switching device, 75, 75a, 75b, 75c, 75d heat medium flow rate adjusting device, 76, 76a, 76b, 76c , 76d Use side heat exchanger, 80 water piping, 100 air conditioner.

Claims (12)

  1.  吸入室に冷媒を導入するインジェクションポートを有し、前記冷媒を圧縮して吐出する圧縮機、前記冷媒の熱交換を行う熱源側熱交換器および前記冷媒を溜めるアキュムレーターとを有する室外機と、
     前記冷媒を減圧する、少なくとも1台の負荷側絞り装置と、
     負荷と前記冷媒との熱交換を行う少なくとも1台の負荷側熱交換器とが配管で接続され、前記冷媒を循環させる冷媒回路を構成する空気調和装置であって、
     前記室外機は、
     前記冷媒回路において、一端が、前記熱源側熱交換器と前記負荷側絞り装置との間に接続され、他端が、前記インジェクションポートと接続され、前記冷媒回路を流れる前記冷媒の一部を前記インジェクションポートに向けて通過させるインジェクション配管と、
     前記冷媒回路において、前記負荷側絞り装置から前記熱源側熱交換器に前記冷媒が流れるときに、前記インジェクション配管の前記一端よりも下流側となる位置に設置され、通過する前記冷媒を減圧し、流量を調整する室外側絞り装置と、
     前記インジェクション配管を流れる前記冷媒の量を調整するインジェクション絞り装置とを備え、
     前記室外側絞り装置の開度および前記インジェクション絞り装置の開度を制御する制御装置をさらに有する空気調和装置。
    An outdoor unit having an injection port for introducing a refrigerant into a suction chamber, a compressor for compressing and discharging the refrigerant, a heat source side heat exchanger for exchanging heat of the refrigerant, and an accumulator for storing the refrigerant;
    At least one load-side throttle device for decompressing the refrigerant;
    An air conditioner comprising a refrigerant circuit in which a load and at least one load-side heat exchanger for performing heat exchange with the refrigerant are connected by a pipe to circulate the refrigerant.
    The outdoor unit is
    In the refrigerant circuit, one end is connected between the heat source side heat exchanger and the load side expansion device, the other end is connected to the injection port, and a part of the refrigerant flowing in the refrigerant circuit is Injection piping that passes through to the injection port,
    In the refrigerant circuit, when the refrigerant flows from the load-side expansion device to the heat source-side heat exchanger, the refrigerant circuit is installed at a position downstream of the one end of the injection pipe to decompress the refrigerant passing therethrough. An outdoor throttling device to adjust the flow rate,
    And an injection throttle device for adjusting the amount of the refrigerant flowing through the injection pipe,
    An air conditioning apparatus further comprising a control device that controls the opening degree of the outdoor side throttle device and the opening degree of the injection throttle device.
  2.  複数の前記室外機を、並列に配管接続して前記冷媒回路を構成する請求項1に記載の空気調和装置。 The air conditioning apparatus according to claim 1, wherein a plurality of the outdoor units are connected in parallel by piping to configure the refrigerant circuit.
  3.  前記制御装置は、
     前記圧縮機が吐出する前記冷媒の吐出温度が、あらかじめ定められた吐出温度しきい値以上であると判定すると、前記吐出温度が、前記吐出温度しきい値よりも低くなるように、前記インジェクション絞り装置の開度を制御する請求項1または請求項2に記載の空気調和装置。
    The controller is
    When it is determined that the discharge temperature of the refrigerant discharged by the compressor is equal to or higher than a predetermined discharge temperature threshold, the injection throttle is set such that the discharge temperature is lower than the discharge temperature threshold. The air conditioning apparatus according to claim 1, wherein the opening degree of the apparatus is controlled.
  4.  前記制御装置は、
     前記圧縮機が吐出する前記冷媒の吐出温度が、あらかじめ定められた吐出温度しきい値を目標として、前記インジェクション絞り装置の開度を制御する請求項1または請求項2に記載の空気調和装置。
    The controller is
    The air conditioning apparatus according to claim 1 or 2, wherein the discharge temperature of the refrigerant discharged by the compressor controls the opening degree of the injection throttle device with a discharge temperature threshold value determined in advance as a target.
  5.  前記制御装置は、
     前記アキュムレーターからの返液により低下した前記圧縮機の吐出温度が、あらかじめ定められた液面調整しきい値以下であるものと判定すると、液面調整しきい値よりも高くなるように、前記室外側絞り装置の開度を制御する請求項1~請求項3のいずれか一項に記載の空気調和装置。
    The controller is
    The discharge temperature of the compressor, which is lowered due to the liquid return from the accumulator, is higher than the liquid level adjustment threshold when it is determined that the discharge temperature is lower than a predetermined liquid level adjustment threshold. The air conditioner according to any one of claims 1 to 3, wherein an opening degree of the outdoor side throttle device is controlled.
  6.  前記液面調整しきい値は、前記インジェクション絞り装置の開度が開いている場合、前記アキュムレーターからの返液により低下する前記吐出温度に、前記インジェクション絞り装置の開度による前記吐出温度の低下分の温度値を加えた値とする請求項5に記載の空気調和装置。 When the opening degree of the injection throttle device is open, the liquid level adjustment threshold is lowered by the opening degree of the injection throttle device to the discharge temperature which is lowered by the liquid return from the accumulator. The air conditioner according to claim 5, wherein a temperature value of a minute is added.
  7.  前記制御装置は、前記圧縮機が吐出する前記冷媒の吐出過熱度を算出し、前記吐出温度に代えて、前記吐出過熱度に基づく処理を行う請求項3~請求項6のいずれか一項に記載の空気調和装置。 The said control apparatus calculates the discharge superheat degree of the said refrigerant | coolant which the said compressor discharges, replaces with the said discharge temperature, and performs the process based on the said discharge superheat degree in any one of Claims 3-6. The air conditioner of description.
  8.  前記室外機は、冷房運転モード時と暖房運転モード時とで前記冷媒の流路を切り替える冷媒流路切替装置をさらに備え、
     前記制御装置は、暖房運転モード時に、前記インジェクション絞り装置の開度を制御する請求項1~請求項7のいずれか一項に記載の空気調和装置。
    The outdoor unit further includes a refrigerant flow switching device that switches the flow of the refrigerant between the cooling operation mode and the heating operation mode,
    The air conditioner according to any one of claims 1 to 7, wherein the control device controls an opening degree of the injection throttle device in a heating operation mode.
  9.  前記暖房運転モードは、複数の暖房運転は、停止状態にない複数の前記負荷側熱交換器の全てが凝縮器として機能する全暖房運転モードと、停止状態にない複数の前記負荷側熱交換器のうち、一部の前記負荷側熱交換器が凝縮器として機能し、他の前記負荷側熱交換器が蒸発器として機能する暖房主体運転モードとを含む請求項8に記載の空気調和装置。 In the heating operation mode, a plurality of heating operations are all heating operation modes in which all of the plurality of load-side heat exchangers not in the stop state function as a condenser, and a plurality of load-side heat exchangers not in the stop state The air conditioner according to claim 8, further comprising: a heating main operation mode in which some of the load-side heat exchangers function as a condenser and the other load-side heat exchangers function as an evaporator.
  10.  前記負荷側絞り装置および前記負荷側熱交換器をそれぞれ搭載する複数の室内機と、
     前記室外機と前記複数の室内機との間を中継する中継装置と、をさらに有し、
     前記室外機が有する機器と前記複数の室内機が有する機器との間を、前記中継装置を介して前記冷媒が循環するように配管接続され、前記冷媒回路を構成する請求項1~請求項9のいずれか一項に記載の空気調和装置。
    A plurality of indoor units on which the load-side throttling device and the load-side heat exchanger are respectively mounted;
    A relay device for relaying between the outdoor unit and the indoor units;
    The refrigerant circuit is connected by piping such that the refrigerant circulates between the device of the outdoor unit and the devices of the plurality of indoor units via the relay device. The air conditioner according to any one of the preceding claims.
  11.  前記冷媒とは異なる熱媒体を前記負荷として、前記冷媒と前記熱媒体との熱交換を行う前記負荷側熱交換器を有する前記冷媒回路と、
     前記熱媒体を加圧するポンプ、前記負荷側熱交換器、空調対象の空気と熱交換する利用側熱交換器および該利用側熱交換器を流入および流出する前記熱媒体の流量を調整する熱媒体流量調整装置を配管接続して前記熱媒体を循環させる熱媒体循環回路と
    を備える請求項1~請求項9のいずれか一項に記載の空気調和装置。
    The refrigerant circuit having the load-side heat exchanger that performs heat exchange between the refrigerant and the heat medium using the heat medium different from the refrigerant as the load;
    A pump for pressurizing the heat medium, the load side heat exchanger, a use side heat exchanger for exchanging heat with air to be air conditioned, and a heat medium for adjusting the flow rate of the heat medium flowing in and out of the use side heat exchanger The air conditioning apparatus according to any one of claims 1 to 9, further comprising: a heat medium circulation circuit that connects the flow control device to a pipe and circulates the heat medium.
  12.  前記熱源側熱交換器は、水と前記冷媒との間で熱交換を行う水冷媒熱交換器である請求項1~請求項11のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 11, wherein the heat source side heat exchanger is a water refrigerant heat exchanger that performs heat exchange between water and the refrigerant.
PCT/JP2017/035261 2017-09-28 2017-09-28 Air conditioner WO2019064441A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/035261 WO2019064441A1 (en) 2017-09-28 2017-09-28 Air conditioner
JP2019545501A JP6880213B2 (en) 2017-09-28 2017-09-28 Air conditioner
CN201780095028.XA CN111133258B (en) 2017-09-28 2017-09-28 Air conditioner
EP17927771.0A EP3690349B1 (en) 2017-09-28 2017-09-28 Air conditioner
US16/643,332 US20210055024A1 (en) 2017-09-28 2017-09-28 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035261 WO2019064441A1 (en) 2017-09-28 2017-09-28 Air conditioner

Publications (1)

Publication Number Publication Date
WO2019064441A1 true WO2019064441A1 (en) 2019-04-04

Family

ID=65901130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035261 WO2019064441A1 (en) 2017-09-28 2017-09-28 Air conditioner

Country Status (5)

Country Link
US (1) US20210055024A1 (en)
EP (1) EP3690349B1 (en)
JP (1) JP6880213B2 (en)
CN (1) CN111133258B (en)
WO (1) WO2019064441A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102067447B1 (en) * 2018-01-25 2020-01-20 삼성전자주식회사 Air conditioner and control method thereof
JP2021162205A (en) * 2020-03-31 2021-10-11 ダイキン工業株式会社 Air conditioning device
KR20220045360A (en) 2020-10-05 2022-04-12 엘지전자 주식회사 Multi-air conditioner for heating and cooling operations

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138921A (en) 2006-11-30 2008-06-19 Mitsubishi Electric Corp Air conditioner
WO2013160966A1 (en) * 2012-04-27 2013-10-31 三菱電機株式会社 Air conditioning device
WO2014080464A1 (en) * 2012-11-21 2014-05-30 三菱電機株式会社 Air-conditioning device
WO2014141374A1 (en) * 2013-03-12 2014-09-18 三菱電機株式会社 Air conditioner
US20150267957A1 (en) * 2014-03-20 2015-09-24 Lg Electronics Inc. Air conditioner and method for controlling an air conditioner
WO2016105262A1 (en) * 2014-12-23 2016-06-30 Fläkt Woods AB Device and method for heating of air at an air treatment device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5855129B2 (en) * 2011-12-12 2016-02-09 三菱電機株式会社 Outdoor unit and air conditioner
JP6120797B2 (en) * 2014-04-04 2017-04-26 三菱電機株式会社 Air conditioner
CN106288080B (en) * 2016-08-19 2019-02-19 广东美的暖通设备有限公司 Air injection enthalpy-increasing air-conditioning system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138921A (en) 2006-11-30 2008-06-19 Mitsubishi Electric Corp Air conditioner
WO2013160966A1 (en) * 2012-04-27 2013-10-31 三菱電機株式会社 Air conditioning device
WO2014080464A1 (en) * 2012-11-21 2014-05-30 三菱電機株式会社 Air-conditioning device
WO2014141374A1 (en) * 2013-03-12 2014-09-18 三菱電機株式会社 Air conditioner
US20150267957A1 (en) * 2014-03-20 2015-09-24 Lg Electronics Inc. Air conditioner and method for controlling an air conditioner
WO2016105262A1 (en) * 2014-12-23 2016-06-30 Fläkt Woods AB Device and method for heating of air at an air treatment device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3690349A4

Also Published As

Publication number Publication date
EP3690349A4 (en) 2020-10-14
US20210055024A1 (en) 2021-02-25
EP3690349A1 (en) 2020-08-05
JP6880213B2 (en) 2021-06-02
JPWO2019064441A1 (en) 2020-10-01
EP3690349B1 (en) 2023-12-13
CN111133258A (en) 2020-05-08
CN111133258B (en) 2022-01-18

Similar Documents

Publication Publication Date Title
JP6351848B2 (en) Refrigeration cycle equipment
JP5847366B1 (en) Air conditioner
JP5992089B2 (en) Air conditioner
JP5992112B2 (en) Air conditioner
JP5774210B2 (en) Air conditioner
JP5730335B2 (en) Air conditioner
JP5992088B2 (en) Air conditioner
JP6328270B2 (en) Air conditioner
JP6038382B2 (en) Air conditioner
JP6052456B2 (en) Refrigeration equipment
JP6880213B2 (en) Air conditioner
JP6576603B1 (en) Air conditioner
JP6017048B2 (en) Air conditioner
JP6758506B2 (en) Air conditioner
WO2017010007A1 (en) Air conditioner
JP6017049B2 (en) Air conditioner
WO2022029845A1 (en) Air conditioner
JP6257812B2 (en) Air conditioner
JP7378671B1 (en) air conditioner
JP2020201001A (en) Heat source unit
JP2020201000A (en) Heat source unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017927771

Country of ref document: EP

Effective date: 20200428